WorldWideScience

Sample records for aqueous ionic melts

  1. Polarization effects in ionic solids and melts

    OpenAIRE

    Salanne, Mathieu; Madden, Paul A.

    2015-01-01

    Ionic solids and melts are compounds in which the interactions are dominated by electrostatic effects. However, the polarization of the ions also plays an important role in many respects as has been clarified in recent years thanks to the development of realistic polarizable interaction potentials. After detailing these models, we illustrate the importance of polarization effects on a series of examples concerning the structural properties, such as the stabilization of particular crystal stru...

  2. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    Science.gov (United States)

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  3. "Switchable water": aqueous solutions of switchable ionic strength.

    Science.gov (United States)

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described.

  4. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  5. Modern electrochemical processes and technologies in ionic melts

    Directory of Open Access Journals (Sweden)

    Omelchuk A.

    2003-01-01

    Full Text Available An analysis of the known methods for the electrochemical purification of non-ferrous metals in ionic melts is presented. A comparative estimation of the results of the electrochemical purification of non-ferrous metals by different methods has been performed. The main regularities of the electrochemical behavior of non-ferrous metals in conventional and electrode micro-spacing electrolysis are presented. It has been found that when electrolyzing some metals, e. g. bismuth, gallium, there is either no mass exchange between the electrodes, or it occurs under filtration conditions. It has been shown that the electrode micro-spacing processes provide a high quality of non-ferrous metals purification at low specific consumption of electric power and reagents. The use of bipolar electrodes and β-alumina diaphragms hinders the transfer of metallic impurities from the anode to the cathode. The effects revealed were used to develop new processes for the separation of non-ferrous metal alloys in ionic melts; most of them have been put into practice in non-ferrous metallurgy.

  6. The Partitioning of Tungsten bwtween Aqueous Fluids and Silicate Melts

    Institute of Scientific and Technical Information of China (English)

    许永胜; 张本仁; 等

    1993-01-01

    An experimental study has been carried out to determine the partition coefficients of tungsten between aqueous fluids and granitic melts at 800℃ and 1.5kb with natural granite as the starting material,The effects of the solution on the partition coefficients of tungsten show a wequence of P>co32->B>H2O.The effects are limited(generally KD<0.3)and the tungsten shows a preferential trend toward the melt over the aqueous fiuid.The value of KD increases with increasing concentration of phosphorus;the KD increases first and then reduces with the concentration of CO32-;when temperature decreases,the KD between the solution of CO32- and the silicate melt increases,and that between the solution of B4O72- and the silicate melt decreases.The partition coefficients of phosphorus and sodium between fluids and silicate melts have been calculated from the concentrations of the elements in the melts.The KD value for phosphorus is 0.38 and that for sodium is 0.56.Evidence shows that the elements tend to become richer and richer in the melts.

  7. Ionic-polymeric models and the amphoteric behavior of water in silicate melts

    Science.gov (United States)

    Moretti, R.

    2012-04-01

    In silicate melts it is almost impossible to readily distinguish solute and solvent like in aqueous solutions. The anionic framework of silicate melts, in fact, makes solute and solvents so intimately related that one cannot identify a solvation shell and identify directly, from structural studies, the complexes needed to define acid-base reactions. Therefore, the distinction between solute and solvent becomes blurred in systems such as silicate melts, because speciation is not only complex but changes with the marked depolymerization of the silicate framework that obtains from pure SiO2 to metal-oxide rich compositions. These features do not allow proper understanding of the actual physico-chemical role of many species detected by conventional techniques, a fact which can lead to confusing notation. However, these may not be serious limits to account correctly for the acid-base reactions that take place in every kind of magmatic setting, provided a 'syntax' describing the effective interactions among significative cationic and anionic entities. In particular, the syntax for acid-base exchanges is needed such that constituting oxides (i.e. chemical components) can be treated independently of (but not necessarily extraneous to) structural features in defining such entities. So-called ionic-polymeric models highlight the mutual correspondence between polymerization and acid-base properties of dissolved oxides through the Lux-Flood formalism for molten oxides. They thus provide the syntax to write chemical exchanges, but have no pretension to structural description. In fact the concept of melt polymerization is used to identify basic anions and cations that can be used, along with their formal charge, to describe effectively acid-base interactions taking place in melts. In this respect, an example is given by the description of the amphoteric behavior of water dissolved on melts, hence water autoprotolysis. Although it exerts a profound influence on properties of

  8. Low Melting Point and High Stability Polyoxomolybdate-based Ionic Liquids as Photocatalysts

    Institute of Scientific and Technical Information of China (English)

    DONG Tao; CHEN Fa-wang; CAO Min-hua; HU Chang-wen

    2011-01-01

    The polyoxometalate-imidazole ionic liquids(POM-ILs) with low melting points at 94.5 and 95.5 ℃,[Cnmim]4[Mo8O26](Cnmim=l-alkyl-3-methylimidazolium, n=12,14), have been successfully synthesized and characterized by DSC, single-crystal X-ray diffraction and TGA, etc. The two POM-ILs have relatively high stability with decomposing temperature up to about 347 and 344 ℃, respectively. Further photocatalytic performance was measured via the degradation of rhodamine B(RB) in aqueous solution. The experiments show that the conversion reached to 90% after 90 min under UV-light and the degradation efficiency depended on pH value, different dosages and so on. In addition, the catalysts can be recycled for several times without significant loss of activity.

  9. Extraction of proteins with ionic liquid aqueous two-phase system based on guanidine ionic liquid.

    Science.gov (United States)

    Zeng, Qun; Wang, Yuzhi; Li, Na; Huang, Xiu; Ding, Xueqin; Lin, Xiao; Huang, Songyun; Liu, Xiaojie

    2013-11-15

    Eight kinds of green ionic liquids were synthesized, and an ionic liquid aqueous two-phase system (ILATPS) based on 1,1,3,3-tetramethylguandine acrylate (TMGA) guanidine ionic liquid was first time studied for the extraction of proteins. Single factor experiments proved that the extraction efficiency of bovine serum albumin (BSA) was influenced by the mass of IL, K2HPO4 and BSA, also related to the separation time and temperature. The optimum conditions were determined through orthogonal experiment by the five factors described above. The results showed that under the optimum conditions, the extraction efficiency could reach up to 99.6243%. The relative standard deviations (RSD) of extraction efficiencies in precision experiment, repeatability experiment and stability experiment were 0.8156% (n=5), 1.6173% (n=5) and 1.6292% (n=5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and ionic liquid in the extraction process, and the conformation of the protein was not changed after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interaction, hydrogen bonding interaction and the salt out effect played important roles in the transferring process, and the aggregation and embrace phenomenon was the main driving force for the separation. All these results proved that guanidine ionic liquid-based ATPSs have the potential to offer new possibility in the extraction of proteins.

  10. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    Science.gov (United States)

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled.

  11. Density and ionic structure of NdF_3-LiF melts

    Institute of Scientific and Technical Information of China (English)

    胡宪伟; 王兆文; 高炳亮; 石忠宁; 刘风国; 曹晓舟

    2010-01-01

    NdF3-LiF melts are commonly used in the electrolysis process of metallic neodymium production. Research on the density and ionic structure of the electrolyte is important for its close connection with the electrolysis mechanism and process. In this paper, the density of LiF-NdF3 melts was studied by the Archimedes method. The results showed that the density decreased with increasing temperature and LiF contents. The changing law was discussed and explained in terms of the micro ionic structure of the melts....

  12. Thermoreversible (Ionic-Liquid-Based) Aqueous Biphasic Systems.

    Science.gov (United States)

    Passos, Helena; Luís, Andreia; Coutinho, João A P; Freire, Mara G

    2016-02-04

    The ability to induce reversible phase transitions between homogeneous solutions and biphasic liquid-liquid systems, at pre-defined and suitable operating temperatures, is of crucial relevance in the design of separation processes. Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have demonstrated superior performance as alternative extraction platforms, and their thermoreversible behaviour is here disclosed by the use of protic ILs. The applicability of the temperature-induced phase switching is further demonstrated with the complete extraction of two value-added proteins, achieved in a single-step. It is shown that these temperature-induced mono(bi)phasic systems are significantly more versatile than classical liquid-liquid systems which are constrained by their critical temperatures. IL-based ABS allow to work in a wide range of temperatures and compositions which can be tailored to fit the requirements of a given separation process.

  13. Aqueous biphasic systems involving alkylsulfate-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Deive, Francisco J. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Rodriguez, Ana [Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Marrucho, Isabel M., E-mail: imarrucho@itqb.unl.pt [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Rebelo, Luis P.N. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal)

    2011-11-15

    Highlights: > K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4} act as phase promoter in aqueous solutions of ILs. > Remarkable influence of alkyl-chain length on solubility curves of alkylsulfate-based ILs. > Merchuck correlation was used for describing these systems. > {Delta}S{sub hyd} and Hofmeister series were used to discuss the different salting out effects. - Abstract: The specific effects of K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4}, as high charge-density inorganic salts and thus inducers of the formation of aqueous biphasic systems (ABS) containing several ethyl-methylimidazolium alkylsulfate ionic liquids, C{sub 2}MIM C{sub n}SO{sub 4} (n = 2, 4, 6, or 8), have been assessed at T = 298.15 K. The results are analyzed in the light of the Hofmeister series. The influence of different alkyl chain lengths in the anion, together with the ability of the selected inorganic salts to induce the formation of ABS, is discussed. Phase diagrams have been determined through turbidimetry, including tie lines assignments from mass phase ratios according to the lever - arm rule. The Merchuck equation was satisfactorily used to correlate the solubility curve.

  14. Structural investigation of room-temperature ionic liquids and high-temperature ionic melts using triplet correlation functions

    Science.gov (United States)

    Dhabal, Debdas; Gupta, Aditya; Kashyap, Hemant K.

    2017-03-01

    We use means of molecular dynamics simulation to understand the local structural arrangements in three trihexyltetradecylphosphonium (P6,6,6 ,14 +) based room-temperature ionic liquids (RTILs) by using triplet correlation functions (TCFs) along with pair correlation functions (PCFs) and X-ray scattering structure functions (S(q)s). The anions in these RTILs are either spherically symmetric but with different effective sizes (bromide (Br-) and tetrafluoroborate (BF4-)) or angular such as dicyanamide (DCA-). The simulated PCFs, S(q)s, and TCFs of the three RTILs have been compared with three high-temperature ionic melts (HTIMs); NaBr, NaCl, and NaF. In general, the pair correlation function gives angle-averaged probability as a function of inter-particle distance whereas the TCFs associated with equilateral and isosceles triangle configurations can be used to delineate angle-resolved information of liquids structure within nearest solvation shells. For the three ionic liquids studied, a very careful examination of co-ionic and counter-ionic TCFs associated with the equilateral triangular configuration within the nearest solvation shells of the ions reveals that co-ions (cat-cat-cat and an-an-an) favor close-packed local arrangement, but with lower probability for the DCA- RTIL. Co-ionic and counter-ionic TCFs obtained for HTIMs are found to be similar to that of RTILs with spherical anions. The TCFs associated with the isosceles triangle configuration signify that the ionic liquid with Br- anions tends to exhibit larger anion-cation-anion angle than that in the other two RTILs. Moreover, diffused counter-ionic angular correlations are observed in the DCA- system. We also observed angle-dependent charge ordering in all the three RTILs although its extent is enhanced for RTILs with spherical anions, very similar to what we find for NaBr, NaCl, and NaF melts. This study suggests that the presence of charge ordering is a generic feature of both the RTILs and HTIMs.

  15. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  16. Evaluation of collective transport properties of ionic melts from molecular dynamics simulations

    Indian Academy of Sciences (India)

    Manish Agarwal; Charusita Chakravarty

    2009-09-01

    Molecular dynamics simulations of beryllium fluoride (BeF2) have been carried out in the canonical (NVT) ensemble using a rigid-ion potential model. The Green-Kubo formalism has been applied to compute viscosities and ionic conductivities of BeF2 melt. The computational parameters critical for reliably estimating these collective transport properties are shown to differ significantly for viscosity and ionic conductivity. In addition to the equilibrium values of these transport properties, structural relaxation times as well as high-frequency IR-active modes are computed from the pressure and charge-flux auto correlation functions (ACFs) respectively. It is shown that a network-forming ionic melt, such as BeF2, will display persistent oscillatory behaviour of the integral of the charge-flux ACF. By suitable Fourier transformation, one can show that these persistent oscillations correspond to highfrequency, infra-red active vibrations associated with local modes of the network.

  17. Basic Ionic Liquid: A Reusable Catalyst for Knoevenagel Condensation in Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An efficient, environmentally friendly procedure was developed for the condensation of aldehydes/ketones and activated methylene compounds with basic ionic liquid as thecatalyst in water. This basic ionic liquid catalyst has a very high activity for Knoevenagel condensation to give the corresponding products in 70% -97% isolated yields under mild conditions. The basic ionic liquid catalyst in aqueous system can be reused for six times without any significant loss of activity.

  18. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    Science.gov (United States)

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  19. 1-Methyl-3-octylimidazolium Polyoxomolybdate Ionic Liquid with Low Melting Point and High Stability:Preparation and Photocatalytic Activity

    Institute of Scientific and Technical Information of China (English)

    DONG Tao; XU Yan-qing; CHEN Fa-wang; CHI Ying-nan; HU Chang-wen

    2011-01-01

    The polyoxometalate(POM)-imidazole ionic liquid(IL) [C8mim]2[Mo6O19](C8mim=l-methyl-3-octylimidazolium) with a low melting point of 82.6 ℃ was successfully prepared and characterized by FTIR, XPS, NMR, TG and so on. The polyoxomolybdate-based IL has high stability, and its decomposing temperature reaches 321 ℃,which is higher than that of l-alkyl-3-methylimidazolium halides IL. Further photocatalytic performances of the IL were measured via degrading dye rhodamine B(RB) in aqueous solution under the UV light irradiation. The experi ments show that the conversion of RB reaches 80.5% after 90 min under UV-light and the degradation efficiency de pends on the pH value of the solution, irradiation time and the dosage of the IL and so on.

  20. Nitrogen distribution between aqueous fluids and silicate melts

    Science.gov (United States)

    Li, Yuan; Huang, Ruifang; Wiedenbeck, Michael; Keppler, Hans

    2015-02-01

    The partitioning of nitrogen between hydrous fluids and haplogranitic, basaltic, or albitic melts was studied at 1-15 kbar, 800-1200 °C, and oxygen fugacities (fO2) ranging from the Fe-FeO buffer to 3log units above the Ni-NiO buffer. The nitrogen contents in quenched glasses were analyzed either by electron microprobe or by secondary ion mass spectrometry (SIMS), whereas the nitrogen contents in fluids were determined by mass balance. The results show that the nitrogen content in silicate melt increases with increasing nitrogen content in the coexisting fluid at given temperature, pressure, and fO2. Raman spectra of the silicate glasses suggest that nitrogen species change from molecular N2 in oxidized silicate melt to molecular ammonia (NH3) or the ammonium ion (NH4+) in reduced silicate melt, and the normalized Raman band intensities of the nitrogen species linearly correlate with the measured nitrogen content in silicate melt. Elevated nitrogen contents in silicate melts are observed at reduced conditions and are attributed to the dissolution of NH3/NH4+. Measured fluid/melt partition coefficients for nitrogen (DNfluid/ melt) range from 60 for reduced haplogranitic melts to about 10 000 for oxidized basaltic melts, with fO2 and to a lesser extent melt composition being the most important parameters controlling the partitioning of nitrogen. Pressure appears to have only a minor effect on DNfluid/ melt in the range of conditions studied. Our data imply that degassing of nitrogen from both mid-ocean ridge basalts and arc magmas is very efficient, and predicted nitrogen abundances in volcanic gases match well with observations. Our data also confirm that nitrogen degassing at present magma production rates is insufficient to accumulate the atmosphere. Most of the nitrogen in the atmosphere must have degassed very early in Earth's history and degassing was probably enhanced by the oxidation of the mantle.

  1. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    Science.gov (United States)

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  2. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    Science.gov (United States)

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  3. Integral equation for the interfacial tension of liquid metal in contact with ionic melt

    CERN Document Server

    Kobelev, O A; Kobelev, Oleg A.; Kobelev, Alexandr V.

    2004-01-01

    The closed integral equations for the interfacial tension as a function of external polarization at the liquid metal - ionic melt interface are derived. The version of Popel'-Pavlov isotherm is applied to the analysis of electrocapillary curves (ecc), i.e. the dependences of interfacial tension on electrode potential. The interaction between adsorbed particles is taken into account within 'two exchange parameters' approximation. The type of the distribution of electric potential in the double electric layer (del) is assumed to be like 'in series connected capacitors'. The methods of solution are proposed for the analysis of the experimental ecc's.

  4. Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.

    Science.gov (United States)

    Bai, Zhifeng; Zhao, Bin; Lodge, Timothy P

    2012-07-19

    The bilayer membrane permeability of block copolymer vesicles ("polymersomes") with ionic liquid interiors dispersed in water is quantified using fluorescence quenching. Poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) block copolymer vesicles in water with their interiors filled with a common hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, were prepared containing a hydrophobic dye, Nile Red, by intact migration of dye-encapsulated vesicles from the ionic liquid to water at room temperature. A small quencher molecule, dichloroacetamide, was added to the aqueous solution of the dye-loaded vesicles, and the permeation of the quencher passing through the membrane into the interior was determined from the fluorescence quenching kinetics. Rapid permeation of the quencher across the nanoscale membrane was observed, consistent with the high fluidity of the liquid polybutadiene membrane. Two different PB-PEO copolymers were employed, in order to vary the thickness of the solvophobic membrane. A significant increase in membrane permeability was also observed with decreasing membrane thickness, which is tentatively attributable to differences in quencher solubility in the membranes. Quantitative migration of the vesicles from the aqueous phase back to an ionic liquid phase was achieved upon heating. These microscopically heterogeneous and thermoresponsive vesicles with permeable and robust membranes have potential as recyclable nanoreactors, in which the high viscosity and capital expense of an ionic liquid reaction medium can be mitigated, while retaining the desirable features of ionic liquids as reaction media, and facile catalyst recovery.

  5. Shifts in the temperature of maximum density (TMD) of ionic liquid aqueous solutions.

    Science.gov (United States)

    Tariq, M; Esperança, J M S S; Soromenho, M R C; Rebelo, L P N; Lopes, J N Canongia

    2013-07-14

    This work investigates for the first time shifts in the temperature of maximum density (TMD) of water caused by ionic liquid solutes. A vast amount of high-precision volumetric data--more than 6000 equilibrated (static) high-precision density determination corresponding to ∼90 distinct ionic liquid aqueous solutions of 28 different types of ionic liquid--allowed us to analyze the TMD shifts for different homologous series or similar sets of ionic solutes and explain the overall effects in terms of hydrophobic, electrostatic and hydrogen-bonding contributions. The differences between the observed TMD shifts in the -2 temperatures are discussed taking into account the different types of possible solute-water interactions that can modify the structure of the aqueous phase. The results also reveal different insights concerning the nature of the ions that constitute typical ionic liquids and are consistent with previous results that established hydrophobic and hydrophilic scales for ionic liquid ions based on their specific interactions with water and other probe molecules.

  6. Solubilization of benzene, toluene, and xylene (BTX) in aqueous micellar solutions of amphiphilic imidazolium ionic liquids.

    Science.gov (United States)

    Łuczak, Justyna; Jungnickel, Christian; Markiewicz, Marta; Hupka, Jan

    2013-05-09

    Water-soluble ionic liquids may be considered analogues to cationic surfactants with a corresponding surface activity and ability to create organized structures in aqueous solutions. For the first time, the enhanced solubility of the aromatic hydrocarbons, benzene, toluene, and xylene, in aqueous micellar systems of 1-alkyl-3-methylimidazolium chlorides was investigated. Above a critical micelle concentration, a gradual increase in the concentration of aromatic hydrocarbons in the miceller solution was observed. This phenomenon was followed by means of the molar solubilization ratio, the micellar/water partition coefficient, and the number of solubilizate molecules per IL micelle. The molar solubilization ratio for ionic liquid micelles was found to be significantly higher when compared to that of ionic surfactants of similar chain length. The incorporation of the hydrocarbon into the micelle affects also an increase of the aggregation number.

  7. Reversible Sol-Gel Transitions in Aqueous Solutions of N-Isopropylacrylamide Ionic Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Krzyminski, Karol J.; Jasionowski, Marek; Gutowska, Anna

    2008-04-01

    Ionic copolymers of N-isopropylacrylamide (NIPA) exhibiting sol-gel transitions in aqueous solutions were investigated. The studies were aimed at understanding of the structure-property relationship in design of injectable, in situ forming gels for potential biomedical applications in delivery of therapeutics and tissue engineering. Aqueous solutions of NIPA ionic copolymers were found to flow freely at ambient temperatures and formed soft gels with controlled syneresis above 32°C, the lower critical solution temperature of NIPA. The sol-gel transitions and temperature dependent properties of the resulting gels were analyzed using dynamic rheometry, UV and IR spectrometry, and were found to be controlled by the molecular weight and composition of copolymers, ionization state of comonomers, and composition of aqueous solvent.

  8. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  9. Role of Ionic Clusters in Dynamics of Ionomer Melts: From Atomistic to Coarse Grained Simulations

    Science.gov (United States)

    Agrawal, Anupriya

    Ionomers, polymers decorated with ionizable groups, have found application in numerous technologies where ionic transport is required. The ionic groups associate into random clusters resulting in substantial effect on structure, dynamics and transport of these materials. The effects of topology, size and dynamics of these aggregates however remain an open question. Here we probe cluster formation correlated with polymer dynamics through a model system of randomly sulfonated polystyrene (SPS) melts with molecular dynamics (MD) simulations over a broad time and length scales ranging from that within the ionic clusters through polymer segmental dynamics to the motion of the entire molecules. The cluster evolution was probed by fully atomistic studies. We find ladder-like aggregates that transform to globule-like with increasing the dielectric constant of media for sodium neutralized SPS. With increasing dielectric constant, the size of the aggregates decrease and their number increases. Concurrently, the mobility of the polymer increases. The counterion radius and valency affect both morphology and dynamics as is evident in the calculated static and dynamic structure factors. It is further manifested in the results of viscosity obtained through non-equilibrium molecular dynamics technique. Finally, to access larger length scales a three bead coarse-grained model to describe sulfonated styrene that we have developed will be discussed in view of the outstanding challenges in ionic polymers. Supported in part by DOE Grant No. DE-SC007908. This work was carried out in collaboration with Dvora Perahia and Gary Grest while I was a postdoc at Clemson University. I gratefully acknowledge both of them for their support and encouragement.

  10. Some electrochemical aspects of aqueous ionic polymer-composite actuators

    Science.gov (United States)

    Hamburg, Edgar; Zondaka, Zane; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2016-04-01

    Depending on the electrode material and on the cations, the electrolysis of water starts at significantly higher voltages than the standard potential of the water electrolysis cell, which is 1.23V. We present the simple methodic of determining the "safe" voltage of aqueous IPMCs below what there is no water electrolysis, with the corresponding quantitative data. Higher voltages applied to IPMC cause irreversible formation of platinum oxides and absorption of hydrogen on the platinum electrodes that can change the mechanism of water electrolysis and decrease the minim required voltage of water electrolysis even below the 1.23V.

  11. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  12. Cellulose/Gold Nanocrystal Hybrids via an Ionic Liquid/Aqueous Precipitation Route

    Directory of Open Access Journals (Sweden)

    Andreas Taubert

    2009-11-01

    Full Text Available Injection of a mixture of HAuCl4 and cellulose dissolved in the ionic liquid (IL 1-butyl-3-methylimidazolium chloride [Bmim]Cl into aqueous NaBH4 leads to colloidal gold nanoparticle/cellulose hybrid precipitates. This process is a model example for a very simple and generic approach towards (noble metal/cellulose hybrids, which could find applications in sensing, sterile filtration, or as biomaterials.

  13. Extraction of copper(II) ions from aqueous solutions with a methimazole-based ionic liquid.

    Science.gov (United States)

    Reyna-González, Juan M; Torriero, Angel A J; Siriwardana, Amal I; Burgar, Iko M; Bond, Alan M

    2010-09-15

    The recently synthesized ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf(2)], has been used for the extraction of copper(II) from aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu](+), which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of sparingly soluble water in [mimSBu][NTf(2)] also is required in solvent extraction studies to promote the incorporation of Cu(II) into the [mimSBu][NTf(2)] ionic liquid phase. The labile copper(II) system formed by interacting with both the water and the IL cation component has been characterized by cyclic voltammetry as well as UV-vis, Raman, and (1)H, (13)C, and (15)N NMR spectroscopies. The extraction process does not require the addition of a complexing agent or pH control of the aqueous phase. [mimSBu][NTf(2)] can be recovered from the labile copper-water-IL interacting system by washing with a strong acid. High selectivity of copper(II) extraction is achieved relative to that of other divalent cobalt(II), iron(II), and nickel(II) transition-metal cations. The course of microextraction of Cu(2+) from aqueous media into the [mimSBu][NTf(2)] IL phase was monitored in situ by cyclic voltammetry using a well-defined process in which specific interaction with copper is believed to switch from the ionic liquid cation component, [mimSBu], to the [NTf(2)] anion during the course of electrochemical reduction from Cu(II) to Cu(I). The microextraction-voltammetry technique provides a fast and convenient method to determine whether an IL is able to extract electroactive metal ions from an aqueous solution.

  14. Development of tropine-salt aqueous two-phase systems and removal of hydrophilic ionic liquids from aqueous solution.

    Science.gov (United States)

    Wu, Haoran; Yao, Shun; Qian, Guofei; Song, Hang

    2016-08-26

    A novel aqueous two-phase systems (ATPS) composed of a small molecule organic compound tropine and an organic or inorganic salt aqueous solution has been developed for the first time. The phase behavior of tropine-salt ATPS was systemically investigated and the phase equilibrium data were measured in different temperatures and concentrations and correlated by the Merchuk equation with satisfactory results. The detection of the conductivity and particle size proved the formation of micelle in the process of forming tropine-salt ATPS. The separation application of the ATPS was assessed with the removal of hydrophilic benzothiazolium-based ionic liquids (ILs) from aqueous solution. The result showed that ILs were effectively extracted into the top tropine-rich phase. Finally, ILs in the top tropine-rich phase were further separated by the means of adsorption-desorption with DM301 macroporous resin and ethanol. The method of novel tropine-salt ATPS combined with adsorption-desorption is demonstrated a promising alternative thought and approach for the removal or recovery of hydrophilic compounds from aqueous media and also could provide a potential application for bio-separation.

  15. Lithium chloride ionic association in dilute aqueous solution: a constrained molecular dynamics study

    Science.gov (United States)

    Zhang, Zhigang; Duan, Zhenhao

    2004-02-01

    Constrained molecular dynamics simulations were carried out to investigate the lithium chloride ionic associations in dilute aqueous solutions over a wide temperature range. Solvent mediated potentials of mean force have been carefully calculated at different thermodynamic conditions. Two intermediate states of ionic association can be well identified with an energy barrier from the oscillatory free energy profile. Clear pictures for the microscopic association structures are presented with a remarkable feature of strong hydration effect of lithium ion and the bridging role of its hydrating complex. Experimental association constants have been reasonably reproduced and a general trend of the increasing ionic association at high temperatures and low densities was observed. Additional simulations with different numbers of water molecules have been performed to check the possible artifacts introducing from periodic and finite size effects and confirm the reliability of our simulation results. Marginal differences of the simulated curves are believed to result from the significant compensation and canceling effect between the bare ionic forces and solvent induced mean force. Finally we confirmed the importance of accurate descriptions of dielectric properties of solvent in the ionic association study.

  16. Flexible EMI shielding materials derived by melt blending PVDF and ionic liquid modified MWNTs

    Science.gov (United States)

    Sharma, Maya; Sharma, Sukanya; Abraham, Jiji; Thomas, Sabu; Madras, Giridhar; Bose, Suryasarathi

    2014-09-01

    Nano composites of PVDF with ionic liquid [EMIM][TF2N] (IL) modified MWNTs were prepared by melt blending to design materials for EMI shielding applications. MWNTs and IL were mixed in two different ratios (1:1 and 1:5) to facilitate better dispersion of MWNTs in PVDF. It was observed that non-covalent interactions between IL and PVDF resulted in a better dispersion of CNTs and was consistent with increasing concentration of IL. Interestingly, IL modified MWNTs induced the formation of γ-phase crystals in PVDF, which was further confirmed by XRD, FTIR and DSC. Melt rheological measurements and DSC analysis revealed the plasticization effect of IL in PVDF composites further manifesting in a decrease in the storage modulus and the glass transition temperature. This phenomenal effect presumably led to better dispersion of IL modified MWNTs in PVDF further resulting in a significant improvement in electrical conductivity and structural properties. More interestingly, the elongational properties in the composites improved with IL modified MWNTs in striking contrast to MWNT filled PVDF composites. The ac conductivity of the composites reached about 10-3 S cm-1 with the addition of 2 wt% IL modified MWNTs (1:1). This further led to a high electro-magnetic interference (EMI) shielding effectiveness of about 20 dB at 2 wt% IL modified MWNTs. Such materials can further be explored for flexible, lightweight EMI shielding materials for a wide range of operating frequency.

  17. Dynamic Mass Transfer of Hemoglobin at the Aqueous/Ionic-Liquid Interface Monitored with Liquid Core Optical Waveguide.

    Science.gov (United States)

    Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua

    2015-08-04

    Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.

  18. Speciation of phytate ion in aqueous solution. Alkali metal complex formation in different ionic media.

    Science.gov (United States)

    De Stefano, Concetta; Milea, Demetrio; Pettignano, Alberto; Sammartano, Silvio

    2003-08-01

    The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with jstability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.

  19. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M., E-mail: fattah@cnu.edu

    2016-11-01

    Highlights: • Co films deposition via aqueous and ionic liquid Precursors. • Hydrogen evolution produced from reactive surfaces. • Co deposited films characterized by SEM, AFM, EDX and XRD techniques. - Abstract: Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH{sub 4}) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and <300 μm for each film. The roughness (Ra) value measurements by Dektak surface profiling showed that the NCoF (Ra = 165 nm) was smoother than the ACoF (Ra = 418 nm). The NCoFs and ACoFs contained only α phase (FCC) crystallites. The NCoFs were crystalline while the ACoFs were largely amorphous from X-ray diffraction analysis. The NCoF had an average Vickers hardness value of 84 MPa as compared to 176 MPa for ACoF. The aqueous precursor has a single absorption maximum at 510 nm and the non-aqueous precursor had three absorption maxima at 630, 670, and 695 nm. The hydrogen evolution reactions over a 1 cm{sup 2} catalytic surface with aqueous NaBH{sub 4} solutions generated rate constants (K) = equal to 4.9 × 10{sup −3} min{sup −1}, 4.6 × 10{sup −3} min{sup −1}, and 3.3 × 10{sup −3} min{sup −1} for ACoF, NCoF, and copper substrate respectively.

  20. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.

    Directory of Open Access Journals (Sweden)

    Jesper Petersen

    Full Text Available The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i the two stringency modulators generated melting curves that could be compared, (ii both led to increased assay robustness, and (iii both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.

  1. Ludwig-Soret effect of non-ionic surfactant aqueous solution studied by beam deflection method

    Science.gov (United States)

    Maeda, Kousaku; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin

    2013-02-01

    We have studied the thermal diffusion of non-ionic surfactant aqueous solutions by a beam deflection method. The thermal diffusion of pentaethylene glycol monododecyl ether (C12E5) and hexaethylene glycol monododecyl ether (C12E6) is studied in the concentration range of 1.0-99.0 wt% and in the temperature range of 20.0-35.0 °C. A stable temperature gradient is applied to the solution, where solute molecules shift to the cold side of the solution for lowconcentration samples. The concentration dependence of the Soret coefficient ST of the C12E6 aqueous solution shows a sign inversion behavior. At all concentrations, the developed concentration gradient is proportionally related to the applied temperature gradient. The results confirm that the magnitude of ST has no temperature gradient dependence under the studied experimental conditions.

  2. Simulations of mean ionic activity coefficients and solubilities in aqueous electrolyte solutions

    Science.gov (United States)

    Panagiotopoulos, Athanassios

    Aqueous electrolyte solutions play an important role in industrial, geochemical and biological applications. The mean ionic activity coefficients quantify the deviation of salt chemical potential from ideal solution behavior; experimental measurements are available for many salts over broad ranges of concentration and temperature, but there have been practically no prior simulation results, because if sampling difficulties for explicit-solvent electrolyte solutions. We have developed a new approach for determination of activity coefficients of aqueous electrolytes. Common fixed-point-charge models for water and ions are unable to reproduce simultaneously activity coefficients and solubilities. Polarizable models perform better, but still predict an incorrect temperature dependence of these properties. Work supported by the U.S. Department of Energy, Office of Basic Energy Science.

  3. Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present work,it was found that aqueous solution of a hydrophilic ionic liquid (IL),1-butyl-3-methylimidazolium dicyanamide ([C4mim][N(CN)2]),could be separated into an aqueous two-phase system (ATPS) by inorganic salts such as K2HPO4 and K3PO4.The top phase is IL-rich,while the bottom phase is phosphate-rich.It was shown that 82.7%-100% bovine serum albumin (BSA) could be enriched into the top phase and almost quantitative saccharides (arabinose,glucose,sucrose,raffinose or dextran) were preferentially extracted into the bottom phase in a single-step extraction by [C4mim][N(CN)2] + K2HPO4 ATPS.The extraction efficiency of BSA from the aqueous saccharide solutions was influenced by the molecular structure of saccharides.The conductivity,dynamic light scattering (DLS) and transmission electron microscopy (TEM) were combined to investigate the microstructure of the IL-rich top phase and the possible mechanism for the selective separation.It is suggested that the formation of the IL aggregate and the IL aggregate-BSA complex plays a significant role in the separation of BSA from aqueous saccharide solutions.This is the first example for the selective separation by ILs-based ATPSs.It is expected that these findings would have potential applications in bio-analysis,separation,and IL recycle.

  4. In situ crystallization of low-melting ionic liquid [BMIM][PF6] under high pressure up to 2 GPa.

    Science.gov (United States)

    Su, Lei; Li, Min; Zhu, Xiang; Wang, Zheng; Chen, Zhenping; Li, Fangfei; Zhou, Qiang; Hong, Shiming

    2010-04-22

    To develop a new practical method of purifying and recycling ionic liquids, we performed direct microscopic observations and in situ crystallization of low-melting ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), in detail by high pressure Raman spectroscopy. Compression of [BMIM][PF(6)] was measured under pressures up to about 2.0 GPa at temperatures 293-353 K by using a high pressure diamond anvil cell (DAC). At room temperature, with pressure increasing, the characteristic bands of [BMIM][PF(6)] displayed nonmonotonic pressure-induced frequency shifts, and [BMIM][PF(6)] experienced the liquid-solid phase transition at about 0.50 GPa. In separate experiments, in situ crystallization of low-melting ionic liquid [BMIM][PF(6)] were also measured at various P-T regions, in order to improve the understanding of its stability limits. Finally, the T versus P phase diagram of [BMIM][PF(6)] was constructed, and it showed that the melting point was an increase function of pressure. It was also indicated that the structure changes in the crystalline and liquid states under high pressure might also be associated with conformational changes in the butyl chain. Pressure-released Raman spectra also showed that the phase transition of [BMIM][PF(6)] was reversible.

  5. Responses of polar organic compounds to different ionic environments in aqueous media are interrelated.

    Science.gov (United States)

    Ferreira, L A; Chervenak, A; Placko, S; Kestranek, A; Madeira, P P; Zaslavsky, B Y

    2014-11-14

    Solubilities of 17 polar organic compounds in aqueous solutions of Na2SO4, NaCl, NaClO4, and NaSCN at the salt concentrations of up to 1.0-2.0 M were determined and the Setschenow constant, ksalt, values were estimated. It was found that NaClO4 may display both salting-in and salting-out effects depending on the particular compound structure. The Setschenow constant values for all the polar compounds examined in different salt solutions are found to be interrelated. Similar relationships were observed for partition coefficients of nonionic organic compounds in aqueous polyethylene glycol-sodium sulfate two-phase systems in the presence of different salt additives reported previously [Ferreira et al., J. Chromatogr. A, 2011, 1218, 5031], and for the effects of different salts on optical rotation of amino acids reported by Rossi et al. [J. Phys. Chem. B, 2007, 111, 10510]. In order to explain the observed relationships it is suggested that all the effects observed originate as responses of the compounds to the presence of a given ionic environment and its interaction with the compounds by forming direct or solvent-separated ionic pairs. The response is compound-specific and its strength is determined by the compound structure and the type (and concentration) of ions inducing the response.

  6. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    Science.gov (United States)

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  7. An experimental study of tin partition between melt and aqueous fluid in F/CI-coexisting magma

    Institute of Scientific and Technical Information of China (English)

    HU XiaoYan; BI XianWu; SHANG LinBo; HU RuiZhong; CAI GuoSheng; CHEN YouWei

    2009-01-01

    In order to investigate the formation mechanism of tin ores associated with F-bearing granite, an experimental study of tin partition between F-bearing granitic melt and coexisting HCI-bearing aqueous fluid was conducted at 850"C and 100MPa with fo2 approaching NNO. Geochemical behavior of tin was traced by changes in starting solid materials with different alumina saturation index ASl, in F content and in starting fluids of various HCl concentrations. The results show that DSn increases with ASl of melt and peraluminous melt is favorable for tin partition into aqueous fluid in the F/Cl-coexisting system. Aqueous fluid of higher HCl concentrations is advantageous for enrichment of tin. Furthermore,chlorine contents in glass run products correlate positively with F and CI contents in the magma. In the F/Cl-coexisting system, granitic melts with high F contents (>~-1 wt%) could extract and enrich tin in the melt which can serve as a reservoir for the formation of tin ores. However, the partition coefficient of tin would increase significantly when F contents in the melt were below 1 wt%. Therefore, the decrease of F contents is favorable to the partition of tin into aqueous fluid with high HCI contents, thus promoting deposition of hydrothermal tin ores.

  8. Melting of the precipitated ice IV in LiCl aqueous solution and polyamorphism of water.

    Science.gov (United States)

    Mishima, Osamu

    2011-12-08

    Melting of the precipitated ice IV in supercooled LiCl-H(2)O solution was studied in the range of 0-0.6 MPa and 160-270 K. Emulsified solution was used to detect this metastable transition. Ice IV was precipitated from the aqueous solution of 2.0 mol % LiCl (or 4.8 mol % LiCl) in each emulsion particle at low-temperature and high-pressure conditions, and the emulsion was decompressed at different temperatures. The melting of ice IV was detected from the temperature change of the emulsified sample during the decompression. There was an apparently sudden change in the slope of the ice IV melting curve (liquidus) in the pressure-temperature diagram. At the high-pressure and high-temperature side of the change, the solute-induced freezing point depression was observed. At the low-pressure and low-temperature side, ice IV transformed into ice Ih on the decompression, and the transition was almost unrelated to the concentration of LiCl. These experimental results were roughly explained by the presumed existence of two kinds of liquid water (low-density liquid water and high-density liquid water), or polyamorphism in water, and by the simple assumption that LiCl dissolved maily in high-density liquid water.

  9. Relative hydrophobicity between the phases and partition of cytochrome-c in glycine ionic liquids aqueous two-phase systems.

    Science.gov (United States)

    Wu, Changzeng; Wang, Jianji; Li, Zhiyong; Jing, Jun; Wang, Huiyong

    2013-08-30

    In this work, glycine ionic liquids tetramethylammonium glycine ([N1111][Gly]), tetraethylammonium glycine ([N2222][Gly]), tetra-n-butylammonium glycine ([N4444][Gly]), tetra-n-butylphosphonium glycine ([P4444][Gly]) and tetra-n-pentylammonium glycine ([N5555][Gly]) were synthesized and used to prepare aqueous two-phase systems (ATPSs) in the presence of K2HPO4. Binodal curves of such ATPSs and partition coefficients of a series of dinitrophenylated (DNP) amino acids in these ATPSs were determined at 298.15K to understand the effect of cationic structure of the ionic liquids on the phase-forming ability of glycine ionic liquids, relative hydrophobicity between the phases in the ionic liquids ATPSs, and polarity of the ionic liquids-rich phases. With the attempt to correlate the relative hydrophobicity of the phases in the ATPSs with their extraction capability for proteins, partition coefficients of cytochrome-c in the ATPSs were also determined. It was shown that partition coefficients of cytochrome-c were in the range from 2.83 to 20.7 under the studied pH conditions. Then, hydrophobic interactions between cytochrome-c and the ionic liquid are suggested to be the main driving force for the preferential partition of cytochrome-c in the glycine ionic liquid-rich phases of the ATPSs. Result derived from polarity of the ionic liquids-rich phases supports this mechanism.

  10. Electronic Polarisability of NaNO2-NaNO3 and NaOH-NaNO3 Ionic Melts and Effective Ionic Radius of OH-

    Science.gov (United States)

    Iwadate, Yasuhiko; Ohnishi, Ryosuke; Ohkubo, Takahiro

    2017-01-01

    Molar volumes and refractive indexes of molten NaNO2-NaNO3 and NaOH-NaNO3 systems were measured by dilatometry and goniometry, respectively. The molar volumes of both systems increased with increasing temperature. Refractive indexes decreased with a rise of temperature or with increasing wavelength of the incident visible light. Assuming that the electronic polarisability is inherent in an ion, the electronic polarisability of a OH- ion in the melt was estimated from the Lorentz-Lorenz equation to be 1.26×10-30 m3, being comparable with that in the crystal. The effective ionic radius of a OH- ion was evaluated from the obtained electronic polarisability to be 1.34×10-10 m, using the correlation between the third power of the ionic radius and the electronic polarisability of an ion so far reported. The effective ionic radius obtained in this work was in good agreement with that assigned by Shannon.

  11. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  12. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    Science.gov (United States)

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  13. Protein remains stable at unusually high temperatures when solvated in aqueous mixtures of amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Chevrot, Guillaume; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2016-01-01

    [EMIM][TRP] (5 mol% in water). Upon analyzing the radius of gyration, the solvent-accessible surface area, root-mean-squared deviations, and inter- and intramolecular hydrogen bonds, we found that the mini-protein remains stable at 30–40 K higher temperatures in aqueous amino acid based ionic liquids...

  14. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions

    Energy Technology Data Exchange (ETDEWEB)

    Baj, Stefan; Krawczyk, Tomasz; Dabrowska, Aleksandra; Siewniak, Agnieszka [Silesian University of Technology, Gliwice (Poland); Sobolewski, Aleksander [Institute for Chemical Processing of Coal, Zabrze (Poland)

    2015-11-15

    The solubility of carbon dioxide at atmospheric pressure in aqueous mixtures of 1,3-alkyl substituted imidazolium ionic liquids (ILs) containing carboxylic anions was studied. The ILs showed increased solubility of CO{sub 2} with decreasing water concentration. The relationship between the CO{sub 2} concentration in solution and the mole fraction of water in the ILs describes a sigmoidal curve. The regression constants of a logistic function were used to quantitatively assess the absorbent capacity and the effect of water on CO{sub 2} absorption. ILs containing the most basic anions, such as pivalate, propionate and acetate, had the best properties. It was observed that the impact of water on absorption primarily depended on the cation structure. The best absorption performance was observed for 1,3-dibutylimidazolium pivalate and 1-butyl-3-methyl imidazolium acetate.

  15. Crossover Leung-Griffiths model and the phase behavior of dilute aqueous ionic solutions

    Science.gov (United States)

    Belyakov, M. Yu.; Kiselev, S. B.; Rainwater, J. C.

    1997-08-01

    A new parametric crossover model for the phase behavior of a binary mixture is presented that corresponds to the Leung-Griffiths model in the critical region and is transformed into the regular classical expansion far away from the critical point. The model is optimized to, and leads to excellent agreement with, isothermal vapor-liquid equilibrium data for dilute aqueous solutions of sodium chloride by Bischoff and co-workers. It then accurately predicts constant-composition phase equilibrium loci as measured by independent workers. This crossover model is therefore capable of representing the thermodynamic surface of ionic solutions in a large range of temperatures and densities around the critical points of vapor-liquid equilibrium.

  16. Stress Corrosion Cracking Behavior of Alloy 22 in Multi-Ionic Aqueous Environments

    Energy Technology Data Exchange (ETDEWEB)

    K.J. King; J.C. Estill; R.B. Rebak

    2002-07-15

    The US Department of Energy is characterizing a potential repository site for nuclear waste in Yucca Mountain (NV). In its current design, the nuclear waste containers consist of a double metallic layer. The external layer would be made of NO6022 or Alloy 22 (Ni-22Cr-13Mo-3W-3Fe). Since over their lifetime, the containers may be exposed to multi-ionic aqueous environments, a potential degradation mode of the outer layer could be environmentally assisted cracking (EAC) or stress corrosion cracking (SCC). In general, Alloy 22 is extremely resistant to SCC, especially in concentrated chloride solutions. Current results obtained through slow strain rate testing (SSRT) shows that Alloy 22 may suffer SCC in simulated concentrated water (SCW) at applied potentials approximately 400 mV more anodic than the corrosion potential (E{sub rr}).

  17. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    Science.gov (United States)

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  18. Ionic liquids modified graphene oxide composites: a high efficient adsorbent for phthalates from aqueous solution

    Science.gov (United States)

    Zhou, Xinguang; Zhang, Yinglu; Huang, Zuteng; Lu, Dingkun; Zhu, Anwei; Shi, Guoyue

    2016-12-01

    In 2015, more than 30% of erasers were found to contain a PAE content that exceeded the 0.1% limit established by the Quality and Technology Supervision Bureau of Jiangsu Province in China. Thus, strengthening the supervision and regulation of the PAE content in foods and supplies, in particular, remains necessary. Graphene oxide (GO) and its composites have drawn great interests as promising adsorbents for polar and nonpolar compounds. However, GO-based adsorbents are typically restricted by the difficult separation after treatment because of the high pressure in filtration and low density in centrifugation. Herein, a series of novel ionic liquids modified graphene oxide composites (GO-ILs) were prepared as adsorbents for phthalates (PAEs) in eraser samples, which overcame the conventional drawbacks. These novel composites have a combination of the high surface area of graphene oxide and the tunability of the ionic liquids. It is expected that the GO-ILs composites can be used as efficient adsorbents for PAEs from aqueous solution. This work also demonstrated a new technique for GO-based materials applied in sample preparation.

  19. Colloidal Behavior of Aqueous Montmorillonite Suspensions in the Presence of Non-ionic Polymer

    Institute of Scientific and Technical Information of China (English)

    Mourad Gareche[1; Nadjet Azril[1; Leila Saoudi[1; Jean Charles Dupin[2; Ahmed Allal[2; Noureddine Zeraibi[1

    2015-01-01

    In this paper, we characterized at first, the rheological behavior of the bentonite suspensions and the aqueous solutions of PEO (polyethylene oxide). Then we are going to investigate the influence of this polymer in a water-based drilling fluid model (6% of bentonite suspension). The objective is to exhibit how the non-ionic polymer with molecular weight 6×103 g/mol, of varying concentration mass (0.7%, 1%, 2% and 3%) significantly alter the rheological properties (yield stress, viscosity, loss and elastic modulus) of the bentonite suspensions. The rheological measurements made in simple shear and in dynamic on the mixture (water-bentonite-PEO), showed rheological properties of bentonite suspensions both in the presence and absence of non-ionic polymer. The PEO presents an affinity for the bentonite particles slowing down their kinetic aggregation. The analysis by XRD (X-rays diffraction) also allowed understanding the structure of this mixture. It had revealed the intercalation between of the clay platelets on one hand, and the links bridges assured by the chains of polymer between bentonite particles beyond a critical concentration in PEO on the other hand.

  20. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xueqin; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-01

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared

  1. Aqueous interfaces with hydrophobic room-temperature ionic liquids: a molecular dynamics study.

    Science.gov (United States)

    Chaumont, A; Schurhammer, R; Wipff, G

    2005-10-13

    We report a molecular dynamics study of the interface between water and (macroscopically) water-immiscible room-temperature ionic liquids "ILs", composed of PF6(-) anions and butyl- versus octyl-substituted methylimidazolium+ cations (noted BMI+ and OMI+). Because the parameters used to simulate the pure ILs were found to exaggerate the water/IL mixing, they have been modified by scaling down the atomic charges, leading to better agreement with the experiment. The comparison of [OMI][PF6] versus [BMI][PF6] ILs demonstrates the importance of the N-alkyl substituent on the extent of solvent mixing and on the nature of the interface. With the most hydrophobic [OMI][PF6] liquid, the "bulk" IL phase is dryer than with the [BMI][PF6] liquid. At the interface, the OMI+ cations retain direct contacts with the bulk IL, whereas the more hydrophilic PF6(-) anions gradually dilute in the local water micro-environment and are thus isolated from the "bulk" IL. The interfacial OMI+ cations are ordered with their imidazolium moiety pointing toward the aqueous side and their octyl chains toward the IL side of the interface. With the [BMI][PF6] liquid, the system gradually evolves from an IL-rich to a water-rich medium, leading to an ill-defined interfacial domain with high intersolvent mixing. As a result, the BMI+ cations are isotropically oriented "at the interface". Because the imidazolium cations are more hydrophobic than the PF6(-) anions, the charge distribution at the interface is heterogeneous, leading to a positive electrostatic potential at the interface with the two studied ILs. Mixing-demixing simulations on [BMI][PF6]/water mixtures are also reported, comparing Ewald versus reaction field treatments of electrostatics. Phase separation is very slow (at least 30 ns), in marked contrast with mixtures involving classical organic liquids, which separate in less than 0.5 ns at the microscopic level. The results allow us to better understand the specificity of the aqueous

  2. Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution.

    Science.gov (United States)

    Garcia, M Teresa; Ribosa, Isabel; Perez, Lourdes; Manresa, Angeles; Comelles, Francesc

    2014-11-01

    Surface active amide-functionalized ionic liquids (ILs) consisting of a long alkyl chain (C6C14) connected to a polar head group (methylimidazolium or pyridinium cation) via an amide functional group were synthesized and their thermal stability, micellar properties and antimicrobial activity in aqueous solution investigated. The incorporation of an amide group increased the thermal stability of the functionalized ionic liquids compared to simple alkyl chain substituted ionic liquids. The surface activity and aggregation behaviour in aqueous solution of amide-functionalized ionic liquids were examined by tensiometry, conductivity and spectrofluorimetry. Amide-functionalized ILs displayed surface activity and their critical micelle concentration (cmc) in aqueous media decreased with the elongation of the alkyl side chain as occurs for typical surfactants. Compared to non-functionalized ILs bearing the same alkyl chain, ionic liquids with an amide moiety possess higher surface activity (pC20) and lower cmc values. The introduction of an amide group in the hydrophobic chain close to the polar head enhances adsorption at the air/water interface and micellization which could be attributed to the H-bonding in the headgroup region. The antimicrobial activity was evaluated against a panel of representative Gram-negative and Gram-positive bacteria and fungi. Amide-functionalized ILs with more than eight carbon atoms in the side chain showed broad antimicrobial activity. Antibacterial activities were found to increase with the alkyl chain length being the C12 homologous the most effective antimicrobial agents. The introduction of an amide group enhanced significantly the antifungal activity as compared to non-functionalized ILs.

  3. Aqueous two phase system based on ionic liquid for isolation of quinine from human plasma sample.

    Science.gov (United States)

    Flieger, J; Czajkowska-Żelazko, A

    2015-01-01

    Aqueous two phase system was applied for selective extraction of quinine from human plasma. Bi-phase was constructed from ionic liquid: butyl-methyl-imidazolium chloride after addition kosmotropic salts K₃PO₄ or KH₂PO₄. Quinine was determined in plasma samples after drinking of tonic containing quinine. Determination was performed by HPLC on 5-μm Zorbax SB-CN column and eluent containing 40% acetonitrile (v/v), 20 mM phosphate buffer at pH 3 and 40 mM NaPF₆ using external standard method. The spectrophotometric detection was set λ=214 nm. Selective fluorescence detection was performed at excitation of 325 nm and emission of 375 nm. Proposed strategy provides suitable sample purification and gives extraction yields in the range of 89-106%. The determination coefficient (R(2)) has a value ≥0.997 in the range of 50-800 ng/ml quinine concentration. The limit of quantification was set at 27.9 ng/ml and the detection limit was found to be 8.4 ng/ml under fluorescence detection.

  4. Enhanced tunability afforded by aqueous biphasic systems formed by fluorinated ionic liquids and carbohydrates†

    Science.gov (United States)

    Boal-Palheiros, Isabel; Pereiro, Ana B.; Rebelo, Luís Paulo N.; Freire, Mara G.

    2016-01-01

    This work unveils the formation of novel aqueous biphasic systems (ABS) formed by perfluoroalkylsulfonate-based ionic liquids (ILs) and a large number of carbohydrates (monosaccharides, disaccharides and polyols) aiming at establishing more benign alternatives to the salts commonly used. The respective ternary phase diagrams were determined at 298 K. The aptitude of the carbohydrates to induce phase separation closely follows their hydration capability, while the length of the IL cation/anion fluorinated chain also plays a crucial role. Finally, these systems were investigated as liquid–liquid extraction strategies for four food dyes. Single-step extraction efficiencies for the carbohydrate-rich phase up to 94% were obtained. Remarkably and contrarily to the most investigated IL-salt ABS, most dyes preferentially migrate for the most hydrophilic and biocompatible carbohydrate-rich phase – an outstanding advantage when envisaging the products recovery and further use. On the other hand, more hydrophobic dyes preferentially partition to the IL-rich phase, disclosing therefore these novel systems as highly amenable to be tuned by the proper choice of the phase-forming components. PMID:27667966

  5. Ionic Liquid-Based Non-Aqueous Electrolytes for Nickel/Metal Hydride Batteries

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-02-01

    Full Text Available The voltage of an alkaline electrolyte-based battery is often limited by the narrow electrochemical stability window of water (1.23 V. As an alternative to water, ionic liquid (IL-based electrolyte has been shown to exhibit excellent proton conducting properties and a wide electrochemical stability window, and can be used in proton conducting batteries. In this study, we used IL/acid mixtures to replace the 30 wt % KOH aqueous electrolyte in nickel/metal hydride (Ni/MH batteries, and verified the proton conducting character of these mixtures through electrochemical charge/discharge experiments. Dilution of ILs with acetic acid was found to effectively increase proton conductivity. By using 2 M acetic acid in 1-ethyl-3-methylimidazolium acetate, stable charge/discharge characteristics were obtained, including low charge/discharge overpotentials, a discharge voltage plateau at ~1.2 V, a specific capacity of 161.9 mAh·g−1, and a stable cycling performance for an AB5 metal hydride anode with a (Ni,Co,Zn(OH2 cathode.

  6. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein.

    Science.gov (United States)

    Ding, Xueqin; Wang, Yuzhi; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-07

    A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by (1)H nuclear magnetic resonance ((1)H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV-vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV-vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins.

  7. Electrochemical, computational and spectroscopic investigation on local environment of plutonium in ionic liquid and aqueous medium. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Arijit; Murali, Mallekav S.; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre Trombay, Mumbai (India). Radiochemistry Div.; Ali, Sk. Musharaf; Shenoy, Kalsanka Trivikram [Bhabha Atomic Research Centre Trombay, Mumbai (India). Chemical Engineering Div.

    2016-07-01

    With an aim to understand the nature of species, cyclic voltammetry (CV) of Pu(IV) in dilute HBr and in a room temperature ionic liquid (RTIL), 1-octyl-3-methylimidazolium bromide (C{sub 8}mimBr) was carried out. Shifts of cathodic and anodic peak potentials of Pu(IV) cyclic voltammograms were observed towards negative potentials in the extended electrochemical window for ionic liquid medium compared to 2 M HBr. The diffusion coefficient of the most likely species of Pu(IV) in aqueous medium was found to be greater than that of the corresponding species in ionic liquid while the activation energy showed reverse trend. The Pu(IV)/Pu(III) redox reaction was found to be exothermic in aqueous medium while it was endothermic in C{sub 8}mimBr. The redox reaction was found to be quasi reversible for both the media while the extent of irreversibility was more in ionic liquid. UV-Vis spectroscopy of Pu in these media showed significant differences in the peak positions and their relative intensities, indicating the possible differences in the interactions of Pu(IV) with the solvent molecules resulting in speciation differences. A new prominent peak was observed in RTIL which could be for a new species of Pu(IV). Computational studies were also carried out to understand the solvation of Pu and the possibility of thermodynamic conversion from Pu(IV) to Pu(III).

  8. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    Science.gov (United States)

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  9. Chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O

    Science.gov (United States)

    Mibe, K.; Kawamoto, T.; Ono, S.

    2012-12-01

    Knowing the chemical compositions of fluid and melt is fundamental in understanding the magma genesis and chemical differentiation in the Earth's interior. We investigated the stability fields of aqueous fluid, silicate melt, and supercritical fluid magma using in-situ x-ray radiography and the second critical endpoint in the system peridotite-H2O was determined to be around 3.8 GPa (Mibe et al., 2007, JGR). Using the quenched recovered samples obtained by Mibe et al. (2007), we determined the chemical compositions of aqueous fluid, silicate melt, and supercritical fluid in the vicinity of the second critical endpoint in the system peridotite-H2O by EPMA analyses. A 10- to 30-μm diameter electron beam was used to obtain the composition of quenched materials from aqueous fluid, silicate melt, and supercritical fluid. The compositions of coexisting aqueous fluid and silicate melt were determined at 3.3 GPa and 3.6 GPa and 1180°C. In both samples, olivine coexists with aqueous fluid and silicate melt. In the run at 3.3 GPa, the composition of aqueous fluid was high-Mg dacitic, whereas the composition of silicate melt was hydrous peridotite. In the run at 3.6 GPa, the composition of aqueous fluid was high-Mg andesitic, whereas the composition of silicate melt was hydrous komatiitic. Although aqueous fluids in both runs are high-Mg, both MgO and FeO preferentially enters into silicate melt compared to aqueous fluid.

  10. Femtosecond laser pulse driven melting in gold nanorod aqueous colloidal suspension: identification of a transition from stretched to exponential kinetics.

    Science.gov (United States)

    Li, Yuelin; Jiang, Zhang; Lin, Xiao-Min; Wen, Haidan; Walko, Donald A; Deshmukh, Sanket A; Subbaraman, Ram; Sankaranarayanan, Subramanian K R S; Gray, Stephen K; Ho, Phay

    2015-01-30

    Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, the behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.

  11. Aqueous ionic liquid based ultrasonic assisted extraction of four acetophenones from the Chinese medicinal plant Cynanchum bungei Decne.

    Science.gov (United States)

    Sun, Yinshi; Liu, Zhengbo; Wang, Jianhua; Yang, Saifei; Li, Baiqing; Xu, Ning

    2013-01-01

    In this study, an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the four acetophenones, namely 4-hydroxyacetophenone (1), 2,5-dihydroxyacetophenone (2), baishouwubenzophenone (3) and 2,4-dihydroxyacetophenone (4) from the Chinese medicinal plant Cynanchum bungei was developed. Three kinds of aqueous l-alkyl-3-methylimidazolium ionic liquids with different anion and alkyl chain were investigated. The results indicated that ionic liquids (ILs) showed remarkable effects on the extraction efficiency of acetophenones. In addition, the ILUAE, including several ultrasonic parameters, such as the ILs concentration, solvent to solid ratio, power, particle size, temperature, and extraction time have been optimized. Under these optimal conditions (e.g., with 0.6M [C(4)MIM]BF(4), solvent to solid ratio of 35:1, power of 175 W, particle size of 60-80 mesh, temperature of 25 ° C and time of 50 min), this approach gained the highest extraction yields of four acetophenones 286.15, 21.65, 632.58 and 205.38 μg/g, respectively. The proposed approach has been evaluated by comparison with the conventional heat-reflux extraction (HRE) and regular UAE. The results indicated that ILUAE is an alternative method for extracting acetophenones from C. bungei.

  12. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    Science.gov (United States)

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance.

  13. Partitioning of F Between Aqueous Fluids and Albite Granite Melt and Its Petrogenetic and Metallogenetic SignifiCance

    Institute of Scientific and Technical Information of China (English)

    熊小林; 朱金初; 等

    1998-01-01

    The fluid/melt partitioning experiments on fluorine were carried out in the system albite-H2O-HF at P=100MPa,770℃≤T≤800℃and wt 2%-6% conditions.The concentrations of fluorine in quenched glasses(melt) were determined by electron microprobe and those of flusorine in the coexisting aqueous fluid were calculated by the method of mass balance The result shows that the fluorine was concentrated in graniteic melt relative to the coexisting fluid.The partition coefficient DF(wtFF1/wtFMt)ranges from 0.35to 0.89,It increases with increasing fluorine content in the system,this means that there is not just one single value of partition coefficicent for fluorine in the granitic melt-fluid system.The partitioning behavior of fluorine in this system depends critically on fluorine and proton(H+) concentrations.Our data suggest that F-rich granitic melts exist in nature and that fluorine may not be an important complexing agent of metal elements in F-bearing fluids.

  14. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids(ILs) as solvents has been investigated.The distribution ratio of Sr2+ can reach as high as 103 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  15. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    XU Chao; SHEN XingHai; CHEN QingDe; GAO HongCheng

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids (Ils) as solvents has been investigated.The distribution ratio of Sr~(2+) can reach as high as 10~3 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na~+ and K~+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  16. Surfactant and Gelation Properties of Acetylsalicylate Based Room Temperature Ionic Liquid in Aqueous Media.

    Science.gov (United States)

    Sastry, Nandhibatla V; Singh, Dipak K

    2016-10-04

    An amphiphilic room temperature ionic liquid (RTIL) containing acetylsalicylate anion of type 1-dodecyl-1-methylpiperidinium acetylsalicylate, [C12mpip][AcSa], is synthesized from the precursor [C12mpip][Cl] by an ion exchange process. The sample is characterized, and its surface active and aggregation behavior in water has been studied and explained. The critical aggregation concentrations (CACs) are determined by a variety of methods, namely, electrical conductivity, surface tension, steady state florescence, and isothermal titration calorimetry (ITC) at different temperatures. As compared to its precursor, [C12mpip][AcSa] has low CAC values, indicating enhanced favorable interactions between the [alkylmpip](+) cation···bulky [AcSa](-) anion and also hydrogen bonding of both of the ions with water. The free energy of aggregation ΔG(0)a is always negative, and both enthalpy and entropy of aggregation drive the aggregation process. The micelle-like aggregates are ellipsoidal in shape. The aggregation numbers are determined from translational diffusion coefficients and florescence quenching measurements. Aggregates of [C12mpip][AcSa] are larger than those of its precursor IL with chloride anion. Therefore, it is evident that the close interactions between the ion pairs of [C12mpip](+)···[AcSa](-) facilitate packing of more molecules in an aggregate. The steady state and oscillatory rheology measurements in aqueous solutions consisting of mixtures of [C12mpip][AcSa] and sodium salicylate (SS), an hydrotope additive, were carried out. The analysis of zero shear viscosity and moduli properties as a function of concentration and temperature reveals that the addition of SS promotes the growth of small ellipsoid aggregates into large worm-like structures with a typical viscoelastic gel behavior. The moduli properties vs temperature profiles are complex and no hysteresis was produced in heating and cooling modes, suggesting the thermoirreversibile and complex nature

  17. Design and development of single stage purification of papain using Ionic Liquid based aqueous two phase extraction system and its Partition coefficient studies

    Directory of Open Access Journals (Sweden)

    Senthilkumar Rathnasamy

    2013-04-01

    Full Text Available As an emerging trend in bioseparation, aqueous two phase extractions based on phosponium ionic liquid have been utilized in this work to extract papain from Carica papaya fruit latex and the same wascompared with conventional aqueous two phase extraction system. Factors affecting the partition coefficient of papain such as ionic liquid concentration, pH of the extraction system and temperature have been investigated. The optimization studies show that ionic liquid concentrations and pH are majorly influencing the phaseformations and papain partitioning. It reveals the importance of electrostatic and hydrophobic interactions in the papain partitioning. Purification studies performed on Gel Filtration Chromatography shows that 96% of the papain enzyme could be extracted with the phosponium based ionic liquid in a single stage extraction. The final fraction containing papain enzyme was confirmed by SDS Page analysis.

  18. Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in aqueous NaCl at different ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Concetta de; Milea, Demetrio; Porcino, Nunziatina; Sammartano, Silvio [Universita di Messina, Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Messina (Italy)

    2006-09-15

    Interactions between myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (phytic acid) and cadmium(II) were studied by using potentiometry (at 25 C with the ISE-H{sup +} glass electrode) in different metal to ligand (Phy) ratios (1:1{<=}Cd{sup 2+}:Phy{<=}4:1) in NaCl{sub aq} at different ionic strengths (0.1{<=}I/mol L{sup -1}{<=}1). Nine Cd{sub i}H{sub j}Phy{sup (12-2i-j)-} species are formed with i=1 and 2 and 4{<=}j{<=}7; and trinuclear Cd{sub 3}H{sub 4}Phy{sup 2-}. Dependence of complex formation constants on ionic strength was modeled by using Specific ion Interaction Theory (SIT) equations. Phytate and cadmium speciation are also dependent on the metal to ligand ratio. Stability of Cd{sub i}H{sub j}Phy{sup (12-2i-j)-} species was modeled as a function of both the ligand protonation step (j) and the number of metal cations bound to phytate (i), and relationships found were used for the prediction of species other than those experimentally determined (mainly di- and tri-protonated complexes), allowing the possibility of modeling Phy and Cd(II) behavior in natural waters and biological fluids. A critical evaluation of phytate sequestering ability toward cadmium(II) has been made under several experimental conditions, and the determination of an empirical parameter has been proposed for an objective ''quantification'' of this ability. A thorough analysis of literature data on phytate-cadmium(II) complexes has been performed. (orig.)

  19. Trace element partitioning between aqueous fluids and silicate melts measured with a proton microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia). School of Earth Sciences; Sie, S.H. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    A series of experiments were performed to examine the capacity of H{sub 2}O-fluids to concentrate and transport incompatible elements through peridotitic mantle and metamorphosed (eclogitic) ocean crust. Two naturally occurring rock compositions, trondhjemitic and basanitic, were used in experiments. The proton microprobe was used to determine the trace element concentrations in the solutes from H{sub 2}O-fluids equilibrated at 900-1100 degree C, 2.0 GPa with water saturated melts of trondhjemitic and basanitic compositions. Partitioning data for H{sub 2}O-fluids and silicate melts show that H{sub 2}O-fluids equilibrated with mantle peridotites will not be strongly enriched in trace elements relative to their wallrocks, and thus they melts do not strongly concentrate alkaline earths Th and U, relative to high-field strength elements. 3 refs., 1 tab., 2 figs.

  20. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    Science.gov (United States)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  1. Enhanced Stability of the Model Mini-protein in Amino Acid Ionic Liquids and Their Aqueous Solutions

    CERN Document Server

    Chevrot, Guillaume; Chaban, Vitaly V

    2015-01-01

    Using molecular dynamics simulations, the structure of model mini-protein was thoroughly characterized in the imidazolium-based amino acid ionic liquids and their aqueous solutions. We report that the mini-protein is more stable when AAIL is added as a cosolvent. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini-protein. This observation suggests that AAILs are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini-protein is efficiently solvated by both solvents due to agood mutual miscibility. However, amino acid based anions prevail in the first coordination sphere of the mini-protein.

  2. Characterization of electrochemically deposited films from aqueous and ionic liquid cobalt precursors toward hydrogen evolution reactions

    Science.gov (United States)

    Dushatinski, Thomas; Huff, Clay; Abdel-Fattah, Tarek M.

    2016-11-01

    Electrodepositions of cobalt films were achieved using an aqueous or an ethylene glycol based non-aqueous solution containing choline chloride (vitamin B4) with cobalt chloride hexahydrate precursor toward hydrogen evolution reactions from sodium borohydride (NaBH4) as solid hydrogen feedstock (SHF). The resulting cobalt films had reflectivity at 550 nm of 2.2% for aqueously deposited films (ACoF) and 1.3% for non-aqueously deposited films (NCoF). Surface morphology studied by scanning electron microscopy showed a positive correlation between particle size and thickness. The film thicknesses were tunable between >100 μm and reactions over a 1 cm2 catalytic surface with aqueous NaBH4 solutions generated rate constants (K) = equal to 4.9 × 10-3 min-1, 4.6 × 10-3 min-1, and 3.3 × 10-3 min-1 for ACoF, NCoF, and copper substrate respectively.

  3. Ionic interactions. Subnanoscale hydrophobic modulation of salt bridges in aqueous media.

    Science.gov (United States)

    Chen, Shuo; Itoh, Yoshimitsu; Masuda, Takuya; Shimizu, Seishi; Zhao, Jun; Ma, Jing; Nakamura, Shugo; Okuro, Kou; Noguchi, Hidenori; Uosaki, Kohei; Aida, Takuzo

    2015-05-01

    Polar interactions such as electrostatic forces and hydrogen bonds play an essential role in biological molecular recognition. On a protein surface, polar interactions occur mostly in a hydrophobic environment because nonpolar amino acid residues cover ~75% of the protein surface. We report that ionic interactions on a hydrophobic surface are modulated by their subnanoscale distance to the surface. We developed a series of ionic head groups-appended self-assembled monolayers with C2, C6, C8, and C12 space-filling alkyl chains, which capture a dendritic guest via the formation of multiple salt bridges. The guest release upon protonolysis is progressively suppressed when its distance from the background hydrophobe changes from 1.2 (C2) to 0.2 (C12) nanometers, with an increase in salt bridge strength of ~3.9 kilocalories per mole.

  4. Determination of the distribution constants of aromatic compounds and steroids in biphasic micellar phosphonium ionic liquid/aqueous buffer systems by capillary electrokinetic chromatography.

    Science.gov (United States)

    Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K

    2013-09-20

    The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions.

  5. Determination of Sudan I-IV in candy using ionic liquid/anionic surfactant aqueous two-phase extraction coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Yu, Wei; Liu, Zhongling; Li, Qiang; Zhang, Hanqi; Yu, Yong

    2015-04-15

    Ionic liquid/anionic surfactant aqueous two-phase system was developed and applied for the extraction of Sudan I-IV. High-performance liquid chromatography was applied to the determination of the analytes. The aqueous two-phase system (ATPS) was formed in the present of C4[MIM]BF4, sodium dodecyl benzene sulphonate and (NH4)2SO4. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of sodium dodecyl benzene sulphonate, ionic strength, pH value of system, extraction time and temperature were investigated. The limits of detection for Sudan I, II, III and IV were 5.45, 4.66, 3.68, 4.20 μg kg(-1), respectively. When the present method was applied to the analysis of candy samples, the recoveries of the analytes ranged from 82.3% to 112.1% and relative standard deviations were lower than 7.41%.

  6. Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.

    Science.gov (United States)

    Qiu, Yinghua; Ma, Jian; Chen, Yunfei

    2016-05-17

    Through molecular dynamics simulations considering thermal vibration of surface atoms, ionic behaviors in concentrated NaCl solutions confined between discretely charged silicon surfaces have been investigated. The electric double layer structure was found to be sensitive to the density and distribution of surface charges. Due to the discreteness of the surface charge, a slight charge inversion appeared which depended on the surface charge density, bulk concentration, and confinement. In the nanoconfined NaCl solutions concentrated from 0.2 to 4.0 M, the locations of accumulation layers for Na(+) and Cl(-) ions remained stable, but their peak values increased. The higher the concentration was, the more obvious the charge inversion appeared. In 4.0 M NaCl solution, Na(+) and Cl(-) ions show obvious alternating layered distributions which may correspond to the solidification found in experiments. By changing surface separation, the confinement had a large effect on the ionic distribution. As both surfaces approached each other, many ions and water molecules were squeezed out of the confined space. Two adjacent layers in ion or water distribution profiles can be forced closer to each other and merge together. From ionic hydration analysis, the coordination number of Na(+) ions in highly confined space was much lower than that in the bulk.

  7. EFFECTS OF NH4CI ON THE INTERACTION BETWEEN POLY(ETHYLENE OXIDE)AND IONIC SURFACTANTS IN AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The interaction of poly(ethylene oxide)(PEO)with the ionic surfactants,sodium dodecylsulfate(SDS)and cetyltrimethylammonium chloride(CTAC)respectively,in aqueous solutions containing a certain concentration of NH4Cl,is studied by the viscosity measurement.It has been found that the ion-dipole interaction between PEO and ionic surfactants is changed considerably by the organic salt.For anionic surfactant of SDS,the addition of NH4Cl into solution strengthens the interaction between PEO and the headgroup of SDS.On the other hand,for cationic surfactant of CTAC,the interaction between PEO and the headgroup of CTAC is screened significantly by NH4Cl dissolved in solution.These findings may potentially be attributed to the negative property of the oxygen group of the PEO chain.In the presence of NH4Cl,the cationic ions of the organic salt bind to the oxygen group of the PEO chain so that PEO can be referred to as a pseudopolyelectrolyte in solution.

  8. Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems.

    Science.gov (United States)

    Ventura, Sónia P M; Santos-Ebinuma, Valéria C; Pereira, Jorge F B; Teixeira, Maria F S; Pessoa, Adalberto; Coutinho, João A P

    2013-05-01

    There is a growing demand for natural colorants. This is prompting the search for new alternative and "benign" separation systems allowing higher recoveries, extraction yields, and selectivities. This work investigates the use of aqueous two-phase systems (ATPS) based on ionic liquids as extraction processes for the recovery of red colorants from the fermented broth of Penicillium purpurogenum DPUA 1275. Several ATPS based on quaternary ammonium and imidazolium were studied in this work aiming at separating the red colorants produced from the remaining colorants and contaminant proteins present in the fermented broth. The results suggest that the red colorants can be isolated by an appropriate manipulation of some of the process conditions, such as the use of quaternary ammonium with short alkyl chains, alkaline media, and short tie-line lengths (extraction point systems with lower concentrations of ionic liquid). These conditions allow large partition coefficients for the red colorants (K red = 24.4 ± 2.3), high protein removal (60.7 ± 2.8 %) and selectivity parameters (S red/prot = 10.05).

  9. Impact of ionic strength on Cd(II) partitioning between alginate gel and Aqueous media

    NARCIS (Netherlands)

    Kalis, E.J.J.; Davis, T.A.; Town, R.M.; Leeuwen, van H.P.

    2009-01-01

    Alginate gel is representative of polysaccharide-based components of cell walls which contain a large number of negatively charged functional groups. The structural charge gives rise to a Donnan potential in the gel, which impacts significantly on the partitioning of ions between the aqueous medium

  10. Comparative investigation of underpotential deposition of Ag from aqueous and ionic electrolytes: An electrochemical and in situ STM study.

    Science.gov (United States)

    Borissov, D; Aravinda, C L; Freyland, W

    2005-06-16

    Underpotential deposition (UPD) of Ag on Au(111) has been studied with two different electrolytes: aqueous 0.1 M H2SO4 solution in comparison with the ionic liquid 1-butyl-3-methylimidazolium chloride BMICl + AlCl3. Of particular interest is the distinct behavior of 2D phase formation at both interfaces, which has been investigated by cyclic and linear sweep voltammetry in combination with in situ electrochemical scanning tunneling microscopy (STM). It is found that one monolayer (ML) of Ag is formed in the UPD region in both electrolytes. In aqueous solution, atomically resolved STM images at 500 mV versus Ag/Ag+ show a (3 x 3) adlayer of Ag, whereas after sweeping the potential just before the commencement of the bulk Ag deposition, a transition from expanded (3 x 3) to pseudomorphic ML of Ag on Au(111) occurs. In BMICl-AlCl3, the first UPD process of Ag exhibits two peaks at 410 and 230 mV indicating that two distinct processes on the surface take place. For the first time, STM images with atomic resolution reveal a transition from an inhomogeneous to an ordered phase with a (square root of 3 x square root of 3)R30 degrees structure and an adsorption of AlCl4- anions having a superlattice of (1.65 x square root of 3)R30 degrees preceding the deposition of Ag.

  11. Comparison of Solvation Effects on CO2 Capture with Aqueous Amine Solutions and Amine-Functionalized Ionic Liquids.

    Science.gov (United States)

    Yamada, Hidetaka

    2016-10-13

    Amines are the most widely utilized chemicals for postcombustion CO2 capture, because the reversible reactions between amines and CO2 through their moderate interaction allow effective "catch and release". Usually, CO2 is dissolved in the form of an anion such as carbamate or bicarbonate. Therefore, the reaction energy diagram is potentially governed to a large extent by the polarity of the surrounding solvent. Herein, we compared aqueous amine solutions and amine-functionalized ionic liquids by investigating their dielectric constants and performing an intrinsic reaction coordinate analysis of the CO2 absorption process. Quantum mechanical calculations at the CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level within the continuum solvation model (SMD/IEF-PCM) revealed contrasting dependencies of C-N bond formation on the dielectric constant in those solutions. Amines react with CO2 on an energy surface that is significantly affected by the dielectric constant in conventional aqueous amine solutions, whereas amine-functionalized anions and CO2 form stable C-N bonds with a comparatively lower activation energy regardless of the dielectric constant.

  12. Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution.

    Science.gov (United States)

    Garcia, M Teresa; Ribosa, Isabel; Perez, Lourdes; Manresa, Angeles; Comelles, Francesc

    2013-02-26

    Two series of long chain imidazolium- and pyridinium-based ionic liquids containing an ester functional group in the alkyl side chain, 3-methyl-1-alkyloxycarbonylmethylimidazolium bromides (C(n)EMeImBr) and 1-alkyloxycarbonylmethylpyridinium bromides (C(n)EPyrBr), were synthesized and their thermal stability, aggregation behavior in aqueous medium, and antimicrobial activity investigated. The introduction of an ester group decreased the thermal stability of the functionalized ILs compared to simple alkyl chain containing ILs (1-alkyl-3-methylimidazolium bromides and 1-alkylpyridinium bromides). Tensiometry, conductimetry, and spectrofluorimetry were applied to study the self-aggregation of the amphiphilic ILs in aqueous solution. The ILs investigated displayed surface activity and the characteristic chain length dependence of the micellization process of surfactants. As compared to simple alkyl chain containing ILs bearing the same hydrocarbon chain, ester-functionalized ILs possess higher adsorption efficiency (pC(20)) and significantly lower critical micelle concentration (cmc) and surface tension at the cmc (γ(cmc)), indicating that the incorporation of an ester group promotes adsorption at the air/water interface and micelle formation. The antimicrobial activity was evaluated against Gram-negative and Gram-positive bacteria and fungi. ILs containing more than eight carbon atoms in the alkyl chain showed antimicrobial activity. Their efficiency as antimicrobial agents increased with the hydrophobicity of the amphiphilic cation being the C(12) homologous the most active compounds. The incorporation of an ester group particularly increased the biological activity against fungi.

  13. Formation and characteristics of aqueous two-phase systems formed by a cationic surfactant and a series of ionic liquids.

    Science.gov (United States)

    Wei, Xi-Lian; Wang, Xiu-Hong; Ping, A-Li; Du, Pan-Pan; Sun, De-Zhi; Zhang, Qing-Fu; Liu, Jie

    2013-11-15

    Aqueous two-phase systems (ATPS) were obtained in the aqueous mixtures of a cationic surfactant and a series of ionic liquids (ILs). The effects of IL structure, temperature and additives on the phase separation were systematically investigated. The microstructures of some ATPS were observed by freeze-fracture replication technique. Lyotropic liquid crystal was found in the bottom phase besides micelles under different conditions. Remarkably, both IL structure and additives profoundly affected the formation and properties of the ATPSs. The phase separation can be attributed to the existence of different aggregates and the cation-π interactions of the cationic surfactant with the ILs, which has a significant role in the formation of ATPS. The extraction capacity of the studied ATPS was also evaluated through their application in the extraction of two biosubstances. The results indicate that the ILs with BF4(-) as anion show much better extraction efficiencies than the corresponding ILs with Br(-) as anion do under the same conditions. l-Tryptophan was mainly distributed into the NPTAB-rich phase, while methylene blue and capsochrome were mainly in the IL-rich phase.

  14. Partitioning of non-ionic surfactants between water and non-aqueous phase liquids (NAPLs) of chlorinated organics

    Science.gov (United States)

    KANG, S.; Jeong, H. Y.

    2013-12-01

    Due to the hydrophobic nature, chlorinated organic compounds penetrate soil and groundwater to form non-aqueous phase liquids (NAPLs). At the sites contaminated with such NAPLs, thus, surfactants are applied to increase the aqueous solubility of chlorinated organics via micellar solubilization. However, a portion of surfactants can be partitioned into NAPL phases by forming reverse micelles within them. Consequently, lesser amounts of surfactants are available for the micellar solubilization of chlorinated organics in the aqueous phase. In this study, we investigated the partitioning behavior of non-ionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) between water and a NAPL phase consisting of tetrachloroethylene (PCE), trichloroethylene (TCE), or chloroform (CF). According to the experimental results, the partitioning of surfactants in the water-NAPL systems was found to follow linear or Langmuir-type isotherms. Regardless of type of surfactants, the partitioning loss of surfactants into NAPLs became greater with the more hydrophilic (i.e., the lower water-NAPL interfacial tension) chlorinated organics: PCE Tween 80 << Triton X-100, suggesting that the greater partitioning occurred with the more hydrophobic (i.e., the lower hydrophilic-lipophilic balance, HLB) surfactant. Consistent with this postulation, the surfactant partitioning into PCE-NAPLs showed the similar trend. In case of TCE-NAPLs, however, the more hydrophobic Tween 40 was partitioned to a less extent than Tween 20. Therefore, the specific interaction of a NAPL-surfactant pair as well as their individual properties should be considered when selecting an effective surfactant for the remediation of a NAPL-contaminated site.

  15. In situ observation of multiple phase transitions in low-melting ionic liquid [BMIM][BF4] under high pressure up to 30 GPa.

    Science.gov (United States)

    Su, Lei; Zhu, Xiang; Wang, Zheng; Cheng, Xuerui; Wang, Yongqiang; Yuan, Chaosheng; Chen, Zhenping; Ma, Chunli; Li, Fangfei; Zhou, Qiang; Cui, Qiliang

    2012-02-23

    In situ characterization of phase transitions and direct microscopic observations of a low-melting ionic liquid, 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF(4)]), has been performed in detail by Raman spectroscopy. Compression of [BMIM][BF(4)] was measured under hydrostatic pressure up to ~30.0 GPa at room temperature by using a high-pressure diamond anvil cell. With pressure increasing, the characteristic bands of [BMIM][BF(4)] displayed nonmonotonic pressure-induced frequency shifts, and it is found to undergo four successive phase transitions at around 2.25, 6.10, 14.00, and 21.26 GPa. Especially, above a pressure of 21.26 GPa, luminescence of the sample occurs, which is connected with the most significant phase transition at around this pressure. It was indicated that the structure change under high pressure might be associated with a conformational change in the butyl chain. Upon releasing pressure, the spectrum was not recovered under a pressure up to 1.16 GPa, thereby indicating that this high-pressure phase remains stable over a large pressure range between 30 and 1.16 GPa in low-melting ionic liquid [BMIM][BF(4)]. Although the sample was kept under the normal pressure for 24 h, the spectrum was recovered, and it showed that the phase transition of [BMIM][BF(4)] was reversible. In other words, such a low-melting ionic liquid [BMIM][BF(4)] remains stable even after being treated under so a high pressure of up to 30 GPa.

  16. Removal of anionic azo dyes from aqueous solution by functional ionic liquid cross-linked polymer

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hejun [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China); Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000 (China); Kan, Taotao [CNOOC Energy Technology and Services-oilfield Technology Services Co., Tanggu, Tianjin 300452 (China); Zhao, Siyuan; Qian, Yixia; Cheng, Xiyuan; Wu, Wenli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaodong [Shandong Provincial Analysis and Test Center, Jinan 250100 (China); Zheng, Liqiang, E-mail: lqzheng@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100 (China)

    2013-10-15

    Highlights: • Equilibrium, kinetic and thermodynamic of adsorption of dyes onto PDVB-IL was investigated. • PDVB-IL has a high adsorption capacity to treat dyes solution. • Higher adsorption capacity is due to the functional groups of PDVB-IL. • Molecular structure of dyes influences the adsorption capacity. -- Abstract: A novel functional ionic liquid based cross-linked polymer (PDVB-IL) was synthesized from 1-aminoethyl-3-vinylimidazolium chloride and divinylbenzene for use as an adsorbent. The physicochemical properties of PDVB-IL were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis. The adsorptive capacity was investigated using anionic azo dyes of orange II, sunset yellow FCF, and amaranth as adsorbates. The maximum adsorption capacity could reach 925.09, 734.62, and 547.17 mg/g for orange II, sunset yellow FCF and amaranth at 25 °C, respectively, which are much better than most of the other adsorbents reported earlier. The effect of pH value was investigated in the range of 1–8. The result shows that a low pH value is found to favor the adsorption of those anionic azo dyes. The adsorption kinetics and isotherms are well fitted by a pseudo second-order model and Langmuir model, respectively. The adsorption process is found to be dominated by physisorption. The introduction of functional ionic liquid moieties into cross-linked poly(divinylbenzene) polymer constitutes a new and efficient kind of adsorbent.

  17. Poly(ethylene oxide) irradiated in the solid state, melt and aqueous solution—a DSC and WAXD study

    Science.gov (United States)

    Jurkin, Tanja; Pucić, Irina

    2012-09-01

    Interactions of the aggregate state of poly(ethylene oxide), PEO, and γ-irradiation conditions (total dose, atmosphere) on its thermal and crystalline properties were investigated by DSC and WAXD taking into account sample molecular mass and form. In PEO irradiated in the solid state and in the presence of oxygen, chain scission dominated over concurrent crosslinking up to 200 kGy, particularly in PEO powders, due to a large surface being in contact with air. In solid samples the degree of crystallinity and crystallite size increased with the dose up to 50 kGy, probably not just due to partial crystallization upon degradation of amorphous phase, but to recrystallization of broken tie molecules. The least changes in crystallinity and phase transformation temperatures occurred in solid films. A substantial decrease in crystallinity and transformation temperatures without the initial crystallinity increase was achieved in samples that were amorphous on irradiation, at temperatures above the PEO melting temperature and in aqueous solutions. Radiation crosslinking of the PEO aqueous solution in an inert atmosphere is the most suitable way to obtain a lower degree of crystallinity and phase transformation temperatures while preserving mechanical properties.

  18. Solubility of diazepam and prazepam in aqueous non-ionic surfactants.

    Science.gov (United States)

    Moro, M E; Velazquez, M M; Cachaza, J M; Rodriguez, L J

    1986-04-01

    The solubility of diazepam and prazepam in aqueous polyoxyethylen-10-dodecanol, polyoxyethylen-23-dodecanol and polyoxyethylen-20-hexadecanol, has been determined at 25.0 degrees C. Diazepam seems to achieve a higher micellar penetration than prazepam, in spite of an expected smaller hydrophobic character. Thermodynamic interpretation of the micellar solutions is carried out using the regular solutions approach. A surfactant-independent relation between solubilities of both drugs has been derived.

  19. Ionic Liquid Surfactant Mediated Structural Transitions and Self-Assembly of Bovine Serum Albumin in Aqueous Media: Effect of Functionalization of Ionic Liquid Surfactants.

    Science.gov (United States)

    Singh, Gurbir; Kang, Tejwant Singh

    2015-08-20

    The self-assembly of globular protein bovine serum albumin (BSA) has been investigated in aqueous solutions of ionic liquid surfactants (ILSs), 1-dodecyl-3-methyl imidazolium chloride, [C12mim][Cl], and its amide, [C12Amim][Cl], and ester, [C12Emim][Cl], functionalized counterparts. Dynamic light scattering (DLS) has provided insights into the alterations in hydrodynamic radii (D(h)) of BSA as a function of concentration of ILSs establishing the presence of different types of BSA-ILS complexes in different concentration regimes of ILSs. Isothermal titration calorimetry (ITC) has been exploited to quantify the ILSs interacting with BSA in dilute concentration regime of ILSs. The zeta-potential measurements shed light on changes in the charged state of BSA. The morphology of various self-assembled structures of BSA in different concentration regimes of ILSs have been explored using confocal laser scanning microscopy (CLSM) and scanning electron microscopy. The structural variations in ILSs have been found to produce remarkable effect on the nature and morphology of self-assembled structures of BSA. The presence of nonfunctionalized [C12mim][Cl] IL at all investigated concentrations has led to the formation of unordered large self-assembled structures of BSA. On the other hand, in specific concentration regimes, ordered self-assembled structures such as long rods and right-handedly twisted helical amyloid fibers have been observed in the presence of functionalized [C12Amim][Cl] and [C12Emim][Cl] ILSs, respectively. The nature of the formed helical fibers as amyloid ones has been confirmed using FTIR spectroscopy. Steady-state fluorescence and circular dichroism (CD) spectroscopy have provided insights into folding and unfolding of BSA as fashioned by interactions with ILSs in different concentration regimes supporting the observations made from other studies.

  20. The role of ionic surfactants on the solubilization of cyclohexenone compounds in aqueous media.

    Science.gov (United States)

    Nisar, Jan; Khan, Muhammad Anas; Badshah, Amir; Ilyas, Mohammad; Khan, Gul Tiaz

    2014-01-01

    The solubilization and partitioning study of five newly synthesized organic compounds (Cyclohexenone Carboxylates) with ionic surfactants, sodium dodecylsulphate (SDS) and cetyltrimethylammonium bromide (CTAB) was studied using ultraviolet-visible absorption spectroscopy technique. The differential spectroscopic technique was employed to study the partition coefficient (K(x)) of organic molecules between bulk water phase and the miceller phase. The values of partitioning coefficient were in the range 29.714 × 10(3) to 5.46 × 10(6). The standard free energy of partitioning (ΔG(op)) was also determined, which was found out in the range of -25 to -38 kJ /mole and shows the stability of the system. The results show that the cyclohexenone carboxylate compounds have great interactions with CTAB as compared to SDS.

  1. Molecular dynamics simulations of the aqueous interface with the [BMI][PF6] ionic liquid: Comparison of different solvent models.

    Science.gov (United States)

    Chevrot, G; Schurhammer, R; Wipff, G

    2006-09-28

    We report a Molecular Dynamics (MD) study of the interface between water and the hygroscopic room temperature Ionic Liquid "IL" [BMI][PF6] (1-butyl-3-methyl-imidazolium hexafluorophosphate), comparing the TIP3P, SPC/E and TIP5P models for water and two IL models where the ions are +/-1 or +/-0.9 charged. A recent MD study (A. Chaumont, R. Schurhammer and G. Wipff, J. Phys. Chem. B, 2005, 109, 18964) showed that using TIP3P water in conjunction with the IL(+/-1) model led to water-IL mixing without forming an interface, whereas a biphasic system could be obtained with the IL(+/-0.9) model. With the TIP5P and SPC/E models, the juxtaposed aqueous and IL phases are found to remain distinct for at least 20 ns. The resulting IL humidity, exaggerated with the IL(+/-1) model, is in better agreement with experiment using the IL(+/-0.9) model. We also report demixing simulations on the "randomly mixed" liquids, using the IL(+/-0.9) model for the ionic liquid. With the three tested water models, the phases separate very slowly ( approximately 20 ns or more) compared to "classical" chloroform-water mixtures (less than 1 ns), leading to biphasic systems similar to those obtained after equilibration of the juxtaposed liquids. The characteristics of the interface (size, polarity, ion orientation, electrostatic potential) are compared with the different models. Possible reasons why, among the three tested water models, the widely-used TIP3P model exaggerates the inter-solvent mixing, are analyzed. The difficulty in computationally and experimentally equilibrating water-IL mixtures is attributed to the slow dynamics and micro-heterogeneity of the IL and to the different states of water in the IL phase.

  2. Cellulose aerogels prepared from an aqueous zinc chloride salt hydrate melt.

    Science.gov (United States)

    Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz

    2016-02-10

    Monolithic cellulose aerogels are prepared using a salt hydrate melt based on cheap zinc chloride tetrahydrate (ZnCl2·4H2O) that can be washed out of the wet gel-body by using common solvents such as water, ethanol, isopropanol or acetone. Cellulose aerogels with concentrations of 1-5 wt.% cellulose were produced. These aerogels are characterized with respect to shrinkage, density and surface area as well as mechanical properties and micro-structure via SEM. Cellulose aerogels regenerated in acetone show a specific surface area of around 340 m(2)g(-1) being 60% higher than those regenerated in water. The onset of irreversible plastic deformation under compressive load is around 0.8 MPa for acetone-regenerated aerogels and thus a factor of two larger compared to ethanol regenerated ones. The Young's modulus depends almost linearly on the cellulose concentration which is observed for all regenerative fluids with the exception of water. The results achieved are presented in light of the polarity and ability of solvation of ZnCl2·4H2O in the regenerative fluids used.

  3. NMR investigation of imidazolium-based ionic liquids and their aqueous mixtures.

    Science.gov (United States)

    Cesare Marincola, Flaminia; Piras, Cristina; Russina, Olga; Gontrani, Lorenzo; Saba, Giuseppe; Lai, Adolfo

    2012-04-10

    (1)H and (13)C NMR spectroscopy is employed to investigate the interaction of water with two imidazolium-based ionic liquids (ILs), 1-hexyl-3-methylimidazolium bromide ([C(6)mim]Br) and 1-octyl-3-methylimidazolium bromide ([C(8)mim]Br), at IL concentrations well above the critical aggregation concentration (CAC). The results are compared with those of the neat samples. To this aim, a detailed analysis of the changes in the (1)H chemical shifts, (13)C relaxation parameters, and 2D ROESY data due to the presence of water is performed. The results for both neat ILs are consistent with a packed structure where head-to-head, head-to-tail, and tail-to-tail contacts occur and where the site of maximal mobility restriction is at the polar head. At the lowest investigated water content, the presence of water influences mainly the environment around the IL polar head, slowing down the motional dynamics of the aromatic ring with respect to the alkyl chain. At higher water contents this difference diminishes, the motional freedom of the whole molecule increasing. The presence of ROESY cross-peaks between protons in the polar and apolar IL regions, as well as between protons in non-neighboring alkyl groups, at all investigated water contents suggests that the alkyl tails are not fully segregated in hydrophobic domains, as expected for micelle-like structures.

  4. Solvent extraction of Th(IV) from aqueous solution with methylimidazole in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenkui; Lv, Hui; Liu, Ziyi; Wu, Jianrong; Li, Shun; Shen, Yinglin [Lanzhou Univ. (China). Radiochemistry Lab.; Yang, Shenghua [State Key Laboratory of Applied Organic Chemistry, Lanzhou (China)

    2016-07-01

    An extraction of Th(IV) was performed using 1-methylimidazole (1-MIM) or 2-methylimidazole (2-MIM) as the extractant in imidazolium type ionic liquids (ILs) or n-pentanol. The extractability for Th{sup 4+} in ILs was by far higher than that obtained in n-pentanol. The extraction mechanism was determined by slope analysis and ESI-MS. The transfer of Th{sup 4+} with MIM into ILs proceeded through both a cationic exchange and a neutral solvation mechanism, whereas the partitioning of Th{sup 4+} with MIM into n-pentanol only underwent a neutral solvation mechanism. The thermodynamic parameters values (ΔH, ΔS and ΔG) for extraction of Th{sup 4+} with 1-MIM in IL were calculated and the results indicated the extraction reaction was spontaneous and went through endothermic process. Separation of Th{sup 4+} from the solution of lanthanides (III) and uranium was also carried out by 1-MIM in ILs and n-pentanol.

  5. Free energetics of carbon nanotube association in pure and aqueous ionic solutions.

    Science.gov (United States)

    Ou, Shuching; Patel, Sandeep; Bauer, Brad A

    2012-07-19

    Carbon nanotubes are a promising platform across a broad spectrum of applications ranging from separations technology, drug delivery, to bio(electronic) sensors. Proper dispersion of carbon nanotube materials is important to retaining the electronic properties of nanotubes. Experimentally it has been shown that salts can regulate the dispersing properties of CNTs in aqueous system with surfactants (Niyogi, S.; Densmore, C. G.; Doorn, S. K. J. Am. Chem. Soc.2009, 131, 1144-1153); details of the physicochemical mechanisms underlying such effects continue to be explored. We address the effects of inorganic monovalent salts (NaCl and NaI) on dispersion stability of carbon nanotubes.We perform all-atom molecular dynamics simulations using nonpolarizable interaction models to compute the potential of mean force between two (10,10) single-walled carbon nanotubes (SWNTs) in the presence of NaCl/NaI and compare to the potential of mean force between SWNTs in pure water. Addition of salts enhances stability of the contact state between two SWNT's on the order of 4 kcal/mol. The ion-specific spatial distribution of different halide anions gives rise to starkly different contributions to the free energy stability of nanotubes in the contact state. Iodide anion directly stabilizes the contact state to a much greater extent than chloride anion. The enhanced stability arises from the locally repulsive forces imposed on nanotubes by the surface-segregated iodide anion. Within the time scale of our simulations, both NaI and NaCl solutions stabilize the contact state by equivalent amounts. The marginally higher stability for contact state in salt solutions recapitulates results for small hydrophobic solutes in NaCl solutions (Athawale, M. V.; Sarupria, S.; Garde, S. J. Phys. Chem. B2008, 112, 5661-5670) as well as single-walled carbon nanotubes in NaCl and CaCl2 aqueous solutions.

  6. Ionic liquid-based aqueous biphasic systems as a versatile tool for the recovery of antioxidant compounds.

    Science.gov (United States)

    Santos, João H; e Silva, Francisca A; Ventura, Sónia P M; Coutinho, João A P; de Souza, Ranyere L; Soares, Cleide M F; Lima, Álvaro S

    2015-01-01

    The comparative evaluation of distinct types of ionic liquid-based aqueous biphasic systems (IL-ABS) and more conventional polymer/salt-based ABS to the extraction of two antioxidants, eugenol and propyl gallate, is focused. In a first approach, IL-ABS composed of ILs and potassium citrate (C6H5K3O7/C6H8O7) buffer at pH 7 were applied to the extraction of two antioxidants, enabling the assessment of the impact of IL cation core on the extraction. The second approach uses ABS composed of polyethylene glycol (PEG) and potassium phosphate (K2HPO4/KH2PO4) buffer at pH 7 with imidazolium-based ILs as adjuvants. Their application to the extraction of the compounds allowed the investigation of the impact of the presence/absence of IL, the PEG molecular weight, and the alkyl side chain length of the imidazolium cation on the partition. It is possible to maximize the extractive performance of both antioxidants up to 100% using both types of IL-ABS. The IL enhances the performance of ABS technology. The data puts in evidence the pivotal role of the appropriate selection of the ABS components and design to develop a successful extractive process, from both environmental and performance points of view.

  7. Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag

    Science.gov (United States)

    le Croteau, Marie-Noe; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2011-01-01

    We compared silver (Ag) bioavailability and toxicity to a freshwater gastropod after exposure to ionic silver (Ag+) and to Ag nanoparticles (Ag NPs) capped with citrate or with humic acid. Silver form, exposure route, and capping agent influence Ag bioaccumulation dynamics in Lymnaea stagnalis. Snails efficiently accumulated Ag from all forms after either aqueous or dietary exposure. For both exposure routes, uptake rates were faster for Ag+ than for Ag NPs. Snails efficiently assimilated Ag from Ag NPs mixed with diatoms (assimilation efficiency (AE) ranged from 49 to 58%) and from diatoms pre-exposed to Ag+ (AE of 73%). In the diet, Ag NPs damaged digestion. Snails ate less and inefficiently processed the ingested food, which adversely impacted their growth. Loss rates of Ag were faster after waterborne exposure to Ag NPs than after exposure to dissolved Ag+. Once Ag was taken up from diet, whether from Ag+ or Ag NPs, Ag was lost extremely slowly. Large Ag body concentrations are thus expected in L. stagnalis after dietborne exposures, especially to citrate-capped Ag NPs. Ingestion of Ag associated with particulate materials appears as the most important vector of uptake. Nanosilver exposure from food might trigger important environmental risks.

  8. Improving the extraction and purification of immunoglobulin G by the use of ionic liquids as adjuvants in aqueous biphasic systems.

    Science.gov (United States)

    Ferreira, Ana M; Faustino, Vânia F M; Mondal, Dibyendu; Coutinho, João A P; Freire, Mara G

    2016-10-20

    Immunoglobulins G (IgG) could become widespread biopharmaceuticals if cost-efficient processes for their extraction and purification are available. In this work, aqueous biphasic systems (ABS) composed of polyethylene glycols and a buffered salt, and with ionic liquids (ILs) as adjuvants, have been studied as alternative extraction and purification platforms of IgG from a rabbit serum source. Eleven ILs were investigated to provide insights on the chemical features which maximize the IgG partitioning. It is shown that in polymer-salt systems pure IgG preferentially partitions to the polymer-rich phase; yet, the complete extraction was never attained. Remarkably, after the addition of 5wt% of adequate ILs to polymer-salt ABS, the complete extraction of pure IgG in a single-step was accomplished. The best systems and conditions were then applied to the extraction and purification of IgG directly from rabbit serum samples. The complete extraction of IgG in a single-step was maintained while its purity in the polymer-rich phase was enhanced by ca. 37% as compared to the IL-free ABS. The antibody stability was also evaluated revealing that appropriate ILs are able to maintain the IgG stability and can be used as phase-forming components of ABS when envisaging the purification of high-cost biopharmaceuticals.

  9. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  10. ORGANIC-HIGH IONIC STRENGTH AQUEOUS SOLVENT SYSTEMS FOR SPIRAL COUNTER-CURRENT CHROMATOGRAPHY: GRAPHIC OPTIMIZATION OF PARTITION COEFFICIENT.

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2013-01-10

    A new series of organic-high ionic strength aqueous two-phase solvents systems was designed for separation of highly polar compounds by spiral high-speed counter-current chromatography. A total of 21 solvent systems composed of 1-butanol-ethanol-saturated ammonium sulfate-water at various volume ratios are arranged according to an increasing order of polarity. Selection of the two-phase solvent system for a single compound or a multiple sample mixture can be achieved by two steps of partition coefficient measurements using a graphic method. The capability of the method is demonstrated by optimization of partition coefficient for seven highly polar samples including tartrazine (K=0.77), tryptophan (K=1.00), methyl green (K= 0.93), tyrosine (0.81), metanephrine (K=0.89), tyramine (K=0.98), and normetanephrine (K=0.96). Three sulfonic acid components in D&C Green No. 8 were successfully separated by HSCCC using the graphic selection of the two-phase solvent system.

  11. Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems.

    Science.gov (United States)

    Quental, Maria V; Caban, Magda; Pereira, Matheus M; Stepnowski, Piotr; Coutinho, João A P; Freire, Mara G

    2015-09-01

    Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) are promising platforms for the extraction and purification of proteins. In this work, a series of alternative and biocompatible ABS composed of cholinium-based ILs and polypropylene glycol were investigated. The respective ternary phase diagrams, tie-lines, tie-line lengths and critical points were determined at 25°C. The extraction performance of these systems for commercial bovine serum albumin (BSA) was then evaluated. The stability of BSA at the IL-rich phase was ascertained by size exclusion high-performance liquid chromatography and Fourier transform infrared spectroscopy. Appropriate ILs lead to the complete extraction of BSA for the IL-rich phase, in a single step, while maintaining the protein's native conformation. Furthermore, to evaluate the performance of these systems when applied to real matrices, the extraction of BSA from bovine serum was additionally carried out, revealing that the complete extraction of BSA was maintained and achieved in a single step. The remarkable extraction efficiencies obtained are far superior to those observed with typical polymer-based ABS. Therefore, the proposed ABS may be envisaged as a more effective and biocompatible approach for the separation and purification of other value-added proteins.

  12. Impact of ionic liquids in aqueous solution on bacterial plasma membranes studied with molecular dynamics simulations.

    Science.gov (United States)

    Lim, Geraldine S; Zidar, Jernej; Cheong, Daniel W; Jaenicke, Stephan; Klähn, Marco

    2014-09-04

    The impact of five different imidazolium-based ionic liquids (ILs) diluted in water on the properties of a bacterial plasma membrane is investigated using molecular dynamics (MD) simulations. Cations considered are 1-octyl-3-methylimidazolium (OMIM), 1-octyloxymethyl-3-methylimidazolium (OXMIM), and 1-tetradecyl-3-methylimidazolium (TDMIM), as well as the anions chloride and lactate. The atomistic model of the membrane bilayer is designed to reproduce the lipid composition of the plasma membrane of Gram-negative Escherichia coli. Spontaneous insertion of cations into the membrane is observed in all ILs. Substantially more insertions of OMIM than of OXMIM occur and the presence of chloride reduces cation insertions compared to lactate. In contrast, anions do not adsorb onto the membrane surface nor diffuse into the bilayer. Once inserted, cations are oriented in parallel to membrane lipids with cation alkyl tails embedded into the hydrophobic membrane core, while the imidazolium-ring remains mostly exposed to the solvent. Such inserted cations are strongly associated with one to two phospholipids in the membrane. The overall order of lipids decreased after OMIM and OXMIM insertions, while on the contrary the order of lipids in the vicinity of TDMIM increased. The short alkyl tails of OMIM and OXMIM generate voids in the bilayer that are filled by curling lipids. This cation induced lipid disorder also reduces the average membrane thickness. This effect is not observed after TDMIM insertions due to the similar length of cation alkyl chain and the fatty acids of the lipids. This lipid-mimicking behavior of inserted TDMIM indicates a high membrane affinity of this cation that could lead to an enhanced accumulation of cations in the membrane over time. Overall, the simulations reveal how cations are inserted into the bacterial membrane and how such insertions change its properties. Moreover, the different roles of cations and anions are highlighted and the fundamental

  13. Transport properties investigation of aqueous protic ionic liquid solutions through conductivity, viscosity, and NMR self-diffusion measurements.

    Science.gov (United States)

    Anouti, Mérièm; Jacquemin, Johan; Porion, Patrice

    2012-04-12

    We present a study on the transport properties through conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids--pyrrolidinium hydrogen sulfate, [Pyrr][HSO(4)], and pyrrolidinium trifluoroacetate, [Pyrr][CF(3)COO]--and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes-Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H(3)O(+). This water weight fraction appears to be the solvation limit of the H(+) ions by water molecules in these two PILs solutions. However, [Pyrr][HSO(4)] and [Pyrr][CF(3)COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF(3)COO], η, σ, D, and the attractive potential, E(pot), between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO(4)], the strong H-bond between the HSO(4)(-) anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm(-1) for water weight fraction close to 60% at 298 K.

  14. Protonation and Solvation Thermodynamics of Some Naphthol Derivatives in KCl Aqueous Solution of Different Ionic Strengths

    Directory of Open Access Journals (Sweden)

    Farid I. El-Dossoki

    2016-01-01

    Full Text Available The acid-base properties of naphthalen-1-ol (L1, naphthalene-1,5-diol (L2, and 4-amino-3-hydroxynaphthalene-1-sulphonic acid (L3 were characterized from pH-metric measurements in pure water and in different concentrations (0–4 mol kg−1 of aqueous KCl solutions at the temperature range of T = (293.15 to 213.15 K at 5 K intervals. The results reveal that naphthalen-1-ol and naphthalene-1,5-diol molecules have two ionisable protons (of the hydroxyl groups while 4-amino-3-hydroxynaphthalene-1-sulphonic acid has three ionisable protons (hydrogen ion of the hydroxyl group, SO3H, and NH3+. Modeling of the data was done by applying Debye-Hückel model. The protonation and the solvation processes of all studied ligands are spontaneous and endothermic processes. Also the solubilities of naphthalen-1-ol, naphthalene-1,5-diol, and 4-amino-3-hydroxynaphthalene-1-sulphonic acid were determined. The data were analyzed using Setschenow equation and the values of Setschenow coefficients (km were determined. From the solubility data, the activity coefficients were obtained. The values of the total solubilities (ST for naphthalen-1-ol and naphthalene-1,5-diol were found equal to the values of their neutral species (S0. On the other hand, the total solubility for 4-amino-3-hydroxynaphthalene-1-sulphonic acid is different from that of its neutral species. The results also indicate solubility decrease in pure water from L1-L2-L3.

  15. Raman spectral studies on ionic interaction in aqueous alkali sulfate solutions

    Science.gov (United States)

    Rull, Fernando; Ohtaki, Hitoshi

    1997-05-01

    Raman spectra were measured for aqueous solutions of alkali sulfates, Li 2SO 4, Na 2SO 4, K 2SO 4, Rb 2SO 4 and Cs 2SO 4 at various concentrations and at room temperature. The changes in the band parameters and are in the band profiles of the ν1(SO 42-) mode were studied as a function of the salt concentration. The band maximum νmax shifts almost linearly with concentration for all the salts. The slope of the lines plotted νmax vs. concentration decreases in the order of Li + > Na + > K + > Rb + > Cs +, and the former two have positive slope, while the last two have a negative one. For the case of K + the line is almost horizontal. The intercept of the lines converges to a single point of 980.8 ± 0.2 cm -1. The width measured at the half height and the integrated band width given by β = A/I(ν max) , where A denotes the integrated area of the band and I( νmax) the intensity at the band maximum, increased with concentration for all the studied salts. Their behaviour is non linear and a polynomial fit on the data shown an intercept at zero concentration of 6.2 ± 0.1 cm -1 for the width measured at the half height and of 7.2 ± 0.1 cm -1 for the integrated band width. The band profiles which have been measured by several methods found and asymmetry in the high wavenumber side of the band for Li + and Na + while for the other salts the profile remain symmetrical. The changes in the band parameters and band profiles observed for ν1(SO 42-) mode in the present work are interpreted in terms of two main factors (a) the changes in the local field experienced by sulfate surrounded by the water-screened cations and (b) the perturbation arising from the different dynamic behaviour of hydration water molecules of the cations. In particular, these results are found to be consistent with the concepts of positive and negative hydration proposed by Samoilov.

  16. Effects of a type I antifreeze protein (AFP) on the melting of frozen AFP and AFP+solute aqueous solutions studied by NMR microimaging experiment.

    Science.gov (United States)

    Ba, Yong; Mao, Yougang; Galdino, Luiz; Günsen, Zorigoo

    2013-01-01

    The effects of a type I AFP on the bulk melting of frozen AFP solutions and frozen AFP+solute solutions were studied through an NMR microimaging experiment. The solutes studied include sodium chloride and glucose and the amino acids alanine, threonine, arginine, and aspartic acid. We found that the AFP is able to induce the bulk melting of the frozen AFP solutions at temperatures lower than 0 °C and can also keep the ice melted at higher temperatures in the AFP+solute solutions than those in the corresponding solute solutions. The latter shows that the ice phases were in super-heated states in the frozen AFP+solute solutions. We have tried to understand the first experimental phenomenon via the recent theoretical prediction that type I AFP can induce the local melting of ice upon adsorption to ice surfaces. The latter experimental phenomenon was explained with the hypothesis that the adsorption of AFP to ice surfaces introduces a less hydrophilic water-AFP-ice interfacial region, which repels the ionic/hydrophilic solutes. Thus, this interfacial region formed an intermediate chemical potential layer between the water phase and the ice phase, which prevented the transfer of water from the ice phase to the water phase. We have also attempted to understand the significance of the observed melting phenomena to the survival of organisms that express AFPs over cold winters.

  17. Interaction between amphiphilic ionic liquid 1-butyl-3-methylimidazolium octyl sulfate and anionic polymer of sodium polystyrene sulfonate in aqueous medium

    Science.gov (United States)

    Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.

    2016-09-01

    The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.

  18. Catalytic hydrogenation of aromatic nitro compounds by functionalized ionic liquids-stabilized nickel nanoparticles in aqueous phase:The influence of anions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Two kinds of nickel nanoparticles (NPs) well-dispersed in aqueous phase have been conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of amino group (-NH2) functionalized ionic liquids:1-(3-aminopropyl)-2,3-dimethylimidazolium bromide ([AMMIM][Br]) and 1-(3-aminopropyl)-2,3-dimethylimidazolium acetate ([AMMIM][AcO]).The Ni(0) particles are composed of smaller ones which assemble in a blackberry-like shape.The Ni nanoparticles stabilized with [AMMIM][AcO] are much larger than those stabilized with [AMMIM][Br],and the former unexpectedly give much higher activity in the selective hydrogenation of citral and nitrobenzene (NB) in aqueous phase.The Ni(0) nanocatalysts dispersed in aqueous phase are stable enough to be reused at least five times without significant loss of catalytic activity and selectivity during the catalytic recycles.

  19. Nitrogen-Doped Porous Carbons from Ionic Liquids@MOF: Remarkable Adsorbents for Both Aqueous and Nonaqueous Media.

    Science.gov (United States)

    Ahmed, Imteaz; Panja, Tandra; Khan, Nazmul Abedin; Sarker, Mithun; Yu, Jong-Sung; Jhung, Sung Hwa

    2017-03-22

    Porous carbons were prepared from a metal-organic framework (MOF, named ZIF-8), with or without modification, via high-temperature pyrolysis. Porous carbons with high nitrogen content were obtained from the calcination of MOF after introducing an ionic liquid (IL) (IL@MOF) via the ship-in-bottle method. The MOF-derived carbons (MDCs) and IL@MOF-derived carbons (IMDCs) were characterized using various techniques and used for liquid-phase adsorptions in both water and hydrocarbon to understand the possible applications in purification of water and fuel, respectively. Adsorptive performances for the removal of organic contaminants, atrazine (ATZ), diuron, and diclofenac, were remarkably enhanced with the modification/conversion of MOFs to MDC and IMDC. For example, in the case of ATZ adsorption, the maximum adsorption capacity of IMDC (Q0 = 208 m(2)/g) was much higher than that of activated carbon (AC, Q0 = 60 m(2)/g) and MDC (Q0 = 168 m(2)/g) and was found to be the highest among the reported results so far. The results of adsorptive denitrogenation and desulfurization of fuel were similar to that of water purification. The IMDCs are very useful in the adsorptions since these new carbons showed remarkable performances in both the aqueous and nonaqueous phases. These results are very meaningful because hydrophobic and hydrophilic adsorbents are usually required for the adsorptions in the water and fuel phases, respectively. Moreover, a plausible mechanism, H-bonding, was also suggested to explain the remarkable performance of the IMDCs in the adsorptions. Therefore, the IMDCs derived from IL@MOF might have various applications, especially in adsorptions, based on high porosity, mesoporosity, doped nitrogen, and functional groups.

  20. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    Science.gov (United States)

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed.

  1. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Hosseini, Rahim [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2009-02-15

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C{sub 3}), hexyl (C{sub 6}), heptyl (C{sub 7}), and octyl (C{sub 8})) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg{sup -1} were taken. The values of the compressibilities, expansivity and apparent molar properties for [C{sub n}mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.

  2. Aqueous oxidation reaction enabled layer-by-layer corrosion of semiconductor nanoplates into single-crystalline 2D nanocrystals with single layer accuracy and ionic surface capping.

    Science.gov (United States)

    Ji, Muwei; Xu, Meng; Zhang, Jun; Liu, Jiajia; Zhang, Jiatao

    2016-02-25

    A controllable aqueous oxidation reaction enabled layer-by-layer corrosion has been proposed to prepare high-quality two-dimensional (2D) semiconductor nanocrystals with single layer accuracy and well-retained hexagonal shapes. The appropriate oxidizing agent, such as H2O2, Fe(NO3)3, and HNO3, could not only corrode the layered-crystalline-structured Bi2Te3 nanoplates layer-by-layer to be a single quintuple layer, but also replace the organic barriers to be ionic ligands on the surface synergistically. AFM analysis was used to confirm the layer-by-layer exfoliation from the side to the center. Together with precise XRD, LRTEM and HRTEM characterizations, the controllable oxidation reaction enabled aqueous layer-by-layer corrosion mechanism has been studied.

  3. Separation of curcuminoids using ionic liquid based aqueous two-phase system coupled with in situ dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Shu, Yang; Gao, Mingcen; Wang, Xueying; Song, Rusheng; Lu, Jun; Chen, Xuwei

    2016-01-01

    An aqueous two-phase extraction system (ATPS) combined with an in situ dispersive liquid-liquid microextraction (DLLME) method using imidazolium ionic liquids (ILs) for the separation of curcuminoids is developed. The influence of structure of IL, the type of metathesis reagents, and the back extraction agents on the extraction efficiency is investigated. 2.0mg of curcuminoids are extracted by an IL ATPS composed of 0.4g 1,3-diethylimidazolium iodine (EeimI), 0.6g potassium hydrogen phosphate, 1.0g water. Then the bis[(trifluoromethyl)sulfonyl]imide lithium (LiNTf2) aqueous solution is added to the EeimI-rich phase of the ATPS. The water-immiscible ionic liquids, 1,3-diethylimidazole bis[(trifluoromethyl)sulfonyl]imide (EeimNTf2), forms by the metathesis reaction. The in situ DLLME is triggered simultaneously and further purifies the curcuminoids. 92% of EeimI transforms into EeimNTf2 and thus the Eeim(+) cation is used for twice in this method. Finally, 0.1mol/L NaOH aqueous solution is used as the back extraction reagent. The curcuminoids precipitate is achieved with 93% of recovery when the aqueous solution is adjusted to pH 3.0. This ATPS-DLLME method is successfully applied to the separation of curcuminoids from Curcuma Longa (0.96±0.02% of extraction yield, a purity of >51% with respect to the total dry mass of the product).

  4. Non-aqueous polymer electrolytes containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Boor [Department of Applied Physics, Guru Nanak Dev University, Amritsar-143005 (India); Hundal, M.S. [Department of Chemistry, Guru Nanak Dev University, Amritsar-143005 (India); Polymer Electrolyte Fuel Cell Research Group, Korea Institute of Energy Research, Daejeon, 305-343 (Korea); Park, Gu-Gon; Park, Jin-Soo; Lee, Won-Yong; Kim, Chang-Soo [Polymer Electrolyte Fuel Cell Research Group, Korea Institute of Energy Research, Daejeon, 305-343 (Korea); Yamada, K. [Department of Applied Molecular Chemistry, Nihon University, Narashino, Chiba (Japan); Sekhon, S.S. [Department of Applied Physics, Guru Nanak Dev University, Amritsar-143005 (India); Polymer Electrolyte Fuel Cell Research Group, Korea Institute of Energy Research, Daejeon, 305-343 (Korea)

    2007-08-15

    Ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate (DMOImBF{sub 4}) has been synthesized and found to be liquid at room temperature (25 C). This room temperature ionic liquid (DMOImBF{sub 4}) was incorporated in poly (vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) to obtain films of polymer electrolytes. The addition of ionic liquid, salt (ammonium tetrafluoroborate) and plasticizer (propylene carbonate, PC) has been found to increase the conductivity of polymer electrolytes to 10{sup -} {sup 4} S/cm at 25 C. Line narrowing observed in variable temperature {sup 1}H and {sup 19}F NMR line width suggests that cations and anions are mobile in these electrolytes. These polymer electrolytes have been found to be thermally stable up to 200-250 C and hence can be used in various applications at temperature above 100 C. (author)

  5. Partitioning of Cephalexin in Ionic Liquid Aqueous Two-Phase System Composed of 1-Butyl-3-Methylimidazolium Tetrafluoroborate and ZnSO4

    Directory of Open Access Journals (Sweden)

    Yan Fang Li

    2013-01-01

    Full Text Available Ionic liquid aqueous two-phase system (ILATPS was applied in the extraction and separation of hydrosoluble antibiotics. The partitioning behavior of cephalexin (CEX in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4-ZnSO4 aqueous two-phase system was studied by the partitioning parameter of the extraction efficiency. The effect of the volume of [Bmim]BF4, the concentration of ZnSO4, temperature, pH, and the volume of ZnSO4 solution was discussed concretely. When the volume of [Bmim]BF4 was 2 mL and the concentration of ZnSO4 was 35%, the extraction efficiency of CEX could reach 92.64% with pH unadjusted. The effect of the volume of [Bmim]BF4 on the extraction efficiency was higher than that of the concentration of ZnSO4. The temperature influenced not only the formation of aqueous two-phase system but also the extraction efficiency of CEX. The target was found to be preferentially extracted to the [Bmim]BF4-rich phase at the pH below 4.3. The partition of CEX to the top phase was enhanced by increasing the volume of [Bmim]BF4, the concentration of ZnSO4, and temperature; however, the partition of CEX to the top phase increased by decreasing the pH.

  6. A critical assessment of the mechanisms governing the formation of aqueous biphasic systems composed of protic ionic liquids and polyethylene glycol†

    Science.gov (United States)

    Cláudio, Ana Filipa M.; Pereira, Jorge F. B.; McCrary, Parker D.; Freire, Mara G.; Coutinho, João A. P.; Rogers, Robin D.

    2017-01-01

    An extensive study on the formation of aqueous biphasic systems (ABS) using aqueous solutions of protic ionic liquids (PILs) and polyethylene glycol (PEG) was performed in order to understand the mechanisms underlying the phase separation. Aqueous solutions of PEG polymers with different molecular weights (600, 1000, 2000, and 3400 g mol−1) and several N-alkyl-, dialkyl-, and trialkyl-ammonium salts of acetate, propanoate, butanoate, hexanoate and octanoate were prepared and their ability to form ABS at several temperatures assessed. The ternary liquid–liquid phase diagrams were determined at several temperatures, as well as binary PIL (or salt)-PEG-1000 and salt-water solubility data to better clarify the mechanisms responsible for the phase separation. All data gathered indicate that the formation of PEG–PIL-based ABS is mainly governed by the PIL–PEG mutual interactions, where PILs with a higher solubility in the polymer exhibit a lower aptitude to form ABS displaying thus a smaller biphasic region, for which a direct correlation was identified. The effects of the molecular weight and temperature of the polymer were also addressed. The increase of the PEG hydrophobicity or molecular weight favours the phase separation, whereas the effect of temperature was found to be more complex and dependent on the nature of the PIL, with an increase or decrease of the biphasic regime with an increase in temperature. PMID:27774550

  7. Determination of sunset yellow and tartrazine in food samples by combining ionic liquid-based aqueous two-phase system with high performance liquid chromatography.

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01-50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  8. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ou Sha

    2014-01-01

    Full Text Available We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs with high performance liquid chromatography (HPLC, for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  9. Micro-electrodeposition in the presence of ionic liquid for the preconcentration of trace amounts of Fe, Co, Ni and Zn from aqueous samples

    Energy Technology Data Exchange (ETDEWEB)

    Zawisza, Beata, E-mail: beata.zawisza@us.edu.pl; Sitko, Rafał

    2013-04-01

    The paper presents the preconcentration of trace elements via electrodeposition onto a (micro)aluminum cathode in the presence of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF{sub 6}] as a supporting electrolyte. The advantages of the proposed method include very simple instrumentation for the preconcentration of trace elements and low-cost reagents. The experiment showed that the use of ionic liquid in the electrodeposition process significantly improves sensitivity, recovery and detection limits for the determination of trace amounts of iron, cobalt, nickel and zinc. The preconcentrated metals were determined using X-ray fluorescence spectrometry. The optimum parameters for electrodeposition such as pH, the volume of the analyzed solution, the voltage and the deposition time were studied. Under the optimized conditions, the detection limits were 5, 2, 3 and 6 μg L{sup −1} for iron, cobalt, nickel and zinc, respectively. The precision and recovery of the method were in the range of 3–5.5%, and 92–103%, respectively. The calibration was performed using aqueous standards of Fe(III), Co(II), Ni(II) and Zn(II) in the range 0.01–0.25 mg L{sup −1}. The method was applied successfully in water analysis. - Highlights: ► A novel method of micro sample preparation for XRF analysis is proposed. ► Electrodeposition is performed using microcathode. ► A novel modification of electrodeposition method is using ionic liquid. ► The method can be combined with many techniques for multielement trace analysis.

  10. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L.) with Further Purification by an Aqueous Two-Phase System.

    Science.gov (United States)

    Tan, Zhi-Jian; Wang, Chao-Yun; Yang, Zi-Zhen; Yi, Yong-Jian; Wang, Hong-Ying; Zhou, Wan-Lai; Li, Fen-Fang

    2015-09-30

    In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE) and ionic liquid-based aqueous two-phase system (IL-ATPS) was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG) from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid-solid ratio were optimized using response surface methodology (RSM). In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH) were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w) IL and 8.27% (w/w) Na₂SO₄ at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.

  11. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Han, Juan; Wang, Yun; Yu, Cuilan; Li, Chunxiang; Yan, Yongsheng; Liu, Yan; Wang, Liang

    2011-01-31

    Ionic liquid-salt aqueous two-phase flotation (ILATPF) is a novel, green, non-toxic and sensitive samples pretreatment technique. ILATPF coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol, which combines ionic liquid aqueous two-phase system (ILATPS) based on imidazolium ionic liquid (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl) and inorganic salt (K(2)HPO(4)) with solvent sublation. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C(4)mim]Cl-K(2)HPO(4) ILATPF was influenced by the types of salts, concentration of K(2)HPO(4) in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C(4)mim]Cl. Under the optimum conditions, the average sublation efficiency is up to 98.5%. The mechanism of ILATPF contains two principal processes. One is the mechanism of IL-salt ILATPS formation, the other is solvent sublation. This method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5-500 ng mL(-1). The method yielded limit of detection (LOD) of 0.1 ng mL(-1) and limit of quantification (LOQ) of 0.3 ng mL(-1). The recovery of CAP was 97.1-101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid-liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules.

  12. Ionic Liquid-salt Aqueous Two-phase System, a Novel System for the Extraction of Abused Drugs

    Institute of Scientific and Technical Information of China (English)

    She Hong LI; Chi Yang HE; Hu Wei LIU; Ke An LI; Feng LIU

    2005-01-01

    A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93%was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.

  13. Ionic interaction of oral streptococcal bacteria studied by partition in an aqueous polymer two-phase system.

    Science.gov (United States)

    Westergren, G

    1981-01-01

    The net surface charge of various oral streptococci were assessed by aqueous two-phase partitioning in a dextran-polyethylene glycol system. Great variability was found among individual strains within all species tested. Type 1 strains of Streptococcus sanguis serotypes which have been found to be more adherent, exposed a lower negative net surface charge than Type 2 strains.

  14. Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines

    Science.gov (United States)

    Yoshikawa, Masako; Tamura, Akihiro; Arai, Shoji; Kawamoto, Tatsuhiko; Payot, Betchaida D.; Rivera, Danikko John; Bariso, Ericson B.; Mirabueno, Ma. Hannah T.; Okuno, Mitsuru; Kobayashi, Tetsuo

    2016-10-01

    Mantle xenoliths entrained in subduction-zone magmas often record metasomatic signature of the mantle wedge. Such xenoliths occur in magmas from Iraya and Pinatubo volcanoes, located at the volcanic front of the Luzon arc in the Philippines. In this study, we present the major element compositions of the main minerals, trace element abundances in pyroxenes and amphiboles, and Nd-Sr isotopic compositions of amphiboles in the peridotite xenoliths from Pinatubo volcano. The data indicate enrichment in fluid-mobile elements, such as Rb, Ba, U, Pb, and Sr, and Nd-Sr isotopic ratios relative to those of mantle. The results are considered in terms of mixing of asthenospheric mantle and subducting oceanic crustal components. The enrichments observed in the Pinatubo mantle xenoliths are much less pronounced than those reported for the Iraya mantle xenoliths. This disparity suggests differences in the metasomatic agents contributing to the two suites; i.e., aqueous fluids infiltrated the mantle wedge beneath the Pinatubo volcano, whereas aqueous fluids and sediment-derived melts infiltrated the mantle wedge beneath the Iraya volcano.

  15. Graphene oxide reinforced polymeric ionic liquid monolith solid-phase microextraction sorbent for high-performance liquid chromatography analysis of phenolic compounds in aqueous environmental samples.

    Science.gov (United States)

    Sun, Min; Bu, Yanan; Feng, Juanjuan; Luo, Chuannan

    2016-01-01

    A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1-(3-aminopropyl)-3-(4-vinylbenzyl)imidazolium 4-styrenesulfonate monomer and 1,6-di-(3-vinylimidazolium) hexane bihexafluorophosphate cross-linking agent. Coupled to high-performance liquid chromatography, the monolith was used as a solid-phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5-400 μg/L for 3-nitrophenol, 2-nitrophenol, and 2,5-dichlorophenol and 2-400 μg/L for 4-chlorophenol, 2-methylphenol, and 2,4,6-trichlorophenol (R(2) = 0.9973-0.9988). The limits of detection were 0.5 μg/L for 3-nitrophenol and 2-nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5-113%.

  16. Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae Japonicae.

    Science.gov (United States)

    Tan, Ting; Lai, Chang-Jiang-Sheng; OuYang, Hui; He, Ming-Zhen; Feng, Yulin

    2016-02-20

    In this work, an ionic liquid-based ultrasonic-assisted extraction (ILUAE) method was developed to extract caffeoylquinic acids (CQAs) from Flos Lonicerae Japonicae (FLJ). ILUAE parameters were optimized by response surface methodology, including IL concentration, ultrasonic time, and liquid-solid ratio. Optimized ILUAE approach gained the highest extraction yields of 28.53, 18.21, 3.84mg/g for 3-O-caffeoylquinic acid (C1), 3,5-di-O-caffeoylquinic acid (C2), 3,4-di-O-caffeoylquinic acid (C3), respectively. C1-C3 are the three most abundant CQAs compounds in FLJ. The method showed comparable extraction yield and shorter extraction time compared with conventional extraction techniques. Subsequently, an aqueous two-phase system (ATPS) was applied in extraction solutions. Two trace CQAs, 5-O-caffeoylquinic acid (C4) and 4,5-di-O-caffeoylquinic acid (C5), were significantly enriched with signal to noise values increasing from less than 10 to higher than 1475. The results indicated that ILUAE and ATPS are efficient and environmentally-friendly sample extraction and enrichment techniques for CQAs from herbal medicines.

  17. Comparing an ionic liquid to a molecular solvent in the cesium cation extraction by a calixarene: a molecular dynamics study of the aqueous interfaces.

    Science.gov (United States)

    Sieffert, Nicolas; Wipff, Georges

    2006-10-01

    We report a molecular dynamics (MD) study of the interfacial behavior of key partners involved in the Cs(+) cation extraction by a calix[4]arene-crown-6 host (L), comparing an ionic liquid (IL) to a classical molecular solvent (chloroform) as receiving "oil" phase. The IL is composed of hydrophobic 1-butyl-3-methylimidazolium cations (BMI(+)) and bis(trifluoromethylsulfonyl)imide anions (Tf(2)N(-)) and forms a biphasic system with water. The simulations reveal similarities but also interesting differences between the two types of interfaces. Much longer times are needed to "equilibrate" IL systems, compared to classical liquid mixtures, and there is more intersolvent mixing with the IL than with chloroform, especially concerning the water-in-oil content. There is also some excess of the BMI(+) cations over the Tf(2)N(-) anions in the aqueous phase. Simulations on the Na(+)NO(3)(-) and Cs(+)NO(3)(-) ions show that they sometimes interact at the interface with the IL ions, forming hydrated intimate ion pairs, whereas they are "repelled" by the classical interface. The LCs(+) complex and L ligand also behave differently, depending on the "oil phase". They are better solvated by the IL than by chloroform and thus poorly attracted at the IL interface, whereas they adsorb at the chloroform interface, adopting well-defined amphiphilic orientations. The results are discussed in the context of assisted ion transfer and provide a number of arguments explaining the specificity and efficiency of IL based, compared to classical extraction systems.

  18. Aqueous cationic, anionic and non-ionic multi-walled carbon nanotubes, functionalised with minimal framework damage, for biomedical application.

    Science.gov (United States)

    Chen, Shu; Hu, Sheng; Smith, Elizabeth F; Ruenraroengsak, Pakatip; Thorley, Andrew J; Menzel, Robert; Goode, Angela E; Ryan, Mary P; Tetley, Teresa D; Porter, Alexandra E; Shaffer, Milo S P

    2014-06-01

    The use of a thermochemical grafting approach provides a versatile means to functionalise as-synthesised, bulk multi-walled carbon nanotubes (MWNTs) without altering their inherent structure. The associated retention of properties is desirable for a wide range of commercial applications, including for drug delivery and medical purposes; it is also pertinent to studies of intrinsic toxicology. A systematic series of water-compatible MWNTs, with diameter around 12 nm have been prepared, to provide structurally-equivalent samples predominantly stabilised by anionic, cationic, or non-ionic groups. The surface charge of MWNTs was controlled by varying the grafting reagents and subsequent post-functionalisation modifications. The degree of grafting was established by thermal analysis (TGA). High resolution transmission electron microscope (HRTEM) and Raman measurements confirmed that the structural framework of the MWNTs was unaffected by the thermochemical treatment, in contrast to a conventional acid-oxidised control which was severely damaged. The effectiveness of the surface modification was demonstrated by significantly improved solubility and stability in both water and cell culture medium, and further quantified by zeta-potential analysis. The grafted MWNTs exhibited relatively low bioreactivity on transformed human alveolar epithelial type 1-like cells (TT1) following 24 h exposure as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and lactate dehydrogenase release (LDH) assays. The exposure of TT1 cells to MWNTs suppressed the release of the inflammatory mediators, interleukin 6 (IL-6) and interleukin 8 (IL-8). TEM cell uptake studies indicated efficient cellular entry of MWNTs into TT1 cells, via a range of mechanisms. Cationic MWNTs showed a more substantial interaction with TT1 cell membranes than anionic MWNTs, demonstrating a surface charge effect on cell uptake.

  19. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    Science.gov (United States)

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections.

  20. Selective Extraction of Bioproducts by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    王键吉; 裴渊超; 赵扬; 张锁江

    2005-01-01

    Imidazolium based room temperature ionic liquids have been used to extract selectively L-tryptophan from fermentation broth. BF4 anion was found to enhance dramatically the partitioning of L-tryptophan into ionic liquid phase from aqueous solutions.

  1. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid

    Science.gov (United States)

    Ekka, Basanti; Nayak, Soumitra Ranjan; Dash, Priyabrat; Patel, Raj Kishore

    2016-04-01

    In this research, mesoporous silica was synthesized via a modified sol-gel route using 1-octyl-3-methylimidazolium chloride and was employed to remove malachite green (MG) dye from aqueous solution. Subsequently, this material was characterized and identified by different techniques such as Fourier transform infrared spectroscopy (FT-IR), N2 adsorption-desorption method, scanning electron microscopy (SEM), and thermosgravimetric analysis (TGA). Unique properties such as high surface area and pore diameter, in addition to highly reactive atoms and presence of various functional groups make the mesoporous silica possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by mesoporous silica was attained by varying different variables such as adsorbent dosage, initial dye concentration, contact time, and pH. Optimum values were set as pH of 8.0, 0.5 g of adsorbent at contact time of 120 min. The adsorption of MG follows the pseudo-second-order rate equation. Equilibrium data fitted well with the Freundlich model at all amount of adsorbent, while maximum adsorption capacity was 5.981 mg g-1 for 0.5 g mesoporous silica synthesized in IL.

  2. Molecular dynamics investigation of desorption and ion separation following picosecond infrared laser (PIRL) ablation of an ionic aqueous protein solution.

    Science.gov (United States)

    Zou, J; Wu, C; Robertson, W D; Zhigilei, L V; Miller, R J D

    2016-11-28

    Molecular dynamics simulations were performed to characterize the ablation process induced by a picosecond infrared laser (PIRL) operating in the regime of desorption by impulsive vibrational excitation (DIVE) of a model peptide (lysozyme)/counter-ion system in aqueous solution. The simulations were performed for ablation under typical experimental conditions found within a time-of-flight mass spectrometer (TOF-MS), that is in vacuum with an applied electric field (E = ± 10(7) V/m), for up to 2 ns post-ablation and compared to the standard PIRL-DIVE ablation condition (E = 0 V/m). Further, a simulation of ablation under an extreme field condition (E = 10(10) V/m) was performed for comparison to extend the effective dynamic range of the effect of the field on charge separation. The results show that the plume dynamics were retained under a typical TOF-MS condition within the first 1 ns of ablation. Efficient desorption was observed with more than 90% of water molecules interacting with lysozyme stripped off within 1 ns post-ablation. The processes of ablation and desolvation of analytes were shown to be independent of the applied electric field and thus decoupled from the ion separation process. Unlike under the extreme field conditions, the electric field inside a typical TOF-MS was shown to modify the ions' motion over a longer time and in a soft manner with no enhancement to fragmentation observed as compared to the standard PIRL-DIVE. The study indicates that the PIRL-DIVE ablation mechanism could be used as a new, intrinsically versatile, and highly sensitive ion source for quantitative mass spectrometry.

  3. Molecular dynamics investigation of desorption and ion separation following picosecond infrared laser (PIRL) ablation of an ionic aqueous protein solution

    Science.gov (United States)

    Zou, J.; Wu, C.; Robertson, W. D.; Zhigilei, L. V.; Miller, R. J. D.

    2016-11-01

    Molecular dynamics simulations were performed to characterize the ablation process induced by a picosecond infrared laser (PIRL) operating in the regime of desorption by impulsive vibrational excitation (DIVE) of a model peptide (lysozyme)/counter-ion system in aqueous solution. The simulations were performed for ablation under typical experimental conditions found within a time-of-flight mass spectrometer (TOF-MS), that is in vacuum with an applied electric field (E = ± 107 V/m), for up to 2 ns post-ablation and compared to the standard PIRL-DIVE ablation condition (E = 0 V/m). Further, a simulation of ablation under an extreme field condition (E = 1010 V/m) was performed for comparison to extend the effective dynamic range of the effect of the field on charge separation. The results show that the plume dynamics were retained under a typical TOF-MS condition within the first 1 ns of ablation. Efficient desorption was observed with more than 90% of water molecules interacting with lysozyme stripped off within 1 ns post-ablation. The processes of ablation and desolvation of analytes were shown to be independent of the applied electric field and thus decoupled from the ion separation process. Unlike under the extreme field conditions, the electric field inside a typical TOF-MS was shown to modify the ions' motion over a longer time and in a soft manner with no enhancement to fragmentation observed as compared to the standard PIRL-DIVE. The study indicates that the PIRL-DIVE ablation mechanism could be used as a new, intrinsically versatile, and highly sensitive ion source for quantitative mass spectrometry.

  4. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: Application to the determination of Pb and Cd

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Seyed Reza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Shemirani, Farzaneh, E-mail: shemiran@khayam.ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-11

    A new ionic liquid-based dispersive liquid-liquid microextraction method was developed for preconcentration and determination of compounds in aqueous samples containing very high salt concentrations. This method can solve the problems associated with the limited application of the conventional IL-based DLLME in these samples. This is believed to arise from dissolving of the ionic liquids in aqueous samples with high salt content. In this method, the robustness of microextraction system against high salt concentration (up to 40%, w/v) is increased by introducing a common ion of the ionic liquid into the sample solution. The proposed method was applied satisfactorily to the preconcentration of lead and cadmium in saline samples. After preconcentration, the settled IL-phase was dissolved in 100 {mu}L ethanol and aspirated into the flame atomic absorption spectrometer (FAAS) using a home-made microsample introduction system. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 10 mL of sample, the enhancement factors of 273 and 311 and the detection limits of 0.6 {mu}g L{sup -1} and 0.03 {mu}g L{sup -1} were obtained for lead and cadmium, respectively. Validation of the method was performed by both an analysis of a certified reference material (CRM) and comparison of results with those obtained by ISO standard method.

  5. 氯化钾溶液中离子水化的分子动力学模拟%Molecular dynamics simulation of ionic concentration effects on ionic hydration in aqueous KCI solutions

    Institute of Scientific and Technical Information of China (English)

    周倩; 袁俊生; 包捷; 李非

    2011-01-01

    使用Material Studio软件包中的COMPASS力场,采用分子动力学模拟的方法研究了温度为298.15 K时,浓度分别为1.065 mol/L、2.140 mol/L、3.129 mol/L的氯化钾溶液中离子水化的微观结构和动力学性质.发现浓度对离子近程水化的结构有一定的影响,随着溶液浓度的增加O-O径向分布函数变化显著,高浓度时水分子周围不再有明显的第二配位圈.K+和Cl-的离子配位数、离子水化数、水化半径都随着浓度的增加逐渐减小.而溶液浓度的增加,加剧了离子微观反向运动的振荡,导致离子的自扩散系数降低.本文的研究结果为海水提取氯化钾技术的发展奠定了一定的理论基础.%The molecular dynamics simulations of aqueous KC1 solutions with different concentrations, ranging from 1.065 mol/L to 3.129 mol/L, were carried out at 298.15 K. to investigate the structure and dynamical properties of ionic hydration employing COMPASS force field of Materials Studio software package. It was found that significant structural changes occurred in the O-O radial distribution function of water molecules and there is no well-defined second hydration shell around a central water molecule when the ion concentration was more than 3.129 mol/L. The coordination numbers, hydration numbers and hydrated radius of K+ and Cl- decrease gradually with the increase of ion concentrations. The increase of ion concentration results in the enhancement of the oscillations in the microscopic dynamics of the ions and the decrease of self-diffusion coefficients of K+ and Cl- both.

  6. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Satya N., E-mail: satyanarayantripathy@gmail.com; Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow (Poland); Shirota, Hideaki [Department of Nanomaterial Science and Department of Chemistry, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Biswas, Ranjit [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India)

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  7. Retarded ionic motion in flourites

    NARCIS (Netherlands)

    Schoonman, J.

    1980-01-01

    Metals halides with the fluorite structure attain conductivity values typical of ionic melts far below their melting points, and also go through a second-order transition. Conductivity data for the fluorites are reviewed, and it is shown that the anion vacancies have a large and unique mobility valu

  8. Modelization of flow electrification in a polymer melt

    CERN Document Server

    Flores, F; Allal, A; Guerret-Piécourt, C

    2007-01-01

    Flow electrification of polymer melts is an important side effect of polymer processing. The studies dealing with this phenomenon are seldom and most of the scientific work has been focused on flow electrification of aqueous and insulating Newtonian liquids. From that prior art it is well established that the flow electrification in Newtonian liquids is a consequence of the formation of an ionic double layer. Convection of this layer induces the electrification of the liquid at the outlet of the pipe. In those models, the key parameters governing the flow electrification are thus the intrinsic electrical properties of the polymer and the flow characteristics. In this work, we reconsider the assumptions made previously and we propose a new approach to modelise the flow electrification in the particular case of non-Newtonian polymer materials in laminar flow conditions. We establish that, a key parameter for the electrification quantification in the polymer melt is the shape of the velocity profile. Additionall...

  9. 氨基酸离子液体促进的醇胺水溶液捕集CO2的研究进展%Progress in CO2 Capture Using Amino Acid Ionic Liquid Promoted Amine Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    付东; 张盼; 杜磊霞

    2014-01-01

    氨基酸离子液体(Amino acid ionic liquid,AAIL)可显著改善传统醇胺水溶液对CO2的吸收效果,但高粘特性限制了其在碳捕集工程中的应用。对AAIL促进醇胺水溶液吸收CO2的动力学及体系粘度的研究进展进行了综述,并分析了适宜烟气中CO2捕集的AAIL 醇胺吸收剂的遴选方法。%Amino acid ionic liquid (AAIL)is able to significantly promote the absorption of CO2 in amine aqueous solutions. However,its application in CO2 capture projects was limited due to the high viscosity characteristics. The advances in the absorption kinetics of CO2 in AAIL promoted amine aqueous solutions and the viscosity of the absorbents were reviewed. The approach for the determination of AAIL-amine absorbents applicable for CO2 remov-al from flue gas was analyzed.

  10. Growth kinetics of step edges on celestite (0 0 1) surfaces as a function of temperature, saturation state, ionic strength, and aqueous strontium:sulfate ratio: An in-situ atomic force microscopy study

    Science.gov (United States)

    Bracco, Jacquelyn N.; Gooijer, Yiscka; Higgins, Steven R.

    2016-02-01

    Step velocities on the celestite (0 0 1) surface have been measured as a function of temperature (23-45 °C), saturation state (S = 1.1-2.2), ionic strength (I = 0.01, 0.06, and 0.1 M), and aqueous strontium:sulfate ratio (r = 0.01-100) using atomic force microscopy (AFM). Celestite growth hillocks were flanked by [0 1 0]-aligned step edges, which are polar, and step edges vicinal to , which are non-polar. [0 1 0] step velocities increased with temperature and saturation state, however step velocities did not vary significantly with ionic strength. Step velocities were non-linear with saturation state, suggesting a change in mechanism at high S as compared with low S. At constant S, the step velocities were maximized at r = 1 and decreased significantly at extreme r, demonstrating the governing role of solute stoichiometry. We successfully fit the step velocity data as a function of r using the Stack and Grantham (2010) nucleation and propagation model. Based on the results as a function of ionic strength and r, the mechanism at low S is likely ion-by-ion attachment to the step with an activation energy of 75 (±10) kJ mol-1. At high S the mechanism is a combination of the one at low S and possibly attachment of a neutral species such as an ion pair with an activation energy of 43 (±9) kJ mol-1.

  11. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Johannes Ranke

    2009-03-01

    Full Text Available The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  12. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Fengli Chen

    2014-01-01

    Full Text Available An ionic liquids-based ultrasound-assisted extraction (ILUAE method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11% and reproducibility (RSD, n = 6; 3.6%. ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid.

  13. One-pot three-component synthesis of tetrahydrobenzo[b]pyrans catalyzed by cost-effective ionic liquid in aqueous medium☆

    Institute of Scientific and Technical Information of China (English)

    Jianguo Yang; Shuo Liu; Huanan Hu; Shibin Ren; Anguo Ying

    2015-01-01

    A simple and efficient method is proposed for the synthesis of tetrahydrobenzo[b]pyrans with aromatic alde-hydes, active methylene compounds, and dimedone using basic ionic liquid catalyst in water. The procedure offers several advantages including short reaction time, good yield, easy procedure, and good recyclability of catalysts, which may be a practical alternative to conventional processes for preparation of 4-hpyrans.

  14. Theoretical modeling of cationic surfactant aggregation at the silica/aqueous solution interface: Effects of pH and ionic strength

    NARCIS (Netherlands)

    Drach, M.; Andrzejewska, A.; Narkiewicz-Michalek, J.; Rudzinski, W.; Koopal, L.K.

    2002-01-01

    A theory of ionic surfactant aggregation on oppositely charged surfaces is presented. In the proposed model the adsorbed phase is considered as a mixture of singly dispersed surfactant molecules, monolayered and bilayered aggregates of various sizes and the ions of simple electrolyte added to the aq

  15. Extraction of Doxycycline Hydrochloride Using Alcohol and Ionic Liquid Binary Aqueous Two Phase System%醇与离子液体二元双水相体系萃取盐酸多西环素

    Institute of Scientific and Technical Information of China (English)

    关卫省; 黎文娟; 韩娟

    2012-01-01

    Based on the molecular alcohol aqueous two-phase system and the ionic liquid aqueous two-phase system, the new method of using n-propanol and hydrophilic ionic liquid(1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim]BF4) with (NH4)2SO4 binary aqueous two phase system for the extraction of doxycycline hydrochloride was developed. The influence factors on partition behaviors of doxycycline hydrochloride were studied, including concentration of (NH4)2SO4, n-propanol con-sumption, pH value, concentration of ionic liquid and doxycycline hydrochloride. The results showed that when using pH value of 4. 0 - 5. 0, (NH4) 2SO4 concentration of 34% and doxycycline hydrochloride concentration between 25 -95 mg/L, the extraction rate and distribution coefficient of doxycycline hydrochloride will be up to 90. 26% -95. 71% and 62. 452 - 149. 401, respectively.%基于小分子醇双水相体系和离子液体双水相体系,建立了正丙醇与亲水性离子液体1-丁基-3-甲基咪唑四氟硼酸[ Bmim]BF4和(NH4 )2SO4形成的二元双水相体系萃取盐酸多西环素的新方法.考察了(NH4)2SO4含量、正丙醇用量、pH值、离子液体含量以及盐酸多西环素含量对盐酸多西环素分配行为的影响.结果表明:当醇和离子液体二元双水相体系的pH值在4.0~5.0范围内,(NH4)2SO4含量为34%,且盐酸多西环素的质量浓度在25 ~ 95 mg/L之间时,该体系对盐酸多西环素的萃取率可达90.26% ~95.71%,分配系数可达62.452 ~ 149.401.

  16. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  17. Layer-by-layer encapsulated nano-emulsion of ionic liquid loaded with functional material for extraction of Cd(2+) ions from aqueous solutions.

    Science.gov (United States)

    Elizarova, Iuliia S; Luckham, Paul F

    2017-04-01

    Ionic liquids can serve as an environmentally-friendly replacement for solvents in emulsions, therefore they are considered suitable to be used as an emulsified medium for various active materials one of which are extractors of metal ions. Increasing the extraction efficiency is considered to be one of the key objectives when working with such extraction systems. One way to improve the extraction efficiency is to increase the contact area between the extractant and the working ionic solution. This can be accomplished by creating a nano-emulsion of ionic liquid containing such an extractant. Since emulsification of ionic liquid is not always possible in the sample itself, there is a necessity of creating a stable emulsion that can be added externally and on demand to samples from which metal ions need to be extracted. We propose a method of fabrication of a highly-stable extractant-loaded ionic liquid-in-water nano-emulsion via a low-energy phase reversal emulsification followed by continuous layer-by-layer polyelectrolyte deposition process to encapsulate the nano-emulsion and enhance the emulsion stability. Such a multilayered stabilized nano-emulsion was tested for extraction of Cd(2+) and Ca(2+) ions in order to determine its extraction efficiency and selectivity. It was found to be effective in the extraction of Cd(2+) ions with near 100% cadmium removal, as well as being selective since no Ca(2+) ions were extracted. The encapsulated emulsion was removed from samples post-extraction using two methods - filtration and magnetic separation, both of which were shown to be viable under different circumstances - larger and mechanically stronger capsules could be removed by filtration, however magnetic separation worked better for both smaller and bigger capsules. The long-term stability of nano-emulsion was also tested being a very important characteristic for its proposed use: it was found to be highly stable after four months of storage time.

  18. Covalent and Ionic Molecules: Why Are BeF2 and AlF3 High Melting Point Solids whereas BF3 and SiF4 Are Gases?

    Science.gov (United States)

    Gillespie, Ronald J.

    1998-07-01

    Calculated ionic charges show that BF3 and SiF4 are predominately ionic molecules yet in contrast to BeF2 and AlF3 they exist as gases at room temperature and form molecular solids rather than infinite three-dimensional "ionic" solids at low temperature. Whether or not ionic molecules form a three-dimensional infinite ionic lattice or a molecular solid depends more on relative atomic (ionic) sizes than on the nature of the bonding in the isolated molecule. The ionic model for BF3 and BF4- provides a simple explanation of their bond lengths and for the constancy of interligand nonbonding distances. BF3 and SiF4 should be represented by ionic structures rather than by the conventional structures with bond lines that are normally assumed to indicate covalent bonds. A letter from Lawrence J. Sacks in our April 2000 issue addresses the above.

  19. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  20. Thermodynamic Properties of Caprolactam Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    JIANG Lu; BAI Liguang; ZHU Jiqin; CHEN Biaohua

    2013-01-01

    A series of caprolactam ionic liquids (ILs) containing incorporated halide anions were synthesized.Their physical properties,such as melting points,heats of fusion and heat capacities,were measured by differential scanning calorimeter (DSC).The results indicate that these ionic liquids exhibit proper melting points,high value of heats of fusion,and satisfying heat capacities which are suitable for thermal energy storage applications.

  1. First title: Ionic liquids-useful reaction green solvents for the future Second title: ionic liquids are the replacements for environmentally damaging solvents in a wide range of chemical processes.

    Directory of Open Access Journals (Sweden)

    K.Vijaya Bhaskar

    2012-09-01

    Full Text Available Ionic liquids (IL represent fascinating new class of solvents with unusual physical and chemical properties; low melting salts (up to 1000C. The main driving force for research in this area is the need to find replacement for environmentally damaging solvents in a wide range of chemical processes. To date, most chemical reactions have been carried out in molecular solvents. For the past twenty years, most of our understanding of our chemistry has been based upon the behavior of molecules in the solution phase in molecular solvents. Recently a new class of solvents has emerged called as Ionic liquids. An ionic liquid is an organic salt in which the ions are poorly coordinated, which results in these solvents being liquid below 100°C, or even at room temperature (room temperature ionic liquids, RTIL's. At least one ion has a delocalized charge and one component is organic, which prevents the formation of a stable crystal lattice. Ionic liquids are composed entirely of ions. For example, molten sodium chloride is an ionic liquid; in contrast, a solution of sodium chloride in water (a molecular solvent is an ionic solution. The term “ionic liquids” has replaced the older phrase “molten salts” (or “melts”, which suggests that they are high-temperature, corrosive, viscous media (like molten minerals. The reality is that ionic liquids can be liquid at temperatures as low as –96°C. Furthermore, room-temperature ionic liquids are frequently colourless, fluid, and easy to handle. In the patent and academic literature, the term “ionic liquids” now refers to liquids composed entirely of ions that are fluid around or below 100°C1. Properties, such as melting point, viscosity, and solubility of starting materials and other solvents, are determined by the substituents on the organic component and by the counter ion. Many ionic liquids have even been developed for specific synthetic problems. For this reason, ionic liquids have been termed

  2. Aqueous two-phase based on ionic liquid liquid-liquid microextraction for simultaneous determination of five synthetic food colourants in different food samples by high-performance liquid chromatography.

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2015-05-01

    A rapid and effective method of aqueous two-phase systems based on ionic liquid microextraction for the simultaneous determination of five synthetic food colourants (tartrazine, sunset yellow, amaranth, ponceau 4R and brilliant blue) in food samples was established. High-performance liquid chromatography coupled with an ultraviolet detector of variable wavelength was used for the determinations. 1-alkyl-3-methylimidazolium bromide was selected as the extraction reagent. The extraction efficiency of the five colourants in the proposed system is influenced by the types of salts, concentrations of salt and [CnMIM]Br, as well as the extracting time. Under the optimal conditions, the extraction efficiencies for these five colourants were above 95%. The phase behaviours of aqueous two-phase system and extraction mechanism were investigated by UV-vis spectroscopy. This method was applied to the analysis of the five colourants in real food samples with the detection limit of 0.051-0.074 ng/mL. Good spiked recoveries from 93.2% to 98.9% were obtained.

  3. Self-aggregation of ionic liquid 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [C{sub 4}mmim][BF{sub 4}] in aqueous media: A conductometric, volumetric and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amalendu, E-mail: palchem21@gmail.com; Pillania, Ankita

    2014-12-10

    Highlights: • Self-aggregation behaviour of [C{sub 4}mmim][BF{sub 4}] has been studied using various techniques. • Thermodynamic parameters showing aggregation is an entropy-driven process. • Volumetric analysis indicates aggregation is influenced by solute–solvent interactions. • {sup 1}H NMR revealed formation of loosely bound aggregates in the system. - Abstract: Aggregation behaviour of ionic liquid (IL), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate, [C{sub 4}mmim][BF{sub 4}] in aqueous media has been studied by electrical conductivity, density and speed of sound measurements across temperature range (288.15–308.15) K. The critical aggregation concentration (cac), the standard Gibb’s free energy of aggregation, ΔG°{sub agg}, adiabatic compressibility, β{sub S} and changes in the adiabatic compressibility upon aggregation, Δβ{sub S,agg} for the IL in aqueous solution have been derived from the experimental data. Further to get the deeper insights into the aggregation process spectroscopic study using {sup 1}H NMR measurements have been carried out. The aggregation behaviour observed from conductance and volumetric approaches has been found to be in good agreement with each other. NMR study revealed the formation of loosely bound ion associates as aggregates in the system upon aggregation.

  4. SDS/[C_nmim]Br/H_2O体系的双水相性质%Aqueous Two-Phase System(ATPS) Containing Ionic Liquids [C_nmim]Br and SDS

    Institute of Scientific and Technical Information of China (English)

    陈婷; 马爱青; 王菲; 尚亚卓; 刘洪来

    2012-01-01

    研究了咪唑类离子液体[Cnmim]Br与传统阴离子表面活性剂SDS混合水溶液的性质,结果显示混合水溶液性质随咪唑阳离子上烷烃链长的变化而呈现出明显的不同。当离子液体取代烷基链的碳数大于或等于6时,混合体系可以自发地分为共存的两相,即双水相。共存的两相界面清晰、性能稳定且能有效萃取染料二甲酚橙,有望成为新型高效的分离体系,在生物活性物质的纯化、分离中发挥作用。混合体系中离子液体和传统表面活性剂相对含量的改变引起混合溶液中表面活性剂聚集体尺寸和形态的变化,最终导致双水相上、下两相表观现象的差异。此外,离子液体、SDS头基间库仑力作用、烷烃链的疏溶剂力以及离子液体与SDS的协同效应,是形成溶致液晶的重要驱动力,导致较低浓度下十字花纹理层状液晶(LC)的生成。%Properties of mixed aqueous solutions of ionic liquid(Br) and traditional surfactant(SDS) were studied.Results showed that the properties of the mixed systems varied with the chain length of substituted alkyl in ionic liquids.Only those systems containing ionic liquids with equal to or more than 6 carbon atoms in alkyl chains can form aqueous two phase system(ATPS).The ATPS containing ionic liquids and surfactant has obvious extraction ability to xylenol orange and the potential to separate and purify biomaterials.The difference in appearance of ATPS should be attributed to the various size and shape of the surfactants aggregates formed in mixed solutions.Furthermore,the electrostatic attractive interaction,the hydrophobic interaction in addition to the synergistic effect between ionic liquids and SDS further promote the surfactant assembly,which leads to the formation of liquid crystal at lower surfactant concentration.

  5. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  6. Effects of a Protic Ionic Liquid on the Reaction Pathway during Non-Aqueous Sol–Gel Synthesis of Silica: A Raman Spectroscopic Investigation

    Directory of Open Access Journals (Sweden)

    Anna Martinelli

    2014-04-01

    Full Text Available The reaction pathway during the formation of silica via a two-component “non-aqueou” sol-gel synthesis is studied by in situ time-resolved Raman spectroscopy. This synthetic route is followed with and without the addition of the protic ionic liquid 1-ethylimidazolium bis(trifluoromethanesulfonylimide (C2HImTFSI in order to investigate its effect on the reaction pathway. We demonstrate that Raman spectroscopy is suitable to discriminate between different silica intermediates, which are produced and consumed at different rates with respect to the point of gelation. We find that half-way to gelation monomers and shorter chains are the most abundant silica species, while the formation of silica rings strongly correlates to the sol-to-gel transition. Thus, curling up of linear chains is here proposed as a plausible mechanism for the formation of small rings. These in turn act as nucleation sites for the condensation of larger rings and thus the formation of the open and polymeric silica network. We find that the protic ionic liquid does not change the reaction pathway per se, but accelerates the cyclization process, intermediated by the faster inclusion of monomeric species.

  7. Engineering ionic liquid-tolerant cellulases for biofuels production.

    Science.gov (United States)

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes.

  8. Ionic interaction of sulfatide with choline lipids.

    Science.gov (United States)

    Abramson, M B; Katzman, R

    1968-08-09

    Aqueous systems of sphingomyelin-sulfatide and lecithin-sulfatide were compared with aqueous systems of the individual lipids. The acid capacity of the mixed lipids increased, a result of the formation of an ionic bond between the sulfate of one molecule and the positive nitrogen of the other, making the phosphate available for direct titration. Cholesterol reduces this ionic interaction, probably because of the increased spacing of the ionized groups.

  9. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    Science.gov (United States)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate liquids can be used for SC electrolytes operated at high temperature.

  10. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    Science.gov (United States)

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  11. Partitioning behavior and structural characterization of papain in ionic liquid aqueous two-phase system%木瓜蛋白酶在离子液体双水相中的分配行为

    Institute of Scientific and Technical Information of China (English)

    王伟涛; 蒋志国; 张海德; 彭健; 许英豪; 董安华; 杨雪芳; 蒋欣欣

    2015-01-01

    Papain was extracted by ionic liquid aqueous two-phase system. Firstly,the influence of concentration, pH, and temperature of ionic liquid on the activity of papain was investigated. Secondly, the effects of different ionic liquid aqueous two-phase systems, alkyl chain lengths and concentrations of the ionic liquid, dosage of papain, pH, temperature on the partitioning behavior of papain were discussed. [C4mim]Cl and [C4mim]Br systems were better than [C4mim]BF4 system in extraction of papain, and it was disadvantageous to extract papain at a high temperature (60℃or higher). Activity recovery of enzyme reached 95.16%and purification factor reached 1.5 under the optimum conditions:[C4mim]Cl 0.25 g·ml−1, K2HPO4 0.35 g·ml−1, pH 8.0, enzyme addition 2.0 mg·ml−1, 30℃. The result laid the experimental basis for further scale-up research and commercial production.%采用离子液体双水相提取木瓜蛋白酶。首先考察不同浓度、pH、温度的离子液体对木瓜蛋白酶活性的影响,其次考察不同离子液体双水相体系、离子液体侧烷基链长度及浓度、酶添加量、pH、温度对木瓜蛋白酶分配行为的影响。结果表明:[C4mim]Cl 和[C4mim]Br 体系萃取木瓜蛋白酶的效果比[C4mim]BF4体系好;高温(≥60℃)对离子液体双水相体系萃取木瓜蛋白酶不利。离子液体双水相萃取木瓜蛋白酶的最佳工艺条件:0.25 g·ml−1的[C4mim]Cl,0.35 g·ml−1的K2HPO4,pH 8.0,酶添加量2.0 mg·ml−1,30℃。此条件下木瓜蛋白酶的酶活性回收率达到95.16%,纯化因子达到1.5。为今后进一步研究该体系的放大实验或规模化生产奠定了基础。

  12. 离子液体双水相萃取山楂黄酮和多糖的研究%Study on the Extraction of Hawthorn Flavonoids and Polysaccharide in Ionic Liquid Aqueous Two-Phase System

    Institute of Scientific and Technical Information of China (English)

    巩育军; 牛盛童; 黄学锋; 王键

    2014-01-01

    Partition behaviors of hawthorn flavonoids and polysaccharide in ionic liquid aqueous two-phase system(ILATPS)were studied by spectrophotometry.Effects of concentration of ionic liquid and ammonium sulfate,dosage of hawthorn and ultrasonic time on the extraction rate of hawthorn flavonoids and polysaccharide were investigated.The optimal extraction conditions were as follows:concentration of ionic liquid [Bmim]BF4 was 0.26~0.30 g·mL-1,concentration of ammonium sulfate was 0.08~0.10 g·mL-1,dosage of hawthorn was 0.14~0.17 g,ultrasonic time was 15~20 min.Under these conditions,extraction rate of hawthorn fla-vonoids was 86.4%~96.0% in the up phase,and extraction rate of polysaccharide was 75.2%~76.0% in the down phase.%采用分光光度法研究了山楂黄酮和多糖在[Bmim]BF4/(NH4)2 SO4双水相体系的分配行为,探讨了离子液体浓度、(NH4)2 SO4浓度、山楂用量和超声时间等因素对山楂黄酮和多糖萃取率的影响。确定最佳萃取条件为:离子液体[Bmim]BF4浓度0.26~0.30 g·mL-1,(NH4)2 SO4浓度0.08~0.10 g·mL-1,山楂用量0.14~0.17 g,超声时间15~20 min,在此优化条件下,双水相上相中黄酮的萃取率为86.4%~96.0%、下相中多糖的萃取率为75.2%~76.0%。

  13. Synthesis, characterization and thermal properties of thiosalicylate ionic liquids

    Indian Academy of Sciences (India)

    Cecilia Devi Wilfred; Fadwa Babiker Mustafa

    2013-11-01

    In an attempt to produce new functionalized ionic liquids, a series of thiosalicylate ionic liquids based on imidazolium, ammonium, phosphonium, choline and pyrrolidinium cations were synthesized. The compounds were characterized by Infra Red (IR), Nuclear Magnetic Resonance (NMR) and mass spectra (ESI-MS). Their glass-transition temperatures, melting points and decomposition temperatures have been measured. Physicochemical properties of ionic liquids are influenced by alkyl chain length and nature of the cation of ionic liquids.

  14. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  15. The tendency of smooth and rough Salmonella typhimurium bacteria and lipopolysaccharide to hydrophobic and ionic interaction, as studied in aqueous polymer two-phase systems.

    Science.gov (United States)

    Magnusson, K E; Stendahl, O; Tagesson, C; Edebo, L; Johansson, G

    1977-06-01

    In aqueous two-phase system, the partition of bacteria and lipopolysaccharide from a rough (R) strain (Rd-mutant) of Salmonella typhimurium is influenced by polymers with covalently linked hydrophobic groups indicating hydrophobic structures accessible at the cell surface. Furthermore, the partition of the R bacteria is influenced by a number of inorganic positive and negative ions, presumably as a consequence of interaction with negatively charged surface structures. In contrast, smooth (S) bacteria and lipopolysaccharide from the parent strain do not seem to participate in either hydrophobic or charge interaction indicating extensive hydrophilicity without charge. Thus, the S-specific polysaccharide side chain of S. typhimurium might serve the purpose of blindfolding aspecific host defence mechanisms dependent on hydrophobicity and charge. On the contrary, the R bacteria and R lipopolysaccharide have physico-chemical properties which predispose to interaction with several types of cells, organelles and molecules.

  16. Ionic liquid-modified silica-coated magnetic nanoparticles: promising adsorbents for ultra-fast extraction of paraquat from aqueous solution.

    Science.gov (United States)

    Latifeh, Farzad; Yamini, Yadollah; Seidi, Shahram

    2016-03-01

    In the present study, ionic liquid-modified silica-coated magnetic nanoparticles (Fe3O4@SiO2@IL) were synthesized and applied as adsorbents for extraction and determination of paraquat (PQ) followed by high-performance liquid chromatography. For assurance of the extraction efficiency, the obtained results were compared with those obtained by bared magnetic nanoparticles (MNPs). Experimental design and response surface methodology were used for optimization of different parameters which affect extraction efficiency of paraquat using both adsorbents. Under the optimized conditions, extraction recoveries in the range of 20-25 and 35-40 % with satisfactory repeatability values (RSDs%, n = 4) less than 5.0 % were obtained for bared MNPs and Fe3O4@SiO2@IL, respectively. The limits of detection were 0.1 and 0.25 μg/L using Fe3O4@SiO2@IL and bared MNPs, respectively. The linearity was obtained in the range of 0.25 to 25 μg/L and 0.5 to 25 μg/L for Fe3O4@SiO2@IL and bared MNPs, respectively, with the coefficients of determination better than 0.9950. Finally, Fe3O4@SiO2@IL was chosen as superior adsorbent due to more dispersion ability, higher extraction recovery, lower detection limit, as well as better linearity and repeatability. Calculated errors (%) were in the range of 3 to 10 % depicting acceptable accuracy for the analysis of PQ by the proposed method. Finally, the method was successfully applied for extraction and determination of PQ in some water and countryside soil samples.

  17. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  18. Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model.

    Science.gov (United States)

    Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2005-12-08

    This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).

  19. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  20. Modeling solubility and acid-base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures.

    Science.gov (United States)

    Bretti, Clemente; Giuffrè, Ottavia; Lando, Gabriele; Sammartano, Silvio

    2016-01-01

    New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification

  1. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  2. Predicting melting point of imidazolium-based ionic liquids using modified group-contribution by mass connectivity index%质量连接性指数改进的基团贡献法预测咪唑类离子液体的熔点

    Institute of Scientific and Technical Information of China (English)

    熊焰; 丁靖; 虞大红; 彭昌军; 刘洪来

    2011-01-01

    Researches on ionic liquids (Ils) are attractive due to Ils' unique characteristics, while an important drawback in the application of Ils is the scarcity of their thermodynamic data. The number of potential Ils is so enormous, some say as many as 1012 to 1018, that it is impossible to determine all these data by experimental methods. Many attempts, including group-contribution and connectivity index have had some success to develop methods to estimate the physical properties of unknown Ils in order to facilitate the design of new modifications and reduce the need for experimental work. A new concept named mass connectivity index to encode bond contributions and to allow quantifying the extent of branching in a molecule, especially in Ils, was proposed in 2010. The preliminary study showed that there was a close but complicated relationship between mass connectivity index and the melting point of Ils, implying that it was hard to predict the melting point only by mass connectivity index without the available information supplied by the other models. In this paper, a new group-contribution model combined with mass connectivity index was proposed for the prediction of the melting point of imidazolium-based ionic liquids, which adopted successful group-contribution parameters and distinguished structure characteristics of Ils by mass connectivity index considering the influence of structure on melting points. It was the first attempt to introduce the concept of mass connectivity index to group-contribution method to estimate melting point. In the model, 23 basic group contribution parameters of Ils and 3 structure characteristic factors were defined except for mass connectivity index and all the constants needed were determined by regression analysis of 62 typical data points obtained from available experimental data in the literatures. The melting points of other 59 Ils not used for determining the parameters of the equation were predicted by the new method and all

  3. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  4. Self-propelled chemotactic ionic liquid droplets

    OpenAIRE

    Francis, Wayne; Fay, Cormac; Florea, Larisa; Diamond, Dermot

    2015-01-01

    Herein we report the chemotactic behaviour of self-propelled droplets composed solely of the ionic liquid trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]). These droplets spontaneously move along an aqueous-air boundary in the direction of chloride gradients to specific destinations due to asymmetric release of [P6,6,6,14]+ cationic surfactant from the droplet into the aqueous phase.

  5. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry’s Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds

    Science.gov (United States)

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry’s Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aq...

  6. Modern ab initio valence bond theory calculations reveal charge shift bonding in protic ionic liquids.

    Science.gov (United States)

    Patil, Amol Baliram; Bhanage, Bhalchandra Mahadeo

    2016-06-21

    The nature of bonding interactions between the cation and the anion of an ionic liquid is at the heart of understanding ionic liquid properties. A particularly interesting case is a special class of ionic liquids known as protic ionic liquids. The extent of proton transfer in protic ionic liquids has been observed to vary according to the interacting species. Back proton transfer renders protic ionic liquids volatile and to be considered as inferior ionic liquids. We try to address this issue by employing modern ab initio valence bond theory calculations. The results indicate that the bonding in the cation and the anion of a prototypical ionic liquid, ethylammonium nitrate, is fundamentally different. It is neither characteristic of covalent/polar covalent bonding nor ionic bonding but rather charge shift bonding as a resonance hybrid of two competing ionic molecular electronic structure configurations. An investigation of other analogous protic ionic liquids reveals that this charge shift bonding seems to be a typical characteristic of protic ionic liquids while the ionic solid analogue compound ammonium nitrate has less charge shift bonding character as compared to protic ionic liquids. Further the extent of charge shift bonding character has been found to be congruent with the trends in many physicochemical properties such as melting point, conductivity, viscosity, and ionicity of the studied ionic liquids indicating that percentage charge shift character may serve as a key descriptor for large scale computational screening of ionic liquids with desired properties.

  7. Methods for Melting Temperature Calculation

    Science.gov (United States)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  8. Hydrophobic ionic liquids

    Science.gov (United States)

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  9. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  10. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  11. Temperature-controlled ionic liquid dispersive liquid phase microextraction combined with ultra-high-pressure liquid chromatography for the rapid determination of triclosan,triclocarban and methyl-triclosan in aqueous samples

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As extraction solvents,ionic liquids have green characteristics.In this study,an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS),triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples.Significant parameters that may affect extraction efficiencies were examined and optimized,including the types and amount of ionic liquids,volume of the diluent,heating temperature,cooling time,salt effect and pH value.Under the optimum conditions,linearity of the method was observed in the ranges of 0.0100-100 μgL-1 for TCS and M-TCS,and 0.00500-50.0 μgL-1 for TCC with correlation coefficients (r2) > 0.9903.The limits of detection (LODs) ranged from 1.15 to 5.33 ngL-1.TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μgL-1,respectively.The spiked recoveries of the three target compounds in reclaimed water,irrigating water,waste water and domestic water samples were obtained in the ranges of 68.4%-71.9%,61.6%-87.8%,58.9%-74.9% and 64.9%-92.4%,respectively.Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS,TCC and M-TCS,this method is not only more environmentally friendly but also more sensitive.

  12. Periodicity and map for discovery of new ionic liquids

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Suojiang

    2006-01-01

    [1]Trohalaki,S.,Pachter,R.,Drake,G.W.,Hawkins,T.,Quantitative structure-property relationships for melting points and densities of ionic liquids,Energy & Fuels,2005,19:279-284.[2]Holbery,J.D.,Seddon,K.R.,The phase behavior of 1-alkyl-3-methylimidazolium tetrafluoroborates,ionic liquids and ionic liquid crystals,J.Chem.Soc.Dalton Trans.,1999,13:2133-2139.[3]Katritzky,A.R.,Lomaka,A.,Petrukhin,R.et al.,QSPR correlation of the melting point for pyridinium bromides,potential ionic liquids,J.Chem.Inf.Comput.Sci.,2002,42:71-74.[4]Katritzky,A.R.,Jain,R.,Lomaka,A.et al.,Correlation of the melting points of potential ionic liquids (imidazolium bromides and benzimidazolium bromides) using the CODESSA program,J.Chem.Inf.Comput.Sci.,2002,42:225-231.[5]Eike,D.M.,Brennecke,J.F.,Maginn,E.J.,Predicting melting points of quaternary ammonium ionic liquids,Green Chemistry,2003,5:323-328.[6]Dupont,J.,Souza,R.F.,Suarez,A.Z.,Ionic liquid (molten salt) phase organometallic catalysis,J.Chem.Rev.,2002,102:3667-3692.[7]Turner,E.A.,Pye,C.C.,Singer,R.D.,Use of ab initio calculations toward the rational design of room temperature ionic liquids,J.Phys.Chem.A,2003,107(13):2277-2288.[8]Morrow,T.I.,Maginn,E.J.,Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate,J.Phys.Chem.B,2002,106:12807-12813.[9]Cadena,C.,Antony,J.L.,Shah,J.K.et al.,Why is CO2 so soluble in imidazolium-based ionic liquids? J.Am.Chem.Soc.,2004,126(16):5300-5308.[10]Liu,Z.,Huang,S.,Wang,W.,A refined force field for molecular simulation of imidazolium-based ionic liquids,J.Phys.Chem.B,2004,108(34):12978-12989.[11]Earle,M.J,Seddon,K.R.,Ionic liquids,green solvents for the future,Pure Appl.Chem.,2000,72(7):1391-1398.[12]Mendeleev on periodicity:I and II,http://www.rod.beavon.clara.net/periodic1.htm[13]Hoffmann,R.,Building bridges between inorganic and organic chemistry,Angew.Chem.Int.Ed.Engl.,1982,21(10):711-800.

  13. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  14. Biophysical properties of DNA in hydrated ionic liquids

    Science.gov (United States)

    Jumbri, Khairulazhar; Ahmad, Haslina; Abdulmalek, Emilia; Rahman, Mohd Basyaruddin Abdul

    2016-11-01

    The biophysical properties and behavior of natural calf thymus DNA in hydrated 1-ethyl-3-butylimidazolium bromide ionic liquid ([C2bim]Br) have been studied using spectroscopy technique. The effect of ionic liquid concentration and temperature towards the duplex B-DNA conformation were determined. The presence of ionic liquid causes higher duplex DNA stability with the DNA melting temperature of ˜56°C without any addition of buffer solutions. The electrostatic attraction between ionic liquid's cation and DNA phosphates groups was found play a main role in stabilizing native DNA structure. Understanding of the biophysical properties of DNA in this ionic media could be used as a platform for future development of specific solvent for nucleic acid nanotechnology.

  15. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    Science.gov (United States)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  16. Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles

    Directory of Open Access Journals (Sweden)

    Mehrdad Khamooshi

    2013-01-01

    Full Text Available The cycle performance of refrigeration cycles depends not only on their configuration, but also on thermodynamic properties of working pairs regularly composed of refrigerant and absorbent. The commonly used working pairs in absorption cycles are aqueous solutions of either lithium bromide water or ammonia water. However, corrosion, crystallization, high working pressure, and toxicity are their major disadvantages in industrial applications. Therefore, seeking more advantageous working pairs with good thermal stability, with minimum corrosion, and without crystallization has become the research focus in the past two decades. Ionic liquids (ILs are room-temperature melting salts that can remain in the liquid state at near or below room temperature. ILs have attracted considerable attention due to their unique properties, such as negligible vapor pressure, nonflammability, thermal stability, good solubility, low melting points, and staying in the liquid state over a wide temperature range from room temperature to about 300°C. The previously mentioned highly favorable properties of ILs motivated us for carrying out the present research and reviewing the available ILs found in the literature as the working fluids of absorption cycles. Absorption cycles contain absorption heat pumps, absorption chillers, and absorption transformers.

  17. The ionic product of water in concentrated tetramethylammonium chloride solutions.

    Science.gov (United States)

    Sipos, P; Bódi, I; May, P M; Hefter, G T

    1997-04-01

    The ionic product of water, pK(w) = - log[H(+)][OH(-)] has been determined in aqueous solutions of tetramethylammonium chloride over the concentration range of 0.1-5.5 M at 25 degrees C using high-precision glass electrode potentiometric titrations. pK(w) data relating to aqueous potassium and sodium chlorides at ionic strengths up to 5 M are markedly lower than the tetramethylammonium chloride results. These differences are almost certainly due to weak associations between potassium and (especially) sodium and hydroxide ions.

  18. Voltage charging enhances ionic conductivity in gold nanotube membranes.

    Science.gov (United States)

    Gao, Peng; Martin, Charles R

    2014-08-26

    Ionically conductive membranes are used in many electrochemical processes and devices, including batteries, fuel cells, and electrolyzers. In all such applications, it is advantageous to use membranes with high ionic conductivity because membrane resistance causes a voltage loss suffered by the cell. We describe here a method for enhancing ionic conductivity in membranes containing small diameter (4 nm) gold nanotubes. This entails making the gold nanotube membrane the working electrode in an electrochemical cell and applying a voltage to the membrane. We show here that voltage charging in this way can increase membrane ionic conductivity by over an order of magnitude. When expressed in terms of the ionic conductivity of the electrolyte, κ, within an individual voltage-charged tube, the most negative applied voltage yielded a κ comparable to that of 1 M aqueous KCl, over 2 orders of magnitude higher than κ of the 0.01 M KCl solution contacting the membrane.

  19. Non-Aqueous Capillary Electrophoresis

    Science.gov (United States)

    Szumski, Michał; Buszewski, Bogusław

    Non-aqueous capillary electrophoresis and capillary electrochromatography are special variants of these techniques. Here, organic solvents or their mixtures with or without dissolved electrolytes are used as separation buffer or mobile phase, respectively. The most important features of non-aqueous systems are: better solubility of more hydrophobic ionic substances (many natural products) than in water, much less current and Joule heating allows for using highly concentrated buffers and/or larger capillary internal diameters, polar interactions are enhanced in organic solvents which is often highly advantageous in chiral separation systems. This chapter presents most frequently used solvents, their properties, as well as shows pH* scale which is often used in non-aqueous systems.

  20. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface

    Directory of Open Access Journals (Sweden)

    Jolanta Flieger

    2015-12-01

    Full Text Available A series of imidazolium and pyridinium ionic liquids with different anions (Cl−, Br−, BF4−, PF6− has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile but it was not sensitive to the change of temperature in the range of 5–40 °C.

  1. A peroxotungstate-ionic liquid brush assembly: an efficient and reusable catalyst for selectively oxidizing sulfides with aqueous H{sub 2}O{sub 2} solution in neat water

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xianying; Ma, Wenjuan; Ou, Hui; Han, Xiaoyan; Lu, Congmin; Chen, Yan; Wei, Junfa, E-mail: shixy@snnu.edu.cn, E-mail: weijf@snnu.edu.cn [School of Chemistry and Chemical Engineering, Shaanxi Normal University and Key Laboratory for Macromolecular Science of Shaanxi Province, Xian (China)

    2012-08-15

    An efficient and reusable heterogeneous catalytic assembly of peroxotungstate held in a ionic liquid (IL) brush was synthesized and an environmentally-friendly procedure was developed for selective oxidation of sulfides at room temperature using 30 wt.% hydrogen peroxide as the terminal oxidant and water as a sole solvent. No organic co-solvent or other additive was needed. A 1.5-2.0 mol% (based on W atom) loading catalyst was found to be sufficient for a smooth and clean reaction. Both aliphatic and aromatic sulfides were efficiently and selectively transformed into their respective sulfoxides or sulfones by simply controlling of equivalents of hydrogen peroxide. In addition to the high catalytic activity, the catalyst exhibits excellent chemoselectivity. Sensitive functional groups, such as double bond and hydroxyl, remained under the oxidation conditions the reaction even with an excess hydrogen peroxide. The catalyst was easily recovered (via simple filtration) and reused at least eight times without a noticeable loss of activity. (author)

  2. Melting of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M; Japel, S; Boehler, R

    2005-04-11

    We review the transition melting studies carried out at Mainz, and describe a recently developed model used to explain that the relatively low melting slopes are due to the partially filled d-bands, and the persistence of the pressure induced s-d transition. The basic tenets of the model have now been reconfirmed by new measurements for Cu and Ni. The measurements show that Cu which has a filled 3d-band, has a melt slope that is about 2.5 greater than its neighbor Ni. In the case of Mo, the apparent discrepancy of DAC melting measurements with shock melting can be explained by accounting for the change in melt slope due to the bcc-cp transition observed in the shock studies. The Fe melt curve is revisited. The possible relevance of the Jahn-Teller effect and recently observed transition metal melts with Icosahedral Short-Range Order (ISRO) is discussed.

  3. The effect of milkfat melting properties on chemical and physical properties of 20% reformulated cream

    OpenAIRE

    Scott, Lisa Lenore

    1999-01-01

    The Effect of Milkfat Melting Properties on Chemical and Physical Properties of 20% Reformulated Cream Lisa L. Scott (ABSTRACT) Skim, sweet buttermilk, and butter derived aqueous phase components were used to re-emulsify low-melt and medium-melt fraction butteroils to yield 20% milkfat creams. The implications of separation temperature in obtaining components, melting point characteristics, and formulation on the chemical and physical properties of reformulated and natural crea...

  4. Continuous melting and ion chromatographic analyses of ice cores.

    Science.gov (United States)

    Huber, T M; Schwikowski, M; Gäggele, H W

    2001-06-22

    A new method for determining concentrations of organic and inorganic ions in ice cores by continuous melting and contemporaneous ion chromatographic analyses was developed. A subcore is melted on a melting device and the meltwater produced is collected in two parallel sample loops and then analyzed simultaneously by two ion chromatographs, one for anions and one for cations. For most of the analyzed species, lower or equal blank values were achieved with the continuous melting and analysis technique compared to the conventional analysis. Comparison of the continuous melting and ion chromatographic analysis with the conventional analysis of a real ice core segment showed good agreement in concentration profiles and total amounts of ionic species. Thus, the newly developed method is well suited for ice core analysis and has the advantages of lower ice consumption, less time-consuming sample preparation and lower risk of contamination.

  5. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids.

  6. Cluster Morphology-Polymer Dynamics Correlations in Sulfonated Polystyrene Melts: Computational Study

    Science.gov (United States)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2016-04-01

    Reaching exceptionally long times up to 500 ns in equilibrium and nonequilibrium molecular dynamics simulations studies, we have attained a fundamental molecular understanding of the correlation of ionomer clusters structure and multiscale dynamics, providing new insight into one critical, long-standing challenge in ionic polymer physics. The cluster structure in melts of sulfonated polystyrene with Na+ and Mg2 + counterions are resolved and correlated with the dynamics on multiple length and time scales extracted from measurements of the dynamic structure factor and shear rheology. We find that as the morphology of the ionic clusters changes from ladderlike for Na+ to disordered structures for Mg2 + , the dynamic structure factor is affected on the length scale corresponding to the ionic clusters. Rheology studies show that the viscosity for Mg2 + melts is higher than for Na+ ones for all shear rates, which is well correlated with the larger ionic clusters' size for the Mg2 + melts.

  7. Testing Room-Temperature Ionic Liquid Solutions for Depot Repair of Aluminum Coatings

    Science.gov (United States)

    2011-05-01

    Liquid: Definition Table Salt (NaCl) Crystal Melting Point = 801 C Ionic Liquid ( BMIM -PF6) Melting Point = 11 C An “ionic liquid” (IL) is a salt in...the liquid state • Discussion will be limited to a “room-temperature IL” (RTIL), which has a melting point that is less than 100 C • For example, “ BMIM ...PF6” is an RTIL; table salt is not sodium (Na+) chloride (Cl-) 1-butyl-3-methyl- imidazolium ( BMIM +) hexafluoro- phosphate (PF6-) 7 RTIL Features

  8. Ionic solvents used in ionic polymer transducers, sensors and actuators

    OpenAIRE

    2004-01-01

    Ionic liquids are incorporated into transducers, actuators or sensors which employ the ionic polymer membranes. The ionic liquids have superior electrochemical stability, low viscosity and low vapor pressure. The transducers, actuators and sensors which utilize ionic polymer membranes solvated with ionic liquids have long term air stability. Superior results are achieved when a conductive powder and ionomer mixture is applied to the ionic polymer membrane to form the electrodes during or afte...

  9. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  10. A view of aqueous electrochemical carbon dioxide reduction to formate at indium electrodes, and the reversible electrodeposition of silver in ionic liquids through the lens of fundamental surface science

    Science.gov (United States)

    Detweiler, Zachary M.

    Two systems were studied using in situ measurement techniques, demonstrating the importance of creative experimental design. The electroreduction of CO2 at heterogeneous indium electrodes in aqueous solution was analyzed by cyclic voltammetry. Bulk electrolyses showed that increased indium oxide presence prior to electrolysis improved the Faradaic efficiency of CO 2 reduction to formate in 0.5 M K2SO2 aqueous solutions at a pH of 4.4. In order to more accurately assign speciation at the electrode surface ex situ O2 and H2O dosing of metallic indium under UHV was studied with XPS, HREELS and TPD. Ambient pressure XPS showed that the ratio of oxide to hydroxide at the indium interface is strongly dependent on the partial pressure of water; decreasing as P(H2O) increases. Using this information, a qualitative picture of the indium interface could be generated. In situ ATR-FTIR with an indium thin film as the working electrode showed that bulk oxide quickly reduces with applied potential, but an interfacial oxide is still present at high reductive overpotential. Additionally, an adsorbed carbonate at the thin film interface was observed upon introducing CO 2 to the cell. The implication of a surface bound carbonate as the CO 2 reduction intermediate draws on a mechanism that has not previously been discussed in the electrochemical reduction of CO2. The previous study of this mechanism from Ficscher-Tropsch literature helps to predict the further reduced products found at more electropositive metals, such as copper or magnesium, the latter of which is described here. Additionaly described here is a series of ILs that were employed as electrolyte for reversible silver deposition. BMIM N(TfO)2 was found to be the most promising of those studied, intrinsically giving a more uniform deposit that was bright and reversible. Deposit formation was studied using SEM and EDX as a function of deposition potential and deposition time. In situ reflectometry was employed to get a

  11. Modeling of ionic liquids

    Science.gov (United States)

    Tatlipinar, Hasan

    2017-02-01

    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  12. CO2在液胺-离子液体混合物中的吸收再生特性研究%Research on CO2 Absorption and Regeneration Performance in Aqueous Amine-Ionic Liquids Blends

    Institute of Scientific and Technical Information of China (English)

    湛志钢; 朱德臣; 徐齐胜

    2014-01-01

    In order to improve absorption rate of CO2 capture technology,reduce regeneration energy consumption and a-void secondary pollution,a kind of method for absorbing CO2 by using blends of N-methylcyclohexylamine(MCA)and imid-azolium based ionic liquids so as to realize flue gas CO2 emission in coal-fired power plant. Tests on CO2 absorption and re-generation performance based on 1-buty1-3-methylimidazolium tetrafluoroborate-based system([Bmim][BF4])and 1-buty1-3-methylimizazaolium acetate([Bmim][OAc])system were developed. Results indicated that CO2 absorption capacity of 10%MCA+10%H2 O+[Bmim][OAc]system was 0.369 and absorption rate was 5.83 g/(kg ·min)which was superior to that of 30% MEA system. In addition,regeneration performance of this system was obviously improved compared with 1 0% MCA system.%为了提高碳捕集技术吸收效率、降低再生能耗、避免二次污染,提出一种利用 N-甲基环己胺 MCA水溶液及甲基咪唑离子液体混合吸收二氧化碳(CO2)的方法以实现燃煤电厂烟气碳减排,并分别开展了基于 MCA水溶液·1-丁基-3-甲基咪唑四硼氟酸盐[Bmim][BF4]体系和MCA水溶液·1-丁基-3-甲基咪唑醋酸盐[Bmim][OAc]体系的CO2吸收及再生性能实验。实验结果表明,10%MCA+10%H2 O+[Bmim][OAc]体系的吸收容量为0.369,吸收速率为5.83 g/(kg·min),优于工业常压吸收剂30%MEA水溶液;再生性能相较于10%MCA溶液明显改善。

  13. Simultaneous Design of Ionic Liquids and Azeotropic Separation for Systems Containing Water

    DEFF Research Database (Denmark)

    Roughton, Brock; Camarda, Kyle V.; Gani, Rafiqul

    to check for consistency. The ionic liquid UNIFAC model was developed for a selected set of ionic liquid cations and anions. Group volume and area parameters were calculated using a three step procedure. First, the rules of Bondi were used for any applicable molecular groups within the cation or anion...... decomposition temperature. For any new synthesis-design problem involving aqueous azeotropes, all it now requires is to find the azeotropic composition of water and based on it, to identify an appropriate ionic liquid. Then the driving force is calculated for the azeotrope ionic liquid and based on it...

  14. The Kinetics and Mechanism of Spontaneous Dispersion of Ionic Compounds Onto Surfaces of Supports

    Institute of Scientific and Technical Information of China (English)

    汪传宝; 谢有畅; 唐有祺

    1994-01-01

    The dispersion kinetics of ionic compounds on the surfaces of supports is studied by using atemperature-programmed X-ray diffractometer.It is observed that for a given ionic compound/support mix-ture,there exists a critical dispersion temperature T_c,at which the ionic compound starts to disperse ontothe surface of the support at an appreciable rate.The dispersion process has 2 steps:the ions first leave thesurface of the ionic compound for the external surface of the support,and then the ions diffuse to the wholesurface of the support.For the dispersion of ionic compounds with high melting points,the first step is rate-determining.Their critical dispersion temperatures and dispersion activation energies depend on the ioniccompounds themselves and increase with their melting points,but are independent of supports.For the dis-persion of ionic compounds with low melting points,the second step is rate-determining.Their critical dis-persion temperatures and dispersion activation energies depend on both the ionic compounds and the sup-ports.

  15. Conductivity of Oxalic Acid in Aqueous Solution at Low Concentration

    Institute of Scientific and Technical Information of China (English)

    倪良; 韩世钧

    2005-01-01

    Oxalic acid is a weak and unsymmetrical bi-basic acid. There exist dissociation and association equilibria among the species in aqueous solution. The molar conductivity of the solution is the sum of the ionic contributions.Based on this idea, a new prediction equation of ionic conductivity was proposed at low concentration. The molar conductivities of the solution and its relevant ions were calculated respectively. The results obtained were in good agreement with those from experiments and the Quint-Viallard equation.

  16. Preparation and Characterization of New Type Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new type of ionic liquids containing cation of diacetone acrylamide [or N-(1,1- bismethyl-3-oxo-butyl)acrylamide] and anions such as CH3COO-(Ac), CF3COO(-(TF), BF4-(BF), PF6-(PF), HSO4-(SO) and Cl-(Cl) were prepared by normal neutralization.The obtained ionic liquids were identified by FT-IR and 1H NMR spectroscopy.However, their properties such as melting point, conductivity, viscosity etc.were determined.

  17. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  18. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  19. On barium oxide solubility in barium-containing chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V. [Ural Federal Univ., Yekaterinburg (Russian Federation). Inst. of High Temperature Electrochemistry

    2016-11-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl{sub 2}-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl{sub 2}-MCl systems.

  20. Preparation of diffusion coatings in ion-electron melts

    Institute of Scientific and Technical Information of China (English)

    Anfinogenov; A.; I.; Chebykin; V.; V.; Chernov; Ya.; B.

    2005-01-01

    A procedure of Ni, Cr, Mn, Co, and Mo (Me) transfer onto iron substrate in ionic-electronic melts LiCl-Li, CaCl2-Ca, and BaCl2-Ba was elaborated and the transport processes were studied. The saturated vapor pressure of these ionic-electronic melts is as low as enabled working at atmosphere pressure in an inert media up to 1000 ℃.Armco iron was used as a substrate because it practically does not interact with lithium, calcium, and barium. The metals-diffusants were put into the melts in the form of a powder. The complete saturation of the melts with lithium, calcium, and barium was ensured by a preceding contact of a molten salt with an excess of Li, Ca, or Ba before loading of iron.The reactions take place despite the metals and iron were separated from each other by the molten salt. The quantity of the metals transfered was determined by the change in mass before and after experiments, by microprobe analysis, and x-raying of the iron surface layer. The experiments were carried out at 900, 950 and 1000℃ during 5, 10, 15 and 20 hours.At the first stage of the process the formation of the ionic-electronic melt occurs. For example, dissolution of calcium in the case of the system CaCl2-Ca is mainly proceeded in the form of one-valent cations: Ca + Ca2+()Ca+. As soon as the metal-diffusance is immersed into the melt, its dissolution in the form of negative ions takes place: Me + Ca+() Me-+ Ca2+. In the vicinity of the iron substrate the last equilibrium will shift to the left generating a solid solution or intermetallide. The thickness of the diffusion layer rises as the temperature and saturation time increase. The obtained coverings were 20-60 (m thick,and their surface layer contained 15%-80% (mass fraction) of the metal-diffusance.Both the composition of the melt and the procedure of the coverings preparation in ionic-electronic melts have been patented (Patent RU2058422, 1996, pr. 30.09.93).

  1. Signatures of nonthermal melting

    Directory of Open Access Journals (Sweden)

    Tobias Zier

    2015-09-01

    Full Text Available Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting.

  2. CALCULATING ACTIVITY COEFFICIENTS OF ELECTROLYTE AQUEOUS SOLUTION WITH PERTURBATION THEORY-BASED EQUATION OF STATE%用微扰理论状态方程计算电解质水溶液的活度系数

    Institute of Scientific and Technical Information of China (English)

    李春喜; 宋红燕; 李以圭; 陆九芳

    2001-01-01

    An equation of state for electrolyte aqueous solution is developed by treating the ion-ion electrostatic and ion-solvent molecule interactions with primitive MSA and perturbation theory, respectively. The effect of the dielectric constant on the ionic chemical potential and the calculation accuracy of ionic mean activity coefficients for 2∶1 and 1∶1 type halide aqueous solution are discussed.By taking ionic Pauling diameter as ionic hard sphere diameter for anions and treating the cation hard sphere diameter as ionic strength dependent, the equation can be used to calculate ionic activity coefficients in the moderate concentration range with good accuracy.

  3. Hg⁰ removal from flue gas by ionic liquid/H₂O₂.

    Science.gov (United States)

    Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming

    2014-09-15

    1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase.

  4. The Melting Curve and Premelting of MgO

    CERN Document Server

    Cohen, R E

    1996-01-01

    The melting curve for MgO was obtained using molecular dynamics and a non-empirical, many-body potential. We also studied premelting effects by computing the dynamical structure factor in the crystal on approach to melting. The melting curve simulations were performed with periodic boundary conditions with cells up to 512 atoms using the ab-initio Variational Induced Breathing (VIB) model. The melting curve was obtained by computing $% \\Delta H_m$ and agreement with previous estimates and we obtain a reasonable $\\Delta V_m$, but our melting slope dT/dP (114 K/GPa) is three times greater than that of Zerr and Boehler [1994] (35 K/GPa), suggesting a problem with the experimental melting curve, or an indication of exotic, non-ionic behavior of MgO liquid. We computed $S(q,\\omega )$ from simulations of 1000 atom clusters using the Potential Induced Breathing (PIB) model. A low frequency peak in the dynamical structure factor $% S(q,\\omega )$ arises below the melting point which appears to be related to the onset ...

  5. An Infrared Study of Ambient Temperature Chloroaluminates as a Function of Melt Acidity.

    Science.gov (United States)

    1984-07-01

    ionic interaction more closely. Water has also * T"Z _ t I , .... ... ... ± . ... . . .. . . ",, . . . . - . -3- been added to the melt in an attempt...studies of this molten salt system (2,3) and of a similar 7-methyl 3-ethyl imidazolium chloride (ImCl) system (2). Both provided good evidence of ionic ... interaction (particularly on the basic side) and Wilkes et al proposed several oligomers to explain the observed behavior. This problem has not been

  6. Melting of sodium clusters

    CERN Document Server

    Reyes-Nava, J A; Beltran, M R; Michaelian, K

    2002-01-01

    Thermal stability properties and the melting-like transition of Na_n, n=13-147, clusters are studied through microcanonical molecular dynamics simulations. The metallic bonding in the sodium clusters is mimicked by a many-body Gupta potential based on the second moment approximation of a tight-binding Hamiltonian. The characteristics of the solid-to-liquid transition in the sodium clusters are analyzed by calculating physical quantities like caloric curves, heat capacities, and root-mean-square bond length fluctuations using simulation times of several nanoseconds. Distinct melting mechanisms are obtained for the sodium clusters in the size range investigated. The calculated melting temperatures show an irregular variation with the cluster size, in qualitative agreement with recent experimental results. However, the calculated melting point for the Na_55 cluster is about 40 % lower than the experimental value.

  7. Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole

    OpenAIRE

    Romero, Miguel A.

    2016-01-01

    Simple and efficient synthetic procedures were established for the preparation of new energetic covalent compounds, salts, and protonated ionic liquids based on the readily available antimicrobial agent metronidazole. Some of these materials exhibit the desirable properties of energetic materials and energetic ionic liquids, such as low vapor pressure, low melting point, good chemical and thermal stability, and high energetic content. For each of the relevant compounds prepared, thermal stabi...

  8. Acrylate Functionalized Tetraalkylammonium Salts with Ionic Liquid Properties

    Directory of Open Access Journals (Sweden)

    Silvia Janietz

    2012-05-01

    Full Text Available Acrylate functionalized ionic liquids based on tetraalkylammonium salts with terminal acrylates- and methylacrylates were synthesized. Melting points and ionic conductivity of twenty compounds in six groups were determined. Within one group the effect of three different counterions was investigated and discussed. The groups differ in cationic structure elements because of their functional groups such as acrylate and methacrylate, alkyl residues at the nitrogen and number of quaternary ammonium atoms within the organic cation. The effect of these cationic structure elements has been examined concerning the compiled parameters with a view to qualifying them as components for solid state electrolytes. The newly synthesized ionic liquids were characterized by NMR and FTIR analysis. The exchange of halide ions like bromide as counter ions to weakly coordinating [PF6], [OTf] or [TFSI] reduces the melting points significantly and leads to an ion conductivity of about 10−4 S/cm at room temperature. In the case of the dicationic ionic liquid, an ion conductivity of about 10−3 S/cm was observed.

  9. MELTED BUTTER TECHNOLOGY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2014-01-01

    Full Text Available Summary. Melted butter is made from dairy butter by rendering the fat phase. It has specific taste and aroma, high-calorie content and good assimilability. Defects of butter which appeared during the storage causes by the development of microbiological processes or by the chemical oxidation. On the development of these processes influence quality and composition of fresh butter, its physical structure, content of the increased amount of gas phase and content of heavy metals, storage conditions. Microbiological spoilage of butter occurs generally due to damage of plasma which is good environment for the development of microorganisms. Defects of microbiological origin include: unclean, sour, moldy, yeasty, cheesy, bitter taste. Defects of test and smell chemical origin are formed due to hydrolytic digestion of lipids. It's prevailed at long storage of butter in the conditions of freezing temperatures. It's picked out the following main processes of spoiling: souring, acidifying and sallowness. Often these processes take place simultaneously.It has been investigated melted butter with lactated additive. The latter improves the microbiological and toxicological safety, prolongs the storage condition of the products. Technological efficiency of the additives is achieved by a multilayer products formation from the inactive bound water, preventing microorganisms growth and by the barrier layer with lactate inhibiting hydrolytic reactions. Oil samples were obtained with the batch-type butter maker application, then they were melted and after that lactated additive were supplemented. It has been studied organoleptic and physico-chemical indices of the melted butter samples. The fatty-acid composition of melted butter were studied. Comparative analysis of fatty-acid composition of cow's milk fat and produced melted butter has shown their similarity. Also in the last sample there is increased weight fraction of linoleic and linolenic acids. The obtained

  10. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  11. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, N F; Shkirin, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Burkhanov, I S; Chaikov, L L [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Lomkova, A K [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  12. Applications of functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    LI; Xuehui; ZHAO; Dongbin; FEI; Zhaofu; WANG; Lefu

    2006-01-01

    Recent developments of the synthesis and applications of functionalized ionic liquids(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

  13. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  14. Fun with Ionic Compounds

    Science.gov (United States)

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  15. Density, viscosity and phase equilibria study of {ethylsulfate-based ionic liquid + water} binary systems as a function of temperature and composition

    Energy Technology Data Exchange (ETDEWEB)

    Królikowska, Marta, E-mail: mlaskowska@ch.pw.edu.pl; Lipiński, Paweł; Maik, Daria

    2014-04-01

    Highlights: • The [EMPIP][EtSO{sub 4}], [EMMOR][EtSO{sub 4}], [EMPYR][EtSO{sub 4}] and its aqueous mixtures have been studied. • The density, dynamic viscosity and SLE have been determined. • The excess molar volumes and viscosity deviations have been calculated. • The NRTL, Wilson, UNIQUAC, Redlich–Kister and VFT equations have been used to correlate the experimental data. - Abstract: This paper is a continuation of our investigation on physicochemical and thermodynamic properties of ionic liquids and its aqueous solutions. In this work the density, ρ and dynamic viscosity, η have been determined for binary mixtures of the ionic liquids: 1-ethyl-1-methyl-piperidinium ethylsulfate, [EMPIP][EtSO{sub 4}], 1-ethyl-1-methylmorpholinium ethylsulfate, [EMMOR][EtSO{sub 4}] and 1-ethyl-1-methylpyrrolidinium ethylsulfate, [EMPYR][EtSO{sub 4}] with water at wide temperature and composition range at atmospheric pressure. From experimental values of the density, ρ and dynamic viscosity, η the excess molar volumes, V{sup E} and viscosity deviations, Δη were calculated and correlated using Redlich–Kister polynomial equation. The (solid + liquid) phase equilibria, SLE for the tested binary mixtures have been determined by well-known dynamic method at a wide range of composition and temperature at atmospheric pressure. For comparison, the SLE data for {[EMPYR][EtSO_4] + water} binary mixtures have been determined using DSC technique. The experimental SLE data have been correlated by means of NRTL, UNIQUAC and Wilson equations. Additionally, the basic thermal properties of the pure ILs, that is, the glass-transition temperature, T{sub g,1} as well as the heat capacity at the glass-transition temperature, ΔC{sub p(g),1}, melting temperature, T{sub m} and enthalpy of melting, Δ{sub m}H have been measured using a differential scanning microcalorimetry technique (DSC). Decomposition of the ILs was detected by the simultaneous TG/DTA experiments. The choice of the

  16. Functionalized ionic liquids. New agents for the extraction of actinides/lanthandies

    Energy Technology Data Exchange (ETDEWEB)

    Ouadi, A.; Billard, I.; Gaillard, C. [CNRS/IN2P3 and Univ. L. Pasteur, Strasbourg (France). Inst. de Recherches Subatomiques; Hesemann, P.; Gadenne, B.; Moreau, J. [CNRS UMR 5076, Heterochimie Moleculaire et Macromoleculaire, Lab. de Chimie Organometallique, Montpellier (France); Moutiers, G.; Mariet, C.; Labet, A.; Mekki, S. [CEA-Institut National des Sciences et Techniques Nucleaires (INSTN), Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). UECCC

    2004-07-01

    Room-temperature ionic liquids (RTILs) are promising solvent alternatives in organic synthesis, catalysis, electrochemistry and separation processes. They appear as interesting media for the elaboration of separation processes in the nuclear fuel cycle. However, the partitioning of metallic species in liquid-liquid extraction is largely limited by the low complexation properties of the hydrophobia ionic liquids: in general, hydrophobic RTILs are non-coordinating, and the highly hydrated metal ions remain in the aqueous phase. (orig.)

  17. Ionic liquid pre-treatment of microalgae and extraction of biomolecules

    OpenAIRE

    2016-01-01

    Liquid-liquid extraction (LLE) techniques are widely used in separation primarily due to ease of scale up. Conventional (LLE) systems based on organic solvents are not suitable for extraction of fragile molecules such as proteins as it would result in denaturation. On the other hand aqueous biphasic system though suitable for extraction of proteins they are restricted by limited polarity range. Ionic liquids are salts which are liquid at room temperature. Ionic liquids have gained interest in...

  18. Chemical reactions at aqueous interfaces

    Science.gov (United States)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1

  19. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  20. Slab melting and magma generation beneath the southern Cascade Arc

    Science.gov (United States)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.

    2014-12-01

    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  1. Prominent roles of impurities in ionic liquid for catalytic conversion of carbohydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haibo; Brown, Heather M.; Holladay, Johnathan E.; Zhang, Z. Conrad

    2012-02-07

    In the last two decades, ionic liquids have emerged as new and versatile solvents, and many of them are also catalysts for a broad range of catalytic reactions. Certain ionic liquids have been found to possess the unique capability of dissolving cellulosic biomass. The potential of such ionic liquids as solvent to enable catalytic conversion of cellulosic polymers was first explored and demonstrated by Zhao et al. This field of research has since experienced a rapid growth. Most ionic liquids have negligible vapor pressure and excellent thermal stability over a wide temperature range. For example, ionic liquids composed of 1-ethyl-3-methylimidazolium (EMIM+) cation and Cl- anion was reported to be stable up to 285 C, while salts of the same cation with other anions such as BF4- and PF6- are thermally stable above 380 C under inert atmosphere. It is well known that presence of impurities in ionic liquids typically causes changes in physical properties, e.g. decreasing in melting point and viscosity. Addition of Lewis acidic metal chlorides, e.g. AlCl3 to 1-alkyl-3-methylimidazolium chloride, [AMIM]Cl, is an exothermic reaction and considerably reduces the melting point by forming [AMIM]AlCl4 or [AMIM]Al2Cl7 that are also ionic liquids but have much lower melting point than the parent [AMIM]Cl. While most early research on catalysis of ionic liquids involving metallohalide anions were typically conducted from stoichiometric ratio of such anions to organic cations, e.g. [AMIM]+, the use of pure ionic liquids only as a solvent to carry out catalysis by a catalytic amount of a metal halide as catalyst truly displayed the solvent property of such ionic liquids.4 In such reaction systems, catalytic amounts of metal halides were used to catalyze the conversion of glucose and cellulose.4,11,12 The metal chloride catalyst concentration was in the order of 10-3 M. The presence of another metal chloride in the ionic liquids, even in the order of 10-5 M concentration was found

  2. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Directory of Open Access Journals (Sweden)

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  3. Thermoacoustic Streaming and Ultrasonic Processing of Low Melting Melts

    Science.gov (United States)

    Trinh, E. H.

    1997-01-01

    Ultrasonic levitation allows the processing of low melting materials both in 1 G as well as in microgravity. The free suspension of the melts also facilitates undercooling, permitting the measurements of the physical properties of the metastable liquids.

  4. Recent Progress on Biocatalysis and Biotransformations in Ionic Liquids%离子液介质中生物催化与生物转化的研究进展

    Institute of Scientific and Technical Information of China (English)

    娄文勇; 宗敏华; 吴虹; 许若

    2004-01-01

    Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.

  5. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  6. Direct Capture of Organic Acids From Fermentation Media Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.

    2004-11-03

    Several ionic liquids have been investigated for the extraction of organic acids from fermentation broth. Partitioning of representative organic acids (lactic, acetic, and succinic) between aqueous solution and nine hydrophobic ionic liquids was measured. The extraction efficiencies were strongly dependent on pH of the aqueous phase. Distribution coefficient was very good (approximately 60) at low succinic acid concentrations for one of the ionic liquids (trihexyltetradecylphosphonium methanesulfonate) at neutral pH. However, this ionic liquid had to be diluted with nonanol due to its high viscosity in order to be useful. A diluent (trioctylamine) was also added to this mixture. The results suggest that an extraction system based on ionic liquids may be feasible for succinic acid recovery from fermentation broth and that two ideal extraction stages are needed to reduce the concentration from 33 g/L to 1 g/L of succinic acid. Further studies are needed to evaluate other issues related to practical applications, including ionic liquid loss in the process, toxicity effects of ionic liquids during simultaneous fermentation and extractions.

  7. Monazite and xenotime solubility in granitic melts and the origin of the lanthanide tetrad effect

    Science.gov (United States)

    Duc-Tin, Quach; Keppler, Hans

    2015-01-01

    The solubility of synthetic, pure rare earth phosphates with monazite or xenotime structure (LaPO4 to LuPO4) in hydrous haplogranitic melts was measured at 2 kbar and 800-1,100 °C. Experiments were run for up to 2 months to attain equilibrium. Monazite and xenotime solubility decreases with increasing phosphorus concentration in the melt. Published equations for monazite solubility in felsic melts, which do not explicitly include phosphorus concentration in the melt, should therefore be treated with caution. The effect of phosphorus can be quantitatively modeled if one assumes that monazite partially dissolves as ionic and molecular species in the melt (REE3+ and REEPO4). Equilibrium constants for the dissolution reactions as well as quantitative data on speciation were derived from the solubility data. Monazite and xenotime solubility strongly increases with the peralkalinity of the melt. This effect is mostly due to an increase in the solubility of the ionic species, which are probably stabilized by non-bridging oxygen atoms in the melt. In peraluminous melts, the solubility of monazite and xenotime is nearly constant. Fluorine has no major effect on monazite and xenotime solubility; in fact, the solubility appears to slightly decrease with increasing fluorine content. The solubility of rare earth phosphates is not a simple continuous function of atomic number or ionic radius. Rather, the solubility shows a "tetrad"-like pattern with several local maxima of solubility at individual rare earth elements. The solubilities of neighboring rare earth elements sometimes differ by more than a factor of two; these effects are far outside any analytical error. The tetrad pattern is particularly clearly seen in some of the peralkaline melts and in the fluorine-rich metaluminous melts. Some features, however, such as a solubility maximum at ytterbium, are seen in virtually all melts. The lanthanide tetrad effect in some highly evolved granites may therefore be a result of

  8. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  9. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  10. Thermodynamics of Oligonucleotide Duplex Melting

    Science.gov (United States)

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  11. Melting of polydisperse hard disks

    NARCIS (Netherlands)

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find th

  12. Pavement Snow Melting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  13. Secondary and lyotropic liquid crystal membranes for improved aqueous separations

    Science.gov (United States)

    Nemade, Parag Ramesh

    An effective membrane separation process should have high flux (i.e., volume filtered per unit membrane surface area per unit time) and selectivity (i.e., passage of the desired species and rejection of undesired species). This dissertation examined two approaches, secondary membranes and lyotropic liquid crystal membranes, for improving flux and selectivity in aqueous liquid separations. The first part of my work emphasizes the use of pre-deposited secondary membranes and backflushing for controlling membrane fouling in microfiltration and ultrafiltration of biological mixtures. Use of secondary membranes increased the permeate flux in microfiltration by several fold. Protein transmission is also enhanced due to the presence of the secondary membrane, and the amount of protein recovered is more than twice that obtained during filtration of protein-only solutions under otherwise identical conditions. In ultrafiltration, the flux enhancement due to secondary membranes is 50%, or less. For the second part of my research, I developed and evaluated polymerized lyotropic liquid crystal (LLC) thin-film composite membranes. LLC assemblies provide an opportunity to make nanoporous polymer membranes with precise control over chemical and structural features on the nanometer scale, which is currently lacking in commercial reverse osmosis (RO) and nanofiltration (NF) membranes available today. These LLC composite membranes are prepared by photopolymerization of solution-cast films of LLC monomer on an ultrafiltration support membrane. These LLC membranes appeared to exhibit almost linearly increasing ionic rejection based on ionic diameter. LLC monomer was modified to achieve a 15% reduction in channel diameter, through the use of a larger multivalent Eu3+ cation as the carboxylate counterion. However, the monomers synthesized required use of solvents such as tetrahydrofuran, which resulted in the dissolution and damage of the support membranes used. Therefore, this direction

  14. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  15. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions

    Directory of Open Access Journals (Sweden)

    Joshua P. Delaney

    2011-12-01

    Full Text Available Saturated aqueous solutions of various common salts were examined for their effect on aqueous aldol reactions catalysted by a highly active C2-symmetric diprolinamide organocatalyst developed in our laboratory. With respect to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, deionised water was always a superior medium to salt solutions though some correlation to increasing anion size and depression in enantiomeric excess could be observed. Additionally, the complete inhibition of catalyst activity observed when employing tap water could be alleviated by the inclusion of ethylenediaminetetraacetate (EDTA into the aqueous media prior to reaction initiation. Extension of these reaction conditions demonstrated that these ionic effects vary on a case-to-case basis depending on the ketone/aldehyde combination.

  16. Inorganic materials synthesis in ionic liquids

    Directory of Open Access Journals (Sweden)

    Christoph Janiak

    2014-01-01

    Full Text Available The field of "inorganic materials from ionic liquids" (ILs is a young and dynamically growing research area for less than 10 years. The ionothermal synthesis in ILs is often connected with the preparation of nanomaterials, the use of microwave heating and in part also ultrasound. Inorganic material synthesis in ILs allows obtaining phases which are not accessible in conventional organic or aqueous solvents or with standard methods of solid-state chemistry or under such mild conditions. Cases at hand include "ligand-free" metal nanoparticles without added stabilizing capping ligands, inorganic or inorganic-organic hybrid solid-state compounds, large polyhedral clusters and exfoliated graphene from low-temperature synthesis. There are great expectations that ILs open routes towards new, possibly unknown, inorganic materials with advantageous properties that cannot (or only with great difficulty be made via conventional processes.

  17. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P., E-mail: jcoutinho@ua.pt [CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Gonçalves, Fernando [Departamento de Biologia e CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro (Portugal); Esperança, José [Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras (Portugal); Mutelet, Fabrice [Laboratoire Réactions et Génie des Procédés, CNRS (UPR3349), Nancy-Université, 1 rue Grandville, BP 20451 54001 Nancy (France)

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  18. Graphene-ionic liquid composites

    Science.gov (United States)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  19. Electrochemical aspects of ionic liquids

    CERN Document Server

    Ohno, Hiroyuki

    2011-01-01

    The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liqui

  20. Precipitation of neptunium dioxide from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  1. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  2. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  3. Charge Transport and Glassy Dynamics in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sangoro, Joshua R [ORNL; Kremer, Friedrich [University of Leipzig

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  4. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  5. Atomic dynamics of alumina melt: A molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    S.Jahn

    2008-03-01

    Full Text Available The atomic dynamics of Al2O3 melt are studied by molecular dynamics simulation. The particle interactions are described by an advanced ionic interaction model that includes polarization effects and ionic shape deformations. The model has been shown to reproduce accurately the static structure factors S(Q from neutron and x-ray diffraction and the dynamic structure factor S(Q,ω from inelastic x-ray scattering. Analysis of the partial dynamic structure factors shows inelastic features in the spectra up to momentum transfers, Q, close to the principal peaks of partial static structure factors. The broadening of the Brillouin line widths is discussed in terms of a frequency dependent viscosity η(ω.

  6. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion

    DEFF Research Database (Denmark)

    Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi

    2015-01-01

    and overall plant performance indicators, namely effluent quality index (EQI) and operational cost index (OCI). The acid-base equilibria implemented in the Anaerobic Digestion Model No. 1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects for ionic strength via the Davies...... to be required when precipitation is to be modelled....

  7. Systematic screening methodology and energy efficient design of ionic liquid-based separation processes

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2016-01-01

    A systematic methodology for the screening of ionic liquids (ILs) as entrainers and for the design of ILs-based separation processes in various homogeneous binary azeotropic mixtures has been developed. The methodology focuses on the homogeneous binary aqueous azeotropic systems (for example, wat...

  8. Improving the Enzyme Catalytic Efficiency Using Ionic Liquids with Kosmotropic Anions

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Hua; CAMPBELL, Sophia; SOLOMON, Jonathan; SONG, Zhi-Yan; OLUBAJO, Olarongbe

    2006-01-01

    The kosmotropicity of cations and anions in ionic liquids has a strong influence on the enzyme catalytic efficiency in aqueous environments. The kosmotropic anion CF3COO- seemed to activate the protease, and the chaotropic anions tended to destabilize the enzyme.

  9. Pharmaceutically active ionic liquids with solids handling, enhanced thermal stability, and fast release

    DEFF Research Database (Denmark)

    Bica, Katharina; Rodríguez, Héctor; Gurau, Gabriela

    2012-01-01

    Pharmaceutically active compounds in ionic liquid form immobilized onto mesoporous silica are stable, easily handled solids, with fast and complete release from the carrier material when placed into an aqueous environment. Depending on specific ion-surface interactions, they may also exhibit...

  10. Ionic Liquids Derived from the Chiral Pool: New Media for Fine Chemistry

    Institute of Scientific and Technical Information of China (English)

    A.C. Gaumont; D. Bregeon; J. Levillain; C. Baudequin; F. Guillen; J.C. Plaquevent

    2005-01-01

    @@ 1Introduction Ionic liquids (Ils) are low melting point salts, which are characterized by properties such as high ability to dissolve organic, organometallic and even inorganic compounds, absence of flammability, lack of measurable vapour pressure and high thermal stability. Due to these peculiar properties, they have recently attracted considerable attention as greener alternatives to volatile organic solvents[1]. A few chiral ionic liquids, which could provide a renewal in the field of chiral solvents, have also been reported recently[2]. Herein, we will present the synthesis of a new family of ionic liquids based on a thiazolinium skeleton. Preliminary results on the use of these chiral ionic liquids in the field of chiral recognition and organic synthesis will also be reported.

  11. Pysico-chemical properties of hydrophobic ionic liquids containing1-octylpyridinium, 1-octyl-2-methylpyridinium or1-octyl-4-methylpyridinium cations

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

    2006-09-15

    This paper reports synthesis of some ionic liquids based on cations 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium and anions dicyanamide [N(CN)2]-, bis(trifluoromethylsulfonyl)imide [Tf2N]-, bis(pentafluoroethylsulfonyl)imide [BETI]-, trifluoromethyl sulfonate [TfO]-, nonafluorobutyl sulfonate [NfO]-, tetrafluoroborate [BF4]-, trifluorophenylborate [BF3Ph]- or hexafluoroarsenate [AsF6]-. Melting points, decomposition temperatures, densities, mutual solubilities with water, and viscosities have been measured. Unlike similar ionic liquids containing imidazolium cations, pyridinium ionic liquids studied here are nearly immiscible in water. Viscosities are similar and water content is slightly lower than those for ionic liquids containing imidazolium cations.

  12. Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids

    Science.gov (United States)

    Fei, Teng; Cai, Huiwu; Zhang, Yanqiang; Liu, Long; Zhang, Suojiang

    2016-04-01

    Four energetic salts (including two ionic liquids) based on 2-(dimethylamino)-N,N,N-trimethylethanaminium and N,N‧-dialkyl-N,N,N‧,N‧-tetramethylethane-1,2-diaminium was prepared and characterized by 1H- and 13C-NMR, infrared and Raman spectroscopies, and elemental analysis. Their physicochemical properties such as melting and decomposition temperatures, density, viscosity, heat of formation, detonation performance, and specific impulse were measured or calculated. With thermal stability up to 200°C, the resulting ionic liquids show densities from 1.02 to 1.19 g cm-3 and heats of formation from 85.1 to 154.4 kJ mol-1. Moreover, 2-(dimethylamino)-N,N,N-trimethylethanaminium dicyanamide is hypergolic with the oxidizer (100% HNO3) and exhibits potential as a green fuel for bipropellants.

  13. Protic pharmaceutical ionic liquids and solids: aspects of protonics.

    Science.gov (United States)

    Stoimenovski, Jelena; Dean, Pamela M; Izgorodina, Ekaterina I; MacFarlane, Douglas R

    2012-01-01

    A series of new protic compounds based on active pharmaceutical ingredients have been synthesised and characterised. Some of the salts synthesised produced ionic liquids, while others that were associated with rigid molecular structures tended to produce high melting points. The "protonic" behaviour of these compounds was found to be a major determinant of their properties. Indicator studies, FTIR-ATR and transport properties (Walden plot) were used to probe the extent of proton transfer and ion association in these ionic liquids. While proton transfer was shown to have taken place in all cases, the Walden plot indicated strong ion association in the primary amine based examples due to hydrogen bonding. This was further explored via crystal structures of related compounds, which showed that extended hydrogen bonded clusters tend to form in these salts. These clusters may dictate membrane transport properties of these compounds in vivo.

  14. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity.

    Science.gov (United States)

    Small, Leo J; Wheeler, David R; Spoerke, Erik D

    2015-10-28

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm(2) in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.

  15. Extraction of organic compounds with room temperature ionic liquids.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2010-04-16

    Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents.

  16. Ionic Vapor Composition in Pyridinium-Based Ionic Liquids.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-26

    Strong electrostatic interactions in ionic compounds make vaporization a complex process. The gas phase can contain a broad range of ionic clusters, and the cluster composition can differ greatly from that in the liquid phase. Room-temperature ionic liquids (RTILs) constitute a complicated case due to their ionic nature, asymmetric structure, and a huge versatility of ions and ionic clusters. This work reports vapor-liquid equilibria and vapor compositions of butylpyridinium (BPY) RTILs formed with hexafluorophosphate (PF6), trifluoromethanesulfonate (TF), and bis(trifluoromethanesulfonyl)imide (TFSI) anions. Unlike inorganic crystals, the pyridinium-based RTILs contain significant percentages of charged clusters in the vapor phase. Ion triplets and ion quadruplets each constitute up to 10% of the vapor phase composition. Triples prevail over quadruples in [BPY][PF6] due to the size difference of the cation and the anion. The percentage of charged ionic clusters in the gas phase is in inverse proportion to the mass of the anion. The largest identified vaporized ionic cluster comprises eight ions, with a formation probability below 1%. Higher temperature fosters formation of larger clusters due to an increase of the saturated vapor density.

  17. Modeling the elution of organic chemicals from a melting homogeneous snow pack.

    Science.gov (United States)

    Meyer, Torsten; Wania, Frank

    2011-06-01

    Organic chemicals are often released in peak concentrations from melting snow packs. A simple, mechanistic snowmelt model was developed to simulate and predict the elution of organic substances from melting, homogeneous snow, as influenced by chemical properties and snow pack characteristics. The model calculates stepwise the chemical transport along with the melt water flow in a multi-layered snow pack, based on chemical equilibrium partitioning between the individual bulk snow phases. The model succeeds in reproducing the elution behavior of several organic contaminants observed in previously conducted cold room experiments. The model aided in identifying four different types of enrichment of organic substances during snowmelt. Water soluble substances experience peak releases early during a melt period (type 1), whereas chemicals that strongly sorb to particulate matter (PM) or snow grain surfaces elute at the end of melting (type 2). Substances that are somewhat water soluble and at the same time have a high affinity for snow grain surfaces may exhibit increasing concentrations in the melt water (type 3). Finally, elution sequences involving peak loads both at the beginning and the end of melting are simulated for chemicals that are partially dissolved in the aqueous melt water phase and partially sorbed to PM (type 4). The extent of type 1 enrichment mainly depends on the snow depth, whereby deeper snow generates more pronounced concentration peaks. PM influences the elution behavior of organic chemicals strongly because of the very large natural variability in the type and amount of particles present in snow. Urban and road-side snow rich in PM can generate type 2 concentration peaks at the end of the melt period for even relatively water soluble substances. From a clean, melting snow pack typical for remote regions, even fairly hydrophobic chemicals can be released in type 1 mode while being almost completely dissolved in the aqueous melt water phase. The

  18. MULTIPLE MELTING IN NYLON 1010

    Institute of Scientific and Technical Information of China (English)

    FU Shuren; CHEN Taoyung

    1983-01-01

    Multiple melting behavior of nylon 1010 has been investigated by using DSC instrument. Effects of partial scanning, partial scanning and annealing, heating rate, cooling rate and stepwise annealing on the melting curve were studied. Experimental results indicate that the sample undergoes a process of continuous melting and recrystallization during DSC scanning. Nylon 1010 contains a distribution of crystallites of different degrees of perfection which is strongly dependent on its previous thermal history. From the structural reorganization point of view, the origin of double and multiple peaks of the melting curve is explained.

  19. Wettability by Ionic Liquids.

    Science.gov (United States)

    Liu, Hongliang; Jiang, Lei

    2016-01-06

    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges.

  20. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    Science.gov (United States)

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN.

  1. Functionalization of glassy carbon with diazonium salts in ionic liquids.

    Science.gov (United States)

    Actis, Paolo; Caulliez, Guilain; Shul, Galyna; Opallo, Marcin; Mermoux, Michel; Marcus, Bernadette; Boukherroub, Rabah; Szunerits, Sabine

    2008-06-17

    The paper reports on the chemical functionalization of glassy carbon electrodes with 4-bromobenzene (4-BBDT) and 4-(4'-nitrophenylazo)benzene diazonium tetrafluoroborate (4-NAB) salts in ionic liquids. The reaction was carried out at room temperature in air without any external electrical bias in either hydrophobic (1-butyl-3-methylimidazolium hexafluorophosphate) or hydrophilic (1-butyl-3-methylimidazolium methyl sulfate) ionic liquids. The resulting surfaces were characterized using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and electrochemical measurements. Electrochemical reduction of the terminal nitro groups allowed the determination of surface coverage and formation of an amine-terminated carbon surfaces. The results were compared to glassy carbon chemically modified in an aqueous solution in the presence of 1% sodium dodecyl sulfate (SDS) with the same diazonium salt. Furthermore, Raman spectroscopy coupled with electrochemical measurements allowed to distinguish between the reduction of -NO2 to -NH2 group and the -N=N- to -NH-NH- bond.

  2. Melt pool dynamics during selective electron beam melting

    Science.gov (United States)

    Scharowsky, T.; Osmanlic, F.; Singer, R. F.; Körner, C.

    2014-03-01

    Electron beam melting is a promising additive manufacturing technique for metal parts. Nevertheless, the process is still poorly understood making further investigations indispensable to allow a prediction of the part's quality. To improve the understanding of the process especially the beam powder interaction, process observation at the relevant time scale is necessary. Due to the difficult accessibility of the building area, the high temperatures, radiation and the very high scanning speeds during the melting process the observation requires an augmented effort in the observation equipment. A high speed camera in combination with an illumination laser, band pass filter and mirror system is suitable for the observation of the electron beam melting process. The equipment allows to observe the melting process with a high spatial and temporal resolution. In this paper the adjustment of the equipment and results of the lifetime and the oscillation frequencies of the melt pool for a simple geometry are presented.

  3. Physicochemical and thermodynamic characterization of N-alkyl-N-methylpyrrolidinium bromides and its aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzki, Maciej, E-mail: mzawadzki@ch.pw.edu.pl; Królikowska, Marta; Lipiński, Paweł

    2014-08-10

    Highlights: • The aqueous solutions of bromide-based ionic liquids have been studied. • The synthesis and basic thermal characterization of pure IL have been done. • The density, dynamic viscosity, SLE and VLE have been determined. • The experimental data have been correlated using appropriate equations. - Abstract: This work is a continuation of our research of ionic liquids to investigate the physicochemical and thermodynamic properties of (ionic liquid + water) binary mixtures as a novel alternative working pair for the absorption heat pump cycle. In this work, a series of organic salts: N-propyl-N-methyl-pyrrolidinium bromide, [C{sub 1}C{sub 3}PYR]Br; N-butyl-N-methylpyrrolidinium, [C{sub 1}C{sub 4}PYR]Br and N-pentyl-N-methylpyrrolidinium bromide, [C{sub 1}C{sub 5}PYR]Br have been synthesized. The structures of new compounds have been confirmed using NMR spectra and elementary analysis. The basic thermal characterization of pure ILs, including temperature and enthalpy of phase transition (T{sub tr}, Δ{sub tr}H), temperature and enthalpy of melting (T{sub m,} Δ{sub m}H) have been measured using a differential scanning microcalorimetry technique (DSC). Decomposition temperature of the tested ILs were detected by the simultaneous TG/DTA experiments. The effect of temperature on the density (ρ) and dynamic viscosity (η) is reported over a wide temperature range from 298.15 to 343.15 K at ambient pressure. From experimental density data, the excess molar volumes (V{sup E}) were calculated and correlated using Redlich–Kister equation. The isothermal vapour–liquid phase equilibria (VLE) have been measured by an ebulliometric method at wide temperature range from 328.15 to 368.15 K and pressure up to 85 kPa. Experimental data have been correlated by means of NRTL equation. The solid–liquid phase equilibria (SLE) for the tested binary mixtures have been determined over whole composition range using dynamic method. The NRTL equation using parameters

  4. A Novel Inorganic Low Melting Electrolyte for Secondary-Aluminum-Nickel Sulfide Batteries

    DEFF Research Database (Denmark)

    Hjuler, H.A.; Winbrush, S. von; Berg, Rolf W.;

    1989-01-01

    A new, inorganic low melting electrolyte with the composition LiAlCl4-NaAlCl4-NaAlBr4-KAlCl4 (3:2:3:2) [or equivalentlyLiAlBr4-NaAlCl4-KAlCl4 (3:5:2)] has been developed. The melting point for this neutral melt is 86°C; the decompositionpotential is approximately 2.0V; the ionic conductivity...... ±10% from their combination expectations. The low melting electrolyte is employed in the rechargeable batterysystem Al/electrolyte/Ni3S2 at 100°C. The open-circuit voltage of this system is from 0.82 to 1.0V. Dendrite-free aluminumdeposits are obtained. The cycling behavior of the battery system...

  5. Asymmetric Supercapacitors with Dominant Pseudocapacitance in Neutral Aqueous Electrolyte

    Science.gov (United States)

    Mao, Yuanbing; Li, Qiang

    2015-03-01

    Electrochemical capacitors (ECs) are promising power sources for portable electronics and hybrid electric vehicles. To solve the poor ionic conductivity, intrinsic inflammability and toxicity issues of current ECs incorporating organic electrolytes, aqueous electrolyte-based asymmetric supercapacitors (ASCs) have been attracting intensive attention recently. In this presentation, prototype MnO2-NFs//KCl//CNTs supercapacitor cells in neutral aqueous electrolyte allow rapid charge/discharge kinetics, fast ionic response, and evident pseudocapacitive dominance due to the unique MnO2-NF architecture and novel ASC design. For the first time, the respective contributions of the pseudocapacitance and EDL capacitance to the overall electrochemical performance of ASCs were differentiated with a proof of pseudocapacitive dominance (qpseudo/qdl = 2.5). To sum, this study provides a brilliant proof-of-concept design of novel supercapacitors with pseudocapacitive dominance to achieve ultimate energy storage applications with both high energy and power density.

  6. X-ray absorption microscopy of aqueous samples

    Science.gov (United States)

    Frazer, Brad; Gilbert, Benjamin; De Stasio, Gelsomina

    2002-03-01

    X-ray photoelectron emission microscopy (X-PEEM) is used for numerous applications in surface microchemical analysis of material science and biological specimens. We have reconfigured the MEPHISTO X-PEEM instrument that is installed at the University of Wisconsin Synchrotron Radiation Center to measure true x-ray transmission spectra by converting transmitted photons to photoelectrons via a thin photocathode layer of gold. We have also developed a method by which to introduce aqueous samples into ultrahigh vacuum. Hence x-ray spectroscopy can be performed on biologically relevant elements (such as K, Ca, etc.) in a physiological environment, i.e., in solution. More important, when coupled with X-PEEM imaging this technique may offer the unique and exciting possibility of studying living cells. We present initial x-ray absorption spectra of solutions of aqueous ionic and chelated Ca, with the aim of distinguishing bound and free ionic calcium in vivo.

  7. Application of ionic liquids as an electrolyte additive on the electrochemical behavior of lead acid battery

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad; Mallakpour, Shadpour; Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2009-02-15

    Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead-antimony-tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb{sup 3+} and ionic liquids. Crystalline structure of PbSO{sub 4} layer changed with presence of ionic liquids and larger PbSO{sub 4} crystals were formed with some of them. These additives decrease the porosity of PbSO{sub 4} perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon-PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased. (author)

  8. Beyond the Melting Pot Reconsidered.

    Science.gov (United States)

    Anderson, Elijah

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which suggested that eventually the problem of different ethnicities in the U.S. would be resolved and society would become one melting pot. Examines how changes in immigration and economic structures have affected the issue, noting the devastating effect of the dominant culture's…

  9. Chelating ionic liquids for reversible zinc electrochemistry.

    Science.gov (United States)

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  10. Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with CN-containing Anions

    Science.gov (United States)

    2014-11-01

    Coulombic attraction between the ions results in glass formation rather than actual melting of the solid. In the successful synthesis of ionic liquids...12.0 eV and averaged over 5 million repeller pulses. Figure 4. a) VUV-PI-TOFMS spectrum of BMIM+dca- aerosol at 380 K and 10.0 eV and b) expanded...the polarizable continuum model was employed here to calculate the ∆Gacid(l) values in an imidazolium ionic liquid and with water as a solvent as

  11. Synthesis of New Energetic Materials and Ionic Liquids Derived from Metronidazole

    Directory of Open Access Journals (Sweden)

    Miguel A. Romero

    2016-01-01

    Full Text Available Simple and efficient synthetic procedures were established for the preparation of new energetic covalent compounds, salts, and protonated ionic liquids based on the readily available antimicrobial agent metronidazole. Some of these materials exhibit the desirable properties of energetic materials and energetic ionic liquids, such as low vapor pressure, low melting point, good chemical and thermal stability, and high energetic content. For each of the relevant compounds prepared, thermal stability was determined by differential scanning calorimetry. Some of these compounds may be considered promising precursors of pharmaceuticals such as antimicrobial, antiparasitic, antifungal, antineoplastic agents, or enzyme inhibitors.

  12. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  13. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (~100 μV K-1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (~10,000 μV K-1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins.

  14. Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties.

    Science.gov (United States)

    Liu, Yuan; Purich, Daniel L; Wu, Cuichen; Wu, Yuan; Chen, Tao; Cui, Cheng; Zhang, Liqin; Cansiz, Sena; Hou, Weijia; Wang, Yanyue; Yang, Shengyuan; Tan, Weihong

    2015-12-01

    Inorganic colloidal nanoparticles (NPs) stabilized by a layer of hydrophobic surfactant on their surfaces have poor solubility in the aqueous phase, thus limiting their application as biosensors under physiological conditions. Here we report a simple model to ionize various types of hydrophobic colloidal NPs, including FePt, cubic Fe3O4, Pd, CdSe, and NaYF4 (Yb 30%, Er 2%, Nd 1%) NPs, to multicharged (positive and negative) NPs via ligand exchange. Surfaces of neutral hydrophobic NPs were converted to multicharged ions, thus making them soluble in water. Furthermore, peroxidase-like activity was observed for ionic FePt, Fe3O4, Pd, and CdSe NPs, of which FePt and CdSe catalyzed the oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine (TMB) to the blue-colored product in the absence of H2O2, while Pd and Fe3O4 catalyzed the oxidization of TMB in the presence of H2O2. With the benefit of the ionic functionalization protocols described herein, colloidal NPs should gain wider use as biomarkers, nanozymes, and biosensors.

  15. Ionic emission from Taylor cones

    Science.gov (United States)

    Castro Reina, Sergio

    Electrified Taylor cones have been seen as an efficient way to generate thrust for space propulsion. Especially the pure ionic regime (PIR) combines a very high specific impulse (thrust per unit mass) and efficiency, which is very important to reduce fuel transportation costs. The PIR has been primarily based on electrosprays of liquid metals [Swatik and Hendricks 1968, Swatik 1969]. However, emissions dominated by or containing exclusively ions have also been observed from nonmetallic purely ionic substances, initially sulfuric acid [Perel et al. 1969], and more recently room temperature molten salts referred to as ionic liquids (ILs) [Romero-Sanz et al. 2003]. The recent use of the liquid metal ion source (LMIS) with ILs, becoming this "new" source to be known as ionic liquid ion source (ILIS) [Lozano and Martinez-Sanchez 2005], has shown important differences on the emission from Taylor cones with the traditional hollow capillary. This new source seems to be more flexible than the capillary [Paulo, Sergio, carlos], although its low emission level (low thrust) is an important drawback from the space propulsion point of view. Throughout the thesis I have studied some aspects of the ionic emission from ionic liquid Taylor cones and the influence of the properties of the liquids and the characteristic of source on the emission. I have unraveled the reason why ILIS emits such low currents (˜200 nA) and found a way to solve this problem increasing the current up to capillary levels (˜1000 nA) [Castro and Fernandez de la Mora 2009]. I have also tried to reduce ion evaporation while reducing the emitted droplet size in order to increase the thrust generated while keeping the efficiency relatively high and I have measured the energy of evaporation of several cations composing ionic liquids, mandatory step to understand ionic evaporation.

  16. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  17. Shape memory rubber bands & supramolecular ionic copolymers

    Science.gov (United States)

    Brostowitz, Nicole

    The primary focus of this dissertation is to understand the thermo-mechanical properties that govern shape memory in rubber blends. An ideal shape memory polymer (SMP) has a large entropic component that drives shape recovery with a distinct transition mechanism to control the recovery conditions. Polyisoprene rubber is highly elastic and shows shape memory behavior through strain induced crystallization above its glass transition temperature. However, this transition temperature is below 0°C and not suitable for most applications. Shape memory blends can tailor the transition temperature through selection of the switching phase. Most SMP blends require complicated synthesis routes or intensive compounding which would be inhibitive for production. A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Thermal, microscopic studies showed that stearic acid formed a percolated network of crystalline platelets within the natural rubber. Further investigation of the material interactions was carried out with a low molecular weight polyisoprene analog, squalene, and stearic acid gel. Tensile tests on the rubber band demonstrated the thermo-mechanical effect of swelling with stearic acid. Low hysteresis was observed under cyclic loading which indicated viability for the stearic acid swollen rubber band as an SMP. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acidand fixation below that point. Under manual, strain-controlled tensile deformation, the shape memory rubber bands exhibited fixity and recovery of 100% +/- 10%. The recovery properties of the SMP were studied under various loading conditions and a model was fit to describe the potential recovery with relation to the fixation. An additional

  18. Separation of Guanine and Hypoxanthine with Some Ionic Liquids in RP-HPLC

    Directory of Open Access Journals (Sweden)

    J. Zheng

    2006-01-01

    Full Text Available In this paper, guanine and hypoxanthine were separated with four different ionic liquids as additives for the mobile phase using reversed phase high performance liquid chromatography (RP-HPLC. The ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4], 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4], 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS] and 1-octyl-3-methylimidazolium methylsulfate ([OMIm][MS] were used. Guanine and hypoxanthine couldn’t be separated with many different kinds of unadjusted mobile phase, such as aqueous-methanol, aqueous-acetonitrile, etc. In this reason, present study introduced the ionic liquid for separation of guanine and hypoxanthine as an eluent modifier. And the effects of length of alkyl on the imidazolium ring and its counterion, the concentrations of ionic liquid on the retention factor and effect of pH of mobile phase on retention factor of solutes were investigated also. As a result, guanine and hypoxanthine were separated with the mobile phase including ionic liquid and the excellent separations of these sorbats were achieved using 2.0 mM Lˉ1 [OMIm][MS] as the eluent modifier.

  19. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves.

    Science.gov (United States)

    Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions.

  20. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.

    Science.gov (United States)

    Kuo, Catherine K; Ma, Peter X

    2008-03-15

    Ionically crosslinked alginate hydrogels are attractive scaffolds because of their biocompatibility and mild gelation reaction that allows for gentle cell incorporation. However, the instability of ionically crosslinked hydrogels in an aqueous environment is a challenge that limits their application. This report presents a novel method to control the dimensions and mechanical properties of ionically crosslinked hydrogels via control of the ionic concentration of the medium. Homogeneous calcium-alginate gels were incubated in physiological saline baths adjusted to specific calcium ion concentrations. Swelling and shrinking occurred at low and high ionic concentrations of the medium, respectively, while an "optimal" intermediate calcium ion concentration of the medium was found to maintain original size and shape of the hydrogel. This optimal calcium ion concentration was found to be a function of crosslinking density and polymer concentration of the hydrogel and chemical composition of the alginate. The effects of optimal and high calcium ion concentrations of the medium on swelling behavior, calcium content, dry weight, and mechanical properties of the immersed hydrogels were investigated. It was found that the resulting hydrogel composition and mechanical properties depended on not only the calcium concentration of the medium, but also the crosslinking density and polymer concentration of the gel. In an 8-week experiment, controlled dimensions and mechanical properties of alginate gels in an aqueous environment were demonstrated. This new technique significantly enhances the potential of alginate hydrogels for tissue engineering and other biomedical applications.

  1. Aqueous solutions at the interface with phospholipid bilayers.

    Science.gov (United States)

    Berkowitz, Max L; Vácha, Robert

    2012-01-17

    In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its

  2. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Science.gov (United States)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C.; Ferreira, Fabio F.; Costa, Fanny N.; Giles, Carlos

    2016-06-01

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  3. Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion

    DEFF Research Database (Denmark)

    Slots, Casper; Jensen, Martin Bonde; Ditzel, Nicholas

    2017-01-01

    /calcium phosphate suspension melt for simple additive manufacturing of ceramic tricalcium phosphate implants. METHODS: A wide variety of non-aqueous liquids were tested to determine the formulation of a storable 3D printable tricalcium phosphate suspension ink, and only fatty acid-based inks were found to work...

  4. Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal determination of the Avrami exponent.

    Science.gov (United States)

    Pas, Steven J; Dargusch, Matthew S; MacFarlane, Douglas R

    2011-07-07

    The properties of ionic liquids give rise to applications in diverse technology areas including mechanical engineering, mining, aerospace and defence. The arbitrary physical property that defines an ionic liquid is a melting point below 100 °C, and as such, an understanding of crystallisation phenomena is extremely important. This is the first report dealing with the mechanism of crystallisation in ionic liquids. Assuming crystallisation of the ionic liquids is a thermal or mass diffusion-controlled process, the values of the isothermal Avrami exponent obtained from three different ionic liquids with three different anions and cations all indicate that growth occurs with a decreasing nucleation rate (n=1.8-2.2). For one of the ionic liquids it was possible to avoid crystallisation by fast cooling and then observe a devitrification upon heating through the glass transition. The isothermal Avrami exponent of devitrification suggested growth with an increasing nucleating rate (n=4.1), compared to a decreasing nucleation rate when crystallisation occurs on cooling from the melt (n=2.0). Two non-isothermal methods were employed to determine the Avrami exponent of devitrification. Both non-isothermal Avrami exponents were in agreement with the isothermal case (n=4.0-4.15). The applicability of JMAK theory suggests that the nucleation event in the ionic liquids selected is a random stochastic process in the volume of the material. Agreement between the isothermal and non-isothermal techniques for determining the Avrami exponent of devitrification suggests that the pre-exponential factor and the activation energy are independent of thermal history. The heating rate dependence of the glass transition enabled the calculation of the fragility index, which suggests that the ionic liquid is a "strong" glass former. This suggests that the temperature dependence of the rate constant could be close to Arrhenius, as assumed by JMAK theory. More generally, therefore, it can be

  5. Electrical Conductivity of Cryolite Melts

    Science.gov (United States)

    Fellner, P.; Grjotheim, K.; Kvande, H.

    1985-11-01

    This paper proposes an equation for the electrical conductivity of multicomponent cryolite-based mixtures. The equation is based on a physical model which assumes that the conductivity is proportional to the number density of the effective electric charges in the melt. The various authors in the available literature show a great discrepancy in conductivity data of cryolite-based melts. The equation based on the physical model enables determination of which set of data is preferable. Special consideration in this respect is given to the influence of magnesium flouride and lithium flouride additions to the melt.

  6. Observations on the crystallization of spodumene from aqueous solutions in a hydrothermal diamond-anvil cell

    Science.gov (United States)

    Li, Jianking; Chou, I-Ming; Yuan, Shunda; Burruss, Robert A.

    2013-01-01

    Crystallization experiments were conducted in a new type of hydrothermal diamond-anvil cell (HDAC; type V) using LiAlSi2O6 (S) gel and H2O (W) as starting materials. A total of 21 experiments were performed at temperatures up to 950°C and pressures up to 788 MPa. In the samples with relatively low W/S ratios, many small crystals formed in the melt phase during cooling. In those with high W/S ratios, only a few crystals with smooth surfaces crystallized from the aqueous fluid in the presence of melt droplets, which were gradually consumed during crystal growth, indicating rapid transfer of material from the melt to the crystals through the aqueous fluid. The nucleation of crystals started at 710 (±70)°C and 520 (±80) MPa, and crystal growth ended at 570 (±40)°C and 320 (±90) MPa, with the cooling P-T path within the stability field of spodumene + quartz in the S-W system. The observed linear crystal growth rates in the aqueous phase, calculated by dividing the maximum length of a single crystal by the duration of the entire growth step, were 4.7 × 10−6 and 5.7 × 10−6 cm s−1 for the cooling rates of 0.5 and 1°C min−1, respectively. However, a rapid crystal growth rate of 3.6 × 10−5 cm s−1 in the aqueous fluid was observed when the components were supplied by nearby melt droplets. Our results show that when crystals nucleate in the aqueous fluid instead of the melt phase, there are fewer nuclei formed, and they grow much faster due to the low viscosity of the aqueous fluid, which accelerates diffusion of components for the growth of crystals. Therefore, the large crystals in granitic pegmatite can crystallize directly from aqueous fluids rather than hydrosilicate melt.

  7. Preparation and characterization of salmon calcitonin-sodium triphosphate ionic complex for oral delivery.

    Science.gov (United States)

    Lee, Hea Eun; Lee, Min Jung; Park, Cho Rong; Kim, A Young; Chun, Kyung Hwa; Hwang, Hee Jin; Oh, Dong Ho; Jeon, Sang Ok; Kang, Jae Seon; Jung, Tae Sung; Choi, Guang Jin; Lee, Sangkil

    2010-04-19

    Even though salmon calcitonin (sCT) has been known as a potent hypocalcemic agent, only injection or nasal spray products are available on the market. In order to develop oral delivery system of the agent, a novel sCT-sodium tripolyphosphate (STPP) ionic complex was fabricated and also characterized. For the optimization of the ionic complexation, the effect of incubation time and molar ratio between sCT and STPP was evaluated. Particle size of the ionic complex in aqueous media, SEM images, DSC, FT-IR, in vitro release test, stability within the simulated intestinal fluid, and hypocalcemic effect were evaluated. The optimal molar complexation ratio of sCT to STPP was ranged from 1:5 to 1:10 and the complexation efficiency was about 95%. The SEM image has shown that the freeze dried ionic complex has rough morphology in their surface and the particle size in PBS (pH 7.4) was about 220nm. The DSC and FT-IR results provided evidences for ionic interaction between -NH(2) groups and -P horizontal lineO groups of sCT and STPP, respectively. The sCT ionic complex has shown sustained sCT releasing characteristics for 3weeks. The sCT-STPP ionic complex was protective to enzymatic attack and in vivo animal data revealed that the present ionic complex would show continuous hypocalcemic effect. Conclusively, the present sCT-STPP ionic complex formulation thought to be a novel oral delivery candidate for the treatment of osteoporosis.

  8. Structure of cyano-anion ionic liquids: X-ray scattering and simulations.

    Science.gov (United States)

    Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W

    2016-07-14

    Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.

  9. Shergottite Impact Melt Glasses Contain Soil from Martian Uplands

    Science.gov (United States)

    Rao, M. N.; McKay, D. S.

    2002-01-01

    Martian meteorite (shergottite) impact melt glasses that contain high concentrations of martian atmospheric noble gases and show significant variations in Sr-87/Sr-86 isotopic ratios are likely to contain Martian surface fines mixed with coarser regolith materials. The mixed soil constituents were molten due to shock at the time of meteoroid impact near the Martian surface and the molten glass got incorporated into the voids and cracks in some shergottite meteorites. Earlier, Rao et al. found large enrichments of sulfur (sulfate) during an electron-microprobe study of several impact melt glass veins and pods in EET79001,LithC thin sections. As sulfur is very abundant in Martian soil, these S excesses were attributed to the mixing of a soil component containing aqueously altered secondary minerals with the LithC precursor materials prior to impact melt generation. Recently, we studied additional impact melt glasses in two basaltic shergottites, Zagami and Shergotty using procedures similar to those described. Significant S enrichments in Zagami and Shergotty impact melt glass veins similar to the EET79001, LithC glasses were found. In addition, we noticed the depletion of the mafic component accompanied by the enrichment of felsic component in these impact melt glass veins relative to the bulk host rock in the shergottites. To explain these observations, we present a model based on comminution of basaltic rocks due to meteoroid bombardment on martian regolith and mechanical fractionation leading to enrichment of felsics and depletion of mafics in the fine grained dust which is locally mobilized as a result of saltation and deflation due to the pervasive aeolian activity on Mars.

  10. Size Control and Fractionation of Ionic Liquid Filled Polymersomes with Glassy and Rubbery Bilayer Membranes.

    Science.gov (United States)

    So, Soonyong; Lodge, Timothy P

    2016-05-17

    We demonstrate control over the size of ionic liquid (IL) filled polymeric vesicles (polymersomes) by three distinct methods: mechanical extrusion, cosolvent-based processing in an IL, and fractionation of polymersomes in a biphasic system of IL and water. For the representative ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI])), the size and dispersity of polymersomes formed from 1,2-polybutadiene-b-poly(ethylene oxide) (PB-PEO) and polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers were shown to be sensitive to assembly conditions. During mechanical extrusion through a polycarbonate membrane, the relatively larger polymersomes were broken up and reorganized into vesicles with mean size comparable to the membrane pore (100 nm radius); the distribution width also decreased significantly after only a few passes. Other routes were studied using the solvent-switch or cosolvent (CS) method, whereby the initial content of the cosolvent and the PEO block length of PS-PEO were systemically changed. The nonvolatility of the ionic liquid directly led to the desired concentration of polymersomes in the ionic liquid using a single step, without the dialysis conventionally used in aqueous systems, and the mean vesicle size depended on the amount of cosolvent employed. Finally, selective phase transfer of PS-PEO polymersomes based on size was used to extract larger polymersomes from the IL to the aqueous phase via interfacial tension controlled phase transfer. The interfacial tension between the PS membrane and the aqueous phase was varied with the concentration of sodium chloride (NaCl) in the aqueous phase; then the larger polymersomes were selectively separated to the aqueous phase due to differences in shielding of the hydrophobic core (PS) coverage by the hydrophilic corona brush (PEO). This novel fractionation is a simple separation process without any special apparatus and can help to prepare monodisperse polymersomes

  11. Application of ionic liquids based enzyme-assisted extraction of chlorogenic acid from Eucommia ulmoides leaves

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Sui, Xiaoyu, E-mail: suixiaoyu@outlook.com; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang

    2016-01-15

    A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. - Highlights: • An ionic liquid based enzyme-assisted extraction method of natural product was explored. • ILEAE utilizes enzymatic treatment to improve permeability of ionic liquids solution. • Enzyme incubation and solvent extraction process were ongoing simultaneously. • ILEAE process simplified operating process and suitable for more complete extraction.

  12. Density Measurements of Na2WO4-WO3-ZnO Melts

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on Archimedes principle, the densities of Na2WO4-WO3-ZnO melts at a fixed mole ratio of 3.43 of Na2WO4 to ZnO were measured. The results indicated that there was a linear relationship between the densities and temperatures at a fixed composition. At a fixed temperature, the linear relationship between densities and compositions showed different slop within different composition regions. The reasons were explained in view of ionic composition changes.

  13. Ionic liquids based on S-alkylthiolanium cations and TFSI anion as potential electrolytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuanQi; YANG Li; FANG ShaoHua; PENG ChengXin; LUO HongJun

    2009-01-01

    New ionic liquids based on S-alkylthiolanium cations with TFSI anions were synthesized and charac-terized.The physical and electrochemical properties,including melting point,thermal stability,solubil-ity,viscosity,conductivity and electrochemical window,were reported.Relation between these proper-ties and the structure of the cations was discussed.In this series,T4TFSI and T5TFSI have melting points below -60℃,and their conductivities are 2.10 mS/cm and 1.46 mS/cm;their electrochemical windows are 4.1 V and 4.5 V at room temperature.These cyclic alkylthiolanium-based ionic liquids are promising as novel electrolytes in various electrochemical devices,especially under low temperature condition.

  14. Recrystallized quinolinium ionic liquids for electrochemical analysis

    Science.gov (United States)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian

    2016-11-01

    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  15. Scaleable Clean Aluminum Melting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Q.; Das, S.K. (Secat, Inc.)

    2008-02-15

    The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

  16. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  17. MIPs in Aqueous Environments.

    Science.gov (United States)

    Wan, Ying-chun; Ma, Hui-ting; Lu, Bin

    2015-01-01

    When organic solvent-compatible molecularly imprinted polymers (MIPs) are used in aqueous environment, how to reduce nonspecific binding is a major challenge. By modifying the binding solvents and introducing appropriate washing and elution steps, even relatively hydrophobic MIPs can gain optimal rebinding selectivity in aqueous conditions. Furthermore, water-compatible MIPs that can be used to treat aqueous samples directly have been prepared. The use of hydrophilic co-monomers, the controlled surface modification through controlled radical polymerization, and the new interfacial molecular imprinting methods are different strategies to prepare water-compatible MIPs. By combining MIPs with other techniques, both organic solvent-compatible and water-compatible MIPs can display better functional performances in aqueous conditions. Intensive studies on MIPs in aqueous conditions can provide new MIPs with much-improved compatibilities that will lead to more interesting applications in biomedicine and biotechnology.

  18. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    Science.gov (United States)

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  19. The attenuation of oscillatory thermocapillary convection in the oxide melt by a transverse magnetic field

    Institute of Scientific and Technical Information of China (English)

    JIN WeiQing; AI Fei; HONG Yong; LUO HaoSu; LIU Yan; PAN XiuHong

    2007-01-01

    The effect of a transverse magnetic field on the oscillatory thermocapillary convection in the NaBi(WO4)2 melt was studied by using the in-situ observation system. The oscillation was attenuated when the 60 mT magnetic field was applied, as shown by the decrease in the amplitude and the frequency. Furthermore, the oscillation under smaller temperature difference was stabilized after the magnetic field was applied. The magnetic effect could be due to the Lorentz force generated by the interaction between motional ions and the vertical magnetic field. The ionic conductivities were measured to demonstrate the effect of the magnetic field. The solid ionic electrical conductivity increases with the temperature rise, and the melt ionic electrical conductivity was measured to be about 2.0×10-4 Ω-1·cm-1. Experimental results manifest that the effect of the magnetic field on anions and cations in the melt makes the flow change to the direction normal to the applied field, so the flow is more orderly and the oscillation is suppressed.

  20. Compatibilization of HDPE/agar biocomposites with eutectic-based ionic liquid containing surfactant

    OpenAIRE

    Shamsuri, AA; Daik, R; Zainudin, ES; Tahir, PM

    2014-01-01

    In this research, eutectic-based ionic liquid specifically choline chloride/glycerol was prepared at a 1:2 mole ratio. The choline chloride/glycerol was added with the different content of surfactant (hexadecyltrimethylammonium bromide). The choline chloride/glycerol-hexadecyltrimethylammonium bromide was introduced into high-density polyethylene/agar biocomposites through melt mixing. The mechanical testing results indicated that the impact strength and tensile extension of the biocomposites...

  1. Physical nature of intermolecular interactions in [BMIM][PF6] ionic liquid.

    Science.gov (United States)

    Szefczyk, Borys; Sokalski, W Andrzej

    2014-02-27

    The intermolecular interaction energy in a popular ionic liquid, [BMIM][PF6] is analyzed using the Hybrid Variation-Perturbation Theory approach. The analysis is performed on a sample of configurations from molecular dynamics simulation, instead of minimized structures. The interaction energy components are quantified, showing that the electrostatics is the dominating but not the only important term. It is found that two- and three-body electron delocalization components also contribute to the stabilization of the complexes; however, these interactions vanish beyond the first coordination sphere. The presented study shows a systematic way to obtain the amount of physically meaningful components of the interaction energy, which possibly could be related to macroscopic properties of ionic liquids (e.g., viscosity, melting point) or electron transfer in ionic liquids.

  2. Ionic Transport and Structural Characterization of the Lithium-Rich Anti-Perovskite Li3OCl

    Science.gov (United States)

    Howard, John; Daemen, Luke; Hartl, Monika; Chlistunoff, Jerzy; Zhao, Yusheng

    2013-03-01

    We will discuss the structural and electrochemical characterization of the newly synthesized lithium-rich anti-perovskite, Li3OCl. The crystal structure of this compound was solved using x-ray diffraction techniques, and the electronic and ionic conductivities were measured using electrochemical impedance spectroscopy. This material has an ionic conductivity ranging approximately from 10-4 S/cm to 10-1 S/cm over the temperature range 25°C to 270°C (room temperature to just below the melting point). The high ionic conductivity of this lithium-rich electrolyte demonstates strong promise that this material is an ideal candidate for solid state battery applications.

  3. Macroelectrode voltammetry in toluene using a phosphonium-phosphate ionic liquid as the supporting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Noel W. [CSIRO Energy Technology, Clayton Laboratories, Vic. 3169 (Australia); Bond, Alan M. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2006-05-15

    The ability of the ionic liquid trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (aph4.cph12) to act as an ionic conductor in toluene has been investigated at platinum and glassy carbon macrodisc electrodes. Ionic liquid concentrations of 0.1-0.4M provide close to ideal conditions for transient dc cyclic and ac voltammetric techniques. A potential window of almost 5V is available at a glassy carbon electrode (the neat ionic liquid has a potential window of approximately 6V). In the presence of 0.4M ionic liquid, uncompensated solution resistances (in the range of 3-4k{omega}) are of the same order of magnitude as encountered in commonly used non-aqueous electrochemical solvents such as dichloromethane containing 0.1M Bu{sub 4}NPF{sub 6} as the electrolyte. Voltammetric data on ferrocene, the cobaltocenium cation, [Ru(bipy){sub 3}]{sup 2+} and C{sub 60} in toluene containing aph4.cph12 demonstrate the advantages of using this ionic liquid as an electrolyte in highly resistive media. (author)

  4. Fabrication of ionic liquid electrodeposited Cu--Sn--Zn--S--Se thin films and method of making

    Science.gov (United States)

    Bhattacharya, Raghu Nath

    2016-01-12

    A semiconductor thin-film and method for producing a semiconductor thin-films comprising a metallic salt, an ionic compound in a non-aqueous solution mixed with a solvent and processing the stacked layer in chalcogen that results in a CZTS/CZTSS thin films that may be deposited on a substrate is disclosed.

  5. Quantifying melting and mobilistaion of interstitial melts in crystal mushes

    Science.gov (United States)

    Veksler, Ilya; Dobson, Katherine; Hess, Kai-Uwe; Ertel-Ingrisch, Werner; Humphreys, Madeleine

    2015-04-01

    The deformation of crystals mushes and separation of melts and crystals in is critical to understanding the development of physical and chemical heterogeneity in magma chambers and has been invoked as an eruption trigger mechanism. Here we investigate the behaviour of the melt in the well characterised, classic crystal mush system of the Skaergaard intrusion by combining experimental petrology and the non-destructive 3D imaging methods. Starting materials for partial melting experiments were four samples from the upper Middle Zone of the Layered Series. Cylinders, 15 mm in diameter and 20 mm in length, were drilled out of the rock samples, placed in alumina crucibles and held for 5 days in electric furnaces at atmospheric pressure and 1050-1100 °C. Redox conditions set by the CO-CO2 gas mixture were kept close to those of the FMQ buffer. We then use spatially registered 3D x-ray computed tomography images, collected before and after the experiment, to determine the volume and distribution of the crystal framework and interstitial phases, and the volume, distribution and connectivity the interstitial phases that undergo melting and extraction while at elevated temperature. Image analysis has allowed us to quantify these physical changes with high spatial resolution. Our work is a first step towards quantitative understanding of the melt mobilisation and migration processes operating in notionally locked crystal rich magmatic systems.

  6. Enhanced Mixed Feedstock Processing Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2016-10-22

    Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before IL pretreatment technology becomes commercially viable. Once of the most significant challenges is the affordable and scalable recovery and recycle or the IL itself. Pervaporation is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration than traditional solvent extraction processes, as well as efficient and energetically more advantageous than standard evaporative techniques. In this study we evaluated a commercially available pervaporation system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution and recycled at least five times. A preliminary techno-economic analysis validated the promising role of pervaporation in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. These findings establish the foundation for further development of pervaporation as an effective method of recovering and recycling ILs using a commercially viable process technology.

  7. Solid–liquid equilibria of binary mixtures of fluorinated ionic liquids†

    Science.gov (United States)

    Teles, Ana Rita R.; Correia, Helga; Maximo, Guilherme J.; Rebelo, Luís P. N.; Freire, Mara G.; Pereiro, Ana B.; Coutinho, João A. P.

    2016-01-01

    Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid–liquid and solid–solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid–liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid–solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures. PMID:27603428

  8. Solid-liquid equilibria of binary mixtures of fluorinated ionic liquids.

    Science.gov (United States)

    Teles, Ana Rita R; Correia, Helga; Maximo, Guilherme J; Rebelo, Luís P N; Freire, Mara G; Pereiro, Ana B; Coutinho, João A P

    2016-09-28

    Within ionic liquids, fluorinated ionic liquids (FILs) present unique physico-chemical properties and potential applications in several fields. However, the melting point of these neoteric compounds is usually higher due to the presence of fluorine atoms. This drawback may be resolved by, for instance, mixing different FILs to create eutectic mixtures. In this work, binary mixtures of fluoro-containing and fluorinated ionic liquids were considered with the aim of decreasing their melting temperatures as well as understanding and characterizing these mixtures and their phase transitions. Five FILs were selected, allowing the investigation of four binary mixtures, each of them with a common ion. Their solid-liquid and solid-solid equilibria were studied by differential scanning calorimetry and the non-ideality of the mixtures was investigated. Overall, a variety of solid-liquid equilibria with systems exhibiting eutectic behavior, polymorphs with solid-solid phase transitions, and the formation of intermediate compounds and solid solutions were surprisingly found. In addition to these intriguing behaviours, novel FILs with lower melting temperatures were obtained by the formation of binary systems, thus enlarging the application range of FILs at lower temperatures.

  9. Thermophysical and Rheological Properties of Imidazolium-Based Ionic Liquids: The Effect of Aliphatic versus Aromatic Functionality

    Science.gov (United States)

    Tao, Ran; Xue, Lianjie; Tamas, George; Quitevis, Edward; Simon, Sindee

    2014-03-01

    As a material class, ionic liquids possess attractive properties and have a wide range of potential uses. In this work, a series of imidazolium-based ionic liquids with the same carbon number varying from aliphatic to aromatic functionalities are investigated. The effects of cation symmetry and larger aromatic polycyclic functionality are studied. The thermal properties, including the glass transition temperature, melting temperature, and decomposition temperature, are characterized, and the density and the ionic conductivity are measured as a function of temperature. Rheological studies are performed using both steady-state and dynamic shear modes. The Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity is examined. The temperature dependence of viscosity is described by the Vogel-Fulcher-Tammann equation and the dynamic fragility is calculated for each ionic liquid and compared to the fragility obtained from calorimetry. Master curves of dynamic shear responses are also constructed and will be discussed.

  10. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  11. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  12. Energy Harvesting Applications of Ionic Polymers

    OpenAIRE

    Martin, Benjamin Ryan

    2005-01-01

    Energy Harvesting Applications of Ionic Polymers Benjamin R. Martin Abstract The purpose of this thesis is the development and analysis of applications for ionic polymers as energy harvesting devices. The specific need is a self-contained energy harvester to supply renewable power harvested from ambient vibrations to a wireless sensor. Ionic polymers were investigated as mechanical to electrical energy transducers. An ionic polymer device was designed to harvest energy from vi...

  13. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    Science.gov (United States)

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  14. Complex Formation Between Polyelectrolytes and Ionic Surfactants

    OpenAIRE

    1998-01-01

    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  15. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  16. Ionic strength and pH as control parameters for spontaneous surface oscillations.

    Science.gov (United States)

    Kovalchuk, N M; Pimienta, V; Tadmouri, R; Miller, R; Vollhardt, D

    2012-05-01

    A system far from equilibrium, where the surfactant transfer from a small drop located in the aqueous bulk to the air-water interface results in spontaneous nonlinear oscillations of surface tension, is theoretically and experimentally considered. The oscillations in this system are the result of periodically arising and terminating Marangoni instability. The surfactant under consideration is octanoic acid, the dissociated form of which is much less surface-active than the protonated form. Numerical simulations show how the system behavior can be controlled by changes in pH and ionic strength of the aqueous phase. The results of numerical simulations are in good agreement with experimental data.

  17. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-03-03

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  18. Dy(OTf)3 Catalyzed Reaction of Indole with Aldehydes and Ketones in Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    MI Xue-Ling; LUO San-Zhong; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ The use of environmentally benign reaction media is very important in view of today' s environmentally con scious attitude. In connect with this, room temperature ionic liquids that are air and moisture stable have received a good deal of attention in recent years as novel solvent systems for organic synthesis. A number of reactions such as Friedel-Crafts reactions, Diels-Alder cycloadditions, hydrogenations, and Heck reactions have employed ionic liquids as solvents. Among them, the Friedel-Crafts reaction[1] is of great synthetic significance in view of laboratory synthesis and industrial production. Recent studies showed that Friedel-Crafts reaction of indole with carbonyl compounds proceeded readily in aqueous media. [2] However, the aqueous reactions suffer from some common problems,such as tedious work-up, reuse of catalyst and so on.

  19. Recovery of sugars from ionic liquid biomass liquor by solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Timothy Charles R.; Holmes, Bradley M.; Simmons, Blake A.; Blanch, Harvey W.

    2015-10-13

    The present invention provides for a composition comprising a solution comprising (a) an ionic liquid (IL) or ionic liquid-aqueous (ILA) phase and (b) an organic phase, wherein the solution comprises a sugar and a boronic acid. The present invention also provides for a method of removing a sugar from a solution, comprising: (a) providing a solution comprising (i) an IL or ILA phase and (ii) an organic phase, wherein the solution comprises an IL, a sugar and a boronic acid; (b) contacting the sugar with the boronic acid to form a sugar-boronic acid complex, (c) separating the organic phase and the aqueous phase, wherein the organic phase contains the sugar-boronic acid complex, and optionally (d) separating the sugar from the organic phase.

  20. Aggregation behavior and total miscibility of fluorinated ionic liquids in water.

    Science.gov (United States)

    Pereiro, Ana B; Araújo, João M M; Teixeira, Fabiana S; Marrucho, Isabel M; Piñeiro, Manuel M; Rebelo, Luis Paulo N

    2015-02-01

    In this work, novel and nontoxic fluorinated ionic liquids (FILs) that are totally miscible in water and could be used in biological applications, where fluorocarbon compounds present a handicap because their aqueous solubility (water and biological fluids) is in most cases too low, have been investigated. The self-aggregation behavior of perfluorosulfonate-functionalized ionic liquids in aqueous solutions has been characterized using conductometric titration, isothermal titration calorimetry (ITC), surface tension measurements, dynamic light scattering (DLS), viscosity and density measurements, and transmission electron microscopy (TEM). Aggregation and interfacial parameters have been computed by conductimetry, calorimetry, and surface tension measurements in order to study various thermodynamic and surface properties that demonstrate that the aggregation process is entropy-driven and that the aggregation process is less spontaneous than the adsorption process. The novel perfluorosulfonate-functionalized ILs studied in this work show improved surface activity and aggregation behavior, forming distinct self-assembled structures.

  1. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  2. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    Science.gov (United States)

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-07

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.

  3. The hype with ionic liquids as solvents

    Science.gov (United States)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  4. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...

  5. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  6. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    OpenAIRE

    Hisae Tateishi-Karimata; Miki Nakano; Naoki Sugimoto

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stabi...

  7. Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids

    OpenAIRE

    Sun, Ning; Liu, Hanbin; Sathitsuksanoh, Noppadon; Stavila, Vitalie; Sawant, Manali; Bonito, Anaise; Tran, Kim; George, Anthe; Sale, Kenneth L.; Singh, Seema; Simmons, Blake A.; Holmes, Bradley M.

    2013-01-01

    Background The use of Ionic liquids (ILs) as biomass solvents is considered to be an attractive alternative for the pretreatment of lignocellulosic biomass. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars during IL pretreatment. This could potentially provide a means of liberating fermentable sugars from biomass without the use of costly enzymes. However, the separation of the sugars from the aqueous IL and recovery of IL is challenging and impera...

  8. The ionic product of water in highly concentrated sodium perchlorate solutions.

    Science.gov (United States)

    Turonek, M L; Hefter, G T; May, P M

    1998-03-01

    The ionic product of water, pK(w)=-log[H(+)][OH(-)], has been determined in aqueous solutions of sodium perchlorate over the concentration range of 1.0-8.0 M at 25 degrees C from high-precision potentiometric titrations carried out in cells with liquid junction using both glass and hydrogen electrodes. The glass electrode results are systematically lower probably as a result of interference by Na(+) ions.

  9. Fabrication of a Multi-Walled Nanotube (MWNT Ionic Liquid Electrode and Its Application for Sensing Phenolics in Red Wines

    Directory of Open Access Journals (Sweden)

    Kyo-Il Kim

    2009-08-01

    Full Text Available A multi-walled nanotube (MWNT ionic liquid was prepared by the immobilization of 1-butylimidazole bromide onto an epoxy group on a poly(glycidyl methacrylate-grafted MWNT, which was synthesized by radiation-induced graft polymerization of glycidyl methacrylate onto MWNT in an aqueous solution. Subsequently, a MWNT ionic liquid electrode was fabricated by hand-casting MWNT ionic liquid, tyrosinase, and chitosan solution as a binder on indium tin oxide (ITO glass. The sensing ranges of the MWNT ionic liquid electrode with immobilized tyrosinase was in the range of 0.01-0.08 mM in a phosphate buffer solution. The optimal conditions such as pH, temperature, and effects of different phenolic compounds were determined. The total phenolic compounds of three commercial red wines were also determined on the tyrosinase-immobilized biosensor.

  10. Pre-concentration and determination of amitriptyline residues in waste water by ionic liquid based immersed droplet microextraction and HPLC

    Institute of Scientific and Technical Information of China (English)

    M.T. Hamed Mosavian; Z. Es'haghi; N. Razavi; S. Banihashemi

    2012-01-01

    This paper describes a new approach for the determination of amitriptyline in wastewater by ionic liquid based immersed droplet microextraction (IL-IDME) prior to highperformance liquid chromatography with ultraviolet detection. 1-Hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) was used as an ionic liquid. Various factors that affect extraction, such as volume of ionic liquid, stirring rate, extraction time, pH of the aqueous solution and salting effect, were optimized. The optimal conditions were as follows: microextraction time, 10 min; stirring rate, 720 rpm; pH, 11; ionic drop volume, 100 uL; and no sodium chloride addition. In quantitative experiments the method showed linearity in a range from 0.01 to 10 ug/mL, a limit of detection of 0.004 ug/mL and an excellent pre-concentration factor (PF) of 1100. Finally, the method was successfully applied to the determination of amitriptyline in the hospital wastewater samples.

  11. Preparation,characterization and properties studies of quinine-imprinted polymer in the aqueous phase

    Institute of Scientific and Technical Information of China (English)

    He Jianfeng; Liu Lan; Yang Guilan; Deng Qinying

    2006-01-01

    The uniform-sized spherical molecularly imprinted polymers were successfully prepared through molecular imprinting technology by two-step seed swelling and mini-emulsion polymerization in the aqueous condition using quinine as template molecules and methacrylic acid (MAA)as functional monomer.The polymers were characterized by IR spectra,thermal-weight analysis,scanning electron microscope and laser particle size analysis.The properties of imprinted polymers were investigated in different organic phases and aqueous media.In the organic media,results suggested that polar interactions(hydrogen bonding,ionic interactions)between acidic monomer/polymer and template molecules are mainly responsible for the binding and recognition;whereas in the aqueous medium,a considerable recognition effect was also obtained where the ionic(electrostatic)interaction and hydrophobic interaction play an important role.The experiments of binding different substrates indicated that the MIPs possessed an excellent rebinding ability and inherent selectivity to quinine.

  12. Prediction of the zeta potentials and ionic descriptors of a silica hydride stationary phase with mobile phases of different pH and ionic strength.

    Science.gov (United States)

    Kulsing, Chadin; Yang, Yuanzhong; Matyska, Maria T; Pesek, Joseph J; Boysen, Reinhard I; Hearn, Milton T W

    2015-02-15

    In this study, the zeta potentials of a silica hydride stationary phase (Diamond Hydride™) in the presence of different water-acetonitrile mixtures (from 0-80% (v/v) acetonitrile) of different ionic strengths (from 0-40mM) and pH values (from pH 3.0-7.0) have been investigated. Debye-Hückel theory was applied to explain the effect of changes in the pH and ionic strength of these aqueous media on the negative zeta potential of this stationary phase. The experimental zeta potentials of the Diamond Hydride™ particles as a function of acetonitrile content up to 50% (v/v) correlated (R(2)=0.998) with the predicted zeta potential values based on this established theory, when the values of the dissociation constant of all related species, as well as viscosity, dielectric constant and refractive index of the aqueous medium were taken into consideration. Further, the retention behavior of basic, acidic and neutral analytes was investigated under mobile phase conditions of higher pH and lower ionic strength. Under these conditions, the Diamond Hydride™ stationary phase surface became more negative, as assessed from the increasingly more negative zeta potentials, resulting in the ion exchange characteristics becoming more dominant and the basic analytes showing increasing retention. Ionic descriptors were derived from these chromatographic experiments based on the assumption that linear solvation energy relationships prevail. The results were compared with predicted ionic descriptors based on the different calculated zeta potential values resulting in an overall correlation of R(2)=0.888. These studies provide fundamental insights into the impact on the separation performance of changes in the zeta potential of the Diamond Hydride™ surface with the results relevant to other silica hydride and, potentially, to other types of stationary phase materials.

  13. Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance.

    Science.gov (United States)

    Wang, Faxing; Yu, Feng; Wang, Xiaowei; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wen, Zubiao; Wu, Yuping; Huang, Wei

    2016-04-13

    Developing rechargeable batteries with low cost is critically needed for the application in large-scale stationary energy storage systems. Here, an aqueous rechargeable zinc//aluminum ion battery is reported on the basis of zinc as the negative electrode and ultrathin graphite nanosheets as the positive electrode in an aqueous Al2(SO4)3/Zn(CHCOO)2 electrolyte. The positive electrode material was prepared through a simple electrochemically expanded method in aqueous solution. The cost for the aqueous electrolyte together with the Zn negative electrode is low, and their raw materials are abundant. The average working voltage of this aqueous rechargeable battery is 1.0 V, which is higher than those of most rechargeable Al ion batteries in an ionic liquid electrolyte. It could also be rapidly charged within 2 min while maintaining a high capacity. Moreover, its cycling behavior is also very good, with capacity retention of nearly 94% after 200 cycles.

  14. Observation of ionic Coulomb blockade in nanopores

    Science.gov (United States)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  15. Immobilization of enzymes using non-ionic colloidal liquid aphrons (CLAs): Surface and enzyme effects.

    Science.gov (United States)

    Ward, Keeran; Xi, Jingshu; Stuckey, David C

    2015-12-01

    The use of non-ionic colloidal liquid aphrons (CLAs) as a support for enzyme immobilisation was investigated. Formulation required the mixing of an aqueous-surfactant solution with a relatively non-polar solvent-surfactant solution, forming a solvent droplet surrounded by a thin stabilised aqueous film (soapy shell). Studies utilising anionic surfactants have showed increased retention, however, very little have been understood about the forces governing immobilisation. This study seeks to determine the effects of enzyme properties on CLA immobilisation by examining a non-ionic/non-polar solvent system comprised of two non-ionic surfactants, Tween 20 and 80, mineral oil and the enzymes lipase, aprotinin and α-chymotrypsin. From these results it was deduced that hydrophobic interactions strongly governed immobilisation. Confocal Scanning Laser Microscopy (CSLM) revealed that immobilisation was predominantly achieved by surface adsorption attributed to hydrophobic interactions between the enzyme and the CLA surface. Enzyme surface affinity was found to increase when added directly to the formulation (pre-manufacture addition), as opposed to the bulk continuous phase (post-manufacture addition), with α-chymotrypsin and aprotinin being the most perturbed, while lipase was relatively unaffected. The effect of zeta potential on immobilisation showed that enzymes adsorbed better closer to their pI, indicating that charge minimisation was necessary for immobilisation. Finally, the effect of increasing enzyme concentration in the aqueous phase resulted in an increase in adsorption for all enzymes due to cooperativity between protein molecules, with saturation occurring faster at higher adsorption rates.

  16. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor

  17. Preparation of Ionic Silsesquioxanes with Regular Structures and Their Hybridization

    Directory of Open Access Journals (Sweden)

    Yoshiro Kaneko

    2012-01-01

    Full Text Available This paper deals with our recent studies on the preparation of ionic silsesquioxanes (SQs with regular structures. Cationic ladder-like polySQs (PSQs with hexagonally stacked structures were successfully prepared by the sol-gel reactions of amino group-containing organotrialkoxysilanes in strong acid aqueous solutions. Self-organization of an ion pair (a salt prepared from the amino group in the organotrialkoxysilane and an acid is the key factor for the formation of such regular structures of the PSQs. It is also reported that the control of the conformational structure of the PSQs was performed by the introduction of the chiral moieties. In addition, we investigated the correlation between the of acid-catalysts and the structures of SQs prepared by the hydrolytic condensation of amino group-containing organotrialkoxysilane, that is, the use of the superacid aqueous solution resulted in the formation of cage-like octaSQ, while the ladder-like PSQs with hexagonally stacked structures were formed from the strong acid aqueous solutions under the same reaction conditions. Furthermore, anion-exchange behaviors of the cationic ladder-like PSQ were investigated with various organic and inorganic compounds, such as anionic surfactants, a polymer, and layered clay minerals, to obtain the functional hybrid materials.

  18. DNA denaturation in ionic solution

    Science.gov (United States)

    Maity, Arghya; Singh, Amar; Singh, Navin

    2016-05-01

    Salt or cations, present in solution play an important role in DNA denaturation and folding kinetics of DNA helix. In this work we study the thermal melting of double stranded DNA (dsDNA) molecule using Peyrard Bishop Dauxois (PBD) model. We modify the potential of H-bonding between the bases of the complimentary strands to introduce the salt and solvent effect. We choose different DNA sequences having different contents of GC pairs and calculate the melting temperatures. The melting temperature increases logarithmically with the salt concentration of the solution. The more GC base pairs in the chain enhance the stability of DNA chain at a fix salt concentration. The obtained results are in good accordance with experimental findings.

  19. Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution.

    Science.gov (United States)

    Wang, Jianji; Zhang, Lamei; Wang, Huiyong; Wu, Changzeng

    2011-05-05

    Material preparation in ionic liquids and environmental pollution control by ionic liquids are often closely dependent on the aggregation behavior of ionic liquids in solution. In the present work, conductivity, fluorescence probe, and dynamic light scattering techniques have been used to study the effect of organic solvents on the aggregation behavior of 1-dodecyl-3-methylimidazolium bromide in water. It was shown that the critical aggregation concentration (CAC), the ionization degree of the aggregates (α), and the standard Gibbs energy of aggregation (ΔG(m)°) of the ionic liquid increase, while its aggregation number (N(agg)) and aggregates' size decrease with increasing concentration of organic additives in water. These results have been discussed from the favorable interactions of alkyl chain of the ionic liquid with the mixed solvents. It is suggested that the solvophobic parameter, characterized quantitatively by Gibbs energy of transfer of hydrocarbon from gas into a given solvent, can be used to account for the effect of organic additives on the formation and growth of the ionic liquid aggregates in water. Aggregation behavior of ionic liquids in aqueous organic solutions can be modulated simply by the solvophobic parameters of hydrocarbon in the mixed solvents.

  20. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  1. Magnetic Biocomposites for Remote Melting.

    Science.gov (United States)

    Zhou, Mengbo; Liebert, Tim; Müller, Robert; Dellith, Andrea; Gräfe, Christine; Clement, Joachim H; Heinze, Thomas

    2015-08-10

    A new approach toward the fabrication of biocompatible composites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNP) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30-140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high quality products as confirmed by FTIR- and NMR spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in nanocomposite as revealed by scanning electron microscope. Samples of different geometries were exposed to high frequency alternating magnetic field. It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote control systems, which are suitable for controlled release applications or self-healing materials.

  2. Thermodynamics of freezing and melting

    DEFF Research Database (Denmark)

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  3. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    are not identified easily. It has been shown that the melt consists of vanadium oxosulfato complexes in the oxidation states III-V in an alkali pyrosulfate solvent. However, many basic data for alkali pyrosulfates and oxosulfato vanadates have turned out to be either nonexisting or unreliable. As a result....... The historical development of the process during the last 100 years is described briefly; it is noteworthy that the liquid nature of the catalyst medium was not recognized before the early 1940s. The catalyst system appears quite complicated due to the complex nature of the melt components, which...

  4. Multifilament cellulose/chitin blend yarn spun from ionic liquids.

    Science.gov (United States)

    Mundsinger, Kai; Müller, Alexander; Beyer, Ronald; Hermanutz, Frank; Buchmeiser, Michael R

    2015-10-20

    Cellulose and chitin, both biopolymers, decompose before reaching their melting points. Therefore, processing these unmodified biopolymers into multifilament yarns is limited to solution chemistry. Especially the processing of chitin into fibers is rather limited to distinctive, often toxic or badly removable solvents often accompanied by chemical de-functionalization to chitosan (degree of acetylation, DA, cellulose/chitin blend fibers using ionic liquids (ILs) as gentle, removable, recyclable and non-deacetylating solvents. Chitin and cellulose are dissolved in ethylmethylimidazolium propionate ([C2mim](+)[OPr](-)) and the obtained one-pot spinning dope is used to produce multifilament fibers by a continuous wet-spinning process. Both the rheology of the corresponding spinning dopes and the structural and physical properties of the obtained fibers have been determined for different biopolymer ratios. With respect to medical or hygienic application, the cellulose/chitin blend fiber show enhanced water retention capacity compared to pure cellulose fibers.

  5. Thermodynamic characteristics of acid-base equilibria of DL-α-alanyl-DL-norleucine in aqueous solutions at 298 K

    Science.gov (United States)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Bychkova, S. A.; Skvortsov, I. A.

    2015-09-01

    Protolytic equilibria in aqueous solutions of DL-α-alanyl-DL-norleucine are studied via potentiometry and calorimetry. Measurements are made at 298.15 K and ionic strengths of 0.5, 1.0, and 1.5 (against a background of potassium nitrate). The thermodynamic characteristics (p K, Δ G, Δ H, Δ S) of the stepwise dissociation of the dipeptide both in aqueous-salt solutions and in standard solution are obtained for the first time.

  6. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4].

    Science.gov (United States)

    Shalu; Chaurasia, S K; Singh, R K; Chandra, S

    2013-01-24

    PVdF-HFP + IL(1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF(4)]) polymeric gel membranes containing different amounts of ionic liquid have been synthesized and characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR), differential scanning calorimetry, thermogravimetric analysis (TGA), and complex impedance spectroscopic techniques. Incorporation of IL in PVdF-HFP polymer changes different physicochemical properties such as melting temperature (T(m)), thermal stability, structural morphology, amorphicity, and ionic transport. It is shown by FTIR, TGA (also first derivative of TGA, "DTGA") that IL partly complexes with the polymer PVdF-HFP and partly remains dispersed in the matrix. The ionic conductivity of polymeric gel membranes has been found to increase with increasing concentration of IL and attains a maximum value of 1.6 × 10(-2) S·cm(-1) for polymer gel membrane containing 90 wt % IL at room temperature. Interestingly, the values of conductivity of membranes with 80 and 90 wt % of IL were higher than that of pure IL (100 wt %). The polymer chain breathing model has been suggested to explain it. The variation of ionic conductivity with temperature of these gel polymeric membranes follows Arrhenius type thermally activated behavior.

  7. Externally Wetted Ionic Liquid Thruster

    Science.gov (United States)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  8. Adsorption of CTAB onto perlite samples from aqueous solutions.

    Science.gov (United States)

    Alkan, Mahir; Karadaş, Mecit; Doğan, Mehmet; Demirbaş, Ozkan

    2005-11-15

    In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.

  9. Extraction of ranitidine and nizatidine with using imidazolium ionic liquids prior spectrophotometric and chromatographic detection.

    Science.gov (United States)

    Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja

    2015-03-15

    A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment).

  10. CuO nanostructures: optical properties and morphology control by pyridinium-based ionic liquids.

    Science.gov (United States)

    Sabbaghan, Maryam; Shahvelayati, Ashraf Sadat; Madankar, Kamelia

    2015-01-25

    Copper oxide nanostructures have been synthesized by a simple reflux method in aqueous medium of pyridinium based ionic liquids. The structural and optical properties of CuO nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectroscopy (PL) and UV-visible. The morphologies of the nanostructures can be controlled by changing the amount of NaOH and ionic liquids. The results show that the use identical pyridinium based ionic liquids in ratio of 4:1 NaOH/Cu(OAc)2⋅H2O yield minor differences in morphology of CuO nanostructures. Different morphologies of CuO nanostructures were obtained by changing the ratio NaOH/Cu(OAc)2⋅H2O to 2:1. Ionic liquids play an important role on optical properties of CuO nanostructures. The results of optical measurements of the CuO nanostructures illustrate that band gaps are estimated to be 1.67-1.85 eV. PL patterns studies show that the ionic liquids can be effect on PL patterns of the samples. The reasons of these phenomena are discussed.

  11. Ionic Liquids for Advanced Materials

    Science.gov (United States)

    2008-12-01

    developed characterization set-ups for the electromechanical responses of conductive network/ ionomer composite (CNIC). The overall research goal... glass transition temperature (Tg) with an increase in dielectric constant and ion content. ILs uniquely combine high dielectric constant, low...from 230-440%. Dissociation of ionic aggregates was observed at 85-88 °C in DMA experiments, and the glass transition temperatures increased with

  12. Corrosion problems with aqueous coolants, final report

    Energy Technology Data Exchange (ETDEWEB)

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  13. Electronic polarizability of ionic crystals

    Science.gov (United States)

    Ivanov, O. V.; Maksimov, E. G.

    1992-01-01

    The electronic polarizability of ionic crystals is considered in the framework of the Gordon-Kim electron gas model. First a polarization of a single ion is calculated by using the modified Sternheimer approach. Then the interaction between two ions with dipole momenta p n and p n' is studied using the Thomas-Fermi type approximation for the energy functional. By expressing the total energy as a functional of the polarizations p n instead of an electric field E and minimizing this functional with respect to p n linear equations for p n are obtained. Solution of these equations leads to the Clausius-Mossotti type expression for dielectric constant ∈ ∞ of ionic crystals in terms of a cell polarizability. It is shown that the cell polarizability can not be expressed in terms of an averaged ion polarizability only but includes also some non-local contributions due to a short-range interactions between ions. Numerical calculations lead to a good agreement with experimental data for a number of ionic crystals.

  14. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  15. Microwave-Assisted Method for Simultaneous Extraction and Hydrolysis for Determination of Flavonol Glycosides in Ginkgo Foliage Using Brönsted Acidic Ionic-Liquid [HO3S(CH24mim]HSO4 Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2012-07-01

    Full Text Available The Brönsted acidic ionic-liquid [HO3S(CH24mim] HSO4, a novel dual catalyst–solvent, has been successfully applied in simultaneous microwave-assisted extraction and hydrolysis for the determination of flavonol glycosides in Ginkgo foliage. The parameters, namely the [HO3S(CH24mim]HSO4 concentration, microwave-irradiation power, microwave-irradiation time, and solid–liquid ratio, were optimized. The optimum conditions were: an amount of 1.5 M [HO3S(CH24mim]HSO4, a microwave-irradiation power of 120 W, an irradiation time of 15 min, and a solid–liquid ratio of 1:30 g/mL. Compared with traditional methods the proposed approach demonstrates higher efficiency in a shorter operating time, and is an efficient, rapid, and simple sample preparation method.

  16. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  17. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    obtained during coal/straw co-firing, substantive sintering strength was observed to build up in the ashes below the melting onset. The strength obtained was thus assumed to be due to viscous flow sintering, and the sintering onset was for the four ashes investigated simultaneous to a calculated ash......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...

  18. Ionic liquid; possibility of protein-preserving solvent under high pressure

    Science.gov (United States)

    Shigemi, Machiko; Takekiyo, Takahiro; Yoshimura, Yukihiro

    2013-06-01

    We have investigated the pressure-induced phase transition behavior (∼3.0 GPa) of aqueous 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) solutions with N-methylacetamide (NMA), which is a simple protein model compound, using Raman spectroscopy. From Raman spectral changes and optical observation in the sequence of elevated pressure, we found that the aqueous [bmim][Cl] solution with NMA in the water-rich condition induces the high pressure crystallization at 2.6 GPa. On the other hand, in the [bmim][Cl]-rich condition, high pressure crystalline phase was not observed even up to 3.0 GPa. Our results show that the aqueous [bmim][Cl] solution in the ionic liquid-rich condition along with the use of pressure has a potential for protein-preserving solvent.

  19. First principles approach to ionicity of fragments

    Science.gov (United States)

    Pilania, Ghanshyam; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-01

    We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  20. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  1. Melting Behaviour of Ferronickel Slags

    Science.gov (United States)

    Sagadin, Christoph; Luidold, Stefan; Wagner, Christoph; Wenzl, Christine

    2016-12-01

    The industrial manufacturing of ferronickel in electric furnaces produces large amounts of slag with strong acidic character and high melting points, which seriously stresses the furnace refractory lining. In this study, the melting behavior of synthetically produced ferronickel slags on magnesia as refractory material was determined by means of a hot stage microscope. Therefore, slags comprising the main oxides SiO2 (35-70 wt.%), MgO (15-45 wt.%) and Fe2O3 (5-35 wt.%) were melted in a graphite crucible and afterwards analyzed by a hot stage microscope. The design of experiments, which was created by the statistic software MODDE®, included 20 experiments with varying slag compositions as well as atmospheres. The evaluation of the test results occurred at three different characteristic states of the samples like the softening point according to DIN 51730 and the temperatures at which the area of residual cross-section of the samples amounted to 30% and 40%, respectively, of the original value depending of their SiO2/MgO ratio and iron oxide content. Additionally, the thickness of the zone influenced by the slag was measured and evaluated.

  2. Melt-intercalation studies of polystyrene ionomers in pristine montmorillonite

    Science.gov (United States)

    Bhiwankar, Nikhil N.

    The main objective of this study was to examine the use of ionomers, specifically alkylamine-neutralized sulfonated polystyrene (SPS) for promoting intercalation into unmodified sodium montmorillonite clay and its use as a compatabilizer for intercalating another polymer into unmodified silicate clay. The processing parameters and chemical structure of polymers which led to the formation of partially intercalated/exfoliated morphologies were investigated. Melt-intercalated polymer layered silicate nanocomposites (PLSNs) are made by mixing polymers and organically modified silicates by the application of shear forces. However, the thermal decomposition temperatures of the organic modifications are usually comparable to the processing temperatures of most of the polymers. Hence, in this work modification of the polymer, rather than the clay, for promoting melt intercalation, specifically the introduction of alkyl ammonium salt groups along the polymer chain was considered. In this study the effects of viscosity, shear rates and mixing times on the morphology of nanocomposites were investigated. The effect of ionic content in the polymer chain of SPS in the batch mixtures of SPS and PS was researched. We also compared the effect on the extent of intercalation in these silicate clay galleries as a function of size of the counter-ions by varying the alkyl chain length and as a function of basicity of these counter-ions by varying the number of alkyl substituents that are attached on the N of the amine. The melt mixing of pristine Na-Mmt with alkyl ammonium and quaternary ammonium salts of SPS ionomers, resulted in an increase in the silicate gallery spacing consistent with intercalation. Mixtures of the ionomer with PS exhibited similar gallery spacing increases, indicating that the ionomer is an effective compatibilizing agent for the melt-intercalation of hydrophobic polymers into the clay. The extent of intercalation was independent of the melt processing conditions

  3. Adsorption of ionic liquid onto halloysite nanotubes: Thermal and mechanical properties of heterophasic PE-PP copolymer nanocomposites

    Science.gov (United States)

    Bischoff, E.; Simon, D. A.; Liberman, S. A.; Mauler, R. S.

    2016-03-01

    The surface adsorption of inorganic clays with ionic liquids has attracted much attention due to improve the interaction of hydrophilic clay with the hydrophobic polymers. However, successful organic adsorption strongly depends on the characteristics of ionic liquid (anion, chain size and concentration), and the reaction conditions (as polarity of solvent). In this study, such factors were analyzed and correlated with morphology, thermal and mechanical properties of the nanocomposites. The heterophasic ethylene-propylene copolymer nanocomposites were prepared by melt intercalation method in a twin screw co-rotating extruder. The halloysite nanotubes (HNT) was used as filler - natural and modified with different ionic liquids. The results showed that a better distribution and dispersion of the nanoparticles was achieved in the samples with modified HNT (m-HNT) and was more significant when the ionic liquid adsorption was conducted in a less polar solvent. The thermal stability of the nanocomposites with m- HNT was higher compared to the neat CP. Additionally, the better balance in the mechanical properties was obtained by the use of the more hydrophobic ionic liquid and higher concentration with improve of 27% in the Young Modulus without loss in the impact properties at room temperature. These superior behaviors of ionic liquid adsorption products exhibit properties suitable for many industrial applications.

  4. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans

    OpenAIRE

    Adeva-Andany, María M.; Natalia Carneiro-Freire; Cristóbal Donapetry-García; Eva Rañal-Muíño; Yosua López-Pereiro

    2014-01-01

    Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on th...

  5. Ionic Liquids: Just Molten Salts After All?

    Directory of Open Access Journals (Sweden)

    Anna K. Croft

    2009-07-01

    Full Text Available While there has been much effort in recent years to characterise ionic liquids in terms of parameters that are well described for molecular solvents, using these to explain reaction outcomes remains problematic. Herein we propose that many reaction outcomes in ionic liquids may be explained by considering the electrostatic interactions present in the solution; that is, by recognising that ionic liquids are salts. This is supported by evidence in the literature, along with studies presented here.

  6. Treatment of Aqueous Solutions

    NARCIS (Netherlands)

    Van Spronsen, J.; Witkamp, G.J.

    2013-01-01

    The invention is directed to a process for the recovery or removal of one or more crystallizable compounds from an aqueous solution containing, apart from the said crystallizable compounds, one or more organic or inorganic scale- forming or scale-inducing materials having a lower solubility in water

  7. Improved Ionic Liquids as Space Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  8. First title: Ionic liquids-useful reaction green solvents for the future Second title: ionic liquids are the replacements for environmentally damaging solvents in a wide range of chemical processes.

    OpenAIRE

    K.Vijaya Bhaskar

    2012-01-01

    Ionic liquids (IL) represent fascinating new class of solvents with unusual physical and chemical properties; low melting salts (up to 1000C). The main driving force for research in this area is the need to find replacement for environmentally damaging solvents in a wide range of chemical processes. To date, most chemical reactions have been carried out in molecular solvents. For the past twenty years, most of our understanding of our chemistry has been based upon the behavior of molecules in...

  9. Standard thermodynamic functions of complexation between copper(II) and glycine and L-histidine in aqueous solutions

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2016-09-01

    The Cu2+-glycine-L-histidine system is studied calorimetrically at 298.15 K and an ionic strength of 0.2, 0.5, and 1.0 in aqueous solutions containing potassium nitrate. The standard thermodynamic parameters (Δr H°, Δr G°, Δr S°) of complexation processes are determined.

  10. Thermochemical study of the processes of complexation of cobalt(II) ions with L-histidine in aqueous solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2015-09-01

    Thermal effects of the complexation of cobalt(II) ions with L-histidine at 298.15 K and several values of the ionic strength against the background of KNO3 are determined by means of direct calorimetry. The standard thermodynamic characteristics of the reactions of complexation in the aqueous solution have been calculated.

  11. The Influence of Silica Nanoparticles on Ionic Liquid Behavior: A Clear Difference between Adsorption and Confinement

    Directory of Open Access Journals (Sweden)

    Guozhong Wu

    2013-10-01

    Full Text Available The phase behaviors of ionic liquids (ILs confined in nanospace and adsorbed on outer surface of nanoparticles are expected to be different from those of the bulk. Anomalous phase behaviors of room temperature ionic liquid tributylhexadecylphosphonium bromide (P44416Br confined in ordered mesoporous silica nanoparticles with average pore size 3.7 nm and adsorbed on outer surface of the same silica nanoparticles were reported. It was revealed that the melting points (Tm of confined and adsorbed ILs depressed significantly in comparison with the bulk one. The Tm depressions for confined and adsorbed ILs are 8 °C and 14 °C, respectively. For comparison with the phase behavior of confined P44416Br, 1-butyl-3-methylimidazolium bromide (BmimBr was entrapped within silica nanopores, we observed an enhancement of 50 °C in Tm under otherwise similar conditions. The XRD analysis indicates the formation of crystalline-like phase under confinement, in contrast to the amorphous phase in adsorbed IL. It was confirmed that the behavior of IL has clear difference. Moreover, the complex π-π stacking and H-bonding do not exist in the newly proposed phosphonium-based IL in comparison with the widely studied imidazolium-based IL. The opposite change in melting point of P44416Br@SiO2 and BmimBr@SiO2 indicates that the cationic species plays an important role in the variation of melting point.

  12. Influence of temperature on PA 6−steel contacts in the presence of an ionic liquid lubricant. Poster

    OpenAIRE

    Sanes Molina, José; Carrión Vilches, Francisco José; Jiménez Ballesta, Ana Eva; Bermúdez Olivares, María Dolores

    2007-01-01

    Room−temperature ionic liquids (ILs) are salts with a melting point lower than room temperature and are called green solvents because they have properties such as: ♦ Non−flammability, ♦ Negligible volatility, and ♦ High thermal stability. The high thermal stability range (from −74 ºC to 370 ºC in our case) of ILs makes them suitable candidates as high temperature and extreme temperature lubricants. In this work we present the mechanical and tribological properties of poly...

  13. The attenuation of oscillatory thermo-capillary convection in the oxide melt by a transverse magnetic field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of a transverse magnetic field on the oscillatory thermocapillary con- vection in the NaBi(WO4)2 melt was studied by using the in-situ observation system. The oscillation was attenuated when the 60 mT magnetic field was applied, as shown by the decrease in the amplitude and the frequency. Furthermore, the os- cillation under smaller temperature difference was stabilized after the magnetic field was applied. The magnetic effect could be due to the Lorentz force generated by the interaction between motional ions and the vertical magnetic field. The ionic conductivities were measured to demonstrate the effect of the magnetic field. The solid ionic electrical conductivity increases with the temperature rise, and the melt ionic electrical conductivity was measured to be about 2.0×10-4 -1cm-1. Experi- mental results manifest that the effect of the magnetic field on anions and cations in the melt makes the flow change to the direction normal to the applied field, so the flow is more orderly and the oscillation is suppressed.

  14. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  15. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts.

    Science.gov (United States)

    Helmy, Hassan M; Ballhaus, Chris; Fonseca, Raúl O C; Wirth, Richard; Nagel, Thorsten; Tredoux, Marian

    2013-01-01

    In low temperature aqueous solutions, it has long been recognized by in situ experiments that many minerals are preceded by crystalline nanometre-sized particles and non-crystalline nanophases. For magmatic systems, nanometre-sized precursors have not yet been demonstrated to exist, although the suggestion has been around for some time. Here we demonstrate by high temperature quench experiments that platinum and arsenic self-organize to nanoparticles, well before the melt has reached a Pt-As concentration at which discrete Pt arsenide minerals become stable phases. If all highly siderophile elements associate to nanophases in undersaturated melts, the distribution of the noble metals between silicate, sulphide and metal melts will be controlled by the surface properties of nano-associations, more so than by the chemical properties of the elements.

  16. New types of Brönsted acid-base ionic liquids-based membranes for applications in PEMFCs.

    Science.gov (United States)

    Fernicola, Alessandra; Panero, Stefania; Scrosati, Bruno; Tamada, Masahiro; Ohno, Hiroyuki

    2007-05-14

    A series of ionic liquids (ILs) are prepared by neutralizing tertiary amines with N,N-bis(trifluoromethanesulfonyl)imide (HTFSI). As demonstrated by thermal and electrochemical characterizations, these ILs have very good temperature stability and a high ionic conductivity, that is, of the order of 10(-2) S cm-1. By incorporating these ILs into a poly(vinylidenfluoride-co-hexafluoropropylene) polymer matrix, membranes with a high melting temperature, high decomposition point and with an ionic conductivity of about 10(-2) S cm-1 at 140 degrees C, are obtained. These IL-based, proton-conducting membranes are proposed as new polymer electrolytes for high-temperature polymer electrolyte membrane fuel cells (PEMFCs).

  17. Conductivity of Oxalic Acid in Aqueous Solution at Low Concentration%低浓度草酸水溶液的电导研究

    Institute of Scientific and Technical Information of China (English)

    倪良; 韩世钧

    2005-01-01

    Oxalic acid is a weak and unsymmetrical bi-basic acid. There exist dissociation and association equilibria among the species in aqueous solution. The molar conductivity of the solution is the sum of the ionic contributions.Based on this idea, a new prediction equation of ionic conductivity was proposed at low concentration. The molar conductivities of the solution and its relevant ions were calculated respectively. The results obtained were in good agreement with those from experiments and the Quint-Viallard equation.

  18. Synthesis and properties of alkoxy- and alkenyl-substituted peralkylated imidazolium ionic liquids.

    Science.gov (United States)

    Maton, Cedric; Brooks, Neil R; Van Meervelt, Luc; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V

    2013-10-21

    Novel peralkylated imidazolium ionic liquids bearing alkoxy and/or alkenyl side chains have been synthesized and studied. Different synthetic routes towards the imidazoles and the ionic liquids comprising bromide, iodide, methanesulfonate, bis(trifluoromethylsulfonyl)imide ([NTf2](-)), and dicyanamide {[N(CN)2](-)} as the anion were evaluated, and this led to a library of analogues, for which the melting points, viscosities, and electrochemical windows were determined. Incorporation of alkenyl moieties hindered solidification, except for cations with high symmetry. The alkoxy-derivatized ionic liquids are often crystalline; however, room-temperature ionic liquids (RTILs) were obtained with the weakly coordinating anions [NTf2](-) and [N(CN)2](-). For the viscosities of the peralkylated RTILs, an opposite trend was found, that is, the alkoxy derivatives are less viscous than their alkenyl-substituted analogues. Of the crystalline compounds, X-ray diffraction data were recorded and related to their molecular properties. Upon alkoxy substitution, the electrochemical cathodic limit potential was found to be more positive, whereas the complete electrochemical window of the alkenyl-substituted imidazolium salts was shifted to somewhat more positive potentials.

  19. Phase equilibria in ionic liquid-aromatic compound mixtures, including benzene fluorination effects.

    Science.gov (United States)

    Blesic, Marijana; Lopes, José N Canongia; Pádua, Agílio A H; Shimizu, Karina; Gomes, Margarida F Costa; Rebelo, Luís Paulo N

    2009-05-28

    This work extends the scope of previous studies on the phase behavior of mixtures of ionic liquids with benzenes or its derivatives by determining the solid-liquid and liquid-liquid phase diagrams of mixtures containing an ionic liquid and a fluorinated benzene. The systems studied include 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide plus hexafluorobenzene or 1,3,5-trifluorobenzene and 1-ethyl-3-methylimidazolium triflate or N-ethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide plus benzene. The phase diagrams exhibit different kinds of solid-liquid behavior: the (usual) occurrence of eutectic points; the (not-so-usual) presence of congruent melting points and the corresponding formation of inclusion crystals; or the observation of different ionic liquid crystalline phases (polymorphism). These different types of behavior can be controlled by temperature annealing during crystallization or by the nature of the aromatic compound and can be interpreted, at a molecular level, taking into account the structure of the crystals or liquid mixtures, together with the unique characteristics of ionic liquids, namely the dual nature of their interactions with aromatic compounds.

  20. A Diazonium Salt-Based Ionic Liquid for Solvent-FreeModification of Carbon.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chengdu [ORNL; Huang, Jing-Fang [ORNL; Li, Zuojiang [ORNL; Luo, Huimin [ORNL; Dai, Sheng [ORNL

    2006-01-01

    A novel ionic liquid that consists of p-butylbenzenediazonium ions and bis(trifluoromethanesulfonyl)amidates (Tf{sub 2}N{sup -}) has been synthesized as a task-specific ionic liquid for the solvent-free modification of carbon materials. The use of anions Tf{sub 2}N{sup =} is the key to rendering the hydrophobicity, low liquidus temperature, and ionicity to this novel molten salt. This diazonium salt has a melting point of 7.2 C and a moderate electric conductivity of 527 {micro} s/cm at 25 C. The thermal stability of this diazonium ionic liquid has been investigated by high-resolution thermogravimetric analysis (HRTGA). The compound is stable up to about 90 C in nitrogen, which is only 10 C less than its solid tetrafluoroborate counterpart. The modification of carbon materials has been carried out through both thermal and electrochemical activations of diazonium ions to generate free radical intermediates without the use of any solvent. The surface-coverage loadings of 3.38 {micro} mol/m{sup 2} and 6.07 {micro} mol/m{sup 2} for covalently attached organic functionalities have been achieved by the thermally induced functionalization and electrochemically assisted reaction, respectively.

  1. Determination and Correlation of Solubilities of Four Novel Benzothiazolium Ionic Liquids with 6PF- in Six Alcohols

    Institute of Scientific and Technical Information of China (English)

    何志坚; 王小敏; 姚田; 宋航; 姚舜

    2014-01-01

    Four novel benzothiazolium ionic liquids with 6PF- ([C1Bth][PF6], [C4Bth][PF6], [C5Bth][PF6] and [C6Bth][PF6]) were synthesized, and the rang of their melting points were determined between 358.35 K-424.05 K. The relationship of their melting points and the length of the straight alkyl chain on cation reflected‘S’ type ten-dency. Then, the solubilities of the four ionic liquids in six lower alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol and 2-methyl-1-propanol) were measured in the temperature rang of 253.15-383.15 K at at-mospheric pressure with static analytical method, respectively. It was found that [C6Bth][PF6] in all investigated ionic liquids had the largest solubility in six alcohols and the solubility of [C4Bth][PF6] in methanol was very sensi-tive for temperature in 313.15-333.15 K, which was so-called “temperature-sensitivity”. This feature is of great significance to their application of catalyzing reaction or extraction process, and makes the recovery and reuse of ionic liquids (ILs) become easier. Moreover, the experimental solubility data were correlated with the modified Apelblat equation andλh equation, respectively. It was found that the result of correlation using two divided tem-perature ranges was better than that of using the whole temperature range.

  2. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  3. Effect of melting conditions on striae in iron-bearing silicate melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae are present in a broad range of glass products, but due to their negative impact on e.g., the optical and mechanical properties, elimination of striae from melts is a key issue in glass technology. By varying melting temperatures, retentions times and redox conditions of an iron......-bearing calciumaluminosilicate melt, we quantify the effect of each of the three melting parameters on the stria content in the melt. The quantification of the stria content in the melt is conducted by means of image analysis on casted melt samples. We find that in comparison to an extension of retention time an increase...... factors such as compositional fluctuation of melts and bubbling due to iron reduction on the stria content. During the melting process, striae with a chemical gradient in a more mobile species equilibrate faster than striae caused by a chemical gradient in a less mobile species. The temperature and time...

  4. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  5. First principles approach to ionicity of fragments

    Energy Technology Data Exchange (ETDEWEB)

    Pilania, Ghanshyam, E-mail: gpilania@lanl.gov; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-20

    Highlights: • A novel first principles approach towards the fragment ionicity. • Constrained DFT and valance charge density decomposition were employed. • Correct dissociation limit achieved for diatomics. • Ionicity is an input parameter for a new class of atomistic potentials. - Abstract: We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  6. Facile Synthesis of Ureas in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Wei Xing QIAN; Feng Yang JU; Yong Min ZHANG; Wei Liang BAO

    2004-01-01

    The reaction of isocyanates with aliphatic and aromatic amines in the 1-n-butyl-3- methylimidazolium tetrafluoroborate (bmimBF4) ionic liquid in good to excellent yields is described. Due to its insolubility, the desired urea solids could be recovered by simple filtration from the ionic liquid after reaction.

  7. Base stable quaternary ammonium ionic liquids

    OpenAIRE

    Lethesh, Kallidanthiyil Chellappan; Dehaen, Wim; Binnemans, Koen

    2014-01-01

    Ionic liquids with the bis(2-ethylhexyl)dimethylammonium cation, [BEDMA]+, were prepared by a halide-free route starting from the readily available secondary amine bis(2-ethylhexyl)amine. The following anions were considered: chloride, bromide, iodide, nitrate, hydrogensulphate, dihydrogenphosphate, formate, acetate, propionate, trifluoroacetate, methyl sulphate, methanesulphonate, tosylate, isonicotinate, nicotinate and picolinate. Several of the compounds are room-temperature ionic liquids,...

  8. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util...

  9. Chemical and Electrochemical Studies in Ionic Liquids

    Science.gov (United States)

    1990-01-12

    Electrochemistry and Witchcraft ", Gordon Research Conference on Electrochemistry", Santa Barbara, CA, January, 1985. OR. A. Osteryoung, ’An Introduction to...Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft ", Chemistry Department Colloquium, University of Alabama...Tuscaloosa, Alabama, December 1, 1988. OR. A. Osteryoung, "Ambient Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft

  10. Engineered microorganisms having resistance to ionic liquids

    Science.gov (United States)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  11. Solid Catalyst with Ionic Liquid Layer (SCILL). A concept to improve the selectivity of selective hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Jess, A.; Korth, W. [Bayreuth Univ. (Germany). Chair of Chemical Engineering

    2011-07-01

    Catalytic hydrogenations are important for refinery processes, petrochemical applications as well as for numerous processes of the fine chemicals industry. In some cases, hydrogenations consist of a sequence of consecutive reactions, and the desired product is the intermediate. An important goal is then a high yield and selectivity to the intermediate, if possible at a high conversion degree. The selectivity to an intermediate primarily depends on the chemical nature of the catalyst, but may also be influenced by diffusion processes. Ionic liquids (ILs) are low melting salts (< 100 C) and represent a promising solvent class. This paper focuses on the concept of a Solid Catalyst with Ionic Liquid Layer (SCILL), where the solid catalyst is coated with a thin IL layer to improve the selectivity. (orig.)

  12. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  13. Adsorption of Pb2+, Zn2+ and Ni2+ from Aqueous Solution by Helix aspera Shell

    OpenAIRE

    A. S. Ekop; Eddy, N. O.

    2009-01-01

    The adsorption capacity of Helix aspera shell for Pb2+, Zn2+ and Ni2+ has been studied. This shell has the potential of adsorbing Pb2+, Zn2+ and Ni2+ from aqueous solution. The adsorption potentials of Helix aspera shell is largely influenced by the ionic character of the ions and occurred according to the order Pb2+ > Ni2+ > Zn2+. The adsorption of Pb(II), Zn(II) and Ni(II) ions from aqueous solutions by Helix aspera shell is thermodynamically feasible and is consistent with the models of La...

  14. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Mason, Philip E; Jungwirth, Pavel

    2016-03-01

    Modeled ions, described by nonpolarizable force fields, can suffer from unphysical ion pairing and clustering in aqueous solutions well below their solubility limit. The electronic continuum correction takes electronic polarization effects of the solvent into account in an effective way by scaling the charges on the ions, resulting in a much better description of the ionic behavior. Here, we present parameters for the sodium ion consistent with this effective polarizability approach and in agreement with experimental data from neutron scattering, which could be used for simulations of complex aqueous systems where polarization effects are important.

  15. Solvation free energies in [bmim]-based ionic liquids: Anion effect toward solvation of amino acid side chain analogues

    Science.gov (United States)

    Latif, Muhammad Alif Mohammad; Micaêlo, Nuno; Abdul Rahman, Mohd Basyaruddin

    2014-11-01

    Stochastic molecular dynamics simulations were performed to investigate the solvation free energy of 15 neutral amino acid side chain analogues in aqueous and five, 1-butyl-3-methylimidazolium ([BMIM])-based ionic liquids. The results in aqueous were found highly correlated with previous experimental and simulation data. Meanwhile, [BMIM]-based RTILs showed better solvation thermodynamics than water to an extent that they were capable of solvating molecules immiscible in water. Non-polar analogues showed stronger solvation in hydrophobic RTIL anions such as [PF6]- and [Tf2N]- while polar analogues showed stronger solvation in the more hydrophilic RTIL anions such as [Cl]-, [TfO]- and [BF4]-.

  16. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.

    2012-01-01

    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  17. Inclusion complex formation of ionic liquids with 4-sulfonatocalixarenes studied by competitive binding of berberine alkaloid fluorescent probe

    Science.gov (United States)

    Miskolczy, Zsombor; Biczók, László

    2009-07-01

    A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.

  18. Snow Melting and Freezing on Older Townhouses

    DEFF Research Database (Denmark)

    Nielsen, Anker; Claesson, Johan

    2011-01-01

    The snowy winter of 2009/2010 in Scandinavia prompted many newspaper articles on icicles falling from buildings and the risk this presented for people walking below. The problem starts with snow melting on the roof due to heat loss from the building. Melt water runs down the roof and some...... of it will freeze on the overhang. The rest of the water will either run off or freeze in gutters and downpipes or turn into icicles. This paper describes use of a model for the melting and freezing of snow on roofs. Important parameters are roof length, overhang length, heat resistance of roof and overhang......, outdoor and indoor temperature, snow thickness and thermal conductivity. If the snow thickness is above a specific limit value – the snow melting limit- some of the snow will melt. Another interesting limit value is the dripping limit. All the melt water will freeze on the overhang, if the snow thickness...

  19. RHEOLOGY FEATURE OF SIMPLE METAL MELT

    Institute of Scientific and Technical Information of China (English)

    C.J. Sun; H.R. Geng; Y.S. Shen; X.Y. Teng; Z.X. Yang

    2007-01-01

    The rheology feature of Sb, Bi melt and alloys was studied using coaxial cylinder high-temperature viscometer. The results showed that the curve of torsion-rotational speed for Sb melt presents a linear relation in all measured temperature ranges, whereas for the Bi melt, the curve presents obvious non-Newtonian feature within the low temperature range and at relative high shear stress. The rheology feature of Sb80Bi20 and Sb20Bi80, alloy melts was well correlated with that of Sb and Bi, respectively. It is considered that the rheology behavior of Sb melt plays a crucial role in Sb80Bi20, alloy and that of Bi melt plays a crucial role in Sb20Bi80 alloy.

  20. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    Science.gov (United States)

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  1. Task-Specific Ionic Liquids for Mars Exploration (Green Chemistry for a Red Planet)

    Science.gov (United States)

    Karr, L. J.; Curreri, P. A.; Paley, M. S.; Kaukler, W. F.; Marone, M. J.

    2012-01-01

    Ionic Liquids (ILs) are organic salts with low melting points that are liquid at or near room temperature. The combinations of available ions and task-specific molecular designability make them suitable for a huge variety of tasks. Because of their low flammability, low vapor pressure, and stability in harsh environments (extreme temperatures, hard vacuum) they are generally much safer and "greener" than conventional chemicals and are thus suitable for a wide range of applications that support NASA exploration goals. This presentation describes several of the ongoing applications that are being developed at MSFC.

  2. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    1 Multiscale Models of Melting Arctic Sea Ice Kenneth M. Golden University of Utah, Department of Mathematics phone: (801) 581-6851...feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding the evolution of melt ponds and sea...Models of Melting Arctic Sea Ice 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER

  3. Ultrasonic-Assisted Extraction of Procyanidins Using Ionic Liquid Solution from Larix gmelinii Bark

    Directory of Open Access Journals (Sweden)

    Xiaowei Sun

    2013-01-01

    Full Text Available An ionic liquid-based ultrasonic-assisted extraction method has been developed for the effective extraction of procyanidins from Larix gmelinii bark. So as to evaluate the performance of ionic liquids in ultrasonic-assisted extraction process, the effects caused by changes in the anion and the alkyl chain length of the cation on the extraction efficiency were investigated in this paper. The results indicated that the characteristics of anions had remarkable effects on the extraction efficiency of procyanidins, and 1-butyl-3-methylimidazolium bromide ([Bmim]Br aqueous solution was the best among the investigated ionic liquids. The optimum conditions for the extraction were as follows: [Bmim]Br concentration 1.25 M, soak time 3 h, solid-liquid ratio 1 : 10, ultrasonic power 150 W, and ultrasonic time 30 min. This work not only introduces a simple, green, and highly efficient sample preparation method for extraction of procyanidins from L. gmelinii bark, but also reveals the tremendous application potential of ionic liquids.

  4. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte

    Science.gov (United States)

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; Van Aken, Katherine L.; Anasori, Babak; Gogotsi, Yury; Simon, Patrice

    2016-09-01

    Ti3C2Tx MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti3C2Tx MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti3C2Tx hydrogel film and a stable spacing after vacuum drying, achieved through ionic liquid electrolyte immersion of the Ti3C2Tx hydrogel film, the Ti3C2Tx surface became accessible to EMI+ and TFSI- ions. A capacitance of 70 F g-1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s-1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s-1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.

  5. Clinical cardiovascular experiences with iopamidol: a new non-ionic contrast medium.

    Science.gov (United States)

    Partridge, J B; Robinson, P J; Turnbull, C M; Stoker, J B; Boyle, R M; Morrison, G W

    1981-07-01

    Iopamidol, a new non-ionic water-soluble contrast medium, has been compared with standard ionic media in a number of cardiovascular applications. It is stable in aqueous solution, is much less viscous and only slightly more osmolar than metrizamide. Compared to sodium meglumine diatrizoate in a series of 40 coronary arteriograms, it produced a consistent and highly significant decrease in the incidence and severity of hypotension and bradycardia following intracoronary injection. In the same group and in 62 children undergoing ventricular or great vessel angiocardiography, a subjective assessment of patient reaction showed that iopamidol was better tolerated than the ionic medium. There was a very strong patient preference for iopamidol in a group of 20 of the adult patients who had also consented to femoral artery injections of both media. Throughout these series there was no detectable difference in arterial image quality between the media. Venous phase opacification during arterioportography was assessed in 11 cases comparing iopamidol with sodium meglumine iothalamate. No significant difference was found. We conclude that iopamidol is clearly preferable to ionic media for routine cardiovascular applications.

  6. Olefins hydro-formylation catalysed by rhodium complexes using ionic liquids; Hydroformylation des olefines par les complexes du rhodium dans les liquides ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Favre, F.

    2000-10-26

    Biphasic long chain olefins hydro-formylation catalysed by rhodium complexes using ionic liquids allows a selective reaction and an easy separation of the products from the catalyst. This study reports the synthesis of ionic liquids that were used as the catalyst's solvent. Their physical and chemical properties (melting point, solubility of organic substrates) can be varied with the structure of the organic cation (imidazolium, pyridinium, pyrrolydinium) and with its substituents (nature, length, number). It depends also on the nature of the inorganic anion (hexa-fluoro-phosphate, tetrafluoroborate, tri-fluoro-acetate, triflate, bistriflylamidure...). The use of phosphorus ligands bearing ionic functions proved to be efficient to maintain the onerous rhodium catalyst in the ionic liquid phase. Phosphines, phosphites and phosphinites including anionic (sulfonate, carboxylate) or cationic (imidazolium, pyridinium, guanidinium, phosphonium) groups have been synthesised. Finally, the influences of the ligand and of the ionic liquid on the catalytic system performances are described. Selectivities in aldehydes and reaction rates proved to be highly dependent on the nature of the ligand and of the ionic liquid. The different possibilities of recycling the ionic phase containing the rhodium catalyst have been also studied. (author)

  7. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid.

    Science.gov (United States)

    Miwa, Yasushi; Hamamoto, Hidetoshi; Ishida, Tatsuhiro

    2016-05-01

    Poor transdermal penetration of active pharmaceutical ingredients (APIs) impairs both bioavailability and therapeutic benefits and is a major challenge in the development of transdermal drug delivery systems. Here, we transformed a poorly water-soluble drug, etodolac, into an ionic liquid in order to improve its hydrophobicity, hydrophilicity and skin permeability. The ionic liquid was prepared by mixing etodolac with lidocaine (1:1, mol/mol). Both the free drug and the transformed ionic liquid were characterized by differential scanning colorimetry (DSC), infrared spectroscopy (IR), and saturation concentration measurements. In addition, in vitro skin-permeation testing was carried out via an ionic liquid-containing patch (Etoreat patch). The lidocaine and etodolac in ionic liquid form led to a relatively lower melting point than either lidocaine or etodolac alone, and this improved the lipophilicity/hydrophilicity of etodolac. In vitro skin-permeation testing demonstrated that the Etoreat patch significantly increased the skin permeation of etodolac (9.3-fold) compared with an etodolac alone patch, although an Etoreat patch did not increase the skin permeation of lidocaine, which was consistent with the results when using a lidocaine alone patch. Lidocaine appeared to self-sacrificially improve the skin permeation of etodolac via its transformation into an ionic liquid. The data suggest that ionic liquids composed of approved drugs may substantially expand the formulation preparation method to meet the challenges of drugs which are characterized by poor rates of transdermal absorption.

  8. Low Melt Height Solidification of Superalloys

    Science.gov (United States)

    Montakhab, Mehdi; Bacak, Mert; Balikci, Ercan

    2016-06-01

    Effect of a reduced melt height in the directional solidification of a superalloy has been investigated by two methods: vertical Bridgman (VB) and vertical Bridgman with a submerged baffle (VBSB). The latter is a relatively new technique and provides a reduced melt height ahead of the solidifying interface. A low melt height leads to a larger primary dendrite arm spacing but a lower mushy length, melt-back transition length, and porosity. The VBSB technique yields up to 38 pct reduction in the porosity. This may improve a component's mechanical strength especially in a creep-fatigue type dynamic loading.

  9. Solute Redistribution in Directional Melting Process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.

  10. Compatibilization of HDPE/agar biocomposites with eutectic-based ionic liquid containing surfactant

    CERN Document Server

    Shamsuri, AA; Zainudin, ES; Tahir, PM

    2014-01-01

    In this research, eutectic-based ionic liquid specifically choline chloride/glycerol was prepared at a 1:2 mole ratio. The choline chloride/glycerol was added with the different content of surfactant (hexadecyltrimethylammonium bromide). The choline chloride/glycerol-hexadecyltrimethylammonium bromide was introduced into high-density polyethylene/agar biocomposites through melt mixing. The mechanical testing results indicated that the impact strength and tensile extension of the biocomposites increased with the introduction of the choline chloride/glycerol-hexadecyltrimethylammonium bromide. The scanning electron microscope, differential scanning calorimetry and thermal gravimetric analysis results exhibited that significant decrease in the number of agar fillers pull-out, melting point and thermal decomposition temperatures of the biocomposites are also due to the choline chloride/glycerol-hexadecyltrimethylammonium bromide. The Fourier transform infrared spectra and X-ray diffractometer patterns of the bioc...

  11. Ionic liquids in analytical chemistry.

    Science.gov (United States)

    Soukup-Hein, Renee J; Warnke, Molly M; Armstrong, Daniel W

    2009-01-01

    The role of ionic liquids (ILs) in analytical chemistry is increasing substantially every year. A decade ago there were but a handful of papers in this area of research that were considered curiosities at best. Today, those publications are recognized as seminal articles that gave rise to one of the most rapidly expanding areas of research in chemical analysis. In this review, we briefly highlight early work involving ILs and discuss the most recent advances in separations, mass spectrometry, spectroscopy, and electroanalytical chemistry. Many of the most important advances in these fields depend on the development of new, often unique ILs and multifunctional ILs. A better understanding of the chemical and physical properties of ILs is also essential.

  12. Lattice models of ionic systems

    Science.gov (United States)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.

    2002-05-01

    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.

  13. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  14. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations

    Science.gov (United States)

    Zajacz, Zoltán; Candela, Philip A.; Piccoli, Philip M.; Sanchez-Valle, Carmen

    2012-07-01

    Andesite melts were equilibrated with an H-O-S-bearing volatile phase to determine the partition coefficients for S and Cl as a function of melt composition and oxygen fugacity. The experiments were conducted in rapid-quench MHC vessel assemblies at 200 MPa and 1000 °C, and over a range of imposed fO2 between NNO-1.2 and NNO+1.8. High fluid/melt mass ratios (∼15) were employed, allowing precise and accurate partition coefficients to be obtained by mass balance calculations. Chlorine exhibits Henrian behavior at ClO-0.5 activities typical for arc magmas, with D Cl volatile/melt = 1.36 ± 0.06 (1σ) below 0.2 wt.% Cl in the melt; at higher ClO-0.5 activities, D Cl volatile/melt increases linearly to 2.11 ± 0.02 at 1 wt.% Cl in the melt. In the volatile phase: FeCl2 ∼ NaCl > KCl ∼ HCl. The determination of cation exchange coefficients for major cations yielded: K K,Na volatile/melt = 1.23 ± 0.10 (1σ) and ∗K Fe,Na volatile/melt = D Fe volatile/melt / D Na volatile/melt = 1.08 ± 0.16 (1σ). Under these conditions, the concentration of HCl in the vapor is negatively correlated with the (Na + K)/(Al + Fe3+) ratio in the melt. Reduced sulfur (S2-) appears to obey Henry's law in andesite melt-volatile system at fH2S below pyrrhotite saturation. The partition coefficient for S at fO2 = NNO-0.5 correlates negatively with the FeO concentration in the melt, changing from 254 ± 25 at 4.0 wt.% FeO to 88 ± 6 at 7.5 wt.% FeO. Pyrrhotite saturation is reached when approximately 3.2 mol% S is present in the volatile phase at fO2 = NNO-0.5. At the sulfide/sulfate transition, the partition coefficient of S drops from 171 ± 23 to 21 ± 1 at a constant FeO content of ∼6 wt.% in the melt. At fO2 = NNO+1.8, anhydrite saturation is reached at ∼3.3 mol% S present in the volatile phase. Aqueous volatiles exsolving from intermediate to mafic magmas can efficiently extract S, and effect its transfer to sites of magmatic-hydrothermal ore deposit formation.

  15. Aqueous alteration on main-belt asteroids

    Science.gov (United States)

    Fornasier, S.; Lantz, C.; Barucci, M.; Lazzarin, M.

    2014-07-01

    The study of aqueous alteration is particularly important for unraveling the processes occurring during the earliest times in Solar System history, as it can give information both on the thermal processes and on the localization of water sources in the asteroid belt, and for the associated astrobiological implications. The aqueous alteration process produces the low temperature (< 320 K) chemical alteration of materials by liquid water which acts as a solvent and produces materials like phyllosilicates, sulphates, oxides, carbonates, and hydroxides. This means that liquid water was present in the primordial asteroids, produced by the melting of water ice by heating sources, very probably by ^{26}Al decay. Hydrated minerals have been found mainly on Mars surface, on primitive main-belt asteroids (C, G, B, F, and P-type, following the classification scheme by Tholen, 1984) and possibly also on few transneptunian objects. Reflectance spectroscopy of aqueous altered asteroids shows absorption features in the 0.6-0.9 and 2.5-3.5-micron regions, which are diagnostic of, or associated with, hydrated minerals. In this work, we investigate the aqueous alteration process on a large sample of 600 visible spectra of C-complex asteroids available in the literature. We analyzed all these spectra in a similar way to characterize the absorption-band parameters (band center, depth, and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo, and sizes. We find that 4.6 % of P, 7.7 % of F, 9.8 % of B, 50.5 % of C, and 100 % of the G-type asteroids have absorption bands in the visible region due to hydrated silicates. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the P → F → B → C → G asteroids, these last being widely aqueously altered, strengthening thus

  16. A comparison of methods for melting point calculation using molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Maginn, EJ

    2012-04-14

    Accurate and efficient prediction of melting points for complex molecules is still a challenging task for molecular simulation, although many methods have been developed. Four melting point computational methods, including one free energy-based method (the pseudo-supercritical path (PSCP) method) and three direct methods (two interface-based methods and the voids method) were applied to argon and a widely studied ionic liquid 1-n-butyl-3-methylimidazolium chloride ([BMIM][Cl]). The performance of each method was compared systematically. All the methods under study reproduce the argon experimental melting point with reasonable accuracy. For [BMIM][Cl], the melting point was computed to be 320 K using a revised PSCP procedure, which agrees with the experimental value 337-339 K very well. However, large errors were observed in the computed results using the direct methods, suggesting that these methods are inappropriate for large molecules with sluggish dynamics. The strengths and weaknesses of each method are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3702587

  17. Ionic liquid-stabilized non-spherical gold nanofluids synthesized using a one-step method.

    Science.gov (United States)

    Zhang, Hao; Cui, Hua; Yao, Shiwei; Zhang, Kelong; Tao, Haikun; Meng, Haibo

    2012-10-23

    Ionic liquid (IL)-stabilized non-spherical gold nanofluids have been synthesized by a one-step method in aqueous solution. The whole reaction proceeded in room temperature. In the presence of amino-functionalized ionic liquids, gold nanofluids with long-wave surface plasmon resonance (SPR) absorption (>600 nm) could be obtained by adopting tannic acid as the reductant. The specific SPR absorption was related to the non-spherical gold nanoparticles including gold triangle, decahedra, and icosahedra nanocrystals. All the nanocrystals were observed by transmission electron microscopy. It was deduced that the formation of non-spherical gold nanofluids was related to the hydroxyls in tannic acid while IL acted as the synthesis template.

  18. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater at different scales, not only under diffusion-dominated regimes but also under advection-dominated flow through conditions [1]. When dissolved species are charged, besides the magnitude...... of their aqueous diffusion coefficients also the electrostatic interactions significantly affect solute displacement. We investigated electrostatic interactions between ionic species under flow-through conditions resulting in multicomponent ionic dispersion: the dispersive fluxes of the different ions in the pore...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection...

  19. Physicochemical effects in aging aqueous Laponite suspensions.

    Science.gov (United States)

    Shahin, A; Joshi, Yogesh M

    2012-11-06

    We study aging behavior of an aqueous suspension of Laponite as a function of concentration of Laponite, concentration of salt, time elapsed since preparation of suspension (idle time), and temperature by carrying extensive rheological and conductivity experiments. We observe that temporal evolution of elastic moduli, which describes structural build-up and aging, shifts to low times for experiments carried out for higher concentration of Laponite, higher concentration of salt, greater temperature, and longer idle time while preserving the curvature of evolution in the solid regime (elastic modulus greater than viscous modulus). Consequently appropriate shifting of evolution of elastic modulus in the solid regime leads to aging time-idle time-salt concentration-Laponite concentration-temperature superposition. The existence of such a superposition suggests the generic nature of microstructure buildup irrespective of mentioned variables in the explored range. The behavior of shift factors needed to obtain the superposition indicate that the energy barrier associated with structural buildup decreases with an increase in idle time and temperature and decreases linearly with an increase in concentration of Laponite and that of salt. The conductivity experiments show that ionic conductivity of the suspension increases with increasing Laponite concentration, salt concentration, temperature, and very importantly the idle time. We also analyze the interparticle interactions using DLVO theory that suggests an increase in idle time, temperature, and salt concentration increases the height of the repulsive energy barrier while it decreases the width of the same when particles approach each other in a parallel fashion. However when particles approach each other in a perpendicular fashion, owing to dissimilar charges on edge and face, the energy barrier for the attractive interaction is expected to decrease with an increase in idle time, temperature, and salt concentration

  20. Do Melt Inclusions Answer Big Questions?

    Science.gov (United States)

    Hofmann, A. W.; Sobolev, A. V.

    2009-12-01

    In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of

  1. Quantized friction across ionic liquid thin films

    Science.gov (United States)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  2. Quantized friction across ionic liquid thin films.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  3. Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications.

    Science.gov (United States)

    Mohapatra, Prasanta Kumar

    2017-02-14

    Studies on the extraction of actinide ions from radioactive feeds have great relevance in nuclear fuel cycle activities, mainly in the back end processes focused on reprocessing and waste management. Room temperature ionic liquid (RTIL) based diluents are becoming increasingly popular due to factors such as more efficient extraction vis-à-vis molecular diluents, higher metal loading, higher radiation resistance, etc. The fascinating chemistry of the actinide ions in RTIL based solvent systems due to complex extraction mechanisms makes it a challenging area of research. By the suitable tuning of the cationic and anionic parts of the ionic liquids, their physical properties such as density, dielectric constant and viscosity can be changed which are considered key parameters in metal ion extraction. Aqueous solubility of the RTILs, which can lead to significant loss in the solvent inventory, can be avoided by appending the extractant moieties onto the ionic liquid. While the low vapour pressure and non-flammability of the ionic liquids make them appear as 'green' diluents, their aqueous solubility raises concerns of environmental hazards. The present article gives a summary of studies carried out on actinide ion extraction and presents perspectives of its applications in the nuclear fuel cycle. The article discusses various extractants used for actinide ion extraction and at many places, comparison is made vis-à-vis molecular diluents which includes the nature of the extracted species and the mechanism of extraction. Results of studies on rare earth elements are also included in view of their similarities with the trivalent minor actinides.

  4. A benchmark initiative on mantle convection with melting and melt segregation

    Science.gov (United States)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  5. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  6. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  7. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  8. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  9. Purification of Niobium by Electron Beam Melting

    Science.gov (United States)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  10. Stability of foams in silicate melts

    Science.gov (United States)

    Proussevitch, Alexander A.; Sahagian, Dork L.; Kutolin, Vladislav A.

    1993-12-01

    Bubble coalescence and the spontaneous disruption of high-porosity foams in silicate melts are the result of physical expulsion of interpore melt (syneresis) leading to bubble coalescence, and diffusive gas exchange between bubbles. Melt expulsion can be achieved either along films between pairs of bubbles, or along Plateau borders which represent the contacts between 3 or more bubbles. Theoretical evaluation of these mechanisms is confirmed by experimental results, enabling us to quantify the relevant parameters and determine stable bubble size and critical film thickness in a foam as a function of melt viscosity, surface tension, and time. Foam stability is controlled primarily by melt viscosity and time. Melt transport leading to coalescence of bubbles proceeds along inter-bubble films for smaller bubbles, and along Plateau borders for larger bubbles. Thus the average bubble size accelerates with time. In silicate melts, the diffusive gas expulsion out of a region of foam is effective only for water (and even then, only at small length scales), as the diffusion of CO 2 is negligible. The results of our analyses are applicable to studies of vesicularity of lavas, melt degassing, and eruption mechanisms.

  11. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational viscos...

  12. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubble...

  13. Bubble Formation in Basalt-like Melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Keding, Ralf; Yue, Yuanzheng

    2011-01-01

    The effect of the melting temperature on bubble size and bubble formation in an iron bearing calcium aluminosilicate melt is studied by means of in-depth images acquired by optical microscopy. The bubble size distribution and the total bubble volume are determined by counting the number of bubbles...

  14. Shock-induced melting and rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Gourdin, W.H.; Maple, M.B.

    1987-08-01

    Model calculations are presented to estimate that approx.50 GPa is required to completely shock melt metal powders with quenching at rates up to 10/sup 8/ K/s. Experiments are discussed for powders of a Cu-Zr alloy compacted in the usual way at 16 GPa and melted by shocking to 60 GPa. 12 refs.

  15. Rheological signatures of gelation and effect of shear melting on aging colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Jatav, Shweta; Joshi, Yogesh M, E-mail: joshi@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India)

    2014-09-01

    Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work, we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time, tan δ is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with an increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.

  16. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid.

    Science.gov (United States)

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu(2+) through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10(-3)-10(-6) M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments.

  17. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    Science.gov (United States)

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  18. Size-dependent melting of Bi nanoparticles

    Science.gov (United States)

    Olson, E. A.; Efremov, M. Yu.; Zhang, M.; Zhang, Z.; Allen, L. H.

    2005-02-01

    Nanocalorimetry was used to investigate the melting of Bi nanoparticles. The particles were formed by evaporating Bi onto a silicon nitride substrate, which was then heated. The particles self-assemble into truncated spherical particles. Below 5-nm average film thickness, mean particle sizes increased linearly with deposition thickness but increased rapidly for 10-nm-thick films. As expected, small particles were found to exhibit size-dependent melting temperatures less than the bulk melting temperature (e.g., ΔT =67K for a 3-nm radius particle). The measured melting temperatures for particles below ˜7nm in radius, however, were ˜50K above the value predicted by the homogeneous melting model. We discuss this discrepancy in terms of a possible size-dependent crystal structure change and the superheating of the solid phase.

  19. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  20. Effect of the ionic liquid [bmim]Cl and high pressure on the activity of cellulase

    OpenAIRE

    Salvador, Ângelo C.; Santos, Mickael Da C.; Saraiva, Jorge A.

    2010-01-01

    The effect of the ionic liquid 1-butyl-3-methylimidazolium chloride ([bmim]Cl) and of high pressure on the activity of cellulase from Aspergillus niger were studied separately and in combination. The enzyme activity decreased with increasing concentrations of [bmim]Cl, reaching 50% the value in aqueous buffer with 20% [bmim]Cl. However, when the enzyme is held in 10% [bmim]Cl and is then assayed in 1% [bmim]Cl, it showed only 8% reduction of activity. These results can be explained by the ...

  1. Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Mysyk, R.; Raymundo-Pinero, E.; Beguin, F. [CRMD, CNRS-University, 1B rue de la Ferollerie, 45071 Orleans (France); Anouti, M.; Lemordant, D. [Universite Francois Rabelais, Laboratoire PCMB/CIME, Parc de Grandmont, 37200 Tours (France)

    2010-03-15

    Protic ionic liquids (PILs) were used as novel electrolyte for carbon-based supercapacitors. The cyclic voltammograms in three-electrode cells show reversible redox humps, revealing pseudo-faradaic charge transfer. Oxidative treatment of activated carbon enriches the surface functionality and leads to a higher capacitance owing to a stronger pseudo-faradaic contribution. The capacitors using PILs demonstrate a higher voltage window than with aqueous H{sub 2}SO{sub 4}, while keeping the same values of capacitance, and being able to operate at lower temperature. A combination of activated carbons and PILs holds promise for improving the energy characteristics of supercapacitors. (author)

  2. The susceptibility critical exponent for a nonaqueous ionic binary mixture near a consolute point

    Science.gov (United States)

    Zhang, Kai C.; Briggs, Matthew E.; Gammon, Robert W.; Levelt Sengers, J. M. H.

    1992-01-01

    We report turbidity measurements of a nonaqueous ionic solution of triethyl n-hexylammonium triethyl n-hexylboride in diphenyl ether. A classical susceptibility critical exponent gamma = 1.01 +/- 0.01 is obtained over the reduced temperature range t between values of 0.1 and 0.0001. The best fits of the sample transmission had a standard deviation of 0.39 percent over this range. Ising and spherical model critical exponents are firmly excluded. The correlation length amplitude xi sub 0 from fitting is 1.0 +/- 0.2 nm which is much larger than values found in neutral fluids and some aqueous binary mixtures.

  3. Volatile diffusion in silicate melts and its effects on melt inclusions

    Directory of Open Access Journals (Sweden)

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  4. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  5. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes;

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  6. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    Science.gov (United States)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  7. Phosphonium-based ionic liquids and uses

    Energy Technology Data Exchange (ETDEWEB)

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  8. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...

  9. Ionic Liquid Epoxy Composite Cryotanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  10. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  11. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG HaiBo; ZHOU XiaoHai; DONG JinFeng; ZHANG GaoYong; WANG CunXin

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents, which promises widespread applications in industry and other areas. However, the ionic liquids with surface activity are rarely reported. In this work, a series of novel ionic liquids was synthesized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized, which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  12. Ionic liquids in the synthesis of nanoobjects

    Energy Technology Data Exchange (ETDEWEB)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A [Institute of Chemistry and Problems of Sustainable Development D.I.Mendeleev University of Chemical Technology of Russia (Russian Federation)

    2010-08-12

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  13. Ionic liquids in the synthesis of nanoobjects

    Science.gov (United States)

    Tarasova, Natalia P.; Smetannikov, Yurii V.; Zanin, A. A.

    2010-08-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  14. Superbase-derived protic ionic liquids

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  15. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  16. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  17. Interaction of Novel Ionic Liquids with Soils

    OpenAIRE

    2013-01-01

    With the constant development of new ionic liquids, the understanding of the chemical fate of these compounds also needs to be updated. To this effect, the interaction of a number of novel ionic liquids with soils was determined. Therefore, three novel headgroups (ammonium, phosphonium, or pyrrolidinium) with single or quaternary substitution were tested on a variety of soils with high-to-low organic matter content and high-to-low cation exchange capacity, thereby trying to capture the full r...

  18. Electrochemical behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.

    Science.gov (United States)

    Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David

    2017-02-15

    Biomass derived polymers, such as lignin, contain redox quinone/hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge storage properties. However, their performance has been just studied in acidic aqueous media limiting the applications mainly to supercapacitors. Here we show that PEDOT/Lignin biopolymers are electroactive in aprotic ionic liquids and we move a step further by assembling sodium full cell batteries using PEDOT/Lignin as electrode material and ionic liquid electrolytes. Thus, the electrochemical activity and cycling of PEDOT/Lignin electrodes is investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid electrolytes. The effects of water and sodium salt addition to the ionic liquids are investigated in order to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/Lignin cathode with imidazolium based ionic liquid electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg-1. Our results demonstrate that PEDOT/Lignin composites can serve as low cost and sustainable cathode materials for sodium batteries.

  19. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    Science.gov (United States)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-09-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements.

  20. 离子液体的定量结构-性质/活性研究%Research of QSPR/QSAR for Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    赵永升; 张香平; 赵继红; 张宏忠; 康雪晶; 董峰

    2012-01-01

    Ionic liquids, which are considered as the sustainable "green product", are gaining increasing interest due to their physical and chemical characteristics. Although a lot of efforts have been focused on the investigation of their syntheses and applications, structure-property/activity relationships of ionic liquids are poorly known to us. The quantitative structure-property/activity relationships (QSPR/QSAR) research methods and steps are described systematically in this article. The latest researches of quantitative structure-property/activity relationships on the melting points of ionic liquids, the infinite dilution activity coefficients of organic compounds, surface tensions of ionic liquids, conductivities of ionic liquids, solubility of organic solutes in ionic liquids, viscosities of ionic liquids and biological toxicity and degradation of ionic liquids are reviewed. Both advantages and disadvantages of the QSPR/QSAR used in the ionic liquid property prediction are discussed, and the prospective of this research area is proposed.%本文系统介绍了离子液体定量结构-性质/活性相关(QSPR/QSAR)的研究方法和步骤,综述了QSPR/QSAR在离子液体的熔点、有机物在离子液体中的无限稀释活度系数、离子液体的表面张力、离子液体的电导率、有机物在离子液体中的溶解度、离子液体的黏度以及离子液体的生物毒性和降解性等方面的最新研究进展,总结了该方法的优缺点,并对未来的研究趋势进行了展望。

  1. Prediction of gas solubilities in ionic liquids.

    Science.gov (United States)

    Oliferenko, Alexander A; Oliferenko, Polina V; Seddon, Kenneth R; Torrecilla, José S

    2011-10-14

    Ionic liquids (of which it is estimated that there are at least one million simple fluids) generate a rich chemical space, which is now just at the beginning of its systematic exploration. Many properties of ionic liquids are truly unique and, which is more important, can be finely tuned. Differential solubility of industrial chemicals in ionic liquids is particularly interesting, because it can be a basis for novel, efficient, environmentally friendly technologies. Given the vast number of potential ionic liquids, and the impossibility of a comprehensive empirical exploration, it is essential to extract the maximum information from extant data. We report here some computational models of gas solubility. These multiple regression- and neural network-based models cover a chemical space spanned by 48 ionic liquids and 23 industrially important gases. Molecular polarisabilities and special Lewis acidity and basicity descriptors calculated for the ionic liquid cations and anions, as well as for the gaseous solutes, are used as input parameters. The quality of fit "observed versus predicted Henry's law constants" is particularly good for the neural network model. Validation was established with an external dataset, again with a high quality fit. In contrast to many other neural network models published, our model is no "black box", since contributions of the parameters and their nonlinearity characteristics are calculated and analysed.

  2. Ion transport and softening in a polymerized ionic liquid

    Science.gov (United States)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    . Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field. Electronic supplementary information (ESI) available: Details of the COMSOL modeling focusing on temperature distribution in polymer film under biased AFM tip, estimated of ionic conductivity using SPM and BDS measurements, Poisson-Nernst-Planck-Wien-Onsager model and thermodynamic description of the depression in melting due to the presence of ``free'' ions can be found in the ESI. See DOI: 10.1039/c4nr05491a

  3. Dielectric spectra broadening as the signature of dipole-matrix interaction. II. Water in ionic solutions.

    Science.gov (United States)

    Levy, Evgeniya; Puzenko, Alexander; Kaatze, Udo; Ben Ishai, Paul; Feldman, Yuri

    2012-03-21

    In this, the second part of our series on the dielectric spectrum symmetrical broadening of water, we consider ionic aqueous solutions. If in Part I, dipole-dipole interaction was the dominant feature, now ion-dipole interplay is shown to be the critical element in the dipole-matrix interaction. We present the results of high-frequency dielectric measurements of different concentrations of NaCl/KCl aqueous solutions. We observed Cole-Cole broadening of the main relaxation peak of the solvent in the both electrolytes. The 3D trajectory approach (described in detail in Part I) is applied in order to highlight the differences between the dynamics and structure of solutions of salts on one hand and dipolar solutes on the other hand.

  4. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  5. Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants.

    Science.gov (United States)

    Zeng, Huan; Wang, Yuzhi; Kong, Jinhuan; Nie, Chan; Yuan, Ya

    2010-12-15

    An ionic liquid-based microwave-assisted extraction (ILMAE) method has been developed for the effective extraction of rutin from Chinese medicinal plants including Saururus chinensis (Lour.) Bail. (S. chinensis) and Flos Sophorae. A series of 1-butyl-3-methylimidazolium ionic liquids with different anions were investigated. The results indicated that the characteristics of anions have remarkable effects on the extraction efficiency of rutin and among the investigated ionic liquids, 1-butyl-3-methylimidazolium bromide ([bmim]Br) aqueous solution was the best. In addition, the ILMAE procedures for the two kinds of medicinal herbs were also optimized by means of a series of single factor experiments and an L(9) (3(4)) orthogonal design. Compared with the optimal ionic liquid-based heating extraction (ILHE), marinated extraction (ILME), ultrasonic-assisted extraction (ILUAE), the optimized approach of ILMAE gained higher extraction efficiency which is 4.879 mg/g in S. chinensis with RSD 1.33% and 171.82 mg/g in Flos Sophorae with RSD 1.47% within the shortest extraction time. Reversed phase high performance liquid chromatography (RP-HPLC) with ultraviolet detection was employed for the analysis of rutin in Chinese medicinal plants. Under the optimum conditions, the average recoveries of rutin from S. chinensis and Flos Sophorae were 101.23% and 99.62% with RSD lower than 3%, respectively. The developed approach is linear at concentrations from 42 to 252 mg L(-1) of rutin solution, with the regression coefficient (r) at 0.99917. Moreover, the extraction mechanism of ILMAE and the microstructures and chemical structures of the two researched samples before and after extraction were also investigated. With the help of LC-MS, it was future demonstrated that the two researched herbs do contain active ingredient of rutin and ionic liquids would not influence the structure of rutin.

  6. Enzymatic hydrolysis of penicillin in mixed ionic liquids/water two-phase system.

    Science.gov (United States)

    Jiang, Yangyang; Xia, Hansong; Guo, Chen; Mahmood, Iram; Liu, Huizhou

    2007-01-01

    In this paper, an integrated process involving the mixed ionic liquids/water two-phase system (MILWS) is proposed to improve the efficiency for enzymatic hydrolysis of penicillin G. First, hydrophilic [C4mim]BF4 (1-butyl-3-methylimidazolium tetrafluoraborate) and NaH2PO4 salt form an ionic liquids aqueous two-phase system (ILATPS), which could extract penicillin from its fermentation broth efficiently. Second, a hydrophobic [C4mim]PF6 (1-butyl-3-methylimidazolium hexafluoraphosphate) is introduced into the ionic liquids-rich phase of ILATPS containing penicillin and converses it into MILWS. Penicillin is hydrolyzed by penicillin acylase in the water phase of MILWS at pH 5. The byproduct phenylacetic acid (PAA) is partitioned into the ionic liquids mixture phase, while the intended product 6-aminopenicillanic acid (6-APA) is precipitated at this pH. In comparison with a similar butyl acetate/water system (BAWS) at pH 4, MILWS exhibits two advantages. (1) The selectivity between PAA and penicillin is greatly optimized at pH 5 by varying the mole ratio of [C4mim]PF6/[C4mim]BF4 in MILWS, whereas in BAWS the unalterable nature of the organic solvent restricts the optimized pH for maximum selectivity between PAA and penicillin at pH 4. (2) The pH for 6-APA precipitation in BAWS is 4, whereas it shifts to pH 5 in MILWS due to the complexation between negatively charged 6-APA and the cationic surface of the ionic liquids micelle. As a result, the removal of the two products from the enzyme sphere at relatively high pH is permitted in MILWS, which is beneficial for enzymatic activity and stability in comparison with the acidic pH 4 environment in BAWS.

  7. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    Science.gov (United States)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  8. Melt and Chemical Transport in the Mantle: Insights from Deglaciation-Induced Melting Perturbations in Iceland

    Science.gov (United States)

    Eason, D. E.; Ito, G.; Sinton, J. M.

    2011-12-01

    Eruptive products represent a time-averaged view of the melting region and melt migration processes, making numerous fundamental parameters of the melt system difficult to constrain. Temporal and spatial variations in melting provide potential windows into this obscure region of the Earth by preferentially sampling melts from different regions of the mantle or mixing melts over different length-scales. We present a newly extended geochemical time series from the Western Volcanic Zone (WVZ) of Iceland, which experienced a short-lived melting perturbation due to glacial unloading during the last major deglaciation (~15-10 ka). Glacial unloading during this period led to increased degrees of melting particularly in the shallow mantle, which is manifest as an observed increase in volcanic production up to 30 times the steady-state value, decreased levels of highly to moderately incompatible element ratios (e.g., a 35-50% decrease in Nb/Y, with the greatest change occurring in the northernmost WVZ), and elevated SiO2 and CaO concentrations (~0.8 wt. % and ~1.9 wt. % increase in average oxide concentrations respectively) during and immediately following deglaciation. Although eruptive productivity returns to steady-state values within ~3000 yr following deglaciation, the incompatible element concentrations in erupted lavas gradually increase throughout the post-glacial period. We exploit this short-lived melting perturbation to examine and constrain knowledge of fundamental characteristics of melt generation and transport, including mantle permeability, melt ascent rates, depth-dependent melting functions (dF/dP), and the nature of chemical transport and melt mixing in the system. Using conservation equations describing the generation and porous flow of melt in a viscous matrix, we model melt migration in the mantle during and after ice sheet removal, as well as trace element transport for both equilibrium and disequilibrium transport end members. The predicted

  9. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  10. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking.

    Science.gov (United States)

    Shen, Wei; Hsieh, You-Lo

    2014-02-15

    Sodium alginate (SA) hybrid fibers have been robustly fabricated by electrospinning of aqueous mixtures containing as high as 60% SA in the presence of polyvinyl alcohol (PVA). Solution viscosities of SA, PVA and their mixtures showed fiber spinning to be strongly influenced by the balance between SA-PVA and PVA-PVA intermolecular polar interaction and SA-SA repulsion. Low viscosity SAl (50 mPas at 1%) enabled higher SA loadings without significantly increasing mixture viscosities, producing more cylindrical fibers. All aqueous mixtures containing 33.3-60% SAl (5.68-7.15% total SAl-PVA) had viscosities ranging from 530 to 3600 mPas and could be electrospun continuously for at least 48 h. The SA-PVA hybrid fibers had diameters ranging from ca. 140 to 350 nm and were rendered stable in water via simultaneous ionic-crosslinking SA and crystallization of PVA (5% CaCl2 in 75% EtOH for 30 min). This aqueous electrospinning and physical crosslinking approach is a green and highly efficient alternative to create alginate hybrid fibers that are biologically compatible and ingestible for potential biomedical, food and other applications.

  11. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  12. Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER).

    Science.gov (United States)

    Szopinski, Daniel; Handge, Ulrich A; Kulicke, Werner-Michael; Abetz, Volker; Luinstra, Gerrit A

    2016-01-20

    The extensional rheological properties of aqueous ionic carboxymethyl hydroxypropyl guar gum (CMHPG) and non-ionic hydroxypropyl guar gum (HPG) solutions between the semi-dilute solution state and the concentrated network solution state were investigated by capillary breakup elongational rheometry (CaBER). Carboxymethylated guar gum derivatives show an instable filament formation in deionized water. The ratio of elongational relaxation time λE over the shear relaxation time λS follows a power law of λE/λS∼(c · [η])(-2). The difference of the relaxation times in shear and elongation can be related to the loss of entanglements and superstructures in elongational flows at higher strains.

  13. Calibration of membrane inlet mass spectrometric measurements of dissolved gases: differences in the responses of polymer and nano-composite membranes to variations in ionic strength.

    Science.gov (United States)

    Miranda, L D; Byrne, R H; Short, R T; Bell, R J

    2013-11-15

    This work examines the transmission behavior of aqueous dissolved methane, nitrogen, argon and carbon dioxide through two types of membranes: a polysiloxane nano-composite (PNC) membrane and a conventional polydimethylsiloxane (PDMS) membrane. Transmission properties at 30 °C were examined by membrane introduction mass spectrometry (MIMS) at nearly constant gas partial pressures in NaCl solutions over a range of ionic strength (0-1 molal). Gas flow rates were examined as a function of dissolved gas concentrations using the Setschenow equation. Although MIMS measurements with PDMS and PNC membranes produced signal responses that were directly proportional to aqueous dissolved gas concentrations, the proportionalities varied with ionic strength and were distinctly different for the two types of membranes. With the exception of carbon dioxide, the PNC membrane had membrane salting coefficients quite similar to Setschenow coefficients reported for gases in aqueous solution. In contrast, the PDMS membrane had membrane salting coefficients that were generally smaller than the corresponding Setschenow gas coefficient for each gas. Differences between Setschenow coefficients and membrane salting coefficients lead to MIMS calibrations (gas-flow vs. gas-concentration proportionalities) that vary with ionic strength. Accordingly, gas-flow vs. gas-concentration relationships for MIMS measurements with PDMS membranes are significantly dependent on ionic strength. In contrast, for PNC membranes, flow vs. concentration relationships are independent (argon, methane, nitrogen) or weakly dependent (CO2) on ionic strength. Comparisons of gas Setschenow and membrane salting coefficients can be used to quantitatively describe the dependence of membrane gas-flow on gas-concentrations and ionic strength for both PDMS and PNC membranes.

  14. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes

  15. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang, E-mail: panyuanjiang@zju.edu.cn

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu{sup 2+} through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10{sup −3}–10{sup −6} M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments. - Highlights: • A novel task-specific ionic liquid functionalized gold nanoparticle was successfully prepared. • This material was successfully applied to recognizing five amino acids with Cu(II) through distinctive color changes. • The proposed strategy was successfully used to analyze the histidine in real samples.

  16. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  17. Characterization of aqueous silver nitrate solutions for leakage tests

    Science.gov (United States)

    COSTA, José Ferreira; SIQUEIRA, Walter Luiz; LOGUERCIO, Alessandro Dourado; REIS, Alessandra; de OLIVEIRA, Elizabeth; ALVES, Cláudia Maria Coelho; BAUER, José Roberto de Oliveira; GRANDE, Rosa Helena Miranda

    2011-01-01

    Objectives To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. Material and Methods A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). Results The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). Conclusions Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of

  18. Adsorption of Pb2+, Zn2+ and Ni2+ from Aqueous Solution by Helix aspera Shell

    Directory of Open Access Journals (Sweden)

    A. S. Ekop

    2009-01-01

    Full Text Available The adsorption capacity of Helix aspera shell for Pb2+, Zn2+ and Ni2+ has been studied. This shell has the potential of adsorbing Pb2+, Zn2+ and Ni2+ from aqueous solution. The adsorption potentials of Helix aspera shell is largely influenced by the ionic character of the ions and occurred according to the order Pb2+ > Ni2+ > Zn2+. The adsorption of Pb(II, Zn(II and Ni(II ions from aqueous solutions by Helix aspera shell is thermodynamically feasible and is consistent with the models of Langmuir and Freundlich adsorption isotherms. From the results of the study, the shell of Helix aspera is recommended for use in the removal of Pb2+, Zn2+ and Ni2+ from aqueous solution.

  19. Transport extraction for trace element separation and preconcentration. Pt. 2; Preconcentration of iodine from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palagyi, S. (Inst. of Inorganic and Analytical Chemistry, L. Eoetvoes Univ., Budapest (Hungary)); Braun, T. (Inst. of Inorganic and Analytical Chemistry, L. Eoetvoes Univ., Budapest (Hungary))

    1993-08-01

    Transport extraction based on solvent sublation has been used for a 400-fold preconcentration of iodide from aqueous samples into an immiscible organic solvent. Separation efficiencies amounting up to 95% were obtained for iodide concentrations of 1-10 mg/l, independent of the volume of the aqueous samples in the range of 1-4l. Iodide was oxidized to iodine, which was subsequently transport-extracted as an ionic associate with the cationic surface-active agent N-cetylpyridinium chloride into 10ml of benzene. The effect of various parameters (concentration of iodide, bubbling time, N[sub 2]-gas flow-rate, volume of the aqueous phase) on transport extraction was investigated. Kinetic investigations showed that the transport-extraction process essentially follows a modified Langmuir adsorption model, which makes it possible to calculate the mass-transfer rate constant of the process for each particular case. (orig.)

  20. Physics of the Lindemann melting rule

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Andrew C [Los Alamos National Laboratory

    2008-01-01

    We investigate the thermodynamics of melting for 74 distinct chemical elements including several actinides and rare earths. We find that the observed melting points are consistent with a linear relationship between the correlation entropy of the liquid and the Grueneisen constant of the solid, and that the Lindemann rule is well obeyed for the elements with simple structures and less well obeyed for the less symmetric more open structures. No special assumptions are required to explain the melting points of the rare earths or light actinides.