WorldWideScience

Sample records for aqueous liquid waste

  1. Separation of transuranium elements and fission products from medium activity aqueous liquid wastes

    International Nuclear Information System (INIS)

    In the course of work performed between January 1981 and June 1985 on the separation of TRU elements and fission products three liquid alpha containing waste streams were treated: - medium level waste solutions, - waste solutions from the acid digestion of burnable alpha containing solid residues, - waste solutions from mixed oxide fuel element fabrication. The method of separation was initially developed and optimized with simulating substances. Subesequently it was tested with real waste solutions

  2. Partitioning of plutonium from aqueous acidic wastes using a hollow fiber supported liquid membrane technique

    International Nuclear Information System (INIS)

    Transport of Pu(IV) from 3M HNO3 solutions across Aliquat-336/ Solvesso-100 by hollow fiber supported liquid membrane (HFSLM) was studied. Permeability of Pu(IV) through a bundle of hollow fibers made-up with 20 lumens, of 67 cm2 surface area, 9 cm length and operated at a flow rate of 10-8 m3/s on recycle mode was examined. More than 80% Pu from oxalate bearing wastes generated during reconversion process could be transported through 10% Aliquat-336/Solvesso-100 into hydroxylamine hydrochloride strippant in about three runs. (author)

  3. Ultrasound-assisted mineralization of organic compounds in aqueous liquid wastes

    International Nuclear Information System (INIS)

    Full text of publication follows: The rinsing of the nuclear installations used for the reprocessing of fuel irradiated before their final shutdown dismantling is considered by use of surface-active compounds diluted in nitric acid medium. In order to comply with the industrial vitrification specifications (carbon concentration in solution), mineralization (carbon decomposition into CO2) of liquid wastes has to be performed. An oxidation using H2O2 with nickel nitrate used as catalyst (Fenton reaction) is an efficient method for organics compounds destruction but it involves an important dilution because of added amounts of H2O2. Ultrasound associated or not with the Fenton reaction could be interesting with an aim of reducing H2O2 consumption. Indeed, it is known that water sono-lysis generates H2O2 involving radicals formation which may oxidize organics compounds. Laboratory tests have shown poor carbon oxidation performances even if associated with Fenton reaction. Efficiency is limited by nitrous acid, formed from nitric acid sono-lysis, enhancing H2O2 consumption. However, reaction mechanisms are complex and further tests, still in progress, will involve an anti nitrous agent in order to neutralize all nitrous acid and so let H2O2 operate on the organics compounds. (authors)

  4. Liquid waste treatment process - 59061

    International Nuclear Information System (INIS)

    Document available in abstract form only. Full text of publication follows: The law defined the responsibilities of the national center of nuclear energy in Morocco CNESTEN as the sole radioactive waste operating organization and designated CNESTEN as responsible for the management of radioactive waste at the national level in several social and economic sectors. The goals of the unit of radioactive waste management are: -reduce the volume of the radioactive waste product; -convert the radioactive waste into an appropriate waste for monitoring, storage and evacuation; -Recover if it's possible an element of value. The Moroccan products of radioactive liquid waste per year are 0.1 m3 of organic liquid and 35 m3 of liquid aqueous. The method adopted by CNESTEN was the evaporator for liquid aqueous and the solidification with the activated carbon for the organic liquid. An evaporation installation to treat 5 m3 of aqueous liquid in each campaign, the volume of the sludge obtained is 200 liters and 4800 liters of distillate water. Concerning the management system is plan to collect the liquid aqueous in tanks in the bottom of each nuclear installation. After characterization according to the technical specification of radioactive waste management nuclear installation, the waste is transported in an appropriate tank to the treatment building to be evaporated. After treatment the clean water is collect in a separate tank waiting its discharge if it complies with the requirements of release. The volume of sludge issued from evaporator is conditioning with mortar (40 liters) in 120 liters drum, the mixing operation is ensured by shingles introduced in the drum and the rotation of the drum is ensured by a mixer named 'turn drums'. The drum must respect the acceptance criteria before transferred to storage building. About the liquid organic waste was collected in the polyethylene move tank; this kind of waste is mixed to an absorbent product and conditioned like the sludge

  5. Remediation of alkaline intermediate level radioactive aqueous liquid waste stored along with organic waste at PREFRE Tarapur for ion exchange process: a laboratory scale study

    International Nuclear Information System (INIS)

    Dibutyl phosphate (DBP) and monobutyl phosphate (MBP) are formed during reprocessing of spent fuel as degradation products of Tributyl phosphate (TBP). To maintain the efficiency of TBP solvent during its repeated use, the degraded products are removed by sodium carbonate washing of the solvent. This radioactive sodium carbonate solution is stored in a separate tank along with the exhausted TBP solvent. The presence of degraded products of TBP and their complexes, ion exchange treatment of this waste is creating problems during alpha decontamination step. The present paper deals with the remediation of the aqueous phase of the above waste. For the treatment of the aqueous phase of waste, first the TBP degraded products are required to be removed so that the normal ion exchange treatment can be adopted. (author)

  6. Mercury separation from aqueous wastes

    International Nuclear Information System (INIS)

    This project is providing an assessment of new sorbents for removing mercury from wastes at US Department of Energy sites. Four aqueous wastes were chosen for lab-scale testing; a high-salt, acidic waste currently stored at Idaho National Engineering Laboratory (INEL); a high-salt, alkaline waste stored at the Savannah River Site (SRS); a dilute lithium hydroxide solution stored at the Oak Ridge Y-12 Plant; and a low-salt, neutral groundwater generated at the Y-12 Plant. Eight adsorbents have been identified for testing, covering a wide range of cost and capability. Screening tests have been completed, which identified the most promising adsorbents for each waste stream. Batch isotherm tests have been completed using the most promising adsorbents, and column tests are in progress. Because of the wide range of waste compositions tested, no one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility with the waste solutions. the most effective adsorbents identified to date are SuperLig 618 for the INEL tank waste stimulant; Mersorb followed by lonac SR-3 for the SRS tank waste stimulant; Durasil 70 and Ionac SR-3) for the LIOH solution; and lonac SR-3 followed by lonac SR-4 and Mersorb for the Y-12 groundwater

  7. Extraction of Theanine from Waste Liquid of Tea Polyphenol Production in Aqueous Two-phase Systems with Cationic and Anionic Surfactants

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junwei; WANG Yan; PENG Qijun

    2013-01-01

    Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactant two-phase system (ASTP) with cationic suffactant (CTAB) and anionic surfactant (SDS).Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant.The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP.Theanine concentration in the bottom phase increases with increasing concentration of theanine,whereas the partition coefficient and extraction rate only change a little when the concentration of theanine is above 0.2 g· L-1.With the increase of SDS concentration,the phase ratio and the partition coefficient decrease,while the extraction efficiency of theanine increases and the concentration of theaninc changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio.The temperature has a notable effect on the concentration of theanine in the bottom phase,partition coefficient and extraction rate of theanine.The increase of waste liquid decreases the phase ratio,increases the concentration and extraction rate of theanine in the bottom phase,since the protein and the saccharide enter the bottom phase with theanine.

  8. Liquid wastes processing device

    International Nuclear Information System (INIS)

    Purpose: To enable safety and easy evaporation of liquid components in contaminated radioactive liquid wastes, as well as to recover the cleaned-up vapors by way of distillation into liquid components. Constitution: After supplying neutralized radioactive liquid wastes into an evaporator, a vertical moving rack is adjusted so as to suck the contaminated airs in a glove box. The liquid wastes are evaporated by a heater and the vapors are cleaned up in an inclined filter element. Further, the cleaned up vapors are formed into liquid in a water cooled cooling cylinder and then introduced to a gas phase separation and liquid collection device. While on the other hand, gases are sent from a gas outlet through a vent pipe to a suction pump and discharged therefrom into a simple glove box. (Horiuchi, T.)

  9. Technetium removal from aqueous wastes

    International Nuclear Information System (INIS)

    The research discussed in this report has compared several ''state of the art'' techniques for the removal of traces of the radionuclide, technetium, from aqueous wastes. The techniques investigated were: electrochemical reduction to an insoluble oxide, electrochemical ion exchange, seeded ultrafiltration and chemical reduction followed by filtration. Each technique was examined using a simulant based upon the waste generated by the Enhanced Actinide Removal Plant (EARP) at Sellafield. The technique selected for further investigation was direct electrochemical reduction which offers an ideal route for the removal of technetium from the stream (DFs 10-100) and can be operated continuously with a low power consumption 25 kW for the waste generated by EARP. Cell designs for scale up have been suggested to treat the 1000m3 of waste produced every day. Future work is proposed to investigate the simultaneous removal of other key radionuclides, such as ruthenium, plutonium and cobalt as well as scale up of the resulting process and to investigate the effect of these other radionuclides on the efficiency of the electrochemical reduction technique for the removal of technetium. Total development and full scale plant costs are estimated to be of the order of 5 pounds - 10M, with a time scale of 5 -8 years to realisation. (author)

  10. Liquid secondary waste. Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  11. Liquid secondary waste. Waste form formulation and qualification

    International Nuclear Information System (INIS)

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford's IDF.

  12. Handling and treatment of radioactive aqueous wastes

    International Nuclear Information System (INIS)

    This report aims to provide essential guidance to developing Member States without a nuclear power programme regarding selection, design and operation of cost effective treatment processes for radioactive aqueous liquids arising as effluents from small research institutions, hospitals and industries. The restricted quantities and low activity associated with the relevant wastes will generally permit contact-handling and avoid the need for shielding requirements. The selection of liquid waste treatment involves: Characterization of arising with the possibility of segregation; Discharge requirements for decontaminated liquors, both radioactive and non-radioactive; Available technologies and costs; Conditioning of the concentrates resulting from the treatment; Storage and disposal of the conditioned concentrates. The report will serve as a technical manual providing reference material and direct step-by-step know-how to staff in radioisotope user establishments and research centres in the developing Member States without nuclear power generation. Therefore, emphasis is limited to the simpler treatment facilities, which will be included with only the robust, well-established waste management processes carefully chosen as appropriate to developing countries. 20 refs, 12 figs, 7 tabs

  13. Laundry liquid waste treatment

    International Nuclear Information System (INIS)

    Laundry liquid waste contains 99% of Co-60, Cs-137 and 1% of Mn-54, Cr-51 arising at decontamination workshops was treated using 3 stages of operation which are Reverse Osmosis (RO), Falling-Film Evaporation (FE) and Microwave - Oven Solidification (MO). The liquid waste from decontamination of clothes and surfaces which the activity is 2 pressure the reverse osmosis is occurred. The RO concentrate is passed through the steam heating at 140 C of FE process and finally the FE concentrate is automatically transferred to 25 lW 915 MHz of MO process. The concentrated wastes are dried, incinerated, solidified with glass powder and boric acid in 30 litre stainless steel drum. The solidified material is put in 200 litre concrete -lining drum for the concrete embedding and final storage. The condensate is sent to liquid waste facility after radioactive monitoring, for the further treatment or discharge to environment. After treatments, it is found that decontamination efficiencies are> 97% and the total volume reduction is 1:1,000 (RO 1:20, FE 1:5 and MO 1:10), which show the high effective and appreciative results

  14. Solidification of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Purpose: To decrease the amount of surface active agents required for solidifying sodium sulfate-containing concentrated radioactive liquid wastes with asphalts. Method: Water soluble calcium compounds (calcium nitrate, etc.) are added to alkaline radioactive concentrated liquid wastes essentially consisting of sodium sulfate to adjust the pH value of the liquid wastes to 4.5 - 8.5. The addition amount of the water soluble calcium compounds (based on the weight of the calcium ions) is set to about 2 - 5% of the sulfate ions in the liquid wastes. Then, surface active agents are added by 3 - 10 weight % to the solid contents in the liquid wastes. (Ikeda, J.)

  15. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    J.M. Vicent-Luna; D. Dubbeldam; P. Gómez-Álvarez; S. Calero

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactio

  16. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  17. Liquid waste processing device

    International Nuclear Information System (INIS)

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  18. Method of processing liquid wastes

    International Nuclear Information System (INIS)

    Purpose: To improve the safety of processing liquid wastes by enriching the radioactive liquid wastes to higher than the concentration becoming solid at cooling time. Method: Radioactive liquid wastes containing sodium sulfate as main ingredient are enriched so the concentration of the sodium sulfate becomes 40 to 60%, a container is filled with the concentrated liquid wastes and allowed to stand for solidification, and can then be stored. Solidified wastes are heated and molted after radioactive nuclide is attenuated, and are then solidified in a stable solidifier such as cement, asphalt, plastic, glass, or the lide. Accordingly, since the radioactive liquid wastes are not handled as powder, equipment is not contaminated with powder, and it renders unnecessary the immediate solidification of wastes high radiation wastes with concrete, can avoid the decrease in the strength of a solidifiers such as plastics, and so can eventually enhance the safety of the final processing. (Yoshihara, H.)

  19. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    International Nuclear Information System (INIS)

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g-1. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  20. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    The present invention provides a device for processing radioactive liquid wastes generated in a facility of a nuclear power plant, especially suitable to liquid wastes at relatively high electroconductivity and solid content concentration. Namely, the device comprises a vessel for receiving radioactive liquid wastes, a device for concentrating the radioactive liquid wastes and a device for solidifying the liquid wastes. The concentrated liquid wastes can be charged from the concentration device to the receiving container. The concentration device has a precipitation separation function and comprises a supernatant withdrawing section and a solid content withdrawing section. In addition, the concentration device is connected with the receiving device for transferring the supernatant in the concentration device. Further, the receiving device is connected to the solidification device by way of a solid content transferring line, and the precipitated and separated solid content is transferred to a cement solidification device, plastic solidification device, asphalt solidification device, a glass solidification device etc. (I.S.)

  1. Liquid Radioactive Wastes Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Yung-Tse Hung

    2011-05-01

    Full Text Available Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. This work is directed to review recent published researches that are concerned with testing and application of different treatment options as a part of the integrated radioactive waste management practice. The main aim from this work is to highlight the scientific community interest in important problems that affect different treatment processes. This review is divided into the following sections: advances in conventional treatment of aqueous radioactive wastes, advances in conventional treatment of organic liquid wastes, and emerged technological options.

  2. Bioprocessing of a stored mixed liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Rogers, R.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Finney, R. [Mound Applied Technologies, Miamisburg, OH (United States)] [and others

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  3. Aqueous Corrosion Rates for Waste Package Materials

    Energy Technology Data Exchange (ETDEWEB)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  4. Aqueous Corrosion Rates for Waste Package Materials

    International Nuclear Information System (INIS)

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports

  5. Long Term Stability Testing Results for Savannah River Site Organic and Aqueous Waste streams

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating the long-term stability of various commercially available sorbent materials to solidify two organic surrogate waste streams (both volatile and nonvolatile), a volatile organic waste stream with a residual aqueous phase, an aqueous waste stream, and an aqueous waste stream with a residual organic phase. The Savannah River Site (SRS) legacy plutonium/uranium extraction (PUREX) process waste and the F-Canyon PUREX waste constituted the volatile organic wastes and various oils constituted the nonvolatile organic waste stream. The aqueous waste streams included a rainwater waste stream and an aqueous organic waste stream. MSE also evaluated the PUREX waste stream with a residual aqueous component with and without aqueous-type sorbent materials. Based on testing performed at MSE, the rainwater waste stream was successfully solidified by SRS personnel using two different sorbents. Several small oil wastes were also successfully solidified by SRS personnel using granular clay sorbents based on information provided by MSE from the oils waste stream testing and 75,706 Liters (L) [20,000 gallons (gal)] of the F-Canyon PUREX waste was solidified at Waste Consolidation Specialists (WCS). Solidification of the various surrogate waste streams listed above was performed from 2004 to 2006 at the MSE testing and evaluation facility located at the Mike Mansfield Advanced Technology Center in Butte, Montana. This paper summarizes the comparison of the initial liquid release testing (LRT) values with LRT results obtained over three years later in an attempt to understand the long-term stability characteristics of the solidified waste streams. The paper also includes solidification results for B-25 box samples generated late in 2005. (authors)

  6. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Floor drainages are mixed with low electroconductive liquid wastes, and after filtering the mixed liquid wastes by a hollow thread membrane filters, they are subjected to a desalting treatment by a desalter. The mixing ratio of the floor drainages to the lower electroconductive liquid wastes is determined to not more than 50wt%. With such procedures, since ionic ingredients are further diluted by mixing the floor drainages to the low electroconductive liquid wastes, sufficient margin can be provided up to the saturation of the ion exchange resins of the desalter, to maintain the ion exchange performance for a long period of time. Further, the recovery of the amount of permeation water and a differential pressure of filtration upon back washing of the hollow thread membrane filters is facilitated, thereby enabling to perform regeneration easily at high efficiency. (T.M.)

  7. [Utilization of organic resources in paper pulp waste liquid].

    Science.gov (United States)

    Lin, Qiaojia; Liu, Jinghong; Yang, Guidi; Huang, Biao

    2005-04-01

    In this paper, one hundred percent of condensed sulfate paper pulp waste liquid was used as the raw material of adhesive, and the activation of its lignin as well as the improving effects of phenol formaldehyde resin and polyfunctional aqueous polymer isocyanate (PAPI) were studied. The results showed that adding formaldehyde to the waste liquid could increase the reactivity of contained lignin, and adding 30% phenol formaldehyde resin or 20% PAPI could make the waste liquid in place of pure phenol formaldehyde resin for producing class I plywood. Furthermore, the cost could be reduced by 55.5% and 49.0%, respectively, in comparing with pure phenol formaldehyde resin. This approach fully used the organic resources in paper pulp waste liquid, reduced environment pollution at the same time, and had unexceptionable economic, social and ecological benefits. The feasibility of preparing adhesives from paper pulp waste liquid was also analyzed by infrared spectrum. PMID:16011170

  8. Liquid waste processing method and facility therefor

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Yoshihiro [Hitachi Kyowa Engineering K.K., Ibaraki (Japan); Yoshikawa, Ryozo; Sawa, Toshio

    1998-11-24

    Liquid wastes are passed through an electrolysis device having a membrane for selectively permeating monovalent ions to separate them into liquid wastes containing monovalent ions and liquid wastes containing at least bivalent ions. With such procedures, since ingredients including chlorine ion and nitric acid ions which are noxious upon concentration or dry-powderization/solidification or deteriorate processing efficiency can be removed from the liquid wastes to be processed, the liquid wastes can be processed efficiently and safely. (T.M.)

  9. Donnan dialysis for the treatment of aqueous wastes

    International Nuclear Information System (INIS)

    Commercially available ion exchange membranes with high selectivity and chemical stability make attractive the use of Donnan dialysis as a separation process for the treatment of industrial liquid aqueous wastes. The concentration of metal ions in solution, by using a chemical gradient across a selective cationic membrane, can be the basis for new hybrid processes in which well-known chemical treatments and membrane separation are coupled. Donnan dialysis separations of two ions of different charge Sr(II) and Cr(III), by means of perfluorinated Nafion membranes in tubular form, are discussed by taking into account different hydrodynamic and chemical conditions in the feed and strip solutions. Results are compared with other hybrid processes for the treatment of low activity nuclear wastes (Sr-90) and conventional wastes (chromate and Cr(III)). (author)

  10. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  11. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  12. Low level radioactive liquid waste decontamination by electrochemical way

    International Nuclear Information System (INIS)

    As part of the work on decontamination treatments for low level radioactive aqueous liquid wastes, the study of an electro-chemical process has been chosen by the C.E.A. at the Cadarache research centre. The first part of this report describes the main methods used for the decontamination of aqueous solutions. Then an electro-deposition process and an electro-dissolution process are compared on the basis of the decontamination results using genuine radioactive aqueous liquid waste. For ruthenium decontamination, the former process led to very high yields (99.9 percent eliminated). But the elimination of all the other radionuclides (antimony, strontium, cesium, alpha emitters) was only favoured by the latter process (90 percent eliminated). In order to decrease the total radioactivity level of the waste to be treated, we have optimized the electro-dissolution process. That is why the chemical composition of the dissolved anode has been investigated by a mixture experimental design. The radionuclides have been adsorbed on the precipitating products. The separation of the precipitates from the aqueous liquid enabled us to remove the major part of the initial activity. On the overall process some operations have been investigated to minimize waste embedding. Finally, a pilot device (laboratory scale) has been built and tested with genuine radioactive liquid waste. (author). 77 refs., 41 tabs., 55 figs., 4 appendixes

  13. Radioactive liquid waste processing device

    International Nuclear Information System (INIS)

    In a radioactive liquid waste processing device comprising a freeze-drying vessel for freezing and then vacuum drying acidic liquid wastes containing radioactive materials and a cold trap condensing steams evaporated in the freeze-drying vessel, a dust collecting electrode of an electric dust collector is disposed in the freeze-drying vessel for capturing fine solid particles and inorganic salts in steams. With such a constitution, upon sublimation of the water content contained in a freezing product of an acidic solution, since fine solid particles and inorganic salts entrained by steams are collected by the dust collecting electrode, radioactive materials entrained by recovered steams are almost eliminated, decontamination efficiency of the liquid waste processing device can be increased. Further, heat for the sublimation can be supplied to the solution-freezing product by a radiation heat caused by electric discharge of the dust collecting electrode, thereby enabling to eliminate the heater which was unnecessary so far. (T.M.)

  14. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  15. Analysis of liquid waste using PIXE

    International Nuclear Information System (INIS)

    Non-radioactive liquid waste generated in the Kaya Memorial Takizawa Laboratory was analyzed using the PIXE system established at the Nishina Memorial Cyclotron Center. Samples of the liquid waste were collected at several stages of the non-radioactive liquid waste purifying process. A simple sample preparation method for liquid sample was adopted. Liquid sample was dropped and dried directly on the backing film after adding the internal standard element, which produced appropriate targets to be analyzed by PIXE. Sodium, silicon, sulfur, chlorine, potassium, calcium, iron and so on in the liquid sample were detected. The PIXE method used in this study showed outstanding properties for analyzing the liquid sample. (author)

  16. Concepts for detritiation of waste liquids

    International Nuclear Information System (INIS)

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the SRS reactors, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, so research and development programs have been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R ampersand D efforts world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in future fusion reactors. This paper presents a review of some of the methods that have been proposed, studied, and developed for removal of tritium from light and heavy water, along with some new concepts for aqueous detritiation directly from liquid oxide (HTO) bearing feed streams

  17. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  18. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, 99Tc, and 106Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NOx emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal

  19. Removal of Radioactive Pollutants by Liquid Emulsion Membrane From Liquid Waste

    International Nuclear Information System (INIS)

    Radioactive liquid waste should be safely managed because it is potentially hazardous to human health and the environment. Several methods were used for treatment of liquid waste, such as liquid emulsion membrane (LEM). In this work, liquid emulsion membrane using Tri-butyl phosphate (TBP) plus Bis (2-ethylhexyl) phosphate (HDEHP) as mobile carriers, hydrochloric acid (HCl) as stripping agents and an emulsifying agent (span 80) was used for the extraction of uranium ions from radioactive liquid waste. Various parameters influencing the permeation of uranium ions through the membrane have been optimized to separate uranium ions from radioactive liquid waste such as: the effects of membrane material, carrier concentration, operating conditions, etc. were examined; moreover, the transport mechanism of this uranium was also studied. The internal mass transfer in the water/oil (W/O) emulsion drop, the external mass transfer around the drop, the rates of formation, and the decomposition of the complex at the external aqueous-organic interface were considered. The results show that, the liquid emulsion membrane which consists of (25% by volume HDEHP, 0.005 M + 75% by volume TBP, 0.01 M) as extractant (carrier), span 80, 4% (v/v) (sorbitan monooleate) as surfactant agent, hydrochloric acid (HCl), (1.0 M) as stripping agent. From the results, the maximum extraction percent of uranium ions (nearly about of 100%) occurred at the operating conditions: stirring speed =500 rpm, the ratio between LEM and feed phase (liquid waste) = 20 ml: 100 ml, the ratio between organic phase (membrane phase) to internal aqueous phase (stripping phase) = 1.0 and the ph value of the external aqueous phase equal to 5.0.

  20. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    1996-10-01

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories.

  1. Electrochemical treatment of liquid wastes

    International Nuclear Information System (INIS)

    Electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This activity consists of five major tasks: (1) evaluation of different electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale size reactor, and (5) analysis and evaluation of testing data. The development program team is comprised of individuals from federal, academic, and private industry. Work is being carried out in DOE, academic, and private industrial laboratories

  2. Hanford Site liquid waste acceptance criteria

    International Nuclear Information System (INIS)

    This document provides the waste acceptance criteria for liquid waste managed by Waste Management Federal Services of Hanford, Inc. (WMH). These waste acceptance criteria address the various requirements to operate a facility in compliance with applicable environmental, safety, and operational requirements. This document also addresses the sitewide miscellaneous streams program

  3. Method for solidification of slurry-like liquid wastes or radioactive liquid wastes

    International Nuclear Information System (INIS)

    Purpose: To eliminate various defects in cement, asphalt or resin solidification processes of liquid wastes. Method: Vulcanized rubber such as wasted tyres or unvulcanized rubber is decomposed through melting in a screw type extruder. The molten rubber is heated and melted again to reduce the viscosity and poured into another extruder. Then, slurry-like liquid wastes or radioactive liquid wastes are mixed with the molten rubber in the extruder, and the water contents in the liquid wastes are evaporated during mixing. Thus, the liquid wastes are solidified with the molten rubber. (J.P.N.)

  4. Encapsulating low level liquid radioactive wastes

    International Nuclear Information System (INIS)

    In a process for encapsulating low level radioactive liquid organic wastes into a solid form suitable for burial one part by weight of the waste is mixed with less that one part by weight of a particulate, crosslinked, organic liquid swellable, organic liquid insoluble polymer to provide discrete, noncoalescent, gelled particles of the polymer and the waste. Between 0.1 to 3 parts by weight of the gelled particles are dispersed in one part by weight of a curable liquid resin. The resin is selected from the group consisting of unsaturated polyester resins, vinyl ester resins and mixtures of the resins. The liquid resin is then cured to a solid

  5. Final treatment of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Final treatment of liquid radioactive wastes which are produced by 1st and 2nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  6. Liquid crystalline phases in concentrated aqueous solutions of Na+ DNA.

    OpenAIRE

    Rill, R L

    1986-01-01

    Concentrated aqueous saline solutions of short (146-base-pair) DNA fragments suddenly become turbid and iridescent when the DNA concentration is slightly increased or the temperature is decreased. Microscopic examination through crossed polarizing filters shows that turbidity and iridescence is due to formation of a liquid crystalline DNA phase similar to cholesteric liquid crystals formed by other semirigid, but nonelectrolyte, chiral polymers. Several distinct textures of the liquid crystal...

  7. Study of aqueous process using hydrochloric acid for radioactive waste including uranium

    International Nuclear Information System (INIS)

    A lot of solid and liquid radioactive wastes had been produced in the various examinations. The wastes have been stored in Japan Nuclear Cycle Development Institute Ningyo-Toge Environmental Engineering Center. Amounts of solid wastes including fluorine and uranium are very much, so techniques of final disposal will be developed and the solid wastes will be disposed. This study estimates the applicability of aqueous process using hydrochloric acid for CaF2, NaF, Al2O3 and UF4, so examinations using those wastes were performed and mass balance and activity balance sheets were made. The conclusion is as below. 1. The process using hydrochloric acid to CaF2 is applicable. 2. The process using hydrochloric acid to NaF is applicable. 3. Dissolution of Al2O3 is difficult, but uranium in Al2O3 is almost dissolved, so application of aqueous process using hydrochloric acid for Al2O3 is possible. 4. Application of aqueous process using hydrochloric acid to UF4 has problem of insolubility of UF4. 5. Next subjects are a rise of solid/liquid ratio, a increase of efficiency of uranium precipitation and decrease of second wastes which are resins and aluminium as masking material to fluorine. (author)

  8. Production of lipase extrated from aqueous waste: enzymatic activity kinetics

    Directory of Open Access Journals (Sweden)

    Tatianne Ferreira de Oliveira

    2014-12-01

    Full Text Available Lipases are an important group of enzymes with various applications in the food, chemical and pharmaceutical industry, besides having great interest for the treatment of effluents with high lipid content. The objective of this study was to isolate, characterize and select lipolytic bacteria that produce lipase from aqueous waste effluents and to study the enzymatic activity kinetics of the extract obtained via submerged fermentation. The results obtained are promising, being possible to isolate and characterize 23 lipase-producing microorganisms, mostly gram-positive bacteria, but after the fermentation step in a liquid medium, gram negative bacteria showed the highest enzymatic activity (56.72 U.L-1 for STP 2A` bacterium and 81.99 U.L-1 for R2B. In the enzymatic activity kinetic study with the selected bacterium (R2B, among the six variables (temperature, pH, minimal mineral medium, soybean oil, glucose and sodium nitrate, temperature was the one that most positively influenced the enzymatic activity, and the best results were obtained at 40°C. It was concluded that the enzyme extract obtained from environmental waste may be used to treat the effluent and contribute to reduce environmental impacts.

  9. Method of solidifying radioactive liquid wastes

    International Nuclear Information System (INIS)

    Purpose: To solidify radioactive liquid wastes stably in glass while suppressing the evaporization of volatiling components such as cesium. Method: To a high level radioactive liquid wastes contained in a liquid waste tank, zeolite incorporated with copper ferrocyanide is supplied in an amount depending on the amount of cesium in the liquid wastes from an absorbent storing vessel, stirred by a stirrer and then supplied to a storing tank. Sodium silicate solution in a sodium silicate solution tank and boric acid in an additive tank are supplied to the storing tank and admixed with the liquid wastes by a stirrer. After the completion of gelation, the stirring is interrupted and the storing vessel is dried in a heating furnace at 2000C. After the completion of the drying, the temperature is increased to 11000C to produce glass solidification products. (Yoshino, Y.)

  10. A contribution to the problem of solidifying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Radioactive waste solutions must be processed to a solid end product before transport or storage. Solidification should be performed as near as possible to the source of the solutions. A process will be described where weak and moderately active liquid wastes can be solidified without hazard. In contrast to previously employed methods based on concrete vermiculite, use of our method permits the solidification of acidic as well as alkaline solutions without neutralization. In addition, aqueous solutions contaminated with organic solvents can be processed. (orig.)

  11. Liquid radioactive waste concentration methods

    International Nuclear Information System (INIS)

    Methods for concentrating liquid radioactive wastes (LRW) - an important step in waste processing procedures aimed at reducing hazards to personnel and the public - are reviewed, and some of their advantages and drawbacks pointed out. Chemical LRW-treatment methods include coagulation (by aluminium sulfate, ferric chloride, etc.), soda-lime softening of water, as well as techniques based on specific reactions with particular nuclides. By addition of sorbents (clay, activated charcoal, etc.) the chemical scavenging effect is enhanced, while use of flocculating agents (sodium polyalginate, polyacrylamide, synthetic polymers, etc.) produces accelerated deposition of resulting precipitates. A second major LRW-concentration method is evaporation, which is relatively expensive and, moreover, inapplicable in the case of volatile radionuclides escaping into the fume-and-vapor phase. It is emphasized that to overcome difficulties due to presence of contaminants such as saponaceous, organic or mineral oil matter, use of defoaming agents is indicated. A third important LRW-concentration method is that by ion exchange; synthetic is well as natural organic ion exchan.gers are in use. There are a number of other methods that also find application, such as biological techniques, electrodialysis, embedding in bitumen or asphalt, sand filtration, etc. (A.B.)

  12. Chemical treatment of aqueous radioactive Cesium-137 waste using Ferri Chloride

    International Nuclear Information System (INIS)

    Ferric Chloride 6H2O was used for treatment of liquid radioactive wastes containing Cesium-137. Various concentration of ferric chloride 6H2O have been added into the waste at different pH and speed of stirrer. The treatment was based on the coagulans-flocculation and coprecipitation mechanisms. The best result of this experiment was achieved by adding 300 ppm of Ferric chloride 6 H2O into liquid waste on following condition the rate Stirrer was 250 rpm. At this condition, it was found that the separation efficiency and the decontamination factor were 83.32 % and 5.99. The activity of decreasing of aqueous radioactive Cesium-137 waste was 2.10 x 10-4 Ci/l to 3.50 x 10-5 Ci/l

  13. investigations for the separation of radioisotopes and selected metal ions from dilute aqueous solutions and aqueous waste simulant by foaming

    International Nuclear Information System (INIS)

    co precipitate flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zine hexacyanoferrate (II) (ZnHCF) and subsequent flotation of the precipitate . collectors of different types were tested but cetyl pyridinium chloride showed the best performance. before undertaking the flotation investigations , coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. the developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste simulant. the obtained results compare favourably with data published for cesium removal by coprecipitation or adsorption processes. besides, CPF seems to be more advantageous

  14. Self-thinning and neutralizing thickened aqueous liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lybarger, J.H.; Scheuerman, R.F.

    1979-04-17

    A thickened aqueous liquid is described for use in well treating processes, such as sand or gravel packing, fracturing, fluid-diverting, selective-plugging, fluid-displacing etc. The thickened aqueous liquid consists of an aqueous solution containing 1) an acid-reactive cellulosic water thickener in an amount ranging from 0.1 to 4% by weight of the solution to provide viscosities which at 80/sup 0/F range from 100 to 51,000 cp; 2) an amount and composition of substantially homogeneously distributed acidifying material sufficient to cause a significant decrease in the viscosity of the solution after a selected time-temperature exposure; and 3) an amount and composition of substantially homogeneously-distributed relatively slowly-reactive pH-increasing material sufficient to subsequently raise the pH of the solution to a selected relatively neutral value after an increased time. 10 claims.

  15. Reduction of INTEC Analytical Radioactive Liquid Wastes

    International Nuclear Information System (INIS)

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste

  16. Reduction of INTEC Analytical Radioactive Liquid Wastes

    Energy Technology Data Exchange (ETDEWEB)

    V. J. Johnson; J. S. Hu; A. G. Chambers

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn the methods used and if any new technologies had emerged. A waste generation database was made from the current methods in used in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  17. Reduction of INTEC Analytical Radioactive Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Virgil James; Hu, Jian Sheng; Chambers, Andrea

    1999-06-01

    This report details the evaluation of the reduction in radioactive liquid waste from the analytical laboratories sent to the Process Effluent Waste system (deep tanks). The contributors are the Analytical Laboratories Department (ALD), the Waste Operations Department, the laboratories at CPP-637, and natural run off. Other labs were contacted to learn of methods used and if any new technologies had emerged. A waste generation database was made from the current methods in use in the ALD. From this database, methods were targeted to reduce waste. Individuals were contacted on ways to reduce waste. The results are: a new method generating much less waste, several methods being handled differently, some cleaning processes being changed to reduce waste, and changes to reduce chemicals to waste.

  18. Radioactive liquid waste processing method

    International Nuclear Information System (INIS)

    Radioactive liquid wastes containing radioactive materials and sodium compounds are dried into a dried material, and then, the dried material is heated to form molten salts, which is used as a anolyte. Electrolysis is conducted having a sodium ion conductive β-alumina as a diaphragm. When a molten material containing sodium hydroxide is used as a catholyte, electrolysis is conducted while supplying steams or steams and oxygen to the catholyte. Extremely low radioactive and highly pure (solid) metal sodium or sodium hydroxide can be formed on the side of the cathode by the electrolysis. The radioactive materials are gradually concentrated on the side of the anode along with the progress of the electrolysis. After the lapse of a predetermined time, the concentrated radioactive materials on the side of the anode is taken out from the device and treated into a harmless form by an optional means such as confinement with cement or the like. With such procedures, highly purified metal sodium or sodium hydroxide can be recovered at a high electric efficiency. (T.M.)

  19. Recovery of Ionic Liquids from aqueous solution by Nanofiltration

    OpenAIRE

    Fernández Dámaso, José Francisco

    2011-01-01

    The T-SAR methodology was combined with membrane characterization methods. An application of the combined approach was demonstrated with two commercial nanofiltration membranes and it was possible to successfully predict their performance for the recovery of ionic liquids from aqueous solution. Using model solutions of Pyr16 (CF3SO2)2N, it could be evidenced the formation of a new phase of ionic liquid during the concentration process. In this case, 66% of the ionic liquid was separated and t...

  20. Solid and liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    The technology for the treatment of low - and intermediate-level radioactive solid and liquid wastes is somewhat extensive. Some main guidance on the treatment methods are shown, based on informations contained in technical reports and complementary documents. (author)

  1. Handling and storage of high-level liquid wastes from reprocessing of spent fuel

    International Nuclear Information System (INIS)

    The high level liquid wastes arise from the reprocessing of irradiated nuclear fuels, which are dissolved in aqueous acid solution, and the plutonium and unburned uranium removed in the chemical separation plant. The remaining solution, containing more than 99% of the dissolved fission products, together with impurities from cladding materials, corrosion products, traces of unseparated plutonium and uranium and most of the transuranic elements, constitutes the high-level waste. At present, these liquid wastes are usually concentrated by evaporation and stored as an aqueous nitric acid solution in high-integrity stainless-steel tanks. There is now world-wide agreement that, for the long term, these liquid wastes should be converted to solid form and much work is in progress to develop techniques for the solidification of these wastes. This paper considers the design requirements for such facilities and the experience gained during nearly 30 years of operation. (orig./RW)

  2. Evaluation of thin-film evaporation for decontamination and immobilization of aqueous nuclear waste

    International Nuclear Information System (INIS)

    In the early 1980's, AECL, at the Chalk River Laboratory (CRL) site, built a Waste Treatment Centre (WTC) for managing low level solid and aqueous liquid wastes. The objective was to demonstrate processes for converting Canadian Deuterium Uranium (CANDU) waste to a form suitable for disposal while meeting or exceeding current environmental regulations. At present, two liquid waste streams are being treated at the Waste Treatment Centre. The liquid waste streams are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies [1]. The solutions are evaporated while simultaneously adding bitumen in a thin-film evaporator. A water-free product of chemical and radiochemical salts and bitumen is removed in 200 L galvanized steel drums for storage and eventual disposal in the CRL Waste Management Area. The feed stream to the thin-film evaporator typically has a β/γ activity of about 1 - 3 μCi/mL. This intermediate-level radioactive stream is concentrated by a factor of about 10, while simultaneously being immobilized. The radiation field of product drums on contact typically has a value of 0.5 to 3 R/h depending upon the feed concentration of radioactivity to the evaporator. The total solids content in the 200 L drum ranges from 25% to 35%. Encapsulated in the bitumen matrix are a variety of non-radiochemical salts (including sodium phosphate, sodium sulphate, and sodium carbonate) which comprise the bulk of the total solids in the product drum. The drum contains less than 1% of free water. The paper will discuss the volume reduction capability of the plant, with an emphasis on the immobilization of the aqueous waste with bitumen in a thin-film evaporator. Operations experience gained from over 200 campaigns is documented in the paper. (author)

  3. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing

    International Nuclear Information System (INIS)

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  4. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems

    Science.gov (United States)

    Passos, Helena; Luís, Andreia; Coutinho, João A. P.; Freire, Mara G.

    2016-02-01

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  5. Spray drying of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Full scale performance tests of a Koch spray dryer were conducted on simulated liquid radioactive waste streams. The liquid feeds simulated the solutions that result from radwaste incineration of DAW an ion exchange resins, as well as evaporator bottoms. The integration of the spray dryer into a complete system is discussed

  6. Advances in technologies for the treatment of low and intermediate level radioactive liquid wastes

    International Nuclear Information System (INIS)

    In recent years the authorized maximum limits for radioactive discharges into the environment have been reduced considerably, and this, together with the requirement to minimize the volume of waste for storage or disposal and to declassify some wastes from intermediate to low level or to non-radioactive wastes, has initiated studies of ways in which improvements can be made to existing decontamination processes and also to the development of new processes. This work has led to the use of more specific precipitants and to the establishment of ion exchange treatment and evaporation techniques. Additionally, the use of combinations of some existing processes or of an existing process with a new technique such as membrane filtration is becoming current practice. New biotechnological, solvent extraction and electrochemical methods are being examined and have been proven at laboratory scale to be useful for radioactive liquid waste treatment. In this report an attempt has been made to review the current research and development of mature and advanced technologies for the treatment of low and intermediate level radioactive liquid wastes, both aqueous and non-aqueous. Non-aqueous radioactive liquid wastes or organic liquid wastes typically consist of oils, reprocessing solvents, scintillation liquids and organic cleaning products. A brief state of the art of existing processes and their application is followed by the review of advances in technologies, covering chemical, physical and biological processes. 213 refs, 33 figs, 3 tabs

  7. Treatment of liquid wastes using composite resins

    International Nuclear Information System (INIS)

    Composite ion exchange resins were prepared by coating copper ferrocyanide and hydrous manganese oxide powders on polyurethane foam. The binder used was polyvinyl acetate in alcohol/acetone medium. Studies were conducted in pilot scale using 50 L ion exchange column and treated category III radioactive liquid wastes. About 2000 to 2400 bed volumes of liquid wastes containing radioactive 137Cs and 90Sr were treated. Digestion of the resins was carried out in a 25 L column using alkaline KMnO4. The digested liquid was fixed in cement matrix and the matrices were characterized with respect to compressive strength, biological and leach resistance. (author)

  8. Cementation of radioactive liquid scintillator waste simulate

    International Nuclear Information System (INIS)

    Liquid scintillation counting is an important analytical tool with extensive applications in medicine and basic applied research and used in quantification of □ -particles, weak □ and x-rays. The generated spent liquid scintillator radioactive waste should be limited and controlled to protect man and his environment. In this study, the radioactive spent liquid scintillator waste simulate (SLS) was immobilized in cement matrix using a surfactant in order to facilitate and increase the amount of SLS incorporated into the cementitious materials. Mechanical properties of the final cement waste form were acceptable for blocks containing up to 20% SLS in presence of surfactant. X-ray diffraction, IR analysis and scanning electron microscope proved that the hydration of cement materials is not significantly affected by organic scintillator waste. Therefore, the cement matrix could be recommended for solidification of SLS for the acceptable mechanical, physical and chemical characterizations reached.

  9. Recent approach in treatment of liquid radioactive waste: membrane methods

    International Nuclear Information System (INIS)

    Full text: The fuel cycle produces different types of radioactive waste. Radioactive waste is also generated during production and application of radioisotopes, as well as during processing of raw materials containing naturally occurring radioactive isotopes. All those wastes have to be treated and conditioned before safe storage or disposal to protect the human health and natural environment. The management of radioactive waste has to be reached with reasonable cost by implementing appropriate technologies. The processing requirements depend on the level of radioactivity and chemical and physical properties of the waste streams. Various methods are used to treat aqueous radioactive wastes, including evaporation, chemical precipitation and ion exchange, as well as less developed solvent extraction, biotechnological processes and membrane methods. Although membrane processes are still considered as novel technologies in the field of radioactive waste treatment, many applications in nuclear centres and laboratories around the world are reported. At the Department of Nuclear Methods of Process Engineering, Institute of Nuclear Chemistry and Technology, for many years membrane techniques are studied and considered as a possible application in radioactive wastes processing field. After some years of research reverse osmosis was applied at Institute of Atomic Energy (Department of Radioactive Waste Treatment) processing the radioactive wastes from all of Poland. The 3-stage RO plant supplements the existing waste processing system based on evaporator giving the possibility of initial concentration of liquid waste or final polishing of the condensate after evaporation. Intensive studies on ultrafiltration (UF) enhanced by sorption on different sorbents or complexation with chelating polymers are carried on. The ceramic membranes made from alumina, titania and zirconia are used in experiments. Such membranes show high chemical, temperature and radiation resistance. They

  10. The liquidation of liquid radioactive waste on nuclear medicine departments

    International Nuclear Information System (INIS)

    The most serious problems for Clinic of Nuclear Medicine of National Oncological Institute, Bratislava (CNM) is the localization of CNM in the downtown, inside the hospital area with the dilution water deficit. This department is the only one in Slovak Republic performing therapeutical applications. To be able to perform the necessary amount of therapies and also to introduce a new therapeutical methods, in 1992-1994 the old liquidation waste disposal station (LWDS) was reconstructed with the aim to satisfy the newest requirements of radiation hygiene. LWDS is the 5-floor object partly underground which satisfied the requirements for liquidation of radioactive liquid waste from diagnostic procedures(annually 5000 patients) and also from 200 therapeutical applications annually (15 beds, 720 GBq iodine-131). The capacity of LWDS is able to store about 90 m3 liquid radioactive waste. Part of the underground spaces are used for the storage of solid radioactive trash. The liquid waste from CNM is collected through isolated metal sewage system to the storage with continuous observation of water specific activity. According to the activity, the liquid waste is placed to the 5 decay storages with the volume about 15 m3. The six one serves for the case of technical accident. When the activity declines, the liquid waste is diluted with non active medical trash to the level which is acceptable by low about radiation hygiene protection. The storage walls are made from barium-concrete 25-50 cm thick which is enough for sufficient protection of operation staff and also for walking around persons. Double-layer high quality chemical material prevents the water leak and diffusion of radionuclides into the concrete. Technology consists of cast-iron drains, powerful slush pumps, operation valves, regulation technology from dosimetric system for continuous monitoring of specific activity, for managing system with powerful industrial computer

  11. Treatability study of aqueous, land disposal restricted mixed wastes

    International Nuclear Information System (INIS)

    Treatment studies have been completed on two aqueous waste streams at the Mixed Waste Storage Facility that are classified as land disposal restricted. Both wastes had mercury and lead as characteristic hazardous constituents. Samples from one of these wastes, composed of mercury and lead sulfide particles along with dissolved mercury and lead, was successfully treated by decanting, filtering, and ion exchanging. The effluent water had an average level of 0.003 and 0.025 mg/L of mercury and lead, respectively. These values are well below the targeted RCRA limits of 0.2 mg/L mercury and 5.0 mg/L lead. An acidic stream, containing the same hazardous metals, was also successfully treated using a treatment process of precipitation, filtering, and then ion exchange. Treatment of another waste was not completely successful, presumably because of the interference of a chelating agent

  12. Self-aggregation of liquids from biomass in aqueous solution

    International Nuclear Information System (INIS)

    Highlights: • Aggregation behaviour of liquids from biomass in aqueous solution has been studied. • Standard Gibbs free energies of aggregation have been calculated. • Solubility in water of these compounds has been determined. • Critical aggregation concentration decreases as the solubility in water does. -- Abstract: Aggregation of several chemicals from biomass: furfural derived compounds (furfural, 5-methylfurfural, furfuryl alcohol and tetrahydrofurfuryl alcohol), lactate derived compounds (methyl lactate, ethyl lactate and butyl lactate), acrylate derived compound (methyl acrylate) and levulinate compounds (methyl levulinate, ethyl levulinate and butyl levulinate) in aqueous solution has been characterised at T = 298.15 K through density, ρ, speed of sound, u, and isentropic compressibilities, κS, measurements. In addition the standard Gibbs free energies of aggregation have been also calculated. Furthermore, in order to deepen insight the behaviour of these chemicals in aqueous solution, the solubility of these compounds has been measured at T = 298.15 K

  13. Modeling Non-aqueous Phase Liquid Displacement Process

    Institute of Scientific and Technical Information of China (English)

    Yang Zhenqing; Shao Changjin; Zhou Guanggang; Qiu Chao

    2007-01-01

    A pore-network model physically based on pore level multiphase flow was used to study the water-non-aqueous phase liquid (NAPL) displacement process, especially the effects of wettability, water-NAPL interfacial tension, the fraction of NAPL-wet pores, and initial water saturation on the displacement. The computed data show that with the wettability of the mineral surfaces changing from strongly water-wet to NAPL-wet, capillary pressure and the NAPL relative permeability gradually decrease, while water-NAPL interfacial tension has little effect on water relative permeability, but initial water saturation has a strong effect on water and NAPL relative permeabilities. The analytical results may help to understand the micro-structure displacement process of non-aqueous phase liquid and to provide the theoretical basis for controlling NAPL migration.

  14. Non-aqueous phase liquid spreading during soil vapor extraction

    OpenAIRE

    Kneafsey, Timothy J.; HUNT, JAMES R.

    2004-01-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air – water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enha...

  15. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    About 10.000 m3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  16. Radiolytic decomposition of dioxins in liquid wastes

    International Nuclear Information System (INIS)

    The dioxins including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are some of the most toxic persistent organic pollutants. These chemicals have widely contaminated the air, water, and soil. They would accumulate in the living body through the food chains, leading to a serious public health hazard. In the present study, radiolytic decomposition of dioxins has been investigated in liquid wastes, including organic waste and waste-water. Dioxin-containing organic wastes are commonly generated in nonane or toluene. However, it was found that high radiation doses are required to completely decompose dioxins in the two solvents. The decomposition was more efficient in ethanol than in nonane or toluene. The addition of ethanol to toluene or nonane could achieve >90% decomposition of dioxins at the dose of 100 kGy. Thus, dioxin-containing organic wastes can be treated as regular organic wastes after addition of ethanol and subsequent γ-ray irradiation. On the other hand, radiolytic decomposition of dioxins easily occurred in pure-water than in waste-water, because the reaction species is largely scavenged by the dominant organic materials in waste-water. Dechlorination was not a major reaction pathway for the radiolysis of dioxin in water. In addition, radiolytic mechanism and dechlorinated pathways in liquid wastes were also discussed. (authors)

  17. INEEL Radioactive Liquid Waste Reduction Program

    International Nuclear Information System (INIS)

    Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy-Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most

  18. INEEL Radioactive Liquid Waste Reduction Program

    International Nuclear Information System (INIS)

    Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most

  19. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  20. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    Science.gov (United States)

    Zhang, Xuming; Cha, Min Suk

    2015-06-01

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon-carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer.

  1. The reformation of liquid hydrocarbons in an aqueous discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-04-21

    We present an aqueous discharge reactor for the reformation of liquid hydrocarbons. To increase a dielectric constant of a liquid medium, we added distilled water to iso-octane and n-dodecane. As expected, we found decreased discharge onset voltage and increased discharge power with increased water content. Results using optical emission spectroscopy identified OH radicals and O atoms as the predominant oxidative reactive species with the addition of water. Enriched CH radicals were also visualized, evidencing the existence of cascade carbon-carbon cleavage and dehydrogenation processes in the aqueous discharge. The gaseous product consisted primarily of hydrogen, carbon monoxide, and unsaturated hydrocarbons. The composition of the product was readily adjustable by varying the volume of water added, which demonstrated a significant difference in composition with respect to the tested liquid hydrocarbon. In this study, we found no presence of CO2 emissions or the contamination of the reactor by solid carbon deposition. These findings offer a new approach to the reforming processes of liquid hydrocarbons and provide a novel concept for the design of a practical and compact plasma reformer. © 2015 IOP Publishing Ltd.

  2. New liquid waste control with tannin adsorbent

    International Nuclear Information System (INIS)

    Since 1971, the Mitsubishi Nuclear Fuel Co., Ltd. (MNF) has been fabricating PWR fuels and developing related technology and processes. In the UF6 reconversion lines of MNF, the ammonium diuranate (ADU) process has been operating and the newly developed process of liquid waste treatment was installed last year. The characteristic of this process is to use insoluble tannin adsorbent which has been developed by MNF. The tannin adsorbent is not only an effective means to adsorb heavy metals such as uranium and plutonium but is also easy to incinerate at low temperature. Control of radioactive liquid waste from nuclear facilities is generally implemented by co-precipitation. However, it produces secondary wastes such as noncombustible materials which include radionuclides and it is anticipated that the storage and disposal of those wastes will be at high cost. Those are the reasons why tannin adsorbent has an advantage, and why MNF develops it. (author)

  3. Electrical processes for liquid waste treatment

    International Nuclear Information System (INIS)

    This report describes the development of electrical techniques for the treatment of liquid waste streams. Part I is concerned with solid/liquid separation and the demonstration of the electrokinetic thickening of flocs at inorganic membranes suitable for intermediate-level wastes and electrochemical cleaning of stainless steel microfilters and graphite ultrafilters. Part II describes work on the development of electrochemical ion exchange, particularly the use of inorganic absorption media and polarity reversal to enhance system selectivity. Work on the adsorption and desorption of plutonium in acid nitrate solution at various electrode materials is also included. (author)

  4. Chemical treatment of radioactive liquid wastes from medical applications

    International Nuclear Information System (INIS)

    This work is a study about the treatment of the most important radioactive liquid wastes from medical usages, generated in medical institutions with nuclear medicine services. The radionuclides take in account are 32 P, 35 S, 125 I. The treatments developed and improved were specific chemical precipitations for each one of the radionuclides. This work involve to precipitate the radionuclide from the liquid waste, making a chemical compound insoluble in the aqueous phase, for this process the radionuclide stay in the precipitate, lifting the aqueous phase with a very low activity than the begin. The 32 P precipitated in form of Ca332 P O4 and Ca2 H 32 P O4 with a value for Decontamination Factor (DF) at the end of the treatment of 32. The 35 S was precipitated in form of Ba35 SO4 with a DF of 26. The 125 I was precipitated in Cu 125 I to obtain a DF of 24. The results of the treatments are between the limits given for the International Atomic Energy Agency and the 10 Code of Federal Regulation 20, for the safety release at the environment. (Author)

  5. Aqueous cholesteric liquid crystals using uncharged rodlike polypeptides.

    Science.gov (United States)

    Bellomo, Enrico G; Davidson, Patrick; Impéror-Clerc, Marianne; Deming, Timothy J

    2004-07-28

    The aqueous, lyotropic liquid-crystalline phase behavior of the alpha-helical polypeptide, poly(N(epsilon)-2-[2-(2-methoxyethoxy)ethoxy]acetyl-lysine) (1), has been studied using optical microscopy and X-ray scattering. Solutions of optically pure 1 were found to form cholesteric liquid crystals at volume fractions that decreased with increasing average chain length. At very high volume fractions, the formation of a hexagonal mesophase was observed. The pitch of the cholesteric phase could be varied by a mixture of enantiomeric samples L-1 and D-1, where the pitch increased as the mixture approached equimolar. The cholesteric phases could be untwisted, using either magnetic field or shear flow, into nematic phases, which relaxed into cholesterics upon removal of field or shear. We have found that the phase diagram of 1 in aqueous solution parallels that of poly(gamma-benzyl glutamate) in organic solvents, thus providing a useful system for liquid-crystal applications requiring water as solvent. PMID:15264844

  6. Polarizable Interaction Model for Liquid, Supercritical, and Aqueous Ammonia.

    Science.gov (United States)

    Orabi, Esam A; Lamoureux, Guillaume

    2013-04-01

    A polarizable model for ammonia is optimized based on the ab initio properties of the NH3 molecule and the NH3-NH3 and NH3-H2O dimers calculated at the MP2 level. For larger (NH3)m, NH3(H2O)n, and H2O(NH3)n clusters (m = 2-7 and n = 1-4), the model yields structural and binding energies in good agreement with ab initio calculations without further adjustments. It also reproduces the structure, density, heat of vaporization, self-diffusion coefficient, heat capacity, and isothermal compressibility of liquid ammonia at the boiling point. The model is further validated by calculating some of these properties at various temperatures and pressures spanning the liquid and supercritical phases of the fluid (up to 700 K and 200 MPa). The excellent transferability of the model suggests that it can be used to investigate properties of fluid ammonia under conditions for which experiments are not easy to perform. For aqueous ammonia solutions, the model yields liquid structures and densities in good agreement with experimental data and allows the nonlinearity in the density-composition plot to be interpreted in terms of structural changes with composition. Finally, the model is used to investigate the solvation structure of ammonia in liquid water and of water in liquid ammonia and to calculate the solvation free energy of NH3 and H2O in aqueous ammonia as a function of solution composition and temperature. The simulation results suggest the presence of a transition around 50% molar NH3/H2O compositions, above which water molecules are preferably solvated by ammonia. PMID:26583551

  7. 324 Building Liquid Waste Handling System Functional Design Criteria

    International Nuclear Information System (INIS)

    The 324 Building in the 300 Area of the Hanford Site, is preparing to design, construct, and operate the Liquid Waste Handling System (LWHS). The system will include transfer, collection, treatment, and disposal of radiological and mixed liquid waste

  8. Self-thinning and neutralizing thickened aqueous liquid

    Energy Technology Data Exchange (ETDEWEB)

    Lybarger, J.H.; Scheuerman, R.F.

    1975-07-01

    A method is described for thickening water and then reducing the viscosity at a selected time. The thickened aqueous liquid contains (1) enough dissolved acid-reactive cellulosic water thickener to provide a selected viscosity, (2) an amount and composition of substantially homogeneously distributed acidifying material sufficient to cause a decrease in the viscosity of the solution after a selected time-temperature exposure, and (3) an amount and composition of substantially homogeneously distributed relatively slowly reactive pH-increasing material sufficient to raise the pH of the solution to a selected substantially neutral value after an additional time. (5 claims)

  9. Removal of cesium from aqueous solutions and radioactive waste stimulants by coprecipitated flotation

    International Nuclear Information System (INIS)

    Coprecipitated flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zinc hexacyanoferrate (ZnHCF) and subsequent flotation of the precipitate. Collectors of different types were tested but pyridinium chloride showed the best performance before undertaking the flotation investigations coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. The developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste stimulants . The obtained results compare favorably with data published for cesium removal by coprecipitation or adsorption processes. Besides, CPF seems to be more advantageous

  10. Treatment of low alpha activity liquid wastes

    International Nuclear Information System (INIS)

    The nuclear industry considers so big safety problems that the purifying treatment of liquid wastes must always provide for a complete recycle of the liquid strems from the production processes as regard this problem. ''Enea-Comb-Ifec'' people from saluggia, already previously engages with verifying and setting-up ''Sol-Gel'' process for the recover of uranium-plutonium solutions coming from irradiated fuel reprocessing, started an experimental work, with the assistance of ''Cnr-Irsa'' from Rome, on the applicability of the biological treatment to the purification of liquid wastes coming from the production process itself. The present technical report gives, besides a short description of the ''Sol-Gel'' process, the first results, only relating to the biological stage of the whole proposed purifyng treatment, included the final results of the experimental work, object of a contract between ''Enea-Ifec'' and ''Snam progetti'' from Fano

  11. 40 CFR 761.269 - Sampling liquid PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sampling liquid PCB remediation waste..., AND USE PROHIBITIONS Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with § 761.61(a)(2) § 761.269 Sampling liquid PCB remediation waste. (a) If the liquid is single...

  12. Method of processing liquid radioactive wastes by calcination and vitrification

    International Nuclear Information System (INIS)

    The original liquid radioactive waste is added to the radioactive waste calcinate and glass-forming additions. The said components are converted into a paste form which is proportioned in the melting furnace. Moisturising the mixture with liquid radioactive waste eliminates dust, avoids radionuclide volatility and has an additional advantage that more radioactive waste can be processed. (E.S.)

  13. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico

    International Nuclear Information System (INIS)

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  14. Biodegradation of liquid coal tar in an aqueous bioreactor

    International Nuclear Information System (INIS)

    Coal tar is a by-product of the coal gasification process used between 1820 and 1950 to produce a gasified fuel. This material contains numerous monoaromatic and polynuclear aromatic hydrocarbons (PAH) some of which are considered to be carcinogenic. Environmentally disposed coal tar can migrate downward through the soil leaving a light fraction floating on the groundwater, referred to here as liquid coal tar. This research was carried out to determine whether liquid coal tar recovered during site clean-up operations could be cost-effectively biodegraded. Preliminary aqueous microcosm experiments demonstrated that the liquid tar was not toxic to site bacteria in concentrations up to 220,000 ppm. Liquid tar was treated in a 15 liter laboratory bioreactor operated in a batch mode with gas phase oxygen as the oxygen source. Thirty-nine major constituents were followed during treatment. In the first 63 days of operation 87% of these compounds were biodegraded or transformed. 2-, 3-, and 4-ring PAH were degraded 89%, 90%, and 70% respectively. Of the volatile compounds 89% were degraded and only 0.7% were trapped on carbon during reactor off-gassing

  15. The phase transport and reactions of γ-irradiated aqueous-ionic liquids

    International Nuclear Information System (INIS)

    A novel technology based on the transfer of chemical species across water/ionic liquid interfaces via specific complexation reactions is currently being considered for the separation and sequestration of metal ion contaminants from radioactive waste effluents in the nuclear fuel cycle. An ideal solvent for these applications should have a high intrinsic selectivity for a targeted metal or group of metals (e.g., trans-Pu actinides, lanthanides, or other fission products), an efficient switching mechanism (between complexation and decomplexation), and a high immiscibility with aqueous solutions. These characteristics must be maintained in the chemical, radiation, and mass transport environments present during the separation process. Ionic liquids (ILs) have an almost negligible vapour pressure and high thermal stability. Their ability to dissolve a wide range of substrate molecules and potential to be highly resilient in radiation fields make ILs particularly promising media. The separation efficiency of the biphasic system will depend on many parameters, including the aqueous oxidation state of the targeted metal ion, and the thermodynamics and kinetics of interfacial transport and metal-ligand complex formation at the water/IL interface or in the IL phase. The most uncertain and unstudied area for these applications is the effect of ionizing radiation on the stability and separation efficiency of the biphasic system. The present study investigates the effect of γ-radiation on gas/IL and water/IL interfacial stability and mass transfer with trihexyltetradecylphosphonium bis(trifluoromethyl-sulfonyl)imide, a phosphonium-based IL. The IL, in contact with either gas or water, was irradiated at a dose rate of 6.4 kGy·h-1. Gas-phase samples were analyzed by gas chromatography-mass spectrometry (GC-MS) and the changes in the IL and aqueous phases were monitored by conductivity measurements and Raman spectroscopy. In this paper we discuss these observations and their

  16. Radioactive liquid waste treatment plant in KEK

    International Nuclear Information System (INIS)

    The outline and flow diagram of the low level (-5 μCi/cm3) radioactive liquid waste treatment plant in the National Laboratory for High Energy Physics are presented. The detailed description of the individual facilities or equipments is given. The decontamination factors (DF) for the flocculation system and evaporation-condensation system have been obtained experimentally using stable Sr(NO3)2. (author)

  17. CHARACTERISATION OF SOLID AND LIQUID PINEAPPLE WASTE

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2011-07-01

    Full Text Available The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste

  18. Magnetic Adsorption Method for the Treatment of Metal Contaminated Aqueous Waste

    International Nuclear Information System (INIS)

    There have been many recent developments in separation methods used for treating radioactive and non-radioactive metal bearing liquid wastes. These methods have included adsorption, ion exchange, solvent extraction and other chemical and physical techniques. To date very few, if any, of these processes can provide a low cost and environmentally benign solution. Recent research into the use of magnetite for wastewater treatment indicates the potential for magnetite both cost and environment drivers. A brief review of recent work in using magnetite as a sorbent is presented as well as recent work performed in our laboratory using supported magnetite in the presence of an external magnetic field. The application to groundwater and other aqueous waste streams is discussed. Recent research has focused on supporting magnetite in an economical (as compared to the magnetic polymine-epichlorohydrine resin) and inert (non-reactive, chemically or otherwise) environment that promotes both adsorption and satisfactory flow characteristics

  19. Poly(ionic liquid)s as phase splitting promoters in aqueous biphasic systems.

    Science.gov (United States)

    João, Karen G; Tomé, Liliana C; Isik, Mehmet; Mecerreyes, David; Marrucho, Isabel M

    2015-11-01

    Aqueous biphasic systems (ABSs) provide a sustainable and efficient alternative to conventional liquid-liquid extraction techniques with volatile organic solvents, and can be used for the extraction, recovery, and purification of diverse solutes. In this work, and for the first time, ABSs composed of poly(ionic liquid)s (PILs) and inorganic salts were measured at 25 °C and atmospheric pressure. New PILs having pyrrolidinium polycations combined with different counter-anions, namely acetate [Ac](-), trifluoroacetate [TFAc](-), hexanoate [Hex](-), adipate [Adi](-), and citrate [Cit](-) were synthesized, by a simple and environmentally-friendly procedure, and characterized. The effect of the PIL features, namely molecular weight and anionic character, and other experimental variables, such as temperature, on the phase splitting ability was researched. The aptitude of the studied ABS to be implemented as separation technologies was also evaluated through the use of a model biomolecule, tryptophan. PMID:26421939

  20. Conversion of cellulosic wastes to liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1980-09-01

    The current status and future plans for a project to convert waste cellulosic (biomass) materials to quality liquid hydrocarbon fuels is described. The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, diesel fuel and/or high octane gasoline. A fluidized bed pyrolysis system is used for gasification. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. The following tasks were specified in the statement of work for the contract period: (1) feedstock studies; (2) gasification system optimization; (3) waste stream characterization; and (4) liquid fuels synthesis. In addition, several equipment improvements were implemented.

  1. Liquid-liquid phase separation in mixed organic/inorganic single aqueous aerosol droplets

    OpenAIRE

    Stewart, D J; Cai, C.; Nayler, J.; Preston, T. C.; J. P. Reid; Krieger, U. K.; Marcolli, C.; Zhang, Y H

    2015-01-01

    Direct measurements of the phase separation relative humidity (RH) and morphology of aerosol particles consisting of liquid organic and aqueous inorganic domains are presented. Single droplets of mixed phase composition are captured in a gradient force optical trap, and the evolving size, refractive index (RI), and morphology are characterized by cavity-enhanced Raman spectroscopy. Starting at a RH above the phase separation RH, the trapped particle is dried to lower RH and the transition to ...

  2. Thermal treatment of historical radioactive solid and liquid waste into the CILVA incinerator

    International Nuclear Information System (INIS)

    Since the very beginning of the nuclear activities in Belgium, the incineration of radioactive waste was chosen as a suitable technique for achieving an optimal volume reduction of the produced waste quantities. Based on the 35 years experience gained by the operation of the old incinerator, a new industrial incineration plant started nuclear operation in May 1995, as a part of the Belgian Centralized Treatment/Conditioning Facility named CILVA. Up to the end of 2006, the CILVA incinerator has burnt 1660 tonne of solid waste and 419 tonne of liquid waste. This paper describes the type and allowable radioactivity of the waste, the incineration process, heat recovery and the air pollution control devices. Special attention is given to the treatment of several hundreds of tonne historical waste from former reprocessing activities such as alpha suspected solid waste, aqueous and organic liquid waste and spent ion exchange resins. The capacity, volume reduction, chemical and radiological emissions are also evaluated. BELGOPROCESS, a company set up in 1984 at Dessel (Belgium) where a number of nuclear facilities were already installed is specialized in the processing of radioactive waste. It is a subsidiary of ONDRAF/NIRAS, the Belgian Nuclear Waste Management Agency. According to its mission statement, the activities of BELGOPROCESS focus on three areas: treatment, conditioning and interim storage of radioactive waste; decommissioning of shut-down nuclear facilities and cleaning of contaminated buildings and land; operating of storage sites for conditioned radioactive waste. (authors)

  3. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    International Nuclear Information System (INIS)

    Research highlights: → The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. → Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. → Viscometric studies revealed studied ionic liquids as water-structure makers. → Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density ρ, speed of sound u, and viscosity η of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [Cnmim] having [BF4]-, [Cl]-, [C1OSO3]-, and [C8OSO3]- as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume φV, isentropic compressibility βs, and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (Vint) molar electrostriction volume (Velec), molar disordered (Vdis), and cage volume (Vcage). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  4. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Anisimov, Mikhail A

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases. PMID:25149798

  5. Non-aqueous phase liquid spreading during soil vapor extraction

    Science.gov (United States)

    Kneafsey, Timothy J.; Hunt, James R.

    2004-02-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air-water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE.

  6. Liquid centrifugation for nuclear waste partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.D.

    1992-03-11

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF{sub 2} salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the {sup 137}Cs and {sup 135}Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10{sup 7} and the fraction of {sup 137}CS in {sup 133}Cs being as low as a few parts in 10{sup 5}. A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components.

  7. Incineration of radioactive organic liquid wastes by underwater thermal plasma

    International Nuclear Information System (INIS)

    This work deals with incineration of radioactive organic liquid wastes using an oxygen thermal plasma jet, submerged under water. The results presented here are focused on incineration of three different wastes: a mixture of tributylphosphate (TBP) and dodecane, a perfluoropolyether oil (PFPE) and trichloroethylene (TCE). To evaluate the plutonium behavior in used TBP/dodecane incineration, zirconium is used as a surrogate of plutonium; the method to enrich TBP/dodecane mixture in zirconium is detailed. Experimental set-up is described. During a trial run, CO2 and CO contents in the exhaust gas are continuously measured; samples, periodically taken from the solution, are analyzed by appropriate chemical methods: contents in total organic carbon (COT), phosphorus, fluoride and nitrates are measured. Condensed residues are characterized by RX diffraction and SEM with EDS. Process efficiency, during tests with a few L/h of separated or mixed wastes, is given by mineralization rate which is better than 99.9 % for feed rate up to 4 L/h. Trapping rate is also better than 99 % for phosphorous as for fluorine and chlorine. Those trials, with long duration, have shown that there is no corrosion problems, also the hydrogen chloride and fluoride have been neutralized by an aqueous solution of potassium carbonate.

  8. Management of radioactive wastes (solids and liquids) of CDTN

    International Nuclear Information System (INIS)

    Estimates of solid and liquid radioactive wastes produced in CDTN, the foreseen treatment and the responsibilities of various organs of CDTN involved in radioactive waste management are presented. (C.M.)

  9. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water. PMID:22661261

  10. Assessment of C-14 discharge through liquid waste of NPP

    International Nuclear Information System (INIS)

    Radioactivity and annual discharge rate oc C-14 through the liquid waste of nuclear power plant was investigated using a Carbon sampling kit developed by KEPRI for the analysis of C-14 level of ground water samples near NPP. From the results of periodic samplings and C-14 radioactivity measurements, we realized that the amount of C-14 discharge through the liquid waste is ignorable compared to that through the stack and proportional to H-3 level of liquid waste

  11. Removal of active iodine/iodate from liquid wastes

    International Nuclear Information System (INIS)

    The work described in this report has involved the development of two techniques, ultrafiltration (UF) and electrochemical ion exchange (EIX), for the removal of active iodine/iodate from aqueous wastes. (author)

  12. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz C.A. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil)]. E-mail: luizoliveira@ufla.br; Goncalves, Maraisa [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Oliveira, Diana Q.L. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guerreiro, Mario C. [Universidade Federal de Lavras, Depto. de Quimica, Caixa Postal 37, CEP 37200.000, Lavras-MG (Brazil); Guilherme, Luiz R.G. [Universidade Federal de Lavras, Depto. de Ciencia do solo, CEP 37200.000, Lavras-MG (Brazil); Dallago, Rogerio M. [URI-Campus Erechim, Av. 7 Setembro 1621, Centro, CEP 99700-000, Depto de Quimica, Erechim-RS (Brazil)

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g{sup -1}) and textile dye reactive red (163 mg g{sup -1}), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  13. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium

    International Nuclear Information System (INIS)

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80 mg g-1) and textile dye reactive red (163 mg g-1), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials

  14. Development of characterization protocol for mixed liquid radioactive waste classification

    International Nuclear Information System (INIS)

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste

  15. Future radioactive liquid waste streams study

    Energy Technology Data Exchange (ETDEWEB)

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  16. Future radioactive liquid waste streams study

    International Nuclear Information System (INIS)

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL

  17. Treatment of low level liquid waste by modified advanced liquid waste distillation unit

    International Nuclear Information System (INIS)

    Radioactive wastes are generated mostly during mining and processing of ores, nuclear fuel cycle operation and production. Classification of these wastes is very helpful throughout their management phases from generation through collection, segregation, treatment, conditioning, storage, transportation to final disposal. Treatment is an important phase in the management of radioactive wastes, it aims to reduce the volume of generated wastes to enhance the safety and to reduce the costs of further management phases. A distillation unit is being installed for the treatment of low level liquid waste treatment at AFFF. Distillation rate must be high to treat such a large amount of liquid waste. The output rate of existing distillation unit is very slow due to natural cooling of condensing coil. For fast distillation rate a new system has been designed, fabricated and installed inside the glove box. The high output rate, air cooling condensation, high decontamination factor and inherently safe operation makes system an advanced one. This paper highlights the design aspects, optimization of operating parameters, safety considerations and the operational experience of the same. Approximately 400 liters of low level liquid waste having radioactivity level ∼ 10-1μCi/ml was treated and discharged into sump tanks after monitoring activity (gross alpha) and pH (Technical Specification Document, AFFF, BARC (T), 2013). The concentrate ∼ 3-4 liters has been solidified and de-nitrated in a glove box adapted muffle furnace. The solidified mass could be analyzed for Pu content by neutron well coincidence counting (NWCC) system or by WD-XRF method

  18. Method of separating useful radioactive nuclide in radioactive liquid waste

    International Nuclear Information System (INIS)

    Purpose: To separate useful radioactive nuclides from radioactive liquid wastes for reducing the amount of radioactive secondary wastes generated upon disposal of radioactive liquid wastes. Method: Nitric acid is added to radioactive liquid wastes containing radioactive metal ions, iron ions, nickel ion, chromium ions and oxidative tetravalent serium ions dissolved therein, to convert tetravalent serium ions into complex ions. The liquid wastes are circulated through an ion exchange resin column. This enables to efficiently recover tetravalent serium ions which are useful oxidative nuclides thereby enabling the reuse of serium. Further, since the oxidative nature of the radioactive liquid wastes is eliminated, there is no requirement of adding a reducing agent and it is possible for drying treatment and solidification processing such as plastic solidification. (Takahashi, M.)

  19. BIOGAS PRODUCTION FROM TOFU LIQUID WASTE ON TREATED AGRICULTURAL WASTES

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2014-01-01

    Full Text Available The Tofu Liquid Waste (TLW as a pollution might be processed into biogas which was environmentally friendly and had potential to replace burning wood or oil. However, the waste could not directly be employed as the biogas substrate due to the high nitrogen content which was not suitable to the methanogen microorganism on the biogas digester and did not produce biogas. It was therefore necessary to adapt the carbon-nitrogen ratio in TLW with the addition of other organic materials that had a lower nitrogen content so it would be a suitable substrate for generating biogas. The research was aimed to evaluate the addition of the other organic material on the TLW to increase the biogas production. The results showed that TLW combined with sheep dung, cabbage waste, bamboo leaves and paddy straw respectively produced biogas as much as 14,183, 7,250, 2,400, 895 cm3 in 20 days. The 4 treatments gave the same quality of biogas, which was determined using the water boiling test. The pH fluctuation during the process was in the right pH for anaerobic digestion, thus it was not the limiting factor.

  20. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size. PMID:26398675

  1. Vitrification of high-level liquid wastes

    International Nuclear Information System (INIS)

    High-level radioactive liquid wastes produced in the fuel elements reprocessing require, for their disposal, a preliminary treatment by which, through a series of engineering barriers, the dispersion into the biosphere is delayed by 10 000 years. Four groups of compounds are distinguished among a great variety of final products and methods of elaboration. From these, the borosilicate glasses were chosen. Vitrification experiences were made at a laboratory scale with simulated radioactive wastes, employing different compositions of borosilicate glass. The installations are described. A series of tests were carried out on four basic formulae using always the same methodology, consisting of a dry mixture of the vitreous matrix's products and a dry simulated mixture. Several quality tests of the glasses were made 1: Behaviour in leaching following the DIN 12 111 standard; 2: Mechanical resistance; parameters related with the facility of the different glasses for increasing their surface were studied; 3: Degree of devitrification: it is shown that devitrification turns the glasses containing radioactive wastes easily leachable. From all the glasses tested, the composition SiO2, Al2O3, B2O3, Na2O, CaO shows the best retention characteristics. (M.E.L.)

  2. Recovery of Mercury From Contaminated Liquid Wastes

    International Nuclear Information System (INIS)

    The Base Contract program emphasized the manufacture and testing of superior sorbents for mercury removal, testing of the sorption process at a DOE site, and determination of the regeneration conditions in the laboratory. During this project, ADA Technologies, Inc. demonstrated the following key elements of a successful regenerable mercury sorption process: (1) sorbents that have a high capacity for dissolved, ionic mercury; (2) removal of ionic mercury at greater than 99% efficiency; and (3) thermal regeneration of the spent sorbent. ADA's process is based on the highly efficient and selective sorption of mercury by noble metals. Contaminated liquid flows through two packed columns that contain microporous sorbent particles on which a noble metal has been finely dispersed. A third column is held in reserve. When the sorbent is loaded with mercury to the point of breakthrough at the outlet of the second column, the first column is taken off-line and the flow of contaminated liquid is switched to the second and third columns. The spent column is regenerated by heating. A small flow of purge gas carries the desorbed mercury to a capture unit where the liquid mercury is recovered. Laboratory-scale tests with mercuric chloride solutions demonstrated the sorbents' ability to remove mercury from contaminated wastewater. Isotherms on surrogate wastes from DOE's Y-12 Plant in Oak Ridge, Tennessee showed greater than 99.9% mercury removal. Laboratory- and pilot-scale tests on actual Y-12 Plant wastes were also successful. Mercury concentrations were reduced to less than 1 ppt from a starting concentration of 1,000 ppt. The treatment objective was 50 ppt. The sorption unit showed 10 ppt discharge after six months. Laboratory-scale tests demonstrated the feasibility of sorbent regeneration. Results show that sorption behavior is not affected after four cycles

  3. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids

    International Nuclear Information System (INIS)

    As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K2HPO4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K2HPO4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K2HPO4 systems because of their lower cost

  4. Internal Mainland Nuclear Power Liquid Waste Treatment Technology

    Institute of Scientific and Technical Information of China (English)

    YOU; Xin-feng; ZHANG; Zhen-tao; ZHENG; Wen-jun; WANG; Lei; YANG; Lin-yue; HUA; Xiao-hui; ZHENG; Yu; YANG; Yong-gang; WU; Yan

    2013-01-01

    Taohuajiang power station is the first internal mainland nuclear power station,and it adopts AP1000nuclear technology belongs to the Westinghouse Electric Corporation.To ensure the safety of the environment around the station and satisfy the radio liquid waste discharge standards,our team has researched the liquid waste treatment technology for the internal mainland nuclear power plant.According

  5. Chemistry of materials relevant to aqueous reprocessing and waste management

    International Nuclear Information System (INIS)

    Nuclear energy option will be an inevitable one with the fossil fuels depleting fast and present coal and oil based thermal power generation resulting in unwanted green house gas emission. The utilisation of the fissile resources will be more effective with closed fuel cycle option wherein the spent reactor fuel is reprocessed and the unused uranium and plutonium formed during the reactor operation is recovered and re-used. Of the aqueous and non-aqueous routes available to reprocess the spent nuclear fuels, aqueous reprocessing method of recovering the valuable uranium and plutonium by the PUREX process is in vogue for the past six decades. The process involves chopping the fuel into small lengths, leaching uranium and plutonium with concentrated nitric acid under reflux, conditioning the dissolver solution with respect to acidity and valency of U and Pu, solvent extraction with 30%TBP/n-DD to selectively extract U(VI) and Pu(IV) leaving most of the fission products into the raffinate, partitioning plutonium from uranium and reconversion of U and Pu into oxide forms after further purification. Many reagents are used to achieve near quantitative recovery of both uranium and plutonium (>99.9%) and with high decontamination factors (>107) from highly radioactive fission products. Nevertheless, the chemistry of several reagents used and the chemical processes that take place during the entire course of reprocessing and waste management operations are yet to be fully understood and gives a lot of scope for further improvements. Some examples where research requires concerted efforts are, 1) development of new extractants conforming to CHON principle, with acceptable physical properties, high stability, selectivity and resistance to third phase formation, 2) new partitioning reagents and processes which offer good efficiency and kinetics for uranium/plutonium reduction, 3) understanding the chemistry of troublesome fission products such as Tc, Ru and Zr, 4

  6. Treatment of active laboratory liquid wastes by ultrafiltration

    International Nuclear Information System (INIS)

    A new treatment of active laboratory liquid wastes has been started in UP3 since mid 95. This facility is a part of the new liquid waste management performed by COGEMA in order to minimize the volume of final residues to be disposed of. After the introduction, part II of this paper outlines the main principles of the new waste management. The treatment of active laboratory liquid wastes, based on actinide precipitation and ultrafiltration is then described in more details in part III and part IV. Finally, some operating results after the first year of operation of the new facility are given in part V. (author)

  7. Fluidized bed combustion of pesticide-manufacture liquid wastes

    OpenAIRE

    SAŠA MILETIĆ; GORDAN SAVČIĆ; RADMILA GARIĆ-GRULOVIĆ; NENAD RADIĆ; BOŠKO GRBIĆ; ŽELJKO GRBAVČIĆ; ZORANA ARSENIJEVIĆ; BOJANA ĐORĐEVIĆ

    2010-01-01

    Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63–1.25 mm in diameter and 2610 kg/m3 in d...

  8. Homogeneous liquid-liquid extraction of uranium(VI) from acetate aqueous solution

    International Nuclear Information System (INIS)

    A selective and very effective concentration method for uranium(VI) was developed by the homogeneous liquid-liquid extraction method based on the ion-pair phase separation of perfluorooctanoate ion (PFOA-) with tetrabutylammonium ion (TBA+). Under the experimental conditions ([PFOA-]T=6.67x10-3 M, [TBA+]T=5.0x10-2 M, [acetate]T=0.17 M, pH 4.0), the extraction % of uranium(VI) was 96%, and the maximum concentration factor was approximately 330-fold (i.e., 90 μl of the sedimented phase was produced from 30 ml of the aqueous phase). The extracted species was estimated by the normal liquid-liquid extraction method in a water/ethyl acetate system to be UO2(CH3COO)-3·TBA+. The proposed homogeneous liquid-liquid extraction method was applied as a preconcentration method for the spectrophotometric determination of uranium(VI) with arsenazo III. The calibration graph was linear over the range 3.3x10-8-2.7x10-6 M. The relative standard deviation for the central value of the calibration graph was 1.4% (10 determinations), and the detection limit (S/N=3) was 6.0x10-10 M. When the proposed method was applied to the separation and determination of uranium(VI) added to sea water, the results were satisfactory. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Industrial symbiosis: high purity recovery of metals from Waelz sintering waste by aqueous SO2 solution.

    Science.gov (United States)

    Copur, Mehmet; Pekdemir, Turgay; Colak, Sabri; Künkül, Asim

    2007-10-22

    Sintering operation in the production of Zn, Cd, and Pb by Waelz process produces a powdery waste containing mainly (about 70%) ZnO, CdO, and PbO. The waste may be referred to as Waelz sintering waste (WSW). The aim of this study is to develop a process for the separation and recovery of the metals from WSW with high purities. The process is based on the dissolution of the WSW in aqueous SO2 solution. The research reported here concentrated on the effect of some important operational parameters on dissolution process. The parameters investigated and their ranges were as follows: SO(2) gas flow rate (V); 38-590 ml/min, stirring speed (W); 100-1000 rpm, reaction temperature (T); 13-60 degrees C, reaction time (t); 1-16 min, and solid-liquid ratio (S/L); 0.1-0.5 g/ml. The results showed that the dissolution rate increased with increasing W, V, and S/L and decreasing T. The best dissolution conditions were found to be V=325 ml/min, W=600 rpm, t=6 min, T=21 degrees C, and S/L=0.1g/ml. Separation of Zn from Cd involved precipitation of ZnSO3 from a mixture solution. The best pH level for the precipitation was observed to be 6. PMID:17482352

  10. Existing data on the 216-Z liquid waste sites

    International Nuclear Information System (INIS)

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing data together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings

  11. Mobile unit for processing liquid radioactive wastes

    International Nuclear Information System (INIS)

    The concentrate of radioactive wastes is filled into a stainless steel container in which its chemical composition is adjusted. The treated concentrate is pumped int liquid scales from where the weighed concentrate is discharged into a homogenizer, or into a calciner. The calcinate from the calciner and the cement from the hopper are transported to hopper scales which are connected to the homogenizer. Here, a cement mass is produced which is discharged into tin drums. The equipment is divided into three independent transportable modules: the homogenizer module, the scales module and the calciner module. The total height of the assembled modules is 5.5 m. The cement hopper and the oblique cement transporter are outside the modules. The control panel with electronic equipment is also placed outside the modules. Three operators are required for the system. (E.S.)

  12. Radioactive waste disposal for liquid scintillators

    International Nuclear Information System (INIS)

    Attempts are made to treat organic scintillation liquid wastes containing radioactive molecules (labelled with 3H, 14C, or 32P). The radioactive molecules in such fluids are difficult to catch on adsorbents, probably because they are dissolved or emulsified into organic solvents by complex means. By addition of saline to the scintillation fluid, a white creamy sol is formed. The emulsion thus made is destroyed by warming. After standing, two layers are clearly separated. The upper layer is mainly a nonpolar organic solvent holding hydrophobic molecules, and the lower layer is mainly water containing hydrophilic molecules. The two layers can then be treated separately with charcoal to adsorb radioactive molecules easily. Tritium water (HTO) can be transferred from the organic scintillation fluid (monophase) into the water layer. The latter can be used repeatedly for the treatment of fresh monophase. Thus the HTO in a large amount of monophase can be concentrated into a small volume of water layer. (auth.)

  13. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  14. UKAEA contract no. 3: miscellaneous solid, liquid and gaseous wastes

    International Nuclear Information System (INIS)

    This document reports work carried out in 1982/83 on the following topics concerned with the treatment and disposal of intermediate level wastes: flowsheeting; dewatering low and medium level radioactive wastes; applications of ultrafiltration in the treatment of radioactive liquid wastes; ion exchange processes; electrical processes for the treatment of medium active liquid wastes; chemical conversion of Zircaloy cladding to oxide; fast reactor fuel element cladding; dissolver residues; fuel cladding and ion exchanger immobilisation - radioactive trials; thermal techniques; development and assessment of medium level waste forms. (U.K.)

  15. A device for fixing liquid radioactive and toxic wastes

    International Nuclear Information System (INIS)

    The device consists of a rotary evaporator into which the fixation substance, fed from a duplicator vessel, is injected by means of a heated injection pump. Liquid wastes are also injected from a waste duplicator vessel by means of a pump with stepless regulation. To the evaporator is attached a waste vapor condenser making for condensate sampling and draining into waste sewage. The homogenized fixed product can be drained into vessels from the evaporator bottom. The evaporator is heated with an electric loop heater, and the liquid waste and fixation substance vessels are heated with a circulating fluid by means of thermostatic electric heaters. The equipment is under remote control. (M.D.)

  16. Ion-Exchange characteristic of carboxymethylated cross-linked pregelled starch removal of co-60 and Cs-137 from aqueous waste solution

    International Nuclear Information System (INIS)

    Low and intermediate radioactive liquid waste streams are resulting mainly from Nuclear Power Plants in addition to that originating from the applications of radioisotopes in different fields of life (medicine-industry-agriculture, research works, ect...). Treatment of these aqueous waste solutions before its release is an important process that keeps the environment clean for man and for the coming generations. Carboxymethylated cross-linked pregelled starch has been prepared and used as an organic exchanger for the removal of Co-60 and Cs-137 from aqueous waste simulate. More than 90% of Co-60 and up to 60% of Cs-137 were removed from the waste streams at 29±1 degree after 60 minutes. Different factors that may affect the removal process of both radionuclides using the exchanger (e.g. contact time, temperature, and pH-value of the waste solution0 were studied systematically

  17. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  18. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    OpenAIRE

    Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Jérôme Pauly; Coutinho, João A. P.

    2010-01-01

    Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, we...

  19. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    International Nuclear Information System (INIS)

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collected for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for

  20. Process for treatment of detergent-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    A detergent-containing radioactive liquid waste originating from atomic power plants is concentrated to have about 10 wt. % detergent concentration, then dried in a thin film evaporator, and converted into powder. Powdered activated carbon is added to the radioactive waste in advance to prevent the liquid waste from foaming in the evaporator by the action of surface active agents contained in the detergent. The activated carbon is added in accordance with the COD concentration of the radioactive liquid waste to be treated, and usually at a concentration 2-4 times as large as the COD concentration of the liquid waste to be treated. A powdery product having a moisture content of not more than 15 wt. % is obtained from the evaporator, and pelletized and then packed into drums to be stored for a predetermined period

  1. Fluidized bed combustion of pesticide-manufacture liquid wastes

    Directory of Open Access Journals (Sweden)

    SAŠA MILETIĆ

    2010-04-01

    Full Text Available Industrial liquid wastes can be in the form of solutions, suspensions, sludges, scums or waste oil and have organic properties. The objective of this work was to demonstrate the technical feasibility of a fluidized bed as a clean technology for burning liquid waste from a pesticide production plant. The combustion of liquid waste mixtures, obtained from realistic samples, was investigated in a pilot scale fluidized bed with quartz sand particles of 0.63–1.25 mm in diameter and 2610 kg/m3 in density at 800–950 °C. To ensure complete combustion of liquid waste and additional fuel, the combustion chamber was supplied with excess air and the U/UmF (at ambient temperature was in between 1.1 and 2.3. In the fluidized bed chamber, liquid waste, additional liquid fuel and air can be brought into intense contact sufficient to permit combustion in bed without backfire problems. The experimental results show that the fluidized bed furnace offers excellent thermal uniformity and temperature control. The results of the combustion tests showed that degradation of liquid wastes can be successfully realized in a fluidized bed with no harmful gaseous emissions by ensuring that the temperatures of both the bed and the freeboard are not lower than 900 °C.

  2. Treatment of low- and intermediate-level liquid radioactive wastes

    International Nuclear Information System (INIS)

    This report aims at giving the reader details of the experience gained in the treatment of both low- and intermediate-level radioactive liquid wastes. The treatment comprises those operations to remove radioactivity from the wastes and those that change only its chemical composition, so as to permit its discharge. Considerable experience has been accumulated in the satisfactory treatment of such wastes. Although there are no universally accepted definitions for low- and intermediate-level liquid radioactive wastes, the IAEA classification (see section 3.2) is used in this report. The two categories differ from one another in the fact that for low-level liquids the actual radiation does not require shielding during normal handling of the wastes. Liquid wastes which are not considered in this report are those from mining and milling operations and the high-level liquid wastes resulting from fuel reprocessing. These are referred to in separate IAEA reports. Likewise, wastes from decommissioning operations are not within the scope of this report. Apart from the description of existing methods and facilities, this report is intended to provide advice to the reader for the selection of appropriate solutions to waste management problems. In addition, new and promising techniques which are either being investigated or being considered for the future are discussed

  3. Process optimization for effective column separation of 106Ru from aqueous waste associated with spent reprocessing solvent in storage tanks

    International Nuclear Information System (INIS)

    The present work deals with another waste stream resulting from reprocessing operations, viz. the aqueous solution present in substantial quantities as the bottom layer in tanks storing spent TBP-dodecane solvent. The effective separation of 106Ru from aqueous waste streams generated during reprocessing of spent nuclear fuel is difficult because of its complex aqueous chemistry

  4. Stabilization of radioactive liquid process waste at ORNL

    International Nuclear Information System (INIS)

    After describing radiochemical and chemical composition of typical process waste water, a review of the various waste processing techniques that have been used prior to 1984 is given. In 1984 the hydrofracture operation was shutdown and ORNL had to quickly find means to reduce liquid low level radioactive waste generation before the storage area was filled. A clarifier was reinstalled at the head of the process flowsheet and results of this waste reduction are given. In 1987 a zeolite column was added to the process waste treatment plant for the removal of cesium 137. A flow sheet of the existing waste water treatment plant and radiochemical concentrations of the effluent are given

  5. Detection of free liquid in containers of solidified radioactive waste

    Science.gov (United States)

    Greenhalgh, W.O.

    Nondestructive detection of the presence of free liquid within a sealed enclosure containing solidified waste is accomplished by measuring the levels of waste at two diametrically opposite locations while slowly tilting the enclosure toward one of said locations. When the measured level remains constant at the other location, the measured level at said one location is noted and any measured difference of levels indicates the presence of liquid on the surface of the solifified waste. The absence of liquid in the enclosure is verified when the measured levels at both locations are equal.

  6. Lipid Bilayer Formation in Aqueous Solutions of Ionic Liquids

    OpenAIRE

    Young, Taylor Tront

    2012-01-01

    The formation of lipid bilayer membranes between droplets of ionic liquid is presented as a means of forming functional bimolecular networks for use in sensor applications. Ionic liquids are salts that have a number of useful properties, such as low melting points making them liquid at room temperature and exceedingly low vapor pressure. Ionic liquids have seen recent popularity as environmentally friendly industrial solvent alternatives. Our research demonstrates that it is possible to cons...

  7. Basic Ionic Liquid: A Reusable Catalyst for Knoevenagel Condensation in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An efficient, environmentally friendly procedure was developed for the condensation of aldehydes/ketones and activated methylene compounds with basic ionic liquid as thecatalyst in water. This basic ionic liquid catalyst has a very high activity for Knoevenagel condensation to give the corresponding products in 70% -97% isolated yields under mild conditions. The basic ionic liquid catalyst in aqueous system can be reused for six times without any significant loss of activity.

  8. Nitrous oxide supersaturation at the liquid/air interface of animal waste

    International Nuclear Information System (INIS)

    Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N2O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N2O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N2O supersaturation at the liquid/air interface. The concentration of dissolved N2O in poultry litter (PL) aqueous suspensions at 25 deg. C was 0.36 μg N2O mL-1, at least an order of magnitude greater than that measured in water in equilibrium with ambient air, suggesting N2O supersaturation. There was a nonlinear increase in the N2O Henry constants of PL from 2810 atm/mole fraction at 35 deg. C to 17 300 atm/mole fraction at 41 deg. C. The extremely high N2O Henry constants were partially ascribed to N2O complexation with aromatic moieties. Complexed N2O structures were unstable at temperatures > 35 deg. C, supplying the headspace with additional free N2O concentrations. - Temperature-dependent N2O supersaturation at the liquid/air interface of animal waste.

  9. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd) in Aqueous Solution

    OpenAIRE

    Austin Kanayo ASIAGWU; Patrice-Anthony-Chudi OKOYE; Orji IFEOMA; Patrick Ejo OMUKU

    2009-01-01

    An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+) in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solu...

  10. Sorption Potentials of Waste Tyre for Some Heavy Metals (Pb Cd in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Austin Kanayo ASIAGWU

    2009-07-01

    Full Text Available An investigation into the adsorption potential of activated and inactivated waste tyre powders for some heavy metals (Pb2+ and Cd2+ in their aqueous solution has been studied. The result indicated that inactivated waste tyre is a good non-conventional adsorbent for the removal of Cd from aqueous solution. A total of 93.3% of Cadmium contents was removed. The inactivated waste type proved a good adsorbent for the removal of Pb2+ 5g of 500mm activated tyre removed over 86.66% of Pb2+ from solution.

  11. Method of processing nitrate-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Purpose: To efficiently concentrate nitrate-containing low level radioactive liquid wastes by electrolytically dialyzing radioactive liquid wastes to decompose the nitrate salt by using an electrolytic cell comprising three chambers having ion exchange membranes and anodes made of special materials. Method: Nitrate-containing low level radioactive liquid wastes are supplied to and electrolytically dialyzed in a central chamber of an electrolytic cell comprising three chambers having cationic exchange membranes and anionic exchange membranes made of flouro-polymer as partition membranes, whereby the nitrate is decomposed to form nitric acid in the anode chamber and alkali hydroxide compound or ammonium hydroxide in the cathode chamber, as well as concentrate the radioactive substance in the central chamber. Coated metals of at least one type of platinum metal is used as the anode for the electrolytic cell. This enables efficient industrial concentration of nitrate-containing low level radioactive liquid wastes. (Yoshihara, H.)

  12. Liquid return from gas pressurization of grouted waste

    International Nuclear Information System (INIS)

    The ability to force pore liquids out of a simulated waste grout matrix using air pressure was measured. Specimens cured under various conditions were placed in a permeameter and subjected to increasing air pressure. The pressure was held constant for 24 hours and then stepped up until either liquid was released or 150 psi was reached. One specimen was taken to 190 psi with no liquid release. Permeability to simulated tank waste was then measured. Compressive strength was measured following these tests. This data is to assess the amount of fluid that might be released from grouted waste resulting from the buildup of radiolytically generated hydrogen and other gasses within the waste form matrix. A plot of the unconfined compressive strength versus breakthrough pressures identifies a region of ''good'' grout, which will resist liquid release

  13. Project application of radioactive liquid waste treatment technology

    International Nuclear Information System (INIS)

    The final result of radioactive liquid waste treatment is that divide liquid waste into two parts: concentrated solution and purified liquid. The purified liquid discharge through two methods : one is dilution by water of river and sea, the other is carrying by atmosphere. Comparing with dilution method, carrying method get more attention because of less confine by geography and climatic environment. The airborne hold release station of China Institute of Atomic Energy is applied successfully in treating purified waste water with tritium contained, solve the problem of purified fluid discharging safely to the atmosphere. The facilities adopt principle of air humidified, discharge purified waste water with tritium contained to atmosphere in gas form. After completion of the facilities, coming by cold test, hot test and rectification, the massive operation data and operation experiences are accumulated, it lays the foundation for wide application of the method in our country. (authors)

  14. Evaluation of mercury in the liquid waste processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vijay [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, Hasmukh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Occhipinti, John E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, Richard E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  15. Method of processing high level radioactive liquid waste

    International Nuclear Information System (INIS)

    High level radioactive liquid wastes formed from re-processing plants are cleaned being frozen in a freezing step. Frozen products of high level radioactive liquid wastes are put to a heated, pressurized and evacuated state in a sublimation step and nitric acid, water, subliming nuclides, etc. are sublimated from the frozen products. They are condensated in a condenser into liquid condensates. Then, a solution of sodium hydroxide is added to the residues and they are separated in a solid-liquid separation step into solutions such as of sodium nitrate and sodium hydroxide and residues mainly comprising nuclear fission products, actinoide elements and corrosion products in the re-processing step. Then, the residues are dried and calcined to form nitrates, drying and calcinating products, etc. of such shape and volume as easy to be stored. Accordingly, as compared with the case of directly processing high level radioactive liquid wastes, the amount of solidification products can be reduced remarkably. (I.N.)

  16. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  17. Biosorption of uranium in radioactive liquid organic waste by coconut fiber

    International Nuclear Information System (INIS)

    Radioactive liquid organic waste needs special attention because the available treatment processes are often expensive and difficult to be managed. Biosorption is a potential technique since it allies low cost with relatively high efficiency. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. Biosorption using vegetable biomass from agricultural waste has become a very attractive technique because it involves the removal of heavy metal ions by low cost biosorbent. This technique could be employed in the treatment of radioactive liquid wastes. Among the biosorbent reported in the literature, coconut fiber (Cocos nucifera L.) is highlighted due to the large number of functional groups in its composition. The aim of this study was to assess the potential of coconut fiber to remove uranium from radioactive liquid organic waste. This work was divided into three stages: 1) Preparation and activation of the coconut fiber; 2) Physical characterization of the biomass, 3) Batch biosorption experiments. Two forms of coconut fiber were tested, raw and activated. The activation was performed with dilute HNO3 and NaOH solutions. The parameters evaluated for physical characterization of biomass were morphological characteristics of coconut fiber, real and apparent density and surface area. The biomass was suspended in 10 ml of solutions prepared with distillate water and radioactive liquid waste for 2 hours in the proportion of 0.2% w/v. After the contact time, the coconut fiber was removed by filtration and the supernatant, analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES).The results were evaluated using Langmuir and Freundlich isotherms. The maximum capacity for the raw coconut fiber was lower than the activated one, removing only 1.14mg/g against 2.61mg/g. These results suggest that biosorption with coconut fiber in activated form can be applied in the

  18. Biosorption of uranium in radioactive liquid organic waste by coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Marumo, Julio Takehiro; Ferreira, Eduardo Gurzoni Alvares; Vieira, Ludmila Cabreira; Ferreira, Rafael Vicente de Padua, E-mail: jtmarumo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Edson Antonio da, E-mail: edson.silva2@unioeste.br [Universidade Estadual do Oeste do Parana (UNIOESTE), Toledo, PR (Brazil)

    2013-07-01

    Radioactive liquid organic waste needs special attention because the available treatment processes are often expensive and difficult to be managed. Biosorption is a potential technique since it allies low cost with relatively high efficiency. Biosorption has been defined as the property of certain biomolecules to bind and remove selected ions or other molecules from aqueous solutions. Biosorption using vegetable biomass from agricultural waste has become a very attractive technique because it involves the removal of heavy metal ions by low cost biosorbent. This technique could be employed in the treatment of radioactive liquid wastes. Among the biosorbent reported in the literature, coconut fiber (Cocos nucifera L.) is highlighted due to the large number of functional groups in its composition. The aim of this study was to assess the potential of coconut fiber to remove uranium from radioactive liquid organic waste. This work was divided into three stages: 1) Preparation and activation of the coconut fiber; 2) Physical characterization of the biomass, 3) Batch biosorption experiments. Two forms of coconut fiber were tested, raw and activated. The activation was performed with dilute HNO3 and NaOH solutions. The parameters evaluated for physical characterization of biomass were morphological characteristics of coconut fiber, real and apparent density and surface area. The biomass was suspended in 10 ml of solutions prepared with distillate water and radioactive liquid waste for 2 hours in the proportion of 0.2% w/v. After the contact time, the coconut fiber was removed by filtration and the supernatant, analyzed by inductively coupled plasma optical emission spectrometry (ICP-OES).The results were evaluated using Langmuir and Freundlich isotherms. The maximum capacity for the raw coconut fiber was lower than the activated one, removing only 1.14mg/g against 2.61mg/g. These results suggest that biosorption with coconut fiber in activated form can be applied in the

  19. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  20. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  1. Electrical processes for liquid waste treatment

    International Nuclear Information System (INIS)

    Three electrical processes are being developed at pilot plant scale for the treatment of active liquid wastes. The extra reaction variable of applied potential not only simplifies automatic control but through enhanced performance also reduces plant size and operating costs. Direct electrical membrane cleaning (DMC) provides an alternative to crossflow as a way of controlling filtration membrane fouling. The periodic in situ electrolytic generation of microscopic gas bubbles at conductive micro- or ultrafiltration membrane surfaces by short current pulses (1-2 s at 0.1 A/cm2) removes solid deposits without the need to interrupt filtration. The resulting high permeation rates and lower crossflows minimize plant wear, as well as significantly reducing plant size and pumping energy. While DMC can concentrate feeds to > or approx. 5%, filtration fluxes decline much beyond this. Electro-osmotic dewatering is attractive for further concentration of these or gravity settled feeds to 30-40% so that they can be immobilized by cement powder addition. An electric field is applied across a microporous non-conducting membrane (organic or inorganic) instead of pressure to achieve rapid permeation rates (0.3-1.5 m/h) and high solids (and hence activity) retention for only a small energy consumption (1.5-7% of that required for evaporation). Electrochemical ion exchange controls the absorption and elution behaviour of ion exchange media incorporated in an electrode structure by an externally applied potential. High decontamination factors (∼2000) are achieved even up to almost complete utilization of exchanger capacity (∼75%). Polarity reversal elutes the ions into water to give a concentrated product (>0.25M) suitable for vitrification, for a low energy expenditure (0.3% of that required for evaporation). The system performance remains unchanged even after 2000 cycles and 10 MGy irradiation. Enhanced selectivity is possible through absorber choice and potential control

  2. In-Situ Chemical Precipitation of Radioactive Liquid Waste - 12492

    International Nuclear Information System (INIS)

    This paper presented in-situ chemical precipitation for radioactive liquid waste by using chemical agents. Results are reported on large-scale implementation on the removal of 137Cs, 134Cs and 60Co from liquid radioactive waste generating from Nuclear Research and Training Centre. Total amount of liquid radioactive waste was 35 m3 and main radionuclides were Cs-137, Cs- 134 and Co-60. Initial radioactivity concentration of the liquid waste was 2264, 17 and 9 Bq/liter for Cs-137, Cs-134 and Co-60 respectively. Potassium ferro cyanide was selected as chemical agent at high pH levels 8-10 according to laboratory tests. After the process, radioactive sludge precipitated at the bottom of the tank and decontaminated clean liquid was evaluated depending on discharge limits. By this precipitation method decontamination factors were determined as 60, 9 and 17 for Cs-137, Cs-134 and Co-60 respectively. At the bottom of the tank radioactive sludge amount was 0.98 m3. It was transferred by sludge pumps to cementation unit for solidification. By in situ chemical processing 97% of volume reduction was achieved. Using the optimal concentration of 0.75 M potassium ferro cyanide about 98% of the 137Cs can be removed at pH 8. The Potassium ferro cyanide precipitation method could be used successfully in large scale applications with nickel and ferrum agents for removal of Cs-137, Cs-134 and Co- 60. Although DF values of laboratory test were much higher than in-situ implementation, liquid radioactive waste was decontaminated successfully by using potassium ferro cyanide. Majority of liquid waste were discharged as clean liquid. %97.2 volumetric amount of liquid waste was cleaned and discharged at the original site. Reduced amount of sludge transportation in drums is more economical and safer method than liquid transportation. Although DF values could be different for each of applications related to main specifications of original liquid waste, this study shows that in-situ treatment

  3. Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent

    International Nuclear Information System (INIS)

    Zeolite is contacted with an aqueous solution containing at least one of copper, nickel, cobalt, manganese and zinc salts, preferably copper and nickel salts, particularly preferably copper salt, in such a form as sulfate, nitrate, or chloride, thereby adsorbing the metal on the zeolite in its pores by ion exchange, then the zeolite is treated with a water-soluble ferrocyanide compound, for example, potassium ferrocyanide, thereby forming metal ferrocyanide on the zeolite in its pores. Then, the zeolite is subjected to ageing treatment, thereby producing a zeolite adsorbent impregnated with metal ferrocyanide in the pores of zeolite. The adsorbent can selectively recover cesium with a high percent cesium removal from a radioactive liquid waste containing at least radioactive cesium, for example, a radioactive liquid waste containing cesium and such coexisting ions as sodium, magnesium, calcium and carbonate ions at the same time at a high concentration. The zeolite adsorbent has a stable adsorbability for a prolonged time

  4. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  5. APPLICATION OF PULSE COMBUSTION TO INCINERATION OF LIQUID HAZARDOUS WASTE

    Science.gov (United States)

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combustor burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. Th...

  6. Separation of actinides and lanthanides from acidic nuclear wastes by supported liquid membranes

    International Nuclear Information System (INIS)

    Supported liquid membranes, SLM, consisting of a solution of 0.25 M octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and 0.75 M tributylphosphate (TBP) in decalin absorbed on thin microporous polypropylene supports, have been studied for their ability to perform selective separations and concentrations of actinide and lanthanide ions from synthetic acidic nuclear wastes. The permeability coefficients of selected actinides (Am, Pu, U, Np) and of some of the other major components of the wastes have been measured using SLMs in flat-sheet and hollow-fiber configurations. The results have shown that with the thin (25 μm) flat-sheet SLMs, using Celgard 2500 as support, the membrane permeation process is mainly controlled by the rate of diffusion through the aqueous boundary layers. With the thicker (430 μm) hollow-fiber SLMs, using Accurel hollow-fibers as support, the membrane permeation process is controlled by the rate of diffusion through both the SLM and the aqueous boundary layers. Hollow-fibers SLMs exhibited lower permeability coefficients and longer life-times. The experiments have shown that the actinides can be very efficiently removed from the synthetic waste solutions to the point that the resulting solution could be considered a non-transuranic waste (less than 100 mCi/g of disposed form). The work has demonstrated that actinide removal from synthetic waste solutions is a feasible chemical process at the laboratory scale level

  7. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  8. Problem of the NPP liquid radioactive wastes processing and disposal

    International Nuclear Information System (INIS)

    Modern methods of NPP radioactive waste processing and disposal are briefly presented, bituminization with the following disposal in the clayey soil in particular. Soviet installations of liquid waste bituminization and results of proving ground preservation of bituminic blocks are briefly described. These results indicate a possibility of bituminic material disposal with specific activity of 1 Ci/l directly in the soil without waterproofing. High safety and effectivity of waste bituminization is shown in comparison with preservation variant of liquid radioactive concentrates in capacities

  9. Treatment of liquid wastes at the Austrian Research Centre Seibersdorf

    International Nuclear Information System (INIS)

    After a review of the different categories, ammounts, types and sources of liquid wastes, arising at the Austrian Research Centre Seibersdorf, the collection and distribution of these wastes are described. The treatment of these effluents in the categories Cooling Water, Faeces, Inactive Line, Active Line and Alpha Line is shown in several examples. Special attention is given on the treatment of wastes containing organic liquids. A review of the release rates shows the efficiency of the treatment system. A short view on future installations closes the paper. (author)

  10. Corrosion experience in calcination of liquid nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, C A

    1980-01-01

    The Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory became operational in 1963. Since that time, approximately 13,337,137 litres (3,523,375 gallons) of liquid nuclear wastes, generated during the reprocessing of spent nuclear fuel materials, have been reduced to dry granular solids. The volume reduction is about seven or eight gallons of liquid waste to one gallon of dry granular solids. This paper covers some of the corrosion experiences encountered in over fifteen years of operating that calcination facility. 7 figures, 7 tables.

  11. Corrosion experience in calcination of liquid nuclear waste

    International Nuclear Information System (INIS)

    The Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory became operational in 1963. Since that time, approximately 13,337,137 litres (3,523,375 gallons) of liquid nuclear wastes, generated during the reprocessing of spent nuclear fuel materials, have been reduced to dry granular solids. The volume reduction is about seven or eight gallons of liquid waste to one gallon of dry granular solids. This paper covers some of the corrosion experiences encountered in over fifteen years of operating that calcination facility. 7 figures, 7 tables

  12. Method of processing radioactive liquid waste containing soduium nitrate

    International Nuclear Information System (INIS)

    Sulfuric acid is added to radioactive liquid wastes containing sodium nitrate and heated to convert sodium nitrate into sodium sulfate and remove nitric acid as fumes. Then, calcium oxide or calcium hydroxide is added to the resultant liquid wastes containing sodium sulfate into a solution of calcium sulfate and sodium hydroxide. Then, solid-liquid separation is applied to take out, as a solid, calcium sulfate containing most portion of radioactive materials. Since no burnable materials such as asphalt are not used as in the prior art method, it is possible, according to the present invention, to reduce the fire hazard and remarkably decrease the formation of solidification products. (S.T.)

  13. Effects of aqueous environment on long-term durability of phosphate-bonded ceramic waste forms

    International Nuclear Information System (INIS)

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically-bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. Magnesium phosphate ceramic has been developed to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests

  14. Liquid Radioactive Wastes Treatment: A Review

    OpenAIRE

    Yung-Tse Hung; R. O. Abdel Rahman; Ibrahium, H.A.

    2011-01-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a byproduct of natural resource exploitation, which includes mining and processing of ores, combustion of fossil fuels, or production of natural gas and oil. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applie...

  15. ICPP radioactive liquid and calcine waste technologies evaluation

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until recently, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, changing world events have raised questions concerning the need to recover and recycle this material. In April 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the management and disposition of radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste) and 3,800 cubic meters (m3) of calcine waste are in inventory at the ICPP. Legal drivers and agreements exist obligating the INEL to develop, demonstrate, and implement technologies for safe and environmentally sound treatment and interim storage of radioactive liquid and calcine waste. Candidate treatment processes and waste forms are being evaluated using the Technology Evaluation and Analysis Methodology (TEAM) Model. This process allows decision makers to (1) identify optimum radioactive waste treatment and disposal form alternatives; (2) assess tradeoffs between various optimization criteria; (3) identify uncertainties in performance parameters; and (4) focus development efforts on options that best satisfy stakeholder concerns. The Systems Analysis technology evaluation presented in this document supports the DOE in selecting the most effective radioactive liquid and calcine waste management plan to implement in compliance with established regulations, court orders, and agreements

  16. Measurement and Monte Carlo Calculation of Waste Drum Filled With Radioactive Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    XU; Li-jun; ZHANG; Wei-dong; YE; Hong-sheng; LIN; Min; CHEN; Xi-lin; GUO; Xiao-qing

    2012-01-01

    <正>Theoretically the best calibrating source of gamma scan system (SGS) is a waste drum filled with uniform distribution of medium and radioactive nuclides. However, in reality, waste drums usually full of solid substance, which are difficult to be prepared in a completely uniformly distributed state. To reduce measurement uncertainty of the radioactivity of waste drums prepared using the method of shell source, a waste drum filled with radioactive aqueous solution was prepared. Besides, its radioactivity was measured by a SGS device and calculated using Monte Carlo method to verify the exact geometric model, which

  17. Partitioning Behavior of Papain in Ionic Liquids-Based Aqueous Two-Phase Systems

    OpenAIRE

    Zhiwen Bai; Yanhong Chao; Meiling Zhang; Changri Han; Wenshuai Zhu; Yonghui Chang; Huaming Li; Yang Sun

    2013-01-01

    This paper attempts to study and optimize the affinity partitioning conditions of papain in an aqueous two-phase system (ATPS). The effect of the amount of ionic liquids (ILs), the concentration of K2HPO4, temperature, pH, and the volume of papain solution were discussed concretely. The optimum conditions were determined as ionic liquid was 1.4 g and K2HPO4 was 1.4 g, the extraction efficiency of papain co...

  18. Combustion of animal or vegetable based liquid waste products

    International Nuclear Information System (INIS)

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  19. Expert system for liquid low-level waste management

    International Nuclear Information System (INIS)

    An expert system prototype has been developed to support system analysis activities at the Oak Ridge National Laboratory (ORNL) for waste management tasks. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. The concept under which the expert system has been designed is integration of knowledge. There are many sources of knowledge (data bases, text files, simulation programs, etc.) that an expert would regularly consult in order to solve a problem of liquid waste management. The expert would normally know how to extract the information from these different sources of knowledge. The general scope of this project would be to include as much pertinent information as possible within the boundaries of the expert system. As a result, the user, who may not be an expert in every aspect of liquid waste management, may be able to apply the content of the information to a specific waste problem. This paper gives the methodological steps to develop the expert system under this general framework

  20. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  1. Liquid radioactive waste discharges from B plant to cribs

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.C., Westinghouse Hanford

    1996-05-29

    This engineering report compiles information on types and quantities of liquid waste discharged from B-Plant directly to cribs, ditches, reverse wells, etc., that are associated with B-Plant. Waste discharges to these cribs via overflow form 241-B, 241-BX, and 241-BY tank farms, and waste discharged to these cribs from sources other than B-Plant are discussed.Discharges from B-Plant to other cribs, unplanned releases, or waste remaining in tanks are not included in the report. Waste stream composition information is used to predict quantities of individual chemicals sent to cribs. This provides an accurate mass balance of waste streams from B-Plant to these cribs. These predictions are compared with known crib inventories as a verification of the process.

  2. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    OpenAIRE

    Raziya Nadeem; Muhammad Aslam Khan; Uzma Ijaz; Abida Mahmood; Muhammad Asif Hanif; Tariq Mahmood Ansari; Muhammad Ali

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an...

  3. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2004-11-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  4. Method and device for processing radioactive liquid waste

    International Nuclear Information System (INIS)

    In a method of processing radioactive liquid wastes containing ionic or colloidal actinides, powdery or fibrous cellose is uniformly deposited, as a tannin immobilizing carrier, on a filter membrane disposed in an adsorptive filtering and separating tower (ST). Reagents are succesively reacted to them to immobilize tannin thereby producing an adsorptive filtering and separating membrane. Then, liquid wastes of a predetermined flow rate depending on the performance of the separation membrane are supplied to the separation tower ST by a flow control valve and a flowmeter, to process the liquid wastes by the separation membrane. Further, when the processing performance of the separation membrane reaches a predetermined minimum value, ionic and colloidal actinides collected and accumulated to the membrane are removed and dissolved. Since reproduction can be conducted by the same device, facilities are simplified remarkably. (T.M.)

  5. Processing method for salt containing radioactive liquid waste

    International Nuclear Information System (INIS)

    A mixed solution of ferrocyanate and copper sulfate is added to salt-containing radioactive liquid wastes, then pH is controlled to 9 to 11, and they are stood still to coprecipitate and separate radioactive nuclides. The precipitated sludges are condensed by evaporation and the resultant condensed liquid wastes are solidified, if necessary, by using asphalts. Further, the coprecipitated and separated supernatants are passed through a filter of activated carbon or a hollow thread membrane for removing remaining radioactive materials. With such procedures, the amount of liquid condensates generated during the evaporation and condensation step is reduced greatly, and the amount of generated solids is reduced also in a case of applying solidification. Further, since iron cruds are precipirated and separated simultaneously with coprecipitation, loads applied to the filter is reduced upon subsequent filtration of the supernatants, thereby enabling to use the filter for a long period of time, and the accompanying generation of wastes is also reduced. (T.M.)

  6. Radioactive liquid waste treatment for decontamination and decommissioning of TRIGA research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung Kook; Chung, K.H

    1999-04-01

    All of operated radioactive liquid waste will be stored by using existing collection tank and temporally transfer piping system before dismantle the TRIGA research reactors. In this paper, there are presented and discussed as follows; 1.The status of operated radioactive liquid waste. 2. The radioactive liquid waste during dismantle the reactor. 3. Radiological status of radioactive liquid waste. 4. The classification criteria and method radioactive liquid waste. 6. The collection and transportation of radioactive liquid waste. (Author). 13 refs., 13 tabs., 8 figs.

  7. Radioactive liquid waste treatment for decontamination and decommissioning of TRIGA research reactors

    International Nuclear Information System (INIS)

    All of operated radioactive liquid waste will be stored by using existing collection tank and temporally transfer piping system before dismantle the TRIGA research reactors. In this paper, there are presented and discussed as follows; 1.The status of operated radioactive liquid waste. 2. The radioactive liquid waste during dismantle the reactor. 3. Radiological status of radioactive liquid waste. 4. The classification criteria and method radioactive liquid waste. 6. The collection and transportation of radioactive liquid waste. (Author). 13 refs., 13 tabs., 8 figs

  8. Extraction of lithium ion from alkaline aqueous media by a liquid surfactant membrane

    International Nuclear Information System (INIS)

    Extraction of lithium ion from aqueous alkaline media by a liquid surfactant membrane was performed using a mixture of LIX54 and TOPO as the extractant. Stripping of lithium from the kerosene solution to the acid solution was suppressed with increasing content of polyamine (ECA) surfactant. The extraction rate of lithium by the liquid membrane could be interpreted taking account of an interfacial resistance due to ECA. It was confirmed that swelling of the (W/O) emulsion drops by water permeation through the liquid membrane is evaluated in terms of a change in osmotic pressure gradient between the external and internal aqueous phases during the lithium extraction. In the present operation, the extraction ratio of Li+ from the external feed and the uptake into the internal phase reached as high as 95%. (author)

  9. Ionic liquid-salt based aqueous biphasic system separation of 109Cd from silver target

    International Nuclear Information System (INIS)

    The Aqueous Biphasic Systems (ABS) is becoming more important from green chemistry point of view replacing conventional liquid-liquid extraction system. The most of the aqueous biphasic systems reported in the literature are based on Polyethylene glycol (PEG) with different salts. Although ABS based on water soluble room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium Chloride ((bmim)CI) and concentrated solutions of kosmotropic salt K2HPO4 was reported in 2007 but the efficiency of this system for metal partitioning has been rarely explored. We report for the first time separation of no-carrier-added (NCA) 109Cd from the α-particle irradiated Ag target using this ABS

  10. Vitrification processing method and device for high level liquid waste

    International Nuclear Information System (INIS)

    A freeze-drying device is assembled to the midway of a line which connects a liquid waste tank and a melter in order to remove water. A freezing facility and a vacuum facility are connected to a drying box. With such a constitution, water is removed before supplying the high level liquid wastes to the melter, and the solid material removed with water is charged into the melter, and a vitrification material is formed. Accordingly, scattering of nuclides generated upon removing water can be reduced, and there is no need to dispose complicated equipments in the melter, thereby simplifying installation. (T.M.)

  11. Liquid-Liquid Equilibria of Aqueous Two-phase Systems Containing Polyethylene Glycol 4000 and Two Different Salts of Ammonium

    Directory of Open Access Journals (Sweden)

    G. Khayati

    2011-02-01

    Full Text Available The aim of this study was to survey on phase diagrams and Liquid-Liquid Equilibrium (LLE data of the aqueous PEG4000 - (NH42HPO4 and PEG4000 - (NH42SO4 systems experimentally at 298.15 K. The salting-out effect was also discussed on the basis of the Gibbs free energy of hydration of ions. The experimental binodal data were satisfactorily correlated with the Merchuk equation. Tie line compositions were correlated using the Othmer-Tobias and Bancroft equations, and the parameters have also reported. Good agreement was obtained with the experimental data with the model equations.

  12. Liquid and solid waste reduction by using Reversed Osmose

    International Nuclear Information System (INIS)

    Full text of publication follows: Radioactive waste water produced at the NRG site in Petten is treated in our waste water treatment facility by membrane filtration and by the use of flocculant to reduce the amount of liquid waste. By using a flocculant a quite amount of sludge as secondary waste is produced. To reduce the amount of solid secondary waste tests have been performed with reversed osmosis. The effect of reverse osmoses was tested on: - different types of waste; - different concentrations of heavy metals such as Cr, Co, Ni, Cu, Zn, As, Cd, Sn, Hg, Pb...; - Kjiedahl nitrogen; - chemical oxygen demand. It was shown in the experiments with different original waste waters that for the greater part of waste streams a radionuclide concentration reduction of 90%-100% can be achieved. The reduction of nitrogen and oxygen is in the range of 65%-100% depending on the waste steam type. The introduction of reversed osmoses resulted in three advantages: - The amount of flocculant that has to be used can be reduced up to 50%. - It becomes possible to re-use waste water in certain cleaning processes which was not possible before the use of reversed osmoses. - The water which is released is much cleaner than without the use of reversed osmoses. (authors)

  13. Stripping of TBP degraded product along with actinides from organic phase generated during the remediation of the aqueous phase of spent organic waste storage tank

    International Nuclear Information System (INIS)

    Degraded products of Tri butyl phosphate (TBP) are generated during extraction of U and Pu by PUREX due to high radiation field. Sodium carbonate wash is given to clean up the TBP solvent and the wash liquid is in a separate tank along with the spent organic waste. Though the aqueous phase from this tank comes intermediate level liquid waste category, presence of the degrade products of TBP are creating problem during its treatment by ion exchange process. To remediate this waste for ion exchange treatment, the degraded products of TBP are removed by solvent extraction using spent TBP stored in the same tank as solvent. Present paper details the stripping of the TBP degraded product along with alpha activity from the organic phase

  14. THE DEVELOPMENT OF AQUEOUS THERMODYNAMIC MODELS: APPLICATION TO WASTE TANK PROCESSING AND VADOSE ZONE ISSUES

    Science.gov (United States)

    The presence of a wide range of radionuclides, metal ions, inorganic ligands, and organic chelating agents combined with the high base and electrolyte concentration in the Hanford waste tanks creates some unique and difficult problems in modeling the aqueous thermodynamics of the...

  15. Phase diagrams of ionic liquids-based aqueous biphasic systems as a platform for extraction processes

    International Nuclear Information System (INIS)

    Highlights: • Novel ABS based in ionic liquids were determined as a platform for distinct extraction processes. • The effect of pH, IL cation core, alkyl side chain length, IL anion nature, and salt nature on the ABS formation was investigated. • The ability to form ABS increases with the pH and alkyl chain length for all systems studied. • The ILs cation core and anion nature effect on the ABS formation is dominated by the IL (hydrophobic/hydrophilic) nature. • The effect of the different salts depends of the ionic liquid nature and salt valency. - Abstract: In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency

  16. Solidification of acidic liquid waste from 99Mo isotope production

    International Nuclear Information System (INIS)

    The Australian Nuclear Science and Technology Organisation (ANSTO) has been producing 99Mo since 1967 for medical use of its decay product 99mTe. This early generation development of fission product 99Mo uses low enriched 235U as dioxide, nitric acid dissolution of the irradiated pellets and recovery of molybdenum by adsorption onto alumina. Increasing production over this period since the late 1960's has led to the accumulation of stored liquid waste in specifically designed storage tanks. ANSTO investigated a number of options to treat this liquid waste culminating in the development, commissioning and operation of a two-stage evaporation process with an intervening chemical treatment step. The need for chemical destruction of the low level of contained ammonia, as nitrate, arose due to the past practice of incorporating a small volume of ammoniacal condensate with the acid waste. This ammoniacal waste is no longer added to the acidic waste, but the need to remove ammonia from the historic waste has led to the development of a novel technique to destroy the ammonia content in the liquid. The liquor is reduced to a crystalline solid with the elimination of water and acid that can be treated by conventional means. (author)

  17. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    Science.gov (United States)

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols. PMID:19368207

  18. Membrane technologies for processing of liquid radioactive waste

    International Nuclear Information System (INIS)

    Reverse osmosis is used were complete rejection of all dissolved compounds is required; it needs pre-treatment of the waste by microfiltration, ultrafiltration or other conventional technique to avoid the membrane blockage by colloids and suspensions. Recently the nanofiltration membranes are often used to separate monovalent ions from multivalent. Ultrafiltration apart of pre-treatment stage is used to separate colloids, which usually are formed by compounds of 54Mn, 55Fe. 60Co and 125Sb. Microfiltration found application for solid wastes dewatering before final disposal. A novel technology is membrane distillation proposed by researches from INCT for concentration of liquid radioactive waste. (author)

  19. Liquid and Gaseous Waste Operations Department Annual Operating Report, CY 1993

    International Nuclear Information System (INIS)

    This report summarizes the activities of the waste management operations section of the liquid and gaseous waste operations department at ORNL for 1993. The process waste, liquid low-level waste, gaseous waste systems activities are reported, as well as the low-level waste solidification project. Upgrade activities is the various waste processing and treatment systems are summarized. A maintenance activity overview is provided, and program management, training, and other miscellaneous activities are covered

  20. Nitrous oxide supersaturation at the liquid/air interface of animal waste.

    Science.gov (United States)

    Makris, Konstantinos C; Andra, Syam S; Hardy, Michael; Sarkar, Dibyendu; Datta, Rupali; Bach, Stephan B H; Mullens, Conor P

    2009-12-01

    Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N(2)O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N(2)O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N(2)O supersaturation at the liquid/air interface. The concentration of dissolved N(2)O in poultry litter (PL) aqueous suspensions at 25 degrees C was 0.36 microg N(2)O mL(-1), at least an order of magnitude greater than that measured in water in equilibrium with ambient air, suggesting N(2)O supersaturation. There was a nonlinear increase in the N(2)O Henry constants of PL from 2810 atm/mole fraction at 35 degrees C to 17 300 atm/mole fraction at 41 degrees C. The extremely high N(2)O Henry constants were partially ascribed to N(2)O complexation with aromatic moieties. Complexed N(2)O structures were unstable at temperatures > 35 degrees C, supplying the headspace with additional free N(2)O concentrations. PMID:19573962

  1. TRIGA I.N.R. Reactor liquid waste management

    International Nuclear Information System (INIS)

    During TRIGA reactor operation, primary water system cooling has been contaminated with activation products and accidentally, with fission products. The paper is a synthesis concerning the quantity and the isotopic composition of liquid waste, between 1986-1989. There are considered, in turn, the conditioned waste water as radioactive waste, and than evacuated in the river. The main isotopes generated in normal operation of INR-TRIGA reactor are Cr-51, Mn-54, Co-57, Co-58, Co-60. Cobalt isotopes activity over-stands 80% from the entire evicted activity. Computing the ratio of evicted radioactivity (A) to the consumed energy with reactor operation (E), one notes that for each operated MWh an accumulated activity in radioactive liquid waste of about 92 ± 25 μCi is generated. Attention must be paid to the interpretation of this value, because it depends on the operation power level of the reactor cooling rate, on the operation period of the ionic mixed layer filters, and the storage period of the waste in the tanks. The ratio A/E may be used for a brief characterisation of the primary cooling system corrosion and for radioactive liquid waste volume estimation which is to be evicted when the reactor operating programme is settled. Referring to the radiological impact on the environment one can state that radioactive liquid waste eviction generated in normal TRIGA reactor operation do not cause risks for population and the environment. Radioactivity measurements done for samples took from Doamnei and Arges Rivers showed that radioactivity value is lower than the detection limit of the monitor chain. For measurements it was used a CANBERRA Spectrometer, whose detection limit is 0.25x10-3 μCi/cm3 for Co-60. (authors)

  2. Application of insoluble tannin adsorbent to alpha aqueous waste treatment in NUCEF

    International Nuclear Information System (INIS)

    The use of insoluble tannin adsorbent has been investigated as a means to reduce the volume of aqueous waste contaminated with americium. This work is aimed at reducing the volume of TRU waste generated within NUCEF where experiments related to back end of the nuclear fuel cycle are performed. Insoluble tannin adsorbent is a gelled material consisting of C, H and O which can be easily incinerated. The distribution coefficient and adsorption capacity of americium in insoluble tannin have been investigated and found to be 1000 ml/g in 0.02 M HNO3 and 0.013 mmol/g-dried tannin, respectively. The prospect of applying the adsorbent to the treatment of aqueous waste contaminated with americium appears promising. (author)

  3. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  4. Defining criteria for cemented waste produced from legacy liquids

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited (AECL) has several hundred cubic metres of legacy radioactive waste stored in underground tanks at the Chalk River Laboratories (CRL) site in Chalk River, Ontario. As part of a larger campaign to reduce its legacy liabilities, AECL intends to remove and immobilize this waste using a cementation system. AECL plans to hire an external contractor to design and operate a cementation skid to remove and condition the liquid wastes. Clear and measurable waste form criteria must be determined and provided to the contractor in order for the contractor to demonstrate that a safe and stable waste form has been produced. AECL has reviewed industry-standard test methods and best practices related to cementation of liquid nuclear wastes. Where suitable, these test methods and practices have been incorporated into Product Performance Criteria. An extensive test program has been performed to obtain cement formulations for the legacy wastes; the resulting sample cemented wastes have been tested and the results compared to the Product Performance Criteria. Modifications to the criteria have been made as required based on knowledge gained during this process. In addition, since no industry standards had previously been identified to measure homogeneity, 3 potential test methods have been identified. Regardless of the amount of testing performed and the stringency of the performance criteria, some risk remains that the waste will deteriorate over time. However, by performing a rigorous review of industry practice and an extensive series of tests under various conditions, AECL believes that it has addressed the risks in a reasonable and prudent manner and has selected the appropriate Product Performance Criteria to achieve a safe and stable waste product

  5. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    Science.gov (United States)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  6. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    Science.gov (United States)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  7. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    OpenAIRE

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two...

  8. Mixture for solidification of liquid radioactive wastes into stable forms

    International Nuclear Information System (INIS)

    A mixture is proposed for cementing liquid radioactive wastes into chemically stable, mechanically strong, transportable and storable forms. The mixture consists of 60-80 wt.% Portland cement, 5-15 wt.% flue silica dust and 15-25 wt.% zeolitic tuffite. (Z.S.)

  9. Cleaning of liquid radioactive wastes using natural zeolites

    International Nuclear Information System (INIS)

    Natural zeolite, clinoptilolite, was used to eliminate liquid radioactive wastes (LRW) 137Cs and 90Sr. The influence of several factors (pH of solution, grain size of the zeolite, etc.) on the process effectivity was studied. It was shown that clinoptilolite is an effective filter of the nuclides above

  10. Solvent extraction of radionuclides from aqueous tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.; Sachleben, R.; Moyer, B. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The purpose of this task is to develop an efficient solvent-extraction and stripping process to remove the fission products {sup 99}Tc, {sup 90}Sr, and {sup 137}Cs from alkaline tank waste, such as those stored at Hanford and Oak Ridge. As such, this task expands on FY 1995`s successful development of a solvent-extraction and stripping process for technetium separation from alkaline tank-waste solutions. This process now includes the capability of removing both technetium and strontium simultaneously. In this form, the process has been named SRTALK and will be developed further in this program as a prelude to developing a system capable of removing technetium, strontium, and cesium.

  11. Calcination of liquid radioactive wastes. Part II

    International Nuclear Information System (INIS)

    An attempt is made to design a universal modular system of machine equipment for processing wastes of different composition. First-stage concentration of radioactive wastes is assumed to 200 - 500 kg/m3 which is solved by the inclusion in the system of a single-stage circulation evaporator. Another equipment is the intermittently operating charging reactor with a high-speed stirrer for denitration or other chemical treatment. The types of mixers and the geometrical configuration of the system are described in detail. Also described is the equipment for water evaporation from the chemically treated solution. Several types of equipment have been designed for calcination. The most suitable is the equipment using the principle of a film evaporator. Several solutions are described which comprise the basis for the horizontal calciner for processing 10 l of active wastes per hour with several variants of sealings and heating systems. The performance tests of the equipment were successful in active and non-active operation. (M.D.)

  12. Flow rate control method for liquid waste supply tank

    International Nuclear Information System (INIS)

    The present invention concerns a flow rate control method, in which an air purge type liquid level meter and an air lift pump are disposed to a liquid waste supply tank for supplying high level radioactive liquid wastes to a glass melting furnace. The flow rate of liquid wastes are sampled repeatedly on every predetermined time, the average flow rate on every predetermined time is calculated, and the average flow rate calculated newest and the average flow rate calculated formerly with a primary delay are compared with a set flow rate value respectively to determine each difference. Only when the values are of identical sign, the driving amount of the air lift pump is controlled. Since sampling is conducted for two different time points and only when the calculated values are of identical sign, the air lift pump is controlled, the fluctuation amount of the flow rate can be calculated exactly even undergoing external disturbance on liquid level by a stirrer. (N.H.)

  13. Iraq liquid radioactive waste tanks maintenance and monitoring program plan

    International Nuclear Information System (INIS)

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  14. Low level liquid waste conditioning at the ENEA Trisaia Centre

    International Nuclear Information System (INIS)

    At the ENEA Trisaia Centre (Southern Italy) 56 m3 of radioactive low-level liquid wastes, generated during past operations of the ITREC reprocessing pilot plant and presently stored in a 60,000 liter carbon steel tank, have to be solidified in order to fulfill the specific requirements established by the Safety Authority, taking into account a Technical Guide issued on the matter of Radioactive Waste Management. For this purpose, the design of a facility, for conditioning this liquid LLW by cementation, was completed and submitted to the Safety Authority. The facility, named SIRTE, is composed of a transfer system and a cementation section based on the MOWA technique. Furthermore a qualification program for the treatment and conditioning process has been completed, in order to define the best cement matrix formulation, at the ENEA Casaccia Research Centre. The main characteristics of the cement matrix, coming from tests on simulated conditioned waste, are given

  15. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

  16. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    International Nuclear Information System (INIS)

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H3PO4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L-1, repeatability of the extraction (R.S.D. -1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples

  17. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    Directory of Open Access Journals (Sweden)

    Cláudia L. S. Louros

    2010-04-01

    Full Text Available Aqueous biphasic systems (ABS provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids. Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS.

  18. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  19. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    International Nuclear Information System (INIS)

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H2SO4, HNO3, NaOH, Na2CO3, CaCl2 and NaCl. Among these reagents, 0.1 M HNO3 gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as ΔGo, ΔHo and ΔSo, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined

  20. Cellulose/Gold Nanocrystal Hybrids via an Ionic Liquid/Aqueous Precipitation Route

    Directory of Open Access Journals (Sweden)

    Andreas Taubert

    2009-11-01

    Full Text Available Injection of a mixture of HAuCl4 and cellulose dissolved in the ionic liquid (IL 1-butyl-3-methylimidazolium chloride [Bmim]Cl into aqueous NaBH4 leads to colloidal gold nanoparticle/cellulose hybrid precipitates. This process is a model example for a very simple and generic approach towards (noble metal/cellulose hybrids, which could find applications in sensing, sterile filtration, or as biomaterials.

  1. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  2. Generation projection of solid and liquid radioactive wastes and spent radioactive sources in Mexico; Proyeccion de generacion de desechos radiactivos solidos, liquidos y fuentes radiactivas gastadas en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia A, E.; Hernandez F, I. Y.; Fernandez R, E. [Universidad Politecnica del Valle de Toluca, Km 5.7 Carretera Almoloya de Juarez, Estado de Mexico (Mexico); Monroy G, F.; Lizcano C, D., E-mail: fabiola.monroy@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    This work is focused to project the volumes of radioactive aqueous liquid wastes and spent radioactive sources that will be generated in our country in next 15 years, solids compaction and radioactive organic liquids in 10 years starting from the 2014; with the purpose of knowing the technological needs that will be required for their administration. The methodology involves six aspects to develop: the definition of general objectives, to specify the temporary horizon of projection, data collection, selection of the prospecting model and the model application. This approach was applied to the inventory of aqueous liquid wastes, as well as radioactive compaction organic and solids generated in Mexico by non energy applications from the 2001 to 2014, and of the year 1997 at 2014 for spent sources. The applied projection models were: Double exponential smoothing associating the tendency, Simple Smoothing and Lineal Regression. For this study was elected the first forecast model and its application suggests that: the volume of the compaction solid wastes, aqueous liquids and spent radioactive sources will increase respectively in 152%, 49.8% and 55.7%, while the radioactive organic liquid wastes will diminish in 13.15%. (Author)

  3. Experiment and model for the surface tension of amine–ionic liquids aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • The surface tensions of MEA/DEA–ionic liquids aqueous solutions were measured. • The experiments were modeled satisfactorily by using a thermodynamic equation. • The temperature dependence of the surface tension was illustrated. • The effects of the mass fractions of MEA/DEA and ionic liquids were demonstrated. - Abstract: The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4])–monoethanolamine (MEA), 1-butyl-3-methylimidazolium bromide ([Bmim][Br])–MEA, [Bmim][BF4]–diethanolamine (DEA) and [Bmim][Br]–DEA aqueous solutions was measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of amines and ionic liquids (ILS) respectively ranged from 0.15 to 0.30 and 0.05 to 0.10. A thermodynamic equation was proposed to model the surface tension of amines–ILS aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fraction of amines and ILS on the surface tension were demonstrated on the basis of experiments and calculations

  4. Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL

  5. Sorption of 137Cs from Aqueous Waste Solutions using Pottery

    International Nuclear Information System (INIS)

    A simple and inexpensive method for sorption of 137Cs from aqueous solutions using a highly available vase shape pottery material has been investigated. Porosity of the used pottery allowed for the penetration of the radioactive solution through its permeable body. Two routes had been investigated for cesium removal from the radioactive solutions. In the first one, pottery bodies were immersed into the radioactive solutions. In the second method; the radioactive solutions were filled the inner volumes of the pottery bodies. Vase shape pottery showed higher sorption capability for 137Cs much more than its powder forms, especially in the alkaline medium. Pottery bodies showed high potential for 137Cs removal. Adsorption isotherms revealed good lit to the Freundlich and Langumir isotherms. During sorption processes outside and inside the pottery body, 137Cs was well captured inside the amorphous microstructure of the pottery body. In this respect, micro filtration of cesium radionuclides through the used pottery could be postulated. Desorption experiments indicated higher immobilization affinity for radiocesium into pottery bodies, which indicates a high containment for 137Cs with an irreversible fixation mechanism

  6. Optimization of the operation of liquid radioactive waste treatment plants

    International Nuclear Information System (INIS)

    An analysis was made of the possibilities of optimizing the operation of liquid radioactive waste treatment plants of the V-1 nuclear power plant, this with the aim of reducing the amount or influencing the composition of these wastes. Two treatment plants were in the centre of attention, contributing most to the production of radioactive concentrate. The first is designed for unorganized releases from the primary circuit, for water from decontamination, special laundries, etc., the second for surface blowdowns from the steam generators. The best operating mode of treatment plants for minimizing the amount of liquid radioactive wastes will be achieved by selecting the most favourable operating temperature and flow rate of the treated medium. The first mentioned treatment plant treats waste waters by evaporization and by subsequent processing of the condensate on ion exchange filters; here substantial improvement was achieved mainly by incorporating forced circulation of the liquid phase between the evaporators. In optimizing the operating regime of the treatment plant for surface blowdowns, attention was mainly devoted to loosening, washing, regeneration and flushing and to the possibility of separately processing used solutions. The studies and experiments yielded draft operating regulations for treatment plants. (Z.M.)

  7. Analysis of liquid radioactive wastes of Angra-1 reactor

    International Nuclear Information System (INIS)

    Any activity that produces or uses radioactive materials generates radioactive wastes. Normal operation of nuclear power plant produces radioactive waste that can be in gas, liquid or solid form and its level of radioactivity can vary. Gases and liquids wastes are treated and released into environment. The main source of radioactivity released to environment from Angra 1 are liquids from Waste Monitor Tanks. Those releases are under administrative control to meet the discharge limits established by Comissao Nacional de Energia Nuclear (CNEN). A representative sample of each batch is taken for analysis for principal gamma- emitting radionuclides and, if the analysis indicate that release can be made, the quantity of activity is recorded. Within the licensing process of Angra 1, monthly a proportional composite samples are made up with a aliquot of each batch and sent to Instituto de Radioprotecao e Dosimetria (IRD) to analyze and compare with the results reported. This comparative analyses showed that when the activity of that samples was very high, the activity measured on composite samples was higher than the sum of the activities measured on each batch. The operator was advised and requested to identify and solve the problem. This work presents the problem occurred and the solution found to improve the performance of measurements. (author)

  8. Radiation-flotation purification of aqueous wastes from mercury

    International Nuclear Information System (INIS)

    Purification of industrial wastes of plants producing chlorine and alkalies by electrolysis with using metallic mercury as a cathode from mercury (in ionic and metallic form as well as in the form of precipitate) to the accepted in the Soviet Union limiting permitted level of concentration (5 x 10-3 mg dm-3) by routine sulphide and ion exchange methods has some disadvantages. We have now developed the radiation-flotation method which consists of three stages: preliminary flotation in the presence of surfactant (sodium alkylsulphonate), γ-irradiation at dose 1 kGy and secondary flotation (also in the presence of sodium alkylsulphonate). The method is discussed and results are reported. (author)

  9. Heterogeneous Photo catalytic Degradation of Hazardous Waste in Aqueous Suspension

    International Nuclear Information System (INIS)

    The photo catalytic degradation of hazardous waste like chlorinated paraffin compound (1,12-Dichlorodoecane Ded) was investigated in different aquatic media using GC-MSD. The direct photolysis of Ded in HPLC water was considered to be negligible (k = 0.0020+-0.0007h-1). An acceleration of the photodegradation rate was occurred in presence of different TiO2 catalyst systems. Molecular oxygen was found to play a vital role in the degradation process. Anatase TiO2 was proved to be the most efficient one (k=0.7670+-0.0876h-1), while the rate constant of the rutile TiO2 was calculated to be 0.2780+-0.0342h-1. Improvement of photo catalytic efficiency of rutile TiO2 was achieved by addition of Fe+2 giving a rate constant =0.6710+-0.0786h-1

  10. Biodenitrification of gaseous diffusion plant aqueous wastes: stirred bed reactor

    International Nuclear Information System (INIS)

    Approximately 30 kilograms of nitrates per day are discarded in the raffinates (acid wastes) of the Portsmouth Gaseous Diffusion Plant's X-705 Uranium Recovery and Decontamination Facility. A biodenitrification process employing continuous-flow, stirred-bed reactors has been successfully used to remove nitrates from similar acid wastes at the Oak Ridge Y-12 Plant. Laboratory studies have been made at Portsmouth to characterize the X-705 raffinates and to test the stirred-bed biodenitrification process on such raffinates. Raffinates which had been previously characterized were pumped through continuous-flow, stirred-bed, laboratory-scale reactors. Tests were conducted over a period of 146 days and involved variations in composition, mixing requirements, and the fate of several metal ions in the raffinates. Tests results show that 20 weight percent nitrates were reduced to a target nitrate effluent concentration of 100 μg/ml with a 99.64 percent efficiency. However, the average denitrification rate achieved was only 33% of that demonstrated with the Y-12 stirred-bed system. These low rates were probably due to the toxic effects of heavy metal ions on the denitrifying bacteria. Also, most of the uranium in the raffinate feed remained in the biomass and calcite, which collected in the reactor. This could cause criticality problems. For these reasons, it was decided not to make use of the stirred-bed bioreactor at Portsmouth. Instead, the biodenitrification installation now planned will use fluidized bed columns whose performance will be the subject of a subsequent report

  11. Sulphate in Liquid Nuclear Waste: from Production to Containment

    International Nuclear Information System (INIS)

    Nuclear industry produces a wide range of low and intermediate level liquid radioactive wastes which can include different radionuclides such as 90Sr. In La Hague reprocessing plant and in the nuclear research centers of CEA (Commissariat a l'Energie Atomique), the coprecipitation of strontium with barium sulphate is the technique used to treat selectively these contaminated streams with the best efficiency. After the decontamination process, low and intermediate level activity wastes incorporating significant quantities of sulphate are obtained. The challenge is to find a matrix easy to form and with a good chemical durability which is able to confine this kind of nuclear waste. The current process used to contain sulphate-rich nuclear wastes is bituminization. However, in order to improve properties of containment matrices and simplify the process, CEA has chosen to supervise researches on other materials such as cements or glasses. Indeed, cements are widely used for the immobilization of a variety of wastes (low and intermediate level wastes) and they may be an alternative matrix to bitumen. Even if Portland cement, which is extensively used in the nuclear industry, presents some disadvantages for the containment of sulphate-rich nuclear wastes (risk of swelling and cracking due to delayed ettringite formation), other cement systems, such as calcium sulfo-aluminate binders, may be valuable candidates. Another matrix to confine sulphate-rich waste could be the glass. One of the advantages of this material is that it could also immobilize sulphate containing high level nuclear waste which is present in some countries. This waste comes from the use of ferrous sulfamate as a reducing agent for the conversion of Pu4+ to Pu3+ in the partitioning stage of the actinides during reprocessing. Sulphate solubility in borosilicate glasses has already been studied in CEA at laboratory and pilot scales. At a pilot scale, low level liquid waste has been vitrified. A test was

  12. Polyethylene Glycol as Support and Phase Transfer Catalyst in Aqueous Palladium-catalyzed Liquid-phase Synthesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Excellent yields and purity were obtained in the aqueous medium Suzuki, Sonogashira, Stille and Heck reactions using palladium (Ⅱ) as catalyst in liquid phase synthesis. Polyethylene glycol (PEG) acted as soluble polymeric support and phase transfer catalyst as well.

  13. Corrosion of steel tanks in liquid nuclear wastes

    International Nuclear Information System (INIS)

    The objective of this work is to understand how solution chemistry would impact on the corrosion of waste storage steel tanks at the Hanford Site. Future tank waste operations are expected to process wastes that are more dilute with respect to some current corrosion inhibiting waste constituents. Assessment of corrosion damage and of the influence of exposure time and electrolyte composition, using simulated (non-radioactive) wastes, of the double-shell tank wall carbon steel alloys is being conducted in a statistically designed long-term immersion experiment. Corrosion rates at different times of immersion were determined using both weight-loss determinations and electrochemical impedance spectroscopy measurements. Localized corrosion susceptibility was assessed using short-term cyclic potentiodynamic polarization curves. The results presented in this paper correspond to electrochemical and weight-loss measurements of the immersed coupons during the first year of immersion from a two year immersion plan. A good correlation was obtained between electrochemical measurements, weight-loss determinations and visual observations. Very low general corrosion rates (-1) were estimated using EIS measurements, indicating that general corrosion rate of the steel in contact with liquid wastes would no be a cause of tank failure even for these out-of-chemistry limit wastes. (author)

  14. Immobilization of liquid organic radioactive waste in porous cement matrix

    International Nuclear Information System (INIS)

    The purpose of this research is to develop a technique for the immobilization of liquid organic radioactive waste through impregnation of porous cement matrices to ensure high degree of end-compound filling with waste. The technique consists in the following. First of all, the prepared porous cement matrix is placed into a primary package. At the hardening age of not less than 28 days, i.e. when main cement hydration processes are over, the waste is pumped into the cement-matrix pore space through the feeding device pre-installed in the container, causing the matrix impregnation with the waste. Cement composition provides obtaining matrices with strength of up to 9 MPa and porosity of up to 70 %. Compressive strength of the matrix after impregnation does not lower. Properties of the final compound meet the regulated requirements. Waste immobilization in the matrix is reliable. The degree of the end-product filling with organic waste ranged 56-64 % by volume or 47-52 % by weight. The developed mathematical model makes it possible to predict optimal impregnation parameters and output of dosing equipment for immobilization of various types of organic waste. (authors)

  15. Separation and recovery of ruthenium from radioactive liquid waste for specific medical applications - wealth from waste

    International Nuclear Information System (INIS)

    In recent past, 106Ru has emerged as one of the promising β- emitting radionuclide used in brachytherapy for the treatment of choroidal melanoma and retinoblastoma due to its favorable nuclear decay characteristics. A plaque with low amount of 106Ru activity of the order of 12 - 26 MBq (0.3 - 0.7 mCi ) is suitable for the above treatment and can be used for an adequate duration of 1-2 years due to suitable half-life (T1/2 = 1.02 y). In order to undertake the preparation of 106Ru plaque, an indigenous availability of this radionuclide with acceptable purity was explored from radioactive liquid waste having wide spectrum of fission products in line with wealth from waste strategy. Process methodology has been developed and standardized at Process Control Laboratory of Waste Immobilization Plant (WIP), Trombay for separation of 106Ru from radioactive liquid waste for intended medical application. (author)

  16. Assessment of industrial liquid waste management in Omdurman Industrial Area

    International Nuclear Information System (INIS)

    This study was conducted mainly to investigate the effects of industrial liquid waste on the environment in the Omdurman area. Various types of industries are found around Omdurman. According to the ISC the major industries are divided into eight major sub-sectors, each sub-sector is divided into types of industries. Special consideration was given to the liquid waste because of its effects. In addition to the available data, personal observation supported by photographs, laboratory analyses were carried on the industrial effluents. The investigated parameters in the analysis were, BOD, COD, O and G, Cr, TDS, TSS, pH, temp and conductivity. Interviews were conducted with waste handling workers in the industries, in order to assess the effects of industrial pollution. The results obtained showed that pollutants produced by all the factories were found to exceed the accepted levels of the industrial pollution control. The effluents disposed of in the sites allotted by municipal authorities have adverse effects on the surrounding environment and public health and amenities. Accordingly the study recommends that the waste water must be pretreated before being disposed of in site allotted by municipal authorities. Develop an appropriate system for industrial waste proper management. The study established the need to construct a sewage system in the area in order to minimize the pollutants from effluents. (Author)

  17. Modulating the Solubilities of Ionic Liquid Components in Aqueous-Ionic Liquid Biphasic Systems: A Q-NMR Investigation.

    Science.gov (United States)

    Atanassova, Maria; Mazan, Valérie; Billard, Isabelle

    2015-06-01

    Aqueous-ionic liquid (A-IL) biphasic systems have been examined in terms of deuterated water, acid, and IL cation and anion mutual solubilities in the upper (water-rich, in mole fraction) and lower phase of aqueous/IL biphasic systems at ambient temperature. The biphasic mixtures were composed of deuterated acids of various concentrations (mainly DCl, DNO(3), and DClO(4) from 10(-2) to 10(-4)  M) and five ionic liquids of the imidazolium family with a hydrophobic anion (CF(3)SO(2))(2) N(-), that is, [C1 Cn im][Tf(2)N], (n=2, 4, 6, 8 and 10). The analytical techniques applied were (1) H NMR, (19) F NMR, Karl-Fischer titration, pH potentiometry for IL cations and anions, and water and acid determination. The effects of the ionic strength (μ=0.1 M NaCl and NaNO(3) as well as μ=0.1 M, 0.2 M and 0.4 M NaClO(4), according to the investigated acid), the nature of the IL cation, and the nature of the mineral acid on the solubilities of the (D(2)O, D(+), Tf(2)N(-), C1 Cn im(+)) entities in the lower or upper phases were determined. The addition of sodium perchlorate was found to enhance the Tf(2)N(-) solubility while inhibiting the solubility of the ionic liquid cation. Differences in IL cation and anion solubilities of up to 42 mM were evidenced. The consequences for the characterization of the aqueous biphasic system, the solvent extraction process of the metal ions, and the ecological impact of the ILs are discussed. PMID:25787248

  18. Unmanaged solid and liquid wastes from rice husk gasification.

    OpenAIRE

    Ha-Duong, Minh

    2014-01-01

    This is the backyard of a rice mill in Cambodia. A rice mill is a factory where the rice hulls (or rice husks) are peeled off the grains of rice. This factory uses the husks as a fuel to produce its own electricity: the husks are fed to a gasifier, and the produced gas is fed to a diesel generator. The solid waste on the foreground is husk ash or biochar. The liquid waste in the background is untreated blackwater from the gas cleaning process. Researchers of the Clean Energy and Sustainable D...

  19. Production of liquid wastes by WWER-440 type nuclear power plants and possible minimization thereof

    International Nuclear Information System (INIS)

    The main sources are given of liquid radioactive wastes from nuclear power plants and tabulated are the contributions of these sources to the total production of liquid radioactive wastes. The chemical composition of these wastes is given by the consumption of the main types of chemicals. Primary liquid radioactive wastes are processed by a system of waste treatment plants which use ion exchange filters or evaporators with supplementary treatment on ion exchange filters. The possibilities are summed up of the minimization of liquid radioactive waste production. (E.S.)

  20. RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Robin M. Stewart

    1999-09-29

    Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a

  1. Degradation of Refractory Organic Compounds in Aqueous Wastes employing a combination of biological and chemical treatments

    OpenAIRE

    Chindris, Anuta

    2011-01-01

    In this study the removal of refractory organic compounds (ROCs) in Aqueous Wastes (AW) employing a combination of biological and chemical treatment were investigated at Department of Chemical Engineering and Materials Science, University of Cagliari, Italy and Department of Engineering, Oxford University, UK. The main objectives were to stimulate and optimise the degradation of ROCs with efficient removal of them in AW. This project is divided in two sections, a theoreti...

  2. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  3. The Effect of Liquid Crystalline Structures on Antiseizure Properties of Aqueous Solutions of Ethoxylated Alcohols

    Directory of Open Access Journals (Sweden)

    Anna Bak

    2010-01-01

    Full Text Available Aqueous solutions of ethoxylated alcohols which form lyotropic liquid crystals at high concentrations (40–80% were selected as model lubricating substances. Microscopic studies under polarized light and viscosity measurements were carried out in order to confirm the presence of liquid crystalline structures in the case of alcohol solutions with ethoxylation degrees of 3, 5, 7 and 10. Microscopic images and viscosity coefficient values characteristic of various mesophases were obtained. As expected, the viscosity of LLCs decreases considerably with an increase in shearing rate which is characteristic of liquid crystals being non-Newtonian liquids. Antiseizure properties were determined by means of a four-ball machine (T-02 Tester and characterized by scuffing load (Pt, seizure load (Poz and limiting pressure of seizure (poz. Alcohol ethoxylates forming mesophases in aqueous solutions have the strongest effect on the Pt values which are several times higher than those measured in the presence of water. Ethoxylates with higher degrees of ethoxylation exhibit higher values of scuffing load. Those changes have been interpreted as a result of higher cloud points at which those compounds lose their amphiphilic properties. In general, the presence of mesophases in the bulk phase and particularly in the surface phase may lead to the formation of a lubricant film which separates the frictionally cooperating elements of a friction pair. The antiseizure efficiency of alcohol solutions is highest up to the load value which does not exceed the scuffing load value.

  4. A Low Level Radioactivity Monitor for Aqueous Waste

    International Nuclear Information System (INIS)

    A system is described for continuous monitoring of very low levels of radioactivity in waste water containing typically 3.5 g/l dissolved solids. Spray evaporation of the water enables the dissolved solids to be recovered in the form of an aerosol and collected on a filter tape where the radioactivity is measured by a radiation detector. The advantage of this method compared with a direct measurement is that the attenuating effect of the water is removed and thus greater sensitivity is obtained. Compensation for background and any contamination is achieved by feeding distilled water to the aerosol generator every alternate sampling period and recording the count difference between two successive sampling periods . A printed record of the totalised count difference is obtained once per hour during the integration time of one month. For β radioactivity the minimum values of specific activity measurable extend from 1 x 10-6 Ci/m3 to 6 x 10-8 Ci/m depending on the B end-point energy in the range 167 KeV to 2.26 MeV. The estimated minimum measurable specific activity is 6 x 10-8 Ci/m3

  5. Determination of aqueous fullerene aggregates in water by ultrasound-assisted dispersive liquid-liquid microextraction with liquid chromatography-atmospheric pressure photoionization-tandem mass spectrometry.

    Science.gov (United States)

    Chen, Hsin-Chang; Ding, Wang-Hsien

    2012-02-01

    A simple and solvent-minimized method for the determination of three aqueous fullerene aggregates (nC₆₀, nC₇₀, and aqueous [6,6]-phenyl C₆₁ butyric acid methyl ester (nPCBM)) in water samples is described. The method involves the use of ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization (LC-APPI-MS/MS). The parameters affecting the extraction efficiency of the analytes from water samples were systematically investigated and the conditions optimized. The best extraction conditions involved the rapid injection of a mixture of 1.0 mL of 2-propanol (as a disperser solvent) and 10 μL of benzyl bromide (as an extraction solvent) into 10 mL of an aqueous solution (pH 10.0) containing 1% sodium chloride in a conical bottom glass tube. After ultrasonication for 1.0 min and centrifugation at 5000 pm (10 min), the sedimented phase 5.0 μL was directly injected into the LC-APPI-MS/MS system. The limits of quantification (LOQs) were 150, 60 and 8 ng L⁻¹ for nPCBM, nC₆₀ and nC₇₀, respectively. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than 12% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 70 and 86%. A standard addition method was used to quantitate three aqueous fullerene aggregates, and the concentrations of these aqueous fullerene aggregates were determined to be in the range from n.d. to 130 ng L⁻¹ in various environmental samples including municipal influent and effluent samples, industrial wastewater samples, and surface water samples. PMID:22209304

  6. Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: Experimental and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Enghelab Avenue, Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2008-07-15

    The effect of temperature on the (liquid + liquid) equilibrium of the aqueous solution of surfactant polyoxyethylene cetylether (with abbreviation name Brij 58) and diammonium hydrogen phosphate has been investigated at T = (303.15, 313.15, 323.15, and 333.15) K. The Flory-Huggins equation with two electrostatic terms (Debye-Huckle and Pitzer-Debye-Huckle equations) was used to correlate the phase behavior of this system. Good agreement has been found between experimental and calculated data from both models. The results indicated that the enlargement of the two-phase region upon increasing the temperature. Additionally temperature dependency of the parameters of the Flory-Huggins model has been calculated.

  7. Effect of temperature on the (liquid + liquid) equilibrium for aqueous solution of nonionic surfactant and salt: Experimental and modeling

    International Nuclear Information System (INIS)

    The effect of temperature on the (liquid + liquid) equilibrium of the aqueous solution of surfactant polyoxyethylene cetylether (with abbreviation name Brij 58) and diammonium hydrogen phosphate has been investigated at T = (303.15, 313.15, 323.15, and 333.15) K. The Flory-Huggins equation with two electrostatic terms (Debye-Huckle and Pitzer-Debye-Huckle equations) was used to correlate the phase behavior of this system. Good agreement has been found between experimental and calculated data from both models. The results indicated that the enlargement of the two-phase region upon increasing the temperature. Additionally temperature dependency of the parameters of the Flory-Huggins model has been calculated

  8. (Liquid + liquid) equilibria in ternary aqueous mixtures of phosphoric acid with organic solvents at T = 298.2 K

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of {water (1) + phosphoric acid (2) + organic solvents (3)} were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer-Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.

  9. (Liquid + liquid) equilibria in ternary aqueous mixtures of phosphoric acid with organic solvents at T = 298.2 K

    Energy Technology Data Exchange (ETDEWEB)

    Ghanadzadeh, H., E-mail: hggilani@guilan.ac.i [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of); Department of Chemical Engineering, University of Guilan, Rasht (Iran, Islamic Republic of); Ghanadzadeh, A., E-mail: aggilani@guilan.ac.i [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of); Aghajani, Z.; Abbasnejad, S.; Shekarsaraee, S. [Department of Chemistry, Faculty of Science, University of Guilan, Rasht (Iran, Islamic Republic of)

    2010-06-15

    (Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of left bracewater (1) + phosphoric acid (2) + organic solvents (3)right brace were determined at T = 298.2 K and atmospheric pressure. The organic solvents were cyclohexane, 2-methyl-2-butanol (tert-amyl alcohol), and isobutyl acetate. All the investigated systems exhibit Type-1 behaviour of LLE. The immiscibility region was found to be larger for the (water + phosphoric acid + cyclohexane) ternary system. The experimental LLE results were correlated with the NRTL model, and the binary interaction parameters were obtained. The reliability of the experimental tie-line results was tested through the Othmer-Tobias and Bachman correlation equations. Distribution coefficients and separation factors were evaluated over the immiscibility regions and a comparison of the extracting capabilities of the solvents was made with respect to these factors. The experimental results indicate the superiority of cyclohexane as the preferred solvent for the extraction of phosphoric acid from its aqueous solutions.

  10. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    International Nuclear Information System (INIS)

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support

  11. Management of liquid wastes at UCIL's Narwapahar mining project

    International Nuclear Information System (INIS)

    With greater demand in recent times for environmental protection, there is pressure on all types of industries including mining for management of various types of wastes in such a manner that no pollution takes place in public domains. Stringent standards are being laid down by Department of Environment, Government of India, for discharge of liquid effluents at project sites. The only liquid wastes to be discharged at Narwapahar Mining Project of UCIL (Uranium Corporation of India Limited) are the mine water and the STP (Sewage Treatment Plant) effluents. The paper details the management of these effluents including their treatment and the measures adopted to control pollution in neighbouring nallahs and rivers. (author). 3 refs., 3 tabs., 1 fig

  12. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m3. It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  13. Economic analysis for incineration of liquid scintillation counting waste

    International Nuclear Information System (INIS)

    Burial of Liquid Scintillation Counting Waste (LSCW) is no longer a viable disposal technique. The disposal site located in South Carolina will no longer accept such liquids, and sites in Nevada and Washington will discontinue acceptance in this decade. The object of this work was to develop a safe, economical alternative method for disposing of LSCW. A portable injection unit (PIU) was developed to inject LSCW directly into existing boiler oil feed lines. Further work on construction and testing can be found in work done by Salas. The project proved that there exists a safe, economical alternative to burial for disposing of LSCW. A large savings in disposal cost can be obtained because the PIU acts as a compactor by disposing of the hazardous waste only. Additional savings are obtained in fuel cost by taking advantage of the LSCW's fuel worth. A complete economic analysis will be discussed

  14. Determination of free acid in high level liquid waste

    International Nuclear Information System (INIS)

    A Flow-dilution spectrophotometric method is developed for rapid determination of free acid in High Level Liquid Waste. Orange IV is used as developer in this method. The results show that the precision of the analysis is less than 3% (n=3) and the quantity of sample is small, the procedure is simple and fast (completed within 3 min). Moreover, the method is much less hazardous for the operator in the analysis of radioactive samples. (authors)

  15. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    International Nuclear Information System (INIS)

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration

  16. Boron Removal in Radioactive Liquid Waste by Forward Osmosis Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dooseong; Choi, Hei Min; Lee, Kune Woo; Moon Jeikwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    These wastes contain about 0.3-0.8 wt% boric acid and have been concentrated through an evaporation treatment. Boric acid tends to crystallize owing to its solubility, and to plug the evaporator. The volume reduction obtained through evaporation is limited by the amount of boric acid in the waste. As an emerging technology, forward osmosis (FO) has attracted growing interest in wastewater treatment and desalination. FO is a membrane process in which water flows across a semi-permeable membrane from a feed solution of lower osmotic pressure to a draw solution of higher osmotic pressure. However, very few studies on the removal of boron by FO have been performed. The objective of this study is to evaluate the possibility of boron separation in radioactive liquid waste by FO. In this study, the performance of FO was investigated to separate boron in the simulated liquid waste under the factors such as pH, osmotic pressure, ionic strength of the solution, and membrane characteristic. The boron separation in radioactive borate liquid waste was investigated with an FO membrane. When the feed solution containing boron is treated by the FO membrane, the boron permeation depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7, and increases with an increase in the osmotic driving force. The boron flux of the CTA-ES and ALFD membrane orientation is higher than those of the CTA-NW and ALFF orientation, respectively. The boron permeation rate is constant regardless of the osmotic pressure and membrane orientation. The boron flux decreases slightly with the salt concentration, but it is not heavily influenced at a low salt concentration.

  17. Hollow fibre supported liquid membranes for separations relevant to radioactive waste management

    International Nuclear Information System (INIS)

    Separation science plays a pivotal role in many hydrometallurgical processes, including industrial waste water treatment. Out of the various separation techniques, solvent extraction, ion-exchange and precipitation are considered as the work horse for various industrial applications. Of late, there is a growing interest in membrane based separation methods which are considered environmentally benign. A combination of solvent extraction and membrane diffusion, alternatively known as liquid membrane (LM) technique, has drawn considerable attention of the separation scientists. LM based separation methods are associated with several advantages over conventional solvent extraction such as simultaneous extraction and stripping, generation of low volume of volatile organic carbons (VOCs), low operating cost, etc. LMs containing selective carrier extractants have been proposed as alternatives to solvent extraction based methods for selective separation and concentration of metal ions from dilute aqueous solutions. Though solvent extraction based separation methods have been used extensively metal ion separations in nuclear fuel cycle, there is a need to explore liquid membrane based separations. Furthermore, the supported liquid membrane based separations are not suitable for large scale processes due to low flux and membrane stability. Therefore, alternative liquid membrane separation methods such as Emulsion Liquid Membranes (ELM) and Hollow Fiber Supported Liquid Membrane (HFSLM) with high metal transport flux appear promising due to large effective surface area with resultant high mass transfer rates. At Radiochemistry Division, extensive work has been carried out on HFSLM technique for possible applications in several separations relevant at the back end of the nuclear fuel cycle. Separation of Am(III) from simulated high level waste by HFSLM technique was demonstrated for the first time. A pilot scale run was carried out at 20 L scale for the actinide partitioning

  18. Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present work,it was found that aqueous solution of a hydrophilic ionic liquid (IL),1-butyl-3-methylimidazolium dicyanamide ([C4mim][N(CN)2]),could be separated into an aqueous two-phase system (ATPS) by inorganic salts such as K2HPO4 and K3PO4.The top phase is IL-rich,while the bottom phase is phosphate-rich.It was shown that 82.7%-100% bovine serum albumin (BSA) could be enriched into the top phase and almost quantitative saccharides (arabinose,glucose,sucrose,raffinose or dextran) were preferentially extracted into the bottom phase in a single-step extraction by [C4mim][N(CN)2] + K2HPO4 ATPS.The extraction efficiency of BSA from the aqueous saccharide solutions was influenced by the molecular structure of saccharides.The conductivity,dynamic light scattering (DLS) and transmission electron microscopy (TEM) were combined to investigate the microstructure of the IL-rich top phase and the possible mechanism for the selective separation.It is suggested that the formation of the IL aggregate and the IL aggregate-BSA complex plays a significant role in the separation of BSA from aqueous saccharide solutions.This is the first example for the selective separation by ILs-based ATPSs.It is expected that these findings would have potential applications in bio-analysis,separation,and IL recycle.

  19. Options for the decontamination of alpha-bearing liquid wastes

    International Nuclear Information System (INIS)

    This document reviews the processes potentially available, and their state of development, for the removal of alpha activity from aqueous waste streams. In present practice, most such streams are treated by precipitation, usually with an iron hydroxide, but the potential role and limitations of other precipitants, of ion exchange techniques and solvent extraction are also discussed as well as newer electrochemical methods. Because of the importance of precipitation, and the fact the α-activity often occurs in suspended form in wastes, the methods for solids separation and concentration are considered in some detail, together with other physical processes such as evaporation. The equipment and operational aspects are also discussed, particularly for precipitation, ion exchange and solvent extraction treatments. The conclusions relate to an extensive table in which the different methods are compared. The optimum treatment or combination of treatments will depend on the waste stream and other circumstances (particularly on the chemical and radiological constituents of the waste, and its rate of arising) and the aim of this work is to give an initial guide to the choice among the options. (author)

  20. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {MW = (1000, 6000, and 35,000) g . mol-1} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed

  1. (Surfactant + polymer) interaction parameter studied by (liquid + liquid) equilibrium data of quaternary aqueous solution containing surfactant, polymer, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Physical Chemistry Department, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Heidari, Nosrat; Mohammadlou, Maryam [Chemistry Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of); Sojahrood, Amin Jafari [Physics Department, Faculty of Science, Uremia University, Uremia (Iran, Islamic Republic of)

    2009-02-15

    (Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {l_brace}M{sub W} = (1000, 6000, and 35,000) g . mol{sup -1}{r_brace} have been determined experimentally at T = 313.15 K. Furthermore, the Flory-Huggins theory with two electrostatic terms (Debye-Hueckel and Pitzer-Debye-Hueckel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory-Huggins theory has been obtained. Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.

  2. Development of a surfactant liquid membrane extraction process for the cleansing of industrial aqueous effluents containing metallic cation traces

    International Nuclear Information System (INIS)

    The purpose of this work was to develop a process of surfactant liquid membrane extraction to purify industrial waste solution containing Cu(II), Fe(III), and Zn(II) (about 0,1 g/L). The extractant is the ammonium salt of Cyanex 306 and Aliquat 336. The first part of this work deals with the study of the liquid-liquid extraction of the metals. The efficiency of the extractant has been shown for the extraction of each metal alone and for Cu(II) and Zn(II) in the case of a mixture of the three metals. During this study we have observed that Fe(III) is reduced to Fe(II) (which is not extracted by the salt of Cyanex 301) in presence of Cu(II) and the quaternary ammonium salt (Aliquat 336). The optimisation of the experimental conditions for the discontinuous surfactant liquid membrane process led us to choose the following composition of the emulsion: 1,5 % of Cyanex 301 salt, 2,5 % of ECA 4360, dodecan. The internal phase is an aqueous solution containing 3,5 mol/L of NaOH and 0,5 mol/L tri-ethanolamin The residual concentration of Cu(II) and Zn(II) in the external phase is very low. In the case of iron, only 60 % are extracted because of the reduction phenomenon (10 % in liquid-liquid extraction). The realisation of the continuous process in pulsed column, after optimisation of hydrodynamics conditions, leads to similar results. In stationary conditions, we obtain a raffinate containing less than 0,5 mg/L of Cu(II) and Zn(II) and 36 mg/L of iron. The internal phase contains about 2 g/L of Cu(II) an Zn(II). We tried and minimize the reduction of Fe(III) in surfactant liquid membrane process. Less than 16 % of iron cannot be reduced. This leads to a purification of only 84 % In the basis of these results, processes of purification have been proposed for effluents of various composition. They enable to purify the effluent and besides to concentrate the pollutants about twenty times. (author)

  3. Corrosion behavior of technetium waste forms exposed to various aqueous environments

    Energy Technology Data Exchange (ETDEWEB)

    Kolman, David Gary [Los Alamos National Laboratory; Jarvinen, Gordon [Los Alamos National Laboratory; Mausolf, Edward [UNIV OF NEVADA; Czerwinski, Ken [UNIV OF NEVADA; Poineau, Frederic [UNIV OF NEVADA

    2009-01-01

    Technetium is a long-lived beta emitter produced in high yields from uranium as a waste product in spent nuclear fuel and has a high degree of environmental mobility as pertechnetate. It has been proposed that Tc be immobilized into various metallic waste forms to prevent Tc mobility while producing a material that can withstand corrosion exposed to various aqueous medias to prevent the leachability of Tc to the environment over long periods of time. This study investigates the corrosion behavior of Tc and Tc alloyed with 316 stainless steel and Zr exposed to a variety of aqueous media. To date, there is little investigative work related to Tc corrosion behavior and less related to potential Tc containing waste forms. Results indicate that immobilizing Tc into stainless steel-zirconium alloys can be a promising technique to store Tc for long periods of time while reducing the need to separately store used nuclear fuel cladding. Initial results indicate that metallic Tc and its alloys actively corrode in all media. We present preliminary corrosion rates of 100% Tc, 10% Tc - 90% SS{sub 85%}Zr{sub 15%}, and 2% Tc - 98% SS{sub 85%}Zr{sub 15%} in varying concentrations of nitric acid and pH 10 NaOH using the resistance polarization method while observing the trend that higher concentrations of Tc alloyed to the sample tested lowers the corrosion rate of the proposed waste package.

  4. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    Science.gov (United States)

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  5. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy

    NARCIS (Netherlands)

    J.R. Bruijn; T.H. van der Loop; S. Woutersen

    2016-01-01

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 +/- 0.1 (as opposed to n = 1.7 observed upon

  6. Evaluation of nanofiltration membranes for treatment of liquid radioactive waste

    International Nuclear Information System (INIS)

    The physicochemical behavior of two nanofiltration membranes for treatment of a low-level radioactive liquid waste (carbonated water) was investigated through static, dynamic and concentration tests. This waste was produced during conversion of uranium hexafluoride (UF6) to uranium dioxide (UO2) in the cycle of nuclear fuel. This waste contains about 7.0 mg L-1 of uranium and cannot be discarded to the environment without an adequate treatment. In static tests membrane samples were immersed in the waste for 24 to 5000 h. Their transport properties (hydraulic permeability, permeate flux, sulfate and chloride ions rejection) were evaluated before and after immersion in the waste using a permeation flux front system under 0.5 MPa. The selective layer (polyamide) was characterized by zeta potential, contact angle, scanning electron microscopy for field emission, atomic force microscopy, infrared spectroscopy, x-ray fluorescence and thermogravimetric analysis before and after static tests. In dynamic tests the waste was permeated under 0.5 MPa, and the membranes showed rejection to uranium above 85% were obtained. The short-term static tests (24-72 h) showed that the selective layer and surface charge of the membranes were not chemical changed, according infrared spectra data. After 5000 h a coating layer was released from the membranes, poly(vinyl alcohol), PVA. After this loss the rejection for uranium decreased. Permeation and concentration of the waste were carried out in permeation flux tangential system under 1.5 MPa. The rejection of uranium was around 90% for permeation tests. In concentration tests the permeated was collected continuously until about 80% reduction of the feed volume. The rejection of uranium was of the 97%. The nanofiltration membranes tested were efficient to concentrate the uranium from the waste. (author)

  7. Dissolution of agro-waste in ionic liquids

    International Nuclear Information System (INIS)

    Full text: There are abundant of agro-wastes being produced in Malaysia. One of the largely produced agro wastes is the sago hampas. It is known as a strong environmental pollutant due to its cellulosic fibrous material. However, the presence of the starch, cellulose and hemicelluloses in the hampas can be converted into valuable products such as reducing sugars. Hence, this study was performed to investigate the ability of ionic liquids in hydrolysing the ligno celluloses biomass into reducing sugars. Three types of ionic liquids were used, 1-butyl-3-methylimidazolium chloride (BMIM Cl), 1-ethyl-3- methylimidazolium acetate (EMIM Ac) and 1-ethyl-3-methylimidazolium diethyl phosphate (EMIM DEP). The reaction was performed by heating the reaction mixture of sago hampas and ionic liquids at 100 degree Celsius. The concentrations of reducing sugars in the hydrolysates were determined by DNS method. Maximum concentration of reducing sugars were 0.424, 0.299, 0.260 mg/ml for BmimCl, EmimAc and EmimDEP respectively. These concluded that the selected ionic liquids were inefficient in hydrolysing the sago hampas to reducing sugars. (author)

  8. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  9. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    Science.gov (United States)

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. PMID:25074717

  10. Dielectric Properties of Low-Level Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    L. E. Lagos; M. A. Ebadian

    1998-10-20

    The purpose of this study was to develop a data collection containing values for the dielectric properties of various low-level liquid waste (LLLW) simulants measured as a function of frequency, temperature, and composition. The investigation was motivated by current interest in the use of microwave processing for the treatment of radioactive waste. A large volume of transuranic liquid and sludge produced by the U.S. Department of Defense (DOD) during the production of nuclear fiel bars is stored at several U.S. Department of Energy (DOE) sites around the United States. Waste storage and disposal space is scarce, expensive, and must be minimized. Thus, several DOE sites are pursuing the use of microwave heating as a means of achieving volume reduction and solidification of low-level liquid wastes. It is important to know which microwave frequencies should be employed tc achieve the most efficient processing at a range of different temperatures. The dielectric properties of the LLLW simulants can be utilized to determine the optimum frequencies for use with a particular LLLW or with other LLLWS of similar composition. Furthermore, nonlinear thermal processes, such as thermal runaway, which occur in the material being treated cannot be modeled without a knowledge of the temperature dependence of the dielectric properties. Often, this data does not exist; however, when it does, only very limited data near room temperature are available. The data collection generated in this study can be used to predict the behavior of a variety of microwave thermal treatment technologies, which have the potential of substantially reducing the volume of the LLLWS that are currently stored at many DOE sites. This information should help the users of the microwave reduction and solidification technology to optimize microwave processes used in the treatment of LLLW. The microwave reduction and solidification technology has clear advantages over other methods of reducing LLLWS. These

  11. Nondisruptive Dissolution of Hyperpolarized (129) Xe into Viscous Aqueous and Organic Liquid Crystalline Environments.

    Science.gov (United States)

    Truxal, Ashley E; Slack, Clancy C; Gomes, Muller D; Vassiliou, Christophoros C; Wemmer, David E; Pines, Alexander

    2016-04-01

    Studies of hyperpolarized xenon-129 (hp-(129) Xe) in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. Herein a device is reported that can be reliably used to dissolve hp-(129) Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes (<60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments show that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy. PMID:26954536

  12. LIQUID DYES'CHARACTERISTICS IN DYEING WASTE PAPER PULP AND THEIR APPLICATION

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Wang; gang Chen; Aimin Tang; Hongwei Zhang

    2004-01-01

    In this paper, some liquid dyes were used to dye the waste paper pulp (OCC pulp and waste cement sack paper pulp), and their dyeing characteristics were analyzed, The liquid dyes include liquid basic yellow, liquid basic blue, liquid basic red, liquid basic orange, liquid basic brown and liquid direct black. We found that, each dye had its own dyeing characteristic while dyeing the waste paper pulp.Generally different types of liquid dyes were combined to dye the waste paper pulp, which the adding process must be noticed. We also observed that a black pigment could be applied together with said liquid dyes to dye or adjust the color of the bottom sheet for the fireproof board. We could also achieve the same dyeing result through different combinations of different dyes.

  13. LIQUID DYES'CHARACTERISTICS IN DYEING WASTE PAPER PULP AND THEIR APPLICATION

    Institute of Scientific and Technical Information of China (English)

    XiaopingWang; gangChen; AiminTang; HongweiZhang

    2004-01-01

    In this paper, some liquid dyes were used to dye the waste paper pulp (OCC pulp and waste cement sack paper pulp), and their dyeing characteristics were analyzed, The liquid dyes include liquid basic yellow, liquid basic blue, liquid basic red, liquid basic orange, liquid basic brown and liquid direct black. We found that, each dye had its own dyeing characteristic while dyeing the waste paper pulp. Generally different types of liquid dyes were combined to dye the waste paper pulp, which the adding process must be noticed. We also observed that a black pigment could be applied together withsaid liquid dyes to dye or adjust the color of the bottom sheet for the fireproof board. We could also achieve the same dyeing result through different combinations of different dyes.

  14. Ionic association and interactions in aqueous methylsulfate alkyl-imidazolium-based ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • Viscosity and electrical conductivity were determined in aqueous ionic liquids. • For the shorter IL the viscosity was lower and the electrical conductivity higher. • NMR and IR were used to study ionic association and interactions in aqueous ILs. • The main change in the ionic association was only observed for high water contents. • In IR, the SO3 asymmetric stretching band is a probe of structural changes. - Abstract: Several experimental techniques were used to study ionic association and interactions in aqueous [C1C2Im][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, and [C1C4Im][MeSO4], 1-butyl-3-methylimidazolium methylsulfate. Two transport properties, viscosity and electrical conductivity, were determined for these two binary mixtures. For a better assessment of the ionic association and the perturbation of water into the molecular structure of the ionic liquid, diffusion coefficients of ions and water molecules were obtained by NMR spectroscopy while molecular interactions were probed by IR spectroscopy. The comparison of the two ionic liquids shows that for the shorter alkyl chain the viscosity was lower and the electrical conductivity was higher. While the viscosity of the mixture drops already with small additions of water, the electrical conductivity of the solution is only significantly increased for high water concentrations. A maximum is observed for compositions around xwater = (0.90 to 0.95). The SO3 asymmetric stretching band of the IR spectrum can be used as a probe to observe the evolution of the structure around the anion which was mainly occurring for high concentrations of water. Several experimental techniques show than the main change in the ionic association was only observed for high water contents (water mole fraction > 0.8)

  15. Cleaning of radioactive liquid waste by n new biomass plant

    International Nuclear Information System (INIS)

    Metapure biomass is a low cost patented material based on a dried plant (Azolla). It binds and concentrates various metal ions from water over a broad range of concentration (ppm to below ppt) and pH (2-12.5). Filtering system based on Metapure can be used for the remediation of industrial waste water and especially for the nuclear industry for the removal of radionuclides from liquid waste. After ts use, it can be easily incinerated at low temperature (350 - 500 deg C) to radionuclides enriched ashes, reducing the waste for disposal up to 1/10, without any loss of the accumulated radioactive isotopes. Meta pure biomass has low affinity for Na ions, while retaining its binding properties for other metal ions, and was proved to be quite efficient in brine solutions. Laboratory experiments, have shown the Metapure efficiency for the removal of isotope traces from high hardness tap water and from brine solution. The removal of Co-60 by Metapure from waste water was tested on site at the Comanche Peak power station (USA). A small scale filtering system for Co-60 removal from high alkaline waste water, is now in operation at Soreq Nuclear Research Center

  16. Decontamination of liquid nuclear wastes by fixation of radioactive elements on nickel and zinc ferrocyanides

    International Nuclear Information System (INIS)

    Nickel and zinc ferrocyanides are very efficient products for the removal of several ions from aqueous solutions. Owing to a preparation process by slow growth on solid alkaline ferrocyanide placed in a concentrated nickel or zinc solution, these products can be used in columns. The optimal recovery conditions of radioactive cesium and silver were determined on several types of nickel and zinc ferrocyanides. The decontamination factor for cesium or silver is over 1000 for synthetic solutions. The presence of other alkaline ions does not modify these results. In the case of nuclear liquid wastes containing lithium borate, the cesium decontamination remains high. Silver is generally retained with a good efficiency. However, the fixation is sometimes impossible owing to complex forms. This effect could be avoided by acidification. The drawback of ferrocyanides is a slight release of some cations of the products. 38 refs.; 5 figs.; 5 tabs

  17. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen

  18. Liquid and Gaseous Waste Operations Department annual operating report CY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, J.J.; Scott, C.B.

    1995-03-01

    This report presents details about the operation of the liquid and gaseous waste department of Oak Ridge National Laboratory for the calendar year 1994. Topics discussed include; process waste system, upgrade activities, low-level liquid radioactive waste solidification project, maintenance activities, and other activities such as training, audits, and tours.

  19. Chemical precipitation processes for the treatment of low and medium level liquid waste

    International Nuclear Information System (INIS)

    Chemical precipitation processes for the treatment of various radioactive low and medium level liquid waste are described. Application to waste from reprocessing plants, removal of the main gamma emitters, actinide separation, utility liquid wastes generated during pwr operation, and combination of ultrafiltration with chemical precipitation, are all discussed. (U.K.)

  20. Liquid and Gaseous Waste Operations Department annual operating report CY 1994

    International Nuclear Information System (INIS)

    This report presents details about the operation of the liquid and gaseous waste department of Oak Ridge National Laboratory for the calendar year 1994. Topics discussed include; process waste system, upgrade activities, low-level liquid radioactive waste solidification project, maintenance activities, and other activities such as training, audits, and tours

  1. Aqueous Synthesis of CdTe Quantum Dot Using Dithiol-Functionalized Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Suk Young Choi

    2012-01-01

    Full Text Available We report on an aqueous synthesis of cadmium telluride (CdTe nanocrystals by using dithiol-functionalized ionic liquids (dTFILs. The dTFILs were designed to have dithiol and vinylimidazolium functional groups and used as a ligand molecule of CdTe quantum dot (QD to utilize the bidendate chelate interaction afforded by the dithiol groups of dTFILs. The photoluminescence quantum yield of dTFIL-capped CdTe QDs reached up to ~40%, and their luminescent property was maintained for 8 weeks, suggesting an improved stability in water phase. This approach will provide a new synthetic route to the water soluble QDs.

  2. Synthesis of Thiosalicylate based Hydrophobic Ionic Liquids and their Applications in Metal Extraction from aqueous solutions

    International Nuclear Information System (INIS)

    Two new hydrophobic ionic liquids were synthesized through ion exchange metathesis and characterized through spectral data and thermogravimetric analysis. These include 1,3- dibutylimidazolium thiosalicylate (BBIM)(TS) (1) and 1,3-dihexylimidazolium thiosalicylate (HHIM)(TS) (2). The application of these ILs in extraction of seven transition metal ions (Cr, Mn, Fe, Co, Ni, Cu and Zn) from aqueous solution has been investigated. High extraction efficiencies were observed. Extraction occurs rapidly at room temperature, no heating is required unlike previous reports. (HHIM)(TS) (2) Showed higher extraction efficiency in almost all metal ions tested as compare to (BBIM)(TS) (1). (author)

  3. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    Science.gov (United States)

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. PMID:26917388

  4. A study of waste liquid crystal display generation in mainland China.

    Science.gov (United States)

    Liu, Zhifeng; Xu, Zeying; Huang, Haihong; Li, Bingbing

    2016-01-01

    The generation of liquid crystal display waste is becoming a serious social problem. Predicting liquid crystal display waste status is the foundation for establishing a recycling network; however, the difficulty in predicting liquid crystal display waste quantity lies in data mining. In order to determine the quantity and the distribution of liquid crystal display waste in China, the four top-selling liquid crystal display products (liquid crystal display TVs, desktop PCs, notebook PCs, and mobile phones) were selected as study objects. Then, the extended logistic model and market supply A method was used to predict the quantity of liquid crystal display waste products. Moreover, the distribution of liquid crystal display waste products in different regions was evaluated by examining the consumption levels of household equipment. The results revealed that the quantity of waste liquid crystal displays would increase rapidly in the next decade. In particular, the predicted quantity of waste liquid crystal displays would rise to approximately 4.262 × 10(9) pieces in 2020, and the total display area (i.e. the surface area of liquid crystal display panels) of waste liquid crystal displays would reach 5.539 × 10(7) m(2). The prediction on the display area of waste liquid crystal display TVs showed that it would account for 71.5% of the total display area by 2020. Meanwhile, the quantity of waste mobile phones would significantly grow, increasing 5.8 times from 2012 to 2020. In terms of distribution, Guangdong is the top waste liquid crystal display-generating province in China, followed by Jiangsu, Shandong, Henan, Zhejiang, and Sichuan. Considering its regional characteristics, Guangdong has been proposed to be the most important location of the recycling network. PMID:26542394

  5. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  6. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  7. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K. [Division of Environmental and Chemical Engineering, Research Institute of Industrial Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: drkvijy@chonbuk.ac.kr; Yun, Yeoung-Sang [Division of Environmental and Chemical Engineering, Research Institute of Industrial Technology, Chonbuk National University, Chonju 561-756 (Korea, Republic of)]. E-mail: ysyun@chonbuk.ac.kr

    2007-03-06

    A fermentation waste, Corynebacterium glutamicum, was successfully employed as a biosorbent for Reactive Black 5 (RB5) from aqueous solution. This paper initially studied the effect of pretreatment on the biosorption capacity of C. glutamicum toward RB5, using several chemical agents, such as HCl, H{sub 2}SO{sub 4}, HNO{sub 3}, NaOH, Na{sub 2}CO{sub 3}, CaCl{sub 2} and NaCl. Among these reagents, 0.1 M HNO{sub 3} gave the maximum enhancement of the RB5 uptake, exhibiting 195 mg/g at pH 1 with an initial RB5 concentration of 500 mg/l. The solution pH and temperature were found to affect the biosorption capacity, and the biosorption isotherms derived at different pHs and temperatures revealed that a low pH (pH 1) and high temperature (35 deg. C) favored biosorption. The biosorption isotherm was well represented using three-parameter models (Redlich-Peterson and Sips) compared to two-parameter models (Langmuir and Freundlich models). As a result, high correlation coefficients and low average percentage error values were observed for three-parameter models. A maximum RB5 uptake of 419 mg/g was obtained at pH 1 and a temperature of 35 deg. C, according to the Langmuir model. The kinetics of the biosorption process with different initial concentrations (500-2000 mg/l) was also monitored, and the data were analyzed using pseudo-first and pseudo-second order models, with the latter describing the data well. Various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}, were calculated, indicating that the present system was a spontaneous and endothermic process. The use of a 0.1 M NaOH solution successfully desorbed almost all the dye molecules from dye-loaded C. glutamicum biomass at different solid-to-liquid ratios examined.

  8. Solidification of acidic liquid waste from 99Mo isotope production

    International Nuclear Information System (INIS)

    Full text: The production of the radioisotope molybdenum-99 by the fission process began at ANSTO in the late 1960's. Molybdenum-99, with a half life of 66 hours, decays by beta emission to produce technetium-99m, a metastable isotope. Technetium-99m is the most widely used medical radioisotope due to its near ideal properties, particularly the radioactive half life of only 6 hours. ANSTO has been producing generators for around 30 years for distribution to hospitals and nuclear medicine centres. These generators produce technetium-99m for medical use by decay of the contained molybdenum-99. To produce molybdenum-99, uranium dioxide pellets enriched to 2.2% 235U are irradiated in ANSTO's HIFAR reactor for about one week. The irradiated pellets are subsequently dissolved in nitric acid to allow the recovery of the molybdenum. An acidic intermediate level liquid waste results from this processing. A primary waste results from the raw leach solution (after removal of the molybdenum onto a packed alumina column) and a weaker secondary waste is produced from a series of column washing steps. The waste solution contains uranium, the majority of the other fission products and low levels of ammonia in a nitric acid solution. This liquid waste had been accumulating and stored in specially designed shielded tanks in a storage facility. A process has been developed at ANSTO to convert this intermediate level liquid waste into a crystalline solid form of considerably less volume and mass, for improved storage. The operation comprises three processing steps. The lower strength secondary waste solution first requires concentration, with the removal of water and some acid into a condensate. The condensate is chemically neutralised and treated through the conventional water treatment plant. Concentrated solution is then treated in a batch chemical process to reduce the low levels of ammonia to very low levels. The final evaporation process removes further water and acid and

  9. A novel procedure for phase separation in dispersive liquid-liquid microextraction based on solidification of the aqueous phase.

    Science.gov (United States)

    March, J G; Cerdà, V

    2016-08-15

    In this paper, an alternative for handling the organic phase after a dispersive liquid-liquid microextraction using organic solvents lighter than water is presented. It is based on solidification (at -18°C) of the aqueous phase obtained after centrifugation, and the decantation, collection and analysis of the liquid organic layer. The extraction of nicotine in toluene, and its determination in eggplant samples was conducted as a proof of concept. The study has been carried out using standards prepared in water and the formation of the dispersion was assisted by sonication. The organic extract was analysed using gas chromatography coupled to mass spectrometry. Satisfactory analytical figures of merit as: limit of detection (0.4µgL(-1), 2ngg(-1) wet sample), limit of quantification (1.2µgL(-1), 6.5ngg(-1) wet sample), within-day precision (RSD=7%), and linearity interval (up to 384µgL(-1) nicotine) were achieved. It constituted a contribution to the handling of organic extracts after microextraction processes. PMID:27260454

  10. chemical studies on the extraction of certain metal ions from aqueous solution by liquid emulsion membrane

    International Nuclear Information System (INIS)

    In this thesis four systems are addressed related to the use of liquid emulsion membranes (ELM) based on Co(III)dicarbiolide and. The system was dedicated for permeation of cadmium , cobalt Nickel and lead for use of this system for preconcentration and separation of cadmium, cobalt, nickel and lead. The work carried out in this thesis is presented in three parts, namely; introduction, experimental and results and discussion.The first chapter is the introduction which includes aim of work, basic concepts of liquid membranes; liquid emulsion membranes; different models of emulsion permeation, literature survey of extraction chemistry of cadmium, cobalt, nickel and lead. Chapter two includes the experimental part. In this part detailed outlines on the chemicals and different elements used were given. Different instruments as well as analytical techniques were outlines. The preparation of liquid emulsion membrane and the permeation techniques were presented in details. The third chapter deals with the results and discussion. This chapter is divided into four main parts, the four parts is concerned with cadmium/Co(III) dicarbolide/NTA, EDTA, DPTA and DCTA systems. In this part the permeation of Cd(II) aqueous solution by the membrane used was experimented based on liquid-liquid extraction studies of cadmium from different sodium chloride molarities (from 0.01 to 0.1 M) by 0.01 M Cobalt(III) dicarbolides. It was found that the extraction of with cadmium is higher following in the first system, the permeation of the toxic elements, Cd(II) from HCl/sodium chloride medium was carried out using liquid emulsion membrane containing Co(III)dicarbiolide in xylene as carrier, Spain 80/ Spain 85(1:3) as surfactant and NTA, EDTA, DPTA and DCTA as a stripping solutions.

  11. Thermochemical conversion of biomass to liquid products in the aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2005-10-15

    Aqueous liquefaction of biomass samples was carried out in an autoclave in the reaction temperature range of 550-650 K. In this study, the maximum liquid yield (49%) was obtained from the spruce wood powder at 650 K. It is clear that the yield of liquid products increase with increasing liquefaction temperature for each biomass sample. In general, composition of liquefaction products depends on structural composition of the sample. The yield of water soluble fraction increases with increasing lignin content of the biomass sample, and the highest water soluble fraction (WSF) yield was obtained for hazelnut shell at liquefaction temperature around 650 K, which was about 21%. The yield of heavy oil generally decreases with increasing lignin content of the biomass sample, and the highest heavy oil yield was obtained for beech wood at liquefaction temperature around 650 K, which was about 28%. The yield of acetone insoluble fraction (residue) decreases with increasing liquefaction temperature for all of runs. (Author)

  12. Treatment of COD analysis liquid wastes generated in environmental laboratories

    Directory of Open Access Journals (Sweden)

    Tatiana Mañunga

    2010-08-01

    Full Text Available COD analysis is often carried out in environmental labs. Its wastes are considered hazardous due to the content of metals such as Cr, Ag and Hg; treating these wastes is considered complex and expensive. The experimental results of metal ion precipitation in COD wastes with affordable chemical products are reported in this work. Cr (VI was chemically reduced by adding 200 mg.L-1 of glucose to Cr (III. Final Cr (VI concentration was less than 0.5 mg.L-1. Cr (III was precipitated as a metallic hydroxide by adding NaOH and Ag was reduced to less than 0.2 mg.L-1 by adding 2 g.L-1 of NaCl. Hg was reduced to less than 0.005 mg.L-1 with 10 g.L-1 of FeS. The proposed reduction-precipitation methodology allowed minimising the liquid residue’s hazardous characteristics so that it complied with the maximum allowable values established in Chapter 6, Article 74 of Decree 1594/1984 that regulates the use of water and liquid residues.

  13. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  14. Removal of cesium using coconut fiber in raw and modified forms for the treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Nella N.M. de; Nobre, Vanessa B.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Di Vitta, Patricia B. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Quimica

    2013-07-01

    Sorption is one of the most studied methods to reduce the volume of radioactive waste streams. Cesium-137 is a radioisotope formed by the fission of uranium and it can cause health problems due to its easy assimilation by cells. The aim of this study is to evaluate the potential of coconut fiber in removing cesium from radioactive liquid wastes; this process can help in disposing radioactive waste. The experiments were performed in batch and the particle size of the fiber ranged between 0.30 mm and 0.50 mm. The fiber was treated with hydrogen peroxide in alkaline medium. The following parameters were analyzed: contact time, pH and concentration of cesium ions in aqueous solution. After the experiments the samples were filtered and cesium remaining in solution was quantified by inductively coupled plasma optical emission spectrometry. (author)

  15. Removal of Pb (II from Aqueous Solutions Using Waste Tea Leaves

    Directory of Open Access Journals (Sweden)

    Mehrdad Cheraghi

    2015-03-01

    Full Text Available Background: The presence of lead in natural waters has become an important issue around the world. Lead has been identified as a highly toxic metal that can cause severe environmental and public health problems and its decontamination is of utmost importance. The aim of this work was to evaluate the adsorption of lead (Pb(II on waste tea leaves as a cheap purification method. Methods: In this experimental study, prepared waste tea leaves were used as adsorbent for the removal of Pb (II from aqueous solutions. Adsorption experiments were carried out as batch studies at different contact time, pH, amount of adsorbent, initial metal concentration and temperature. Results: The results showed that maximum removal efficiency was observed at pH 6. Also the adsorption of Pb (II ions increased with decreasing initial metal concentration. The Langmuir isotherm model fits well with the equilibrium adsorption isotherm data and its calculated maximum monolayer adsorption capacity was 166.6 mg g-1 at a temperature of 25±0.1˚C. The kinetic data obtained have been analyzed using pseudo-first-order and pseudo-second-order models. The best fitted kinetic model was found to be pseudo-second-order. Conclusion: The results suggest that tea wastes could be employed as cheap material for the removal of lead from aqueous solutions.

  16. Off-gas cleaning of a liquid waste vitrifier

    International Nuclear Information System (INIS)

    Solid radio-active aerosols and semi-volatile fission products e.g. Ru, Cs, Sb are generated during high level liquid waste vitrification processes. The behaviour of these semi-volatile products during the vitrification of simulated liquid waste in a liquid fed melter and the off-gas cleaning with a wet purification system has been studied. It was found that the melter releases to the off-gas depended on different melter situations associated with different melt surface temperature. At the melter outlet, the over-all size distribution of the dust is composed of two components. The large component is associated with a gross entrainment mechanism whereas the small diameter component is associated with a volatilization/condensation process. The submicronic fraction of the dust is generally enriched in cesium and ruthenium. Moreover, volatile ruthenium species can still exist at the low outlet temperature of the melter. The wet purification system comprises in series a packed bed dust scrubber, a condenser, an ejector venturi and an NOsub(x) column. The dust scrubber removes the gross part of the dust and the ejector-venturi has a high removal efficiency for the submicronic aerosol fraction. The global efficiency of the wet purification system ranged from 99.7% for the cesium species to 99.95% for the ruthenium species. (author)

  17. Liquid waste processing from plutonium (III) oxalate precipitation

    International Nuclear Information System (INIS)

    Plutonium (III) oxalate filtrates contain about 0.2M oxalic acid, 0.09M ascorbic acid, 0.05M hydrazine, 1M nitric acid and 20-100 mg/l of plutonium. The developed treatment of liquid wastes consist in two main steps: a) Distillation to reduce up to 10% of the initial volume and refluxing to destroy organic material. Then, the treated solution is suitable to adjust the plutonium at the tetravalent state by addition of hydrogen peroxide and the nitric molarity up to 8.6M. b) Recovery and purification of plutonium by anion exchange using two columns in series containing Dowex 1-X4 resin. With the proposed process, it is possible to transform 38 litres of filtrates with 40mg/l of Pu into 0.1 l of purified solution with 15-20g/l of Pu. This solution is suitable to be recycled in the Pu (III) oxalate precipitation process. This process has several potential advantages over similar liquid waste treatments. These include: 1) It does not increase the liquid volume. 2) It consumes only few reagents. 3) The operations involved are simple, requiring limited handling and they are feasible to automatization. 4) The Pu recovery factor is about 99%. (Author)

  18. Biosorption of some ions on different bacterial species from aqueous and radioactive waste solutions

    International Nuclear Information System (INIS)

    The uptake of metal ions, cerium, Ce(III); cobalt, Co(II); thorium, Th(IV); and uranium U(VI) by Bacillus pumilus-LRW1, Bacillus cereus-LRW2 and Micrococcus lylae-LRW3 from aqueous solution was examined as a function of metal ion concentration, pH, temperature, and the presence of some foreign ions. The bacterial species exhibited high affinity to accumulate metal ions from their solutions at pH 4-5.0 ± 0.5. The amount of each ion (in mg) accumulated by one gram dry weight of each bacteria was calculated. The uptake by the Bacillus cereus-LRW2 from aqueous solutions and simulated radioactive wastes were also investigated. Electron microscopic investigations showed that the ions were accumulated around the cell wall. (author)

  19. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  20. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    International Nuclear Information System (INIS)

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates

  1. Viscometric studies of interactions between ionic liquid 1-octyl-3-methyl-imidazolium bromide and polyvinyl pyrrolidone in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Viscosities of PVP in aqueous solution of IL are measured. • The flow activation energies are calculated. • The flow activation energies are correlated in terms of polymer concentration. • Intrinsic viscosity of PVP is decreased by increasing temperature. - Abstract: Ionic liquids are investigated as solvents for polymerization processes, as plasticizers of various kinds of polymers and as components of the polymeric matrixes. In this research, viscosity of polyvinyl pyrrolidone in aqueous solution of ionic liquid, 1-octyl-3-methyl imidazolium bromide are measured at various temperatures. The flow activation energies are calculated and correlated in terms of polymer concentration. From sign of the initial slope of the activation energy versus polymer concentration at zero concentration, it is concluded that thermodynamic quality of ionic liquid aqueous solutions are reduced by increasing temperature. The value of the intrinsic viscosity of polyvinyl pyrrolidone was determined using Huggins equation and thermodynamic parameters of this polymer were calculated on the basis of intrinsic viscosity. Also the effect of ionic liquid, 1-octyl-3-methyl imidazolium bromide on the thermodynamic parameters of dilute aqueous polyvinyl pyrrolidone solutions, such as (polymer + solvent) interaction parameter, theta temperature, the heat of dilution parameter and the entropy of dilution parameter was investigated. Results suggest that the thermodynamic quality of water was increased slightly by the addition of ionic liquid in aqueous solution of polyvinyl pyrrolidone

  2. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    OpenAIRE

    Wang, Silu; Johan JACQUEMIN; Husson, Pascale; Hardacre, Christpher; Costa Gomes, Margarita F.

    2009-01-01

    The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([CCIm][BF]) and 1-ethyl-3-methy...

  3. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  4. Dispersive Liquid-Liquid Microextraction Combined with Ultrahigh Performance Liquid Chromatography/Tandem Mass Spectrometry for Determination of Organophosphate Esters in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Haiying Luo

    2014-01-01

    Full Text Available A new technique was established to identify eight organophosphate esters (OPEs in this work. It utilised dispersive liquid-liquid microextraction in combination with ultrahigh performance liquid chromatography/tandem mass spectrometry. The type and volume of extraction solvents, dispersion agent, and amount of NaCl were optimized. The target analytes were detected in the range of 1.0–200 µg/L with correlation coefficients ranging from 0.9982 to 0.9998, and the detection limits of the analytes were ranged from 0.02 to 0.07 µg/L (S/N=3. The feasibility of this method was demonstrated by identifying OPEs in aqueous samples that exhibited spiked recoveries, which ranged between 48.7% and 58.3% for triethyl phosphate (TEP as well as between 85.9% and 113% for the other OPEs. The precision was ranged from 3.2% to 9.3% (n=6, and the interprecision was ranged from 2.6% to 12.3% (n=5. Only 2 of the 12 selected samples were tested to be positive for OPEs, and the total concentrations of OPEs in them were 1.1 and 1.6 µg/L, respectively. This method was confirmed to be simple, fast, and accurate for identifying OPEs in aqueous samples.

  5. Directly light scattering imaging of the aggregations of biopolymer bound chromium(III) hydrolytic oligomers in aqueous phase and liquid/liquid interface

    International Nuclear Information System (INIS)

    Investigations of inorganic oligomers are important in both chemistry and physiology. In this contribution, we propose a laser induced light scattering imaging (LSI) and a total internal reflected light scattering imaging (TIR-LSI) technique, and apply them to characterize the interactions of inorganic oligomers with biopolymer in aqueous phase and at liquid/liquid interface, respectively. In aqueous medium, synthetic chromium(III) hydrolytic oligomers (CrHO) react with DNA, and the resultant binary could be extracted into the H2O/CCl4 interface in the presence of triocyctyl phosphine oxide (TOPO), forming a DNA-CrHO-TOPO ternary amphipathic complex at the interface with the associate constant of 1.32 x 103 mol-1 dm4 for a given 1.0 x 10-4 mol l-1 TOPO. Under the excitation of a 441-nm He-Cd laser light beam, the resultant light scattering and total internal reflected light scattering (TIR-LS) signals of the formed binary in aqueous phase and ternary at liquid/liquid interface could be easily captured using a common microscope coupled with a CCD camera. By digitally analyzing the CCD captures, we demonstrate that aggregations of the CrHO-DNA binary in aqueous phase and DNA-CrHO-TOPO ternary at liquid/liquid interface have occurred, respectively

  6. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    International Nuclear Information System (INIS)

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases

  7. Performance evaluation of vitrified waste product based on barium-borosilicate matrix deployed for vitrification of sulphate bearing high level radioactive liquid waste

    International Nuclear Information System (INIS)

    Aqueous waste of various categories (viz., low, intermediate and high level depending on the concentration of radionuclides) is generated at different stages of the nuclear fuel cycle. Most of the radioactivity generated in entire nuclear fuel cycle is concentrated in high level radioactive liquid waste (HLW). Since the radioactivity of the waste is to be isolated from the human-environment for extended period of time, a three stage approach has been adopted for management of HLW. This involves (i) immobilization of waste oxides in stable and inert solid matrices, (ii) interim retrievable storage of conditioned waste packages under cooling and surveillance and (iii) deep underground disposal in suitable geological formulations. Composition of HLW depends on various factors like type of fuel and its cladding, off reactor cooling, reprocessing flow sheet etc. Compositional changes in HLW necessitate modification in glass formulations, so as to get the conditioned product of desired characteristics. This report describes the experimental studies and results obtained for performance evaluation of the vitrified waste product made from barium borosilicate glass matrix accommodating sulphate bearing chemically simulated HLW. Product characteristics like chemical durability, homogeneity, phase separation, thermal conductivity, impact strength etc have been evaluated and discussed in the report. (author)

  8. Membraneless dialysis of strontium in aqueous liquid-liquid milk-pectin system

    International Nuclear Information System (INIS)

    Binding of added strontium by milk proteins under native conditions was investigated using pectin of various degrees of esterification. The partition of strontium, as well as cesium and europium, in aqueous two-phase milk-pectin system, is discussed in terms of 'membraneless dialysis' and described by Donnan equilibria, and compared with the distribution between cation exchanger and milk, artificial milk serum, or pectin solutions. When going from pectin with a degree of esterification D.E. = 93.2 to 61.4, the distribution of strontium decreases for about 40% in favor of pectin phase and this was explained by a relatively lower degree of dissociation of free carboxyle groups of pectin. The low-molecular fraction of added strontium in milk was assessed from Dowex 50*8 sorption data to be 31%, and that of cesium and europium 58% and 40%, respectively. However, distribution ratio of strontium and europium in milk/pectin system is much higher than it would correspond to the ion exchanger adsorption data. (author) 16 refs.; 2 tabs

  9. Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste

    OpenAIRE

    Martínez Martínez, María del Rosario; Miralles Esteban, Núria; Hidalgo, S.; Fiol Santaló, Núria; Villaescusa Gil, Isabel; Poch Garcia, Jordi

    2006-01-01

    The sorption of lead and cadmium from aqueous solutions by grape stalk waste (a by-product of wine production) was investigated. The effects of the contact time, pH of the solution, ionic medium, initial metal concentration, other metal ions present and ligands were studied in batch experiments at 20 °C. Maximum sorption for both metals was found to occur at an initial pH of around 5.5. The equilibrium process was described well by the Langmuir isotherm model, with maximum grape stalk sorptio...

  10. Radioactive liquid wastes discharged to ground in the 200 areas during 1974

    International Nuclear Information System (INIS)

    Radioactive liquid wastes discharged to ground during 1974 and since startup within the Production and Waste Management control zone are summarized in tabular form. Estimates of the radioactivity discharged to individual ponds, cribs, and retention sites are also summarized. (LK)

  11. A rapid method for decontamination of low and intermediate level liquid radioactive wastes by amalgamation

    International Nuclear Information System (INIS)

    The objective of this study is to develop an integrated workstation for rapid decontamination of low and intermediate level liquid radioactive wastes. The workstation comprises of an electrochemical amalgamator that allows the reduction of different radionuclides cations in the waste and eventually from amalgamate. The de-amalgamation results in purification of mercury and leftover a radioactive waste behind as secondary waste. (author)

  12. Use of liquid membranes for treatment of nuclear wastes

    International Nuclear Information System (INIS)

    The reprocessing operations produce liquid wastes in which the main components are nitric acid and sodium nitrate. The goal of the experiments is to separate trace amounts of radioactive elements from these acidic and high sodium nitrate content solutions. CMPO, a neutral bifunctional organophosphorus compound, and crown compounds (DC18 C6 - B21 C7) are able to extract respectively actinides, strontium and cesium from these high salinity solutions. The supported liquid membrane (SLM) render the use of expensive tailor-made extractant molecules like CMPO or crown ethers possible. The results obtained for the extraction of actinides and strontium are promising, but research must now be oriented towards improving the stability of the membrane

  13. Effect of liquid waste discharges from steam generating facilities

    International Nuclear Information System (INIS)

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides

  14. Selion offers a unique system for treating liquid nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Tusa, E.; Kurki, H. [ed.

    1998-07-01

    Studies on the treatment of liquid nuclear waste have been conducted actively in the IVO Group since the early 1980s. And the work has borne fruit: the CsTreat and SrTreat ion exchange products, developed by the IVO Group, were launched three years ago. The ion exchangers have already been in full use at a number of sites throughout the world. In addition, they are currently being tested at many nuclear research institutes and power plants in the USA, Japan and Europe

  15. Disposal of liquid radioactive wastes through wells or shafts

    Science.gov (United States)

    Perkins, B. L.

    1982-01-01

    Liquids and, in some cases, suitable solids and/or entrapped gases can be disposed of by: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques; however, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used.

  16. Disposal of liquid radioactive wastes through wells or shafts

    International Nuclear Information System (INIS)

    This report describes disposal of liquids and, in some cases, suitable solids and/or entrapped gases, through: (1) well injection into deep permeable strata, bounded by impermeable layers; (2) grout injection into an impermeable host rock, forming fractures in which the waste solidifies; and (3) slurrying into excavated subsurface cavities. Radioactive materials are presently being disposed of worldwide using all three techniques. However, it would appear that if the techniques were verified as posing minimum hazards to the environment and suitable site-specific host rock were identified, these disposal techniques could be more widely used

  17. Declassification of 137Cs liquid wastes by reverse osmosis

    International Nuclear Information System (INIS)

    In June 1998, a 137Cs source was accidentally melted in one of the furnaces of a stainless steel production company located in Spain. As a result of this incident, the furnace and its cooling circuit were radioactively contaminated. LAINSA (Logistica y Acondicionamientos Industriales S.A.) company took charge of the plant decontamination process, in which 40 m3, approximately, of 137Cs contaminated water with a mean activity of 300 kBq/L were generated. This company contacted the Chemical and Nuclear Engineering Department of the Polytechnic University of Valencia (UPV) to develop a project for radioactive liquid wastes treatment

  18. Effect of liquid waste discharges from steam generating facilities

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, H.E. Jr.

    1977-09-01

    This report contains a summary of the effects of liquid waste discharges from steam electric generating facilities on the environment. Also included is a simplified model for use in approximately determining the effects of these discharges. Four basic fuels are used in steam electric power plants: three fossil fuels--coal, natural gas, and oil; and uranium--presently the basic fuel of nuclear power. Coal and uranium are expected to be the major fuels in future years. The following power plant effluents are considered: heat, chlorine, copper, total dissolved solids, suspended solids, pH, oil and grease, iron, zinc, chrome, phosphorus, and trace radionuclides.

  19. Ultrafiltration treatment of laundry liquid wastes from a nuclear research center

    International Nuclear Information System (INIS)

    Laundry liquid wastes are currently treated by evaporation, a rather expensive technique for low level liquid wastes with activities only slightly above the limit for unrestricted release. Detergent foaming can also affect evaporator operation. The authors describe an alternative process designed to concentrate the radiochemical activity of the liquid waste in a limited volume and eliminate most of the remaining filtrate by direct release into the environment. This assumes the radionuclides are in insoluble form

  20. Health Physics experience during conditioning of medium level liquid waste from reprocessing plant at Tarapur

    International Nuclear Information System (INIS)

    Spent fuel processing plant (PREFRE) at Tarapur generates High level (HL), Intermediate level (IL) and low-level (LL) liquid wastes. High level and Intermediate level liquid wastes are stored in underground stainless steel and carbon steel tanks respectively. The low level liquid waste generated is relatively large in volume and is routinely treated at Low-level liquid waste treatment plant before discharge to environment. For treatment of Intermediate level waste, a scheme of fixation in Cement -vermiculite matrix in mild steel tanks placed in RCC trenches at Solid Waste Disposal Facility was adopted. This method of treatment is known by acronym 'CLEAR' (Conditioning of Liquid Effluents of low and Intermediate level of Activity from Reprocessing Plant at Tarapur). The scheme consisted of transfer of the liquid waste from PREFRE Waste Tank Farm via pump house facility through underground encased pipe lines to conditioning tanks placed in RCC trenches at SWMF (Solid Waste Management Facility). In-Situ fixation involved addition of vermiculite to the liquid waste, with constant stirring followed by cement addition at controlled rate by remote mechanism. Lastly water proofing of RCC trench was carried out to prevent ingress of rain water. The treatment of Intermediate Level waste was carried out on campaign basis. Health Physics experience gained during the five CLEAR Campaigns is presented in the paper. (author)

  1. Development of dismantling method for liquid waste tanks lined with rubber in 'Joyo' waste treatment facility

    International Nuclear Information System (INIS)

    Dismantling methods of liquid waste tanks lined with flammable natural rubber for decommissioning of Joyo Waste Treatment Facility. In this development, we researched common mechanical and heat cutting methods and chose appropriate one that was effective to decrease exposure and had no risk to fire the natural rubber lining. We next carried out dismantling tests using the chosen method with rubber lined mock-ups of the tanks to obtain cutting conditions and removal conditions of the lining to minimize secondary wastes. Results are follows. 1. We chose abrasive water jet that has an ability to remove the rubber lining and to be controllable remotely with ease as a cutting method for the natural rubber lined tanks. 2. As a result of cutting tests under parameters of a cutting nozzle speed and a abrasive feed rate, cutting conditions minimizing secondary wastes are 0.4 kg/min abrasive feed rate and 300 mm/min nozzle speed. 3. As a result of a removing test under a parameter of a removing nozzle speed, a removing condition minimizing secondary wastes is 60 mm/min nozzle speed, thus removing speed is 3720 mm2/min. 4. Improving the removing method, especially decreasing waster feed, and general design of a dismantling system including treatment with secondly waste are required. (author)

  2. Application of biosorbents in treatment of the radioactive liquid waste

    International Nuclear Information System (INIS)

    Radioactive liquid waste containing organic compounds need special attention, because the treatment processes available are expensive and difficult to manage. The biosorption is a potential treatment technique that has been studied in simulated wastes. The biosorption term is used to describe the removal of metals, non-metals and/or radionuclides by a material from a biological source, regardless of its metabolic activity. Among the potential biomasses, agricultural residues have very attractive features, as they allow for the removal of radionuclides present in the waste using a low cost biosorbent. The aim of this study was to evaluate the potential use of different biomass originating from agricultural products (coconut fiber, coffee husk and rice husk) in the treatment of real radioactive liquid organic waste. Experiments with these biomass were made including 1) Preparation, activation and characterization of biomasses; 2) Conducting biosorption assays; and 3) Evaluation of the product of immobilization of biomasses in cement. The biomasses were tested in raw and activated forms. The activation was carried out with diluted HNO3 and NaOH solutions. Biosorption assays were performed in polyethylene bottles, in which were added 10 mL of radioactive waste or waste dilutions in deionized water with the same pH and 2% of the biomass (w/v). At the end of the experiment, the biomass was separated by filtration and the remaining concentration of radioisotopes in the filtrate was determined by ICP-OES and gamma spectrometry. The studied waste contains natural uranium, americium-241 and cesium-137. The adopted contact times were 30 min, 1, 2 and 4 hours and the concentrations tested ranged between 10% and 100%. The results were evaluated by maximum experimental sorption capacity and isotherm and kinetics ternary models. The highest sorption capacity was observed with raw coffee husk, with approximate values of 2 mg/g of U (total), 40 x 10-6 mg/g of Am-241 and 50 x10-9 mg

  3. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    International Nuclear Information System (INIS)

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF4] > [HDEA][BF4] > [HMEA][BF4]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  4. Effect of mono-, di- and tri-ethanolammonium tetrafluoroborate protonic ionic liquids on vapour liquid equilibria of ethanol aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen Chong [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Ma Xiaoyan [College of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Lu Yingzhou [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Li Chunxi, E-mail: Licx@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering and College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-03-15

    Vapour pressures were measured using a quasi-static ebulliometer for the binary mixture of (water + ethanol) containing one of three protonic ionic liquids (PIL), namely, mono-, di- or tri-ethanolammonium tetrafluoroborate, over the temperature range of (318.24 to 356.58) K at fixed PIL content of 0.30 in mass fraction. The vapour pressure data of the PIL-containing ternary systems were correlated using the NRTL equation with an overall root mean square deviation (RMSD) of 0.0092. The regressed NRTL parameters were used to predict the isobaric vapour liquid equilibria (VLE) for ternary systems (water + ethanol + PIL) at varying mass fraction of PIL and atmospheric pressure (101.3 kPa). It is shown that the effect of PILs on the VLE of the (water + ethanol) mixture follows the order: [HTEA][BF{sub 4}] > [HDEA][BF{sub 4}] > [HMEA][BF{sub 4}]. In addition, the relative volatilities of ethanol to water for pseudo-binary systems (water + ethanol + PIL) were calculated. The results indicate that the PILs studied can enhance the relative volatility of ethanol to water and even break the azeotropic behaviour of ethanol aqueous solution when PIL content is increased to a specified content.

  5. Sorption of Sr-85 and Am-241 from liquid radioactive wastes by alginate beads

    Directory of Open Access Journals (Sweden)

    Oszczak Agata

    2015-12-01

    Full Text Available The paper reports the adsorption of strontium(II and americium(III from aqueous solutions onto calcium alginate (CaA, barium alginate (BaA and strontium alginate (SrA beads. Adsorption process was studied in batch experiments as a function of the initial pH of the solution and the contact time. All sorbents were examined by the termogravimetric analysis (TG. Laboratory obtained spherical beads of CaA, BaA and SrA seem to be good metal sorbents from liquid radioactive wastes. A contact time of about 4 h and neutral pH of the initial aqueous solution have been proposed to be optimum conditions for Sr-85 and Am-241 removal from the contaminated solutions using alginate sorbents. Laboratory obtained beads of CaA, BaA and SrA are characterized by the decontamination factor (DF equal to 85% for Sr(II and 90% for Am(III.

  6. Biosorption of Methylene Blue from Aqueous Solutions by Diospyrous melanoxylon Leaf Waste

    Directory of Open Access Journals (Sweden)

    Raghvendra G Patil

    2013-04-01

    Full Text Available Waste Tendu (Diospyros melanoxylon leaves from bidi (local cigarette industry has been used as a raw material to produce activated carbon applying sulfuric acid carbonization method. Batch experiments were conducted to assess the potential for the removal of methylene blue dye from aqueous solution using the activated carbon and compared to raw tendu leaves powder and commercial activated carbon. Equilibrium isotherm and kinetic studies have been done by varying the parameters such initial concentration of dye, adsorbent dose, pH of the dye solution, and varying the contact time between the carbon and the dye. It was found that the methylene blue adsorption on tendu waste-based activated carbon conformed to the Langmuir isotherm. The maximum monolayer adsorption capacities were found to be 219.3, 355.9 and 495.1 mg/g for raw tendu waste, carbonized tendu and commercial carbon, respectively. The kinetic studies were well characterized by a pseudo second order kinetic model. The results of this study indicate that raw tendu waste a renewable bioresource, as such as well as its carbonized form are attractive biosorbent for removing a cationic dye from the dye wastewater.DOI: http://dx.doi.org/10.5755/j01.erem.63.1.2735

  7. Removal of active iodine/iodate from liquid wastes

    International Nuclear Information System (INIS)

    The presence of abnormally high levels of the radioactive isotope of iodine, 125I, has been discovered in the thyroid glands taken from swans found on the Rivers Thames and Trent. The sources of activity have been traced to sewage outfalls into the rivers. It has been postulated that the 125I enters the system from local hospitals and research establishments where radio-labelled proteins are produced. The chemical nature of the iodine depends upon the conditions to which it is exposed. The work described in this report has involved the development of two techniques, ultrafiltration and electrochemical ion exchange, for the removal of active iodine/iodate from aqueous wastes. The report also contains details relating to an electrochemical flow cell designed to convert iodate to iodide prior to ultrafiltration treatment. A comparison is then made between the two techniques. The initial target of decontamination factor of 10 has been exceeded by both methods. The consideration of solution pH and ion selectivity has resulted in the design and demonstration of a single CAEIX cell capable of attaining decontamination factors in excess of 33. The filtration technique requires a two stage precipitation using calcium ions to remove free phosphate and then silver ions to precipitate iodide. The rather high solids production of at least 10g/dm3 of treated waste is, to an extent, offset by the high DF value obtained, 174. (Author)

  8. Decontamination of liquid radioactive waste by thorium phosphate

    International Nuclear Information System (INIS)

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th4(PO4)4P2O7) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th2(PO4)2(HPO4). H2O, TPHP, solubility product log(KS,00) ∼ - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th2-x/2Anx/2(PO4)2(HPO4). H2O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  9. Engineering study radioactive liquid waste treatment plant refurbishment

    International Nuclear Information System (INIS)

    This feasibility study will investigate the opportunities, restrictions and cost impact to refurbish the existing Radioactive Liquid Waste Treatment Plant (RLWTP) while utilizing the same basic criteria that was used in the development of the new Radioactive Liquid Waste Treatment Facility (RLWTF). The objective of this study is to perform a more in-depth analysis of refurbishing the existing than has been done in the past so as to provide a basis for comparison between refurbishing the existing or constructing a new. The existing plant is located at Technical Area 50 (TA-50) within the Los Alamos National Laboratory (LANL). The initial structure was built in 1963. Over the ensuing years, the building has been modified and several additions have been constructed. In 1966, laboratories, ion exchange and pretreatment functions were added. The decontamination and decommissioning activities and ventilation equipment were added in 1984. The following assumptions are the basic parameters considered in the development of a design concept to refurbish the RLWTP: (1) Allow continued operation of the during retrofit construction. (2) Design the necessary expansion within the site constraints. (3) Satisfy National Pollutant Discharge Elimination System (NPDES) and National Emission Standards for Hazardous Air Pollutants (NESHAPS) permit conditions and other environmental regulations. (4) Comply with present DOE Orders and building code requirements. The refurbishment concept is a phased demolition and construction process

  10. Removal of Orange 16 reactive dye from aqueous solutions by waste sunflower seed shells

    Directory of Open Access Journals (Sweden)

    TEODOR MALUTAN

    2011-04-01

    Full Text Available In this work, the use of an agro-industrial waste, i.e., sunflower seed shells, was investigated as a sorbent for the removal of Orange 16 reactive dye from aqueous environments. Batch experiments were performed as a function of pH, sorbent dose, dye concentration, temperature and contact time. The per­cent dye removal increased with increasing sorbent dose and temperature of the aqueous solution, and decreased with increasing dye concentration; the re­quired contact time was five hours. The Freundlich, Langmuir, Dubinin–Ra­du­shkevich and Tempkin adsorption isotherms were used to describe the equi­librium sorption data and to determine the corresponding isotherm constants. The thermodynamic parameters, ΔG, ΔH and ΔS, were also determined. These parameters indicated that the sorption of reactive dye onto sunflower seed shells was a spontaneous, endothermic and entropy-driven process. The kinetic data were evaluated by pseudo-first order, pseudo-second order and intra-par­ticle diffusion kinetic models. The results of the kinetic study indicated that the sorption of Orange 16 reactive dye onto sunflower seed shells is a complex process and both chemical surface sorption and intra-particle diffusion contri­bute to the rate-limiting step. Therefore, the sunflower seed shell showed itself to be a promising cheap sorbent for the decolourization of aqueous coloured solutions or effluents.

  11. U.S. nuclear power stations reduce liquid waste processing costs and clean liquid waste to the detection limits

    International Nuclear Information System (INIS)

    Deregulation in the United States since 1995 has given rise to a consolidation wave and to immense cost pressure. At the same time, great efforts are being undertaken to reduce radioactivity releases. The two objectives seem hardly compatible. As a response, a method of treatment of liquid waste has been developed on the basis of ultrafiltration membranes and ion exchangers. The article covers the main underlying physics principles and the methodological steps which must be taken into account in a successful introduction of a technique like this. The problem of an efficient and cost-effective treatment of the concentrate from ultrafiltration plants has been solved for the first time in the Solids Collection System, on which a patent has been applied for. The only liquid leaving the system is clean water. Several U.S. nuclear power plants have meanwhile decided in favor of adopting this new method. Experience accumulated at the Callaway pressurized water reactor is cited as an example in the article. This nuclear power plant, whose annual arisings of contaminated liquid effluent totaled up to 6 000 m3, had pursued the aim, among others, of reducing the total activity to less then 9.25 E9 Bq or 1 500 Bq/l. On the basis of a plant throughput of 120 l/min, the new method is employed to clean the liquid effluent to levels between 0.37 Bq/l and 3.7 Bq/l. The waste volume is reduced by roughly 75%, with major cost reductions resulting as a consequence. (orig.)

  12. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M. [Los Alamos National Lab., NM (United States)

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  13. Influence of temperature variations on performance of incinerator for radioactive organic liquid waste

    International Nuclear Information System (INIS)

    Six kinds of radioactive organic liquid wastes were incinerated by using city gas. The test liquid wastes were methanol simulated as a low heat of combustion waste, xylene simulated as a high heat of combustion waste, and 4 kinds of wastes of unknown composition. Combustion temperature was monitored by using a thermocouple sensor. Temperature variations were classified into five types: stable pattern, increasing pattern, decreasing pattern, vibrating pattern and the mixed pattern. Stable pattern wastes were burned most efficiently. The other four patterns can be changed to a stable pattern by controlling the gas flow rate. (author)

  14. Association of ionic liquids with cationic dyes in aqueous solution: A thermodynamic study

    International Nuclear Information System (INIS)

    Highlights: ► Precipitate was formed between cationic dye and ionic liquid in aqueous solution. ► Precipitates are 1:1 formed by cation of the dyes and anion of the ionic liquids. ► Association constants decrease with increasing temperature. ► The associates can be used as active materials of ion-selective electrode. - Abstract: In this paper, the interactions between cationic dyes and the ionic liquids (ILs) have been studied by 31P nuclear magnetic resonance (NMR), UV–Vis spectroscopy and conductometric measurements at different temperatures. It was shown that a decrease in the measured specific conductance of the (dye + IL) mixtures was caused by the formation of non-conducting or less conducting (dye + IL) associates. The associates were formed by 1:1 ratio of cation of the cationic dyes and anion of the ILs by using the 31P NMR and UV–Vis spectroscopy methods. The association constants were calculated by theoretical model based on the deviation from linear behavior, and the association constants were as high as 106 (L · mol−1)2. Thermodynamic results imply that the formation process of association was exothermic nature. It is expected that the associates reported here would have promising application as active materials for the preparation of ion-selective electrode used in the determination of ILs concentrations.

  15. Radiation methods for decontamination of liquid wastes and ecological problems

    International Nuclear Information System (INIS)

    The authors discuss several possible approaches to the use of radiation for the purposes of rational use of water resources and protecting them from pollution and depletion. The authors note that radiation decontamination makes it possible to solve a number of important problems in protecting fundamental elements of the biosphere by: reducing the uptake of fresh water from natural sources for industrial and household needs and sharply cutting the release of unpurified waste water by creating circulating water systems based on rapid methods of thorough purification; employing a combination of different physical and chemical methods with a final stage that uses radiation-prolonged adsorption to give the water a high degree of purity; preventing bacterial contamination of soils when liquid and semiliquid wastes from cities and livestock farms are used as fertilizers; utilizing the excess active sludges that accumulate in biological treatment factilities as feed additives and fertilizer; and eliminating the release to the atmosphere of effluents from the incineration of highly polluted waste water which often contains carcinogenic and poisonous substances

  16. Innovative Process for Comprehensive Treatment of Liquid Radioactive Waste - 12551

    Energy Technology Data Exchange (ETDEWEB)

    Penzin, R.A.; Sarychev, G.A. [All-Russia Scientific Research Institute of Chemical Technology (VNIIKHT), Moscow, 115409 (Russian Federation)

    2012-07-01

    ;Fukushima-1', personnel faces the necessity to take emergency measures and to use marine water for cooling of reactor zone in contravention of the technological regulations. In these cases significant amount of liquid radioactive wastes of complex physicochemical composition is being generated, the purification of which by traditional methods is close to impossible. According to the practice of elimination of the accident after-effects at NPP 'Fukushima' there are still no technical means for the efficient purification of liquid radioactive wastes of complex composition like marine water from radionuclides. Therefore development of state-of-the-art highly efficient facilities capable of fast and safe purification of big amounts of liquid radioactive wastes of complex physicochemical composition from radionuclides turns to be utterly topical problem. Cesium radionuclides, being extremely dangerous for the environment, present over 90% of total radioactivity contained in liquid radioactive wastes left as a result of accidents at nuclear power objects. For the purpose of radiation accidents aftereffects liquidation VNIIHT proposes to create a plant for LRW reprocessing, consisting of 4 major technological modules: Module of LRW pretreatment to remove mechanical and organic impurities including oil products; Module of sorption purification of LWR by means of selective inorganic sorbents; Module of reverse osmotic purification and desalination; Module of deep evaporation of LRW concentrates. The first free modules are based on completed technological and designing concepts implemented by VNIIHT in the framework of LLRW Project in the period of 2000-2001 in Russia for comprehensive treatment of LWR of atomic fleet. These industrial plants proved to be highly efficient and secure during their long operation life. Module of deep evaporation is a new technological development. It will ensure conduction of evaporation and purification of LRW of different physicochemical

  17. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    International Nuclear Information System (INIS)

    The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C1C4Im][BF4]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C1C2Im][EtSO4])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C2Im][NTf2]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C4Im][NTf2]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C1C4Im][PF6]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C1C4Pyrro][NTf2]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4111][NTf2])) were chosen. Small excess volumes (less than 0.5 cm3 . mol-1 at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[C1C2Im][EtSO4] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.

  18. Liquid-liquid miscibility and volumetric properties of aqueous solutions of ionic liquids as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang Silu [QUILL Research Center, School of Chemistry, Queen' s University of Belfast (United Kingdom); Jacquemin, Johan [QUILL Research Center, School of Chemistry, Queen' s University of Belfast (United Kingdom); Thermodynamique et Interactions Moleculaires, FRE 3099, Universite Blaise Pascal Clermont-Ferrand/CNRS, 24 avenue des Landais, 63177 Aubiere Cedex (France); Husson, Pascale [Thermodynamique et Interactions Moleculaires, FRE 3099, Universite Blaise Pascal Clermont-Ferrand/CNRS, 24 avenue des Landais, 63177 Aubiere Cedex (France)], E-mail: pascale.husson@univ-bpclermont.fr; Hardacre, Christopher [QUILL Research Center, School of Chemistry, Queen' s University of Belfast (United Kingdom); Costa Gomes, Margarida F. [Thermodynamique et Interactions Moleculaires, FRE 3099, Universite Blaise Pascal Clermont-Ferrand/CNRS, 24 avenue des Landais, 63177 Aubiere Cedex (France)

    2009-11-15

    The volumetric properties of seven {l_brace}water + ionic liquid{r_brace} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich-Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C{sub 1}C{sub 4}Im][BF{sub 4}]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C{sub 1}C{sub 2}Im][EtSO{sub 4}])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C{sub 1}C{sub 2}Im][NTf{sub 2}]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C{sub 1}C{sub 4}Im][NTf{sub 2}]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C{sub 1}C{sub 4}Im][PF{sub 6}]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C{sub 1}C{sub 4}Pyrro][NTf{sub 2}]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N{sub 4111}][NTf{sub 2}])) were chosen. Small excess volumes (less than 0.5 cm{sup 3} . mol{sup -1} at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {l_brace}[C{sub 1}C{sub 2}Im][EtSO{sub 4}] + water{r_brace}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.

  19. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  20. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    International Nuclear Information System (INIS)

    Hanford's 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of 137Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve 137Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m3 and (2) 1/10th of the NRC Class A limit of 1 Ci/m3 i.e., 0.1/m3. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified

  1. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    }/D{sub Si}. Cations diffusing in aqueous solutions display a similar relationship between isotopic separation efficiency and D{sub cation} =D{sub H 2 O} , although the efficiencies are smaller than in silicate liquids. Our empirical relationship provides a tool for predicting the magnitude of diffusive isotopic effects in many geologic environments and a basis for a more comprehensive theory of isotope separation in liquid solutions. We present a conceptual model for the relationship between diffusivity and liquid structure that is consistent with available data.

  2. Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals

    International Nuclear Information System (INIS)

    Radioactive cesium (primarily 137Cs) is a major toxic constituent of liquid wastes from nuclear fuel processing plants. Because of the long half-life, highly penetrating radiation, and mobility of 137Cs, it is necessary to convert wastes containing this radioisotope into a solid form which will prevent movement to the biosphere during long-term storage. A method for converting cesium wastes to solid, highly insoluble, thermally stable aluminosilicate minerals is described. Aluminum silicate clays (bentonite, kaolin, or pyrophyllite) or hydrous aluminosilicate gels are reacted with basic waste solutions to form pollucite, cesium zeolite (Cs-D), Cs-F, cancrinite, or nepheline. Cesium is trapped in the aluminosilicate crystal lattice of the mineral and is permanently immobilized. The identity of the mineral product is dependent on the waste composition and the SiO2/Al2O3 ratio of the clay or gel. The stoichiometry and kinetics of mineral formation reactions are described. The products are evaluated with respect to leachability, thermal stability, and crystal morphology. (U.S.)

  3. Application of Liquid Emulsion Membrane Technique for the Removal of As(V) from Aqueous Solutions

    Science.gov (United States)

    Binnal, Prakash; Hiremath, Poornima G.

    2012-08-01

    Liquid emulsion membrane technique was used to remove As(V) from synthetic aqueous solutions. The emulsion was composed of Aliquat 336 as an extractant, commercial kerosene as a diluent and Span 80 (Sorbiton monooleate) as an emulsifying agent. Different types of internal phases were used, namely, sodium hydroxide, sodium carbonate, ammonium bicarbonate, sodium sulphate and sodium chloride. The effect of process parameters affecting extraction efficiency, such as, initial concentration of As(V) in feed solution, pH of feed solution, concentrations of Aliquat 336 and Span 80 in membrane phase, volume ratio of stripping phase to membrane phase, concentration of internal phase, type of internal phase, volume ratio of emulsion to feed, agitation speed during extraction and time of extraction was investigated. The optimum conditions for the extraction were determined. A maximum As(V) removal rate of 97.8 was observed under optimum conditions.

  4. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    Science.gov (United States)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  5. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Lu, Canhui; Zhou, Zehang; Zhang, Xinxing; Yuan, Guiping

    2016-09-20

    The objective of this study is to explore the possibility of using waste cotton fabrics (WCFs) as low cost feedstock for the production of value-added products. Our previous study (Tian et al., 2014) demonstrated that acidic ionic liquids (ILs) can be highly efficient catalysts for controllable synthesis of cellulose acetate (CA) due to their dual function of swelling and catalyzing. In this study, an optimized "quasi-homogeneous" process which required a small amount of acidic ILs as catalyst was developed to synthesize water-soluble CA from WCFs. The process was optimized by varying the amounts of ILs and the reaction time. The highest conversion of water-soluble CA from WCFs reached 90.8%. The structure of the obtained water-soluble CA was characterized and compared with the original WCFs. Moreover, we demonstrate for the first time that fully bio-based and transparent all-cellulose composites can be fabricated by simple aqueous blending of the obtained water-soluble CA and two kinds of nanocelluloses (cellulose nanocrystals and cellulose nanofibrils), which is attractive for the applications in disposable packaging materials, sheet coating and binders, etc. PMID:27261730

  6. Method of deactivation by filtering of radioactive liquid wastes containing organic solvent

    International Nuclear Information System (INIS)

    Liquid radioactive wastes at each stage of processing are filtered with at least one filter layer containing at least one of the following sorbents: silica gel, glass or kieselguhr. The said sorbents have higher decontamination efficiency than ion exchangers and hydrophobic sorbents. The present decontamination method may also be used after the distillation of liquid wastes. (J.P.)

  7. Pre design system of alpha ray liquid radioactive waste treatment from nuclear power plant 1000 MW

    International Nuclear Information System (INIS)

    It has been performed the pre design of system treatment of alpha ray liquid radioactive waste from nuclear power plant 1000 MW using epoxy resin. The installation consist of epoxy resin and hardener storage unit, epoxy resin and hardener metering pots unit, liquid radioactive waste storage unit, liquid radioactive waste metering pots unit, mixing unit and compressed air unit. The installation is operated by batch system with capacity 1 drum (60 liter) per batch and radioactive waste treated stored in the high activity storage. (author)

  8. Momentum, Heat, and Neutral Mass Transport in Convective Atmospheric Pressure Plasma-Liquid Systems and Implications for Aqueous Targets

    CERN Document Server

    Lindsay, Alexander; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-01-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 $\\mu$m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results fro...

  9. 324 Building liquid waste handling and removal system project plan

    International Nuclear Information System (INIS)

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan

  10. Containment and recovery of a light non-aqueous phase liquid plume at a woodtreating facility

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, D. [Roy F. Weston, Inc., Edison, NJ (United States); Powell, G. [Environmental Protection Agency, Cincinnati, OH (United States); Hawthorn, S. [Environmental Protection Agency, Cincinnati, OH (United States); Weinstock, S. [Environmental Protection Agency, Butte, MT (United States)

    1997-12-31

    A woodtreating site in Montana used a formulation (product) of 5 percent pentachlorophenol and 95 percent diesel fuel as a carrier liquid to pressure treat lumber. Through years of operations approximately 378,500 liters of this light non-aqueous phase liquid (LNAPL) product spilled onto the ground and soaked into the groundwater. A plume of this LNAPL product flowed in a northerly direction toward a stream located approximately 410 meters from the pressure treatment building. A 271-meter long high density polyethylene (HDPE) containment cutoff barrier wall was installed 15 meters from the stream to capture, contain, and prevent the product from migrating off site. This barrier was extended to a depth of 3.7 meters below ground surface and allowed the groundwater to flow beneath it. Ten product recovery wells, each with a dual-phase pumping system, were installed within the plume, and a groundwater model was completed to indicate how the plume would be contained by generating a cone of influence at each recovery well. The model indicated that the recovery wells and cutoff barrier wall would contain the plume and prevent further migration. To date, nearly 3{1/2} year`s later, approximately 106,000 liters of product have been recovered.

  11. Liquid Phase Micro-Extraction of Linear Alkylbenzene Sulfonate Anionic Surfactants in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2011-10-01

    Full Text Available Hollow fiber liquid phase micro-extraction (LPME of linear alkylbenzene sulfonates (LAS from aqueous samples was studied. Ion pair extraction of C10, C11, C12 and C13 homologues was facilitated with trihexylamine as ion-pairing agent, using di-n-hexylether as solvent for the supported liquid membrane (SLM. Effects of extraction time, acceptor buffer concentration, stirring speed, sample volume, NaCl and humic acids were studied. At 10–50 µg L−1 linear R2-coefficients were 0.99 for C10 and C11 and 0.96 for C12. RSD was typically ~15%. Three observations were especially made. Firstly, LPME for these analytes was unusually slow with maximum enrichment observed after 15–24 h (depending on sample volume. Secondly, the enrichment depended on LAS sample concentration with 35–150 times enrichment below ~150 µg L−1 and 1850–4400 times enrichment at 1 mg L−1. Thirdly, lower homologues were enriched more than higher homologues at low sample concentrations, with reversed conditions at higher concentrations. These observations may be due to the fact that LAS and the amine counter ion themselves influence the mass transfer at the water-SLM interface. The observations on LPME of LAS may aid in LPME application to other compounds with surfactant properties or in surfactant enhanced membrane extraction of other compounds.

  12. Drag-Reducing Agent for Aqueous Liquid Flowing in Turbulent Mode through Pipelines

    Directory of Open Access Journals (Sweden)

    Zainab Y. Shnain

    2014-06-01

    Full Text Available In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experimental piping rig was used to study the DR properties of the mucilage on water under the effect of varying pipe dimensions and mucilage concentrations. It is shown that these additives can dramatically reduce friction drag provided that the flow is occurring under turbulent conditions. Experimental results also show that DR increases when the mucilage concentration increases.

  13. Solid and liquid radioactive waste management of the Nuclear Technology Development Center (CDTN)- Nuclebras

    International Nuclear Information System (INIS)

    Low level liquid and solid wastes are produced in several laboratories of the NUCLEAR TECHNOLOGY DEVELOPMENT CENTER (CDTN) - NUCLEBRAS. In the last years, the intensification of technical activities at the Center has increased the radioactive waste volumes. Therefore, the implementation of a Radioactive Waste Management Program has begun. This Program includes the systematic of activities from the waste collection to the transportation for the final disposal. The liquid and solid waste are collected separately in proper containers and stored for later treatment according to the processes available or under development at the Center. (Author)

  14. The removal of alpha-emitting radionuclides from liquid waste streams

    International Nuclear Information System (INIS)

    World-wide experience on the removal of alpha-emitting radionuclides from liquid waste streams is reviewed with particular emphasis on waste streams from reprocessing irradiated nuclear fuel and on countries other than the United Kingdom. Current practice concentrates on the use of precipitation and evaporation, either singly or in combination, for the treatment of these waste streams. (author)

  15. Study of alternative methods for the management of liquid scintillation counting wastes

    International Nuclear Information System (INIS)

    The Nuclear Engineering Waste Disposal Site in Richland, Washington, is the only radioactive waste disposal facility that will accept liquid scintillation counting wastes (LSCW) for disposal. That site is scheduled to discontinue receiving LSCW by the end of 1982. This document explores alternatives presently available for management of LSCW: evaporation, distillation, solidification, conversion, and combustion

  16. Facilities for processing and solidification of intermediate- and low-level liquid radioactive wastes

    International Nuclear Information System (INIS)

    For intermediate- and low-level liquid radioactive wastes processing two units are proposed. Technological schemes of both units include primary purification of solutions from solids, waste reagent treatment , preparation of waste concentrated product, evaporation of concentrated product and remainder drying. Difference between unit 1 and 2 is in methods used for preparation of concentrated product: unit 1 - settling, unit 2 - filtration

  17. 1301-N Liquid Waste Disposal Facility Supplemental Information to the Hanford Facility Contingency Plan

    International Nuclear Information System (INIS)

    The 1301-N Liquid Waste Disposal Facility located at the 100-N Area of the Hanford Site was the primary liquid radioactive waste disposal system for the N Reactor. Use of the facility began at the time of reactor start-up in 1963 and was discontinued in September 1985. From 1963 until 1985, liquid wastes disposed of in the 1301-N Facility were generated in the 105-N Reactor and the 109-N Heat Exchanger buildings. Waste streams routed to 1301-N were reactor coolant system bleed off, spent fuel storage basin cooling water overflow, reactor periphery cooling systems bleed off, reactor primary coolant loop decontamination rinse solution, and building drains containing radioactive waste generated from reactor support facilities.Specific information on types of waste discharged to 1301-N are contained within the Part A, Form 3, Permit application of this unit. Currently, them are no waste streams entering 130 1 -N

  18. Packed bed reactor treatment of liquid hazardous and mixed wastes

    International Nuclear Information System (INIS)

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl4), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO2 is not released to the environment

  19. Low-level liquid waste decontamination by ion exchange

    International Nuclear Information System (INIS)

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(Il) compounds are extremely selective for Cs removal, with distribution coefficients in excess of 106 and remarkable insensitivity to competition from Na and K. They tend to lose effectiveness at pH > - 11, but some formulations are useful for limited periods of time up to pH - 13. Sodium titanate is selective for Sr removal at high pH. The separations are so efficient that simple, batch processes can yield large DFs while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior Cs removal compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from K and nearly independent of Na. The optimum pH was - 12.5. It was much less effective for Sr removal, which was limited by competition from Na. 8 refs., 4 figs., 9 tabs

  20. Electrochemical ion-exchange for active liquid waste treatment

    International Nuclear Information System (INIS)

    Electrochemical ion exchange (EIX) has been firmly established as an effective process for the treatment of a wide range of liquid radioactive wastes. Both organic (for low specific activity streams) and inorganic systems (for higher activity wastes) have been demonstrated. A low cost current feeder electrode has also been developed, with a projected lifetime of > 6 years. While cation EIX can be used for the treatment of low salt content streams, combination with anion EIX to control the pH can extend its range of application. At the same time, it is also able to remove activity complexed in an anionic form. AEIX has also demonstrated its ability to remove radionuclides with insoluble hydroxides (eg Co, U and Pu) from both high and low salt content streams. EIX has been successfully scaled-up form the bench-top scale by increasing electrode size by a factor of 11, and then by operating five units in parallel. An improvement in performance of by a factor 3 was observed over a simple increase in area, due to the minimization of edge effects in the larger units. The most significant advantage of EIX is its compactness -with plant sizes of 1000). (Author)

  1. Low-level liquid waste decontamination by ion exchange

    International Nuclear Information System (INIS)

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 106 and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > ∼11, but some formulations are useful for limited periods of time up to pH ∼13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was ∼12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs

  2. A closed procedure for compacting liquid radioactive wastes

    International Nuclear Information System (INIS)

    The starting mixture of liquid radioactive wastes with solids contents of 0.2 to 500 g/l is added batchwise, alternately with a filler material, into a homogenizing apparatus, where it is heated to a temperature corresponding to the boiling temperature of the substance concerned. The system is allowed to evaporate to a concentration of 600 to 700 g/l with respect to the basic mixture, or of 2300 to 2500 g/l with respect to the mixture enriched with the filler material, the waste vapour being drawn off into the condenser. Thereafter the concentrated mixture is homogenized during a short rapid increase in the heat load for 1 to 60 minutes applying a temperature gradient of 10 to 40 degC; during this, the solid particles are held in a floating state. In a closed arrangement, the pasty product is drained directly into the vitrification or bituminization equipment, or alternatively it is calcined and drained directly into the mould. (B.S.)

  3. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  4. CONTINUOUS MICRO-SORTING OF COMPLEX WASTE PLASTICS PARTICLEMIXTURES VIA LIQUID-FLUIDIZED BED CLASSIFICATION (LFBC) FOR WASTE MINIMIZATIONAND RECYCLING

    Science.gov (United States)

    A fundamental investigation is proposed to provide a technical basis for the development of a novel, liquid-fluidized bed classification (LFBC) technology for the continuous separation of complex waste plastic mixtures for in-process recycling and waste minimization. Although ...

  5. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    International Nuclear Information System (INIS)

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices)

  6. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices).

  7. Removal of arsenate and arsenite from aqueous solution by waste cast iron

    Institute of Scientific and Technical Information of China (English)

    Nag-Choul Choi; Song-Bae Kim; Soon-Oh Kim; Jae-Won Lee; Jun-Boum Park

    2012-01-01

    The removal of As(Ⅲ) and As(Ⅴ) from aqueous solution was investigated using waste cast iron,which is a byproduct of the iron casting process in foundries.Two types of waste cast iron were used in the experiment:grind precipitate dust (GPD) and cast iron shot (CIS).The X-ray diffraction analysis indicated the presence of Fe0 on GPD and CIS.Batch experiments were performed under different concentrations of As(Ⅲ) and As(Ⅴ) and at various initial pH levels.Results showed that waste cast iron was effective in the removal of arsenic.The adsorption isotherm study indicated that the Langmuir isotherm was better than the Freundlich isotherm at describing the experimental result.In the adsorption of both As(Ⅲ) and As(Ⅴ),the adsorption capacity of GPD was greater than CIS,mainly due to the fact that GPD had higher surface area and weight percent of Fe than CIS.Results also indicated the removal of As(Ⅲ) and As(Ⅴ)by GPD and CIS was influenced by the initial solution pH,generally decreasing with increasing pH from 3.0 to 10.5.In addition,both GPD and CIS were more effective at the removal of As(Ⅲ) than As(Ⅴ) under given experimental conditions.This study demonstrates that waste cast iron has potential as a reactive material to treat wastewater and groundwater containing arsenic.

  8. Solidification of aqueous tritium-containing wastes with calcium oxide and asphalt

    International Nuclear Information System (INIS)

    A simple method is proposed for solidifying aqueous tritium-containing wastes with calcium oxide and asphalt. We incorporated tritiated calcium hydroxide into molten asphalt at 100-210/degree/C and studied the evolution of tritium (T) oxides there from as well as the extent to which calcium and tritium are leached out of the solidified product. Depending on temperature and heating time, the evolution of HTO from a Ca(OH)OT-asphalt mixture was low (between 5.6 x 10/sup /minus/4/ and 5.9 x 10/sup /minus/4/ wt.% of the original amount). Tritium evolution rates and leaching coefficients of tritium and calcium showed the solidified product to have high stability in water. Conclusions were drawn as to the usefulness of the proposed method

  9. Removal of Lead (II Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-01-01

    Full Text Available The removal of lead (II ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS analysis after adsorption reveals the accumulation of lead (II ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  10. Solidification experiments of high-level liquid waste, (1)

    International Nuclear Information System (INIS)

    Many processes to solidify into glass, ceramics, or metal composites can be expected to solidify high-level liquid wastes, and the calcination is considered to be one of the steps in each process. A laboratory scale fluidized-bed calciner has been constructed to study the feasibility of the calcination process. The calcined products carried with off gas are caught by cyclones and collected in hoppers. The calcined products are also taken out from overflow line by changing the operating conditions. Off-gas leaving the cyclones is washed and cooled in the spray quench tower, then cooled again in the condenser, and released through the demister, filter and blower. The main purpose of this off-gas treatment system is to remove acid fume from off-gas. The calciner is made of stainless steel tube of 4 in diameter, and is designed to treat waste solution at the rate of 1.0 l/hr. Heating is carried out by means of an electroresistance heater up to 500 deg. C, and in-bed combustion of kerosene is performed at the temperature above 500 deg. C. The calciner was operated by using 5 N nitric acid instead of synthetic wastes. Ignition and combustion of kerosene were stable in the fluidized bed heated up to 650 deg. C. The temperature was able to be controlled within +-5 deg. C of the target by controlling the feeding rate of kerosene. There was no substantial trouble about the equipment in this test operation. But in case of very low feeding rate, the time lag in ignition and subsequent after-burning phenomenon were observed. (Kobatake, H.)

  11. Distribution of the active liquid waste discharge concentration

    International Nuclear Information System (INIS)

    In assessing the proposal for removing the on-line liquid effluent monitor (LEM) from the Darlington NGS-A design, it was required to estimate the probability that the concentration of β-y emitters in the active liquid waste (ALW) tank discharges exceeds a specified level. To achieve this, it was necessary to know the underlying distribution of the ALW discharge concentration. Since the distribution could only be estimated from the historical data, it was also important to provide the confidence interval for the estimated probability. Using the ALW discharge records of Pickering and Bruce NGS-A, it was found that the log-normal distribution provided the best fit for the data. The frequency of the tank concentration exceeding the specified level of 24000μCi/m3 was estimated to be 1 in 200,000 years at Bruce NGS-A and 1 in 100,000 years at Pickering. The 99% upper confidence limits are 1 in 2777 years and 1 in 77 years, respectively

  12. Value added liquid products from waste biomass pyrolysis using pretreatments.

    Science.gov (United States)

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition. PMID:26298257

  13. A Novel Agricultural Waste Adsorbent, Watermelon Shell for the Removal of Copper from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Koel Banerjee

    2012-01-01

    Full Text Available The present study deals with the application of Watermelon Shell, an agricultural waste, for the adsorptive removal of Cu(II from its aqueous solutions. This paper incorporates the effects of time, dose,temperature, concentration, particle size, agitation speed and pH. Analytical techniques have been employed to find pore properties and characteristics of adsorbent materials. Batch kinetic and isotherm studies have also been performed to understand the ability of the adsorbents. The adsorption behavior of the Cu(II has beenstudied using Freundlich, Langmuir and Tempkin adsorption isotherm models. The monolayer adsorption capacity determined from the Langmuir adsorption equation has been found as 111.1 mg/g. Kineticmeasurements suggest the involvement of pseudo-second-order kinetics in adsorptions and is controlled by a particle diffusion process. Adsorption of Cu(II on adsorbents was found to increase on decreasing initial concentration, increasing pH up to 8, increasing temperature, increasing agitation speed and decreasing particlesize. Overall, the present findings suggest that watermelon outer shell is environmentally friendly, efficient and low-cost biosorbent which is useful for the removal of Cu(II from aqueous media.

  14. The state of the art on nuclides separation in high level liquid wastes by Truex process

    International Nuclear Information System (INIS)

    For the advancement of the back-end of nuclear fuel cycle, novel CMPO RUEX process was studied for separating minor actinides from fission products in high level liquid waste using real radioactive solutions from PUREX experiments, so as to support PNC's actinides recycling program using fast reactor. The present PUREX process was also studied to improve the separation of 237Np, 106Ru and 99Tc, the most interfering-natured nuclides in both PUREX and TRUEX processes, by utilizing electrochemistry-based salt-free methods which can eliminate the secondary radioactive waste. The state of the art of separation technologies are described by summarizing the extraction behaviors of nuclides in recent hot counter-current runs using CMPO RUEX process with mild salt-free stripping reagents. The degradation and regeneration characteristics of CMPO/TBP/n-dodecane mixture solvent were also simulated by semi-hot experiments. Several experiments to separate minor actinides and lanthanides from the TRUEX mixture product using aqueous amino-poly-carboxylate complexant, DTPA, resulted in reasonable MA/Ln separation profiles in multiple mixer-settler stages and allowed a unique separation flowsheet adaptable to the TRUEX process to be proposed. Application of electrochemistry to assist both solvent extraction processes, e.g., 'anodic oxidation' to destroy PUREX and TRUEX solvent waste in the presence of electron transfer mediator Age2+ or 'cathodic reduction' for electrolytic extraction of Pd2+, RuNO3+ and 99TcO4- from 3 M nitric acid medium is under study. (authors)

  15. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  16. Ionic liquids based aqueous biphasic systems: Effect of the alkyl chains in the cation versus in the anion

    International Nuclear Information System (INIS)

    Highlights: • Alkyl-3-methylimidazolium alkylsulfonate ILs for implemention of aqueous biphasic systems. • Study of the effect of alkyl chain length and position on ILs hydrophobicity. • Evaluation of ILs extractive power on L-tryptophan aqueous solutions. • The alkyl chain in the anion contributes more to the hydrophobicity of the IL. • Less hydrophobic ILs have the better extraction coefficients for L-tryptophan. -- Abstract: The use of alkyl-3-methylimidazolium alkylsulfonate ionic liquids for implementing aqueous biphasic systems is studied in this work for the first time. The ability of high charge density inorganic salts, such as K3PO4, to promote phase segregation in aqueous solutions containing the ionic liquids 1,3-dimethylimidazolium methylsulfonate ([C1mim][C1SO3]), 1-ethyl-3-methylimidazolium hexylsulfonate ([C2mim][C6SO3]), 1-ethyl-3-methylimidazolium butylsulfonate ([C2mim][C4SO3]), 1-butyl-3-methylimidazolium methylsulfonate ([C4mim][C1SO3]), 1-butyl-3-methylimidazolium ethylsulfonate ([C4mim][C2SO3]), 1-pentyl-3-methylimidazolium methylsulfonate ([C5mim][C1SO3]), 1-hexyl-3-methylimidazolium methylsulfonate ([C6mim][C1SO3]) and 1-hexyl-3-methylimidazolium ethylsulfonate ([C6mim][C2SO3]) was experimentally determined at 298.15 K and atmospheric pressure. In general, the hydrophobicity of the ionic liquids studied is affected by the increase of the alkyl chain length. However, the position of the alkyl chain, whether in the cation or in the anion affects in a different way the lipophilic effect of the ionic liquid. Two ionic liquids with the same number of carbon atoms, the one with a longer chain in the anion is the more hydrophobic. Furthermore, four ionic liquids were chosen to extract the aminoacid L-tryptophan from aqueous solutions. The chain lengths of the anion or cation were fixed and the partition coefficients compared. The extractions, carried out at 298.15 K, showed the good extractive power of these ionic liquids and also that

  17. Design and development of single stage purification of papain using Ionic Liquid based aqueous two phase extraction system and its Partition coefficient studies

    OpenAIRE

    Senthilkumar Rathnasamy; R.Kumaresan2

    2013-01-01

    As an emerging trend in bioseparation, aqueous two phase extractions based on phosponium ionic liquid have been utilized in this work to extract papain from Carica papaya fruit latex and the same wascompared with conventional aqueous two phase extraction system. Factors affecting the partition coefficient of papain such as ionic liquid concentration, pH of the extraction system and temperature have been investigated. The optimization studies show that ionic liquid concentrations and pH are ma...

  18. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  19. Corrosion of a carbon steel in simulated liquid nuclear wastes

    International Nuclear Information System (INIS)

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO3, NaCl, NaF, NaNO2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  20. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    Science.gov (United States)

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. PMID:26616933

  1. Aqueous Solutions of the Ionic Liquid 1-butyl-3-methylimidazolium Chloride Denature Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Gary A [ORNL; Heller, William T [ORNL

    2009-01-01

    As we advance our understanding, ionic liquids (ILs) are finding ever broader scope within the chemical sciences including, most recently, pharmaceutical, enzymatic, and bioanalytical applications. With examples of enzymatic activity reported in both neat ILs and in IL/water mixtures, enzymes are frequently assumed to adopt a quasi-native conformation, even if little work has been carried out to date toward characterizing the conformation, dynamics, active-site perturbation, cooperativity of unfolding transitions, free energy of stabilization, or aggregation/oligomerization state of enzymes in the presence of an IL solvent component. In this study, human serum albumin and equine heart cytochrome c were characterized in aqueous solutions of the fully water-miscible IL 1-butyl-3-methylimidazolium chloride, [bmim]Cl, by small-angle neutron and X-ray scattering. At [bmim]Cl concentrations up to 25 vol.%, these two proteins were found to largely retain their higher-order structures whereas both proteins become highly denatured at the highest IL concentration studied here (i.e., 50 vol.% [bmim]Cl). The response of these proteins to [bmim]Cl is analogous to their behavior in the widely studied denaturants guanidine hydrochloride and urea which similarly lead to random coil conformations at excessive molar concentrations. Interestingly, human serum albumin dimerizes in response to [bmim]Cl, whereas cytochrome c remains predominantly in monomeric form. These results have important implications for enzymatic studies in aqueous IL media, as they suggest a facile pathway through which biocatalytic activity can be altered in these nascent and potentially green electrolyte systems.

  2. Removal of cadmium from aqueous solutions by adsorption onto orange waste

    International Nuclear Information System (INIS)

    The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3 h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data

  3. Removal of cadmium from aqueous solutions by adsorption onto orange waste

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Marin, A.B. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Zapata, V. Meseguer [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)]. E-mail: vzapata@um.es; Ortuno, J.F. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Aguilar, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Saez, J. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain); Llorens, M. [Department of Chemical Engineering, University of Murcia, 30071 Murcia (Spain)

    2007-01-02

    The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3 h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data.

  4. Purification and characterization of polyphenol oxidase from waste potato peel by aqueous two-phase extraction.

    Science.gov (United States)

    Niphadkar, Sonali S; Vetal, Mangesh D; Rathod, Virendra K

    2015-01-01

    Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel. PMID:25036474

  5. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    An approach was developed for evaluating vadose zone transport and attenuation of aqueous wastes containing inorganic (non-volatile) contaminants that were disposed of at the land surface (i.e., directly to the ground in cribs, trenches, tile fields, etc.) and their effect on the underlying groundwater. The approach provides a structured method for estimating transport of contaminants through the vadose zone and the resulting temporal profile of groundwater contaminant concentrations. The intent of the approach is also to provide a means for presenting and explaining the results of the transport analysis in the context of the site-specific waste disposal conditions and site properties, including heterogeneities and other complexities. The document includes considerations related to identifying appropriate monitoring to verify the estimated contaminant transport and associated predictions of groundwater contaminant concentrations. While primarily intended for evaluating contaminant transport under natural attenuation conditions, the approach can also be applied to identify types of, and targets for, mitigation approaches in the vadose zone that would reduce the temporal profile of contaminant concentrations in groundwater, if needed.

  6. Application of biomass for the sorption of radionuclides from low level Purex aqueous wastes

    International Nuclear Information System (INIS)

    Microbial biomass have been found to be good biological adsorbents for radioactive nuclides such as uranium and thorium with comparatively easy desorption and recovery. Based on this, sorption studies have been carried out to assess the feasibility of using biomass Rhizopus arrhizus (RA) for the removal of radionuclides present in Purex low level waste streams. Biomass Rhizopus arrhizus (RA) appears effective for the removal of actinides and fission products from low level Purex plant waste/effluent solutions. Maximum sorption for uranium and plutonium is observed at 6-7 pH whereas for Am, Eu, Pm, Ce and Zr the sorption is maximum at pH 2 with high D values and fast kinetics in both cases. Sorption for Ru and Cs are negligible. Sorbed nuclides are recoverable by elution with 1 M HNO3, on once through basis. The method can be used for treating the evaporator condensates from the plant and the hold-up delay tank solution. The sodium nitrate salt concentration in the aqueous solution beyond 0.14 M seriously affects the metal uptake. The results from column experiments indicate a limited loading capacity in terms of mg of Am/U/Pu etc. per gm of RA. However, as the Purex low level effluents contain only trace level activities whose absolute ionic concentrations are much lower, the capacities observed with the present form of biomass may still be satisfactory

  7. Comparison of analysis techniques by liquid scintillation and Cerenkov Effect for 40K quantification in aqueous samples

    International Nuclear Information System (INIS)

    In this work the counting by liquid scintillation and Cerenkov Effect to quantify 40K in aqueous samples was used. The performance of both techniques was studied by comparing the response of three commercial liquid scintillation OptiPhase HiSafe 3, Ultima Gold Ab and OptiPhase TriSafe, the vial type and presentation conditions of the sample for counting. In liquid scintillation, the ability to form homogeneous mixtures depended on the ionic strength of the aqueous solutions. The scintillator OptiPhase HiSafe 3 showed a greater charge capacity for solutions with high ionic strength (<3.4), while the scintillator OptiSafe TriSafe no form homogeneous mixtures for solutions of ionic strength higher than 0.3. Counting efficiencies for different proportions of sample and scintillator near 100% for the scintillators OptiSafe HiSafe 3 and Ultima Gold Ab were obtained. In the counting by Cerenkov Effect, the efficiency and sensitivity depended of the vial type; polyethylene vials were more suitable for counting that the glass vials. The sample volume had not significant effect on counting efficiency, obtaining an average value of 44.8% for polyethylene vials and 37.3% for glass vials. Therefore, the liquid scintillation was more efficient and sensitive for the measurement of 40K in aqueous solutions. (Author)

  8. (Liquid + liquid) and (liquid + solid) equilibrium of aqueous two-phase systems containing poly ethylene glycol di-methyl ether 2000 and di-sodium hydrogen phosphate

    International Nuclear Information System (INIS)

    (Liquid + liquid) equilibrium (LLE) for the {poly ethylene glycol di-methyl ether 2000 (PEGDME2000) + Na2HPO4 + H2O} system have been determined experimentally at T = (298.15, 308.15, 313.15, and 318.15) K. The effects of temperature on the binodals and tie-lines for the investigated aqueous two-phase system (ATPS) have been studied. An empirical non-linear expression developed by Merchuk was used for reproducing the experimental binodal data. In this work, the three fitting parameters of the Merchuk equation were obtained with the temperature dependence expressed in the linear form with (T - T0) K as a variable. Furthermore, the modified local composition segment-based NRTL and Wilson models and also osmotic virial equation were used to describe the LLE data of the studied system. Also, the effects of the type of salt on LLE are discussed. In addition, the effects of end groups of the polymers PEGDME2000 and poly ethylene glycol 2000 on phase forming ability were studied. The complete phase diagram for the poly ethylene {glycol di-methyl ether 2000 (PEGDME2000) + Na2HPO4 + H2O} system has also been determined at T = 298.15 K.

  9. Spectrophotometric determination of uranium in liquid waste generated in Fuel Fabrication Plant

    International Nuclear Information System (INIS)

    During fabrication of uranium bearing nuclear fuels, liquid waste is being generated. The liquid waste contains impurities such as Ca, Na, Fe, Ni, Cr etc. The total dissolved solids (TDS) are high, upto 400 gram per litre (gpl). Study has been carried out for spectrophotometric determination of uranium in solution employing Arsenazo-III as metal indicator. The absorbance was measured at 655 nm. For U: Ca ratio 1:10 no interference was observed. For U:Ca ratio of 1:125, uranium concentration was reduced by ∼5%. The method can be applied for determination of uranium in liquid waste generated in fuel fabrication plant. (author)

  10. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative.

  11. ICPP radioactive liquid and calcine waste technologies evaluation final report and recommendation

    International Nuclear Information System (INIS)

    Using a formalized Systems Engineering approach, the Latched Idaho Technologies Company developed and evaluated numerous alternatives for treating, immobilizing, and disposing of radioactive liquid and calcine wastes at the Idaho Chemical Processing Plant. Based on technical analysis data as of March, 1995, it is recommended that the Department of Energy consider a phased processing approach -- utilizing Radionuclide Partitioning for radioactive liquid and calcine waste treatment, FUETAP Grout for low-activity waste immobilization, and Glass (Vitrification) for high-activity waste immobilization -- as the preferred treatment and immobilization alternative

  12. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    International Nuclear Information System (INIS)

    Highlights: → Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. → Complex stabilities reflect host-guest size matching and hydrophobic interaction. → Presence of halogens in the guest molecule stabilizes the binding. → Thermodynamic origin of the binding varies greatly among the systems studied. → Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (KGL) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, α,α,α-trifluorotoluene, and toluene in aqueous solutions of natural α-, β-, and γ-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  13. Determination of the Thermodegradation of deoxyArbutin in Aqueous Solution by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Chih-Chien Lin

    2010-10-01

    Full Text Available Tyrosinase is the key and rate-limiting enzyme responsible for the conversion of tyrosine into melanin. Competitive inhibition of tyrosinase enzymatic activity results in decreased or absent melanin synthesis by melanocytes in human skin. DeoxyArbutin (4-[(tetrahydro-2H-pyran-2-yloxy]phenol, a novel skin whitening agent, was synthesized through the removal of hydroxyl groups from the glucose side-chain of arbutin. DeoxyArbutin not only shows greater inhibition of tyrosinase activity but is also safer than hydroquinone and arbutin. Hence, deoxyArbutin is a potential skin whitening agent for cosmetics and depigmenting drugs; however, stability of this compound under some conditions remains a problem. The lack of stability poses developmental and practical difficulties for the use of deoxyArbutin in cosmetics and medicines. Improving the thermostability of deoxyArbutin is an important issue for its development. In this research, we established an analytical procedure to verify the amount of deoxyArbutin in solutions using a high performance liquid chromatographic (HPLC method. The results indicate that this novel skin whitening agent is a thermolabile compound in aqueous solutions. Additionally, the rate constant for thermodegradation (k and the half-life (t1/2 of deoxyArbutin were determined and can be used to understand the thermodegradation kinetics of deoxyArbutin. This information can aid in the application of deoxyArbutin for many future uses.

  14. Extraction of anionic dye from aqueous solutions by emulsion liquid membrane.

    Science.gov (United States)

    Dâas, Attef; Hamdaoui, Oualid

    2010-06-15

    In this work, the extraction of Congo red (CR), an anionic disazo direct dye, from aqueous solutions by emulsion liquid membrane (ELM) was investigated. The important operational parameters governing emulsion stability and extraction behavior of dye were studied. The extraction of CR was influenced by a number of variables such as surfactant concentration, stirring speed, acid concentration in the feed solution and volume ratios of internal phase to organic phase and of emulsion to feed solution. Under most favorable conditions, practically all the CR molecules present in the feed phase were extracted even in the presence of salt (NaCl). At the optimum experimental conditions, total removal of antharaquinonic dye Acid Blue 25 was attained after only 10 min. Influence of sodium carbonate concentration as internal receiving phase on the stripping efficiency of CR was examined. The best sodium carbonate concentration in the internal phase that conducted to excellent stripping efficiency (>99%) and emulsion stability was 0.1N. The membrane recovery was total and the permeation of CR was not decreased up to seven runs. ELM process is a promising alternative to conventional methods and should increase awareness of the potential for recovery of anionic dyes. PMID:20211520

  15. Calcium isotope fractionation in liquid chromatography with benzo-18-crown-6 resin in aqueous hydrobromic acid medium

    International Nuclear Information System (INIS)

    Liquid chromatography operated in a breakthrough mode was employed to study calcium isotope fractionation in the aqueous hydrobromic acid medium. Highly porous silica beads, the inner pores of which were embedded with a benzo-18-crown-6 ether resin, were used as column packing material. Enrichment of heavier isotopes of calcium was observed in the frontal part of respective calcium chromatograms. The values of the isotope fractionation coefficient were on the order of 10-3. The observed isotope fractionation coefficient was dependent on the concentration of hydrobromic acid in the calcium feed solution; a higher HBr concentration resulted in a smaller fractionation coefficient value. The present calcium isotope effects were most probably mass-dependent, indicating that they mostly came from isotope effects based on molecular vibration. Molecular orbital calculations supported the present experimental results in a qualitative fashion. Chromatography operated in aqueous HBr media is a better system of Ca isotope separation than that operated in aqueous HCl media. (author)

  16. Performance of cement solidification with barium for high activity liquid waste including sulphate

    International Nuclear Information System (INIS)

    The target liquid waste to be solidified is generated from PWR primary loop spent resin treatment with sulphate acid, so, its main constituent is sodium sulphate and the activity of this liquid is relatively high. Waste form of this liquid waste is considered to be a candidate for the subsurface disposal. The disposed waste including sulphate is anticipated to rise a concentration of sulphate ion in the ground water around the disposal facility and it may cause degradation of materials such as cement and bentonite layer and comprise the disposal facility. There could be two approaches to avoid this problem, the strong design of the disposal facility and the minimization of sulphaste ion migration from the solidified waste. In this study, the latter approach was examined. In order to keep the low concentration of sulphate ion in the ground water, it is effective to make barium sulphate by adding barium compound into the liquid waste in solidification. However, adding equivalent amount of barium compound with sulphate ion causes difficulty of mixing, because production of barium sulphate causes high viscosity. In this study, mixing condition after and before adding cement into the liquid waste was estimated. The mixing condition was set with consideration to keep anion concentration low in the ground water and of mixing easily enough in practical operation. Long term leaching behavior of the simulated solidified waste was also analyzed by PHREEQC. And the concentration of the constitution affected to the disposal facility was estimated be low enough in the ground water. (author)

  17. Study of the Treatment of the Liquid Radioactive Waste Nong Son Uranium Ore Processing

    International Nuclear Information System (INIS)

    Liquid waste from Nong Son uranium ore processing is treated with concentrated acid, agglomerated, leached, run through ion exchange and then treated with H2O2 to precipitate yellowcake. The liquid radioactive waste has a pH of 1.86 and a high content of radioactive elements, such as: [U] 143.898 ppm and [Th] = 7.967 ppm. In addition, this waste contains many polluted chemical elements with high content, such as arsenic, mercury, aluminum, iron, zinc, magnesium, manganese and nickel. The application of the general method as one stage precipitation or precipitation in coordination with BaCl2 is not effective. These methods generated a large amount of sludge with poor settling characteristics. The volume of final treated waste was large. This paper introduces the investigation of the treatment of this liquid radioactive waste by the method of two stage of precipitation in association with polyaluminicloride (PAC) and polymer. The impact of factors: pH, neutralizing agents, quantity of PAC and polymer to effect precipitation and improve the settling characteristics during processing was studied. The results showed that the processing of liquid radioactive waste treatment through two stages: first stage at pH = 3 and the second stage at pH = 8.0 with limited PAC and polymer (A 101) resulted in significant reduced volume of the treated waste. The discharged liquid satisfied the requirement of the National Technical Regulation on Industrial Waste Water (QCVN 24:2009). (author)

  18. Capacity enhancement of aqueous borohydride fuels for hydrogen storage in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, David; Neiner, Doinita [U.S. Borax Inc., Rio Tinto, Greenwood Village, CO (United States); Bowden, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA (United States); Whittemore, Sean; Holladay, Jamie [Pacific Northwest National Laboratory, Richland, WA (United States); Huang, Zhenguo [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2500 (Australia); Autrey, Tom [Pacific Northwest National Laboratory, Richland, WA (United States)

    2015-10-05

    Highlights: • Adjusting ratio of Q = Na/B will maximize H{sub 2} storage capacity of liquid carrier. • Mixtures of hydrolysis products are desirable to maximize solubility. • 6.5 wt.% hydrogen and remains liquid from beginning to end. - Abstract: In this work we demonstrate enhanced hydrogen storage capacities through increased solubility of sodium borate product species in aqueous media achieved by adjusting the sodium (NaOH) to boron (B(OH){sub 3}) ratio, i.e., M/B, to obtain a distribution of polyborate anions. For a 1:1 mol ratio of NaOH to B(OH){sub 3}, M/B = 1, the ratio of the hydrolysis product formed from NaBH{sub 4} hydrolysis, the sole borate species formed and observed by {sup 11}B NMR is sodium metaborate, NaB(OH){sub 4}. When the ratio is 1:3 NaOH to B(OH){sub 3}, M/B = 0.33, a mixture of borate anions is formed and observed as a broad peak in the {sup 11}B NMR spectrum. The complex polyborate mixture yields a metastable solution that is difficult to crystallize. Given the enhanced solubility of the polyborate mixture formed when M/B = 0.33 it should follow that the hydrolysis of sodium octahydrotriborate, NaB{sub 3}H{sub 8}, can provide a greater storage capacity of hydrogen for fuel cell applications compared to sodium borohydride while maintaining a single phase. Accordingly, the hydrolysis of a 23 wt.% NaB{sub 3}H{sub 8} solution in water yields a solution having the same complex polyborate mixture as formed by mixing a 1:3 M ratio of NaOH and B(OH){sub 3} and releases >8 eq of H{sub 2}. By optimizing the M/B ratio a complex mixture of soluble products, including B{sub 3}O{sub 3}(OH){sub 5}{sup 2−}, B{sub 4}O{sub 5}(OH){sub 4}{sup 2−}, B{sub 3}O{sub 3}(OH){sub 4}{sup −}, B{sub 5}O{sub 6}(OH){sub 4}{sup −} and B(OH){sub 3}, can be maintained as a single liquid phase throughout the hydrogen release process. Consequently, hydrolysis of NaB{sub 3}H{sub 8} can provide a 40% increase in H{sub 2} storage density compared to the hydrolysis

  19. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    Science.gov (United States)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  20. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  1. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10-4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  2. Method for solidification of aqueous, radioactive wastes in a glass, glass ceramic or glass ceramic-like matrix

    International Nuclear Information System (INIS)

    The invention deals with an improvement of the known method to solidify aqueous, highly radioactive waste in a glass matrix or in a glass ceramic matrix in which the previously denitrated waste water is spray-dried and calined. The calined product occuring can then be mixed with glass-forming substances or with ground glass grit and then be melted in a crucible or oven to a homogeneous mass. By applying such a method however, the spray nozzle in the spray calcinator gets blocked up after a time. In order to avoid this the invention suggests to add kieselguhr-like material in solid form to the aqueous waste solution prior to spray drying. The kieselguhr has a composition of about 90 wt.% SiO2; 4 wt.% Al2O3; 3.3 wt.% Na2O+K2O; 1.3 wt.% Fe2O3, as well as MgO, CO, TiO2 and P2O5 with grain sizes of more than 70 wt.% grain size distribution between 10 and 40 mum. The kieselguhr is added to the aqueous waste solution in a quantity of 50 to 60 g/l. (orig./PW)

  3. Application of biosorption in radioactive liquid waste treatment

    International Nuclear Information System (INIS)

    In biomasses which were researched in the world, Rhizopus arrhizus was interested in research because of high uranium and thorium selectivity and high performance adsorption capacity more than 5 times compare with other ion-exchange resins were in use. In this research, Vietnamese biomass Rhizopus arrhizus was investigated and researched to separate uranium and thorium from radioactive liquid waste. The results showed that uranium and thorium adsorption al capacity of Vietnamese biomass is correlative to which were reached of previous researches in the world. Uranium and thorium adsorbed in biomass can be reached from 95.6 to 97.95% in HCl media at pH=2.5, extracted by alkaline bicarbonates, up to 99.94% by NaHCO3, but only 3.9 to 84% by NH4HCO3 or Na2CO3. A maximum load of ca 350 mgU/g biomass and 150 mgTh/g biomass, as analysed by UV-Spectrophotometer and ICP-MS, was obtained after chemical treatment. (author)

  4. Study of the radioactive liquid waste treatment by coprecipitation: from modelling to design of new processes

    International Nuclear Information System (INIS)

    To decontaminate liquid nuclear wastes, the coprecipitation process is the most commonly used in nuclear field because it can be applied to any type of aqueous effluents whatever their composition may be. This process deals with the in situ precipitation of solid particles to selectively remove one or more radioelements. The aim of this PhD work is to investigate phenomena which take place during the coprecipitation of a trace component. To reach this objective, we have proposed a new modelling of the coprecipitation mechanism. The originality of this new approach lies in the possibility to simulate the phenomenon in non equilibrium conditions and at the reactor scale. This modelling combined with the resolution of the population balance, enable to identify the influence of process parameters (flowrates, stirring speed...) on crystal size and ultimately on decontamination. To test this new modelling, simulations of the coprecipitation of strontium ions with barium sulphate have been performed in continuous and semibatch reactors. Thanks to these simulations, laws of the treatment efficiency variation as a function of several process parameters (mean residence time, stirring speed, BaSO4 concentration) have been determined and experimentally verified. This study leads to the determination of optimal treatment conditions. Three apparatus (recycling apparatus, fluidized bed and reactor/settling tank) providing these optimal conditions have been successfully tested and offered significant outlooks for the reduction of the volume of sludge produced by the process. Two new processes are patent pending. (author)

  5. Simultaneous solid phase extraction of cobalt, strontium and cesium from liquid radioactive waste using microcrystalline naphthalene

    International Nuclear Information System (INIS)

    Most of the procedures developed for the extraction of cobalt, strontium and cesium by solid phase extraction do not employ simultaneous extraction of them. In this study, rapid simultaneous removal of Co2+, Sr2+ and Cs+ on microcrystalline naphthalene as solid-phase extractant was investigated. These ions were allowed to form chelates with oxine and then adsorbed on freshly microcrystalline naphthalene from aqueous solutions. The solid phase extraction procedure (SPE) was optimized by using model solution containing Co2+, Sr2+ and Cs+ in batch system. The effects of different parameters such as variation in pH, reagent concentration, standing time, naphthalene solution concentration and contact time on the simultaneous removal of these ions was studied. The obtained results indicated that, sorption was found to be rapid, and the percentage removal of Co2+, Sr2+ and Cs+ was found to be 98, 79 and 68% within 10 min, respectively. The kinetics of the sorption process was investigated to understand the kinetic characteristics of sorption of metal chelates onto microcrystalline naphthalene. The developed procedure has been successfully applied to the removal and recovery of 60Co and 134Cs from liquid radioactive waste. The parameters can be used for designing a plant for treatment of wastewater economically.

  6. Development of composite ion exchanger for separation of cesium from high level liquid waste

    International Nuclear Information System (INIS)

    137Cs (t1/2 = 30 years) is one of the major radioisotope present in high level liquid waste (HLLW) generated during the reprocessing of nuclear fuel. Separation of 137Cs from HLLW results in reduction of personal radiation exposure during the conditioning, transportation, storage and disposal. In addition, 137Cs has enormous application as a radiation source in food preservation, sterilization of medical products, brachytherapy, blood irradiation, hygienization of sewage sludge etc. Ammonium molybdophosphate (AMP), an inorganic ion exchanger, has high selectivity and high exchange capacity for Cs. It exits as microcrystalline powder which is not amenable for column operation. ALIX is a composite material in which AMP is physically blended with inert polymeric substrate to improve its column property, exchange kinetics and increase its mechanical strength. The observed excellent properties of the composite are attributed to its engineered structure which is formed during its production. SEM analysis of ALIX shows that AMP crystals embedded in the cavities are not covered by the polymer which greatly enhances its availability for cesium exchange. The highly porous structure of the composite having 49% void volume facilitates faster kinetics of exchange of Cs from the aqueous phase and increased rate of reaction with alkali required during its dissolution

  7. Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by high-performance liquid chromatography.

    Science.gov (United States)

    Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong

    2014-06-01

    An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. PMID:24767438

  8. Chemical effects associated to (n, γ) nuclear reactions in diluted aqueous solutions of liquid or frozen organic halogenides

    International Nuclear Information System (INIS)

    Chemical effects associated to nuclear transformation 37Cl (n, γ) 38Cl or 127I (n, γ) 128I in solid or liquid aqueous solutions of ethyl iodide, trichloro-ethylene, thyroxine or DDT irradiated in a nuclear reactor are studied. The retention of radiohalogen under its initial chemical shape decrease with solute concentration in liquid phase but is almost constant with solute dilution in the solid phase. Potential applications in neutron activation analysis evidencing halogenated molecules in irradiated media are discussed. 57 refs

  9. Liquid and Gaseous Waste Operations Department annual operating report, CY 1995

    International Nuclear Information System (INIS)

    This report describes the operating activities, upgrade activities, maintenance, and other activities regarding liquid and gaseous low level radioactive waste management at the Oak Ridge National Laboratory. Miscellaneous activities include training, audits, tours, and environmental restoration support

  10. Six-year experiences in the operation of a low level liquid waste treatment plant

    International Nuclear Information System (INIS)

    The operation of a low level liquid waste treatment plant is described. The plant is designed for the disposal of liquid waste produced primarily by a 40 MW Taiwan Research Reactor as well as a fuel fabrication plant for the CANDU type reactor and a radioisotopes production laboratory. The monthly volume treated is about 600-2500 ton of low level liquid waste. The activity levels are in the range of 10-5-10-3μCi/cm3. The continuous treatment system of the low level liquid waste treatment plant and the treatment data collected since 1973 are discussed. The advantages and disadvantages of continuous and batch processes are compared. In the continuous process, the efficiency of sludge treatment, vermiculite ion exchange and the adsorption of peat are investigated for further improvement. (H.K.)

  11. Separation of plutonium from intermediate level liquid waste by precipitation with alkyl-pyridinium nitrates

    International Nuclear Information System (INIS)

    Plutonium as hexanitrato complex can be separated from intermediate level liquid waste by precipitation with various alkylpyridinium nitrates. The residual concentrations of Pu are below 10-6mol/l. (Author)

  12. Geophysical investigation of the 116-H-1 liquid waste disposal trench, 100-HR-1 operable unit

    International Nuclear Information System (INIS)

    A geophysical investigation and data integration were conducted for the 116-H-1 Liquid Waste Disposal Trench, which is located in the 100-HR-1 Operable Unit. The 116-H-1 Liquid Waste Disposal Trench is also known as the 107-H Liquid Waste Disposal Trench, the 107-H Rupture Effluent Trench, and the 107-H Trench (Deford and Einan 1995). The trench was primarily used to hold effluent from the 107-H Retention Basin that had become radioactive from contact with ruptured fuel elements. The effluent may include debris from the ruptured fuel elements (Koop 1964). The 116-H-1 Liquid Waste Disposal Trench was also used to hold water and sludge from the 107-H Retention Basin during the basin's deactivation in 1965

  13. Thin liquid films from aqueous solutions of non-ionic polymeric surfactants.

    Science.gov (United States)

    Exerowa, Dotchi; Platikanov, Dimo

    2009-01-01

    The conditions of formation and stability of foam, emulsion, and wetting films from aqueous solutions of non-ionic polymeric surfactants have been established. Two types of polymeric surfactants - PEO-PPO-PEO three-block copolymers (A-B-A type) and hydrophobically modified inulin graft polymer (AB(n) type) - have been explored. Information about surface forces and nanoscale phenomena in aqueous films containing polymeric surfactants was obtained using the micro-interferometric technique and the Thin Liquid Film-Pressure Balance Technique. Two types of surface forces, which determine the stability of the foam and emulsion films, have been distinguished, namely: DLVO-forces at low electrolyte concentrations and non-DLVO-forces at high electrolyte concentrations. Non-DLVO-forces are steric surface forces of the brush-to-brush and loop-to-loop interaction type according to De Gennes. A substantial difference in the behavior of these two film types has been established and in the case of O/W emulsion films transitions to Newton black film (NBF) have been observed. These films are very stable and so are the respective emulsions. In contrast the wetting films are relatively thicker compared to emulsion films, and their thickness depends on the concentration of the AB(n) polymeric surfactant. The steric repulsion of the loops and tails of the polymeric surfactant determine the film thickness of wetting films on a hydrophilic solid surface. For solid surfaces with different degrees of hydrophobicity the wetting films are stable only at high polymer concentrations and low degree of hydrophobicity. Otherwise the films are unstable and rupture. Two types of bilayer emulsion films have been distinguished for the first time. One type is related to the brush-to-brush or loop-to-loop interactions according to De Gennes. The other type is a NBF where the forces are also steric between strongly hydrated brush and loops but they are short-range forces acting in a two

  14. A Regulatory Analysis and Reassessment of U.S. Environmental Protection Agency Listed Hazardous Waste Numbers for Applicability to the INTEC Liquid Waste System

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, K.L.; Venneman, T.E.

    1998-12-01

    This report concludes that there are four listed hazardous waste numbers (F001, F002, F005, and U134) applicable to the waste in the Process Equipment Waste Evaporator (PEWE) liquid waste system at the Idaho National Engineering and Environmental Laboratory. The chemical constituents associated with these listed hazardous waste numbers, including those listed only for ignitability are identified. The RCRA Part A permit application hazardous waste numbers identify chemical constituents that may be treated or stored by the PEWE liquid waste system either as a result of a particular characteristic (40 CFR, Subpart C) or as a result of a specific process (40 CFR 261, Subpart D). The RCRA Part A permit application for the PEWE liquid waste system identifies the universe of Environmental Protection Agency (EPA) hazardous waste numbers [23 characteristic (hazardous waste codes) numbers and 105 listed numbers (four F-listed hazardous waste numbers, 20 P-listed hazardous waste numbers, and 81 U-listed hazardous waste numbers)] deemed acceptable for storage and treatment. This evaluation, however, identifies only listed wastes (and their chemical constituents) that have actually entered the PEWE liquid waste system and would, therefore, be assigned to the PEWE liquids and treatment residuals.

  15. Development and assessment of closure technology for liquid-waste disposal sites

    International Nuclear Information System (INIS)

    Discharge of low-level liquid wastes into soils was practiced previously at the Hanford Site. Technologies for long-term confinement of subsurface contaminants are needed. Additionally, methods are needed to assess the effectiveness of confinement technologies in remediating potentially diverse environmental conditions. Recently developed site remediation systems and assessment methods for in situ stabilization and isolation of radioactive and other contaminants within and below low-level liquid-waste disposal structures are summarized

  16. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    OpenAIRE

    Abdullah Abdullah

    2012-01-01

    The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of ...

  17. The potential of hydrophyte plants for remediation of liquid waste of tapioca factory

    OpenAIRE

    E R Indrayatie; E. Arisoesilaningsih

    2015-01-01

    The potential role of a macrohydrophyte plant (Vetivera zizanioides) and four semihydrophyte plants (Ipomoea aquatica, Cyperus iria, Commelina nudiflora, Oryza sativa) as remediators of liquid waste of tapioca industry was tested in a glasshouse for 35 days under conditions that resemble to wet and polyculture systems. Results showed that all type of plants grew normally on media containing tapioca liquid waste. Total biomass of I. aquatica and polyculture grown in wet conditions were 32.35 g...

  18. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, B. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  19. Evaluation of mercury in liquid waste processing facilities - Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Site (SRS), Aiken, SC (United States); Occhipinti, J. E. [Savannah River Site (SRS), Aiken, SC (United States); Shah, H. [Savannah River Site (SRS), Aiken, SC (United States); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, R. E. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  20. Removal of non aqueous phase liquid liquid (NAPL) from a loam soil monitored by time domain reflectometry (TDR) technique

    Science.gov (United States)

    comegna, alessandro; coppola, Antonio; dragonetti, giovanna; ajeel, ali; saeed, ali; sommella, angelo

    2016-04-01

    Non-aqueous phase liquids (NAPLs) are compounds with low or no solubility with water. These compounds, due to the several human activities, can be accidentally introduced in the soil system and thus constitute a serious geo-environmental problem, given the toxicity level and the high mobility. The remediation of contaminated soil sites requires knowledge of the contaminant distribution in the soil profile and groundwater. Methods commonly used to characterize contaminated sites are coring, soil sampling and the installation of monitoring wells for the collection of groundwater samples. The main objective of the present research is to explore the potential application of time domain reflectometry (TDR) technique in order to evaluate the effect of contaminant removal in a loam soil, initially contaminated with NAPL and then flushed with different washing solutions. The experimental setup consist of: i) a Techtronix cable tester; ii) a three-wire TDR probe with wave guides 14.5 cm long inserted vertically into the soil samples; iii) a testing cell of 8 cm in diameter and 15 cm high; iv) a peristaltic pump for upward injection of washing solution. In laboratory, soil samples were oven dried at 105°C and passed through a 2 mm sieve. Known quantities of soil and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed in order to obtain soil samples with different degrees of contamination. Once a soil sample was prepared, it was repacked into a plastic cylinder and then placed into the testing cell. An upward injection of washing solution was supplied to the contaminated sample with a rate q=1.5 cm3/min, which corresponds to a darcian velocity v=6.0 cm/h. The out coming fluid, from the soil column was collected, then the washing solution and oil was separated. Finally both the amount of oil that was remediated and the dielectric permittivity (measured via TDR) of the contaminated soil sample were recorded. Data collected were employed to implement a

  1. Design of Biochemical Oxidation Process Engineering Unit for Treatment of Organic Radioactive Liquid Waste

    International Nuclear Information System (INIS)

    Organic radioactive liquid waste from nuclear industry consist of detergent waste from nuclear laundry, 30% TBP-kerosene solvent waste from purification or recovery of uranium from process failure of nuclear fuel fabrication, and solvent waste containing D2EHPA, TOPO, and kerosene from purification of phosphoric acid. The waste is dangerous and toxic matter having low pH, high COD and BOD, and also low radioactivity. Biochemical oxidation process is the effective method for detoxification of organic waste and decontamination of radionuclide by bio sorption. The result process are sludges and non radioactive supernatant. The existing treatment facilities radioactive waste in Serpong can not use for treatment of that’s organics waste. Dio chemical oxidation process engineering unit for continuous treatment of organic radioactive liquid waste on the capacity of 1.6 L/h has been designed and constructed the equipment of process unit consist of storage tank of 100 L capacity for nutrition solution, 2 storage tanks of 100 L capacity per each for liquid waste, reactor oxidation of 120 L, settling tank of 50 L capacity storage tank of 55 L capacity for sludge, storage tank of 50 capacity for supernatant. Solution on the reactor R-01 are added by bacteria, nutrition and aeration using two difference aerators until biochemical oxidation occurs. The sludge from reactor of R-01 are recirculated to the settling tank of R-02 and on the its reverse operation biological sludge will be settled, and supernatant will be overflow. (author)

  2. Continuous extraction of uranium from actual uranium-containing liquid wastes using an 'emulsion flow' extractor

    International Nuclear Information System (INIS)

    A newly developed liquid waste treatment system using an 'emulsion flow' extractor has been applied to actual uranium-containing liquid wastes that originated from the decontamination of used gas centrifuges at Ningyo-toge Environmental Engineering Center of Japan Atomic Energy Agency. The emulsion flow extractor performs efficient liquid-liquid extraction by supplying solutions without additional stirring or shaking. The solvent used in this system is an isooctane solution containing TnOA and 1-octanol, which is effective in the selective extraction of uranium, without the formation of the third phase, from dilute sulfuric acid solutions containing a large amount of Fe. With the use of this system, 90% or more of uranium is extracted from actual and simulated decontamination liquid wastes under such mild emulsion flow conditions that fine drops of organic phases do not leak outside the apparatus. (author)

  3. Laboratory performance testing of an extruded bitumen containing a surrogate, sodium nitrate-based, low-level aqueous waste

    International Nuclear Information System (INIS)

    Laboratory results of a comprehensive regulatory performance test program, using an extruded bitumen and a surrogate, sodium nitrate-based waste, have been compiled at the Oak Ridge National Laboratory (ORNL). The testing has shown that the relatively viscous form of oxidized bitumen that was used has been able to meet all performance requirements. Using a 53-mm Werner and Pfleiderer extruder, operated by personnel of WasteChem Corporation of Paramus, New Jersey, laboratory-scale, molded samples of ASTM D312, type III, air-blown bitumen were prepared for laboratory performance testing. A surrogate, low-level, mixed liquid waste, formulated to represent an actual on-site waste at ORNL, was used. The mixed liquid waste contained approximately 30 wt % sodium nitrate, in addition to eight heavy metals, cold cesium, and strontium. Samples tested contained three levels of waste loading: that is, 40, 50, and 60 wt % salt. Performance test results include the 90-day American Nuclear Society (ANS) 16.1 leach test, with leach indices reported for all cations and anions, in addition to the EP toxicity test, at all levels of waste loading. Additionally, test results presented include the unconfined compressive strength and surface morphology utilizing scanning electron microscopy (SEM). Data presented include correlations between waste form loading and test results, in addition to their relationship to regulatory performance requirements

  4. Dewatering of liquid radioactive wastes in thin-film rotary evaporators

    International Nuclear Information System (INIS)

    A sizable amount of liquid radioactive waste of different levels of radioactivity is formed during the operation of an atomic power plant and during reprocessing of spent nuclear fuel. Current concepts for handling such wastes require reliable isolation of them from the biosphere. At present, bituminization and cementation for medium- and low-level liquid radioactive waste and vitrification for high- and perhaps medium-level liquid radioactive waste are considered promising methods of waste disposal. Solidification can be implemented in a one- or a two-stage process. In the one-stage process, liquid radioactive wastes are fed together with glass-forming additives into a melter (an electric furnace, a crucible furnace, etc.), where they are successively put through dewatering, calcination, and melting with the formation of glassy materials. Implementation of the two-stage process leads to some complication of the process flow diagram, but allows a reduction of the dimensions of basic equipment and makes possible remote replacement and repair of the equipment. The object of this work was to study the possibility of using a thin-film rotary evaporator in the first stage of the liquid radioactive waste solidification process (bituminization, cementation, vitrification), to give an evaluation of the effect of process parameters on process stability and on the physical and chemical characteristics of the concentrates produced

  5. Characterization of complex non-aqueous phase liquids (NAPLs) in the subsurface environment: partitioning and interfacial tracer tests and numerical dissolution assessment

    OpenAIRE

    Piepenbrink, Matthias

    2007-01-01

    Contamination of the subsurface environment by complex organic non-aqueous phase liquids (NAPLs) and the resulting release of carcinogenic or mutagenic organic compounds impose a serious risk on groundwater quality. Due to the low aqueous solubilities of the individual organic components the rate of mass transfer from the non-aqueous phase to the water phase is very slow, thus NAPL source zones typically represent long-term contamination problems with organic compounds leaching into the...

  6. Density and sound speed study of hydration of 1-butyl-3-methylimidazolium based amino acid ionic liquids in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Apparent and partial molar volumes of aqueous AAILs at T = (293.15 to 313.15) K. • Isothermal and adiabatic compressibilities of AAILs in aqueous solution at T = 298.15 K. • Method for direct estimation of hydration numbers due to electrostriction is given. • Internal pressure and hydration numbers for AAILs at T = 298.15 K. • Results obtained demonstrate kosmotropic behavior of AAILs. - Abstract: Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, L-alanine, L-valine, L-leucine and L-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in

  7. Tandem Extraction/Liquid Chromatography-Mass Spectrometry Protocol for the Analysis of Acrylamide and Surfactant-related Compounds in Complex Aqueous Environmental Samples

    Science.gov (United States)

    The development of a liquid chromatography‐mass spectrometry (LC‐MS)‐based strategy for the detection and quantitation of acrylamide and surfactant‐related compounds in aqueous complex environmental samples.

  8. Low-cost adsorbents from bio-waste for the removal of dyes from aqueous solution.

    Science.gov (United States)

    Manoj Kumar Reddy, P; Mahammadunnisa, Sk; Ramaraju, B; Sreedhar, B; Subrahmanyam, Ch

    2013-06-01

    Activated carbons (ACs) were developed from bio-waste materials like rice husk and peanut shell (PS) by various physicochemical activation methods. PS char digested in nitric acid followed by treatment at 673 K resulted in high surface area up to ∼585 m(2)/g. The novelty of the present study is the identification of oxygen functional groups formed on the surface of activated carbons by infrared and X-ray photoelectron spectroscopy and quantification by using temperature programmed decomposition (TPD). Typical TPD data indicated that each activation method may lead to varying amounts of acidic and basic functional groups on the surface of the adsorbent, which may be a crucial factor in determining the adsorption capacity. It was shown that ACs developed during the present study are good adsorbents, especially for the removal of a model textile dye methylene blue (MB) from aqueous solution. As MB is a basic dye, H(2)O(2)-treated rice husk showed the best adsorption capacity, which is in agreement with the acidic groups present on the surface. Removal of the dye followed Langmuir isotherm model, whereas MB adsorption on ACs followed pseudo-second-order kinetics. PMID:23233187

  9. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions.

    Science.gov (United States)

    Usman, Adel R A; Ahmad, Mahtab; El-Mahrouky, Mohamed; Al-Omran, Abdulrasoul; Ok, Yong Sik; Sallam, Abdelazeem Sh; El-Naggar, Ahmed H; Al-Wabel, Mohammad I

    2016-04-01

    Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg(-1) predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m(2) g(-1)) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar. PMID:26100325

  10. Removal of hexavalent chromium from aqueous solution by agricultural waste biomass

    International Nuclear Information System (INIS)

    In the present study adsorption of Cr(VI) from aqueous solutions onto different agricultural wastes, viz., sugarcane bagasse, maize corn cob and Jatropha oil cake under various experimental conditions has been studied. Effects of adsorbent dosage, Cr(VI) concentration, pH and contact time on the adsorption of hexavalent chromium were investigated. The concentration of chromium in the test solution was determined spectrophotometrically. FT-IR spectra of the adsorbents (before use and after exhaustion) were recorded to explore number and position of the functional groups available for the binding of chromium ions on to studied adsorbents. SEMs of the adsorbents were recorded to explore the morphology of the studied adsorbents. Maximum adsorption was observed in the acidic medium at pH 2 with a contact time of 60 min at 250 rpm stirring speed. Jatropha oil cake had better adsorption capacity than sugarcane bagasse and maize corn cob under identical experimental conditions. The applicability of the Langmuir and Freundlich adsorption isotherms was tested. The results showed that studied adsorbents can be an attractive low cost alternative for the treatment of wastewaters in batched or stirred mode reactors containing lower concentrations of chromium

  11. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    International Nuclear Information System (INIS)

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  12. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste

    Science.gov (United States)

    Sharma, Pankaj; Kaur, Harleen

    2011-12-01

    Present study explores the potentiality of locally available cellulose, hemicellulose and lignin-rich agricultural by-product sugarcane bagasse (SB) for the removal of erythrosin B (EB) and methylene blue (MB) from aqueous waste. The SB has been characterized by Fourier transform infrared and scanning electron microscopy analytical techniques. Batch experiments have been carried out to determine the influence of parameters like initial dye concentration, pH of the medium, contact time between the adsorbate and adsorbent, weight of adsorbent and system temperature on the removal of EB and MB. Optimum conditions for adsorption are found to be pH 9, temperature 308 K and an equilibration time of 1 h. Under these conditions equilibrium isotherms have been analysed by Langmuir and Freundlich isotherm equations. Based on the Langmuir adsorption isotherm model, the predicted maximum monolayer adsorption capacities of SB for EB and MB are found to be 500 mg g-1 (at 328 K) and 1,000 mg g-1 (at 308 K), respectively. The separation factor reveals the favourable nature of the isotherm for the studied dyes—SB system. The thermodynamic study indicates that the adsorptions of dyes are spontaneous and endothermic process. High temperatures favour EB adsorption whereas optimum temperature for MB adsorption is 318 K.

  13. Bioadsorption of a reactive dye from aqueous solution by municipal solid waste

    Directory of Open Access Journals (Sweden)

    Abdelkader Berrazoum

    2015-09-01

    Full Text Available The biosorbent was obtained from municipal solid waste (MSW of the Mostaganem city. Before use the MSW was dried in air for three days and washed several times. The sorption of yellow procion reactive dye MX-3R onto biomass from aqueous solution was investigated as function of pH, contact time and temperature. The adsorption capacity of MX-3R was 45.84 mg/g at pH 2–3 and room temperature. MX-3R adsorption decreases with increasing temperature. The Langmuir, Freundlich and Langmuir–Freundlich adsorption models were applied to describe the related isotherms. Langmuir–Freundlich equation has shown the best fitting with the experimental data. The pseudo first-order, pseudo second-order and intra-particle diffusion kinetic models were used to describe the kinetic sorption. The results clearly showed that the adsorption of MX-3R onto biosorbent followed the pseudo second-order model. The enthalpy (ΔH°, entropy (ΔS° and Gibbs free energy (ΔG° changes of adsorption were calculated. The results indicated that the adsorption of MX-3R occurs spontaneously as an exothermic process.

  14. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by 1H nuclear magnetic resonance (1H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared spectroscopy (FT

  15. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xueqin; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-01

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared

  16. Stabilization of liquid low-level and mixed wastes: a treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  17. Liquid radioactive wastes characterizing obtained of 99 Mo production by fission

    International Nuclear Information System (INIS)

    Among its facilities, the National Atomic Energy Commission of Argentina has a 99 Mo by Fission Production Plant, which generates, among others, low and medium activity liquid waste. The characterization of the waste aims at obtaining the array of data that is necessary to carry out the processed which lead to obtain an acceptable product for its storage and final disposal. The Analytical Chemistry Laboratory faced the development, adjustment and execution of the necessary analytical procedures to achieve the physico-chemical characterization of the main liquid waste. Given the complexity and activity of the waste, high sensitivity instrumental analytical techniques were chose and the equipment was adapted to work in radiochemical hoods. In a first stage, simulated solutions were used in order to adjust the methods and techniques and to carry out studies about interference and results statistics. Afterwards, physico-chemical analysis were performed on real waste samples yielding satisfactory results as regards precision required for this kind of waste. (author)

  18. The incorporation of low and medium level radioactive wastes (solids and liquids) in cement

    International Nuclear Information System (INIS)

    The use of cement has been investigated for the immobilization of liquid and solid low and medium level radioactive waste. 220 litre mixing trials have demonstrated that the high temperatures generated during the setting of ordinary Portland cement/simulant waste mixes can be significantly reduced by the use of a blend of ground granulated blast furnace slag and ordinary Portland cement. Laboratory and 220 litre trials using simulant wastes showed that the blended cement gave an improvement in properties of the cemented waste product, e.g. stability and reduction in leach rates compared with ordinary Portland cement formulations. A range of 220 litre scale mixing systems for the incorporation of liquid and solid wastes in cement was investigated. The work has confirmed that cement-based processes can be used for the immobilization of most types of low and medium level waste

  19. Liquid-liquid transfer phenomena studies coupled with redox reactions: back-extraction of nitrous acid in the presence of scavengers in aqueous phase

    International Nuclear Information System (INIS)

    This work deals with the investigation of redox reaction contribution to the kinetics of liquid-liquid transfer, in relation with PUREX reprocessing of spent nuclear fuel. The chemical system chosen concerns the tripping of nitrous acid from tributylphosphate organic phase into a nitric acid aqueous solution containing an 'anti-nitrous' component, namely hydrazinium nitrate. According to the abundant literature, a major attention is devoted to the very important role of interfacial phenomena on the kinetics of solvent extraction with tributylphosphate. Although, a suitable experimental technique is chosen, using a constant interfacial area cell of the ARMOLLEX-type. Furthermore, the effects of the hydrodynamical and the physico-chemical parameters on the extraction rate led to the identification of the extraction regime nature: diffusional, then chemical limitation. When no 'anti-nitrous' component is used, the diffusional resistance is found to be mainly located in the aqueous diffusion layer. The presence of hydrazinium nitrate into the aqueous solution has an overall accelerating effect on the rate of extraction, related to both a complete suppression of the aqueous diffusional resistance, and a very significant enhancement of the interfacial transfer of the nitrous acid, as a function of hydrazinium concentration. If the first effect could be expected because of the well known fast redox reaction in aqueous phase, the second phenomenon represents a quite original and new result which has never been explored before, to the best of our knowledge. A reaction mechanism is postulated and validated, taking into account the reactive effect of hydrazinium on the interfacial step. In order to support the drawn general patterns, different complementary studies were attempted. When hydroxyl-ammonium nitrate is used, a surprising interfacial transfer blockage is observed, pointing out the extreme performance and specificity of the common hydrazinium component. (author)

  20. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing; Biodegradacao de rejeitos radioativos liquidos organicos provenientes do reprocessamento do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua

    2008-07-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  1. Influence of Temperature on Induction Period of Denitration During Concentration of Radioactive Acid Liquid Waste

    Institute of Scientific and Technical Information of China (English)

    YANG; Hui; LI; Chuan-bo; YAN; Tai-hong; ZHENG; Wei-fang

    2013-01-01

    To minimize the volume of waste and recycle nitric acid,the high-and middle-level radioactive liquid waste from reprocessing plant need to be concentrated and de-nitrated,and formic acid and formaldehyde are widely applied as denitration agents.Temperature can affect the induction period of denitration reaction and the safety of process.

  2. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    Science.gov (United States)

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  3. Electrical resistivity for detecting subsurface non-aqueous phase liquids: A progress report

    International Nuclear Information System (INIS)

    Soils and groundwater have been contaminated by hazardous substances at many places in the United States and many other countries. The contaminants are commonly either petroleum products or industrial solvents with very low solubility in water. These contaminants are usually called non-aqueous phase liquids (NAPLs). The cost of cleaning up the affected sites in the United States is estimated to be of the order of 100 billion dollars. In spite of the expenditure of several billion dollars during the last 15 years, to date, very few, if any major contaminated site has been restored. The presence of NAPL pools in the subsurface is believed to be the main cause for the failure of previous cleanup activities. Due to their relatively low water solubility, and depending on their volume, it takes tens or even hundreds of years to deplete the NAPL sources if they are not removed from the subsurface. The intrinsic electrical resistivity of most NAPLs is typically in the range of 107 to 1012Ω-m, which is several orders of magnitude higher than that of groundwater containing dissolved solids (usually in the range of a few Ω-m to a few thousand Ω-m). Although a dry soil is very resistive, the electrical resistivity of a wet soil is on the order of 100 Ω-m and is dependent on the extent of water saturation. For a given soil, the electrical resistivity increases with decrease of water saturation. Therefore, if part of the pore water is replaced by a NAPL, the electrical resistivity will increase. At many NAPL sites, both the vadose and phreatic zones can be partially occupied by NAPL pools. It is the great contrast in electrical resistivity between the NAPLs and groundwater that may render the method to be effective in detecting subsurface NAPLs at contaminated sites. The following experiments were conducted to investigate the change of the electrical resistivity of porous media when diesel fuel (NAPL) replaces part of the water

  4. Adsorption of Hexavalent Chromium from Aqueous Solution Using Chemically Activated Carbon Prepared from Locally Available Waste of Bamboo (Oxytenanthera abyssinica)

    OpenAIRE

    Dula, Tamirat; Siraj, Khalid; Kitte, Shimeles Addisu

    2014-01-01

    This study reports on the adsorption of Hexavalent Chromium from aqueous solutions using activated carbon prepared from bamboo (Oxytenanthera abyssinica) waste by KOH activation heating in an electrical furnace at 1073 K for 3 hrs. Batch adsorption experiments were also carried out as a function of pH, contact time, initial concentration of the adsorbate, adsorbent dosage, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order k...

  5. 327 Building liquid waste handling options modification project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  6. Sorption-reagent materials in liquid radioactive waste management

    International Nuclear Information System (INIS)

    One of the factors causing ecological problems at nuclear power units functioning is a large quantity of liquid radioactive waste (LRW) formed. LRW treatment and, in particular, removal of long-lived radionuclides comprise a serious problem from the ecological safety point of view. Good prospects of using selective sorbents and new sorption-reagent materials (SRM) developed in the Institute of Chemistry (Far East Department, Russian Academy of Sciences) in LRW management have been shown. Mechanism of sorption and factors affecting the strontium sorption efficiency has been analyzed with using SRM on the basis of inorganic hydroxides as an example. The principal difference between sorption-reagent systems (SRS) and other sorbents is that in the former, simultaneously with ion exchange reactions, takes place the formation of insoluble precipitate inside the sorbent porous matrix. This process results in increasing selectivity of strontium removal from high-salinity solutions. Such a mechanism combining ion exchange and chemical reactions (RIEX) enables one to benefit on precipitation process advantages (removal of radionuclide non-ionic forms) without excessive complication of the process technological setup at large. It is possible to use SRM successfully in the simplest and the best in economical terms dynamic regime (filtration of solution through a stationary sorbent layer). Application of SRM in real LRW management is considered on the example of pilot-plant tests of the sorption installation Barrier at the Russian Pacific Navy facilities and LRW decontamination unit used at decommissioned nuclear submarines. Technological setups and test results are presented. They show that use of sorption-reagent materials enables one to achieve LRW decontamination factors up to 106 and, therefore, provide a reliable decontamination of LRW from submarines to be decommissioned. (Author)

  7. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area

  8. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  9. Estimated Hanford liquid waste chemical inventory as of March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1976-06-01

    The dilute liquid wastes at Hanford comprise a volume of 4.4 million gallons. The liquid contains 51.8 x 10/sup 6/ gram moles (8.8 x 10/sup 6/ pounds) of sodium salts and 3.2 megacuries of /sup 137/Cs. 10 tables.

  10. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    Science.gov (United States)

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method. PMID:25381609

  11. Electrochemical, computational and spectroscopic investigation on local environment of plutonium in ionic liquid and aqueous medium. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Arijit; Murali, Mallekav S.; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre Trombay, Mumbai (India). Radiochemistry Div.; Ali, Sk. Musharaf; Shenoy, Kalsanka Trivikram [Bhabha Atomic Research Centre Trombay, Mumbai (India). Chemical Engineering Div.

    2016-07-01

    With an aim to understand the nature of species, cyclic voltammetry (CV) of Pu(IV) in dilute HBr and in a room temperature ionic liquid (RTIL), 1-octyl-3-methylimidazolium bromide (C{sub 8}mimBr) was carried out. Shifts of cathodic and anodic peak potentials of Pu(IV) cyclic voltammograms were observed towards negative potentials in the extended electrochemical window for ionic liquid medium compared to 2 M HBr. The diffusion coefficient of the most likely species of Pu(IV) in aqueous medium was found to be greater than that of the corresponding species in ionic liquid while the activation energy showed reverse trend. The Pu(IV)/Pu(III) redox reaction was found to be exothermic in aqueous medium while it was endothermic in C{sub 8}mimBr. The redox reaction was found to be quasi reversible for both the media while the extent of irreversibility was more in ionic liquid. UV-Vis spectroscopy of Pu in these media showed significant differences in the peak positions and their relative intensities, indicating the possible differences in the interactions of Pu(IV) with the solvent molecules resulting in speciation differences. A new prominent peak was observed in RTIL which could be for a new species of Pu(IV). Computational studies were also carried out to understand the solvation of Pu and the possibility of thermodynamic conversion from Pu(IV) to Pu(III).

  12. Electrochemical, computational and spectroscopic investigation on local environment of plutonium in ionic liquid and aqueous medium. A comparative study

    International Nuclear Information System (INIS)

    With an aim to understand the nature of species, cyclic voltammetry (CV) of Pu(IV) in dilute HBr and in a room temperature ionic liquid (RTIL), 1-octyl-3-methylimidazolium bromide (C8mimBr) was carried out. Shifts of cathodic and anodic peak potentials of Pu(IV) cyclic voltammograms were observed towards negative potentials in the extended electrochemical window for ionic liquid medium compared to 2 M HBr. The diffusion coefficient of the most likely species of Pu(IV) in aqueous medium was found to be greater than that of the corresponding species in ionic liquid while the activation energy showed reverse trend. The Pu(IV)/Pu(III) redox reaction was found to be exothermic in aqueous medium while it was endothermic in C8mimBr. The redox reaction was found to be quasi reversible for both the media while the extent of irreversibility was more in ionic liquid. UV-Vis spectroscopy of Pu in these media showed significant differences in the peak positions and their relative intensities, indicating the possible differences in the interactions of Pu(IV) with the solvent molecules resulting in speciation differences. A new prominent peak was observed in RTIL which could be for a new species of Pu(IV). Computational studies were also carried out to understand the solvation of Pu and the possibility of thermodynamic conversion from Pu(IV) to Pu(III).

  13. Recovery of uranium from UCF liquid waste by anion exchange resin CG-400: Breakthrough curves, elution behavior and modeling studies

    International Nuclear Information System (INIS)

    Highlights: ► Amberlite CG-400 anion exchange resin has been used for the recovery of uranium. ► The breakthrough curves and elution behaviors of CG-400 resin have been studied in detailed. ► The mathematical models have been used to analyze the experimental data. ► The CG-400 resin has been applied successfully for uranium recovery from UCF liquid waste. - Abstract: Continuous fixed-bed column studies were carried out by using Amberlite CG-400 anion exchange resin for the recovery of uranium from aqueous solutions (synthetic solutions and uranium conversion facility (UCF) liquid waste). Effects of operating parameters such as flow rate and bed height were studied. The breakthrough capacity decreases with increasing flow rate, but this dependence was not significant with a long column. The maximum breakthrough capacity of uranium ions were achieved by CG-400 resin at a flow rate of 0.2 mL min−1 and bed height 9.1 cm (4 g resin). The elution behavior of uranium from CG-400 resin by various eluents have been investigated and the results show that 0.5 mol L−1 HNO3 is a good eluent for uranium recovery. The Adams–Bohart, Thomas, Yoon–Nelson and Dose–Response models were applied to the experimental data to determine the characteristic parameters of the column for process design using linear regression. The breakthrough curve calculated from the Dose–Response model was in best agreement with the experimental data

  14. Remotely operated organic liquid waste incinerator for the fuels and materials examination facility

    International Nuclear Information System (INIS)

    The search for a practical method for the disposal of small quantities of oraganic liquid waste, a waste product of metallographic sample preparation at the Fuels and Materials Examination Facility has led to the design of an incinerator/off-gas system to burn organic liquid wastes and selected organic solids. The incinerator is to be installed in a shielded inert-atmosphere cell, and will be remotely operated and maintained. The off-gas system is a wet-scrubber and filter system designed to release particulate-free off-gas to the FMEF Building Exhaust System

  15. Experimental tests performed with liquid waste contained in the tank F-710/D at EUREX plant

    International Nuclear Information System (INIS)

    In this report the result of experimental test performed with real liquid waste earning from reprocessing of MTR nuclear fuel is reported. The aim of the research is to separate the actinides and long-lived radioactive fission products from bulk salt matrix of HLW. Taking into account the chemical and radiochemical composition of the liquid waste, process based on the chemical precipitation and/or adsorption were studied by using the radioactive waste sampled from the tank. The results show that decontamination factors of 100, 1000, 5000 were obtained for Sr, Cs and Pu respectively. (author)

  16. Advanced solvent extraction and ion-exchange processes for the treatment of low and medium level liquid waste

    International Nuclear Information System (INIS)

    Exhaustive decontamination of three important heat generating and/or alpha bearing liquid wastes for decategorization purposes was investigated through the implementation of neutral bifunctional or macrocyclic extractants (CMPO or crown-ethers) using liquid-liquid solvent extraction, supported liquid membranes or extraction chromatography techniques. Suspended bed columns filled with very specific inorganic ion exchangers like ammonium molybdophosphate were also tested. Improvement of volume reduction techniques for radioactive liquid waste focused on the development and scaling-up of electrochemical ion exchange which demonstrated good capabilities to treat a wide range of radioactive liquid wastes

  17. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey

    International Nuclear Information System (INIS)

    Liquid radioactive waste has been generated from the use of radioactive materials in industrial applications, research and medicine in Turkey. Natural zeolites (clinoptilolite) have been studied for the removal of several key radionuclides (137Cs, 60Co, 90Sr and 110mAg) from liquid radioactive waste. The aim of the present study is to investigate effectiveness of zeolite treatment on decontamination factor (DF) in a combined process (chemical precipitation and adsorption) at the laboratory tests and scale up to the waste treatment plant. In this study, sorption and precipitation techniques were adapted to decontamination of liquid low level waste (LLW). Effective decontamination was achieved when sorbents are used during the chemical precipitation. Natural zeolite samples were taken from different zeolite formations in Turkey. Comparison of the ion-exchange properties of zeolite minerals from different formations shows that Gordes clinoptilolite was the most suitable natural sorbent for radionuclides under dynamic treatment conditions and as an additive for chemical precipitation process. Clinoptilolite were shown to have a high selectivity for 137Cs and 110mAg as sorbent. In the absence of potassium ions, native clinoptilolite removed 60Co and 90Sr very effectively from the liquid waste. In the end of this liquid waste treatment, decontamination factor was provided as 430 by using 0.5 mm clinoptilolite at 30 deg. C

  18. Application of Waste Liquids Containing Lignin from Pulp-producing Industry to CWM Preparation

    Institute of Scientific and Technical Information of China (English)

    HUANG Ding-guo; TADAHIRO Murakata; TAKESHI Higuchi; SHIMIO Sato

    2004-01-01

    Three kinds of craft waste liquids, which are by-products in the pulp industry and contain much lignin,were used as dispersing additives for preparing Horonai coal CWM (coal water mixture). The experiments showed that the CWM exhibited the lowest viscosity when it was diluted with an appropriate amount of water with the waste eiquids added. The experiments also indicated that the maximum coal concentration in the 62.5% (mass fraction), and 56.5% is the maximum coal mass fraction of the CWM prepared without additives. These data show the effectiveness of the waste liquids as the additives for preparing CWMs. The zeta potential of coal particles in the CWMs changed with the addition of lignin. From the change, the steric repulsion effect of the lignin adsorbed on the coal particles is concluded to be mainly responsible for the CWM dispersion. The waste liquids contain less sulfur than PSSNa(polystyrene sulfonate sodium salt), a typical dispersant which is currently used for preparing the commercial CWM, when the sulfur content in the unit mass of the solid matters within the waste liquids is compared with that in unit mass of PSSNa. This fact suggests that the waste liquids are more advantageous than PSSNa as far as air pollutants are concerned.

  19. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  20. Oak Ridge National Laboratory Liquid and Gaseous Waste Treatment System Strategic Plan

    International Nuclear Information System (INIS)

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES and H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission

  1. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2012-01-01

    Full Text Available The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of lactic acid were performed at 40 oC, pH 6, 5% inocolum and  50 rpm. Initially  results show that the liquid pineapple waste by  using Lactobacillus delbrueckii can be used as carbon source  for lactic acid fermentation. The production of lactic acid  are found to be 79 % yield, while only  56% yield was produced by using solid waste

  2. Method of processing radioactive liquid wastes derived from organic-chemical decontaminating agents

    International Nuclear Information System (INIS)

    Purpose: To process radioactive liquid wastes of organic-chemical decontaminating agents after being used for the decontamination of tanks, pipeways, pumps or like other equipments contaminated with radioactive materials in nuclear power plants. Method: Radioactive liquid wasted derived from decontaminating agents mainly composed of organic acids such as citric acid, formic acid, oxalic acid, hydroxyl acetic acid, ascorbic acid and gluconic acid are at first processed in a filter comprising porous filtering membranes, to eliminate suspended materials containing claddings not dissolved in the liquid wastes. As the porous filtering membranes, hollow thread filtering membranes, ceramic filters, sintered metal membranes, metal mesh filters or the likes may be used, the back-wash type hollow thread porous polymeric membranes being preferred. Then, the organic mateirals are effectively decomposed into gaseous dioxide and water through photolysis while blowing ozone under the irradiation of UV-rays to thereby decrease the amount of radioactive wastes significantly. (Kamimura, M.)

  3. Mock-up test of the high level liquid waste solidification rpcess (1st campaign)

    International Nuclear Information System (INIS)

    In the Power Reator and Nuclear Fuel Development Corporation (PNC), plans are in progress for the completion of a pilot plant for the glass solidification of liquid-wastes in fiscal 1987, intended for the high-level liquid wastes from the fuel reprocessing plant of PNC. The mock-up test facility for this pilot plant is for grasping the operating characteristics of the process and the development of the remote operation and maintenance techniques. The test facility is composed of the stages of liquid waste pretreatment, glass material feed, glass melting, off-gas treatment, canister handling, and secondary-waste treatment. The following matters are described: mock-up test building, process constitution, machinery arrangement, operation control, test plans, and operation test results (1st campaign: pretreatment/off-gas treatment, and glass melting). (Mori, K.)

  4. Developing technologies for conditioning the liquid organic radioactive wastes from Cernavoda NPP

    International Nuclear Information System (INIS)

    The Institute for Nuclear Research (INR)-Pitesti has developed technologies for conditioning liquid organic radioactive wastes (oils, miscellaneous solvent and liquid scintillation cocktail) for Cernavoda NPP. This paper describes the new and viable solidification technology to convert liquid organic radioactive wastes into a stable monolithic form, which minimizes the probability to release tritium in the environment during interim storage, transportation and final disposal. These are normally LLW containing only relatively small quantities of beta/gamma emitting radionuclides and variable amounts of tritium with activity below E+08Bq/l. The INR research staff in the radwaste area developed treatment/conditioning techniques and also designed and tested the containers for the final disposal, following the approach in the management of radwaste related to the nuclear fuel cycle. Thus, the INR focused this type of activity on treating and conditioning the wastes generated at Cernavoda Nuclear Power Plant consisting of lubricants from primary fuelling machines and turbine, the miscellaneous solvent from decontamination operation and the liquid scintillation cocktail used in radiochemical analysis. Laboratory studies on cementation of liquid organic radioactive wastes have been undertaken at INR Pitesti. One simple system, similar to a conventional cement solidification unit, can treat radioactive liquid wastes, which are the major components of low- and medium-level radioactive wastes generated by a Nuclear Power Plant. It was proved that the solidified waste could meet the Waste Acceptance Criteria of the disposal site, in this case Baita-Bihor National Repository, as follows: - The wastes are deposited in type A packages; - The maximum expected quantities of this waste stream that will be produced in the future are 50 drums per year. The maximum specific tritium activity per drum is 109 Bq/m3; - Compressive strengths of the samples should be greater than 50 MPa (500

  5. Biosorption of Am-241 and Cs-137 by radioactive liquid waste by coffee husk

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua; Sakata, Solange Kazumi; Bellini, Maria Helena; Marumo, Julio Takehiro, E-mail: jtmarumo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Radioactive Waste Management Laboratory of Nuclear and Energy Research Institute, IPEN-CNEN/SP, has stored many types of radioactive liquid wastes, including liquid scintillators, mixed wastes from chemical analysis and spent decontamination solutions. These wastes need special attention, because the available treatment processes are often expensive and difficult to manage. Biosorption using biomass of vegetable using agricultural waste has become a very attractive technique because it involves the removal of heavy metals ions by low cost biossorbents. The aim of this study is to evaluate the potential of the coffee husk to remove Am-241 and Cs-137 from radioactive liquid waste. The coffee husk was tested in two forms, treated and untreated. The chemical treatment of the coffee husk was performed with HNO{sub 3} and NaOH diluted solutions. The results showed that the coffee husk did not showed significant differences in behavior and capacity for biosorption for Am-241 and Cs-137 over time. Coffee husk showed low biosorption capacity for Cs-137, removing only 7.2 {+-} 1.0% in 4 hours of contact time. For Am-241, the maximum biosorption was 57,5 {+-} 0.6% in 1 hours. These results suggest that coffee husk in untreated form can be used in the treatment of radioactive waste liquid containing Am-241. (author)

  6. Determination of aromatic amines in aqueous extracts of polyurethane foam using hydrophilic interaction liquid chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    A method is presented for the determination of aromatic amines in aqueous extracts of polyurethane (PUR) foam. The method is based on the extraction of PUR foam using aqueous acetic acid (0.1%, w/v) followed by determination of extracted aromatic amines using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) with positive electrospray ionisation. The injections of volumes up to 5 μL of aqueous solutions were made possible by on-column focusing with partially filled loop injections. The fragmentation patterns for 2,4- and 2,6-toluene diamine (TDA) and 4,4'-methylene dianiline (MDA) were clarified by performing a hydrogen-deuterium exchange study. TDA and MDA were determined using trideuterated 2,4- and 2,6-TDA and dideuterated 4,4'-MDA as internal standards. Linear calibration graphs were obtained over the range 0.025-0.5 μg mL-1 with correlation coefficients >0.996 and the instrumental detection limit for each compound was <50 fmol. The stability of the amines was influenced by the matrix, so their concentrations decreased over time. Agreement was observed between the results of analyses of PUR foam extracts by HILIC-MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) liquid chromatography-mass spectrometry (LC-MS/MS). TDA was observed to be unstable in extracts of foam but not in pure solutions.

  7. Conversion of Mixed Plastic Wastes (High Density Polyethylene and Polypropylene) into Liquid Fuel

    International Nuclear Information System (INIS)

    In this study, mixed plastic wastes were converted into liquid fuels. Mixed plastic wastes used were high density polyethylene (HDPE) and polypropylene (PP). The pyrolysis of mixed plastic waste to liquid fuel was carried out with and without prepared zeolite catalyst.The catalyst was characterized by X-ray Diffraction (XRD). This catalyst was pre-treated for activation. The experiments were carried out at temperature range of 350-410C.Physical properties (density, kinematic, viscosity,refractive index)of prepared liquid fuel samples were measured. From this study, yields of liquid fuel and gas fuel were found to be 41-64% and 15-35% respectively. As for by products, char was obtained as the yield percentages from 9 to 14% and wax (yield% - 1 to 14) was formed during pyrolysis.

  8. New Standards in Liquid Waste Treatment at Fukushima Dai-ichi - 13134

    International Nuclear Information System (INIS)

    The earthquake and tsunami on March 11, 2011 severely damaged the Fukushima Dai-ichi nuclear plant leading to the most severe nuclear incident since Chernobyl. Ongoing operations to cool the damaged reactors at the site have led to the generation of highly radioactive coolant water. This is currently mainly treated to remove Cs-137 and Cs-134 and passed through a reverse osmosis (RO) unit to reduce the salinity before being cycled back to the reactors. Because only the Cs isotopes are removed, the RO reject water still contains many radioactive isotopes and this has led to the accumulation of over 200,000 cubic meters (52 million gallons) of extremely contaminated water which is currently stored on site in tanks. EnergySolutions, in partnership with Toshiba, were contracted to develop a system to reduce 62 isotopes in this waste down to allowable levels. This was a significant technical challenge given the high background salt content of the wastewater, the variation in aqueous chemistry of the radioactive isotopes and the presence of non-active competing ions (e.g. Ca and Mg) which inhibit the removal of isotopes such as Sr-89 and Sr-90. Extensive testing was performed to design a suitable system that could meet the required decontamination goals. These tests were performed over a 6 month period at facilities available in the nearby Fukushima Dai-ni laboratory using actual waste samples. This data was then utilized to design a Multi Radioactive Nuclides Removal System (MRRS) for Fukushima which is a modified version of EnergySolutions' proprietary Advanced Liquid Processing System (ALPS)'. The stored tank waste is fed into a preliminary precipitation system where iron flocculation is performed to remove a number of isotopes, including Sb-125, Ru-106, Mn-54 and Co-60. The supernatant is then fed into a second precipitation tank where the pH is adjusted and the bulk of the Mg, Ca and Sr precipitated out as carbonates and hydroxides. After passing through a cross

  9. Solidification of liquid waste from the Freon based dry cleaning process

    International Nuclear Information System (INIS)

    The operating license of the BNPD-S radioactive waste management facility does not permit the storage of radioactive liquids. Samples of Freon based waste have been analyzed and two solidification methods for these samples were investigated in this work. Waste from the commissioning of the dry cleaning facility contains in excess of 96% Freon 113 and it is recommended that this waste be redistilled to recover the Freon. The preferred immobilization technique involves absorption of the waste into a porous medium. This should be adequate for storage purposes. When disposal facilities are available and if the activity of the waste is measurable then the mixture together with its container can be encapsulated in cement. Incineration of the waste is expected to produce corrosive gases as a result of the thermal decomposition of Freon 113 and is not recommended unless the Freon content can be substantially reduced

  10. Technology of processing liquid radioactive wastes at the help of mobile modular installation

    International Nuclear Information System (INIS)

    The design of mobile modular installation for liquid radioactive waste processing directly at nuclear facility sites is described. The principle arrangement of the modules for waste purification in transport and working variants, as well as the general process scheme of liquid waste processing are considered. The cementation technique is suggested to be applied as the method for waste solidification. The applicability of metal tanks with capacity of 200 litre and concrete containers for solidified waste storage is discussed. It is emphasized that the facility modular structure allows to make corrections in the set and number of the block used directly on a site where the works are conducted. The present design gives an opportunity to put the facility into operation and modify its separate components in parts, when it is necessary

  11. Ultrasound-assisted dispersive liquid-liquid microextraction plus simultaneous silylation for rapid determination of salicylate and benzophenone-type ultraviolet filters in aqueous samples.

    Science.gov (United States)

    Wu, Jen-Wen; Chen, Hsin-Chang; Ding, Wang-Hsien

    2013-08-01

    A rapid procedure, using minimal amounts of solvent, for the reliable determination of five salicylate and benzophenone-type ultraviolet (UV) filters: ethylhexyl salicylate (EHS), 3,3,5-trimethyl-cyclohexyl salicylate (HMS), 2-hydroxy-4-methoxybenzophenone (BP-3), 2,4-dihydroxy-benzophenone (BP-1) and 2,2'-dihydroxy-4-methoxybenzophenone (BP-8), in aqueous samples is described. The method involves an ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) plus simultaneous silylation prior to their determination by gas chromatography-mass spectrometry (GC-MS). The parameters affecting the extraction and derivatization efficiency of the target UV filters from aqueous samples were systematically investigated and the conditions optimized. The optimal silylation and extraction conditions involved the rapid injection of a mixture of 750μL of acetone (as a dispersant), 15μL of tetrachloroethylene (as an extractant), and 20μL of BSTFA (as a derivatizing agent) into a 10-mL volume of aqueous samples (pH 7.0) containing 0.5g of sodium chloride in a glass tube with a conical bottom. After ultrasonication for 2.0min and centrifugation at 5000rpm (10min), the sedimented phase 5.0μL was directly introduced into the GC-MS. The limits of quantitation (LOQs) were less than 6ng/L. The precision for these analytes, as indicated by the relative standard deviations (RSDs), was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was between 74 and 92%. The method was then applied to environmental aqueous samples, using a standard addition method, showing the occurrence of BP-3 in samples of both river water and municipal wastewater treatment plant (MWTP) effluents. PMID:23831000

  12. Experimental reduction of aqueous sulphate by hydrogen under hydrothermal conditions: Implication for the nuclear waste storage

    Science.gov (United States)

    Truche, Laurent; Berger, Gilles; Destrigneville, Christine; Pages, Alain; Guillaume, Damien; Giffaut, Eric; Jacquot, Emmanuel

    2009-08-01

    Sulphate reduction by hydrogen, likely to occur in deep geological nuclear waste storage sites, was studied experimentally in a two-phase system (water + gas) at 250-300 °C and under 4-16 bars H 2 partial pressure in hydrothermal-vessels. The calculated activation energy is 131 kJ/mol and the half-life of aqueous sulphate in the presence of hydrogen and elemental sulphur ranges from 210,000 to 2.7 × 10 9 years at respective temperatures of 90 °C, the thermal peak in the site and 25 °C, the ambient temperature far from the site. The features and rate of the sulphate reduction by H 2 are close to those established for TSR in oil fields. The experiments also show that the rate of sulphate reduction is not significantly affected in the H 2 pressure range of 4-16 bars and in the pH range of 2-5, whereas a strong increase is measured at pH below 2. We suggest that the condition for the reaction to occur is the speciation of sulphate dominated by non symmetric species ( HSO4- at low pH), and we propose a three steps reaction, one for each intermediate-valence sulphur species, the first one requiring H 2S as electron donor rather than H 2. We distinguish two possible reaction pathways for the first step, depending on pH: reduction of sulphate into sulphur dioxide below pH 2 or into thiosulphate or sulphite + elemental sulphur in the pH range 2-5.

  13. Heterogeneous catalysis contribution for the denitration of aqueous nuclear radioactive waste with formic acid

    International Nuclear Information System (INIS)

    The chemical denitration aims to reduce the nitric acid concentration in nuclear fuel reprocessing aqueous wastes by adding formic acid as a reducing agent. The denitration reaction exhibits an induction period, which duration is related to the time needed by the key intermediate of the reaction, i.e. nitrous acid, to reach a threshold concentration in the reaction medium. The addition of a Pt/SiO2 catalyst in the reaction mixture suppresses the induction period of the chemical denitration. The aim of the present work is to identify the role of Pt/SiO2 in the catalytic denitration mechanism. The experimental work is based on the comparison of catalytic tests performed with various catalysts, in order to identify the intrinsic characteristics of Pt/SiO2 that might influence its activity for the reaction. Catalytic denitration results show that Pt/SiO2 acts only by speeding up the nitrous acid generation in the solution until its concentration reaches the threshold level of 0,01 mol L-1 in the experimental conditions. Catalysts activity is evaluated by quantifying the nitrous acid generated on the platinum surface during the induction period of the homogeneous denitration reaction. The large platinum aggregates reactivity is greater than the one of nano-sized particles. The study of the key step of the catalytic denitration reaction, the catalytic generation of nitrous acid, clarifies the role of Pt/SiO2. The homogeneous denitration is initiated thanks to a redox cycle on the catalyst surface: an initial oxidation of Pt0 by nitric acid, which is reduced into nitrous acid, followed by the reduction of the passivated 'Ptox' by formic acid. Furthermore, a platinum reduction by formic acid prior to the catalytic test prevents any platinum leaching from the catalyst into the nitric solution, being all the more significant as platinum dispersion is high. (author)

  14. Stability of a nanofiltration membrane after contact with a low-level liquid radioactive waste

    Directory of Open Access Journals (Sweden)

    Elizabeth Eugenio de Mello Oliveira

    2013-01-01

    Full Text Available This study investigated the treatment of a liquid radioactive waste containing uranium (235U + 238U using nanofiltration membranes. The membranes were immersed in the waste for 24-5000 h, and their transport properties were evaluated before and after the immersion. Surface of the membranes changed after immersion in the waste. The SW5000 h specimen lost its coating layer of polyvinyl alcohol, and its rejection of sulfate ions and uranium decreased by about 35% and 30%, respectively. After immersion in the waste, the polyamide selective layer of the membranes became less thermally stable than that before immersion.

  15. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis

    OpenAIRE

    Sachin Kumar; Singh, R. K.

    2011-01-01

    Thermal degradation of waste plastics in an inert atmosphere has been regarded as a productive method, because this process can convert waste plastics into hydrocarbons that can be used either as fuels or as a source of chemicals. In this work, waste high-density polyethylene (HDPE) plastic was chosen as the material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse waste HDPE with the objective of optimizing the liquid product yield at a temperature range of 400ºC to...

  16. Incineration facility for combustible solid and liquid radioactive wastes in IPEN-Sao Paulo

    International Nuclear Information System (INIS)

    A system for incinerating combustible solid and liquid radioactive wastes was developed in order to achieve higher mass and volume reduction of the wastes generated at IPEN-CNEN/SP or received from other institutions. The radioactive wastes for incineration are: animal carcasses, ion-exchange resins, contaminated lubricant oils, cellulotic materials, plastics, etc. The process was optimized considering: selection of better construction and insulating materials; dimensions; modular design of combustion chambers to increase burning capacity in future; applicability for various types of wastes; choise of gas cleaning system. (Author)

  17. C-14 concentration measurement in aqueous samples using direct absorption method and liquid scintillation counting

    International Nuclear Information System (INIS)

    Cernavoda Nuclear Power Station is the only nuclear power plant in Romania and the only CANDU reactor operating in Europe. The Cernavoda Unit 1 is a pressurized heavy water reactor (PHWR) fuelled with natural uranium and moderated and cooled by heavy water. The routine operation of this type reactor and its auxiliary process systems results in the production of a variety of solid, liquid and gaseous radioactive wastes. Carbon-14 is produced mainly via a neutron capture reaction of oxygen-17 in the CANDU reactor. CANDU production and emission rates of C-14 are higher than those of other types of commercial reactors such as light water reactors and gas-cooled reactors. In order to fulfill the exigency of the monitoring program, we propose several studies to optimize C-14 determination in water samples. A complete C-14 measurement procedure adequate for natural level water samples has been developed. The characteristics and specificity of this new measurement technique are discussed and several comparisons with concurrent methods are investigated. Special emphases have been done for sample preparation technique and the direct absorption method has been used with few home-made improvements in order to increase the reproducibility and accuracy of this simple and less-time consumer method. The results confirmed the validity of the sample preparation and measurement procedures, providing an increased reproducibility compared to traditional techniques. A validation test using CaCO3 resulted from oyster shell and marble provided a mean value of 0.2137±0.0039 Bq/gC for an efficiency value of about 64% and a background value of 2.22cpm. The routine procedure was applied on different type of water. (author)

  18. (Liquid + liquid) equilibrium of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium citrate at different temperatures

    International Nuclear Information System (INIS)

    Highlights: ► LLE of (poly ethylene glycol dimethyl ether + tri potassium citrate + H2O) was studied. ► The effect of temperature on the binodals and tie-lines were investigated. ► Binodal data were correlated with two empirical equations. ► Tie-lines were fitted to several models including extended NRTL and modified NRTL. ► The entropy is driving force for aqueous two-phase formation. - Abstract: (Liquid + liquid) equilibria (LLE) of the {poly ethylene glycol di-methyl ether 2000 (PEGDME2000) + tri-potassium citrate + H2O} system have been determined experimentally at T = (298.15, 303.15, 308.15, and 318.15) K. The effect of temperature on the binodals and tie-lines for the investigated aqueous two-phase system (ATPS) has also been studied. In this work, the three fitting parameters of the Merchuk equation and an empirical equation that we proposed in our previous work were obtained with the temperature dependence expressed in the linear form with (T − T0) K as a variable. Furthermore, the Othmer–Tobias and Bancroft, a temperature dependent Setschenow-type equation and osmotic virial model, the segment-based local composition models (the extended NRTL and the modified NRTL) were used for the correlation and prediction of the liquid–liquid phase behavior of the system studied. In addition, the effect of the polymers PEGDME2000 and poly ethylene glycol 2000 on the phase forming ability were studied. Also, the free energies of cloud points for this system were calculated from which it was concluded that the increase of the entropy is driving force for formation of studied aqueous two-phase system.

  19. The influence of non-aqueous radiochemical processes on radiation parameters of spent fuel and radioactive wastes

    International Nuclear Information System (INIS)

    The influence of the technology applied for separation of radioactive elements on radiation parameters of fuel and wastes when using non-aqueous radiochemical processing of spent fuels are studied. The results of calculational modelling the fuel recycle in the BREST-1200 reactor closed fuel cycle are considered. The data characterizing contribution of separate elements in potential biological danger (dose) and the dependence of the potential biological danger of the wastes on regenerated fuel cooling time are discussed. It is shown that plutonium and americium give the main contributions into the fuel potential biological danger in time period of 40-1000 years. For monitored cooling of 120-150 years the balance between natural uranium potential biological danger and that of wastes at different waste compositions is achievable. The fission product contributions into potential biological danger differ slightly for different variants of the processing technology. The 99Tc contribution is noticeable only in the case of metallurgical processing. The conclusion is made that differences in radiochemical technologies applied for waste fracturing and fuel purification degree do not influence in principle on capabilities for radiation balance achieving. For a long-time perspective the radiation balance is determined by plutonium, americium and their decay products. The technology peculiarities may change radiation characteristics of wastes only at separate stages of cooling and do not affect greatly the radiation balance as a whole

  20. Method of processing boric acid-containing liquid wastes discharged from nuclear power plants

    International Nuclear Information System (INIS)

    Purpose: To process boric acid-containing liquid wastes discharged from nuclear power plants by ultrafiltration, further process the filtrates with ion exchange resins and recover the processed liquid as primary coolants. Method: Boric acid-containing liquid wastes are sent from a storage tank into a circulation tank, removed with suspended substances through filters and then supplied to an ultrafiltration film module. The liquid suspensions separated in the ultrafiltration film module are returned to the circulation tank. While on the other hand, the filtrates from the ultrafiltration film module are sent into an ion exchange resin column, where ionic impurities are removed. The liquid discharged from the ion exchange resin column is a pure boric acid solution, which is recovered as primary coolants and used again. The suspension substances concentrated in the ultrafiltration film module are then solidified by cements or the likes. (Moriyama, K.)

  1. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes.

    Science.gov (United States)

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy

    2015-11-01

    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. PMID:26292776

  2. Changing Hydrogen-Bond Structure during an Aqueous Liquid-Liquid Transition Investigated with Time-Resolved and Two-Dimensional Vibrational Spectroscopy.

    Science.gov (United States)

    Bruijn, Jeroen R; van der Loop, Tibert H; Woutersen, Sander

    2016-03-01

    We investigate the putative liquid-liquid phase transition in aqueous glycerol solution, using the OD-stretch mode in dilute OD/OH isotopic mixtures to probe the hydrogen-bond structure. The conversion exhibits Avrami kinetics with an exponent of n = 2.9 ± 0.1 (as opposed to n = 1.7 observed upon inducing ice nucleation and growth in the same sample), which indicates a transition from one liquid phase to another. Two-dimensional infrared (2D-IR) spectroscopy shows that the initial and final phases have different hydrogen-bond structures: the former has a single Gaussian distribution of hydrogen-bond lengths, whereas the latter has a bimodal distribution consisting of a broad distribution and a narrower, ice-like distribution. The 2D-IR spectrum of the final phase is identical to that of ice/glycerol at the same temperature. Combined with the kinetic data this suggests that the liquid-liquid transformation is immediately followed by a rapid formation of small (probably nanometer-sized) ice crystals. PMID:26891098

  3. Simultaneous decontamination of cesium and strontium from radioactive liquid wastes using zeolite (molecular sieves)

    International Nuclear Information System (INIS)

    Controlled discharges of low level liquid wastes from MAPS into coastal sea waters are being routinely carried out at Kalpakkam in accordance with TECHSPECs of MAPS. The discharged radionuclides have the potential to migrate through the marine food chain, possibly resulting in radiation exposures of the public, which presently however has been found to be well below the permissible limits. However, with a view to achieve further reduction in possible public exposures, it may be feasible to examine ways for removal or reduction in the level of the significant radionuclides present in the liquid wastes, contributing to such exposures. With this in view an attempt was made in the laboratory, to remove mainly 137Cs and 90Sr from liquid wastes generated at Madras Atomic Power Station, (MAPS) using Zeolite (Molecular Sieves).The details of the laboratory experiment conducted and the decontamination factors obtained for both 137Cs and 90Sr are discussed in the paper. The findings of the study serves to demonstrate the good potential of zeolite (molecular sieves) to remove both 137Cs and 90Sr simultaneously from liquid waste, thus minimizing the radiation exposure to Public through liquid waste discharges. (author)

  4. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis

    Directory of Open Access Journals (Sweden)

    Sachin Kumar

    2011-12-01

    Full Text Available Thermal degradation of waste plastics in an inert atmosphere has been regarded as a productive method, because this process can convert waste plastics into hydrocarbons that can be used either as fuels or as a source of chemicals. In this work, waste high-density polyethylene (HDPE plastic was chosen as the material for pyrolysis. A simple pyrolysis reactor system has been used to pyrolyse waste HDPE with the objective of optimizing the liquid product yield at a temperature range of 400ºC to 550ºC. Results of pyrolysis experiments showed that, at a temperature of 450ºC and below, the major product of the pyrolysis was oily liquid which became a viscous liquid or waxy solid at temperatures above 475ºC. The yield of the liquid fraction obtained increased with the residence time for waste HDPE. The liquid fractions obtained were analyzed for composition using FTIR and GC-MS. The physical properties of the pyrolytic oil show the presence of a mixture of different fuel fractions such as gasoline, kerosene and diesel in the oil.

  5. Liquid and Gaseous Waste Operations Project Annual Operating Report CY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, J.J.; Scott, C.B.

    2000-03-01

    A total of 5.77 x 10 7 gallons (gal) of liquid waste was decontaminated by the Process Waste Treatment Complex (PWTC) - Building 3544 ion exchange system during calendar year (CY) 1999. This averaged to 110 gpm throughout the year. An additional 3.94 x 10 6 gal of liquid waste (average of 8 gpm throughout the year) was decontaminated using the zeolite treatment system due to periods of high Cesium levels in the influent wastewater. A total of 6.17 x 10 7 gal of liquid waste (average of 118 gpm throughout the year) was decontaminated at Building 3544 during the year. During the year, the regeneration of the ion exchange resins resulted in the generation of 8.00 x 10 3 gal of Liquid Low-Level Waste (LLLW) concentrate and 9.00 x 10 2 gal of LLLW supernate. See Table 1 for a monthly summary of activities at Building 3544. Figure 1 shows a diagram of the Process Waste Collection and Transfer System and Figure 2 shows a diagram of the Building 3544 treatment process. Figures 3, 4 5, and 6 s how a comparison of operations at Building 3544 in 1997 with previous years. Figure 7 shows a comparison of annual rainfall at Oak Ridge National Laboratory (ORNL) since 1995.

  6. Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase

    OpenAIRE

    Wellens, Sil; Vander Hoogerstraete, Tom; Möller, Claudia; Thijs, Ben; Luyten, Jan; Binnemans, Koen

    2014-01-01

    The dissolution of metal oxides in an acid-saturated ionic liquid, followed by selective stripping of the dissolved metal ions to an aqueous phase is proposed as a new ionometallurgical approach for the processing of metals in ionic liquids. The hydrophobic ionic liquid trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101) saturated with a concentrated aqueous hydrochloric acid solution was used to dissolve CaO, NiO, MnO, CoO, CuO, ZnO and Fe2O3. It was found that nickel(II) and calcium...

  7. A Fundamental Study on the Infiltration Characteristics of Radioactive Liquid Wastes

    International Nuclear Information System (INIS)

    When a liquid waste containing radioactive substances is released or leaked out at a disposing site or from a plant using atomic energy or nuclear products and spread over the ground surface in that place, it will percolate into the soil and any adsorbable substances contained in the liquid will be partly adsorbed by soil particles. As one of the fundamental studies on this problem, the motion of liquid through unsaturated porous media is discussed and then a theory is introduced to estimate the variation of.the concentration of radioactive substance in the flowing liquid. Furthermore, the validity of this theory is examined quantitatively by laboratory experiments with a filter column. (author)

  8. Application of dispersive Liquid-Liquid microextraction based on solidification of floating organic droplet multi-residue method for the simultaneous determination of polychlorinated biphenyls, organochlorine, and pyrethroid pesticides in aqueous sample

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Mei; Li, Man-Liang [Enshi Prefecture Tobacco Company, Enshi, Hubei (China); Cheng, Jing; Matsadiq, Guzalnur; Liu, Lu; Zhang, Miao [Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan (China)

    2012-12-15

    Dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique was successfully applied for simultaneous assay of eight polychlorinated biphenyls, two organochlorine, and four pyrethroid pesticides multi-residue in aqueous samples by using GC-electron capture detection. The effects of various parameters such as kind of extractant and dispersant and volume of them, extraction time, effect of salt addition, and pH were optimized. As a result, 5.0 {mu}L 1-dodecanol was chosen as extraction solvent, 600 {mu}L methanol were used as dispersive solvent without salt addition, pH was adjusted to 7. Under the optimized conditions, the limits of detection (LOD) were ranged from 1.4 to 8.3 ng L{sup -1}. Satisfactory linear range was observed from 5.0 to 2000 ng L{sup -1} with correlation coefficient better than 0.9909. Good precisions were also acquired with RSD better than 13.6% for all target analytes. The enrichment factors of the method were ranged from 786 to 1427. The method can be successfully applied to simultaneous separation and determination of three class residues in real water samples and good recoveries were obtained ranging from 76 to 130, 73 to 129, and 78 to 130% for tap water, lake water, and industrial waste water, respectively. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Application of dispersive Liquid-Liquid microextraction based on solidification of floating organic droplet multi-residue method for the simultaneous determination of polychlorinated biphenyls, organochlorine, and pyrethroid pesticides in aqueous sample

    International Nuclear Information System (INIS)

    Dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique was successfully applied for simultaneous assay of eight polychlorinated biphenyls, two organochlorine, and four pyrethroid pesticides multi-residue in aqueous samples by using GC-electron capture detection. The effects of various parameters such as kind of extractant and dispersant and volume of them, extraction time, effect of salt addition, and pH were optimized. As a result, 5.0 μL 1-dodecanol was chosen as extraction solvent, 600 μL methanol were used as dispersive solvent without salt addition, pH was adjusted to 7. Under the optimized conditions, the limits of detection (LOD) were ranged from 1.4 to 8.3 ng L-1. Satisfactory linear range was observed from 5.0 to 2000 ng L-1 with correlation coefficient better than 0.9909. Good precisions were also acquired with RSD better than 13.6% for all target analytes. The enrichment factors of the method were ranged from 786 to 1427. The method can be successfully applied to simultaneous separation and determination of three class residues in real water samples and good recoveries were obtained ranging from 76 to 130, 73 to 129, and 78 to 130% for tap water, lake water, and industrial waste water, respectively. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Stability of Colistin and Colistin Methanesulfonate in Aqueous Media and Plasma as Determined by High-Performance Liquid Chromatography

    OpenAIRE

    Jian LI; Milne, Robert W.; Nation, Roger L; Turnidge, John D.; Coulthard, Kingsley

    2003-01-01

    The stabilities of colistin and colistin methanesulfonate (CMS) in different aqueous media were studied by specific high-performance liquid chromatography (HPLC) methods. Colistin was stable in water at 4 and 37°C for up to 60 days and 120 h, respectively. However, degradation was observed when colistin was stored in isotonic phosphate buffer (0.067 M, pH 7.4) and human plasma at 37°C. The stability of CMS from three different sources in water was explored by strong-anion-exchange (SAX) HPLC ...

  11. Triton X-100 as a complete liquid scintillation cocktail for counting aqueous solutions and ionic nutrient salts

    International Nuclear Information System (INIS)

    Triton X-100, used alone, was found to act as a complete liquid scintillation cocktail. Triton X-100 acted as a scintillator and the effect was not due to Cerenkov radiation. A variety of other commercially available surfactants also acted as scintillators, but with different levels of efficiency. Triton X-100/water combinations were suitable for counting aqueous solutions of 33P and 86Rb and the count rate was stable over extended periods of time. Triton X-100/toluene combinations also yielded high counting efficiencies. Triton X-100 was more sensitive to quenching than standard cocktails containing fluors. (author)

  12. Combustion of animal or vegetable based liquid waste products; Foerbraenning av flytande animaliska/vegetabiliska restprodukter

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energikonsult AB, Stockholm (Sweden)

    2002-04-01

    In this project experiences from combustion of animal and vegetable based liquid waste products have been compiled. Legal aspects have also been taken into consideration and the potential for this type of fuel on the Swedish energy market has been evaluated. Today the supply of animal and vegetable based liquid waste products for energy production in Sweden is limited. The total production of animal based liquid fat is about 10,000 tonnes annually. The animal based liquid waste products origin mainly from the manufacturing of meat and bone meal. Since meat and bone meal has been banned from use in animal feeds it is possible that the amount of animal based liquid fat will decrease. The vegetable based liquid waste products that are produced in the processing of vegetable fats are today used mainly for internal energy production. This result in limited availability on the commercial market. The potential for import of animal and vegetable based liquid waste products is estimated to be relatively large since the production of this type of waste products is larger in many other countries compared to Sweden. Vegetable oils that are used as food or raw material in industries could also be imported for combustion, but this is not reasonable today since the energy prices are relatively low. Restrictions allow import of SRM exclusively from Denmark. This is today the only limit for increased imports of animal based liquid fat. The restrictions for handle and combustion of animal and vegetable based liquid waste products are partly unclear since this is covered in several regulations that are not easy to interpret. The new directive for combustion of waste (2000/76/EG) is valid for animal based waste products but not for cadaver or vegetable based waste products from provisions industries. This study has shown that more than 27,400 tonnes of animal based liquid waste products and about 6,000 tonnes of vegetable based liquid waste products were used for combustion in Sweden

  13. Solidification of radioactive liquid wastes. A comparison of treatment options for spent resins and concentrates

    International Nuclear Information System (INIS)

    Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. However, spent ion exchange resins are considered to be problematic waste that in many cases require special approaches and pre-conditioning during its immobilization to meet the acceptance criteria for disposal. Because of the function that they fulfill, spent ion exchange resins often contain high concentrations of radioactivity and pose special handling and treatment problems. Another very common method of liquid radioactive waste treatment and water cleaning is the evaporation or diaphragm filtration. Both treatment options offer a high volume reduction of the total volume of liquids treated but generate concentrates which contain high concentrations of radioactivity. Both mentioned waste streams, spent resins as well as concentrates, resulting from first step liquid radioactive waste treatment systems have to be conditioned in a suitable manner to achieve stable waste products for final disposal. The most common method of treatment of such waste streams is the solidification in a solid matrix with additional inactive material like cement, polymer etc. In the past good results have been achieved and the high concentration of radioactivity can be reduced by adding the inactive material. On the other hand, under the environment of limited space for interim storage and the absence of a final repository site, the built-up of additional volume has to be considered as very critical. Moreover, corrosive effects on cemented drums during long-term interim storage at the surface have raised doubts about the long-term stability of such waste products. In order to avoid such disadvantages solidification methods have been improved in order to get a well-defined product with a better load factor of wastes in the matrix. In a complete different approach, other technologies solidify the liquid radioactive wastes without adding of any inactive material by means of drying

  14. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    International Nuclear Information System (INIS)

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10-5 to 1 x 10-3 ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101

  15. Assessment of Tank 241-S-112 Liquid Waste Mixing in Tank 241-SY-101

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Trent, Donald S.; Wells, Beric E.; Mahoney, Lenna A.

    2003-10-01

    The objectives of this study were to evaluate mixing of liquid waste from Tank 241-S-112 with waste in Tank 241-SY-101 and to determine the properties of the resulting waste for the cross-site transfer to avoid potential double-shell tank corrosion and pipeline plugging. We applied the time-varying, three-dimensional computer code TEMPEST to Tank SY-101 as it received the S-112 liquid waste. The model predicts that temperature variations in Tank SY-101 generate a natural convection flow that is very slow, varying from about 7 x 10{sup -5} to 1 x 10{sup -3} ft/sec (0.3 to about 4 ft/hr) in most areas. Thus, natural convection would eventually mix the liquid waste in SY-101 but would be very slow to achieve nearly complete mixing. These simulations indicate that the mixing of S-112 and SY-101 wastes in Tank SY-101 is a very slow process, and the density difference between the two wastes would further limit mixing. It is expected to take days or weeks to achieve relatively complete mixing in Tank SY-101.

  16. Degradation of Liquid Waste of Paper Industry Using Ozone and Lime

    International Nuclear Information System (INIS)

    Degradation of liquid waste of paper industry using ozone and lime has been done. This aim as research to study the influence of usage of ozone and lime to degrade the BOD, COD and TSS in the liquid waste of paper industry. The wastes volume of each treatment was 500 mL, ozonization during 30 minutes, with the variation of lime concentration: 0.2 ; 0.4 ; 0.6 ; 0.8 and 1% (% weight). With the optimization of lime concentration further treatment was than carried out, that is variation of time of ozone given: 0, 5, 10, 15, 20, 25, and 30 minute. It was then continued with the variation of waste pH : 8, 9, 10, 11 and 12. From this experiments was obtained that the optimal condition is the lime concentration of 0.6%, time of ozonization is 20 minutes and waste pH of 10. At this condition was obtained the three of pollutants parameters as follow : BOD = 65 mg/L, COD = 178 mg/L, and TSS = 50 mg/L. Those of three parameters have matched the quality standard of the liquid waste of paper industry according to Decree Of The State’s Minister of Environment No. 51/MENLH/10/1995 and The Decision of Governor of DIY No. 281/KPTS/1998, as the requirement of waste of Grade Ill. (author)

  17. Selectivity of NF membrane for treatment of liquid waste containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Elizabeth E.M.; Barbosa, Celina C.R., E-mail: eemo@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Afonso, Julio C., E-mail: julio@iq.ufrj.br [Universidade Federal do Rio de Janeiro(UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Quimica. Dept. de Quimica

    2013-07-01

    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF{sub 6} to UO{sub 2} in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L{sup -1}, and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  18. Selectivity of NF membrane for treatment of liquid waste containing uranium

    International Nuclear Information System (INIS)

    The performance of two nanofiltration membranes were investigated for treatment of liquid waste containing uranium through two conditions permeation: permeation test and concentration test of the waste. In the permeation test solution permeated returned to the feed tank after collected samples each 3 hours. In the test of concentration the permeated was collected continuously until 90% reduction of the feed volume. The liquid waste ('carbonated water') was obtained during conversion of UF6 to UO2 in the cycle of nuclear fuel. This waste contains uranium concentration on average 7.0 mg L-1, and not be eliminated to the environmental. The waste was permeated using a cross-flow membrane cell in the pressure of the 1.5 MPa. The selectivity of the membranes for separation of uranium was between 83% and 90% for both tests. In the concentration tests the waste was concentrated around for 5 times. The surface layer of the membranes was evaluated before and after the tests by infrared spectroscopy (ATR-FTIR), field emission microscopy (FESEM) and atomic force spectroscopy (AFM). The membrane separation process is a technique feasible to and very satisfactory for treatment the liquid waste. (author)

  19. Liquid-liquid equilibriums in aqueous solutions of demixing amines loaded with gas for CO 2 capture processes

    OpenAIRE

    Coulier, Y; Lowe, A.; Coxam, Jean Yves; Ballerat-Busserolles, Karine

    2015-01-01

    International audience Carbon Capture and Storage (CCS) is a solid option for CO2 mitigation in the atmosphere. One option is the CO2 capture from industrial effluents followed by storage in secured sites. Capture processes are based on selective absorption/desorption cycles of gas in aqueous solutions of amines[1]. The cost of CO2 treatment with classical alkanolamines is a limitation for the use of this technology. The development of breakthrough technologies is needed to optimize the se...

  20. The cold crucible melter for vitrification of liquid and solid waste

    International Nuclear Information System (INIS)

    Radioactive waste is increasingly conditioned by thermal processes, which generally combine optimum final waste form quality and maximum volume reduction. The physical and chemical complexity of liquid and solid waste, the decomposition reactions and subsequent recombinatory phenomena often result in the formation of corrosive chemical species that may limit the choice of conditioning materials and processes. Cold-wall reactors offer a possible solution to this problem. The induction-heated cold crucible is particularly well suited for heating glass ceramics, an ideal waste containment matrix; this technique is applicable not only to high-level waste, but also to low and medium-level waste produced in operation or during decommissioning of reactors or reprocessing facilities. (author)