WorldWideScience

Sample records for aqueous ion testing

  1. Protons and Hydroxide Ions in Aqueous Systems.

    Science.gov (United States)

    Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali

    2016-07-13

    Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics. PMID:27314430

  2. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  3. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.

    Science.gov (United States)

    Kustin, Kenneth

    2015-06-01

    Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics. PMID:25578410

  4. Adsorption of lead ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto; Krstev, Aleksandar

    2014-01-01

    The adsorption of lead ions from synthetic aqueous solutions was performed by using natural zeolite (clinoptilolite). In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial concentration of lead ions, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90...

  5. Adsorption of copper ions from aqueous solutions on natural zeolite

    OpenAIRE

    Zendelska, Afrodita; Golomeova, Mirjana; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2015-01-01

    The adsorption of copper ions from synthetic aqueous solutions on natural zeolite (clinoptilolite) was examined. In order to determine the rate of adsorption and the copper uptake at equilibrium, a series of experiments were performed under batch conditions from single ion solutions. Equilibrium data were evaluated based on adsorption (Langmuir and Freundlich) isotherms. The adsorption kinetics is reasonably fast. In the first 20 min of the experiment, approximately 80% of Cu2+ io...

  6. A new strategy to stabilize oxytocin in aqueous solutions : I. The effects of divalent metal ions and citrate buffer

    NARCIS (Netherlands)

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J. M.; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2011-01-01

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na+and K+) and divalent metal ions (Ca2+, Mg2+, and Zn2+) were tested all as chloride salts. The effec

  7. Benzimidazole Based 'Turn on' Fluorescent Chemodosimeter for Zinc Ions in Mixed Aqueous Medium.

    Science.gov (United States)

    Sharma, Shilpa; Pradeep, Chullikkattil P; Dhir, Abhimanew

    2016-07-01

    Benzimidazole based compound 3 is designed and synthesized. The compound 3 is evaluated as fluorogenic sensor for metal ions in mixed aqueous solutions. Among all the metal ions tested, the compound 3 selectively senses Zn(2+) ions. The imine bond of 3 gets cleaved by Zn(2+) ions. Thus, 3 behave as 'turn on' fluorescent chemodosimeter for Zn(2+) ions with limit of detction in micromolar range. Furthurmore, we demonstated that 3 can detect Zn(2+) ions in cells of Allium cepa. Graphical Abstract Benzimidazole based ligand 3 is designed and synthesized which behave as chemodosimeter for Zn(2+) ions. We further demonstrated that 3 can detect Zn(2+) ions in cells of Allium cepa. PMID:27262442

  8. Heterocyclic ring based colorimetric and fluorescent chemosensor for transition metal ions in an aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Udhayakumari, Duraisamy [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Velmathi, Sivan, E-mail: velmathis@nitt.edu [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Boobalan, Maria susai [Department of Chemistry, St. Joseph' s College (Autonomous), Tiruchirappalli 620002 (India); Venkatesan, Parthiban; Wu, Shu-Pao [Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2015-02-15

    Heterocyclic ring based R1–R3 have been synthesized from the simple condensation method. R1–R3 exhibit highly selective and sensitive recognition towards transition metal ions in an aqueous medium via visual color change and were further confirmed by UV–vis and fluorescent spectroscopic methods. Fluorescent turn on and turn off behavior was observed for receptors tested with transition metal ions. The interaction of transition metal ions and receptors R1–R3 was confirmed to adopt 1:1 binding stoichiometry. Micromolar detection limit was found for R1–R3 with metal ions. DFT theoretical calculations were employed to understand the sensing mechanism of the sensors towards the metal ions. R1 and R2 were also successfully demonstrated as a fluorescent probe for detecting Cu{sup 2+} ions in living cells. - highlights: • R1–R3 act as colorimetric and fluorescent sensors for metal ions. • Receptors (R1–R3) detect Cu{sup 2+} ions in aqueous solution at nanomolar levels. • R1 and R2 act as a fluorescent probe for detecting Cu{sup 2+} ions in living cells.

  9. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  10. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  11. Aqueous corrosion behaviour of ion-implanted metals

    International Nuclear Information System (INIS)

    We can now look back at 10 years of application of ion beams in corrosion studies. Therefore, after the introduction, we first attempt to give an overview of what has been accomplished during this period in the field of aqueous corrosion, with emphasis on developments in more recent years. Then we present a more detailed discussion of some particular examples of research which make use of different types of corrosion protection mechanism as well as applications of different types of ion beam technique to metal surfaces. These examples include the application of ion beam mixing and ion-beam-assisted vapour deposition to (i) the prevention of localized corrosion, (ii) the reduction of hydrogen uptake by metals (the formation of 'migration barriers'), (iii) corrosion protection by means of ion-beam-mixed monolayers and multilayers of aluminium and boron and (iv) ion-beam-modified carbon layers and their influence on the corrosion of mild steel. Following these examples, we attempt to deduce recommendations for the future application of ion beams in corrosion science. (orig.)

  12. A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer.

    Science.gov (United States)

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J M; Hinrichs, Wouter L J; Frijlink, Henderik W

    2011-06-01

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na(+) and K(+)) and divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl(2), MgCl(2), or ZnCl(2) and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca(2+), Mg(2+), or Zn(2+), while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions.

  13. A lithium ion battery using an aqueous electrolyte solution.

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  14. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  15. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  16. Removal of uranyl ions from aqueous solutions using barium titanate

    International Nuclear Information System (INIS)

    Remediation of water sources contaminated with radioactive waste products is a major environmental issue that demands new and more efficient technologies. For this purpose, we report a highly efficient ion-exchange material for the removal of radioactive nuclides from aqueous solutions. The kinetic characteristics of adsorption of uranyl ions on the surface of barium titanate were investigated using a spectrophotometric method under a wide range of conditions. By controlling the pH it was possible to exert fine control over the speciation of uranium, and by optimizing the temperature and grain size of the exchanger, almost total removal was achieved in a matter of just hours. The highest efficiency (>90 % removal) was realized at high temperature (80 deg C). Moreover, the effect of competitive ion adsorption from a range of different cations and anions was quantified. Adsorption was found to follow first-order kinetics and both Freundlich and Langmuir isotherms could be applied to this system. The results of a mathematical treatment of the kinetic data combined with the observation that adsorption was independent of stirring speed and dependent on the ion-exchanger grain size, indicate that the dominant mechanism influencing adsorption is particle spreading. The adsorption behavior was not influenced by exposure to high-intensity gamma radiation, indicating potential for use of this ion-exchanger in systems containing radioactive material. These results will be of use in the development of uranium extraction systems for contaminated water sources. (author)

  17. Speciation of aluminum in aqueous solutions using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, P.M.; Anderson, M.A.

    1989-03-15

    An ion chromatographic method in which aluminum (AI) is quantitatively determined via postcolumn derivatization with Tiron (4,5-dihydroxy-m-benzenedisulfonic acid) was evaluated for its utility as a method for speciating AI in aqueous solutions. Fluro-, oxalato-, and citratoaluminum complexes were identified by distinct peaks within chromatograms of AI solutions when the appropriate ligand was added. Excellent quantitative agreement between predicted species concentrations (via the thermodynamic speciation model GEOCHEM) and those determined by ion chromatography was obtained for samples prepared in the eluent matrix. The predominantly outer sphere sulfatoaluminum complexes were not observed to elute as singly charged species, but rather exhibited a retention time indistinguishable from the AI(H/sub 2/O)6(3+) species. It is concluded that inner sphere AI complexes (generally possessing relatively high association constants) possess adequate kinetic stability to withstand degradation during the ion exchange process, whereas outer sphere complexes apparently readily dissociate in the presence of the sulfonate exchange sites. Deviations in sample ionic strength (mu) and pH from that of the eluent resulted in some redistribution among species, the degree of which was ligand specific.

  18. A Type of Lithium-ion Battery Based on Aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    G.J.Wang; N.H.Zhao; L.J.Fu; B.Wang; Y.P.Wu

    2007-01-01

    1 Introduction A new type of rechargeable lithium ion battery with an aqueous electrolyte was announced by W. Li et al. in 1994[1].This type of battery uses the lithium intercalation compounds LiMn2O4 and VO2 as electrode materials and an alkaline aqueous electrolytic solution. By this combination, the disadvantages of the non-aqueous Li-ion battery type, i.e. high cost and safety problems could be faded away[2]. So this type of aqueous Li-ion battery was regarded as the promising power for electric veh...

  19. Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Marta Miola

    2016-05-01

    Full Text Available In this work, two bioactive glass powders (SBA2 and SBA3 were doped with Cu by means of the ion-exchange technique in aqueous solution. SBA2 glass was subjected to the ion-exchange process by using different Cu salts (copper(II nitrate, chloride, acetate, and sulphate and concentrations. Structural (X-ray diffraction-XRD, morphological (Scanning Electron Microscopy-SEM, and compositional (Energy Dispersion Spectrometry-EDS analyses evidenced the formation of crystalline phases for glasses ion-exchanged in copper(II nitrate and chloride solutions; while the ion-exchange in copper(II acetate solutions lead to the incorporation of higher Cu amount than the ion-exchange in copper(II sulphate solutions. For this reason, the antibacterial test (inhibition halo towards S. aureus was performed on SBA2 powders ion-exchanged in copper(II acetate solutions and evidenced a limited antibacterial effect. A second glass composition (SBA3 was developed to allow a greater incorporation of Cu in the glass surface; SBA3 powders were ion-exchanged in copper(II acetate solutions (0.01 M and 0.05 M. Cu-doped SBA3 powders showed an amorphous structure; morphological analysis evidenced a rougher surface for Cu-doped powders in comparison to the undoped glass. EDS and X-ray photoelectron spectroscopy (XPS confirmed the Cu introduction as Cu(II ions. Bioactivity test in simulated body fluid (SBF showed that Cu introduction did not alter the bioactive behaviour of the glass. Finally, inhibition halo test towards S. aureus evidenced a good antimicrobial effect for glass powders ion-exchanged in copper(II acetate solutions 0.05 M.

  20. 'PET' vs. 'push-pull' induced ICT: a remarkable coumarinyl-appended pyrimidine based naked eye colorimetric and fluorimetric sensor for the detection of Hg2+ ions in aqueous media with test trips.

    Science.gov (United States)

    Goswami, Shyamaprosad; Das, Avijit Kumar; Maity, Sibaprasad

    2013-12-14

    A novel colorimetric and fluorescent chemosensor based on 7-(diethylamino)-3-(pyrimidin-4-yl)-2H-chromen-2-one (PYC) has been designed and synthesized for the detection of Hg(2+) in the presence of other competing metals in mixed aqueous media. The PYC exhibits naked eye color change from green to red, and the fluorescence color changes from yellowish green to light orange with Hg(2+). It also shows a red shift in wavelength of about 80 nm in absorption spectra. Test strips based on PYC were fabricated, which could act as convenient and efficient Hg(2+) test kits. PMID:24096453

  1. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fish, D. [Lawrence Berkeley National Lab., CA (United States)

    1996-10-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished.

  2. Enhancement of gaseous iodine emission by aqueous ferrous ions during the heterogeneous reaction of gaseous ozone with aqueous iodide.

    Science.gov (United States)

    Sakamoto, Yosuke; Enami, Shinichi; Tonokura, Kenichi

    2013-04-11

    Gaseous I2 formation from the heterogeneous reaction of gaseous ozone with aqueous iodide in the presence of aqueous ferrous ion (Fe(2+)) was investigated by electron impact ionization mass spectrometry. Emission of gaseous I2 increased as a function of the aqueous FeCl2 concentration, and the maximum I2 formation with Fe(2+) was about 10 times more than without Fe(2+). This enhancement can be explained by the OH(-) scavenging by Fe(3+) formed from Fe(2+) ozonation to produce colloidal Fe(OH)3. This mechanism was confirmed by measurements of aqueous phase products using a UV-vis spectrometer and an electrospray ionization mass spectrometer. We infer that such a pH-buffering effect may play the key role in general halogen activations.

  3. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  4. Biosorption of Lead Ions from Aqueous Solution Using Ficus benghalensis L.

    OpenAIRE

    Venkateswara Rao Surisetty; Janusz Kozinski; L. Rao Nageswara

    2013-01-01

    Ficus benghalensis L., a plant-based material leaf powder, is used as an adsorbent for the removal of lead ions from aqueous solution using the biosorption technique. The effects of process parameters such as contact time, adsorbent size and dosage, initial lead ion concentration, and pH of the aqueous solution on bio-sorption of lead by Ficus benghalensis L. were studied using batch process. The Langmuir isotherm was more suitable for biosorption followed by Freundlich and Temkin isotherms w...

  5. Exploring Ion-Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering.

    Science.gov (United States)

    Kohagen, Miriam; Pluhařová, Eva; Mason, Philip E; Jungwirth, Pavel

    2015-05-01

    Recent advances in computational and experimental techniques have allowed for accurate description of ion pairing in aqueous solutions. Free energy methods based on ab initio molecular dynamics, as well as on force fields accounting effectively for electronic polarization, can provide quantitative information about the structures and occurrences of individual types of ion pairs. When properly benchmarked against electronic structure calculations for model systems and against structural experiments, in particular neutron scattering, such force field simulations represent a powerful tool for elucidating interactions of salt ions in complex biological aqueous environments. PMID:26263314

  6. Tetraethyl Orthosilicate Coated Hydroxyapatite Powders for Lead Ions Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Rodica V. Ghita

    2014-01-01

    Full Text Available The goal of this study was to synthetize and characterize a porous material based on tetraethyl orthosilicate (TEOS coated hydroxyapatite (HApTh after removal experiments of Pb2+ ions from aqueous solutions. In order to study the morphology and composition, the samples obtained after removal experiments of Pb2+ ions from aqueous solution with the initial Pb2+ ion concentrations of the aqueous solutions were 0.1 g·L−1 (HApTh-50 and 0.9 g·L−1 (HApTh-450 have been investigated by scanning electron microscopy (SEM equipped with an energy dispersive X-ray spectrometer (EDS, Fourier transform infrared spectroscopy (FTIR, and transmission electron microscopy (TEM. Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled concentration of Pb2+. After the removal experiment of Pb2+ ions from solutions, porous hydroxyapatite nanoparticles were transformed into HApTh-50 and HApTh-450 due to the adsorption of Pb2+ ions followed by a cation exchange reaction. The obtained results show that the porous HApTh nanopowders could be used for Pb2+ ions removal from aqueous solutions.

  7. Mixed matrix membranes for efficient adsorption of copper ions from aqueous solutions

    NARCIS (Netherlands)

    Tetala, Kishore K.R.; Stamatialis, Dimitrios F.

    2013-01-01

    This work presents adsorption of copper (Cu2+) ions from aqueous solutions using mixed matrix membrane (MMM) and its elution afterwards. The developed flat sheet MMM, comprises of chitosan beads incorporated in Ethylene vinyl alcohol (EVAL) polymer porous matrix and exhibits static Cu2+ ion adsorpti

  8. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes

    OpenAIRE

    Liang Chen; Qingwen Gu; Xufeng Zhou; Saixi Lee; Yonggao Xia; Zhaoping Liu

    2013-01-01

    Rechargeable batteries made from low-cost and abundant materials operating in safe aqueous electrolytes are attractive for large-scale energy storage. Sodium-ion battery is considered as a potential alternative of current lithium-ion battery. As sodium-intercalation compounds suitable for aqueous batteries are limited, we adopt a novel concept of Li+/Na+ mixed-ion electrolytes to create two batteries (LiMn2O4/Na0.22MnO2 and Na0.44MnO2/TiP2O7), which relies on two electrochemical processes. On...

  9. Removal of lead and zinc ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto

    2014-01-01

    The removed of lead and zinc ions from synthetic aqueous solutions was performed using clinoptilolite. In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial ions concentration, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90% o...

  10. Aqueous CO2 vs. aqueous extraction of soils as a preparative procedure for acute toxicity testing

    International Nuclear Information System (INIS)

    This study was to determine if contaminated soils extracted with supercritical CO2 (SFE) would yield different results from soils extracted with an aqueous media. Soil samples from an abandoned oil refinery were subjected to aqueous and SFE extraction. Uncontaminated control sites were compared with contaminated sites. Each extract was analyzed for 48 hour acute Ceriodaphnia LC50s and Microtox reg-sign EC50s. Comparisons were then made between the aqueous extracts and the SFE extracts. An additional study was made with HPLC chromatographs of the SFE contaminated site extracts to determine if there was a correlation between LC50 results and peak area of different sections of the chromatograph. The 48 hour Ceriodaphnia LC50 of one contaminated site showed a significant increase in toxicity with the supercritical extract compared to the aqueous extract. All contaminated sites gave toxic responses with the supercritical procedure. The Microtox reg-sign assay showed a toxic response with 2 of the 3 contaminated sites for both aqueous and SFE extracts. Results indicate that the Ceriodaphnia assays were more sensitive than Microtox reg-sign to contaminants found in the refinery soil. SFE controls did not show adverse effects with the Ceriodaphnia, but did have a slight effect with Microtox reg-sign. The best correlation (r2 > 0.90) between the Ceriodaphnia LC50s and the peak areas of the chromatographs was obtained for sections with an estimated log Kow of 1 to 5. SFE extraction provided a fast, efficient and inexpensive method of collecting and testing moderately non-polar to strongly non-polar organic contaminants from contaminated soils

  11. Ion mixing, hydration, and transport in aqueous ionic systems

    International Nuclear Information System (INIS)

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities

  12. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash.

    Science.gov (United States)

    He, Kuang; Chen, Yuancai; Tang, Zhenghua; Hu, Yongyou

    2016-02-01

    Zeolite was synthesized from coal fly ash by a fusion method and was used for the removal of heavy metal ions (Pb(2+), Cd(2+), Cu(2+), Ni(2+), and Mn(2+)) in aqueous solutions. Batch method was employed to study the influential parameters such as adsorbent dosage, pH, and coexisting cations. Adsorption isotherms and kinetics studies were carried out in single-heavy and multiheavy metal systems, respectively. The Langmuir isotherm model fitted to the equilibrium data better than the Freundlich model did, and the kinetics of the adsorption were well described by the pseudo-second-order model, except for Cd(2+) and Ni(2+) ions which were fitted for the pseudo-first-order model in the multiheavy metal system. The maximum adsorption capacity and the distribution coefficients exhibited the same sequence for Pb(2+) > Cu(2+) > Cd(2+) > Ni(2+) > Mn(2+) in both single- and multiheavy metal systems. In the end, the adsorption capacity of zeolite was tested using industrial wastewaters and the results demonstrated that zeolite could be used as an alternative adsorbent for the removal of heavy metal ions from industrial wastewater.

  13. Removal of Cadmium Ions from Aqueous Solution by Silicate-incorporated Hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    SHI Hebin; ZHONG Hong; LIU Yu; DENG Jinyang

    2007-01-01

    This article reports a preliminary research on silicate-incorporated hydroxyapatite as a new environmental mineral used to remove cadmium ions from aqueous solutions. The silicate-incorporated hydroxyapatite was prepared by coprecipitation and calcining, and silicate was incorporated into the crystal lattice of hydroxyapatite by partial substitution of phosphate. The amount of cadmium ions removed by silicate-incorporated hydroxyapatite was significantly elevated, which was 76% higher than that of pure hydroxyapatite. But the sorption behavior of cadmium ions on silicate-incorporated hydroxyapatite was similar to that of pure hydroxyapatite. Morphological study revealed that silicate incorporation confined the crystal growth and increased the specific surface area of hydroxyapatite,which were in favor of enhancing the cadmium ion sorpfion capacity of the samples. Incorporation of silicate into hydroxyapatite seems to be an effective approach to improve the environmental property of hydroxyapatite on removal of aqueous cadmium ions.

  14. The removal of lead ions using zeolite nanoparticles from aqueous solutions

    Science.gov (United States)

    Joshi, Parth

    2016-05-01

    The experiment for adsorption of lead ions from its aqueous solutions were carried out at room temperature and initial concentration of lead ions as well as after adsorption were determined by UV-Visible spectrophotometer. The effect of various parameters such as contact time, zeolite nanoparticles dosage and initial concentration of lead ions on the adsorption capacity of zeolite nanoparticles were studied in batch experiment. The kinetics of the adsorption processes was studied by using pseudo-first order and pseudo-second order. The pseudo-second order kinetic model provided the best correlation of the used experimental data compared to the pseudo-first order. The maximum lead ions adsorbed was found to be 43.91 mg/g. The present study indicated that zeolite nanoparticles could be used as an efficient adsorbent for removal of lead ions from aqueous solution.

  15. Elaboration and characterization of hybrid lithium-ion conducting membranes for aqueous lithium-air batteries

    OpenAIRE

    Lancel, Gilles

    2016-01-01

    Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic condu...

  16. Equilibrium Studies of Zinc Ions Removal from Aqueous Solutions by Adsorption on Natural Zeolite

    OpenAIRE

    Zendelska, Afrodita; Golomeova, Mirjana; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2014-01-01

    The aim of this study is to use natural zeolite (clinoptilolite) as an adsorbent for the removal of zinc ions from synthetic aqueous solutions. In order to determine the zinc uptake at equilibrium a series of experiments were performed under batch conditions from ion solutions. Experiments were carried out at different initial concentracion of zinc ions and at different initial pH values at 20± 1°C. The adsorption isotherm of the zinc ions on the adsorbent was determined and corre...

  17. Biosorption of lead from aqueous solutions by ion-imprinted tetraethylenepentamine modified chitosan beads.

    Science.gov (United States)

    Liu, Bingjie; Chen, Wei; Peng, Xiaoning; Cao, Qiqi; Wang, Qianrui; Wang, Dongfeng; Meng, Xianghong; Yu, Guangli

    2016-05-01

    In this paper, the bio-based ion-imprinted tetraethylenepentamine (TEPA) modified chitosan beads using Pb(II) as imprinted ions (Pb-ITMCB) were chemically synthesized, characterized and applied to selectively adsorb Pb(II) ions from aqueous solutions containing other metal ions, which has the same concentration as that of Pb(II) ions. Batch adsorption experiments were performed to evaluate the adsorption conditions, selectivity and reusability. FTIR, SEM and TEM technologies were used to elucidate the mechanism of Pb-ITMCB adsorbing Pb(II) ions. The results showed that the adsorption capacity of Pb-ITMCB for Pb(II) ions reached 259.68mg/g at pH 6, 40°C. The adsorption data could be fitted well with pseudo-second order kinetics model and Langmuir isotherm model. Compared with other metal cations, Pb(II) ions showed an overall affinity of being adsorbed by Pb-ITMCB. With the participation of active groups including NH2, NH and OH, the adsorption reaction took place both inside and on the surface of Pb-ITMCB. It indicated that Pb-ITMCB is a comparatively promising biosorbent for selective removal of Pb(II) ions from aqueous solutions. PMID:26836613

  18. Fluorescent zinc-terpyridine complex containing coordinated peroxo counter ion in aqueous medium

    Indian Academy of Sciences (India)

    S Kapoor; M S Sastry

    2000-08-01

    We describe a mixed ligand-zinc (10) complex containing coordinated peroxo ion and 2,2'2"-terpyridine and exhibiting fluorescence in the visible region (473 nm) on excitation at 390 nm in aqueous medium at room temperature. We also discuss the unusual phenomenon of enhancement of this fluorescence intensity on addition of some transition metal ions (35, 310, 40 and 39 electronic configurations).

  19. Equilibrium Studies of Some Metal Ions onto Modified Orange Mesocarp Extract in Aqueous Solution

    OpenAIRE

    Ibezim-Ezeani, Millicent U.; Okoye, Francis A.; Akaranta, Onyewuchi

    2012-01-01

    This paper examines the equilibrium removal of Zinc, Copper, Nickel and Cobalt ions from aqueous solutions by cation exchange resins synthesized using orange mesocarp extract. The percentage metal ion exchange of Carboxylated-Toluene Di-isocyanate Orange Mesocarp Extract Resin (CTOR) increased with increase in pH of the solution phase, while that of Sulphonated-Toluene Di-isocyanate Orange Mesocarp Extract Resin (STOR) was relatively uniform with increase in solution pH. The results also show...

  20. Removal of Heavy Metal Ions From Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    maziar noei

    2014-12-01

    Full Text Available The removal of Zn(II, V(II,  by  silica aerogel has been found to be concentration, , contact time, adsorbent dose and temperature dependent. ion exchange are the major removal mechanisms involved. The adsorption isotherm studies clearly indicated that the adsorptive behaviour of metal ions on silica aerogel  was satisfied. The applicability of the Lagergren kinetic model has also been investigated. Thermodynamic constant (Kad , standard free energy ( ∆G0 ,enthalpy (∆H0 and entropy (∆S0 were calculated for predicting the nature of adsorption

  1. Structure, hydrolysis and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

    CERN Document Server

    Jiang, Zhen; Alexandrov, Vitaly

    2016-01-01

    A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries (RFB). Here, we employ Car-Parrinello molecular dynamics (CPMD) simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction and diffusion of aqueous V$^{2+}$, V$^{3+}$, VO$^{2+}$, and VO$_2^+$ ions at 300 K. The results indicate that the first hydration shell of both V$^{2+}$ and V$^{3+}$ contains six water molecules, while VO$^{2+}$ is coordinated to five and VO$_2^+$ to three water ligands. The first acidity constants (p$K_\\mathrm{a}$) estimated using metadynamics simulations are 2.47, 3.06 and 5.38 for aqueous V$^{3+}$, VO$_2^+$ and VO$^{2+}$, respectively, while V$^{2+}$ is predicted to be a fairly weak acid in aqueous solution with a p$K_\\mathrm{a}$ value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO$_2^+$ ion has a...

  2. Detection of copper ions from aqueous solutions using layered double hydroxides thin films deposited by PLD

    Science.gov (United States)

    Vlad, A.; Birjega, R.; Matei, A.; Luculescu, C.; Nedelcea, A.; Dinescu, M.; Zavoianu, R.; Pavel, O. D.

    2015-10-01

    Layered double hydroxides (LDHs) thin films with Mg-Al were deposited using pulsed laser deposition (PLD) technique. We studied the ability of our films to detect copper ions in aqueous solutions. Copper is known to be a common pollutant in water, originating from urban and industrial waste. Clay minerals, including layered double hydroxides (LDHs), can reduce the toxicity of such wastes by adsorbing copper. We report on the uptake of copper ions from aqueous solution on LDH thin films obtained via PLD. The obtained thin films were characterized using X-ray Diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results in this study indicate that LDHs thin films obtained by PLD have potential as an efficient adsorbent for removing copper from aqueous solution.

  3. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. PMID:27120336

  4. A New Fluorescent Sensor for Transition Metal Ions in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new fluorescent sensor consisted of fluorenyl and dioxotetraaza unit, namely, 2,10-dimethyl-6-(9-fluorenyl)-1,4,8,11-tetraazaundencane-5,7-dione (L), was synthesized. It is a fluorescent sensor for transition metal ions in aqueous solution.

  5. Characterization of aqueous silver nitrate solutions for leakage tests

    OpenAIRE

    José Ferreira Costa; Walter Luiz Siqueira; Alessandro Dourado Loguercio; Alessandra Reis; Elizabeth de Oliveira; Cláudia Maria Coelho Alves; José Roberto de Oliveira Bauer; Rosa Helena Miranda Grande

    2011-01-01

    OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silv...

  6. Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium

    Directory of Open Access Journals (Sweden)

    Abraham Daniel Arulraj

    2015-12-01

    Full Text Available The chemical sensing for the trace level detection of silver ion in aqueous solution still remains a challenge using simple, rapid, and inexpensive method. We report that thionine can be used as a fluorescent probe for the detection of Ag+ ion. The successive addition of Ag+ ion to the solution containing thionine quenches (turns-off the fluorescence intensity of thionine. Association and quenching constants have been estimated by the Benesi–Hildebrand method and Stern–Volmer plot, respectively. From the plot, the nature of the fluorescence quenching was confirmed as static quenching. An important feature of our chemosensor is high selectivity towards the determination of silver ion in aqueous solution over the other competitive metal ions. The detection limit of the sensor achieved 5 fM for Ag+ ion, which is superior to all previously reported chemosensors. The NMR and FT-IR studies were also carried out to support the complex formation between thionine and Ag+ ion. The practicality of the proposed chemosensor for determination of Ag+ ion was carried in untreated water samples.

  7. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals.

    Science.gov (United States)

    Chau, Mokit; Sriskandha, Shivanthi E; Pichugin, Dmitry; Thérien-Aubin, Héloïse; Nykypanchuk, Dmitro; Chauve, Grégory; Méthot, Myriam; Bouchard, Jean; Gang, Oleg; Kumacheva, Eugenia

    2015-08-10

    Nanofibrillar hydrogels are an important class of biomaterials with applications as catalytic scaffolds, artificial extracellular matrixes, coatings, and drug delivery materials. In the present work, we report the results of a comprehensive study of nanofibrillar hydrogels formed by cellulose nanocrystals (CNCs) in the presence of cations with various charge numbers and ionic radii. We examined sol-gel transitions in aqueous CNC suspensions and the rheological and structural properties of the CNC hydrogels. At a particular CNC concentration, with increasing charge and cation size, the dynamic shear moduli and mesh size in the hydrogel increased. These effects were ascribed to a stronger propensity of CNCs for side-by-side association. The resulting hydrogels had an isotropic nanofibrillar structure. A combination of complementary techniques offered insight into structure-property relationships of CNC hydrogels, which are important for their potential applications.

  8. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m3 must be reduced to 1 g/m3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m3, where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  9. Aqueous cathode for next-generation alkali-ion batteries.

    Science.gov (United States)

    Lu, Yuhao; Goodenough, John B; Kim, Youngsik

    2011-04-20

    The lithium-ion batteries that ushered in the wireless revolution rely on electrode strategies that are being stretched to power electric vehicles. Low-cost, safe electrical-energy storage that enables better use of alternative energy sources (e.g., wind, solar, and nuclear) requires an alternative strategy. We report a demonstration of the feasibility of a battery having a thin, solid alkali-ion electrolyte separating a water-soluble redox couple as the cathode and lithium or sodium in a nonaqueous electrolyte as the anode. The cell operates without a catalyst and has high storage efficiency. The possibility of a flow-through mode for the cathode allows flexibility of the cell design for safe, large-capacity electrical-energy storage at an acceptable cost. PMID:21443190

  10. Mechanisms of Ions Adsorption by Nanodiamonds in Aqueous Suspensions

    Directory of Open Access Journals (Sweden)

    K.A. Laptinskiy

    2013-12-01

    Full Text Available This work is devoted to the study of adsorption properties and adsorption mechanisms of the original (I6, modified (I6COOH nanodiamonds and charcoal dispersed in water, with respect to dissolved ions (Cu2 +, Pb2 +, NO3 –, CH3COO – using optical spectroscopy methods: Raman and IR spectroscopies, absorption, dynamic light scattering. Mechanisms of anions and cations adsorption were studied.

  11. Sodium Titanium Phosphate as Anode Materials for Aqueous Sodium-ion Batteries

    Science.gov (United States)

    Wu, Wei

    different salt concentrations) and the oxygen dissolved in the electrolyte on Na0.44MnO2/NaTi 2(PO4)3 sodium-ion battery system has been studied. High rate performance with an increased salt concentration electrolyte has been discovered and the oxygen effect has been extensively studied. Different charge methods have been tested on the aqueous sodium-ion battery systems and the capacity fading mechanisms have been studied.

  12. Applications of FETAX: Use in aqueous soil extract testing

    International Nuclear Information System (INIS)

    Frog Embryo Teratogenesis Assay-Xenopus (FETAX) testing of a series of diverse hazardous waste site soil samples was performed to evaluate the efficacy of FETAX as a rapid development toxicity screening tool. Soil samples were collected from six different hazardous waste sites, three from eastern and three from western Washington state. The type of waste site samples studied based on the contaminants identified included: heavy metals (2), creosote, petroleum products (2), and chlorinated pesticide contaminated sites. Three to five samples from each site representing baseline and increasing levels of contamination were collected. Aqueous extracts of the soil samples were prepared and used for FETAX studies. Samples collected from the creosote and petroleum product contaminated sites induced greater levels of embryolethal effects, although embryonic malformation was also observed. The metal contaminated sites induced greater levels of embryonic malformation, but induced little embryolethality. The chlorinated pesticide contaminated site samples caused moderate levels of embryonic deformities, but failed to induce embryolethal effects. Results from these studies suggested that FETAX was sensitive enough to detect low levels of developmental toxicants, but robust enough to be suitable for aqueous soil extract testing

  13. [Removal of Sulfate Ions from Aqueous Solution by Adsorption with Hydrotalcite- like Composite].

    Science.gov (United States)

    Gu, Yi-bing; Ma, Yong-wen; Wan, Jin-quan; Wang, Yan; Guan, Ze-yu

    2016-03-15

    Hydrotalcite-like composite synthesized by co-precipitation method was used as an adsorbent to remove the sulfate ions in aqueous solution. XRD, FT-IR , SEM and EDS elemental analysis were used to clarify the structure and composition of the hydrotalcite- like composite. The influences of time, initial pH value and coexisting ions on adsorption performance were investigated. The result showed the material was the composite of zinc aluminum nitrate hydrotalcite-like compounds and zinc aluminum phenylalanine hydrotalcite-like compounds. Hydrotalcite-like composite had a good performance in adsorption of sulfate ions, and the maximum adsorption capacity was 52.75 mg · g⁻¹. The data fitted pseudo-second order kinetic model best, which indicated that chemical adsorption was the rate-limiting step. Freundlich isotherm was more suitable to describe the adsorption process, and this meant the adsorption of sulfate ions by hydrotalcite-like composite was multilayered adsorption. Thermodynamic parameters showed that the adsorption process was endothermic and spontaneous at room temperature. Hydrotalcite-like composite adsorbed sulfate ions mainly through ion exchange, electrostatic force and physical adsorption. The experimental results showed that the hydrotalcite-like composite had potential for sulfate ion removal in the aqueous solution.

  14. The interaction between oxytetracycline and divalent metal ions in aqueous and mixed solvent systems.

    Science.gov (United States)

    Tongaree, S; Flanagan, D R; Poust, R I

    1999-01-01

    The effects of pH, mixed solvent systems, and divalent metal ions on oxytetracycline (OTC) solubility and the interactions between OTC and metal ions in aqueous and mixed solvent systems were investigated. OTC solubility profiles were obtained for pH 4-9. The cosolvents studied were glycerin, propylene glycol, PEG 400, and 2-pyrrolidone with the following metal ions: magnesium, calcium, and zinc. OTC and its interactions with these metal ions were evaluated by solubility, NMR, circular dichroism (CD), and electron diffraction (ED) methods. At pH 5.6, no complexation occurred with these metal ions, but OTC zwitterion formed aggregates in aqueous solutions as shown by NMR spectra. The hydration of the metal ions was observed to affect OTC aggregation, with Mg+2 causing the greatest OTC aggregation. At pH 7.5, OTC aggregation and metal-OTC complexation were observed in solutions with Ca+2 and Mg+2. Zinc ion was found to decrease OTC solubility because of zincate formation, which caused anionic OTC to precipitate. Electron diffraction revealed a relationship between OTC and metal-OTC complex crystallinity and solubility behavior. The zinc-OTC complex exhibited the highest crystallinity and lowest solubility at pH 8.0. Various cosolvents generally enhanced OTC solubility, with 2-pyrrolidone having the best solubility power. In OTC-metal-2-pyrrolidone and OTC-Zn(+2)-PEG 400 systems, circular dichroism provided evidence for the formation of soluble ternary complexes. PMID:10578513

  15. Non-aqueous electrolyte for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Zhang, Lu; Zhang, Zhengcheng

    2016-01-26

    A substantially non-aqueous electrolyte solution includes an alkali metal salt, a polar aprotic solvent, and an organophosphorus compound of Formula IA, IB, or IC: ##STR00001## where R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each independently hydrogen, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, alkenoxy, alkynoxy, cycloalkoxy, aryloxy, heterocyclyloxy, heteroaryloxy, siloxyl, silyl, or organophosphatyl; R.sup.5 and R.sup.6 are each independently alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; R.sup.7 is ##STR00002## and R.sup.8, R.sup.9 and R.sup.10 are each independently alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; provided that if the organophosphorus compound is of Formula IB, then at least one of R.sup.5, and R.sup.6 are other than hydrogen, alkyl, or alkenyl; and if the organophosphorus compound is of Formula IC, then the electrolyte solution does not include 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one.

  16. Structure, hydrolysis, and diffusion of aqueous vanadium ions from Car-Parrinello molecular dynamics

    Science.gov (United States)

    Jiang, Zhen; Klyukin, Konstantin; Alexandrov, Vitaly

    2016-09-01

    A molecular level understanding of the properties of electroactive vanadium species in aqueous solution is crucial for enhancing the performance of vanadium redox flow batteries. Here, we employ Car-Parrinello molecular dynamics simulations based on density functional theory to investigate the hydration structures, first hydrolysis reaction, and diffusion of aqueous V2+, V3+, VO2+, and VO 2+ ions at 300 K. The results indicate that the first hydration shell of both V2+ and V3+ contains six water molecules, while VO2+ is coordinated to five and VO 2+ to three water ligands. The first acidity constants (pKa) estimated using metadynamics simulations are 2.47, 3.06, and 5.38 for aqueous V3+, VO 2+ , and VO2+, respectively, while V2+ is predicted to be a fairly weak acid in aqueous solution with a pKa value of 6.22. We also show that the presence of chloride ions in the first coordination sphere of the aqueous VO 2+ ion has a significant impact on water hydrolysis leading to a much higher pKa value of 4.8. This should result in a lower propensity of aqueous VO 2+ for oxide precipitation reaction in agreement with experimental observations for chloride-based electrolyte solutions. The computed diffusion coefficients of vanadium species in water at room temperature are found to increase as V 3 + < VO 2 + < V O 2 + < V 2 + and thus correlate with the simulated hydrolysis constants, namely, the higher the pKa value, the greater the diffusion coefficient.

  17. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  18. Symmetric Cell with LiMn_2O_4 for Aqueous Lithium-ion Battery

    OpenAIRE

    Park, Sun-Il; Okada, Shigeto; Yamaki, Jun-ichi

    2011-01-01

    The electrochemical characteristics of LiMn_2O_4 in aqueous electrolyte solutions have been investigated with respect to its use as both the cathode and anode active materials in a new type rechargeable battery system. The results of cyclic voltammetry show that LiMn_2O_4 reversibly intercalated/deintercalated Li^+ ions at potentials below the potentials of hydrogen and oxygen evolution in a neutral aqueous solution. Thus, it could be used as both the cathode system is about 110mAh/g, based o...

  19. Efficiency of Chitosan for the Removal of Pb (II, Fe (II and Cu (II Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2014-09-01

    Full Text Available Background: Heavy metals have been recognized as harmful environmental pollutant known to produce highly toxic effects on different organs and systems of both humans and animals. The aim of this paper is to evaluate the adsorption potential of chitosan for the removal of Pb(II, Fe(II and Cu(II ions from aqueous solutions. Methods: This study was conducted in laboratory scale. In this paper chitosan has been used as an adsorbent for the removal of Pb(II, Fe(II and Cu(II from aqueous solution. In batch tests, the effects of parameters like pH solution (1.0-8.0, initial metal concentrations (100-1000 mgL-1, contact time (5.0-150 min and adsorbent dose (1.0-7.0 g on the adsorption process were studied. Results: The results showed that the adsorption of Pb(II, Fe(II and Cu(II ions on chitosan strongly depends on pH. The experimental isothermal data were analyzed using the Langmuir and Freundlich equations and it was found that the removal process followed the Langmuir isotherm and maximum adsorption capacity for the adsorption of Pb(II, Fe(II and Cu(II ions by the chitosan were 55.5mg g−1, 71.4 mg g−1 and 59 mg g−1, respectively, under equilibrium conditions at 25±1 ºC. The adsorption process was found to be well described by the pseudo-second-order rate model. Conclusion: The obtained results showed that chitosan is a readily, available, economic adsorbent and was found suitable for removing Pb(II, Fe(II and Cu(II ions from aqueous solution.

  20. Selective ion exchange onto Slovakian natural zeolites in aqueous solutions

    International Nuclear Information System (INIS)

    Ion exchange isotherms have been measured and plotted for the uptake of cesium, barium, cobalt, zinc, silver and ammonium onto clinoptilolite- and mordenite-rich tuffs of Slovakian origin selectively for both the natural and near homoionic Na form as well, using the radioanalytical determination. The higher quality clinoptilolite-rich tuff has been proven to be effective for a potential radionucleides removal in native form according to the following selectivity sequence: Ag+,Ba2,Cs+>NH4+>Co2+, while parent tuff in Na exchanged variety exhibited a little different sequence according to: Ag+ > NH4+ > Ba2+ > Cs+. The raw and Na exchanged mordenite-rich tuffs proved subsequently more or less similar selectivity: Ag+ > Zn2+ > Cs+, Ba2+ > Co2+ and Ag+ > Zn2+. (author)

  1. Colorimetric and fluorogenic recognition of Hg2+ and Cr3+ in acetonitrile and their test paper recognition in aqueous media with the aid of rhodamine based sensors.

    Science.gov (United States)

    Patidar, Rajesh; Rebary, Babulal; Paul, Parimal

    2015-03-01

    Two new rhodamine derivatives (L1 and L2) were synthesized, characterized and their ion recognition property has been investigated. Both of the ionophores exhibit colorimetric and fluorogenic response for Hg(2+) and Cr(3+) ions among large number of alkali, alkaline earth and transition metal ions tested in acetonitrile. Detail studies on determination of binding constant, binding mode, reversibility of binding, lower detection limit have been carried out. Detection of metal ions in aqueous media has also been demonstrated by preparation of simple, convenient and disposable test paper sensors with two approaches viz. filter paper and membrane filter loaded with these ionophores. Both of these methods responded sharply to both the metal ions (Hg(2+) and Cr(3+)) in aqueous solution, detectable by bared-eye. For better sensing at low concentration of metal ions, reprecipitation followed by filtration enrichment of ligands on membrane filter was employed. PMID:25666715

  2. Biosorption of heavy metal ions from aqueous solution by red macroalgae.

    Science.gov (United States)

    Ibrahim, Wael M

    2011-09-15

    Biosorption is an effective process for the removal and recovery of heavy metal ions from aqueous solutions. The biomass of marine algae has been reported to have high biosorption capacities for a number of heavy metal ions. In this study, four species of red seaweeds Corallina mediterranea, Galaxaura oblongata, Jania rubens and Pterocladia capillacea were examined to remove Co(II), Cd(II), Cr(III) and Pb(II) ions from aqueous solution. The experimental parameters that affect the biosorption process such as pH, contact time and biomass dosage were studied. The maximum biosorption capacity of metal ions was 105.2mg/g at biomass dosage 10 g/L, pH 5 and contact time 60 min. The biosorption efficiency of algal biomass for the removal of heavy metal ions from industrial wastewater was evaluated for two successive cycles. Galaxaura oblongata biomass was relatively more efficient to remove metal ions with mean biosorption efficiency of 84%. This study demonstrated that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for lowering the heavy metal pollution in the environment. PMID:21798665

  3. Reanalysis of the Aqueous Spectrum of the Neptunyl(V) [NpO2(+)] Ion.

    Science.gov (United States)

    Edelstein, Norman M

    2015-11-12

    The actinyl ions, consisting of the dioxoactinde(VI) and dioxoactinide(V) ions, are unique in the periodic table. However, very few quantitative studies of the spectra of these ions have been performed. In this paper the analysis of the optical spectrum of the aqueous neptunyl(V) [NpO2(+)] ion in 1 M HClO4 is reexamined. The species in solution is assumed to be the linear NpO2(+) ion surrounded in the equatorial plane by five oxygen atoms from five H2O molecules. The neptunyl(V) ion has the 5f(2) open-shell configuration, and the low-lying optical transitions (up to ∼20 000 cm(-1)) observed are primarily from the two 5f electrons occupying the 5fφ and 5fδ orbitals. The conventional parametric theory used for f(n) systems is applied to these low-lying transitions utilizing the intensity calculations that Matiska et al.1 have performed for this ion and the data reported by Eisenstein and Pryce.2 Possible ratios for the Slater electrostatic repulsion parameters are obtained from the data for the isoelectronic ion U(4+) (5f(2)) in various host crystals. The results are consistent with earlier crystal field analyses of the 5f(1) neptunyl(VI) [NpO2(2+)] ion. PMID:26487013

  4. Ion-binding of glycine zwitterion with inorganic ions in biologically relevant aqueous electrolyte solutions.

    Science.gov (United States)

    Fedotova, Marina V; Kruchinin, Sergey E

    2014-06-01

    The ion-binding between inorganic ions and charged functional groups of glycine zwitter-ion in NaCl(aq), KCl(aq), MgCl2(aq), and CaCl2(aq) has been investigated over a wide salt concentration range by using integral equation theory in the 3D-RISM approach. These systems mimic biological systems where binding of ions to charged residues at protein surfaces is relevant. It has been found that the stability of ion pairs formed by the carboxylate group and added inorganic cations decreases in the sequence Mg(2+)>Ca(2+)>Na(+)>K(+). However, all formed ion pairs are weak and decrease in stability with increasing salt concentration. On the other hand, at a given salt concentration the stability of (-NH3(+):Cl(-))aq ion pairs is similar in all studied systems. The features of ion-binding and the salt concentration effect on this process are discussed.

  5. Thiosemicabazone based fluorescent chemosensor for transition metal ions in aqueous medium

    International Nuclear Information System (INIS)

    Highly efficient fluorescent chemosensors for metal ions have been synthesized by using thiosemicarbazide and aromatic aldehydes. Detection of transition metal ions was performed via UV–vis and fluorescence spectroscopic methods. This is the first report on thiosemicarbazone based sensor capable of detecting transition metal ions in aqueous medium. The binding constant, stoichiometry of the complex were confirmed by using B–H plot and Job's plot method. The fluorescence enhancement of thiosemicarbazones on binding with Hg2+, Zn2+, Co2+, Ni2+ and Sn2+ ions is due to the inhibition of photoinduced electron transfer mechanism whereas, quenching of fluorescence is attributed to the photoinduced electron transfer mechanism in case of Cu2+ and Mn2+ ions. -- Graphical abstract: Three highly sensitive aromatic thiosemicarbazones act as a fluorescent chemosensor for cations. Detection of transition metal ions was performed via UV–vis and fluorescence spectroscopic methods. This represents the first report on thiosemicarbazone based sensor capable of detecting transition metal ions in aqueous medium. The binding constant, stoichiometry of the complex was confirmed by using B–H plot and Job's plot method. The fluorescence enhancement of thiosemicarbazones on binding with Hg2+ , Zn2+, Co2+, Ni2+ and Sn2+ ions is due to the inhibition of photoinduced electron transfer whereas, in the case of Cu2+ and Mn2+ ions quenching of fluorescence occurring is attributed to the photoinduced electron transfer mechanism. Highlights: • The receptors were synthesized and studied for its optical/fluorescence emission properties. • R1+Zn2+/Co2+/Ni2+ and R2+Hg2+/Sn2+ exhibits fluorescence enhancement via inhibition of PET. • R1+Cu2+ and R3+Mn2+ exhibits fluorescence quenching via PET mechanism

  6. MWCNTs based high sensitive lateral flow strip biosensor for rapid determination of aqueous mercury ions.

    Science.gov (United States)

    Yao, Li; Teng, Jun; Zhu, Mengya; Zheng, Lei; Zhong, Youhao; Liu, Guodong; Xue, Feng; Chen, Wei

    2016-11-15

    Here, we describe a disposable multi-walled carbon nanotubes (MWCNTs) labeled nucleic acid lateral flow strip biosensor for rapid and sensitive detection of aqueous mercury ions (Hg(2+)). Unlike the conventional colloidal gold nanoparticle based strip biosensors, the carboxylated MWCNTs were selected as the labeling substrate because of its high specific surface area for immobilization of recognition probes, improved stability and enhanced detection sensitivity of the strip biosensor. Combining the sandwich-type of T-Hg(2+)-T recognition mechanism with the optical properties of MWCNTs on lateral flow strip, optical black bands were observed on the lateral flow strips. Parameters (such as membrane category, the MWCNTs concentration, the amount of MWCNT-DNA probe, and the volume of the test probe) that govern the sensitivity and reproducibility of the sensor were optimized. The response of the optimized biosensor was highly linear over the range of 0.05-1ppb target Hg(2+), and the detection threshold was estimated at 0.05 ppb within a 15-min assay time. The sensitivity was 10-fold higher than the conventional colloidal gold based strip biosensor. More importantly, the stability of the sensor was also greatly improved with the usage of MWCNTs as the labeling. PMID:27183284

  7. Ion Exchange Extraction of Boron from Aqueous Fluids by Amberlite IRA 743 Resin

    Institute of Scientific and Technical Information of China (English)

    肖应凯; 廖步勇; 刘卫国; 肖云; SWIHART,GeorgeH.

    2003-01-01

    The ion exchange characteristics d Amherlite IRA 743 resin for extracting boron from aqueous fluids have been investigated in detail. The results show that AmherHte IRA 743 resin, a boron specific ion exchange resin, can quantitatively extract boron as the B (OH)4- spedes from weakly basle solution. Some exchangeable anions such as CI- and SO42- are present, resulting in an increase in pH value of the loeded solution within the nan, and the boron in natural aqueous fluids with low nH is also extracted by Amberlite IRA 743 resin. However, the voiume of loaded solution must be restricted. The maximum voiume of loaded solution giving quantitative extraction of boron decreases for sample soh.,tiom of lower pH value. Warm HCI solution is more effective than room temperature HCI solution for eluting boron from Amberllte IRA 743 resin.

  8. Water rotational jump driven large amplitude molecular motions of nitrate ions in aqueous potassium nitrate solution

    CERN Document Server

    Banerjee, Puja; Bagchi, Biman

    2016-01-01

    Molecular dynamics simulations of aqueous potassium nitrate solution reveal a highly complex rotational dynamics of nitrate ions where, superimposed on the expected continuous Brownian motion, are large amplitude angular jumps that are coupled to and at least partly driven by similar large amplitude jump motions in water molecules which are associated with change in the hydrogen bonded water molecule. These jumps contribute significantly to rotational and translational motions of these ions. We explore the detailed mechanism of these correlated (or, coupled) jumps and introduce a new time correlation function to decompose the coupled orientational- jump dynamics of solvent and solute in the aqueous electrolytic solution. Time correlation function provides for the unequivocal determination of the time constant involved in orientational dynamics originating from making and breaking of hydrogen bonds. We discover two distinct mechanisms-both are coupled to density fluctuation but are of different types.

  9. Removal of cadmium ions from aqueous solution via micellar-enhanced ultrafiltration

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-hui; ZENG Guang-ming; XU Ke; FANG Yao-yao

    2005-01-01

    To separate cadmium ions from aqueous solution efficiently,micellar-enhanced ultrafiltration(MEUF)of hollow ultrafiltration membrane was used,with sodium dodecyl benzene sulfonate(SDBS)and sodium dodecyl sulfate(SDS)as surfactants.The important parameters affecting the rejection of cadmium,the permeate flux and the secondary resistance were investigated,including surfactant species,surfactant concentration,operating time,trans-membrane pressure,the addition of electrolyte and solution pH.The results show that the rejection rate of cadmium reaches 97.8%.Trans-membrane pressure and the addition of electrolyte(NaCl)are less influential while surfactant species,surfactant concentration and pH value are important for micel[ar-enhanced ultrafiltration.The optimum concentration of surfactant is the critical micelle concentration,and SDBS is better than SDS.Micellarenhanced ultrafiltration with SDBS can separate cadmium ions from aqueous solution efficiently.

  10. Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries

    KAUST Repository

    Wessells, Colin

    2011-01-01

    Lithium-ion batteries that use aqueous electrolytes offer safety and cost advantages when compared to today\\'s commercial cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate is -0.5 V with respect to the standard hydrogen electrode, which makes this material attractive for use as a negative electrode in aqueous electrolytes. This material was synthesized using a Pechini type method. Galvanostatic cycling of the resulting lithium titanium phosphate showed an initial discharge capacity of 115 mAh/g and quite good capacity retention during cycling, 84% after 100 cycles, and 70% after 160 cycles at a 1 C cycling rate in an organic electrolyte. An initial discharge capacity of 113 mAh/g and capacity retention of 89% after 100 cycles with a coulombic efficiency above 98% was observed at a C/5 rate in pH -neutral 2 M Li2 S O4. The good cycle life and high efficiency in an aqueous electrolyte demonstrate that lithium titanium phosphate is an excellent candidate negative electrode material for use in aqueous lithium-ion batteries. © 2011 The Electrochemical Society.

  11. Study on the adsorption of heavy metal ions from aqueous solution on modified SBA-15

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2013-01-01

    Full Text Available Amino-functionalized SBA-15 mesoporous silica was prepared, characterized, and used as an adsorbent for heavy metal ions. The organic - inorganic hybrid material was obtained by a grafting procedure using SBA-15 silica with 3-aminopropyl-triethoxysilane and bis(2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, respectively. The structure and physicochemical properties of the materials were characterized by means of elemental analysis, X-ray diffraction (XRD, nitrogen adsorption - desorption, thermogravimetric analysis, FTIR spectroscopy and immersion calorimetry. The organic functional groups were successfully grafted onto the SBA-15 surface and the ordering of the support was not affected by the chemical modification. The behavior of the grafted solids was investigated for the adsorption of heavy metal ions from aqueous solutions. The hybrid materials showed high adsorption capacity and high selectivity for zinc ions. Other ions, such as cooper and cobalt were absorbed by the modified SBA-15 material.

  12. [Investigation of the oxidation reaction of O3 with bromide ion in aqueous solution].

    Science.gov (United States)

    Yu, Xiao-Ting; Zhang, Jia-Hui; Pan, Xun-Xi; Zhang, Ren-Xi; Hou, Hui-Qi

    2012-09-01

    The reaction mechanism of O3 with bromide ion in aqueous solution was studied by ion chromatography and UV-Vis spectrometry instruments. Ion chromatography analysis showed that only 10% of Br- which was oxidized by ozone was formed into bromate ion. The results demonstrated that the final products of the oxidation reaction were identified as Br2 and Br3- except for BrO3-. The formation of Br3- which was yielded from the reaction of Br2 with Br- was the major process in the reaction of Br attacked by O3. The characteristic absorption spectrum of Br3- with an absorption peak at 260 nm was also investigated. The results may provide helpful information about the mechanism of the oxidation reaction of Br- with O3 and fate of Br- or its derivatives in the environment by the oxidation processes.

  13. Magnetic separation of Dy(III) ions from homogeneous aqueous solutions

    International Nuclear Information System (INIS)

    The possibility to enrich paramagnetic dysprosium(III) ions in a magnetic field gradient is proved by means of interferometry, which may open the route for a magnetic separation of rare earth ions from aqueous solutions. The separation dynamics are studied for three different concentrations of DyCl3 and compared with those found recently in a sulphate solution of the 3d ion Mn(II). In view of the similar-sized hydration spheres for Dy(III) and Mn(II), the slower separation dynamics in DyCl3 is attributed to both a higher densification coefficient and the strong impact of Brownian motion due to the absence of ion-pair clusters

  14. Ion Pair in Extreme Aqueous Environments, Molecular-Based and Electric Conductance Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chialvo, Ariel A [ORNL; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Simonson, J Michael {Mike} [ORNL; Palmer, Donald [ORNL; Cole, David R [ORNL

    2009-01-01

    We determine by molecular-based simulation the density profiles of the Na+!Cl! ion-pair association constant in steam environments along three supercritical isotherms to interrogate the behavior of ion speciation in dilute aqueous solutions at extreme conditions. Moreover, we describe a new ultra-sensitive flow-through electric conductance apparatus designed to bridge the gap between the currently lowest steam-density conditions at which we are experimentally able to attain electric conductance measurements and the theoretically-reachable zero-density limit. Finally, we highlight important modeling challenges encountered near the zero-density limit and discuss ways to overcome them.

  15. Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads

    OpenAIRE

    Uzaşçı Sesil; Tezcan Filiz; Bedia Erim F.

    2014-01-01

    Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, contrary to the traditional calcium alginate beads. The adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h and the removal efficiency of chromium (VI) was found as 95%. The adsorption data fit well with Langmuir and Freundlich isotherms. The maximum chromium (VI) adsorpt...

  16. Poisson-Fermi model of single ion activities in aqueous solutions

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-09-01

    A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.

  17. Revised Ionic Radii of Lanthanoid(III) Ions in Aqueous Solution

    International Nuclear Information System (INIS)

    A new set of ionic radii in aqueous solution has been derived for lanthanoid(III) cations starting from a very accurate experimental determination of the ion water distances obtained from extended X-ray absorption fine structure (EXAFS) data. At variance with previous results, a very regular. trend has been obtained, as expected for this series of elements. A general procedure to compute ionic radii in solution by combining the EXAFS technique and molecular dynamics (MD) structural data has been developed. This method can be applied to other ions allowing one to determine ionic radii in solution with an accuracy comparable to that of the Shannon crystal ionic radii. (authors)

  18. Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution

    OpenAIRE

    RASOULIFARD, Mohammad Hossein; MOHAMMADI, Seied Mohammad Mahdi DOUST

    2012-01-01

    Silver ion (Ag1+)-catalyzed peroxydisulfate was studied for the degradation of acid red 14 (AR-14) in an aqueous medium. The effect of different parameters, such as temperature, peroxydisulfate concentration, and dye and Ag1+ concentrations, were investigated. Application of Ag1+-catalyzed peroxydisulfate, as an advanced oxidation process, introduces an effectual method for wastewater treatment. An accelerated reaction using S2O82- to destroy dyes can be achieved via chemical activat...

  19. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices

    OpenAIRE

    Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.

    2013-01-01

    Here we present important findings related to biologically derived pigments for potential use as battery electrodes. Namely, we report the synthesis, fabrication, and characterization of melanins as materials for use in aqueous sodium-ion batteries. We demonstrate the use of naturally occurring melanins as active electrode materials in charge storage devices. Furthermore, the performance of melanin anodes is comparable to many commonly available synthetic organic electrode materials. The stru...

  20. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition.

    Science.gov (United States)

    Pejic, Biljana; Vukcevic, Marija; Kostic, Mirjana; Skundric, Petar

    2009-05-15

    Sorption potential of waste short hemp fibers for Pb(2+), Cd(2+) and Zn(2+) ions from aqueous media was explored. In order to assess the influence of hemp fiber chemical composition on their heavy metals sorption potential, lignin and hemicelluloses were removed selectively by chemical modification. The degree of fiber swelling and water retention value were determined in order to evaluate the change in accessibility of the cell wall components to aqueous solutions due to the fiber modification. The effects of initial ion concentration, contact time and cosorption were studied in batch sorption experiments. The obtained results show that when the content of either lignin or hemicelluloses is progressively reduced by chemical treatment, the sorption properties of hemp fibers are improved. Short hemp fibers are capable of sorbing metal ions (Pb(2+), Cd(2+) and Zn(2+)) from single as well as from ternary metal ion solutions. The maximum total uptake capacities for Pb(2+), Cd(2+) and Zn(2+) ions from single solutions are the same, i.e. 0.078mmol/g, and from ternary mixture 0.074, 0.035 and 0.035mmol/g, respectively.

  1. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality

    International Nuclear Information System (INIS)

    The purposes of this study were to investigate the removal efficiency of ammonium (NH4+) ion from aqueous solution using the natural Turkish (Yildizeli) zeolite and to characterize equilibrium isotherms. Experiments were carried out using batch method as a function of the solution pH, shaking time, dosage of adsorbent, and temperature. All these factors affected NH4+ ion removal from aqueous solution. Equilibrium modelling data were fitted to linear Langmuir and Freundlich models. Dubinin-Redushckevich (D-R) isotherm was applied to describe the nature of ion exchange of NH4+ and found that it occurred physically. Thermodynamics parameters such as change in free energy (ΔGo), enthalpy (ΔHo) and entropy (ΔSo) were also calculated. These parameters confirmed that ion exchange of NH4+ by the zeolite was feasible, spontaneous and exothermic in nature. Based on the results, it can be concluded that the natural Turkish (Yildizeli) zeolite is suitable for the removal of NH4+ ions in wastewater treatments and agricultural purposes to in terms of sustainability of environmental quality

  2. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Saltali, Kadir [Department of Soil Science, Faculty of Agriculture, University of Gaziosmanpasa, 60240 Tokat (Turkey)]. E-mail: kadirs@gop.edu.tr; Sari, Ahmet [Department of Chemistry, Faculty of Art and Science, University of Gaziosmanpasa, 60240 Tokat (Turkey); Aydin, Mehmet [Graduate School of Natural and Applied Sciences, University of Gaziosmanpasa, 60240 Tokat (Turkey)

    2007-03-06

    The purposes of this study were to investigate the removal efficiency of ammonium (NH{sub 4} {sup +}) ion from aqueous solution using the natural Turkish (Yildizeli) zeolite and to characterize equilibrium isotherms. Experiments were carried out using batch method as a function of the solution pH, shaking time, dosage of adsorbent, and temperature. All these factors affected NH{sub 4} {sup +} ion removal from aqueous solution. Equilibrium modelling data were fitted to linear Langmuir and Freundlich models. Dubinin-Redushckevich (D-R) isotherm was applied to describe the nature of ion exchange of NH{sub 4} {sup +} and found that it occurred physically. Thermodynamics parameters such as change in free energy ({delta}G{sup o}), enthalpy ({delta}H{sup o}) and entropy ({delta}S{sup o}) were also calculated. These parameters confirmed that ion exchange of NH{sub 4} {sup +} by the zeolite was feasible, spontaneous and exothermic in nature. Based on the results, it can be concluded that the natural Turkish (Yildizeli) zeolite is suitable for the removal of NH{sub 4} {sup +} ions in wastewater treatments and agricultural purposes to in terms of sustainability of environmental quality.

  3. investigations for the separation of radioisotopes and selected metal ions from dilute aqueous solutions and aqueous waste simulant by foaming

    International Nuclear Information System (INIS)

    co precipitate flotation (CPF) investigations show that cesium can be efficiently separated from aqueous solutions by coprecipitation with zine hexacyanoferrate (II) (ZnHCF) and subsequent flotation of the precipitate . collectors of different types were tested but cetyl pyridinium chloride showed the best performance. before undertaking the flotation investigations , coprecipitation of Cs with ZnHCF was studied to determine the optimal coprecipitation conditions. the developed CPF process was applied successfully for 137Cs removal from process wastewater and low level liquid radioactive waste simulant. the obtained results compare favourably with data published for cesium removal by coprecipitation or adsorption processes. besides, CPF seems to be more advantageous

  4. "Super" Cocktails for Heavy Ion Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael B; Johnson, Michael B.; McMahan, Margaret A.; Galloway, Michelle; Leitner, Daniela; Morel, James R.; Gimpel, ThomasL.; Ninemire, Brien F.; Siero, Reba; Thatcher, Raymond K.

    2007-07-21

    The 4.5 MeV/nucleon heavy ion cocktail at the 88-Inch Cyclotron has been expanded by incorporating beams from solid material to fill in the linear energy transfer curve. This supercocktail is available by special request and is useful when only normal incidence between the beam and the device under test is possible or desirable.

  5. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  6. Characterization of aqueous silver nitrate solutions for leakage tests

    Science.gov (United States)

    COSTA, José Ferreira; SIQUEIRA, Walter Luiz; LOGUERCIO, Alessandro Dourado; REIS, Alessandra; de OLIVEIRA, Elizabeth; ALVES, Cláudia Maria Coelho; BAUER, José Roberto de Oliveira; GRANDE, Rosa Helena Miranda

    2011-01-01

    Objectives To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. Material and Methods A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). Results The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). Conclusions Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of

  7. Experimental Study on Surface Reactions of Heavy Metal Ions With Quartz—Aqueous Ion Concentration Dependence

    Institute of Scientific and Technical Information of China (English)

    吴宏海; 吴大清; 等

    1999-01-01

    Adsorption of divalent metal ions,including Cu2+,Pb2+,Zn2+,Cd2+ and Ni2+,on quartz surface was measured as a function of metal ion concentration at 30℃under condi tions of solution pH=6.5 and ion strength I=0.1mol/L.Results of the experimental measuements can be described very well by adsorption isoterm dquations of Freudlich.The correlation coefficients(r)of adsorption isotherm lines are>0.96.Moreover,the exprimental data were interpreted on the basis of surface complexation model.Te experimental results showed that the monodentate-coordinated metal ion surface complex species(SOM+)are predominant over the bidentate-coordinated metal ion surface complex species[(SO)2M]formed only by the ions Cu2+,Zn2+ and Ni2+,And the relevant apparent surface complexation constants are lgKM=2.2-3.3 in order of KCd≥KPb>KZn>KNi≥KCu,and lgβM=5.8-6.8 in oder of βNi>βZn>βCu.Therefore,the reactive ability of the ions onto mineral surface of quartz follows the order of Cd>Pb>Zn>Ni>Cu under the above-mentioned solution conditions.The apparent surface complexation constants,influenced by the surface potential,surface species and hydrolysis of metal ions,depend mainly on the Born solvation coefficeient of the metal ions.

  8. [Effect of inorganic ions on degradation of trace nitrobenzene in aqueous solution by catalytic ozonation].

    Science.gov (United States)

    Zhao, Lei; Ma, Jun; Sun, Zhi-zhong

    2006-05-01

    The experiment investigated the effects of general inorganic ions in natural source water on the three processes of ozonation alone, ceramic honeycomb and modified ceramic honeycomb-catalyzed ozonation for degradation of trace nitrobenzene in aqueous solution. The removal rate of ozonation alone and modified ceramic honeycomb-catalyzed ozonation increased by 5.0% and 8.6% with the increase of the concentration of calcium ion (0-4 mg x L(-1)), and that of ceramic honeycomb-catalyzed ozonation reached the climax at the concentration of calcium ion 0.5 mg x L(-1) under the same experimental condition. The degradation efficiency of ozonation alone, ceramic honeycomb and modified ceramic honeycomb-catalyzed ozonation enhanced by 10.9%, 11.6% and 9.6% with the increase of the concentration of manganese ion (0-4 mg x L(-1)), respectively, and decreased by 8.6%, 11.5% and 8.9% with the increase of the concentration of bicarbonate ion (0-200 mg x L(-1)). The concentration of nitrate and sulfate ion had no remarkable effect on ozonation alone, but the removal rate of other two processes decreased with the increase of the concentration of nitrate and sulfate ion.

  9. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. PMID:27159823

  10. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    KAUST Repository

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  11. Biosorption of Cr (VI) ion from aqueous solution by maize husk: isothermal, kinetics and thermodynamic study

    International Nuclear Information System (INIS)

    The kinetics, equilibrium and thermodynamic of the biosorption of Cr (VI) ion onto maize husk biomass from aqueous solution were investigated. The effects of contact time, initial metal concentration, pH, temperature as well as modification with oxalic acid on biosorption capacity were studied. The maximum biosorption capacity of the untreated corn shaft biomass (UTCS) was found to be 28.49 mg g-1 which slightly increased to 29.33 mg g/sup -1/ when treated with oxalic acid treated corn shaft biomass (ATCS). The kinetics studies showed that the biosorption process of the metal ion fitted well with second order model. The calculated thermodynamic parameters (delta Go, delta Ho and delta S') showed that the biosorption of Cr (VI) ion onto the biomass maize husk is feasible, spontaneous and exothermic in nature. (author)

  12. Removal of Lead (II Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass

    Directory of Open Access Journals (Sweden)

    Murat Erdem

    2013-01-01

    Full Text Available The removal of lead (II ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS analysis after adsorption reveals the accumulation of lead (II ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.

  13. Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution. II: catalytic effect of magnesium ion.

    Science.gov (United States)

    Yamagata, Y; Inomata, K

    1997-08-01

    The previously reported condensation reaction of glycylglycine with trimetaphosphate (Yamanaka et al., 1988) was reinvestigated and shown to be catalyzed by magnesium ion. Aqueous solutions containing glycylglycine (0.5 M), trimetaphosphate (0.5 M) and magnesium chloride (0.5 M) were incubated at 38 degrees C at pH 4, 5, 6, 7 and 8. After incubation for ten days at pH 5, the maximum yields of tetraglycine and hexaglycine as condensation products were found to be about 12 and 1.4%, respectively. This result indicated the presence of a considerable catalytic effect of magnesium ion compared with the maximum yield of about 2% for tetraglycine and approximately 0% for hexaglycine in the absence of magnesium ion. PMID:11536827

  14. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite

    Institute of Scientific and Technical Information of China (English)

    Noureddine Hamdi; Ezzeddine Srasra

    2012-01-01

    Phosphate ions are usually considered to be responsible for the algal bloom in receiving water bodies and aesthetic problems in water.From the environmental point of view,the management of such contaminant and valuable resource is very important.The present work deals with the removal of phosphate ions from aqueous solutions using kaolinitic and smectic clay minerals and synthetic zeolite as adsorbent.The pH effect and adsorption kinetic were studied.It was found that phosphate could be efficiently removed at acidic pH (between 4 and 6) and the second order model of kinetics is more adopted for all samples.The isotherms of adsorption of phosphate ions by the two clays and the zeolite samples show that the zeolite has the highest rate of uptake (52.9 mg P/g).Equilibrium data were well fitted with Langmuir and Freundlich isotherm.

  15. Charge dependence of solvent-mediated intermolecular Coster-Kronig decay dynamics of aqueous ions.

    Science.gov (United States)

    Ohrwall, G; Ottosson, N; Pokapanich, W; Legendre, S; Svensson, S; Björneholm, O

    2010-12-30

    The 2s and 2p photoelectron spectra have been measured for Na(+), Mg(2+), and Al(3+) ions in aqueous solution. In all cases, the 2s lines are significantly broader than the 2p features, which is attributed to a shorter lifetime of the respective 2s hole. Since intraionic Coster-Kronig decay channels from the (2s)(-1) state are closed for free Na(+), Mg(2+), and Al(3+) ions, this is evidence for an intermolecular Coster-Kronig-like process, reminiscent of intermolecular Coulombic decay (ICD), involving neighboring water solvent molecules. The observed 2s Lorentzian line widths correspond to lifetimes of the (2s)(-1) state of 3.1, 1.5, and 0.98 fs for the solvated Na, Mg, and Al ions, respectively.

  16. Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes

    KAUST Repository

    Ruffo, Riccardo

    2009-02-01

    Despite the large number of studies on the behavior of LiCoO2 in organic electrolytes and its recent application as a positive electrode in rechargeable water battery prototypes, a little information is available about the lithium intercalation reaction in this layered compound in aqueous electrolytes. This work shows that LiCoO2 electrodes can be reversibly cycled in LiNO3 aqueous electrolytes for tens of cycles at remarkably high rates with impressive values specific capacity higher than 100 mAh/g, and with a coulomb efficiency greater than 99.7%. Stable and reproducible cycling measurements have been made using a simple cell design that can be easily applied to the study of other intercalation materials, assuming that they are stable in water and that their intercalation potential range matches the electrochemical stability window of the aqueous electrolyte. The experimental arrangement uses a three-electrode flooded cell in which another insertion compound acts as a reversible source and sink of lithium ions, i.e., as the counter electrode. A commercial reference electrode is also present. Both the working and the counter electrodes have been prepared as thin layers on a metallic substrate using the procedures typical for the study of electrodes for lithium-ion batteries in organic solvent electrolytes. © 2008 Elsevier B.V. All rights reserved.

  17. Adsorption of Heavy Metal Ions from Aqueous Solutions by Zeolite Based on Oil Shale Ash: Kinetic and Equilibrium Studies

    Institute of Scientific and Technical Information of China (English)

    BAO Wei-wei; ZOU Hai-feng; GAN Shu-cai; XU Xue-chun; JI Gui-juan; ZHENG Ke-yan

    2013-01-01

    Na-A zeolite was successfully synthesized via the alkaline fusion method with oil shale ash as the raw material.The adsorption capacity of it was tested by removing CU2+,Ni2+,Pb2+ and Cd2+ from aqueous solutions.The results reveal the maximum adsorption capacity of adsorbent for Pb2+,Cu2+,Cd2+ and Ni2+ were 224.72,156.74,118.34 and 53.02 mg/g,respectively.The effects of contact time and pH value of solutions on the adsorption efficiency of the zeolite were evaluated.Besides,The equilibrium adsorption data and the batch kinetic data were correlated with Langmuir and Freundlich models and the pseudo-first-order and pseudo-second-order models separately.The results show that the Langmuir isotherm and the pseudo-second-order equation were more suitable for the adsorption of Na-A zeolite for the metal ions.In addition,Thermodynamic parameters of the adsorption(the Gibbs free energy,entropy,and enthalpy) were also evaluated and discussed.The results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions and the synthesized zeolite was an effective adsorbent for the removal of metal ions from aqueous solution.

  18. Radiation chemical behavior of aqueous butanal oxime solutions irradiated with helium ion beams

    Science.gov (United States)

    Costagliola, A.; Venault, L.; Deroche, A.; Garaix, G.; Vermeulen, J.; Omnee, R.; Duval, F.; Blain, G.; Vandenborre, J.; Fattahi-Vanani, M.; Vigier, N.

    2016-02-01

    Samples of butanal oxime in aqueous solution have been irradiated with the helion (4He2+) beam of the ARRONAX (Nantes) and the CEMHTI (Orléans) cyclotrons. The consumption yield of butanal oxime has been measured by gas-chromatography coupled with mass spectrometry. Yields of gaseous products (mainly H2) have also been measured by micro-gas-chromatography. Butanal oxime can react with H• radicals by abstraction mechanism to enhance H2 production. Yields of liquid phase products (hydrogen peroxide and nitrite ion) have been measured by colorimetric methods. Butanal oxime acts as a scavenger of OH• radical to inhibit the production of H2O2. The observation of the radiolytic products allows then to discuss a degradation mechanism of butanal oxime in aqueous solutions.

  19. Selective adsorption of silver ions from aqueous solution using polystyrene-supported trimercaptotriazine resin

    Institute of Scientific and Technical Information of China (English)

    Shiming Wang; Hongling Li; Xiaoya Chen; Min Yang; Yanxing Qi

    2012-01-01

    Trimercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(Ⅰ) from aqueous solution.The adsorbent was characterized according to the following techniques:Fourier transform infrared spectroscopy,elemental analysis,scanning electron microscopy and the Brunauer-Emmet-Teller method.The effects of initial Ag(Ⅰ) concentration,contact time,solution pH and coexisting ions on the adsorption capacity of Ag(Ⅰ) were systematically investigated.The maximum adsorption capacity of Ag(Ⅰ) was up to 187.1 mg/g resin at pH 0.0 and room temperature.The kinetic experiments indicated that the adsorption rate of Ag(Ⅰ) onto the chelating resin was quite fast in the first 60 rain and reached adsorption equilibrium after 360 min.The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model.Moreover,the chelating resin could selectively adsorb more Ag(Ⅰ) ions than other heavy metal ions including:Cu(Ⅱ),Zn(Ⅱ),Ni(Ⅱ),Pb(Ⅱ) and Cr(Ⅲ) during competitive adsorption in the binary metal species systems,which indicated that it was a highly selective adsorbent of Ag(Ⅰ) from aqueous solution.

  20. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Science.gov (United States)

    Pu, Jian; Fukushi, Kensuke

    2013-01-01

    In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA) and biopolymer solution extracted from cultivated activated sludge (ASBP). The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE) method (R2 = 0.989 for BSA, 0.985 for ASBP). PMID:24194678

  1. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  2. Interactions of chromium ions with starch granules in an aqueous environment.

    Science.gov (United States)

    Szczygieł, Jadwiga; Dyrek, Krystyna; Kruczała, Krzysztof; Bidzińska, Ewa; Brożek-Mucha, Zuzanna; Wenda, Elżbieta; Wieczorek, Jerzy; Szymońska, Joanna

    2014-06-26

    In this study, interactions of dichromate ions with potato starch granules in highly acidic aqueous solutions and at different temperatures were investigated. It was found that the process underwent a reduction of Cr(2)O(7)(2-) to Cr(3+) accompanied by the formation of intermediate Cr(5+) ions detected by electron paramagnetic resonance (EPR) spectroscopy. The reactions took place after the attachment of dichromate anions to the granules and resulted in a lowering of the Cr(2)O(7)(2-) initial content in the solution. The newly formed Cr(3+) ions were both accumulated by the granules or remained in the solution. It was observed for the first time that the quantity of such ions taken by the granules from the solution was noticeably higher than that delivered by trivalent chromium salt solution. It was revealed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) that the chromium ions were not only adsorbed on the granule surface but also introduced into the granule interior and evenly distributed there. An activation energy of the reduction reaction equal to 65 kJ·mol(-1) and the optimal parameters of the process were established. The proposed mechanism could be useful for the bioremediation of industrial effluents polluted by hexavalent chromium compounds.

  3. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.

    Science.gov (United States)

    Huang, Shu-Yun; Fan, Chen-Shiuan; Hou, Chia-Hung

    2014-08-15

    This study was performed to determine the feasibility of electrosorptive removal of copper ions from aqueous solutions using a capacitive deionization process. The electrosorptive potential of copper ions was determined using cyclic voltammetry measurements, and copper electrodeposition could be suppressed at a voltage less than 0.8 V. Importantly, the experimental results demonstrated a significant enhancement of electrosorption capability of copper ions using the activated carbon electrodes under electro-assistance, associated with electrical double-layer charging. At 0.8 V, the equilibrium electrosorption capacity was enhanced to 24.57 mg/g based on the Langmuir model, and the electrosorption constant rate was increased to 0.038 min(-1) simulated by a first-order kinetics model. Moreover, the activated carbon electrode showed great regeneration performance for the removal of low level copper ions. Additional experiments regarding electrosorption selectivity were performed in the presence of sodium chloride, natural organic matter, or dissolved silica. Copper ions that were preferentially electroadsorbed on the electrode surface can be effectively removed in a competitive environment. Therefore, the electrosorption process using activated carbon electrodes can be recommended to treat copper solutions at low concentrations for wastewater treatment and water purification. PMID:24937658

  4. Removal of Pb2+ ions in aqueous phase by a sodic Montmorillonite

    Directory of Open Access Journals (Sweden)

    Zoubida Lounis

    2012-03-01

    Full Text Available The sorption of Pb2+ ions in aqueous phase was carried out using sodium bentonite. The influence of the temperature and the pH on the capacity of the sorption and the percentage of the uptake of Pb2+ ions by sodium montmorillonite were studied. The sorption data were analysed in terms of the Freundlich and Langmuir isotherm models and the data fit the Langmuir sorption isotherm model well. Whereas, the thermodynamic parameters( the heat of adsorption Δ H°, the entropy Δ S° and the free energy ΔG° showed that the sorption is a phenomenon of exchange cation between adsorbat /adsorbent The negative value of ΔG° indicates that the sorption of Pb2+ ions on Na-Mt is spontaneous. The positive value of entropy ΔS° means that the disorder is at the interface solid-solution. The negative value of the heat of sorption ΔH° means that the process of elimination of Pb2+ ions is exothermic. However, it appears that the affinity sorption of Pb+2 ions on our clay decreases with increasing the temperature as the sorption capacity

  5. Adsorptive removal of nickel(II) ions from aqueous environment: A review.

    Science.gov (United States)

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-09-01

    Among various methods adsorption can be efficiently employed for the treatment of heavy metal ions contaminated wastewater. In this context the authors reviewed variety of adsorbents used by various researchers for the removal of nickel(II) ions from aqueous environment. One of the objectives of this review article is to assemble the scattered available enlightenment on a wide range of potentially effective adsorbents for nickel(II) ions removal. This work critically assessed existing knowledge and research on the uptake of nickel by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. In addition, the equilibrium adsorption isotherms, kinetics and thermodynamics data as well as various optimal experimental conditions (solution pH, equilibrium contact time and dosage of adsorbent) of different adsorbents towards Ni(II) ions were also analyzed. It is evident from a literature survey of more than 190 published articles that agricultural solid waste materials, natural materials and biosorbents have demonstrated outstanding adsorption capabilities for Ni(II) ions. PMID:27149285

  6. Fast removal of copper ions from aqueous solution using an eco-friendly fibrous adsorbent.

    Science.gov (United States)

    Niu, Yaolan; Ying, Diwen; Li, Kan; Wang, Yalin; Jia, Jinping

    2016-10-01

    Functional PET fiber (PET-AA-CS) was prepared by oxygen-plasma pretreatment and grafting of acrylic acid (AA) and low-molecular-weight chitosan (LMCS) on the polyethylene glycol terephthalate (PET) substrate. This adsorbent was targeted for quick removal of metal ion in river pollutions with an easy recycling of the fiber after emergency processing. The fabricated PET-AA-CS was characterized by the scanning electron microscope (SEM), contact angle, fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) to look into its morphology, surface functional groups, and adsorption mechanism of copper ions from the aqueous solution. The overall adsorption process of copper ions on the PET-AA-CS was pH-dependent with an optimal pH value of 5.0, at which a maximum capacity of 68.97 mg g(-1) was obtained. The result of fitting also shows that adsorption process follows the Langmuir isotherm and pseudo-second-order model. Moreover, the material shows good stability during 5 cycles of adsorption and desorption, and also shows no significant effect of co-existing ions including Ca(2+), Mg(2+), K(+), Cl(-), and et al. In general, PET-AA-CS developed in this study shows significant benefit of eco-friend and cost-efficiency for fast removal of copper ions in potential river metal pollutions comparing with traditional adsorbents. PMID:27470942

  7. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  8. Hydration properties and ionic radii of actinide(III) ions in aqueous solution

    International Nuclear Information System (INIS)

    Ionic radii of actinide(III) cations (from U(III) to Cf(III)) in aqueous solution have been derived for the first time starting from accurate experimental determination of the ion-water distances obtained by combining extended X-ray absorption fine structure (EXAFS) results and molecular dynamics (MD) structural data. A strong analogy has been found between the lanthanide and actinide series concerning hydration properties. The existence of a contraction of the An-O distance along the series has been highlighted, while no decrease of the hydration number is evident up to Cf(III). (authors)

  9. A transferable ab-initio based force field for aqueous ions

    CERN Document Server

    Tazi, Sami; Rotenberg, Benjamin; Turq, Pierre; Vuilleumier, Rodolphe; Salanne, Mathieu; 10.1063/1.3692965

    2012-01-01

    We present a new polarizable force field for aqueous ions (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+ and Cl-) derived from condensed phase ab-initio calculations. We use Maximally Localized Wannier Functions together with a generalized force and dipole-matching procedure to determine the whole set of parameters. Experimental data is then used only for validation purposes and a good agreement is obtained for structural, dynamic and thermodynamic properties. The same procedure applied to crystalline phases allows to parametrize the interaction between cations and the chloride anion. Finally, we illustrate the good transferability of the force field to other thermodynamic conditions by investigating concentrated solutions.

  10. Electrophoretic method for the determination of diffusion coefficients of ions in aqueous solutions

    International Nuclear Information System (INIS)

    The electrophoretic method was recently developed for the determination of diffusion coefficients of ions in aqueous solution. By solving the Fick's second law in the presence of unlimited media and constant quantity of diffusing species we obtain a relationship between the diffusion coefficient and the standard deviation of the distribution profile. The diffusion coefficients of Cd(II), In(III), Zr(IV), Hf(IV), Pu(VI) and [InDTPA]2- in nitric acid solution were determined as well as the effective charge of In-DTPA complex at pH 4.50. (author)

  11. Characteristics and quantitative of negative ion in salt aqueous solution by Raman spectroscopy at -170℃

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Nai; ZHANG; Dajiang; ZHANG; Shuichang; ZHANG; Dijia

    2006-01-01

    The results from Raman spectroscopy analysis of salt aqueous solutions at -170℃ demonstrate that for those clearly sharp iron peaks whose Raman wavenumber is close to each other such as and , their original shape could be restorable by the stripping technique, and that ice's sharp characteristic peak (3090-3109 cm-1) is steady, while the spectrum band of the complex compound (nCl--[H+-OH-]n) chlorine ion combined chemically with water molecule is 3401-3413 cm-1. On the other hand, the research shows that the higher the negative iron concentration, the stronger its Raman characteristic peak intensity and the smaller the ice's. Based on the number of data and theoretical work, the strong correlation of the molar concentration of negative ion with the band area ratio is built up. Moreover, the developed Raman method is successfully used in the component analysis of the field fluid inclusions from Silurian sandstone in Tarim basin.

  12. Removal of hexavalent chromium from aqueous solution by barium ion cross-linked alginate beads

    Directory of Open Access Journals (Sweden)

    Uzaşçı Sesil

    2014-07-01

    Full Text Available Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, contrary to the traditional calcium alginate beads. The adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h and the removal efficiency of chromium (VI was found as 95%. The adsorption data fit well with Langmuir and Freundlich isotherms. The maximum chromium (VI adsorption capacity determined from Langmuir isotherm was 36.5 mg/g dry alginate beads. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium (VI from contaminated waters.

  13. Systematic investigations of foam separation of nickel (l l) from dilute aqueous solutions; by ion flotation

    International Nuclear Information System (INIS)

    this series of papers deal with a systematic investigation of application of different foam separation techniques for the removal of nickel (l l) from dilute aqueous solutions and to compare the effectiveness of the different techniques. in the present work, the feasibility of the use of sodium lauryl sulphate (Nals) and cetyl trimethyl ammonium bromide (CTAB) as collectors to separate nickel (l l) at Ph values below the precipitation point of Ni (OH)2 was investigated using the ion flotation technique. the different factors that might affect the separation efficiency were investigated . both collectors were found to produce hydrated froths leading to rather low concentrations of the metal ion in the foam phase. however, nals was the most effective giving recoveries >95% and it was therefore extensively investigated . possible means to improve the foam separation efficiency of solubilized nickel are generally proposed . preliminary results using the surfactant : aerosol 18 as a collector are very promising

  14. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  15. Test of Lorentz symmetry with trapped ions

    Science.gov (United States)

    Pruttivarasin, Thaned

    2016-05-01

    The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).

  16. Calix[4]arene based dipodal receptor nanohybrids for selective determination of chloride ions in aqueous media.

    Science.gov (United States)

    Kaur, Harpreet; Singh, Jasminder; Chopra, Shweta; Kaur, Navneet

    2016-01-01

    A chemical sensor based on p-tert butyl calix[4]arene has been synthesized and characterized using an assortment of spectroscopic techniques such as (1)H NMR, (13)C NMR, and elemental analysis. For sensor application, organic nanoparticles (N1) of 1 have been primed by implementing re-precipitation technique, which were further employed for preparing organic-inorganic hybrid (H1) by decorating N1 with gold nanoparticles. Both N1 and H1 were characterized using UV-visible, fluorescence, and DLS studies. Photo-physical changes due to anion binding with H1 were scrutinized using UV-visible absorption spectrometer and found it to promptly and selectively recognize Cl(-) ions in aqueous media. Thus, H1 can be effectively used for recognition of Cl(-) ions in aqueous media over a wide pH range, in samples of real time importance with a detection limit of 2.84×10(-9) M with a linear detection range up to 50 μM.

  17. Removal of cadmium and zinc ions from aqueous solution by living Aspergillus niger

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; FAN Ting; ZENG Guang-ming; LI Xin; TONG Qing; YE Fei; ZHOU Ming; XU Wei-hua; HUANG Yu-e

    2006-01-01

    The potential of living Aspergillus niger to remove cadmium and zinc from aqueous solution was investigated. Effects of pH, initial concentration, contact time, temperature and agitation rate on the biosorption of Cd(Ⅱ) and Zn(Ⅱ) ions were studied. The optimum adsorption pH value for Cd(Ⅱ) and Zn(Ⅱ) were 4.0 and 6.0. The best temperature and agitation rate were in the range of 25-30 ℃ and 120 r/min for all metal ions. Under the optimal conditions, the maximum uptake capacities of Cd(Ⅱ) and Zn( Ⅱ ) ions are 15.50 mg/g and 23.70 mg/g at initial concentrations of 75 mg/L and 150 mg/L, respectively. Biosorption equilibrium is established within 24 h for cadmium and zinc ions. The adsorption data provide an excellent fit to Langmuir isotherm model. The results of the kinetic studies show that the rate of adsorption follows the pseudo-second order kinetics.

  18. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    Science.gov (United States)

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  19. New Data on Activity Coefficients of Potassium, Nitrate, and Chloride Ions in Aqueous Solutions of KNO3 and KCl by Ion Selective Electrodes

    OpenAIRE

    Debasmita Dash; Shekhar Kumar; C. Mallika; U. Kamachi Mudali

    2012-01-01

    Ion selective electrodes (ISEs) are used to measure the single-ion activity coefficients in aqueous solutions of KNO3 and KCl at 298.15 K against a double-junction reference electrode. The EMF responses of ISEs up to 0.01 m are plotted to obtain the slope and intercept values. The obtained slopes and intercepts are used in Nernst equation for higher concentrated solutions for calculation of individual ion activity coefficient. The mean ionic activity coefficients are estimated from single ion...

  20. Ion Engine Service Life Validation by Analysis and Testing

    Science.gov (United States)

    Brophy, John R.; Polk, James E.; Rawlin, Vincent K.

    1997-01-01

    Assessment of the NSTAR ion engine service life is being accomplished through a combination of long duration testing and probabilistic analyses of the credible failure modes. A literature review that examined 65 ion engine endurance tests perfromed over the past 35 years was conducted to compile a list of possible ion engine failure modes.

  1. BIOSORPTION STUDIES OF CADMIUM (II IONS FROM AQUEOUS SOLUTIONS ONTO ORANGE RIND (CITRUS SINENSIS L. OSBECK

    Directory of Open Access Journals (Sweden)

    Satish A. Bhalerao

    2015-03-01

    Full Text Available The biosorption studies for effective removal of cadmium (II ions from aqueous solutions using orange rind (Citrus sinensis L. Osbeck, cost effective biosorbent, was carried out in batch system. FTIR analysis of biosorbent confirmed that carboxyl, hydroxyl, carbonyl group which was responsible for biosorption of cadmium (II ions. The SEM represents porous structure with surface area. The effects of operational factors including solution pH, biosorbent dose, initial cadmium (II ions concentration, contact time and temperature were studied. The optimum solution pH for cadmium (II ions biosorption by biosorbent was 7.0 with the optimal removal 80.30 %. The biosorbent dose 5 mg/ml was enough for optimal removal of 65.15 %. The biosorption process was relatively fast and equilibrium was achieved after 90 minutes of contact. The experimental equilibrium biosorption data were analysed by four widely used two-parameters Langmuir, Freundlich, Dubinin-Kaganer-Redushkevich (DKR and Temkin isotherm models. Langmuir isotherm model provided a better fit with the experimental data than Freundlich, Temkin and Dubinin-Kaganer-Redushkevich (DKR isotherm models by high correlation coefficient value (R2 = 0.911. The maximum adsorption capacity determined from Langmuir isotherm was found to be 83.33 mg/g of biosorbent. Simple kinetic models such as pseudo-first-order, pseudo-second-order, Elovich equation and Weber and Morris intra-particle diffusion rate equation were employed to determine the adsorption mechanism. Results clearly indicates that the pseudo-second-order kinetic model (R2 = 0.998 was found to be correlate the experimental data strongest than other three kinetic models and this suggests that chemical adsorption process was more dominant. Thermodynamic study revealed that the biosorption process was spontaneous, endothermic and increasing randomness of the solid solution interfaces. Orange rind (Citrus sinensis L. Osbeck was successfully used for the

  2. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Suryanti, Venty, E-mail: venty@mipa.uns.ac.id; Hastuti, Sri; Pujiastuti, Dwi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University Jl. Ir. Sutami 36A, Surakarta, Central Java 57126 (Indonesia)

    2016-02-08

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  3. Evaluation of biosurfactants grown in corn oil by Rhodococcus rhodochrous on removing of heavy metal ion from aqueous solution

    Science.gov (United States)

    Suryanti, Venty; Hastuti, Sri; Pujiastuti, Dwi

    2016-02-01

    The potential application of biosurfactants to remove heavy metal ion from aqueous solution by batch technique was examined. The glycolipids type biosurfactants were grown in a media containing of 20% v/v corn oil with 7 days of fermentation by Rhodococcus rhodochrous. The biosurfactants reduced the surface tension of water of about 51% from 62 mN/m to 30 mN/m. The biosurfactant increased the E24 of water-palm oil emulsion of about 55% from 43% to 97% and could maintain this E24 value of above 50% for up to 9 days. Heavy metal ion removal, in this case cadmium ion, by crude and patially purified biosurfactants has been investigated from aqueous solution at pH 6. Adsorption capacity of Cd(II) ion by crude biosurfactant with 5 and 10 minutes of contact times were 1.74 and 1.82 mg/g, respectively. Additionally, the adsorption capacity of Cd(II) ion by partially purified biosurfactant with 5 and 10 minutes of contact times were 0.79 and 1.34 mg/g, respectively. The results demonstrated that the adsorption capacity of Cd(II) ion by crude biosurfactant was higher than that of by partially purified biosurfactant. The results suggested that the biosurfactant could be used in the removal of heavy metal ions from aqueous solution.

  4. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  5. Effect of Fe ion concentration on fatigue life of carbon steel in aqueous CO2 environment

    DEFF Research Database (Denmark)

    Rogowska, Magdalena; Gudme, J.; Rubin, A.;

    2016-01-01

    In this work, the corrosion fatigue behaviour of steel armours used in the flexible pipes, in aqueous solutions initially containing different concentrations of Fe2+, was investigated by four-point bending testing under saturated 1 bar CO2 condition. Corrosion fatigue results were supported with ex...... of Fe2+ marginally above the solubility limit of FeCO3 compared to the samples tested in highly supersaturated solution of Fe2+. Results revealed that the impact of the alternating stresses on the corrosion behaviour of samples reduces with lowering the applied stresses. At the stress range of 100 MPa...

  6. Radiation-induced reduction of metal ions in aqueous solution systems and its application

    International Nuclear Information System (INIS)

    Introduction: Promotion of chemical reactions by adding oxide particles to aqueous solution under the irradiation of ionizing radiations has been paid attention especially from the practical viewpoint, so that hydrogen production and decomposition of toxic organic compounds studied. On the other hand, redox of metal ions has not been studied very much since successive reactions after the redox become complicated due to equilibrium between reactant and product, and to transformation of dissolved species by varying pH and coexisting ions... In the present study, reduction behavior of metal ions in aqueous solution systems irradiated by r-ray and electron beam was measured, the reduced amount was compared with that by water radiolysis, and then the promotion of reduction by adding oxide particles was found out quantitatively. Experimental: Samples were prepared by dissolving metal salts (Ce(IV), Cr(VI), Pt(IV),...) in 0.4 mol/L sulfuric acid or 0.1 mol/l sodium perchlorate solution and then by adding 1-10 wt% oxide particles such as TiO2, Al2O3 or SiO2 to the solution. The irradiation of sample was made without stirring the particles in the solution mainly by using 60Co γ-ray source (dose rate: 1-30 kGy/h) at Takasaki Research Institute, JAEA; the absorbed dose of sample was estimated by using dosimeters of dichromate solution and/or CTA film. Just after irradiated, the sample was passed through a membrane filter to be separated into solution and solid components; absorption spectrum of metal ions in the solution was observed, and the reduced amount determined from difference in the absorbance before and after the irradiation. Results and discussion: Figure 1 shows absorption spectra of Ce(IV) ion in 0.4 mol/L H2SO4 solution under the γ-ray irradiation as typical results. Fig.1(a) illustrates that the reduction was observed in the solution without the oxide particles as stoichiometry in the one-electron reduction by water radiolysis has been used as a dosimeter, and

  7. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  8. Application of magnetic particles modified with amino groups to adsorb copper ions in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Yafen Lin; Huawei Chen; Kaelong Lin; Boryann Chen; Chyowsan Chiou

    2011-01-01

    A magnetic adsorbent can be easily recovered from treated water by magnetic force, without requiring further downstream treatment.In this research, amine-functionalized silica magnetite has been synthesized using N-[3-(trimethoxysilyl)propyl]-ethylenediamine (TPED) as a surface modification agent.The synthesized magnetic amine adsorbents were used to adsorb copper ions in an aqueous solution in a batch system, and the maximum adsorption was found to occur at pH 5.5 ± 0.1.The adsorption equilibrium data fitted the Langmuir isotherm equation reasonably well, with a maximum adsorption capacity of 10.41 mg/g.A pseudo second-order model could best describe the adsorption kinetics, and the derived activation energy was 26.92 kJ/mol.The optimum condition to desorb Cu2+ from NH2/SiO2/Fe3O4 was provided by a solution with 0.1 mol/L HNO3.

  9. Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin

    Institute of Scientific and Technical Information of China (English)

    Yanhui Li; Yanzhi Xia; Bing Xia; Quansheng Zhao; Fuqiang Liu; Pan Zhang; Qiuju Du; Dechang Wang; Da Li; Zonghua Wang

    2011-01-01

    Kaolin has been widely used as an adsorbent to remove heavy metal ions from aqueous solutions. However, the lower heavy metal adsorption capacity of kaolin limits its practical application. A novel environmental friendly material, calcium alginate immobilized kaolin (kaolin/CA), was prepared using a sol-gel method. The effects of contact time, pH, adsorbent dose, and temperature on Cu2+ adsorption by kaolin/CA were investigated. The Langmuir isotherm was used to describe the experimental adsorption, the maximum Cu2+ adsorption capacity of the kaolin/CA reached up to 53.63 mg/g. The thermodynamic studies showed that the adsorption reaction was a spontaneous and endothermic process.

  10. Poly(2-FurylMethylenesulfide as a Resin to Uptake of Metal Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Damasceno J.

    2002-01-01

    Full Text Available The polymerization of poly (2- furyl methylenesulfide -- POLYTHIOFURFURAL -- was performed in an 0.36 mol/L aqueous solution of furfuraldehyde, saturated by bubbling hydrogen sulfide for 2 h at different temperatures. The reaction product was thoroughly washed and dried at 40 °C under vacuum. Poly (2-furyl methylenesulfyde is a yellow powder with a rather unpleasant odor. The polythiofurfural obtained [ -CH(C4H3O-S-] is a furan with thiols end groups. These are active adsorption centers for metal ions. The polythiofurfural was soluble in acetone and chloroform and its yields attained 80%. Morphological analysis by Scanning Eletronic Microscopy indicates a regular and dense surface in an interesting spacial arrangement. Preliminary isotherms adsorption studies indicate specific affinity forNi (II and Co (II and different capacity adsorption, 0.022 and 0.045 mmol per gram, respectively.

  11. First Observation of Electron Transfer Mediated Decay in Aqueous Solutions: A Novel Probe of Ion Pairing

    CERN Document Server

    Unger, I; Thürmer, S; Aziz, E F; Cederbaum, L S; Muchová, E; Slavíček, P; Winter, B; Kryzhevoi, N V

    2016-01-01

    A major goal of many spectroscopic techniques is to provide comprehensive information on the local chemical environment. Electron transfer mediated decay (ETMD) is a sensitive probe of the environment since it is actively involved in this non-local radiationless decay process through electron and energy transfer steps. We report the first experimental observation of ETMD in the liquid phase. Using liquid-jet X-ray photoelectron spectroscopy we explore LiCl aqueous solution, and detect low-energy electrons unambiguously emerging from the ETMD processes of core-ionized Li+. We interpret the experimental results with molecular dynamics and high-level ab initio calculations. By considering various solvation-structure models we show that both water molecules and Cl- anions can participate in ETMD, with each process having its characteristic spectral fingerprint. Different ion associations lead to different spectral shapes. The potential application of the unique sensitivity of the ETMD spectroscopy to the local hy...

  12. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    Science.gov (United States)

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  13. Dissociative CdSe/ZnS Quantum Dot-Molecule Complex for Luminescent Sensing of Metal Ions in Aqueous Solutions

    OpenAIRE

    Baranov, A. V.; Orlova, A. O.; Maslov, V. G.; Toporova, Yu. A.; Ushakova, E. V.; Federov, A.; Artemyev, M. V.; Perova, T. S.; Berwick, Kevin

    2010-01-01

    The optical properties of dissociative luminescent sensors based on a complex consisting of highly luminescent hydrophobic core/shell CdSe/ZnS quantum dots (QDs) and 1-(2-pyridilazo)-2-naphtol (PAN) molecules in organic solutions and a polymer film are reported. It is demonstrated, using Ni2+ and Co2+ ions as an illustrative example, that the QD/PAN sensor may have applications in the quantitative luminescent sensing of metal ions in aqueous solutions.

  14. Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Benaissa, H., E-mail: ho_benaissa@yahoo.fr [Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry, Faculty of Sciences, University of Tlemcen, P.O. Box 119, 13000 Tlemcen (Algeria); Elouchdi, M.A. [Laboratory of Sorbent Materials and Water Treatment, Department of Chemistry, Faculty of Sciences, University of Tlemcen, P.O. Box 119, 13000 Tlemcen (Algeria)

    2011-10-30

    Highlights: {yields} Dried activated sludge has been investigated for the removal of copper ions from aqueous synthetic solutions, in batch conditions. {yields} Copper uptake was time contact, initial copper concentration, initial pH solution and copper salt type dependent. {yields} Maximum copper uptake obtained was q{sub m} = 62.50 mg/g (0.556 mmol/g) under the investigated experimental conditions. - Abstract: In the present work, the usefulness of dried activated sludge has been investigated for the removal of copper ions from synthetic aqueous solutions. Kinetic data and equilibrium sorption isotherm were measured in batch conditions. The influence of some parameters such as: contact time, initial copper concentration, initial pH of solution and copper salt nature on copper biosorption kinetics has been studied. Copper uptake was time contact, initial copper concentration, initial pH solution and copper salt type dependent. Maximum copper sorption was found to occur at initial pH 5. Two simplified kinetic models including a first-order rate equation and a pseudo second-order rate equation were selected to describe the biosorption kinetics. The process followed a pseudo second-order rate kinetics. The process mechanism was found to be complex, consisting of external mass transfer and intraparticle mass transfer diffusion. Copper biosorption process was particle-diffusion-controlled, with some predominance of some external mass transfer at the initial stages for the different experimental parameters studied. Langmuir and Freundlich models were used to describe sorption equilibrium data at natural pH of solution. Results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. Maximum copper uptake obtained was q{sub m} = 62.50 mg/g (0.556 mmol/g) under the investigated experimental conditions. Scanning electron microscopy coupled with X-ray energy dispersed analysis for copper-equilibrated dried activated sludge

  15. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    International Nuclear Information System (INIS)

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔHo), entropy (ΔSo) and free energy change (ΔGo) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  16. Selective fluorescent probes based on CN isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution.

    Science.gov (United States)

    Li, Lei; Liu, Feng; Li, Hong-Wei

    2011-09-01

    As the second most abundant transition-metal ion in the human body, Zn2+ plays crucial roles in many important biological processes; while in the environment, an excessive concentration of Zn2+ may reduce the soil microbial activity resulting in phytotoxic effects. Therefore, developing effective and sensitive detection method for Zn2+ has become crucially important and necessary both in life and environment science. Two new fluorescence probes, 2-((2-hydroxynaphthalen-1-yl)methyleneamino)-3-(1H-imidazol-5-yl) propanoic acid (2) and 2-hydroxy-2-((2-hydroxynaphthalen-1-yl) methyleneamino) acetic acid (3), were easily prepared by a one step reaction between 2-hydroxy-1-naphthaldehyde with histidine and serine, respectively, in ethanol. The optical properties of them were investigated by fluorescence spectra, which displayed specific and sensitive recognition to Zn2+ and especially avoided the interference of Cd2+ when they were tested against a range of physiological and environmentally relevant metal ions in aqueous solution. The responsive mechanism of the two probes to Zn2+ were involved both the CN isomerization and ICT, which were clarified by NBO charge analysis and the HOMO-LUMO energy gap calculation by using B3LYP/6-31G density functional theory. PMID:21665525

  17. Selective fluorescent probes based on C dbnd N isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution

    Science.gov (United States)

    Li, Lei; Liu, Feng; Li, Hong-Wei

    2011-09-01

    As the second most abundant transition-metal ion in the human body, Zn 2+ plays crucial roles in many important biological processes; while in the environment, an excessive concentration of Zn 2+ may reduce the soil microbial activity resulting in phytotoxic effects. Therefore, developing effective and sensitive detection method for Zn 2+ has become crucially important and necessary both in life and environment science. Two new fluorescence probes, 2-((2-hydroxynaphthalen-1-yl)methyleneamino)-3-(1H-imidazol-5-yl) propanoic acid ( 2) and 2-hydroxy-2-((2-hydroxynaphthalen-1-yl) methyleneamino) acetic acid ( 3), were easily prepared by a one step reaction between 2-hydroxy-1-naphthaldehyde with histidine and serine, respectively, in ethanol. The optical properties of them were investigated by fluorescence spectra, which displayed specific and sensitive recognition to Zn 2+ and especially avoided the interference of Cd 2+ when they were tested against a range of physiological and environmentally relevant metal ions in aqueous solution. The responsive mechanism of the two probes to Zn 2+ were involved both the C dbnd N isomerization and ICT, which were clarified by NBO charge analysis and the HOMO-LUMO energy gap calculation by using B3LYP/6-31G density functional theory.

  18. RPC test with heavy-ion beams

    International Nuclear Information System (INIS)

    The Time-of-Flight (ToF) wall of the Compressed Baryonic Matter (CBM) experiment, conceptualized on the basis of high-resolution timing Multi-gap Resistive Plate Chambers (MRPCs), is intended to account for concise hadron identification at an unprecedented event rate of 10 MHz in Au+Au collisions. Comprehensive performance tests of several purpose-built multi-strip MRPC prototypes foreseen for different rate regions of the planned 120 m2 ToF wall are an essential instrument to study the response and the limitations of the current design. Such evaluation studies were carried out both under SIS-18 heavy-ion beam load at GSI in the fall of 2012 and under cosmic irradiation in the lab throughout the year 2013. Particle flux conditions of up to a few tens of kHz/cm2 as expected to impinge on the ToF wall in future CBM runs can be provided at the SIS-18 accelerator. A generic calibration scheme for MRPCs with strip read-out has been developed and will be described. Preliminary results concerning key characteristics like efficiency and timing resolution of a multi-strip MRPC demonstrator are presented, as well as an outlook to the specifications and requirements of a planned high-rate in-beam test at GSI in 2014.

  19. An Aqueous Symmetric Sodium-Ion Battery with NASICON-Structured Na3 MnTi(PO4 )3.

    Science.gov (United States)

    Gao, Hongcai; Goodenough, John B

    2016-10-01

    A symmetric sodium-ion battery with an aqueous electrolyte is demonstrated; it utilizes the NASICON-structured Na3 MnTi(PO4 )3 as both the anode and the cathode. The NASICON-structured Na3 MnTi(PO4 )3 possesses two electrochemically active transition metals with the redox couples of Ti(4+) /Ti(3+) and Mn(3+) /Mn(2+) working on the anode and cathode sides, respectively. The symmetric cell based on this bipolar electrode material exhibits a well-defined voltage plateau centered at about 1.4 V in an aqueous electrolyte with a stable cycle performance and superior rate capability. The advent of aqueous symmetric sodium-ion battery with high safety and low cost may provide a solution for large-scale stationary energy storage. PMID:27619012

  20. The effect of temperature on radiolysis of iodide ion diluted aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gorbovitskaya, T.; Tiliks, J. [Latvia Univ., Lab. of Radiation Chemistry, Riga (Latvia)

    1996-12-01

    To investigate the radiolysis of iodine containing aqueous solutions a flow type facility (ITF) has a possibility to irradiate aqueous solutions in the steel vessel with {sup 60}Co {gamma}-rays and continuously (on line) to analyze the products of radiolysis both in liquid and in gaseous phases. By means of ITF the formation of I{sub ox} (I{sub 2} + I{sub 3}{sup -} + HOI), IO{sub 3}{sup -}, H{sub 2}O{sub 2} was studied in 10{sup -5} - 10{sup -3} mol/dm{sup 3} CsI aqueous solutions by their radiolysis at dose rate 4.5 kGv/h for six hours in region of temperatures from 313 to 404 K. Some experiments in glass ampoules were also performed. The steady-state concentrations of I{sub ox} and IO{sub 3}{sup -} decreased with increasing temperature as linear function of inverted temperature. The effect decreased with decreasing concentration of iodide ion. As the result, at high temperatures (T{>=}380 K) the steady-state concentration of I{sub ox} does not depend essentially on the iodide ion initial concentration. Molecular iodine (I{sub 2}) released from the solution was the main radiolysis product in gaseous phase. Its steady-state concentration increased with increasing temperature because of iodine solubility in the water and decreased at the same time because the radiolytic iodine concentrations decreased. Therefore the most volatility of irradiated 10{sup -3} and 10{sup -4}M CsI solutions was observed at the temperature about 350 K. The volatility of 10{sup -5}M solutions gradually decreased with increasing temperature. The experimental data were explained on the base of the hypothesis that the reaction between I{sub 2} and radiolytic H{sub 2}O{sub 2} was the limit one determining the temperature dependence of I{sub ox} and IO{sub 3}{sup -}steady-state concentrations. Its activation energy was estimated to be 27,5 kcal.mol{sup -1}. The temperature dependence for reaction (IO{sup -} + H{sub 2}O{sub 2}) was also estimated. (author) 8 figs., 1 tab., 17 refs.

  1. Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity

    Science.gov (United States)

    Set, Seng; Ford, David; Kita, Masakazu

    2015-01-01

    This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…

  2. On the influence of hydronium and hydroxide ion diffusion on the hydrogen and oxygen evolution reactions in aqueous media

    DEFF Research Database (Denmark)

    Wiberg, Gustav Karl Henrik; Arenz, Matthias

    2015-01-01

    We present a study concerning the influence of the diffusion of H+ and OH- ions on the hydrogen and oxygen evolution reactions (HER and OER) in aqueous electrolyte solutions. Using a rotating disk electrode (RDE), it is shown that at certain conditions the observed current, i.e., the reaction rat...

  3. Thermochemical study of the processes of complexation of cobalt(II) ions with L-histidine in aqueous solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2015-09-01

    Thermal effects of the complexation of cobalt(II) ions with L-histidine at 298.15 K and several values of the ionic strength against the background of KNO3 are determined by means of direct calorimetry. The standard thermodynamic characteristics of the reactions of complexation in the aqueous solution have been calculated.

  4. Kinetic studies on the removal of cesium and strontium ions from aqueous solutions using prepared zeolite-A

    International Nuclear Information System (INIS)

    Preparation and characterization of zeolite-A exchanger were carried out for kinetic studies on the removal of cesium and strontium ions from aqueous solutions. Ion exchange experiments were constant ion-concentration and different temperatures in the range from 25 c degree to 60± c degree. Analysis of the respective rate data in accordance with Hellferich model was performed for the calculation of effective diffusion coefficient (Di), activation energy (Ea) and entropy changes (ΔS) of the exchange process of both ions. A simplified first-order kinetic model was achieved to interpret the kinetic data and the effect of temperature on the overall rate constant (K) of adsorption for both ions was studied. The obtained data indicated that prepared zeolite-A exhibited higher affinity for Cs+ ions from their aqueous solutions than the host Na+ ion. The amount adsorbed of cesium ions (mg/g) is much lower than that of zeolite-A. The amount adsorbed of both studied increases by increasing temperature

  5. Adsorption of indium(III) ions from aqueous solution using chitosan-coated bentonite beads

    Energy Technology Data Exchange (ETDEWEB)

    Calagui, Mary Jane C. [College of Engineering, Cagayan State University, Cagayan Valley 3500 (Philippines); School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Senoro, Delia B. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Kan, Chi-Chuan [Institute of Hot Spring Industrial, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China); Salvacion, Jonathan W.L. [School of Graduate Studies, Mapua Institute of Technology, Manila 1800 (Philippines); Futalan, Cybelle Morales [Operations Department, Frontier Oil Corporation, Makati City 1229 (Philippines); Wan, Meng-Wei, E-mail: peterwan@mail.chna.edu.tw [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan (China)

    2014-07-30

    Highlights: • A more acidic pH causes a decrease in adsorption capacity. • The kinetic data follow the pseudo-second order equation. • Equilibrium data correlated well with Langmuir isotherm. • Removal of indium is a spontaneous and endothermic process. - Abstract: Batch adsorption study was utilized in evaluating the potential suitability of chitosan-coated bentonite (CCB) as an adsorbent in the removal of indium ions from aqueous solution. The percentage (%) removal and adsorption capacity of indium(III) were examined as a function of solution pH, initial concentration, adsorbent dosage and temperature. The experimental data were fitted with several isotherm models, where the equilibrium data was best described by Langmuir isotherm. The mean energy (E) value was found in the range of 1–8 kJ/mol, indicating that the governing type of adsorption of indium(III) onto CCB is essentially physical. Thermodynamic parameters, including Gibbs free energy, enthalpy, and entropy indicated that the indium(III) ions adsorption onto CCB was feasible, spontaneous and endothermic in the temperature range of 278–318 K. The kinetics was evaluated utilizing the pseudo-first order and pseudo-second order model. The adsorption kinetics of indium(III) best fits the pseudo-second order (R{sup 2} > 0.99), which implies that chemical sorption as the rate-limiting step.

  6. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples.

    Science.gov (United States)

    Qu, Guorun; Zheng, Sulian; Liu, Yumin; Xie, Wei; Wu, Aibo; Zhang, Dabing

    2009-10-01

    Molecularly imprinted polymers (MIPs) prepared in water-containing systems are more appropriate as adsorption materials in analyte extraction from biological samples. However, water as a polar solvent involved in the synthesis of MIPs frequently disrupts non-covalent interactions, and causes non-specific binding. In this study Fe(2+) was used as mediator to prepare MIPs, targeting tetracyclines (TCs) of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), with TC as template molecule and methacrylic acid (MAA) as functional monomer. The subsequent binding assay indicated that Fe(2+) was responsible for substantially improved specific binding in recognition of TCs by decreasing the non-specific binding. Spectrophotometric analysis suggested the existence of the strong interactions among TC, metal ions and MAA in the mixture of methanol and water. Moreover, mass spectrometric measurements verified that Fe(2+) could bridge between TC and MAA to form a ternary complex of one TC, one Fe(2+) and four MAAs with a mass of 844.857. Furthermore, combined with molecularly imprinted solid-phase extraction (MISPE) for sample pretreatment, HPLC-UV analysis data revealed good performance of the obtained MIPs as adsorbents. The recoveries of TC, OTC and CTC in urine samples were 80.1-91.6%, 78.4-89.3% and 78.2-86.2%, respectively. This research strategy provides an example for preparation of desirable water-compatible MIPs extracting target drugs from aqueous samples by introducing metal ion as mediator into conventional polymerization system. PMID:19726243

  7. The effect of magnesium ions on dielectric relaxation in semidilute DNA aqueous solutions

    CERN Document Server

    Grgičin, Danijel; Ivek, Tomislav; Tomić, Silvia; Podgornik, Rudi

    2013-01-01

    The effect of magnesium ion Mg2+ on the dielectric relaxation of semidilute DNA aqueous solutions has been studied by means of dielectric spectroscopy. Two dielectric relaxations in the 100 Hz - 100 MHz frequency range, originating in the motion of DNA counterions, were probed as a function of DNA and Mg2+ ion concentration in added MgCl2 salt. The high-frequency mode in the MHz range, stemming from the structural organization of the DNA network, reveals de Gennes-Pfeuty-Dobrynin correlation length as the pertinent fundamental length scale for sufficiently low concentration of added salt. No relaxation fingerprint of DNA denaturation bubbles, leading to exposed hydrophobic core scaling, was detected at low DNA concentrations, thus indicating an increased stability of the double-stranded conformation as compared to the case of DNA solutions with univalent counterions. The presence of Mg2+ does not change qualitatively the low frequency mode in the kHz range correlated with single DNA conformational properties....

  8. Removal characteristics of Cd(II) ions from aqueous solution on ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Linhang; Zhao, Haibo; Yan, Lu; Wang, Guowei; Mao, Yulin; Wang, Xin; Liu, Kai; Liu, Xiufang; Zhao, Qian; Jiang, Tingshun [Jiangsu University, Jiangsu (China)

    2015-10-15

    Ordered mesoporous carbon (CMK-3) was synthesized using SBA-15 mesoporous molecular sieve as a template and sucrose as carbon source. The materials were characterized by XRD, TEM and N2 physical adsorption technique. The resulting CMK-3 was used as adsorbent to remove Cd(II) ions from aqueous solution. The effect of pH, contact time and temperature on adsorption process was investigated in batch experiments. The results showed that the removal percentage could reach ca. 90% at the conditions of initial Cd(II) ions concentration of 20 mg/L, dose of 20mg, pH 6.5, contact time of 3h and 293K. Langmuir and Freundlich models were employed to describe the adsorption equilibrium. The kinetics data were described by the pseudo-first-order and pseudo-second-order models, respectively. The adsorption isotherm was well fitted to the Langmuir model, and the adsorption process was well described by the pseudo-second-order kinetic model.

  9. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 136-713 (Korea, Republic of); Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Heejae; Kim, Seongheun [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  10. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  11. Biosorption of cadmium(Ⅱ) and lead(Ⅱ) ions from aqueous solutions onto dried activated sludge

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-jiang; XIA Si-qing; CHEN Ling; ZHAO Jian-fu; CHOVELON Jean-marc; NICOLE Jaffrezic-renault

    2006-01-01

    The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.

  12. Formation of La3+, Pr3+, Eu3+, Er3+, and Lu3+ complexes with chloride ions, in aqueous medium

    International Nuclear Information System (INIS)

    The constants of stability of the complexes of La3+, Pr3+, Eu3+, Er3+, and Lu3+ with Cl- ions, its were determined, in the aqueous medium of HCI - HClO4 and by a solvent extraction method. The dinonyl naphtalene sulfonic acid in n-heptane was used as extractant. The lanthanides concentration, it was measured by a VIS spectrophotometry method and by another radiochemical. The ions specific interaction theory (SIT) it was used for the extrapolation to ionic force 0 M. The results indicate that the stability constants of the LnCI2+ species diminishes when increasing the ion force and the charge density. (Author)

  13. Tc-99 Ion Exchange Resin Testing

    Energy Technology Data Exchange (ETDEWEB)

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  14. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    Xiaolin Yu; Shengrui Tong; Maofa Ge; Lingyan Wu; Junchao Zuo; Changyan Cao; Weiguo Song

    2013-01-01

    A novel nanoadsorbent for the removal of heavy metal ions is reported.Cotton was first hydrolyzed to obtain cellulose nanocrystals (CNCs).CNCs were then chemically modified with succinic anhydride to obtain SCNCs.The sodic nanoadsorbent (NaSCNCs) was further prepared by treatment of SCNCs with saturated NaHCO3 aqueous solution.Batch experiments were carried out with SCNCs and NaSCNCs for the removal of Pb2+ and Cd2+.The effects of contact time,pH,initial adsorption concentration,coexisting ions and the regeneration performance were investigated.Kinetic studies showed that the adsorption equilibrium time of Pb2+ and Cd2+ was reached within 150 rain on SCNCs and 5 rain on NaSCNCs.The adsorption capacities of Pb2+ and Cd2+ on SCNCs and NaSCNCs increased with increasing pH.The adsorption isotherm was well fitted by the Langmuir model.The maximum adsorption capacities of SCNCs and NaSCNCs for Pb2+ and Cd2+ were 367.6 mg/g,259.7 mg/g and 465.1 mg/g,344.8 rag/g,respectively.SCNCs and NaSCNCs showed high selectivity and interference resistance from coexisting ions for the adsorption of Pb2+.NaSCNCs could be efficiently regenerated with a mild saturated NaC1 solution with no loss of capacity after two recycles.The adsorption mechanisms of SCNCs and NaSCNCs were discussed.

  15. Investigation of the effect of the uranyl ion on proton-spin-relaxation times in aqueous solutions

    International Nuclear Information System (INIS)

    The purpose of this project was to determine the effect of the uranyl ion on the spin-lattice relaxation time of protons in aqueous solutions. A flowmeter using nuclear magnetic resonance (NMR) techniques is being designed for monitoring the flow rate of aqueous solutions which are acidic, contain plutonium and uranium ions, chemical waste, and radioactive waste materials. The spin-lattice relaxation time is critical to the design of a flowmeter using nuclear magnetic resonance techniques. Experimental studies showed that spin-lattice relaxation time did not change for different molar concentrations of sample solutions of uranyl nitrate and uranyl acetate prepared from pure laboratory chemicals dissolved in distilled water. Therefore, it was concluded that the uranyl ion does not contribute to the relaxation process for protons in water

  16. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    Science.gov (United States)

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent.

  17. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.

    Science.gov (United States)

    Santana, Andrea J; dos Santos, Walter N L; Silva, Laiana O B; das Virgens, Cesário F

    2016-05-01

    Mercury is a highly toxic substance that is a health hazard to humans. This study aims to investigate powders obtained from the peel of the fruit of Pachira aquatica Aubl, in its in natura and/or acidified form, as an adsorbent for the removal of mercury ions in aqueous solution. The materials were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. The infrared spectra showed bands corresponding to the axial deformation of carbonyls from carboxylic acids, the most important functional group responsible for fixing the metal species to the adsorbent material. The thermograms displayed mass losses related to the decomposition of three major components, i.e., hemicellulose, cellulose, and lignin. The adsorption process was evaluated using cold-vapor atomic fluorescence spectrometry (CV AFS) and cold-vapor atomic absorption spectrometry (CV AAS). Three isotherm models were employed. The adsorption isotherm model, Langmuir-Freundlich, best represented the adsorption process, and the maximum adsorption capacity was predicted to be 0.71 and 0.58 mg g(-1) at 25 °C in nature and acidified, respectively. Adsorption efficiencies were further tested on real aqueous wastewater samples, and removal of Hg(II) was recorded as 69.6 % for biomass acidified and 76.3 % for biomass in nature. Results obtained from sorption experiments on real aqueous wastewater samples revealed that recovery of the target metal ions was very satisfactory. The pseudo-second-order model showed the best correlation to the experimental data. The current findings showed that the investigated materials are potential adsorbents for mercury(II) ion removal in aqueous solution, with acidified P. aquatica Aubl being the most efficient adsorbent. PMID:27084802

  18. Process for recovering organic values from aqueous solutions containing both organic values and scale-forming ions

    Energy Technology Data Exchange (ETDEWEB)

    Blytas, G.C.; Diaz, Z.

    1989-03-07

    A process is described for the recovery of organic values from aqueous solutions containing both organic values and scale-forming ions, consisting of: electrodialyzing as feed an organic value-containing aqueous solution containing scale-forming ions in a membrane-containing electrodialysis unit to obtain: (1) a concentrate stream containing a major portion of the scale-forming ions from the feed, and (2) a diluate stream containing a major portion of the organic values in the feed, supplying to the side of the membranes within the electrodialysis unit forming the concentrate stream an aqueous carrier stream substantially free of organic values, and in an amount sufficient to substantially reduce or prevent the formation of scale on the membranes, withdrawing the concentrate stream from the electrodialysis unit, fractionating the dilute stream by fractionation-distillation, recycling the overhead fraction as at least a portion of the aqueous carrier stream supplied to the side of the membranes forming the concentrate stream within the electrodialysis unit, and withdrawing the organic product stream from the fractionation distillation step.

  19. Removal of Lead(II) Ions from Aqueous Solution Using L. Seed Husk Ash as a Biosorbent.

    Science.gov (United States)

    Shi, Bingfang; Zuo, Weiyuan; Zhang, Jinlei; Tong, Haijuan; Zhao, Jinhe

    2016-05-01

    The removal of heavy metals, especially from wastewater, has attracted significant interest because of their toxicity, tendency to bioaccumulate, and the threat they pose to human life and the environment. Many low-cost sorbents have been investigated for their biosorption capacity toward heavy metals. However, there are no reports available on the removal of Pb(II) from aqueous solution by of L. seed husk ash. In this work, use of seed husk ash for the removal of Pb(II) from wastewater was investigated as a function of contact time and the initial pH of the solution. Kinetics and equilibrium constants were obtained from batch experiments. Our study shows that the adsorption process follows pseudo-second-order kinetics. Moreover, the Langmuir absorption model gave a better fit to the experimental data than the Freundlich equation. The maximum adsorption capacity of the husk ash was 263.10 mg g at 298 K and pH 5.0, and this is higher than the previously reported data obtained using other sorbents. The results obtained confirm that seed husk ash is an effective sorbent for the removal of Pb(II) from aqueous solution. Analysis of infrared spectra of the husk ash after absorption of Pb(II) suggested that OH, C=O, C-O, Si-O-Si, and O-Si-O groups were important for the Pb(II) ion removal. Moreover, practical tests on this biosorbent for Pb(II) removal in real wastewater samples successfully demonstrated that seed husk ash constitutes an efficient and cost-effective technology for the elimination of heavy metals from industrial effluent. PMID:27136166

  20. Fluorometric selective detection of fluoride ions in aqueous media using Ag doped CdS/ZnS core/shell nanoparticles.

    Science.gov (United States)

    Boxi, Siddhartha Sankar; Paria, Santanu

    2016-01-14

    The presence of fluoride ions in drinking water plays an important role in human health. For that reason, maintaining the optimum concentration of fluoride ions in drinking water is essential, as both low and excess (above the permissible level) concentrations can cause different health problems, such as fluorosis, urolithiasis, kidney failure, cancer, and can even lead to death. So, development of a simple and low cost method for the detection of fluoride ions in water is highly desirable. In this study, a fluorometric method based on Ag-CdS/Ag-ZnS core/shell nanoparticles is developed for fluoride ion detection. The method was tested in aqueous solution at different pH values. The selectivity and sensitivity of the fluorescence probe was checked in the presence of other anions (Cl(-), Br(-), I(-), NO3(-) SO4(2-), HCO3(-), HPO4(2-), CH3COO(-), and H2PO4(-)) and found there is no significant interference of these associated ions. The fluoride ion concentration was varied in the range 190-22 800 μg L(-1) and a lower detection limit was obtained as 99.7 μg L(-1). PMID:26645767

  1. Thermodynamic study of the adsorption of chromium ions from aqueous solution on waste corn cobs material

    Directory of Open Access Journals (Sweden)

    Rafael A. Fonseca-Correa

    2014-12-01

    Full Text Available The paper shows the results of a study obtaining activated carbon from corn cobs and determining its use as an adsorbent for the removal of Cr3+ from aqueous solutions. The finely ground precursor was subjected to pyrolysis at 600 and 900 °C in a nitrogen atmosphere and chemical activation with H2O2 and HNO3. The effects of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained were tested. The samples were characterised chemically and texturally. Were obtained microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and exhibited differences acid-base character of the surface. The results obtained shows that a suitable good option of the activation procedure for corncobs permits the production of economic adsorbents with high sorption capacity for Cr3+ from aqueous solutions. A detailed study of immersion calorimetry was performed with carbons prepared from corn cobs to establish possible relationships with these materials between the enthalpies of immersion and textural and chemical parameters.

  2. DNA degradation by aqueous extract of Aloe vera in the presence of copper ions.

    Science.gov (United States)

    Naqvi, Shoa; Ullah, M F; Hadi, S M

    2010-06-01

    The plant Aloe vera has long been used in medicine, as dietary supplements and for cosmetic purposes. Aloe vera extracts are a rich source of polyphenols, such as aloin and aloe emodin and have shown a wide range of pharmacological properties, including anti-inflammatory and anti-cancer properties. The bioactive component aloe emodin has been reported to induce apoptosis in various cancer cell lines. Many of the biological activities of Aloe vera have been attributed to its antioxidant properties. However, most plant-derived polyphenols that are also present in Aloe vera may exhibit pro-oxidant properties either alone or in the presence of transition metals, such as copper. Previous reports from this laboratory have implicated the pro-oxidant action as one of the mechanisms for their anti-cancer properties. In the present paper, we show that aqueous extract of Aloe vera is also able to cause DNA degradation in the presence of copper ions. Further, the extract is also able to reduce Cu(II) to Cu(I) and generate reactive oxygen species, such as superoxide anion and hydroxyl radicals in a dose-dependent manner, which correlates with ability of the extract to cause DNA breakage. Thus, the study shows that in addition to antioxidant activity, Aloe vera extract also possess pro-oxidant properties, leading to oxidative DNA breakage.

  3. Reusable fluorescent photocrosslinked polymeric sensor for determining lead ions in aqueous media

    Science.gov (United States)

    Çubuk, Soner; Taşci, Neşe; Kahraman, Memet Vezir; Bayramoğlu, Gülay; Yetimoğlu, Ece Kök

    2016-04-01

    In this study, 1-vinylimidazole units bearing photocured films were prepared as fluorescent sensors towards Pb2 + in aqueous solutions. The influence of experimental parameters such as pH, time and foreign ion concentrations were investigated. Sensor response was linear over a concentration range of 4.83 × 10- 8 to 4.83 × 10- 7 mol L- 1. The sensor was highly sensitive with a detection limit as low as 1.87 × 10- 8 mol L- 1, and having a selectivity of over four thousand fold. The response time of the sensor was found to be 5 min. When stored in a desiccator at room temperature the sensor showed good stability after a 5 month period. The fluorescence sensors were successful in the determination of Pb2 + in water samples as well as in the determination of the quantitative amount of lead and the results were satisfying. Compared with previously reported literature, the prepared new sensor is highly sensitive and selective.

  4. An all-organic non-aqueous lithium-ion redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-11-15

    A non-aqueous lithium-ion redox flow battery employing organic molecules is proposed and investigated. 2,5-Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene and a variety of molecules derived from quinoxaline are employed as initial high-potential and low-potential active materials, respectively. Electrochemical measurements highlight that the choice of electrolyte and of substituent groups can have a significant impact on redox species performance. The charge-discharge characteristics are investigated in a modified coin-cell configuration. After an initial break-in period, coulombic and energy efficiencies for this unoptimized system are {proportional_to}70% and {proportional_to}37%, respectively, with major charge and discharge plateaus between 1.8-2.4 V and 1.7-1.3 V, respectively, for 30 cycles. Performance enhancements are expected with improvements in cell design and materials processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Removal of copper, nickel and zinc ions from aqueous solution by chitosan-8-hydroxyquinoline beads

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Francisco C.F.; Dias, Francisco S.; Vasconcellos, Luiz C.G. [Departamento de Quimica Organica e Inorganica, Campus do Pici - Universidade Federal do Ceara, Fortaleza (Brazil); Sousa, Francisco W. [Departamento de Engenharia Hidraulica e Ambiental, Campus do Pici - Universidade Federal do Ceara, Fortaleza (Brazil); Cavalcante, Rivelino M.; Carvalho, Tecia V.; Queiroz, Danilo C. [Departamento de Quimica Analitica e Fisico Quimica, Campus do Pici - Universidade Federal do Ceara, Fortaleza (Brazil); Nascimento, Ronaldo F.

    2008-03-15

    In this work, 8-hydroxyquinoline is used as the active sites in cross-linked chitosan beads with epichlorohydrin (CT-8HQ). The CT-8HQ material was shaped in bead form and used for heavy metal removal from aqueous solution. The study was carried out at pH 5.0 with both batch and column methods and the maximum adsorption capacity of metal ions by the CT-8HQ was attained in 4 h in the batch experiment. The adsorption capacity order was: Cu{sup 2+} > Ni{sup 2+} > Zn{sup 2+} for both mono- and multi-component systems with batch conditions. From breakthrough curves with column conditions, the adsorption capacity followed the order Cu{sup 2+} > Zn{sup 2+} > Ni{sup 2+} for both mono- and multi-component systems. The CT-8HQ beads maintained good metal adsorption capacity for all five cycles with absorbent restoration achieved with the use of 1.0 mol L{sup -1} HCl solution, with 90% regeneration. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Speciation of phytate ion in aqueous solution Thermodynamic parameters for protonation in NaCl

    Energy Technology Data Exchange (ETDEWEB)

    De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio

    2004-12-01

    Phytate protonation enthalpies and entropies were determined by direct calorimetric titrations, in sodium chloride aqueous media at different ionic strengths (0.1{<=}I/mol L{sup -1}{<=}1) and at t=25 deg. C. Only the first seven protonation steps were taken into account, since the remaining five protons of phytic acid could be considered as 'strongly acidic' (log K{sub i}{sup H}{<=}1, 8{<=}i{<=}12). The analysis of results evidenced slight variations among enthalpy and entropy values, for the same protonation step (i), at different ionic strengths. T{delta}S{sub i} values for each protonation step are significantly higher than the corresponding enthalpy changes, revealing the entropic nature of the bond involved in phytate protonation. The enthalpy changes for phytate protonation generally increase for each protonation step, as typical for phosphate ligands. Dependence on ionic strength for both log K{sub i}{sup H} and {delta}H{sub i} was taken into account by Specific ion Interaction Theory (SIT). Useful predictive relationships for the dependence of T{delta}S on {delta}G and on protonation step 'i' were proposed.

  7. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid. © 2011 American Chemical Society.

  8. Separation of 1,3-Propanediol from Aqueous Solutions by Ion Exchange Chromatography

    Directory of Open Access Journals (Sweden)

    Rukowicz Beata

    2014-06-01

    Full Text Available 1,3-propanediol is a promising monomer with many applications and can be produced by bioconversion of renewable resources. The separation of this product from fermentation broth is a difficult task. In this work, the application of cation exchange resin for the separation of 1,3-propanediol from model aqueous solution was examined. The best effect of separation of 1,3-propanediol from glycerol using sorption method was obtained for H+ resin form, although the observed partition coefficient of 1,3-propanediol was low. On the basis of the results of the sorption of 1,3-propanediol, the ionic forms of the resin were selected and used in the next experiments (H+, Ca2+, Ag+, Na+, Pb2+, Zn2+. The best results in ion exchange chromatography were obtained for cation exchange resin in H+ and Ca2+ form. The use of smaller particle size of resin and a longer length of the column allows to obtain better separation of mixtures.

  9. Bach Adsorption Study for the Extraction of Silver Ions by Hydrazone Compounds from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Abdussalam Salhin Mohamad Ali

    2012-01-01

    Full Text Available Sorbent materials based on a hydrazone Schiff base compound, C14H11BrN4O4, were prepared either by immobilizing the ligand into sol-gel (SG1 or bonding to silica (SG2. The sorbent materials were characterized by FT-IR, EDX, SEM, TEM, and TGA. The sorption characteristics of a matrix of eight transition metal ions (Ag+, Cu2+, Co2+, Ni2+, Fe3+, Pb2+, Zn2+, and Mn2+ using batch method were studied. Several key parameters that affected the extraction efficiency such as pH, contact time, metal ions concentration, and gel size (for SGl were investigated and optimized. Under the optimized conditions, the physically immobilized hydrazone sorbent (SG1 exhibits highest selectivity towards Ag+ ions, while the chemically bonded hydrazone sorbent (SG2 exhibits high extraction for all metal ions tested. However, for practical applications such as the removal and preconcentration of Ag+, the physically immobilized sorbent (SG1 is preferred.

  10. The Potential of Sargassum oligocystum Harvested From Persian Gulf for the Adsorption of Copper Ions From Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Bahman Ramavandi

    2015-06-01

    Full Text Available This study revealed the potential of a brown alga, Sargassum oligocystum, harvested from Persian Gulf for the Cu2+ adsorption from aqueous solutions. The adsorption kinetic and isotherm and the characteristics of the biomass prepared from S. oligocystum (BSO were investigated. The BSO was a mesoporous adsorbent with Brunauer, Emmett, and Teller (BET surface area, a total pore volume, and an average pore diameter of 0.487 m2/g, 1.423 cm3/g and 12.5 nm, respectively. Fourier transform infrared spectroscopy (FTIR analysis showed that there were many active functional groups such as alcohol and phenol groups, carbonyl, ethers, and esters on the BSO. Batch tests demonstrated that the Langmuir isotherm model best represented the equilibrium data with maximum copper ions adsorption capacity of 8.23 mg/g. Pseudo-second-order kinetic model was found to satisfactory describe the adsorption process. BSO is an easy-prepared adsorbent and could be an option for the treatment of Cu2+-laden wastewaters.

  11. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media

    International Nuclear Information System (INIS)

    Highlights: • A porous lignin-based sphere was prepared from lignosulfonate by a gelation method. • The porous lignin-based sphere (PLS) had a high porosity and pore volume. • The PLS showed high adsorption efficiency for lead ions from aqueous media. • Bed column test proved the potential of PLS for continuous treatment of effluent. - Abstract: A green porous lignin-based sphere (PLS) had been fabricated by a feasible gelation-solidification method from lignosulfonate cross-linked with sodium alginate and epichlorohydrin. The prepared sphere was characterized by Fourier transform infrared spectrometry, scanning electron microscopy, mercury intrusion porosimetry, and thermo gravimetric analysis. The results demonstrated the PLS had a large amount of mesopores (d = 20.7 nm) with a high porosity of 87.66% and a total pore volume of 0.416 cm3/g. Batchwise adsorption experiments indicated the PLS possessed excellent adsorption efficiency (95.6 ± 3.5%) for lead ions at an initial concentration of 25.0 mg/L. The adsorption process could be well fitted by intra-particle diffusion model and Langmuir isotherm model. Application of the PLS in bed column mode for the continuous treatment of lead solution exhibited prolonged breakthrough time from 75 min to 100 min as the bed column heights increased from 0.5 cm to 2.5 cm which was much better than the alkaline lignin column (2.5 cm height, breakthrough time = 60 min). The results strongly suggested the high possibility of the porous sphere being applied for the continuous treatment of heavy metals rich wastewater in industry

  12. Fabrication of a green porous lignin-based sphere for the removal of lead ions from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhili; Ge, Yuanyuan, E-mail: geyy@gxu.edu.cn; Wan, Liang

    2015-03-21

    Highlights: • A porous lignin-based sphere was prepared from lignosulfonate by a gelation method. • The porous lignin-based sphere (PLS) had a high porosity and pore volume. • The PLS showed high adsorption efficiency for lead ions from aqueous media. • Bed column test proved the potential of PLS for continuous treatment of effluent. - Abstract: A green porous lignin-based sphere (PLS) had been fabricated by a feasible gelation-solidification method from lignosulfonate cross-linked with sodium alginate and epichlorohydrin. The prepared sphere was characterized by Fourier transform infrared spectrometry, scanning electron microscopy, mercury intrusion porosimetry, and thermo gravimetric analysis. The results demonstrated the PLS had a large amount of mesopores (d = 20.7 nm) with a high porosity of 87.66% and a total pore volume of 0.416 cm{sup 3}/g. Batchwise adsorption experiments indicated the PLS possessed excellent adsorption efficiency (95.6 ± 3.5%) for lead ions at an initial concentration of 25.0 mg/L. The adsorption process could be well fitted by intra-particle diffusion model and Langmuir isotherm model. Application of the PLS in bed column mode for the continuous treatment of lead solution exhibited prolonged breakthrough time from 75 min to 100 min as the bed column heights increased from 0.5 cm to 2.5 cm which was much better than the alkaline lignin column (2.5 cm height, breakthrough time = 60 min). The results strongly suggested the high possibility of the porous sphere being applied for the continuous treatment of heavy metals rich wastewater in industry.

  13. Formation of ozone in the reaction between the ozonide radical ion, O3-, and the carbonate radical ion, CO3-, in aqueous alkaline solutions

    International Nuclear Information System (INIS)

    Ozone forms in aqueous alkaline solutions by a reaction between the O3- and CO3- radical ions. This reaction has been demonstrated under conditions favorable for the generation of suitable concentrations of these ions by a high-pressure pulse radiolysis technique. The reaction is O3- + CO3- → O3 + CO32-. Its rate constant k/sub (O3-+CO3-)/ of (6 +- 2) x 107 dm3 mol-1 s-1 has been determined by computer simulation of the reactions involved

  14. Adsorption of lead (II) ions onto novel cassava starch 5-choloromethyl-8-hydroxyquinoline polymer from an aqueous medium.

    Science.gov (United States)

    Shah, Prapti U; Raval, Nirav P; Vekariya, Mayur; Wadhwani, Poonam M; Shah, Nisha K

    2016-01-01

    Adsorption of lead (II) ions onto cassava starch 5-choloromethyl-8-hydroxyquinoline polymer (CSCMQ) was investigated with the variation in the parameters of pH, contact time, lead (II) ions concentration, temperature and the adsorbent dose. The Langmuir and Freundlich models have been applied. CSCMQ was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Results showed that the adsorption process was better described by the Langmuir model. Adsorption kinetics data obtained for the metal ions sorption were investigated using pseudo-first-order, pseudo-second-order and intraparticle diffusion model. The maximum adsorption capacities (qm) were 46.512, 43.859 and 42.735 mg/g at 25, 35 and 45 °C, respectively. The dynamical data fit well with the second-order kinetics model. The results indicate that CSCMQ could be employed as low-cost material for the adsorption of Pb(II) ions from aqueous medium. PMID:27533869

  15. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    Science.gov (United States)

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  16. The Kinetic Aspects of the Interaction of Nitrite Ions with Sulfanilic Acid and 1-Naphthylamine in Aqueous and Micellar Media

    Science.gov (United States)

    Korneeva, O. I.; Chernova, R. K.; Doronin, S. Yu.

    2008-04-01

    The kinetics of the reaction of nitrite ions with sulfanilic acid and 1-naphthylamine in aqueous and micellar (sodium dodecyl sulfate) media was studied step-by-step. The diazotization of sulfanilic acid with the nitrite ion was found to occur virtually instantaneously. Anionic surfactant micelles did not influence the rate of this reaction. The calculated effective rate constants and activation energies of the azo coupling reaction between synthesized sulfophenyldiazonium and 1-naphthylamine showed that the passage from water into the micellar medium decelerated the reaction. It was found that sodium dodecyl sulfate micelles played the role of a reagent separator.

  17. The ion-selective field-effect transistor application for enzyme analysis of toxic admixtures in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Pavluchenko A. S.

    2010-06-01

    Full Text Available The article describes design and production technology of pH-sensors based on ion-selective field-effect transis-tors (ISFET intended for enzyme analysis of inhibiting admixtures in aqueous solutions, and architecture of the multichannel measuring system built upon the ISFET-sensors. The characteristics of developed prototypes are given and the ways for further improvement of system design, metrological performance and operating parameters are outlined.

  18. ADSORPTION OF Pb2+ IONS FROM AQUEOUS SOLUTIONS ONTO BAEL TREE LEAF POWDER: ISOTHERMS, KINETICS AND THERMODYNAMICS STUDY

    Directory of Open Access Journals (Sweden)

    P. SENTHIL KUMAR

    2009-12-01

    Full Text Available In this study, bael tree (BT leaf powder was used as an adsorbent for removal of Pb2+ ions from aqueous solutions through batch equilibrium technique. The influence of pH, equilibrium time, temperature, adsorbent dosage and initial concentration of metal ions on adsorbed amount of metals ions were investigated. Studies showed that the pH of aqueous solutions affected Pb2+ ions removal as a result of removal efficiency increased with increasing solution pH. The experimental isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equations. The monolayer adsorption capacity is 4.065 mg/g with the correlation coefficient of 0.993. The experiments showed that highest removal rate was 84.93% at solution pH 5, contact time 60 min and initial concentration of 50 mg/L. Thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy have also been evaluated and it has been found that the sorption process was feasible, spontaneous and exothermic in nature. Three simplified kinetic models including a pseudo-first-order equation, pseudo-second-order equation and intraparticle diffusion equation were selected to follow the adsorption process. Kinetic parameters, rate constants, equilibrium sorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was shown that the adsorption of Pb2+ ions could be described by the pseudo-second order equation, suggesting that the adsorption process is presumable a chemisorption.

  19. Solvent extraction-separation of La(III), Eu(III) and Er(III) ions from aqueous chloride medium using carbamoyl-carboxylic acid extractants

    Institute of Scientific and Technical Information of China (English)

    Reyhaneh Safarbali; Mohammad Reza Yaftian; Abbasali Zamani

    2016-01-01

    N,N-dibutyldiglycol amic acid (HLI) and N,N-dioctyldiglycol amic acid (HLI) were synthesized and characterized by con-ventional spectroscopic methods. These molecules were examined as extractants for extraction-separation of La(III), Eu(III) and Er(III), as representative ions of light, middle and heavy rare earths, from aqueous chloride solutions. The analysis of the extraction equilibria revealed that the extracted species of lanthanum and europium ions by both of the extractants had a 1:3 metal to ligand ratio. It was suggested that erbium ions were extracted into the organic phase via the formation of Er(LI or I)2Cl complexes. The effect of the organic diluents on the extraction-separation efficiency of the studied rare earths by HLI and HLI was investigated by comparing the results obtained in dichloromethane and carbon tetrachloride. Regardless to the diluent used, the order of selectivity presented by the investigated extractants was Er(III)>Eu(III)>La(III). It is noteworthy that, a significant enhancement in separation of the studied rare earths by the extractants was achieved in their competitive extraction experiments with respect to that obtained in single component extraction experiments. Applicability of the extractants for the removal of rare earth ions from spent Ni-MH batteries was tested by removal of La(III), Eu(III) and Er(III) ions from simulated leach solution of such batteries.

  20. Development of ion beams for space effects testing using an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry [Nuclear Science Division, Lawrence Berkeley National Lab One Cyclotron Road, Berkeley, CA 94720 (United States)

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  1. Colorimetric disposable paper coated with ZnO@ZnS core-shell nanoparticles for detection of copper ions in aqueous solutions.

    Science.gov (United States)

    Sadollahkhani, Azar; Hatamie, Amir; Nur, Omer; Willander, Magnus; Zargar, Behrooz; Kazeminezhad, Iraj

    2014-10-22

    In this study, we have proposed a new nanoparticle-containing test paper sensor that could be used as an inexpensive, easy-to-use, portable, and highly selective sensor to detect Cu(2+) ions in aqueous solutions. This disposable paper sensor is based on ZnO@ZnS core-shell nanoparticles. The core-shell nanoparticles were synthesized using a chemical method and then they were used for coating the paper. The synthesis of the ZnO@ZnS core-shell nanoparticles was performed at a temperature as low as 60 °C, and so far this is the lowest temperature for the synthesis of such core-shell nanoparticles. The sensitivity of the paper sensor was investigated for different Cu(2+) ion concentrations in aqueous solutions and the results show a direct linear relation between the Cu(2+) ions concentration and the color intensity of the paper sensor with a visual detection limit as low as 15 μM (∼0.96 ppm). Testing the present paper sensor on real river turbulent water shows a maximum 5% relative error for determining the Cu(2+) ions concentration, which confirms that the presented paper sensor can successfully be used efficiently for detection in complex solutions with high selectivity. Photographs of the paper sensor taken using a regular digital camera were transferred to a computer and analyzed by ImageJ Photoshop software. This finding demonstrates the potential of the present disposable paper sensor for the development of a portable, accurate, and selective heavy metal detection technology. PMID:25275616

  2. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  3. Direct Fluorescence Sensing of Metal Ions in Aqueous Solution Using Intramolecular Charge Transfer Emission from Aggregates of Pentaerythrityl Tetra(p-dimethylaminobenzoate)

    Institute of Scientific and Technical Information of China (English)

    Zhen Chang WEN; Yun Bao JIANG

    2004-01-01

    Pentaerythrityl tetra(p-dimethylaminobenzoate) (PTDMAB) was synthesized and shown to emit in water-rich aqueous dioxane solutions the intramolecular charge transfer fluorescence that was sensitive to the presence of metal ions.

  4. Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions

    Indian Academy of Sciences (India)

    A Nag; D Chakraborty; A Chandra

    2008-01-01

    Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk water is done. Although essentially no effect of ions on the hydrogen bonding is observed beyond the first solvation shell of the ions for the dilute solutions, for the concentrated solutions a noticeable change in the average number of water-water hydrogen bonds is observed in the second solvation shells of the ions and even beyond. However, the changes in the average number of hydrogen bonds are found to be relatively less when both water-water and ion-water hydrogen bonds are counted. Thus, the changes in the total number of hydrogen bonds per water are not very dramatic beyond the first solvation shell even for concentrated solutions.

  5. Experimental observation of the ion-ion correlation effects on charge inversion and strong adhesion between mica surfaces in aqueous electrolyte solutions.

    Science.gov (United States)

    Tan, Qiyan; Zhao, Gutian; Qiu, Yinghua; Kan, Yajing; Ni, Zhonghua; Chen, Yunfei

    2014-09-16

    Direct force measurements between two mica surfaces in aqueous electrolyte solutions over broad ranges of LaCl3 concentrations and pH values were carried out with a surface forces apparatus. Charge inversion on mica surfaces is detected once the LaCl3 concentration reaches a critical value. With the continual increase of LaCl3 concentrations, the mica surface will be overscreened by the counterions. It is demonstrated that the two mica surfaces may experience the jump-in contact even at high LaCl3 concentrations, which is seldom seen in monovalent salt solutions. The strong adhesion cannot be attributed to the van der Waals force alone, but should include the ion-ion correlation forces. Through adjusting the pH values in LaCl3 solutions, the ion-ion correlation force can be evaluated quantitatively. These results provide important insight into the fundamental understanding in the role of ion-ion correlations in ion screening mechanism and interactions between charged objects.

  6. Adsorption of cadmium ions from aqueous solution using granular activated carbon and activated clay

    Energy Technology Data Exchange (ETDEWEB)

    Wasewar, Kailas L. [Department of Chemical Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra (India); Kumar, Pradeep; Teng, Tjoon Tow [Environmental Technology Division, School of Industrial Technology, University Science of Malaysia, Minden, Penang (Malaysia); Chand, Shri; Padmini, Bina N. [Department of Chemical Engineering, Indian Institute of Technology, Roorkee (India)

    2010-07-15

    The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A-clay). GAC was of commercial grade where as the A-clay was prepared by acid treatment of clay with 1 mol/L of H{sub 2}SO{sub 4}. Bulk densities of A-clay and GAC were 1132 and 599 kg/m{sup 3}, respectively. The surface areas were 358 m{sup 2}/g for GAC and 90 m{sup 2}/g for A-clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A-clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A-clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Batch adsorption of cadmium ions from aqueous solution by means of olive cake

    Energy Technology Data Exchange (ETDEWEB)

    Al-Anber, Zaid Ahmed [Al-Balqa Applied University, Faculty of Engineering Technology, Chemical Engineering Department, P.O. Box 15008, Amman 11131 (Jordan)], E-mail: z_alanber@yahoo.com; Matouq, Mohammed Abu Dayeh [Al-Balqa Applied University, Faculty of Engineering Technology, Chemical Engineering Department, P.O. Box 15008, Amman 11131 (Jordan)

    2008-02-28

    The use of natural adsorbent such as olive cake to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Jordan. In this study, batch adsorption experiments were carried out for the removal of cadmium ions from its aqueous solution using olive cake as adsorbent. Parameters effects such as temperature, pH and adsorbent dose on the adsorption process were studied. The adsorbent used in this study exhibited as good sorption at approximately pH 6 at temperatures 28, 35 and 45 deg. C. The removal efficiency was found to be 66% at pH 6 and temperature 28 deg. C. The equilibrium data were analyzed using Langmuir and Freundlich isotherm models to calculate isotherm constants. The experimental results were in a good agreement with these models. Results show that when an increasing in temperature from 28 to 45 deg. C, the maximum adsorption capacity (q{sub max}) is decreased from 65.4 to 44.4 mg/g and Freundlich constant (K{sub f}) decreased from 19.9 to 15.7. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change ({delta}G{sup o}) and the enthalpy change ({delta}H{sup o}) showed that the process was feasible and exothermic, respectively. The dynamic data fitted to the first order, Lagergren-first order and pseudo second-order kinetic models. The experimental results indicated that the pseudo second-order reaction model provided the best description for these data with a correlation coefficient of 0.99. The adsorption rate constant was calculated as 8.4 x 10{sup -3} g mg{sup -1} min{sup -1} at 28 deg. C.

  8. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  9. Test ion transport in a collisional, field-reversed configuration

    International Nuclear Information System (INIS)

    Diffusion of test-ions in a flux-coil generated, collisional, field-reversed configuration is measured via time-resolved tomographic reconstruction of Ar+ optical emission in the predominantly nitrogen plasma. Azimuthal test ion diffusion across magnetic field lines is found to be classical during the stable period of the discharge. Test ion radial confinement is enhanced by a radial electric field, reducing the observed outward radial transport rate below predictions based solely on classical cross-field diffusion rates. Test ion diffusion is ∼500 m2 s−1 during the stable period of the discharge. The electric field inferred from plasma potential measurements and from equilibrium calculations is consistent with the observed reduction in argon transport. (paper)

  10. Surface functionalized magnetic PVA microspheres for rapid naked-eye recognizing of copper(II) ions in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • The functionalized groups were immobilized onto surface of magnetic PVA microspheres via a series of reaction. • The PAR-MPVA microspheres had excellent detection for copper ions by nake-eye. • The PAR-MPVA microspheres could be conveniently separated by a magnet. • The PAR-MPVA microspheres had preeminent reusability and stability. - Abstract: We proposed a robust method for surface-functionalizing magnetic polyvinyl alcohol microspheres to detect heavy metal ions in aqueous solutions. The prepared chemosensor (PAR-MPVA) was characterized through scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectra (XPS). In neutral solutions, PAR-MPVA selectively recognized diatomic heavy metal ions, as indicated with a color change from earth yellow to red; in strong acidic solutions, the chemosensor only selectively detected Cu2+. PAR-MPVA microspheres had a detection limit as low as 0.5 μM by naked-eye and 0.16 μM by UV–vis spectrometer for Cu2+. Moreover, the sensor possessed magnetism for effective recovery, could easily be regenerated by a solution of EDTA, and also displayed perferable stability. The PAR-MPVA microspheres possessed preeminent properties of detecting copper (II) ions in aqueous solutions

  11. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  12. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  13. Cytotoxicity of aqueous extracts of Rosmarinus officinalis L. (Labiatae) in plant test system.

    Science.gov (United States)

    Cardoso, G H S; Dantas, E B S; Sousa, F R C; Peron, A P

    2014-11-01

    This study investigated the cytotoxic activity of Rosmarinus officinalis L. (rosemary) aqueous extract on the cell cycle of Allium cepa. To this end, crude aqueous leaf extracts at four concentrations, 0.02, 0.04, 0.06 and 0.08 mg/mL, were tested on A. cepa meristematic root cells, at exposure times of 24 and 48 h. Slides were prepared by the crushing technique, and cells analyzed throughout the cell cycle, totaling 5,000 for each control group and concentration. The four concentrations tested, including the lowest and considered ideal for use, at all exposure times, showed a significant antiproliferative effect on the cell cycle of this test system and presented a high number of cells in prophase. Our results evidenced the cytotoxicity of rosemary extracts, under the studied conditions. PMID:25627599

  14. An interesting spectroscopic method for chromofluorogenic detection of cyanide ion in aqueous solution: Disruption of intramolecular charge transfer (ICT)

    Indian Academy of Sciences (India)

    Abdolhamid Alizadeh; Sohrab Ghouzivand; Mohammad M Khodaei; Mehdi Ardalani

    2016-04-01

    5-[4-(dimethylamino)benzylidene) pyrimidine-2,4,6(1H,3H,5H)]-trione (DMP-3H), the receptor was synthesized which played a chemosensor role for cyanide ion (CN−) in aqueous solution with colorimetric and fluorescence turn-off responses. Upon addition of CN− ion into the solution containing the receptor, a color change visible to the naked eye was observed from yellow to colourless and also, the fluorescence of the solution was immediately quenched. Moreover, DMP-3H exhibited a selective response to cyanide ion over many other anions such as F−, Cl−, Br−, I−, SO$^{2−}_{3}$ , OCN−, ClO$^{−}_{3}$ , CO$^{2−}_{3}$ , IO$^{−}_{3}$ , N$^{−}_{3}$ , C$_{2}$O$^{2−}_{4}$ and SCN−. The detection limit toward CN− was 8.1 × 10−7 mol.L−1, which is satisfactory enough for monitoring CN− levels in physiological and environmental systems.

  15. Preparation and Characterization of Poly(ethyl hydrazide-Grafted Oil Palm Empty Fruit Bunch Fibre for the Removal of Cu(II Ions from an Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Siti Mariam Mohd Nor

    2013-07-01

    Full Text Available Poly(ethyl hydrazide-grafted oil palm empty fruit bunch fibre (peh-g-opefb was successfully prepared by heating poly(methyl acrylate-grafted opefb (pma-g-opefb at 60 °C for 4 h with a solution of hydrazine hydrate (15% v/v in ethanol. The Fourier transform infrared spectrum of the product shows a secondary amine peak at 3267 cm−1, with amide carbonyl peaks at 1729 cm−1 and 1643 cm−1. The chelating ability of peh-g-opefb was tested with copper ion in aqueous solution. A batch adsorption study revealed that maximum adsorption of copper ion was achieved at pH 5. An isotherm study showed the adsorption follows a Langmuir model, with a maximum adsorption capacity of 43.48 mg g−1 at 25 °C. A kinetic study showed that the adsorption of copper ion rapidly reaches equilibrium and follows a pseudo–second-order kinetic model, with a constant rate of 7.02 × 10−4 g mg−1 min−1 at 25 °C. The Gibbs free energy, ∆G⁰, value is negative, indicating a spontaneous sorption process. Entropy, ∆S⁰, gives a positive value, indicating that the system is becoming increasingly disordered after the adsorption of copper ion. A positive enthalpy value, ∆H⁰, shows that the endothermic process takes place during the adsorption and is more favourable at high temperatures.

  16. Preparation and characterization of poly(ethyl hydrazide)-grafted oil palm empty fruit bunch fibre for the removal of Cu(II) ions from an aqueous environment.

    Science.gov (United States)

    Johari, Ili Syazana; Yusof, Nor Azah; Haron, Md Jelas; Nor, Siti Mariam Mohd

    2013-01-01

    Poly(ethyl hydrazide)-grafted oil palm empty fruit bunch fibre (peh-g-opefb) was successfully prepared by heating poly(methyl acrylate)-grafted opefb (pma-g-opefb) at 60 °C for 4 h with a solution of hydrazine hydrate (15% v/v) in ethanol. The Fourier transform infrared spectrum of the product shows a secondary amine peak at 3267 cm⁻¹, with amide carbonyl peaks at 1729 cm⁻¹ and 1643 cm⁻¹. The chelating ability of peh-g-opefb was tested with copper ion in aqueous solution. A batch adsorption study revealed that maximum adsorption of copper ion was achieved at pH 5. An isotherm study showed the adsorption follows a Langmuir model, with a maximum adsorption capacity of 43.48 mg g-1 at 25 °C. A kinetic study showed that the adsorption of copper ion rapidly reaches equilibrium and follows a pseudo-second-order kinetic model, with a constant rate of 7.02 × 10⁻⁴ g mg⁻¹ min⁻¹ at 25 °C. The Gibbs free energy, ∆G⁰, value is negative, indicating a spontaneous sorption process. Entropy, ∆S⁰, gives a positive value, indicating that the system is becoming increasingly disordered after the adsorption of copper ion. A positive enthalpy value, ∆H⁰, shows that the endothermic process takes place during the adsorption and is more favourable at high temperatures. PMID:23873385

  17. A peptide-based fluorescent chemosensor for measuring cadmium ions in aqueous solutions and live cells.

    Science.gov (United States)

    Wang, Peng; Wu, Jiang; Liu, Lixuan; Zhou, Panpan; Ge, Yushu; Liu, Dan; Liu, Weisheng; Tang, Yu

    2015-11-01

    A novel peptide fluorescent chemosensor (H2L) with a lysine backbone and both -NH2 sites conjugated with cysteine and dansyl groups has been designed and synthesized by solid phase peptide synthesis with Fmoc chemistry. This chemosensor is a promising analytical tool for detecting Cd(2+) based on the photo-induced electron transfer (PET) effect by turn-on response in 100% aqueous solutions. As designed, H2L exhibits excellent cell permeation and low biotoxicity as well as displaying relatively high selectivity and sensitivity. The chemosensor penetrated live HeLa cells and detected intracellular Cd(2+) by turn-on response. The binding stoichiometry and affinity, interference test, pH sensitivity, fluorescence quantum yield, quantum mechanical calculations, lifetimes, and cytotoxicity of the chemosensor H2L to Cd(2+) were also investigated. Moreover, H2L exhibits low biotoxicity with a limit of detection (LOD) for Cd(2+) of about 52 nM, implying that H2L can be used as a highly selective and sensitive peptide fluorescent chemosensor in biological systems. PMID:26411376

  18. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media.

    Science.gov (United States)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo; Hyvrard, François; Borrini, Julien; Carboni, Michaël; Meyer, Daniel

    2016-11-01

    An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution.

  19. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media.

    Science.gov (United States)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo; Hyvrard, François; Borrini, Julien; Carboni, Michaël; Meyer, Daniel

    2016-11-01

    An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution. PMID:27362538

  20. LHC BFPP Quench Test with Ions (2015)

    CERN Document Server

    Schaumann, Michaela; Bahamonde Castro, Cristina; Auchmann, Bernhard; Chetvertkova, Vera; Giachino, Rossano; Jowett, John; Kalliokoski, Matti; Lechner, Anton; Mertens, Tom; Ponce, Laurette; CERN. Geneva. ATS Department

    2016-01-01

    The 2015 Pb-Pb collision run of the LHC operated at a beam energy of 6.37Z TeV. The power of the secondary beams emitted from the interaction point by the bound-free pair production (BFPP) process reached new levels while the propensity of the bending magnets to quench is higher at the new magnetic field levels. This beam power is about 70 times greater than that contained in the luminosity debris and is focussed on a specific location. As long foreseen, orbit bumps were introduced in the dispersion suppressors around the highest luminosity experiments to mitigate the risk of quenches by displacing and spreading out these losses. Because the impact position and intensity of these secondary beams is well known and can be tracked easily with the Beam Loss Monitors (BLMs), the BFPP1 beam (208Pb81+ ions), which is the most intense, provides a tool to accurately measure the steady state quench limit of the LHC main dipoles. At the moment the exact quench limit is not known, but this knowledge is important to asses...

  1. Separation of chloride and sulfate ions in univalent and divalent cation forms from aqueous streams.

    Science.gov (United States)

    Bader, M S

    2000-04-28

    The precipitation and separation of chloride and sulfate in several cation forms (sodium, potassium, magnesium, calcium, strontium, and barium) from aqueous streams were studied using isopropylamine (IPA) and ethylamine (EA) as precipitation solvents. The precipitation fractions (P) of the tested chloride salts at 5000 and 10,000 ppm by both IPA and EA over the studied range of solvents volume ratio (V(R)) were relatively identical (18-60%) and their small variations were within their experimental uncertainty. The P of combined sulfate at 1000 ppm (56-99.5%) and chloride at 5000 ppm (28-62%) in the form of calcium by IPA over the studied range of V(R) were appreciably higher than the P of sulfate (10-98.5%) from calcium sulfate in the absence of calcium chloride, or the P of chloride (18-58%) from calcium chloride in the absence of calcium sulfate. The P of chloride from oil-field-produced waters at 106,654 ppm (20-88%) by both IPA and EA were higher than the P of chloride from diluted produced water at 20,000 (17-68%) and 10,000 ppm (16-65%) over the studied range of V(R). The small amounts of sulfate present in the produced waters (e.g., 435 ppm) were completely removed at V(R) of 0.1 (the first stage of precipitation). Consistency tests performed on the acquired data indicated a good level of experimental consistency. Two model equations (2-Suffix and 3-Suffix) derived from thermodynamic principles of solid-liquid equilibrium (SLE) criteria were employed to correlate the acquired data. While both equations were adequate for correlating the precipitation data, the 3-Suffix equation was more accurate.

  2. Testing the Markov condition in ion channel recordings

    CERN Document Server

    Timmer, J

    1997-01-01

    A statistical test is presented to decide whether data are adequately described by probabilistic functions of finite state Markov chains (''hidden Markov models'') as applied in the analysis of ion channel data. Particularly, the test can be used to decide whether a system obeys the Markov condition. Simulation studies are performed in order to investigate the sensitivity of the proposed test against violations of the model assumptions. The test can be applied analogously to Markov models.

  3. Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in aqueous NaCl at different ionic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Concetta de; Milea, Demetrio; Porcino, Nunziatina; Sammartano, Silvio [Universita di Messina, Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Messina (Italy)

    2006-09-15

    Interactions between myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate) (phytic acid) and cadmium(II) were studied by using potentiometry (at 25 C with the ISE-H{sup +} glass electrode) in different metal to ligand (Phy) ratios (1:1{<=}Cd{sup 2+}:Phy{<=}4:1) in NaCl{sub aq} at different ionic strengths (0.1{<=}I/mol L{sup -1}{<=}1). Nine Cd{sub i}H{sub j}Phy{sup (12-2i-j)-} species are formed with i=1 and 2 and 4{<=}j{<=}7; and trinuclear Cd{sub 3}H{sub 4}Phy{sup 2-}. Dependence of complex formation constants on ionic strength was modeled by using Specific ion Interaction Theory (SIT) equations. Phytate and cadmium speciation are also dependent on the metal to ligand ratio. Stability of Cd{sub i}H{sub j}Phy{sup (12-2i-j)-} species was modeled as a function of both the ligand protonation step (j) and the number of metal cations bound to phytate (i), and relationships found were used for the prediction of species other than those experimentally determined (mainly di- and tri-protonated complexes), allowing the possibility of modeling Phy and Cd(II) behavior in natural waters and biological fluids. A critical evaluation of phytate sequestering ability toward cadmium(II) has been made under several experimental conditions, and the determination of an empirical parameter has been proposed for an objective ''quantification'' of this ability. A thorough analysis of literature data on phytate-cadmium(II) complexes has been performed. (orig.)

  4. Unveiling the adsorption mechanism of zeolitic imidazolate framework-8 with high efficiency for removal of copper ions from aqueous solutions.

    Science.gov (United States)

    Zhang, Yujie; Xie, Zhiqiang; Wang, Zhuqing; Feng, Xuhui; Wang, Ying; Wu, Aiguo

    2016-08-01

    Among the heavy metal ions, copper(ii) can cause eye and liver damage at high uptake. The existence of copper ions (Cu(2+)) even with an ultralow concentration of less than 0.1 μg g(-1) can be toxic to living organisms. Thus, it is highly desirable to develop efficient adsorbents to remove Cu(2+) from aqueous solutions. In this work, without any surface functionalization or pretreatment, a water-stable zeolitic imidazolate framework (ZIF-8) synthesized at room temperature is directly used as a highly efficient adsorbent for removal of copper ions from aqueous solutions. To experimentally unveil the adsorption mechanism of Cu(2+) by using ZIF-8, we explore various effects from a series of important factors, such as pH value, contact time, temperature and initial Cu(2+) concentration. As a result, ZIF-8 nanocrystals demonstrate an unexpected high adsorption capacity of Cu(2+) and high removal efficiency for both high and low concentrations of Cu(2+) from water. Moreover, ZIF-8 nanocrystals possess fast kinetics for removing Cu(2+) with the adsorption time of less than 30 min. In addition, the pH of the solution ranging from 3 to 6 shows little effect on the adsorption of Cu(2+) by ZIF-8. The adsorption mechanism is proposed for the first time and systematically verified by various characterization techniques, such as TEM, FTIR, XPS, XRD and SEM. PMID:27396854

  5. Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste.

    Science.gov (United States)

    Banerjee, Chayan; Dudwadkar, Nilesh; Tripathi, Subhash Chandra; Gandhi, Pritam Maniklal; Grover, Vinita; Kaushik, Chetan Prakash; Tyagi, Avesh Kumar

    2014-09-15

    Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides (233)U (4.82 MeV α) and (241)Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr(2+), Ru(3+), Fe(3+), etc., in the uptake process indicated CeVO4 nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions.

  6. Cell Design for Electrochemical Characterizations of Metal-Ion Batteries in Organic and Aqueous Electrolyte.

    Science.gov (United States)

    Bani Hashemi, Amir; La Mantia, Fabio

    2016-08-16

    Understanding the gas evolution in batteries, caused by decomposition of the electrolyte, is of fundamental importance for improving the long-time performances and cycle life of the battery systems. In general, this phenomenon causes simultaneously an irreversible energy and charge loss, as well as an increase of the internal resistance. Here, we introduce a new cell design capable of performing electrochemical impedance spectroscopy (EIS) and differential electrochemical mass spectroscopy (DEMS) with high resolution. Detailed aspects of the cell fabrication and the different components of the cell are extensively explained. Impedance measurements were validated by using symmetric electrodes. The possibility of performing long-term DEMS measurements was tested on graphite electrodes in Ethylene Carbonate/Dimethyl Carbonate (1:1), 1 M LiPF6 as an electrolyte. Finally, the cell was used to detect hydrogen evolution on the zinc negative electrode of a zinc-ion battery based on copper hexacyanoferrate. PMID:27439309

  7. Heterogeneous collision velocity for hydrated ions in aqueous solutions is nearly 10{sup 4} cm/s

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, O.S. [Cornell Univ. Medical College, New York, NY (United States); Feldberg, S.W. [Brookhaven National Lab., Upton, NY (United States)

    1996-03-14

    The heterogeneous collision velocity (v{sub o}, units of centimeters/second) is the average velocity of a solution particle toward a surface. V{sub o} thus defines the maximum flux of the particles to the surface. Einstein argued that v{sub o} in condensed phases and in gases may be deduced in a precisely analogous manner and that v{sub o} in aqueous solution therefore should be nearly 10{sup 4} cm/s (for particles with a mass of 100 Da). Values of v{sub o} for several aqueous monovalent cations (Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +} and NH{sub 4}{sup +}) were estimated from steady-state limiting current measurements through single gramicidin A channels spanning lipid bilayer membranes. The collisional and diffusional current components were separated by making use of the different viscosities of H{sub 2}O and D{sub 2}O solutions. The transfer of ions from the bulk solution to the channel entrance is modeled using a hemispherical entrance and an extension of the classical analysis of diffusion to a (hemi)sphere in which we relax the assumption that the jump distance (associated with three-dimensional diffusion of an ion in the bulk phase) be small compared to the hemispherical capture radius. Our estimate of v{sub o} agrees well with the prediction of Einstein. We therefore conclude that ion dehydration (only partially hydrated ions can pass through the gramicidin A channel) cannot be a rate-controlling step - a conclusion that is consistent with known rate constants for water exchange for these ions. 36 refs., 7 figs., 1 tab.

  8. High resolution X-ray emission spectroscopy of water and aqueous ions using the micro-jet technique

    International Nuclear Information System (INIS)

    Graphical abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl2. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the way for the study of biochemical systems in physiological media. - Abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl2. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the way for the

  9. High resolution X-ray emission spectroscopy of water and aqueous ions using the micro-jet technique

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Kathrin M.; Koennecke, Rene; Ghadimi, Samira; Golnak, Ronny [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Soldatov, Mikhail A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge 5, Rostov-na-Donu 344090 (Russian Federation); Hodeck, Kai F. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Soldatov, Alexander [Research Center for Nanoscale Structure of Matter, Southern Federal University, Sorge 5, Rostov-na-Donu 344090 (Russian Federation); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fuer Materialien und Energie, c/o BESSY GmbH, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Freie Universitaet Berlin, FB Physik, Arnimallee 14, D-14195 Berlin (Germany)

    2010-11-25

    Graphical abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl{sub 2}. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the way for the study of biochemical systems in physiological media. - Abstract: Soft X-ray absorption (XA) and emission (XE) spectroscopy is a powerful method for probing the local electronic structure of light elements (e.g. C, O, N, S) and transition metals, which are all of importance for biochemical systems. Here, we report for the first time on the XE spectra of a liquid micro-jet sample in a vacuum environment. We developed a high resolution X-ray emission spectrometer and recorded the spectra of pure water in full agreement with those of the literature, as well as of an aqueous solution of NiCl{sub 2}. For the latter system, ground state Hartree-Fock calculations using a self-consistent reaction field (SCRF) approach were carried out to specify the nature of the d-occupied orbital. Our results confirm the dark-channel-fluorescence-yield mechanism that we recently proposed for the case of metal ions in aqueous solutions. The ability to record absorption and emission spectra of an aqueous liquid-jet opens the

  10. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence. PMID:27456144

  11. Nano-cerium vanadate: A novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Chayan; Dudwadkar, Nilesh [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tripathi, Subhash Chandra, E-mail: sctri001@gmail.com [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Gandhi, Pritam Maniklal [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Grover, Vinita [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, Chetan Prakash [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Avesh Kumar, E-mail: aktyagi@barc.gov.in [Waste Management Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2014-09-15

    Highlights: • Template free, low temperature synthesis of CeVO{sub 4} nanopowders. • Thermodynamically and kinetically favourable uptake of Am(III) and U(VI) exhibited. • K{sub d} and ΔG° values for Am(III) and U(VI) uptake in pH 1–6 are reported. • Interdiffusion coefficients and zeta potential values in pH 1–6 are reported. • Possible application in low level aqueous nuclear waste remediation. - Abstract: Cerium vanadate nanopowders were synthesized by a facile low temperature co-precipitation method. The product was characterized by X-ray diffraction and transmission electron microscopy and found to consist of ∼25 nm spherical nanoparticles. The efficiency of these nanopowders for uptake of alpha-emitting radionuclides {sup 233}U (4.82 MeV α) and {sup 241}Am (5.49 MeV α, 60 keV γ) has been investigated. Thermodynamically and kinetically favorable uptake of these radionuclides resulted in their complete removal within 3 h from aqueous acidic feed solutions. The uptake capacity was observed to increase with increase in pH as the zeta potential value decreased with the increase in pH but effect of ionic strength was insignificant. Little influence of the ions like Sr{sup 2+}, Ru{sup 3+}, Fe{sup 3+}, etc., in the uptake process indicated CeVO{sub 4} nanopowders to be amenable for practical applications. The isotherms indicated predominant uptake of the radioactive metal ions in the solid phase of the exchanger at lower feed concentrations and linear Kielland plots with positive slopes indicated favorable exchange of the metal ions with the nanopowder. Performance comparison with the other sorbents reported indicated excellent potential of nano-cerium vanadate for removing americium and uranium from large volumes of aqueous acidic solutions.

  12. CYCLIC VOLTAMMETRY STUDIES OF COPPER (II) AND TELLURIUM (IV) IONS IN ACIDIC AQUEOUS SOLUTIONS FOR THIN FILM DEPOSITION

    OpenAIRE

    SARAVANAN NAGALINGAM; GEOK BEE TEH

    2014-01-01

    Cyclic voltammetry studies of copper (II) and tellurium (IV) ions in acidic aqueous solutions were carried out to determine the optimum condition for copper telluride thin film deposition. The voltammetry studies include reversible scans at different solution pH. Based on the voltammogram, suitable deposition conditions was determined to be in the range of -0.35 V to -0.45 V versus Ag/AgCl at pH values between 2.0 to 2.2 under non diffusion-limited conditions.

  13. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash

    OpenAIRE

    Ying Zhang; Jiaying Zhao; Zhao Jiang; Dexin Shan; Yan Lu

    2014-01-01

    Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial conc...

  14. Method for the preparation of uranium compounds via electrolytic amalgamation of uranium ion directly from an aqueous solution

    International Nuclear Information System (INIS)

    The preparation of nuclear fuels such as uranium dioxide, carbide and nitride employing the ammonium uranate, (NH4)2U2O7, as starting material usually must undergo a series of chemical and metallurgical processes at relatively high temperature and under strictly controlled working condition. A simple method for the preparation of these nuclear fuels has evolved with respect to the electrolytic amalgamation of uranium ion directly from an aqueous solution. The thereby obtained uranium amalgam maybe thermally decomposed into a fine metallic powder which reacts readily with water vapor, methane and nitrogen gas to bring forth uranium dioxide, carbide and nitride, respectively

  15. CYCLIC VOLTAMMETRY STUDIES OF COPPER (II AND TELLURIUM (IV IONS IN ACIDIC AQUEOUS SOLUTIONS FOR THIN FILM DEPOSITION

    Directory of Open Access Journals (Sweden)

    SARAVANAN NAGALINGAM

    2014-05-01

    Full Text Available Cyclic voltammetry studies of copper (II and tellurium (IV ions in acidic aqueous solutions were carried out to determine the optimum condition for copper telluride thin film deposition. The voltammetry studies include reversible scans at different solution pH. Based on the voltammogram, suitable deposition conditions was determined to be in the range of -0.35 V to -0.45 V versus Ag/AgCl at pH values between 2.0 to 2.2 under non diffusion-limited conditions.

  16. Lithium Ion Testing at NSWC Crane in Support of NASA Goddard Space Flight Center

    Science.gov (United States)

    Brown, Harry; Jung, David; Lee, Leonine

    2010-01-01

    This viewgraph presentation reviews Lithium Ion Cell testing at the Naval Surface Warfare Center in Crane, India. The contents include: 1) Quallion 15 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 2) Lithion 50 Ahr Lithium-Ion Cells, LEO Life Cycle Test; 3) ABSL 5 Ahr Lithium-Ion Battery, LRO-LLO Life Cycle Test, SDO-GEO Life Cycle Test; and 4) A123 40 Ahr Lithium-Ion Battery, GPM Life Cycle Test, MMS Life Cycle Test.

  17. Investigation on the extraction of strontium ions from aqueous phase using crown ether-ionic liquid systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The extraction of strontium ions using DCH18C6 as the extractant and various ionic liquids(ILs) as solvents has been investigated.The distribution ratio of Sr2+ can reach as high as 103 under certain conditions,much larger than that in DCH18C6/n-octanol system.The extraction capacity depends greatly on the structure of ionic liquids.In Ils-based extraction systems,the extraction efficiency of strontium ions is reduced by increasing the concentration of nitric acid and can also be influenced directly by the presence of Na+ and K+ in the aqueous phase.It is confirmed that the extraction proceeds mainly via a cation-exchange mechanism.

  18. lithium-ion battery during oven tests

    Science.gov (United States)

    Peng, Peng; Sun, Yiqiong; Jiang, Fangming

    2014-10-01

    A three dimensional thermal abuse model for graphite/LiPF6/LiCoO2 batteries is established particularly for oven tests. To investigate the influence of heat release condition and oven temperature on battery thermal behaviors, we perform a series of simulations with respect to a unit cell during oven thermal abuses of various oven temperatures and under various heat release conditions. Simulation results enable detailed analyses to thermal behaviors of batteries. It is found that during oven thermal abuse processes that do not get into thermal runaway, the negative electrode is the maximum heat generation rate zone; during oven thermal abuse processes that do get into thermal runaway, the positive electrode is the maximum heat generation rate zone. The positive-solvent reaction is found to be the major heat generation source causing thermal runaway. It is also found that the heat release condition and the oven temperature are combined to dictate thermal behaviors of the battery. The critical oven temperature that causes thermal runaway rises if the heat release condition is better and the critical heat release coefficient that can effectively restrain the occurrence of thermal runaway increases with the increase of oven temperature.

  19. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    Science.gov (United States)

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  20. Removal of thorium (IV) ions from aqueous solution by a novel nanoporous ZnO: Isotherms, kinetic and thermodynamic studies.

    Science.gov (United States)

    Kaynar, Ümit H; Ayvacıklı, Mehmet; Hiçsönmez, Ümran; Kaynar, Sermin Çam

    2015-12-01

    The adsorption of thorium (IV) from aqueous solutions onto a novel nanoporous ZnO particles prepared by microwave assisted combustion was studied using batch methods under different experimental conditions. The effect of contact time, solution pH, initial concentration and temperature on adsorption process was studied. The ability of this material to remove Th (IV) from aqueous solution was characterises by Langmuir, Freunlinch and Temkin adsorption isotherms. The adsorption percent and distribution coefficient for nanoporous ZnO powders in optimum conditions were 97% ± 1.02; 8080 L kg(-1)for Th (IV), respectively. Based on the Langmuir model, the maximum adsorption capacity of nanoporous ZnO for Th (IV) was found to be 1500 g kg(-1). Thermodynamic parameters were determined and discussed. The results indicated that nanoporous ZnO was suitable as sorbent material for recovery and adsorption of Th (IV) ions from aqueous solutions. The radioactive Th (VI) in surface water, sea water and waste waters from technologies producing nuclear fuels, mining (uranium and thorium) and laboratories working with radioactive materials (uranium and thorium) can be removed with this nanoporous ZnO.

  1. Synthesis and crystal structure of imidazole containing amide as a turn on fluorescent probe for nickel ion in aqueous media. An experimental and theoretical investigation

    Science.gov (United States)

    Annaraj, B.; Mitu, L.; Neelakantan, M. A.

    2016-01-01

    Imidazole containing amide fluorescence probe (PAIC) for Ni2+ was designed and successfully synthesized in good yield by reaction between 1-methyl-1H-imidazole-2-carboxylic acid and L-phenylalanine methyl ester. The probe was characterized by FTIR, 1H NMR, ESI-MS, UV-vis and fluorescence spectroscopy. Single crystal XRD analysis reveals that PAIC crystallizes in a monoclinic crystal lattice system with the space group of P21/n. Chemosensor property of PAIC was tested against different metal ions by UV-vis and fluorescent techniques in aqueous medium. Test results show that PAIC has high selectivity for Ni2+ compared to other metal ions (Na+, K+, Ca2+, Ag+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, Mn2+, Zn2+ and Pb2+). Time-dependent density functional theory (TD-DFT) and configuration interaction singles (CIS) calculations were carried out to understand the sensing mechanism. The practical applicability of PAIC was tested in real water samples.

  2. Removal of sodium and chloride ions from aqueous solutions using fique fibers (Furcraea spp.).

    Science.gov (United States)

    Agudelo, Nikolay; Hinestroza, Juan P; Husserl, Johana

    2016-01-01

    Fique fibers obtained from the leaves of Furcraea spp., a highly abundant plant in the mountains of South America, may offer an alternative as biosorbents in desalination processes as they exhibit high removal capacities (13.26 meq/g for chloride ions and 15.52 meq/g for sodium ions) up to four times higher than exchange capacities commonly observed in synthetic resins. The ion removal capacity of the fibers was also found to be a function of the pH of the solution with the maximum removal of ions obtained at pH 8. Unlike most commercial ion exchange resins, our results suggest that fique fibers allow simultaneous removal of chloride and sodium ions.

  3. Molecular design of Calix[4]arene derivatives for uranyl ion extraction from aqueous media

    International Nuclear Information System (INIS)

    Uranyl ion extraction is an important part of nuclear waste reprocessing. Use of organic ligands having chelating property with uranyl ions is a promising tool in this area, because of the possibility to improve the selectivity and the affinity of the ligands towards uranyl ions. In this study, Calix[4]arene derivatives containing B, Al, C, Si, N, P, O and S elements in bridging positions were designed and their chelating energetics with uranyl cation are calculated by means of DFT methods.

  4. The use of exhausted olive cake ash (EOCA) as a low cost adsorbent for the removal of toxic metal ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Z. Elouear; J. Bouzid; N. Boujelben; M. Feki; A. Montiel [Ecole Nationale d' Ingenieurs de Sfax, Sfax (Tunisia). Laboratoire Eau Energie et Environnement

    2008-09-15

    The removal characteristics of cadmium (Cd(II)) and nickel (Ni(II)) ions from aqueous solution by exhausted olive cake ash (EOCA) were investigated under various conditions of contact time, pH, initial metal concentration and temperature. Batch kinetic studies showed that an equilibrium time of 2 h was required for the adsorption of Ni(II) and Cd(II) onto EOCA. Equilibrium adsorption is affected by the initial pH (pH{sub 0}) of the solution. The pH{sub 0} 6.0 is found to be the optimum for the individual removal of Cd(II) and Ni(II) ions by EOCA. The adsorption test of applying EOCA into synthetic wastewater revealed that the adsorption data of this material for nickel and cadmium ions were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The estimated maximum capacities of nickel and cadmium ions adsorbed by EOCA were 8.38 and 7.32 mg g{sup -1}, respectively. The thermodynamic parameters for the adsorption process data were evaluated using Langmuir isotherm. The free energy change ({Delta}G{sup 0}) and the enthalpy change ({Delta}H{sup 0}) showed that the process was feasible and endothermic respectively. As the exhausted olive cake is discarded as waste from olive processing, the adsorbent derived from this material is expected to be an economical product for metal ion remediation from water and wastewater. 45 refs., 7 figs., 4 tabs.

  5. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    OpenAIRE

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  6. OPTIMISATION OF COPPER AND ZINC IONS REMOVAL FROM AQUEOUS SOLUTION BY COAL FLY ASH AS AN ADSORBENT

    Directory of Open Access Journals (Sweden)

    MOYO ,M

    2012-04-01

    Full Text Available Rapid urbanization and industrialization of our world has led to accumulation of enormous number of contaminants in our environment. Heavy metal ions hold a superlative position in that list and are responsible for contaminating soil, air and water in many parts of the world. Adsorption technology is emerging as a sustainable effective solution. The possibility of using Coal fly ash as an alternative adsorbent for divalent metal ions (Zn2+, Cu2+ removal from simulated solutions was studied. The coal fly ash was characterised by Brunauer Emmet Teller (BET, X-ray diffraction (XRD, X-ray Fluorescence Spectroscopy (XRF and Fourier transforminfrared (FT-IR. Optimum adsorption conditions were determined as a function of pH, adsorbent dosage and contact time for Zn2+ and Cu2+ removal. The adsorption of metal ions was found to be pH dependant.Equilibrium data fitted well to the Freundlich model with R2 values as 0.9932, 0.9971 for Cu2+, Zn2+, respectively. The study showed that disposed coal fly ash could be used as an efficient adsorbent material for the removal of metal ions from aqueous solution.

  7. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  8. Role of Citrate Ions in the Phosphonate-based Inhibitor System for Mild Steel in Aqueous Chloride Media

    Directory of Open Access Journals (Sweden)

    G. Gunasekaran

    2005-01-01

    Full Text Available The corrosion inhibition efficiency of phosphonic acid and its derivatives for the inhibition of corrosion of mild steel in neutral chloride media is decided by its ability to form protectivefilm over the surface. In this context, the effect of addition of metal cations and certain organic compounds, such as citrate in conjugation with phosphonic acid to impart synergistic corrosion inhibition has been explored. The experiments were carried out using various concentrations of trisodium citrate and zinc ions in an aqueous solution of 2-carboxyethyl phosphonic acid (2CEPA at 25 ppm. The corrosion characteristics have been determined using electrochemical impedance spectroscopy together with determination of corrosion rate by weight-loss method. It has been observed that a combination of inhibitive ions, namely citrate, ZCEPA, and zinc ions at 25 ppm gives 96 per cent inhibition efficiency and this corrosion inhibition is due to the formation of a protective film. By increasing the concentration of citrate beyond 25 ppm, the corrosion inhibition efficiency decreases. This paper discusses the role of citrate and zinc ions in imparting added corrosion inhibition ability using 2CEPA on the basis of experimental results.

  9. Novel PVA/MOF Nanofibres: Fabrication, Evaluation and Adsorption of Lead Ions from Aqueous Solution

    Science.gov (United States)

    Shooto, Ntaote David; Dikio, Charity Wokwu; Wankasi, Donbebe; Sikhwivhilu, Lucky Mashudu; Mtunzi, Fanyana Moses; Dikio, Ezekiel Dixon

    2016-09-01

    Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively, where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (Δ H°) and entropy (Δ S°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption test was also investigated and studied.

  10. Shape and size of simple cations in aqueous solutions: A theoretical reexamination of the hydrated ion via computer simulations

    Science.gov (United States)

    Martínez, José M.; Pappalardo, Rafael R.; Marcos, Enrique Sánchez

    1999-01-01

    The simplest representation of monoatomic cations in aqueous solutions by means of a sphere with a radius chosen on the basis of a well-defined property (that of the bare ion or its hydrate) is reexamined considering classical molecular dynamics simulations. Two charged sphere-water interaction potentials were employed to mimic the bare and hydrated cation in a sample of 512 water molecules. Short-range interactions of trivalent cations were described by Lennard-Jones potentials which were fitted from ab initio calculations. Five statistically independent runs of 150 ps for each of the trivalent spheres in water were carried out in the microcanonical ensemble. A comparison of structural and dynamical properties of these simple ion models in solution with those of a system containing the Cr3+ hydrate ([Cr(H2O)6]3+) is made to get insight into the size and shape definition of simple ions in water, especially those that are highly charged. Advantages and shortcomings of using simple spherical approaches are discussed on the basis of reference calculations performed with a more rigorous hydrated ion model [J. Phys. Chem. B 102, 3272 (1998)]. The importance of nonspherical shape for the hydrate of highly charged ions is stressed and it is paradoxically shown that when spherical shape is retained, the big sphere representing the hydrate leads to results of ionic solution worse than those obtained with the small sphere. A low-cost method to generate hydrated ion-water interaction potentials taking into account the shape of the ionic aggregate is proposed.

  11. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    DEFF Research Database (Denmark)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouther L.J.;

    2013-01-01

    is improved by the addition of divalent metal ions (unpublished results). The stabilizing effect of Zn2+ was by far superior compared to that of Mg2+. In addition, it was found that stabilization correlated well with the ability of the divalent metal ions to interact with oxytocin in aspartate buffer...

  12. Preparation and characterization of novel P(HEA/IA) hydrogels for Cd2+ ion removal from aqueous solution

    International Nuclear Information System (INIS)

    Highlights: • Hydrogels based on 2-hydroxyethyl acrylate and itaconic acid (P(HEA/IA)) were synthesized. • Cd2+ ion removal was investigated. • The surface and cross-section of hydrogels were observed by SEM and AFM. • The adsorption kinetics and isotherms of cadmium ions on the hydrogel were studied. • Approximately 95% of the adsorbed cadmium could be recovered by 0.1 M HNO3 treatment. - Abstract: Series of novel hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), P(HEA/IA) copolymers, were prepared by free radical cross-linking copolymerization and investigated as potential adsorbents for Cd2+ removal from aqueous solution. The hydrogels before and after Cd2+ adsorption were characterized using FTIR, DSC, SEM/EDX, AFM and DMA analysis. The swelling results showed that these hydrogels are pH and temperature sensitive. In order to evaluate adsorption behavior of samples various factors affecting the Cd2+ uptake behavior, such as: contact time, temperature, pH, ionic strength, adsorbent weight, competitive ions and initial concentration of the metal ions were investigated. Five adsorption isotherms and two kinetic models were studied. The adsorption behavior can be very well described by the pseudo-second order kinetic model and Langmuir isotherm. Multicomponent adsorption studies revealed that adsorption of cadmium depends on the type of metal ions present in the system. Desorption studies showed that hydrogel can be reused three times with only 15% loss of adsorption capacity. All results indicate that the sample with the highest IA content is the most promising adsorbent for Cd2+ removal

  13. Preparation and characterization of novel P(HEA/IA) hydrogels for Cd{sup 2+} ion removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Antić, Katarina M.; Babić, Marija M.; Vuković, Jovana J. Jovašević [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia); Vasiljević-Radović, Dana G. [Institute for Chemistry, Technology and Metallurgy, University of Belgrade, Njegoseva 12, Belgrade (Serbia); Onjia, Antonije E. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Filipović, Jovanka M. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia); Tomić, Simonida Lj., E-mail: simonida@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia)

    2015-05-30

    Highlights: • Hydrogels based on 2-hydroxyethyl acrylate and itaconic acid (P(HEA/IA)) were synthesized. • Cd{sup 2+} ion removal was investigated. • The surface and cross-section of hydrogels were observed by SEM and AFM. • The adsorption kinetics and isotherms of cadmium ions on the hydrogel were studied. • Approximately 95% of the adsorbed cadmium could be recovered by 0.1 M HNO{sub 3} treatment. - Abstract: Series of novel hydrogels based on 2-hydroxyethyl acrylate (HEA) and itaconic acid (IA), P(HEA/IA) copolymers, were prepared by free radical cross-linking copolymerization and investigated as potential adsorbents for Cd{sup 2+} removal from aqueous solution. The hydrogels before and after Cd{sup 2+} adsorption were characterized using FTIR, DSC, SEM/EDX, AFM and DMA analysis. The swelling results showed that these hydrogels are pH and temperature sensitive. In order to evaluate adsorption behavior of samples various factors affecting the Cd{sup 2+} uptake behavior, such as: contact time, temperature, pH, ionic strength, adsorbent weight, competitive ions and initial concentration of the metal ions were investigated. Five adsorption isotherms and two kinetic models were studied. The adsorption behavior can be very well described by the pseudo-second order kinetic model and Langmuir isotherm. Multicomponent adsorption studies revealed that adsorption of cadmium depends on the type of metal ions present in the system. Desorption studies showed that hydrogel can be reused three times with only 15% loss of adsorption capacity. All results indicate that the sample with the highest IA content is the most promising adsorbent for Cd{sup 2+} removal.

  14. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering; Prausnitz, John M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  15. Kinetic studies of zinc ions removal from aqueous solution by adsorption on natural zeolite

    OpenAIRE

    Zendelska, Afrodita; Golomeova, Mirjana; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2014-01-01

    The kinetics of zinc adsorption onto natural zeolite (clinoptilolite) were studied with respect to initial metal ion concentration, adsorbent mass and initial pH value. In order to select the main rate-determining step in the overall uptake mechanism, a series of experiments were performed under batch conditions from single ion solutions. Data obtained from the kinetic experiments are interpreted in terms of Pseudo-second order kinetic model, Weber and Morris model and mod...

  16. Pengaruh Konsentrasi Karbon Terhadap Performa Elektrokimia Anoda Liti2(Po43 Untuk Aplikasi Baterai Ion Lithium Tipe Aqueous Elektrolit

    Directory of Open Access Journals (Sweden)

    Zeddy Argasani

    2014-09-01

    Full Text Available Salah satu sistem penyimpanan energi terbarukan yang banyak digunakan dewasa ini adalah rechargeable lithium-ion battery. Pada rechargeable lithium-ion battery terdapat 4 bagian utama yang salah satunya adalah bagian anoda. Anoda yang dipakai adalah LiTi2(PO43 dengan tipe NASICON yang dilakukan proses conductive coating yang menggunakan sukrosa dengan pemanasan 600˚C selama 3 jam didalam atmosfer argon untuk membentuk coating karbon LiTi2(PO43/C sehingga meningkatkan performa elektrokimia yaitu dalam hal kapasitas material LiTi2(PO43. Hasil persentase berat karbon yang terdapat pada LiTi2(PO43/C diidentifikasi dengan Carbon Analyzer didapat dengan kadar karbon 8%, 13%, dan 17.2%. Dari hasil CV, penambahan karbon coating dapat meningkatkan stabilitas, konduktifitas elektronik, kapasitas, dan performa siklik material LiTi2(PO43/C di dalam aqueous elektrolit. Pada hasil charge-discharge, penambahan karbon coating yang tepat dapat membawa ion lithium berinterkalasi secara mudah dan didapatkan kapasitas charge tertinggi dari LiTi2(PO43 8% C yaitu sebesar 45.9 mAh/g dengan kapasitas yang hilang sebesar 53.4% setelah 100 siklik.

  17. Coordination and Hydrolysis of Plutonium Ions in Aqueous Solution using Car-Parrinello Molecular Dynamics Free Energy Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Odoh, Samuel O.; Bylaska, Eric J.; De Jong, Wibe A.

    2013-11-27

    Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics and the first hydrolysis constants of Pu3+, Pu4+, PuO2+ and PuO22+ ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO22+ species is coordinated to 5 aquo ligands while the pentavalent PuO2+ complex is coordinated to 4 aquo ligands. The Pu3+ and Pu4+ ions are both coordinated to 8 water molecules. The first hydrolysis constants obtained for Pu3+ and PuO22+ are 6.65 and 5.70 respectively, all within 0.3 pH units of the experimental values (6.90 and 5.50 respectively). The hydrolysis constant of Pu4+, 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2+, 9.51, supports the experimental results of Bennett et al. (Radiochim. Act. 1992, 56, 15). A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

  18. Detection of sub-ppm traces of aqueous heavy-metal ions using micro-electro-mechanical beam resonators

    Science.gov (United States)

    Rahafrooz, Amir; Pourkamali, Siavash

    2009-11-01

    Capacitive silicon micro-mechanical resonators have been utilized in this work as ultra-sensitive mass sensors for the detection of trace amounts of copper ions in water samples. The approach is based on the reduction of aqueous metal ions by the silicon in a resonant structure and consequently deposition of a very thin metal layer on the resonator surface changing its resonant frequency. Measurements demonstrate successful detection of sub-ppm concentrations of copper(II) ions in water. Relatively large frequency shifts (hundreds of ppm) have been measured for resonators exposed to copper concentrations as low as 4 µM (0.26 ppm). An analytical model for the resonant frequency of the resulting complex beams has been derived and used to calculate the thickness of the deposited copper layer based on the measured frequency shifts. The model shows that the measured frequency shifts correspond to only a few atomic layers of copper (as thin as ~7 Å) deposited on the resonator surfaces. This corresponds to a mass sensitivity of more than 4000 Hz µg-1 cm-2 which is much larger than the highest mass sensitivities measured for quartz crystal microbalances.

  19. Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework.

    Science.gov (United States)

    Demir, Selvan; Brune, Nicholas K; Van Humbeck, Jeffrey F; Mason, Jarad A; Plakhova, Tatiana V; Wang, Shuao; Tian, Guoxin; Minasian, Stefan G; Tyliszczak, Tolek; Yaita, Tsuyoshi; Kobayashi, Tohru; Kalmykov, Stepan N; Shiwaku, Hideaki; Shuh, David K; Long, Jeffrey R

    2016-04-27

    Porous aromatic frameworks (PAFs) incorporating a high concentration of acid functional groups possess characteristics that are promising for use in separating lanthanide and actinide metal ions, as required in the treatment of radioactive waste. These materials have been shown to be indefinitely stable to concentrated acids and bases, potentially allowing for multiple adsorption/stripping cycles. Additionally, the PAFs combine exceptional features from MOFs and inorganic/activated carbons giving rise to tunable pore surfaces and maximum chemical stability. Herein, we present a study of the adsorption of selected metal ions, Sr(2+), Fe(3+), Nd(3+), and Am(3+), from aqueous solutions employing a carbon-based porous aromatic framework, BPP-7 (Berkeley Porous Polymer-7). This material displays high metal loading capacities together with excellent adsorption selectivity for neodymium over strontium based on Langmuir adsorption isotherms and ideal adsorbed solution theory (IAST) calculations. Based in part upon X-ray absorption spectroscopy studies, the stronger adsorption of neodymium is attributed to multiple metal ion and binding site interactions resulting from the densely functionalized and highly interpenetrated structure of BPP-7. Recyclability and combustibility experiments demonstrate that multiple adsorption/stripping cycles can be completed with minimal degradation of the polymer adsorption capacity. PMID:27163056

  20. Removal of Th(IV) ions from aqueous solution using bi-functionalized algae-yeast biosorbent

    International Nuclear Information System (INIS)

    Composites could be more effective adsorbents than inorganic and organic components individually. In the present study, the red macro marine algae, Jania Rubens and yeast, Saccharomyces cerevisiae immobilized on silica gel were used as a constituent of bi-functionalized biosorbent to remove thorium ions from aqueous solution. Optimum biosorption conditions were determined as a function of pH, initial Th(IV) concentration, contact time, temperature, volume/mass ratio and co-ion effect. The morphological analysis of the biocomposite was performed by the scanning electron microscopy and functional groups in the biosorbent were determined by FT-IR spectroscopy. In order to find the adsorption characteristics, Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms were applied to the adsorption data. The data were well described by Langmuir adsorption isotherms while the fit of Freundlich adsorption isotherms and Dubinin-Radushkevich equation to adsorption data was poor. Using the equilibrium constant value obtained at different temperature, the thermodynamics properties of the biosorption (ΔGdeg, ΔHdeg and ΔSdeg) were also determined. The results show that biosorption of Th(IV) ions onto biocomposite was exothermic nature, spontaneous and more favorable at lower temperature under examined conditions. (author)

  1. Application of Corn Cob as a Natural Adsorbent for the Removal of Mn (Vii Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Fariba Norozi

    2016-08-01

    Full Text Available In this Work, We have studied the adsorption of the isotherm of Mn(VII, on Corn cob from aqueous solutions. The effects of pH, initial metal ion concentration, contact time, Corn cobdosage and temperature on the adsorption performance of Corn cob for Mn(VII ions were examined by batch method. Increasing the Mn(VII initial concentration declines the Mn(VII adsorption rate investigated through adsorption Mn(VII removal at pH=4 condition for tC=60 min in equilibrium-batch mode system. The adsorption equilibrium isotherms were fitted by Freundlich and Langmuir models. It was found that the Langmuir model described the adsorption process better than the Freundlich isotherm,(R2=0.9854, thus indicating the applicability of mono layer coverage of Mn(VII ion on Corn cob surface.The relationship between thermodynamic parameters was used to predict the absorption process. Thermodynamic analysis showed that the adsorption process was endothermic and spontaneous in nature.

  2. Experimental and modeling tests of a spherically convergent ion focus

    International Nuclear Information System (INIS)

    Convergent ion focus devices have been considered as sources of fusion reactivity since early studies in the late 1960's. In general, these devices rely on the confinement and acceleration of plasma ions in a spherically or cylindrically symmetric electrostatic potential well. Ions at the edge fall into the well and converge to the central core region. This leads to a strongly increasing central density and central ion energies comparable to the depth of the potential well, resulting in considerable fusion reactivity with modest device parameters. Several schemes have been proposed for creating the potential well, with simple transparent spherical grids being the usual experimental realization. Potential applications of these fusion devices range from small low-intensity fusion-product particle sources for nuclear assaying to more intense sources for isotope generation and waste processing. Even more optimistic projections have led to discussions of fusion power generation through electrostatic confinement. Recent experiments and modeling efforts are developing a deeper understanding of the operation of these devices. Operation of a gridded spherical focus at low density has verified the classical ion flow model and demonstrated a core density enhancement factor of > 10. Probe measurements with applied potentials of ≤ 10 kV indicate a space potential distribution which is much steeper than that expected from simple space-charge-limited flow. The highest gradients are in the near-field region of the grid where the angular asymmetries of the potential distribution are also highest. Even so, central core radii of < 0.6 cm have been observed, considerably below the radius expected from single ion orbit models. Near-term future experiments are concentrating on development of nonperturbing diagnostics of the energetic ion core, achieving high core density operation, and testing predictions of flow instabilities

  3. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    Energy Technology Data Exchange (ETDEWEB)

    Variale, V., E-mail: vincenzo.variale@ba.infn.it [INFN-BA, Via Orabona 4, I-70125 Bari (Italy); Cavenago, M. [INFN – LNL, viale dell’Università 2, I-35020 Legnaro (PD) (Italy); Agostinetti, P.; Sonato, P.; Zanotto, L. [Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2016-02-15

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  4. Radiation microscope for SEE testing using GeV ions

    International Nuclear Information System (INIS)

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (> GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.

  5. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  6. Consideration of fractal and ion-water cooperative interactions in aqueous Na2SO4 and K2SO4 solutions by dielectric relaxation spectroscopy

    Science.gov (United States)

    Liu, Shuang; Jia, Guo-zhu; Zhang, Shu

    2016-01-01

    This paper presents the analysis of the fractal and the ion-water cooperative interactions in aqueous Na2SO4 and K2SO4 solutions underlying the Cole-Cole symmetrical broadening and depicts the Cole-Cole relaxation process. Fractal analysis with α(ln(τ)) diagram from dielectric relaxation spectroscopy (DRS) draws a consistent microscopic picture of ion-water cooperative interactions in aqueous Na2SO4 and K2SO4 solutions. The density of the water molecules perturbed by ions in the hydration shell almost linearly increases with salt concentrations. The water molecules network perturbed by ions contributing to dielectric constant beyond the first hydration shell is obtained.

  7. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  8. CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution.

    Science.gov (United States)

    Wu, Chuan-Liu; Zhao, Yi-Bing

    2007-06-01

    Water-soluble cadmium sulfide (CdS) quantum dots (QDs) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation, and characterized by transmission electron microscopy, spectrofluorometry, and UV-Vis spectrophotometry. The prepared luminescent water-soluble CdS QDs were evaluated as fluorescence probes for the detection of highly reactive hydrogen selenide ions (HSe(-) ions). The quenching of the fluorescence emission of CdS QDs with the addition of HSe(-) ions is due to the elimination of the S(2-) vacancies which are luminescence centers. Quantitative analysis based on chemical interaction between HSe(-) ions and the surface of CdS QDs is very simple, easy to develop, and has demonstrated very high sensitivity and selectivity features. The effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QDs was examined to evaluate the selectivity. Only Cu(2+) and S(2-) ions exhibit significant effects on the fluorescence of CdS QDs. With the developed method, we are able to determine the concentration of HSe(-) ions in the range from 0.10 to 4.80 micromol L(-1), and the limit of detection is 0.087 micromol L(-1). The proposed method was successfully applied to monitor the obtained HSe(-) ions from the reaction of glutathione with selenite. To the best of our knowledge, this is the first report on fluorescence analysis of HSe(-) ions in aqueous solution.

  9. The removal of sodium and cadmium ions from dilute aqueous solutions using foam separation

    International Nuclear Information System (INIS)

    Cationic metallic ions, Na+ and Cd2+, were flotated by using foam separation technique in a continuous flow system. Experiments were carried out mainly on the conditions such that the pH range was limited within 1.3 to 4.0 and collector (sodium dodecylbenzenesulfonate, M.W.=348.48) concentration was stoichiometrically greater than that of the colligend (Cadmium). Surface excess of colligend was greatly influenced by the co-existing H+ ion under constant concentration of collector and colligend ions within a pH range less than 4.0, and in turn, only slightly by the co-existing collector concentration under constant concentration of H+ ion and colligend (pH=4.0). It was also established that a considerable difference between mono- and divalent cationic metallic ions for the affinity to neutralize the negatively charged surface on gas-liquid interface was observed and verified by use of Gouy-Chapman diffuse double-layer theory, except for high concentration range of the co-existing collector forming micellaneous metal-collector complexes. (auth.)

  10. Influence of Operating Conditions on the Removal Cd Ions from Aqueous Media by Adsorption Using Chlamydomonas Reinhardtii

    Institute of Scientific and Technical Information of China (English)

    Jiang Yongbin; Zhu Yi; Ji Hongbing

    2010-01-01

    Chlamydomonas reinhardtii(C.reinhardtii)was used to study adsorption of cadmium(Cd)from aqueous media within various experimental conditions.Results showed that the adsorption process was very fast,with most of the adsorption occurring within30 min of contact time and the equilibrium state was reached in about 60 min.The adsorption ability of the algae increases with the increasing adsorptions sites on cells.Maximum adsorption was observed at the initial Cd concentration of 100 mg/L and pH 6.0.The adsorption was markedly inhibited in the presence of calcium and magnesium ions at 10 mM and the Cd removal efficiency was reduced by 16.54% and 14.99% respectively.This study would be a finding of note with regard to practical wastewater treatment.

  11. Pengaruh Konsentrasi Karbon Terhadap Performa Elektrokimia Katoda Lifepo4 Untuk Aplikasi Baterai Lithium Ion Tipe Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Ade Okta Yurwendra

    2014-09-01

    Full Text Available Baterai lithium ion rechargeable telah dipertimbangkan sebagai sebuah sumber tenaga listrik yang digunakan untuk berbagai aplikasi. LiFePO4 yang digunakan sebagai katoda, dipilih karena memiliki sifat yang ramah lingkungan tetapi memiliki konduktivitas yang lemah. LiFePO4 dilakukan proses konduktif coating menggunakan sukrosa dengan pemanasan 600oC selama 3 jam didalam atmosfer argon untuk membentuk karbon coating LiFePO4 (LiFePO4/C dengan variasi persentase berat karbon 9%, 14.5%, dan 17.8% karbon. Dari analisis cyclic voltammetry penambahan karbon coating dapat meningkatkan stabilitas didalam aqueous electrolyte. Hasil galvanostatic charge/discharge didapatkan hasil terbaik pada LiFePO4/C dengan persentase berat karbon 9% dengan kapasitas discharge 13.3 mAhg-1 dan mengalami penurunan kapasitas sebesar 2.2% setelah cycle ke 100. Penambahan karbon yang berlebihan menurunkan kapasitas LiFePO4

  12. Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(III ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Lee Ching-Hwa

    2015-09-01

    Full Text Available Gallium (Ga is considered an important element in the semiconducting industry and as the lifespan of electronic products decrease annually Ga-containing effluent has been increasing. The present study investigated the use of biodegradable polymer powders, crab shell and chitosan, in the removal of Ga(III ions from aqueous solution. Ga(III biosorption was modeled to Lagergren-first, pseudo-second order and the Weber-Morris models. Equilibrium data was modeled to the Langmuir, Freundlich and Langmuir-Freundlich adsorption isotherms to determine the probable biosorption behavior of Ga(III with the biosorbents. The biosorbents were investigated by Fourier Transform Infrared Spectroscopy, X-ray Diffraction and Scanning Electron Microscopy/Energy Dispersive Spectra analysis.

  13. Kinetic Approach to the Mechanism of Redox Reaction of Pyrocatechol Violet and Nitrite Ion in Aqueous Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    A. Adetoro

    2011-10-01

    Full Text Available The kinetics of the oxidation of Pyrocatechol violet (PCVH by nitrite ion (NO2- in aqueous acidic medium has been studied at 24±1ºC, I = 0.50 mol/dm3(NaCl, [H+] = 1.0×10-3 mol/dm3. The reaction is first order to [PCVH] and half order to [NO2-]. The redox reaction displayed a 1:1 stoichiometry and obeys the rate law: d[PCVH]/dt = (a + b[H+] [PCVH][NO2-]½. The second-order rate constant increases with increase in acid concentration and ionic strength. This system displayed positive salt effect while spectroscopic investigation and Michaelis-Menten plot showed evidence of intermediate complex formation in the course of the reaction. A plausible mechanism has been proposed for the reaction.

  14. Sodium Chloride interaction with solvated and crystalline cellulose : sodium ion affects the tetramer and fibril in aqueous solution

    CERN Document Server

    Bellesia, Giovanni

    2013-01-01

    Inorganic salts are a natural component of biomass which have a significant effect on the product yields from a variety of biomass conversion processes. Understanding their effect on biomass at the microscopic level can help discover their mechanistic role. We present a study of the effect of aqueous sodium chloride (NaCl) on the largest component of biomass, cellulose, focused on the thermodynamic and structural effect of a sodium ion on the cellulose tetramer, and fibril. Replica exchange molecular dynamics simulations of a cellulose tetramer reveal a number of preferred cellulose-Na contacts and bridging positions. Large scale MD simulations on a model cellulose fibril find that Na+ perturbs the hydroxymethyl rotational state population and consequently disrupts the "native" hydrogen bonding network.

  15. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Science.gov (United States)

    Kopitzke, Steven; Geissinger, Peter

    2014-01-01

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments. PMID:24549250

  16. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  17. Limit diffusion coefficients and some aqueous ions of 5f and 4f elements, thermodynamic consequences for actinides

    International Nuclear Information System (INIS)

    The diffusion of the aqueous ions of Am3+, Cm3+, Cf3+, Es3+ and for comparison, Ce3+, Eu3+, Gd3+, Tm3+, Yb3+ was investigated in aqueous LiCl-HCl solutions (pH=2.5) at 25.000C by the open-ended capillary method. The diffusion coefficients obtained in the limit of zero ionic strength are used to estimate the hydrated radius of the considered elements and, consequently, the average number h of water molecules involved. A single S-shaped curve is obtained when this number h is plotted versus the cristallographic radius of the lanthanide (III) and actinide (III) cations. A similar change is assumed, for the inner sphere hydration number, from which values can be derived for actinides. From these results ΔHsub(hyd)sup(0) values have been calculated using a general analytical expression of the hydration enthalpie developped in this work. Finally, data of the sum of ionization potentials are proposed for the transuranium elements

  18. Electron-Transfer Oxidation of Chlorophenols by Uranyl Ion Excited State in Aqueous Solution. Steady-State and Nanosecond Flash Photolysis Studies

    OpenAIRE

    Sarakha, Mohamed; Bolte, Michèle; Burrows, Hugh D.

    2000-01-01

    The oxidation of chlorophenols by photoexcited uranyl ion was studied in aqueous solution at concentrations where the ground-state interactions were negligible. Nanosecond flash photolysis showed that a clean electron-transfer process from the chlorophenols to the excited uranyl ion is involved. This is suggested to lead to the formation of a U(V)/chlorophenoxyl radical pair complex. The efficiency of this charge-transfer process is unity for the three chlorophenols. However, low product yiel...

  19. The Application of Response Surface Methodology for Lead Ion Removal from Aqueous Solution Using Intercalated Tartrate-Mg-Al Layered Double Hydroxides

    OpenAIRE

    Yamin Yasin; Maszlin Mohamad; Faujan B. H. Ahmad

    2013-01-01

    Layered double hydroxide intercalated with tartrate (tartrate-Mg-Al) was used as an adsorbent to remove lead ions from aqueous solutions. The effects of various optimization parameters such as contact time, solution pH, lead ion concentrations, and adsorbent dosage were investigated by the use of Response Surface Methodology (RSM). The Response Surface Methodology (RSM) based on a four-level four-variable Central Composite Rotatable Design (CCRD) was employed to evaluate the interactive effec...

  20. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.

    Science.gov (United States)

    Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R

    2015-08-15

    Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. PMID:25794731

  1. Adsorption of Heavy Metal Ions from Aqueous Media Using Amidoximated Jute Fibres: A Comparative Study

    International Nuclear Information System (INIS)

    Jute Fibres were grafted with acrylonitrile (AN) induced by direct gamma irradiation. All the factors which affect the grafting process were investigated. The grafting at the optimum conditions was followed by amidoximation reaction. The conversion of AN into acryl amidoxime was studied by fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The treated Jute fibres were used as an adsorbent substrate for heavy metal ions such as Pb2+, Cu2+, Ni2+ and Fe2+ from their solutions. The different factors which affect the adsorption capacity of heavy metal ions, such as pH, contact time, metal ions concentrations were studied and the Langmuir adsorption isotherm was highlighted. It was found that the adsorption capacity was enhanced at acidic medium of pH 4 and increased with increasing of contact time.

  2. How to build accurate macroscopic models of actinide ions in aqueous solvents?

    International Nuclear Information System (INIS)

    Classical molecular dynamics (MD) based on parameterized force fields allow one to simulate large molecular systems on significantly long simulation times (usually, at the ns scale and above). Hence, they provide statistically relevant sampled sets of data, which may then be post-processed to estimate specific properties. However, the study of the ligand coordination dynamics around heavy ions requires the use of sophisticated force fields accounting for in particular polarization phenomena, as well as for the charge-transfer effects affecting ion/ligand interactions, which are shown to be significant in several heavy element systems. Our current efforts focus on the development of force-field models for radionuclides, with the intention of pushing as far as possible the accuracy of all competing interactions between the various elements present in solution, that is the metal, the ligands, the solvent, and the counter-ions

  3. Adsorption of divalent metal ions from aqueous solutions using graphene oxide.

    Science.gov (United States)

    Sitko, Rafal; Turek, Edyta; Zawisza, Beata; Malicka, Ewa; Talik, Ewa; Heimann, Jan; Gagor, Anna; Feist, Barbara; Wrzalik, Roman

    2013-04-28

    The adsorptive properties of graphene oxide (GO) towards divalent metal ions (copper, zinc, cadmium and lead) were investigated. GO prepared through the oxidation of graphite using potassium dichromate was characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FT-IR). The results of batch experiments and measurements by flame atomic absorption spectrometry (F-AAS) indicate that maximum adsorption can be achieved in broad pH ranges: 3-7 for Cu(II), 5-8 for Zn(II), 4-8 for Cd(II), 3-7 for Pb(II). The maximum adsorption capacities of Cu(II), Zn(II), Cd(II) and Pb(II) on GO at pH = 5 are 294, 345, 530, 1119 mg g(-1), respectively. The competitive adsorption experiments showed the affinity in the order of Pb(II) > Cu(II) ≫ Cd(II) > Zn(II). Adsorption isotherms and kinetic studies suggest that sorption of metal ions on GO nanosheets is monolayer coverage and adsorption is controlled by chemical adsorption involving the strong surface complexation of metal ions with the oxygen-containing groups on the surface of GO. Chemisorption was confirmed by XPS (binding energy and shape of O1s and C1s peaks) of GO with adsorbed metal ions. The adsorption experiments show that the dispersibility of GO in water changes remarkably after complexation of metal ions. After adsorption, the tendency to agglomerate and precipitate is observed. Excellent dispersibility of GO and strong tendency of GO-Me(II) to precipitate open the path to removal of heavy metals from water solution. Potential application of GO in analytical chemistry as a solid sorbent for preconcentration of trace elements and in heavy metal ion pollution cleanup results from its maximum adsorption capacities that are much higher than those of any of the currently reported sorbents. PMID:23443993

  4. Anodic behaviour of the stainless steel AISI 430 in aqueous solutions of chloride and sulphate ions

    International Nuclear Information System (INIS)

    The kinetics of the dissolution of stainless steel AISI 430 in the presence of chloride and sulphate ions has been studied in terms of the ion concentration, the pH variation, and the velocity of the working electrode. The experimental method utilized was the potentiostatic anodic polarization, and the reactants used were NaCl and Na2 SO4 at room temperature. Atomic Absorption spectrophotometry and Auger Electrons spectroscopy (AES) analyses were made in order to support the interpretation of results obtained by means of the potentiostatic polarization method. (author)

  5. Selective and Sensitive Detection of Heavy Metal Ions in 100% Aqueous Solution and Cells with a Fluorescence Chemosensor Based on Peptide Using Aggregation-Induced Emission.

    Science.gov (United States)

    Neupane, Lok Nath; Oh, Eun-Taex; Park, Heon Joo; Lee, Keun-Hyeung

    2016-03-15

    A fluorescent peptidyl chemosensor for the detection of heavy metal ions in aqueous solution as well as in cells was synthesized on the basis of the peptide receptor for the metal ions using an aggregation-induced emission fluorophore. The peptidyl chemosensor (1) bearing tetraphenylethylene fluorophore showed an exclusively selective turn-on response to Hg(2+) among 16 metal ions in aqueous buffered solution containing NaCl. The peptidyl chemosensor complexed Hg(2+) ions and then aggregated in aqueous buffered solution, resulting in the significant enhancement (OFF-On) of emissions at around 470 nm. The fluorescent sensor showed a highly sensitive response to Hg(2+), and about 1.0 equiv of Hg(2+) was enough for the saturation of the emission intensity change. The detection limit (5.3 nM, R(2) = 0.99) of 1 for Hg(2+) ions was lower than the maximum allowable level of Hg(2+) in drinking water by EPA. Moreover, the peptidyl chemosensor penetrated live cells and detected intracellular Hg(2+) ions by the turn-on response. PMID:26872241

  6. The Application of Response Surface Methodology for Lead Ion Removal from Aqueous Solution Using Intercalated Tartrate-Mg-Al Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Yamin Yasin

    2013-01-01

    Full Text Available Layered double hydroxide intercalated with tartrate (tartrate-Mg-Al was used as an adsorbent to remove lead ions from aqueous solutions. The effects of various optimization parameters such as contact time, solution pH, lead ion concentrations, and adsorbent dosage were investigated by the use of Response Surface Methodology (RSM. The Response Surface Methodology (RSM based on a four-level four-variable Central Composite Rotatable Design (CCRD was employed to evaluate the interactive effects of the various optimization parameters. The parameters were contact time (6–10 h, solution pH (1–3, adsorbent dosage (0.06–0.1 g, and lead ion concentrations (10–30 mg/L. The percentage of lead ions removal for each of the parameters studied was determined by Inductively Coupled Plasma-Optical Emission Spectrophotometer. Simultaneously by increasing contact time and amount of dosage of tartrate-Mg-Al used the percentage of lead ions removal from aqueous solution will increase; however, the percentage removal decreases with an increase in pH and concentrations of lead ions. The experimental percentage removal recorded under optimum conditions was compared well with the maximum predicted value from the RSM, which suggest that Central Composite Rotatable Design of RSM can be used to study the removal of lead from aqueous solution by the use of tartrate-Mg-Al as an adsorbent.

  7. Investigation of ozonide ion reaction with neptunium (6) ions in alkali aqueous solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    By pulse radiolysis method with spectrophotometric recording of short-living particles kinetics of O3-radical-ion reaction with Np5+ and Np6+ in alkaline solutions is investigated. Rate constant of the first reaction equals to (2.0±0.3)x106, of the second -(2.1±0.2)x105 l/(mol·c) in 0.2-2.0 mol/l of LiOH. Peculiarities of Np6+ γ-radiolysis in alkaline solutions saturated with N2O and in aerated solutions containing K2S2O8 are explained. Np7+ yield is determined by O3-behaviour which depends on Np6+ and OH- concentration

  8. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    A sensitive method for the simultaneous determination of chromium(III) and chromium(VI) was chromatography and chemiluminescence detection. Two Dionex ion-exchange guard columns in series, CG5 and AG7, were used to separate chromium(III) from chromium(VI). Chromium(VI) was reduced by potassium su...

  9. Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride, over the range of pH 2.5 - 11.5 and for ionic strengths to 2. 0 M. The dependence of lysozyme's net proton charge, zP' on pH and ionic-strength in potassium-chloride solution is measured. From the ionic-strength dependence of zP' interactions of lysozynie with potassium and chloride ions are calculated using the molecular-thennodynamic theory of Fraaije and Lyklema 1. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electricdouble-layer theory. New experimental pKa data are reported for eleven ammo acids in potassium-chloride solutions of ionic strength to 3.0 M.

  10. Thermodynamic approach of the poly-azine - f element ions interaction in aqueous conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miguirditchian, M.; Guillaumont, D.; Moisy, P.; Guillaneux, D.; Madic, C

    2004-07-01

    2-Amino-4,6-di-(pyridine-2-yl)-1,3,5-triazine (Adptz) was considered as a model compound for selective aromatic nitrogen extractants (poly-azines) of minor actinides. Thermodynamic data ( {delta}G{sup 0}, {delta}H{sup 0}, {delta}S{sup 0}) were systematically acquired for the complexation of lanthanide(III) ions as well as yttrium(III) and americium(III) in hydro-alcoholic medium. Two complementary experimental approaches were followed. Stability constants for the formation of the 1:1 complexes were evaluated from UV-visible spectrophotometry titration experiments, whereas enthalpies and entropies of reaction were obtained consistently from either temperature dependence experiments or micro-calorimetry. The interaction of Adptz with lanthanide(III) and yttrium(III) ions was found to be essentially ionic and dependent upon the hydration and size of the ion. As for americium(III) ion, stability constant and enthalpy of complexation was significantly larger. This was attributed to a partial electronic transfer from the ligand to empty orbitals of the cation. DFT calculations support this interpretation. (authors)

  11. Ion Exchange Testing with SRF Resin FY2012

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  12. Synthesis and optical properties of type II CdTe/CdS core/shell quantum dots in aqueous solution via successive ion layer adsorption and reaction

    NARCIS (Netherlands)

    Q. Zeng; X. Kong; Y. Sun; Y. Zhang; L. Tu; J. Zhao; H. Zhang

    2008-01-01

    3-Mercaptopropionic acid stabilized CdTe/CdS core/shell quantum dots (QDs) were prepared in an aqueous solution following the synthetic route of successive ion layer adsorption and reaction. The photoluminescence quantum yield of the CdTe QDs could reach 40%, from 8% of the bare core, via the contro

  13. Lignin-assisted exfoliation of molybdenum disulfide in aqueous media and its application in lithium ion batteries.

    Science.gov (United States)

    Liu, Wanshuang; Zhao, Chenyang; Zhou, Rui; Zhou, Dan; Liu, Zhaolin; Lu, Xuehong

    2015-06-01

    In this article, alkali lignin (AL)-assisted direct exfoliation of MoS2 mineral into single-layer and few-layer nanosheets in water is reported for the first time. Under optimized conditions, the concentration of MoS2 nanosheets in the obtained dispersion can be as high as 1.75 ± 0.08 mg mL(-1), which is much higher than the typical reported concentrations (MoS2 nanosheets are applied as electrode materials for lithium ion batteries, they show much improved electrochemical performance compared with the pristine MoS2 mineral because of the enhanced ion and electron transfer kinetics. This facile, scalable and eco-friendly aqueous-based process in combination with renewable and ultra-low-cost lignin opens up possibilities for large-scale fabrication of MoS2-based nanocomposites and devices. Moreover, herein we demonstrate that AL is also an excellent surfactant for exfoliation of many other types of layered materials, including graphene, tungsten disulfide and boron nitride, in water, providing rich opportunities for a wider range of applications. PMID:25970569

  14. Phragmites karka as a Biosorbent for the Removal of Mercury Metal Ions from Aqueous Solution: Effect of Modification

    Directory of Open Access Journals (Sweden)

    Muhammad Hamid Raza

    2015-01-01

    Full Text Available Batch scale studies for the adsorption potential of novel biosorbent Phragmites karka (Trin, in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R model, Freundlich isotherm, and Langmuir isotherm were applied. The values of qmax for natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both natural P. karka and treated P. karka. RL values indicate that comparatively treated P. karka was more feasible for mercury adsorption compared to natural P. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.

  15. Removal of Cu(II Ions from Aqueous Solutions by Adsorption Onto Activated Carbon Derived From Olive Waste Cakes

    Directory of Open Access Journals (Sweden)

    Hesham G. Ibrahim

    2016-04-01

    Full Text Available This paper studied the ability of using local activated carbon (LAC derived from olive waste cakes as an adsorbent for the removal of Cu(II ions from aqueous solution by batch operation. Various operating parameters such as solution pH, adsorbent dosage, initial metal ions concentration, and equilibrium contact time have been studied. The results indicated that the adsorption of Cu(II increased with the increasing pH, and the optimum solution pH for the adsorption of Cu(II was found to be 5. The adsorption process increases with increasing dosage of LAC, also the amount of Cu(II removed changes with Cu(II initial concentration and contact time. Adsorption was rapid and occurred within 25 min. for Cu(II concentration range from 60 to 120 mg/l isothermally at 30±1 oC. Maximum adsorption occurs at Cu(II initial concentration lesser than 100 mg/l by using adsorbent dosage (1.2 g/l. The equilibrium adsorption data for Cu(II were fitted well with the Langmuir and Freundlich adsorption isotherm models. The maximum adsorption capacity of LAC was found to be 106.383 mg/g. So, the results indicated the suitability use of the activated carbon derived from olive waste cakes (LAC as low cost and natural material for reliable removal of Cu(II from water and wastewater effluents.

  16. Fluorimetric detection of Sn(2+) ion in aqueous medium using Salicylaldehyde based nanoparticles and application to natural samples analysis.

    Science.gov (United States)

    Patil, Kishor S; Mahajan, Prasad G; Patil, Shivajirao R

    2017-01-01

    The fluorescent 2-[(E)-(2-phenylhydrazinylidene)methyl]phenol nanoparticles (PHPNPs) were prepared by a simple reprecipitation method. The prepared PHPNPs examined by Dynamic Light Scattering show narrower particle size distribution having an average particle size of 93.3nm. The Scanning Electron Microphotograph shows distinct spherical shaped morphology of nanoparticles. The blue shift in UV-absorption and fluorescence spectra of PHPNPs with respect to corresponding spectra of PHP in acetone solution indicates H- aggregates and Aggregation Induced Enhanced Emission (AIEE) for nanoparticles. The nanoparticles show selective tendency towards the recognition of Sn(2+) ions by enhancing the fluorescence intensity preference to Cu(2+), Fe(3+), Fe(2+), Ni(2+), NH4(+), Ca(2+), Pb(2+), Hg(2+) and Zn(2+) ions, which actually seem to quench the fluorescence of nanoparticles. The studies on Langmuir adsorption plot, fluorescence lifetime of PHPNPs, DLS-Zeta sizer, UV-visible and fluorescence titration with and without Sn(2+) helped to propose a suitable mechanism of fluorescence enhancement of nanoparticles by Sn(2+) and their binding ability during complexation. The fluorescence enhancement effect of PHPNPs induced by Sn(2+) is further used to develop an analytical method for detection of Sn(2+) from aqueous medium in environmental samples. PMID:27423468

  17. Reduction kinetics of the dioxouranium(VI) ion bound to synthetic polyelectrolytes in aqueous solutions

    International Nuclear Information System (INIS)

    The characterization of actinide ion interactions with naturally occurring polyelectrolytes (e.g., humic substances) is necessary for developing a satisfactory model of actinide behavior in ecosystems. Synthetic polyelectrolytes having only carboxylic acid functional groups can be used to assess the importance of these groups in humic substances. This study examines the reduction of the dioxouranium (VI) ion in the presence of poly (acrylic acid) and poly (maleic acid) using a viologen radical generated by pulse-radiolysis techniques. The observed rate parameters for dioxo-uranium (VI) reduction show unexpected results as a function of polyelectrolyte concentration, degree of neutralization, and contact time. These results along with a possible mechanistic interpretation are discussed

  18. Solvation of halogen ions in aqueous solutions at 500 K-600 K under 100 atm

    Science.gov (United States)

    Shen, Hao; Hao, Ting; Zhang, Feng-Shou

    2015-12-01

    Structural properties of the pure water and halogen solutions at high temperatures and pressures are studied by using the molecular dynamics simulations and quantum molecular simulations. The related characters are calculated as functions of temperature and pressure. The results show that the hydrogen bonded networks become looser as temperature increases, with the collapse of the traditional tetrahedral structure. It is similar to the concentration-dependent collapse in the NaCl solutions. However, adding other halogen elements has no further effects on the already weakly bonded water molecules. At the phase changing points, the process of hydration is evident for the bigger ions, so that the bigger the ion is, the smaller a cluster is formed. Project supported by the National Natural Science Foundation of China (Grand Nos. 11025524 and 11161130520), the National Basic Research Program of China (Grant No. 2010CB832903), and the European Commission’s 7th Framework Programme (FP7-PEOPLE-2010-IRSES) (Grant No. 269131).

  19. Application of porphyrin modified SBA-15 in adsorption of lead ions from aqueous media

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Asgari

    2015-09-01

    Full Text Available Mesoporous silica SBA-15 was synthesized using P123 as surfactant and functionalized with (3-chloropropyl triethoxysilane. For the first time, the composite of THPP-SBA-15 was prepared using incorporation of tetrakis(4-hydroxyphenylporphyrin in functionalized SBA-15. The materials were characterized by BET, SEM, XRD, FT-IR, DRS, and UV–Vis spectroscopy techniques. The synthesized composite was employed as adsorbent of heavy metal ion (Pb2+ from water at room temperature. Results indicated that the presence of porphyrin in silica significantly increased heavy metal ion adsorption. The maximum adsorption capacity (qmax of THPP-SBA-15 for Pb2+ was found to be 134 mg/g.

  20. Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor

    International Nuclear Information System (INIS)

    The cation sensing property of highly sensitive chromogenic receptor N, N′-bis (salicylidine)-o-phenylene diamine (receptor 1) was studied by visual observation, UV–vis spectroscopy and fluorescence spectroscopy. The proposed study has been targeted to sense the first transition series metal cations like Fe3+, Co2+, Ni2+ and Cu2+. Binding affinity toward Cu2+ is found to be of higher magnitude compared to the other three cations mentioned. Receptor 1 on binding with Fe3+, Co2+ Ni2+ and Cu2+ ions shows fluorescence enhancement which is due to the inhibition of PET mechanism. - Graphical abstract: The cation sensing property of highly sensitive chromogenic receptor N, N′-bis (salicylidine)-o-phenylene diamine was studied by naked eye observation, UV–vis spectroscopy and fluorescence spectroscopy. The proposed study has been targeted to sense the first transition series metal cations like Fe3+, Co2+, Ni2+ and Cu2+. Binding affinity toward Cu2+ is found to be of higher magnitude compared to the other three cations mentioned. Receptor 1 on binding with Fe3+, Co2+ Ni2+ and Cu2+ ions shows fluorescence enhancement which is due to the inhibition of PET mechanism. Highlights: ► Receptor 1 serves as a multi channel probe for different transition metal cations. ► Binding constant for Cu2+ is of higher magnitude compared to the other cations. ► The ions bind to the receptor through NONO centers forming 2:1 and 1:1 complexes. ► Paramagnetic ions show fluorescent enhancement due to the inhibition of PET mechanism.

  1. Polarographic study of processes of binding of indium (3) ions in aqueous solutions of polyelectrolytes

    International Nuclear Information System (INIS)

    The effect of poly-n-styrenesulphoacid (PSSA) and its Na- and K-salts on polarographic reduction of indium (3) in the absence and presence of an indifferent electrolyte is investigated. The concentration of the electrolyte and polyelectrolyte, the molecular mass, the degree of neutralization of PSSA, and the nature of the cation affect the limiting currents of the indium (3) ions. The polarographic method is used for determining the concentration and molecular masses of the polyelectrolyte

  2. Temperature effect on the association of aqueous europium and sulfate ions from luminescence decay measurement

    International Nuclear Information System (INIS)

    The luminescence lifetime for Eu2(SO4)3 and EuCl3 in H2O and D2O has been measured at 0.01 and 0.001 mol dm-3 of Eu3+ and at various temperatures from 5 to 45 deg C. The average number of water molecules coordinated to Eu3+ ion, q, is evaluated from the difference of the luminescence decay constants in the H2O and D2O solutions. By using the q value of 8.3 for aquaeuropium(III) ion in EuCl3 solutions, q values for Eu2(SO4)3 solutions were determined as a function of concentration and temperature. The average number of water molecules released from the primary hydration sphere by the inner-sphere complexation between Eu3+ and SO42- ions is given as Δq = 8.3 - q, and Δq value increases with concentration and temperature. From the values of Δq and the known equilibrium constants on the overall complexation, it is revealed that for both the unis(sulfato) and bis(sulfato) complexation the ratio of innersphere complex to outer-sphere complex increases with temperature and that about one water molecule is released from the inner hydration sphere surrounding Eu3+ ion on the formation of an inner-sphere unis(sulfato) complex. The coordination state of the unis(sulfato) complex and the thermodynamic quantities for the equilibrium between outer- and inner-sphere complexes are discussed. (author)

  3. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  4. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    Science.gov (United States)

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters. PMID:26520475

  5. Optimization, isotherm, kinetic and thermodynamic studies of Pb(II) ions adsorption onto N-maleated chitosan-immobilized TiO₂ nanoparticles from aqueous media.

    Science.gov (United States)

    Shaker, Medhat A; Yakout, Amr A

    2016-02-01

    Chitosan, CS was chemically engineered by maleic anhydride via simple protocol to produce N-maleated chitosan, MCS which immobilized on anatase TiO2 to synthesize novel eco-friendly nanosorbent (51±3.8 nm), MCS@TiO2 for cost-effective and efficient removal of Pb(II) ions from aqueous media. The chemical structure, surface properties and morphology of MCS@TiO2 were recognized by FTIR, (1)H NMR, XRD, TEM, DLS and zeta-potential techniques. The relations between %removal of Pb(II) and different analytical parameters such as solution acidity (pH), MCS@TiO2 dosage, time of contact and initial Pb(II) concentration were optimized using response surface methodology (RSM) and Box-Behnken design (BBD) statistical procedures. The fitting of the experimental data to four different isotherm models at optimized conditions was carried out by various statistical treatments including the correlation coefficient (r), coefficient of determination (r(2)) and non-linear Chi-square (χ(2)) test analyses which all confirm the suitability of Langmuir model to explain the adsorption isotherm data. Also, statistics predicted that the pseudo-second-order model is the optimum kinetic model among four applied kinetic models to closely describe the rate equation of the adsorption process. Thermodynamics viewed the adsorption as endothermic and feasible physical process. EDTA could release the sorbed Pb(II) ions from MCS@TiO2 with a recovery above 92% after three sorption-desorption cycles. The novel synthesized nanosorbent is evidenced to be an excellent solid phase extractor for Pb(II) ions from wastewaters.

  6. Structurally colored biopolymer thin films for detection of dissolved metal ions in aqueous solution

    Science.gov (United States)

    Cathell, Matthew David

    Natural polymers, such as the polysaccharides alginate and chitosan, are noted sorbents of heavy metals. Their polymer backbone structures are rich in ligands that can interact with metal ions through chelation, electrostatics, ion exchange and nonspecific mechanisms. These water-soluble biopolymer materials can be processed into hydrogel thin films, creating high surface area interfaces ideal for binding and sequestering metal ions from solution. By virtue of their uniform nanoscale dimensions (with thicknesses smaller than wavelengths of visible light) polymer thin films exhibit structure-based coloration. This phenomenon, frequently observed in nature, causes the transparent and essentially colorless films to reflect light in a wide array of colors. The lamellar film structures act as one-dimensional photonic crystals, allowing selective reflection of certain wavelengths of light while minimizing other wavelengths by out-of-phase interference. The combination of metal-binding and reflective properties make alginate and chitosan thin films attractive candidates for analyte sensing. Interactions with metal ions can induce changes in film thicknesses and refractive indices, thus altering the path of light reflected through the film. Small changes in dimensional or optical properties can lead to shifts in film color that are perceivable by the unaided eye. These thin films offer the potential for optical sensing of toxic dissolved materials without the need for instrumentation, external power or scientific expertise. With the use of a spectroscopic ellipsometer and a fiber optic reflectance spectrometer, the physical and optical characteristics of biopolymer thin films have been characterized in response to 50 ppm metal ion solutions. It has been determined that metal interactions can lead to measurable changes in both film thicknesses and effective refractive indices. The intrinsic response behaviors of alginate and chitosan, as well as the responses of modified

  7. COMPETITIVE BIOSORPTION OF LEAD (II IONS FROM AQUEOUS SOLUTIONS ONTO TERMINALIA CATAPPA L. LEAVES AS A COST EFFECTIVE BIOSORBENT

    Directory of Open Access Journals (Sweden)

    Jagruti N. Jadav

    2015-03-01

    successfully used for the competitive biosorption studies of Pb(II ions from aqueous solutions and can be applied in waste water technology for remediation of heavy metal contamination.

  8. Na3V2O2(PO4)2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries

    Science.gov (United States)

    Kumar, P. Ramesh; Jung, Young Hwa; Wang, Ji Eun; Kim, Do Kyung

    2016-08-01

    NASICON-type structured Na3V2O2(PO4)2F nanocubes with multi-wall carbon nanotubes (MWCNTs) composite has been synthesized by ethylene glycol-assisted hydrothermal reaction and used as a rechargeable non-aqueous and aqueous sodium-ion battery cathode material. As a cathode material for non-aqueous sodium-ion batteries, as-synthesized Na3V2O2(PO4)2F-MWCNT composite shows stable capacity of 98 mAh g-1 at 0.1 C for 120 cycles and 60 mAh g-1 at 2 C for 1800 cycles in half-cell and full-cell configurations, respectively. In aqueous electrolytes, Na3V2O2(PO4)2F-MWCNT composite delivers discharge capacity of 35 mAh g-1 at 1 C rate in half-cell and 42 mAh g-1 at 1 C rate in full-cell with NaTi2(PO4)3-MWCNT as an anode. Stable cyclability and high rate performance of Na3V2O2(PO4)2F-MWCNT nanocomposite can be attributed to the very short sodium ion diffusion length in nano cube morphology of Na3V2O2(PO4)2F as well as the carbon nanotubes matrix which endows the unbreakable conductive networks for electrons and Na+ ions.

  9. Sequestering Potential of Peach Nut Shells as an Efficient Sorbent for Sequestering Some Toxic Metal Ions from Aqueous Waste: A Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Muhammad Ashraf Shaheen

    2016-06-01

    Full Text Available The peach nut shells potential as a low cost biosorbent for separation of certain metal ions from aqueous media was investigated. The effects of different parameters such as pH, shaking speed, initial metal ions concentration and their contact time with adsorbent on sorption efficiency of biosorbent was investigated to optimize the parameters for maximum sorption. The FT–IR spectroscopy and TGA were used to characterize the biosorbent. A significant increase in sorption was noted with rise in pH of metal ions solution and maximum sorption was observed at pH 6. The isothermal data was fitted to Langmuir, Dubinin–Radushkevich (D–R, Freundlich isotherms and equilibrium process was best fitted to Langmuir isotherm. The removal efficiency of chemically activated samples was found to be ~35 to 45% greater than raw sample. The results showed that peach nut shell was an effective biosorbent for the remediation of the contaminated water with lead (II, Nickle (II and Chromium (III ions. Being low cost material, PNS has a potential to be exploited in waste water treatment technologies. This study shows that activated PNS exhibited appreciable sorption for Pb, Cr and Ni metals ions (97%, 95% and 94% respectively from aqueous solution even at very low concentration of sorbent. The chemical and thermal activation of peach nut shells enhances the removal efficiency for all the metal ions and from the reported data; it was found that the adsorption ability of Pb ions was greater than nickel and chromium.

  10. EDXRF Analysis of Some Fungal Species for the Uptake Capacity of 28Ni, 48Cd, and 82Pb Metal Ions From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    SUNIL KUMAR

    2016-02-01

    Full Text Available In this paper, Energy Dispersive X-ray Fluorescence (EDXRF analysis of eight fungi species, namely, Aspergillus niger, Aspergillus terreus, Trichoderma longibrachiatum, Trichoderma fasciculatum, Penicillin Janthinellum, Aspergillus awamori, Phanerochaete chrysosporium, and Rhizopus arrhizus for the uptake capacity of 28Ni, 48Cd, and 82Pb metals ions from aqueous solution have been reported. Fungal samples having superior ion removal capacity through bioaccumulation and biosorption were obtained from sites contaminated with heavy metals. The detection limit in EDXRF set up was improved considerably using selective absorbers in the path of incident photons from the X-ray tube to reduce the background in the desired energy region. It has been observed that all fungi species under present study have greater affinity for 82Pb ions as compared to 28Ni and 48Cd metal ions. The Trichoderma longibrachiatum and Trichoderma fasciculatum fungi species were identified to be more efficient for removal of heavy metal ions from waste water. The measured uptake capacity of Trichoderma longibrachiatum for 28Ni, 48Cd, and 82Pb ions from aqueous solution is 0.52 mg/g, 0.97 mg/g, and 6.4 mg/g, respectively, and for Trichoderma fasciculatum it is 0.43 mg/g, 0.79 mg/g, and 3.5 mg/g, respectively. This indicated the potential of these identified fungi species as biosorbent for removal of high metal ions from waste water and industrial effluents.

  11. Kinetic and thermodynamic studies on the adsorption of U(VI) ions on densely crosslinked poly(methacrylic acid) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Oezeroglu, C.; Keceli, G. [Istanbul Univ., Dept. of Chemistry, Avcilar Istanbul (Turkey)

    2009-07-01

    In this study, densely crosslinked poly(methacrylie acid) was used to adsorb uranium(VI) ions from aqueous solution. For this purpose, the crosslinked copolymer of ethylene glycol dimethacrylate (EGDM) and methacrylic acid (MA) containing 25% (w/w) methacrylic acid (MA) was synthesized by using dibenzoyl peroxide-N,N-dimethylaniline (BPO-DMA) initiator system at room temperature. The adsorption of uranium(Vl) ions on the copolymer sample (0.02 g copolymer/5 mL solution of U(VI) ions) was carried out in a batch reactor. The parameters which effect the uranium adsorption process, such as, contact time. pH of solution, initial uranium(VI) concentration and temperature were investigated. It was observed that an increase in these parameters enhanced the removal of U(VI) ions from aqueous solution. The adsorption data were modelled by the Freundlich. Langmuir and Dubinin-Radushkevich (D-R) isotherms. The adsorption capacity of the crosslinked copolymer and free energy change were calculated by using D-R isotherms. Thermodynamic parameters ({delta}H , {delta}S and {delta}G ) were determined for the adsorption of U(VI) ions from aqueous solutions by the crosslinked copolymer bearing methacrylic acid functional groups. Experimental adsorption data were analyzed using sorption kinetic models of the pseudo-first order and pseudo-second order kinetic models. It was observed that pseudo-second order kinetic model provided a high goodness of fit with experimental data for the adsorption of U(VI) ions on the crosslinked copolymer bearing methacrylic acid functional groups. The densely crosslinked poly(methacrylic acid) might be of interest in large scale uranium removals from aqueous solution, since it had high uranyl sorption capacities ranging from 0.16 to 2.37 mmol/g copolymer at pH 2.7 (293 K). (orig.)

  12. Use of Composite Sorbents for the Removal of Copper (II ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Rebecca Oyedoyin Adeeyo

    2014-12-01

    Full Text Available Composite adsorbents are synthesized from two or more materials with different chemical and physical properties in order to increase their selectivity and the reusability. Researchers have developed and applied several novel composite materials for enhancing the removal of heavy metal. In this review, extensive list of composites developed via advanced technologies with specified characteristics for the removal of Cu (II ion are discussed. Emphases on their adsorption capacities, reusability, desorption and regeneration with improved mechanical strengths are presented. Conclusively, prospects and other challenges to be checked and addressed in future are outlined.

  13. Use of Composite Sorbents for the Removal of Copper (II ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Rebecca Oyedoyin Adeeyo

    2015-01-01

    Full Text Available Composite adsorbents are synthesized from two or more materials with different chemical and physical properties in order to increase their selectivity and the reusability. Researchers have developed and applied several novel composite materials for enhancing the removal of heavy metal. In this review, extensive list of composites developed via advanced technologies with specified characteristics for the removal of Cu (II ion are discussed. Emphases on their adsorption capacities, reusability, desorption and regeneration with improved mechanical strengths are presented. Conclusively, prospects and other challenges to be checked and addressed in future are outlined.

  14. The Complexes of Bisphosphonate and Magnetite Nanoparticles to Remove Uranyl Ions from Aqueous Phase

    International Nuclear Information System (INIS)

    Using tetraethyl-3-amino-propane-1,1-bisphosphonate (BP) as the functional molecule, we functionalized Fe3O4 magnetic nanoparticles via dopamine (DA) linkage to create a system with an Fe3O4-DA-BP nanostructure, which possesses high specificity for removing uranyl ions from water or blood. This work demonstrates that magnetic nanoparticles, combined with specific receptor-ligand interactions, promise a sensitive and rapid platform for the detection, recovery, and decorporation of radioactive metal toxins from biological environment

  15. Removal of heavy metal ions from aqueous solution using red loess as an adsorbent

    Institute of Scientific and Technical Information of China (English)

    Shengtao Xing; Meiqing Zhao; Zichuan Ma

    2011-01-01

    The adsorption behaviors of heavy metals onto novel low-cost adsorbent,red loess,were investigated.Red loess was characterized by X-ray diffraction,scanning electron microscopy and Fourier transform infrared spectra.The results indicated that red loess mainly consisted of silicate,ferric and aluminum oxides.Solution pH,adsorbent dosage,initial metal concentration,contact time and temperature significantly influenced the efficiency of heavy metals removal.The adsorption reached equilibrium at 4 hr,and the experimental equilibrium data were fitted to Langmuir monolayer adsorption model.The adsorption of Cu(Ⅱ) and Zn(Ⅱ) onto red loess was endothermic,while the adsorption of Pb(Ⅱ) was exothermic.The maximum adsorption capacities of red loess for Pb(Ⅱ),Cu(Ⅱ)and Zn(Ⅱ) were estimated to be 113.6,34.2 and 17.5 mg/g,respectively at 25°C and pH 6.The maximum removal efficiencies were 100% for Pb(Ⅱ) at pH 7,100% for Cu(Ⅱ) at pH 8,and 80% for Zn(Ⅱ) at pH 8.The used adsorbents were readily regenerated using dilute HCI solution,indicating that red loess has a high reusability.All the above results demonstrated that red loess could be used as a possible alternative low-cost adsorbent for the removal of heavy metals from aqueous solution.

  16. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants.

    Science.gov (United States)

    Benhima, H; Chiban, M; Sinan, F; Seta, P; Persin, M

    2008-01-15

    In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity). The adsorption process is affected by various parameters such as contact time, solution volume to mass of plant particles ratio (m/V), particle size, solution pH and metal concentration. A dose of 25 g/l of adsorbent was optimal to obtain maximum adsorption of both metal ions. The maximum metal uptake was obtained with particles of organic matter of E. echinus>S. anthophorbium>L. arborescens, however, the differences are rather small. Two different waste water types (domestic and industrial) were tested and good results were obtained for removal of Pb(II) and Cd(II) at more than 90%. The removal of the metal and mineral ions waste water was observed for PO(4)(3-) at 88%, for NO(3)(-) at 96.5% and for metal ions (Pb(II), Cd(II), Cu(II) and Zn(II)) at about 100%, using IOM as absorbent. PMID:17869071

  17. Sorption of plutonium and curium on ion exchange resins in mixed aqueous organic solutions

    International Nuclear Information System (INIS)

    The sorption of the sulfate and nitrate-complexes of the actinides Pu(III), Pu(IV), Pu(VI), Am(III) and Om(III) on the ion-exchange-resins Dowex 1X8 and Dowex 50 WX8 is investigated. The strong sorbability of these actinide ions in solvents with high content of alcohol is explained by the existence of anionic complexes like Pu(III) (SO4)2-, Pu(IV) (SO4)32-, Pu(VI)O2(SO4)22-, Am(SO4)2- respectively Am(NO3)4- and Om(NO3)4-. The taking of autoradiographs from the thin-layer chromatograms by the aid of a special device and the evaluation of the autoradiographs by a particular photodensitometer are described. The measurement of the radioactivity of the α-emitting nuclides Pu 239, Am 241 and Om 242 are done by liquid-scintillation spectrometry. (author)

  18. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase.

    Science.gov (United States)

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi; Pétrier, Christian

    2010-03-15

    The influence of bicarbonate and carbonate ions on sonolytic degradation of cationic dye, Rhodamine B (RhB), in water was investigated. As a consequence of ultrasonic cavitation that generates .OH radicals, carbonate radicals were secondary products of water sonochemistry when it contains dissolved bicarbonate or carbonate ions. The results clearly demonstrated the significant intensification of sonolytic destruction of RhB in the presence of bicarbonate and carbonate, especially at lower dye concentrations. Degradation intensification occurs because carbonate radicals sonochemically formed undergo radical-radical recombination at a lesser extent than hydroxyl radicals. The generated carbonate radicals are likely able to migrate far from the cavitation bubbles towards the solution bulk and are suitable for degradation of an organic dye such as RhB. Therefore, at low dye concentrations, carbonate radical presents a more selective reactivity towards RhB molecules than hydroxyl radical. In the presence of bicarbonate, degradation rate reached a maximum at 3 g L(-1) bicarbonate, but subsequent addition retards the destruction process. In RhB solutions containing carbonate, the oxidation rate gradually increased with increasing carbonate concentration up to 10 g L(-1) and slightly decreased afterward. Carbonate radicals sonochemically generated are suitable for total removal of COD of sonicated RhB solutions. PMID:19910116

  19. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media.

    Science.gov (United States)

    Mahmoud, Mohamed E; Abdel-Fattah, Tarek M; Osman, Maher M; Ahmed, Somia B

    2012-01-01

    A method is described for hybridization of the adsorption and biosorption characteristics of chemically treated commercial activated carbon and baker's yeast, respectively, for the formation of environmental friendly multifunctional sorbents. Activated carbon was loaded with baker's yeast after acid-base treatment. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) Spectroscopy were used to characterize these sorbents. Moreover, the sorption capabilities for lead (II) ions were evaluated. A value of 90 μmol g(-1) was identified as the maximum sorption capacity of activated carbon. Acid-base treatment of activated carbon was found to double the sorption capacity (140-180 μmol g(-1)). Immobilization of baker's yeast on the surface of activated carbon sorbents was found to further improve the sorption capacity efficiency of lead to 360, 510 and 560 μmol g(-1), respectively. Several important factors such as pH, contact time, sorbent dose, lead concentration and interfering ions were examined. Lead sorption process was studied and evaluated by several adsorption isotherms and found to follow the Langmuir and BET models. The potential applications of various chemically and biologically modified sorbents and biosorbents for removal of lead from real water matrices were also investigated via multistage micro-column technique and the results referred to excellent recovery values of lead (95.0-99.0 ± 3.0-5.0 %).

  20. Removal of radiocobalt ions from aqueous solutions by natural halloysite nanotubes

    International Nuclear Information System (INIS)

    In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG0, ΔS0 and ΔH0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters. (author)

  1. Drastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles

    Science.gov (United States)

    Bettini, S.; Pagano, R.; Valli, L.; Giancane, G.

    2014-08-01

    A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%.A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a procedure allows its solubility in water and drastically increases curcumin stability. Silver nanoparticles (AgNPs)/curcumin complex has been dispersed in a water solution containing a known nickel ion concentration. After three days, a grey precipitate is observed and nickel concentration in the solution is reduced by about 70%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02583k

  2. Influence of aqueous phase on electrochemical biocorrosion tests in diesel/water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bento, F.M. [Dept. of Soils, Faculty of Agronomy, UFRGS, 7712 Bento Goncalves Avenue, CEP: 91540-001, POA, RS (Brazil); Englert, G.E.; Muller, I.L. [Dept. of Metallurgy, Biocorrosion and Biofilms Lab, UFRGS, 99 Osvaldo Aranha Avenue s.615D, CEP: 90035-190, POA, RS (Brazil); Gaylarde, C.C. [Dept. of Biophisics, UFRGS POA, RS (Brazil)

    2004-08-01

    Storage tanks containing microbially contaminated diesel oil are susceptible to corrosion. This process may be evaluated electrochemically in the laboratory using simulated storage systems containing diesel oil and an aqueous phase. The simulated aqueous phase must supply mineral nutrients for microbial growth, together with adequate electrical conductivity, without, however, being too corrosive, so as to allow the aggressive nature of the microbial metabolites to be detected. In this investigation, microbial growth was measured in six electrically conductive media overlaid with metropolitan diesel oil containing an additive package. The microorganisms were the filamentous fungi, Hormoconis resinae, Paecilomyces variotii and Aspergillus fumigatus, the bacterium Bacillus subtilis and the yeast Candida silvicola, all previously isolated from contaminated diesel oil. After 60 days incubation with pure or mixed inocula of these microorganisms, pH, conductivity and viable microorganisms were measured. The electrochemical behaviour of carbon steel ASTM 283-93-C was determined in each of the six media (uninoculated) and in selected inoculated medium via measurements of open circuit potential and potentiostatic polarization curves. The uptake of phosphate (corrosion inhibitor), microbial growth, pH, conductivity and anodic and cathodic polarization curves were assessed in the water phase after 30 and 60 days of incubation with each single species Aspergillus fumigatus and Hormoconis resinae and with the consortium. The medium which proved most appropriate was Bushnell-Haas medium modified by the omission of chlorides, which allowed satisfactory microbial growth and had low aggressivity towards the steel. The performance of electrochemical tests in aerated, rather than deaerated, electrolyte solutions is suggested to be important to allow the detection of microbial influence on passive film formation and stability. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  3. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Seker, Ayseguel [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: aysegulseker@iyte.edu.tr; Shahwan, Talal [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: talalshahwan@iyte.edu.tr; Eroglu, Ahmet E. [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: ahmeteroglu@iyte.edu.tr; Yilmaz, Sinan [Department of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: sinanyilmaz@iyte.edu.tr; Demirel, Zeliha [Department of Biology, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: zelihademirel@gmail.com; Dalay, Meltem Conk [Department of Bioengineering, Ege University, Bornova 35100, Izmir (Turkey)], E-mail: meltemconkdalay@gmail.com

    2008-06-15

    The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as {delta}G{sup o}, {delta}H{sup o}and {delta}S{sup o} calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb{sup 2+} ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.

  4. Effect of curcumin and Cu 2+/Zn 2+ ions on the fibrillar aggregates formed by the amyloid peptide and other peptides at the organic-aqueous interface

    Science.gov (United States)

    Sanghamitra, Nusrat J. M.; Varghese, Neenu; Rao, C. N. R.

    2010-08-01

    Characteristic features of a perilous neuro-degenerative disease such as the Alzhiemer's disease is fibrillar plaque formation by the amyloid (Aβ) peptide. We have modelled the formation and disintegration of fibrils by studying the aggregate structures formed by Aβ structural motif diphenylalanine as well as insulin and bovine serum albumin at the organic-aqueous interface. Even small concentrations of curcumin in the organic medium or Cu 2+ and Zn 2+ ions in the aqueous medium are found to break down the fibrillar structures.

  5. chemical studies on the extraction of certain metal ions from aqueous solution by liquid emulsion membrane

    International Nuclear Information System (INIS)

    In this thesis four systems are addressed related to the use of liquid emulsion membranes (ELM) based on Co(III)dicarbiolide and. The system was dedicated for permeation of cadmium , cobalt Nickel and lead for use of this system for preconcentration and separation of cadmium, cobalt, nickel and lead. The work carried out in this thesis is presented in three parts, namely; introduction, experimental and results and discussion.The first chapter is the introduction which includes aim of work, basic concepts of liquid membranes; liquid emulsion membranes; different models of emulsion permeation, literature survey of extraction chemistry of cadmium, cobalt, nickel and lead. Chapter two includes the experimental part. In this part detailed outlines on the chemicals and different elements used were given. Different instruments as well as analytical techniques were outlines. The preparation of liquid emulsion membrane and the permeation techniques were presented in details. The third chapter deals with the results and discussion. This chapter is divided into four main parts, the four parts is concerned with cadmium/Co(III) dicarbolide/NTA, EDTA, DPTA and DCTA systems. In this part the permeation of Cd(II) aqueous solution by the membrane used was experimented based on liquid-liquid extraction studies of cadmium from different sodium chloride molarities (from 0.01 to 0.1 M) by 0.01 M Cobalt(III) dicarbolides. It was found that the extraction of with cadmium is higher following in the first system, the permeation of the toxic elements, Cd(II) from HCl/sodium chloride medium was carried out using liquid emulsion membrane containing Co(III)dicarbiolide in xylene as carrier, Spain 80/ Spain 85(1:3) as surfactant and NTA, EDTA, DPTA and DCTA as a stripping solutions.

  6. Ion Exchange Testing with SRF Resin FY 2012

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  7. Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests

    Directory of Open Access Journals (Sweden)

    Yasin Eren

    2014-01-01

    Full Text Available Mutagenic and cytotoxic effects of roots, stems and leaves of Limonium globuliferum Kuntze, Plumbaginaceae, aqueous extracts were studied by Allium, Ames, and MTT tests. These are plant, bacterial and mammalian cell assays, respectively. The Allium test analyses showed that aqueous extracts of this species have dose-dependent toxicity and induce chromosomal anomalies based on defects in the spindle fibers. EC50 values of root stem and leaf aqueous extracts were 32.5, 50, and 50 g/l, respectively. It was observed that there was an inverse correlation between root growth and extract concentration. The lowest mitotic index value (22.72 % was found in L. globuliferum root extract. As a result of the chromosome aberrations test, sticky chromosomes, anaphase bridges, laggard chromosomes, and anaphase-telophase disorders were highly detected especially in high concentration of the extract. In the Ames test, mutagenic effects were determined at all concentrations of stem and leaf aqueous extracts and only two concentrations of root extracts of L. globuliferum. Most of the extracts induced cytotoxic effects by the MTT test based on mitochondrial activity. Nevertheless, some of the extracts induced t cell proliferation.

  8. High-resolution measurement of contact ion-pair structures in aqueous RbCl solutions from the simultaneous corefinement of their Rb and Cl K-edge XAFS and XRD spectra

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Van Thai; Fulton, John L.

    2016-07-01

    In concentrated solutions of aqueous RbCl, all of the Rb+ and Cl- ions exist as contact ion pairs. This full structural assessment is derived from the refinement of three independent experimental measurements: the Rb and Cl K-edge x-ray absorption fine structure (XAFS) and the x-ray diffraction spectra (XRD). This simultaneous refinement of the XAFS and XRD data provides high accuracy since each method probes the structure of different local regions about the ions with high sensitivity. At high RbCl concentration (6 m (mol/kg )) the solution is dominated by Rb+ - Cl- contact ion pairs yielding an average of 1.5 pairs at an Rb-Cl distance of 3.24 Å. Upon formation of these ion pairs, approximately 1.1 waters molecules are displaced from the Rb+ and 1.4 water molecules from Cl-. The hydration shells about both the cation and anion are also determined. These results greatly improve the understanding of monovalent ions and provide a basis for testing the Rb+-Cl- interaction potentials used in molecular dynamics (MD) simulation. This research was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  9. Removal of Cadmium(II and Lead(II ions from aqueous phase on sodic bentonite

    Directory of Open Access Journals (Sweden)

    Luz Stella Gaona Galindo

    2013-04-01

    Full Text Available This paper describes the adsorption of Cd2+and Pb2+ions using sodic bentonite clay type Fluidgel modified. The Fluidgelbefore and after chemical modification and thermal activation was characterized by different techniques including X-ray diffraction, thermal analysis, Fourier transform infrared, surface area, helium pycnometry, cation exchange capacity and scanning electron microscopy. Pseudo-first order, pseudo-second order and intra-particle diffusion models were used to analyze the kinetic curves. Equilibrium data were analyzed using Langmuir and Freundlich models. The thermodynamic study indicated that lead adsorption process is endothermic and interactions between clays and solutions of lead occurred spontaneously, while cadmium adsorption revealed an exothermic and spontaneous nature. The maximum removal efficiencies were 97.62% for Cd(II using Fluidgelmodified chemically and 91.08% for lead by Fluidgel modified chemical and thermally.

  10. Removal of Zinc Ions from Aqueous Solution Using Polyaniline Nanocomposite Coated on Rice Husk

    Directory of Open Access Journals (Sweden)

    M. Ghorbani

    2012-01-01

    Full Text Available In this research, the preparation of polyaniline (PAn/ rice husk nanocomposite as adsorbent was discussed and the capability of adsorbing zinc is studied. The polyaniline nanocomposite was prepared in presence of KIO3 as an oxidant, coated on rice husk ash via casting method. The morphology and chemical structure of absorbent evaluated by with scanning electron microscopy (SEM and Fourier-transform infrared spectroscopy (FTIR, respectively. Batch studies were performed to evaluate the influence of various experimental parameters such as pH, adsorbent dosage and contact time. Optimum conditions for zinc removal were found to be pH 3, adsorbent dosage of 10 g/L and equilibrium time of 20 minutes. The equilibrium adsorption isotherm was better described by Langmuir adsorption isotherm model. The adsorption capacity (qmax of PAn/RH for zinc ions in terms of monolayer adsorption was 24.3 mg/g.

  11. Biosorption of Divalent ion onto Treated Prosopis juliflora Bark from Aqueous Solutions - Isothermal and Statistical Analysis

    Directory of Open Access Journals (Sweden)

    N. Muthulakshmi Andal

    2016-05-01

    Full Text Available The present work emphasizes the utilization of Prosopis juliflora bark, an agro waste material for the adsorption of Cu(II. The raw Prosopis juliflora bark (PJB is treated using 0.1N hydrochloric acid to enhance the sorption efficiency. The characterization studies of TPJB using Scanning Electron Microscopy (SEM, Energy Dispersive X-ray Analysis (EDAX, Brunauer-Emmet-Teller(BET and Barrett-Joyner-Halenda (BJH analyses carried out. The batch mode experimental set up is verified to assess the sorption capacity of the chosen material for the operating factors viz., particle sizes/ doses of the sorbent material upon a range of initial concentrations of Cu(II at different temperatures, agitation time and pH of the Cu(II- TPJB system. The amount of Cu(II ion adsorbed on to TPJB surface is found to be 43.11 mg/g (97.4% under optimized conditions, its efficiency 3 fold times more than the Ce values reported by other researchers. The sorption characteristic of TPJB is quantitatively estimated through column experiments based on the Ce value by batch mode. The removal is observed as 98%. Langmuir, Freundlich and Tempkin isothermal curves at various initial concentrations are plotted for Cu(II-TPJB system wherein the straight line fit is best suited for the Freundlich isotherm model. The results show that the response of TPJB in trapping Cu(II ions are influenced by various parameters being statistically verified using SPSS software, indicative of good correlation.

  12. The use of new modified poly(acrylamide chelating resin with pendent benzothiazole groups containing donor atoms in the removal of heavy metal ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Semmedu Selvaraj Kalaivani

    2014-03-01

    Full Text Available The adsorption studies of poly(6-(ethoxybenzothiazole acrylamide (PEBTA, for Cu(II and Zn(II metal ions removal from an aqueous solution have been investigated, as a function of solution pH, adsorbent dose, contact time, initial metal ion concentration and temperature. The chemical and structural characteristics of the adsorbent were determined by the FT-IR, 1H-NMR, TGA, SEM, and EDAX analysis. The maximum adsorption capacities of the adsorbent for Cu(II and Zn(II ions, as calculated from the Langmuir isotherm model, were 273.5 and 216.4 mg/g, respectively. The adsorption kinetic studies show that the adsorption of Cu(II and Zn(II ions onto PEBTA follows the pseudo second order kinetic model. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, and it has been found that the adsorption process is feasible, spontaneous and exothermic in nature. Desorption studies were carried out using 0.3 N HCl, and it revealed that the adsorbed Cu(II and Zn(II ions can be easily removed. The adsorption–desorption process is reversible, and this indicates that PEBTA is an effective adsorbent for the removal of heavy metal ions from an aqueous medium.

  13. Three-dimensional printed knotted reactors enabling highly sensitive differentiation of silver nanoparticles and ions in aqueous environmental samples.

    Science.gov (United States)

    Su, Cheng-Kuan; Hsieh, Meng-Hsuan; Sun, Yuh-Chang

    2016-03-31

    Whether silver nanoparticles (AgNPs) persist or release silver ions (Ag(+)) when discharged into a natural environment has remained an unresolved issue. In this study, we employed a low-cost stereolithographic three-dimensional printing (3DP) technology to fabricate the angle-defined knotted reactors (KRs) to construct a simple differentiation scheme for quantitative assessment of Ag(+) ions and AgNPs in municipal wastewater samples. We chose xanthan/phosphate-buffered saline as a dispersion medium for in situ stabilization of the two silver species, while also facilitating their extraction from complicated wastewater matrices. After method optimization, we measured extraction efficiencies of 54.5 and 32.3% for retaining Ag(+) ions and AgNPs, respectively, in the printed KR (768-turn), with detection limits (DLs) of 0.86 and 0.52 ng L(-1) when determining Ag(+) ions and AgNPs, respectively (sample run at pH 11 without a rinse solution), and 0.86 ng L(-1) when determining Ag(+) ions alone (sample run at pH 12 with a 1.5-mL rinse solution). The proposed scheme is tolerant of the wastewater matrix and provides more reliable differentiation between Ag(+)/AgNPs than does a conventional filtration method. The concept and applicability of adopting 3DP technology to renew traditional KR devices were evidently proven by means of these significantly improved analytical performance. Our analytical data suggested that the concentrations of Ag(+) ions and AgNPs in the tested industrial wastewater sample were both higher than those in domestic wastewater, implying that industrial activity might be a main source of environmental silver species, rather than domestic discharge from AgNP-containing products. PMID:26965333

  14. Ion-pair formation in aqueous strontium chloride and strontium hydroxide solutions under hydrothermal conditions by AC conductivity measurements.

    Science.gov (United States)

    Arcis, H; Zimmerman, G H; Tremaine, P R

    2014-09-01

    Frequency-dependent electrical conductivities of solutions of aqueous strontium hydroxide and strontium chloride have been measured from T = 295 K to T = 625 K at p = 20 MPa, over a very wide range of ionic strength (3 × 10(-5) to 0.2 mol kg(-1)), using a high-precision flow AC conductivity instrument. Experimental values for the concentration-dependent equivalent conductivity, Λ, of the two electrolytes were fitted with the Turq-Blum-Bernard-Kunz ("TBBK") ionic conductivity model, to determine ionic association constants, K(A,m). The TBBK fits yielded statistically significant formation constants for the species SrOH(+) and SrCl(+) at all temperatures, and for Sr(OH)2(0) and SrCl2(0) at temperatures above 446 K. The first and second stepwise association constants for the ion pairs followed the order K(A1)(SrOH(+)) > K(A1)(SrCl(+)) > K(A2)[Sr(OH)2(0)] > K(A2)[SrCl2(0)], consistent with long-range solvent polarization effects associated with the lower static dielectric constant and high compressibility of water at elevated temperatures. The stepwise association constants to form SrCl(+) agree with previously reported values for CaCl(+) to within the combined experimental error at high temperatures and, at temperatures below ∼375 K, the values of log10 KA1 for strontium are lower than those for calcium by up to ∼0.3-0.4 units. The association constants for the species SrOH(+) and Sr(OH)2(0) are the first accurate values to be reported for hydroxide ion pairs with any divalent cation under these conditions.

  15. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material.

    Science.gov (United States)

    Yin, Ping; Xu, Qiang; Qu, Rongjun; Zhao, Guifang; Sun, Yanzhi

    2010-01-15

    A novel inorganic-organic composite material silica gel microspheres encapsulated by imidazole functionalized polystyrene (SG-PS-azo-IM) has been synthesized and characterized. This composite material was used to investigate the adsorption of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), Hg(II), Pb(II), Pd(II), Pt(II), Ag(I), and Au(III) from aqueous solutions, and the research results displayed that SG-PS-azo-IM has the highest adsorption capacity for Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation, and the maximum adsorption capacity for Au(III) is 1.700 mmol/g. The adsorption selectivity, the dynamic adsorption and desorption properties of SG-PS-azo-IM for Au(III) have also been studied. The results showed that SG-PS-azo-IM had excellent adsorption for Au(III) in four binary ions system, especially in the systems of Au(III)-Zn(II) and Au(III)-Cu(II), and almost Au(III) could be desorbed with the eluent solution of 0.5% thiourea in 1 mol/L HCl. Moreover, this novel composite material was used to preconcentrate Au(III) before its determination by flame atomic adsorption spectrometry. In the initial concentration range of 0.10-0.20 microg/mL, multiple of enrichment could reach 5.28. Thus, silica gel encapsulated by polystyrene coupling with imidazole (SG-PS-azo-IM) is favorable and useful for the removal of transition metal ions, and the high adsorption capacity makes it a good promising candidate material for Au(III) removal.

  16. Sequestering of thorium ions from aqueous media on rice husk. Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, Shagufta; Mirza, Muhammad Latif [The Islamia University of Bahawalpur (Pakistan). Dept. of Chemistry; Khalid, Nasir [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2015-07-01

    The adsorption behaviour of thorium on rice husk has been studied by optimizing different parameters like nature of electrolyte, amount of adsorbent, equilibration time, metal concentration, and temperature, employing batch method and radiotracer technique. Maximum adsorption was observed at 0.0001 mol L{sup -1} HNO{sub 3}, using 0.1 g of adsorbent for 4 cm{sup 3} of 5.19 x 10{sup -5} mol L{sup -1} of Th{sup +4} solution in fifteen minutes equilibration time. The adsorption phenomenon was verified by FTIR, SEM and EDX techniques. The adsorption data was well fitted to Freundlich, Langmuir and Dubinin-Radushkevich isotherm equations. The characteristic Freundlich constants i.e. 1/n = 0.528 ± 0.019 and K = 4.88 x 10{sup -4} ± 1.29 x 10{sup -5} mol g{sup -1} whereas the Langmuir constants Q{sub m} = (4.159 ± 0.234) x 10{sup -6} mol g{sup -1} and K{sub L} = (3.627 ± 0.328) x 10{sup 4} dm{sup 3} mol{sup -1} have been computed for the sorption system. The sorption free energy was found to be 11.24 ± 0.211 kJ mol{sup -1} showing chemisorption nature of interaction between thorium and rice husk. The results showed that thorium adsorption on rice husk follows pseudo 2{sup nd} order with rate constant = 1.448 g mg{sup -1} min{sup -1}. The determined negative values of ΔG indicated spontaneity of the process, whereas the positive values of ΔH and ΔS confirmed endothermic nature and increased randomness during the adsorption process respectively. The removal of Th{sup +4} ions from spiked tap water was checked by employing the optimized experimental parameters which indicated that rice husk is a good adsorbent for thorium ions and may be used for waste management of radionuclides.

  17. Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II) ions onto the seed husk of Calophyllum inophyllum

    International Nuclear Information System (INIS)

    Biosorption of lead(II) ions from aqueous solution onto the seed husk of Calophyllum inophyllum was investigated in a batch system. Equilibrium, thermodynamics and kinetic studies were conducted by considering the effects of pH, initial metal ion concentration, contact time, and temperature. The results showed that the uptake of the metal ions increased with increase in initial metal ion concentration. The pH for optimum adsorption was 4 for the Pb(II) ions (q = 4.86 mg/g and 97.2% adsorption). Langmuir isotherm described the biosorption of Pb(II) ions onto the biomass (R2 = 0.9531) better than the Freundlich model (R2 = 0.7984), and the Temkin model (R2 = 0.8761). Biosorption kinetics data obtained for the metal ions sorption were fitted using pseudo-first-order and pseudo-second-order. It was found that the kinetics data fitted well into the pseudo-second-order kinetics. Thermodynamic parameters such as Gibbs free energy (ΔG), standard enthalpy (ΔH) and standard entropy (ΔS) were evaluated. The result showed that biosorption of the metal ion onto C. inophyllum biomass was spontaneous and endothermic in nature. The results of FTIR (Fourier-transform infrared spectroscopy) revealed that carboxyl, amine, and hydroxyl groups on the biomass surface were involved in the adsorption of Pb(II) ions.

  18. Pengaruh Temperatur Hydrothermal Terhadap Performa Elektrokimia Lifepo4 Sebagai Katoda Baterai Ion Lithium Type Aqueous Elektrolit

    Directory of Open Access Journals (Sweden)

    Hendro Waluyo

    2014-09-01

    Full Text Available Katoda yang biasa digunakan produsen baterai lithium saat ini adalah LiCoO2. Dimana LiCoO2 memilki beberapa kekurangan beracun, tidak stabil, dan harganya mahal. Bahan katoda yang sangat menjanjikan adalah lithium iron phosphate (LiFePO4 untuk bisa menggantikan LiCoO2 .Dalam proses sintesis katoda LiFePO4 pada penelitian ini menggunakan metode hydrothermal dengan variasi temperatur 1500C,1750C dan 2000C selama 12 jam untuk waktu holdingnya. Dari hasil pengujian XRD menunjukkan terbentuknya fase LiFePO4 pada semua sampel, namun masih ditemukan zat pengotor. Untuk hasil uji SEM, serbuk LiFePO4 memiliki bentuk bulat tidak beraturan dan terjadi aglomerasi. Serbuk LiFePO4 dengan variasi temperatur 2000C memiliki performance yang paling baik dengan nilai kapasitas sebesar 109.32 mA/g hal ini karena dari hasil CV menunjukkan kinetik tranfer ion Lithium yang baik akibat distribusi ukuran partikel yang merata dan juga tingkat kristanilitas yang tinggi.

  19. The effect of salinity on the sorption of cadmium ions from aqueous medium on Fe(III-sepiolite

    Directory of Open Access Journals (Sweden)

    Habish Amal Juma

    2015-01-01

    Full Text Available In this study, the sorption of cadmium ions onto sepiolite modified with hydrated iron(III oxide, Fe(III-sepiolite, has been investigated in natural seawater, artificial seawater, aqueous solution of NaCl of the same ionic strength as the seawater and distilled water. The sorption experiments were performed as a function of the initial solution pH value, the initial metal concentration and the equilibration time, using the batch method. The equilibrium sorption data were analyzed by the Langmuir, Freundlich and Sips isotherm models and the kinetics of sorption was analyzed using the pseudo-first-order and the pseudo-second-order kinetic models. The maximum sorption capacity and the strength of the sorbate-sorbent bonds at initial pH = 7 were found to decrease in the following order: distilled water > NaCl solution > artificial seawater > natural seawater. The values of parameter nS in the Sips model, which fitted the equilibrium sorption results best, showed that heterogeneity of the sorbent surface was the highest in distilled water and the lowest in natural seawater. The sorption kinetic data fitted well with the pseudo-second-order kinetic model, which suggests that the rate-limiting step in Cd2+ sorption onto Fe(III-sepiolite could be chemisorption. The low desorption percentage in both distilled water and 0.001 M HNO3 indicated that sorption occurred mainly by chemisorption mechanisms. [Projekat Ministarstva nauke republike srbije, br. III 45019

  20. Biosorption kinetic studies of heavy metal ions from aqueous solution by a mixture of vegetable waste (abstract)

    International Nuclear Information System (INIS)

    Biosorption potential of a new bio sorbent prepared from vegetable waste composed of mixture of potato and carrot peels for the removal of heavy metals such as Ni (II) and Cu (II) from aqueous solution was determined. Batch experiments were conducted to optimize parameters i.e. initial pH, temperature, contact time, initial metal concentration and bio sorbent dose and it was observed that maximum adsorption of nickel (78%) was achieved by stirring the contents for 75 min at pH 4 and 35 deg. C by using 3.0 g of bio sorbent while in the case of copper maximum removal of copper occurred at pH 2, temperature of 50 deg. C, contact time of 45 minutes, metal concentration of 30 ppm and bio sorbent dose of 2.5 g. Kinetic studies of these reactions showed that they follow a pseudo-second order reaction, while these systems fit well in the Langmuir isotherm model and Freundlich isotherm model for Ni (II) and Cu (II) ions respectively. Both neat and metal loaded bio sorbent samples were analyzed using FT-IR spectrophotometer and X-Ray Florescence spectrometer in order to confirm the bio sorption of Ni (II) and Cu (II) and results have revealed that the metals are present in the spent bio sorbent. (author)

  1. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    Science.gov (United States)

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  2. Kinetic study of heavy metal ions removal from aqueous solutions using activated pumice stone

    Directory of Open Access Journals (Sweden)

    Naseh Babakhani

    2016-05-01

    Full Text Available Background: The presence of heavy metals in aquatic and terrestrial ecosystems causes harmful effects to living organisms in the environment. This research aimed to determine the potential of activated pumice stone (APS as a sorbent for the removal of Cd, Cu, and Zn from wastewater. Methods: This research was conducted during 2013 on a laboratory scale. The study was performed using batch experiments with synthetic wastewater having Cd, Cu, and Zn concentrations of 10, 20, 40, and 80 mg/L. Various isotherm models, including Langmuir and Freundlich, were used to evaluate the sorption data. The influence of contact time and amount of sorbent on the removal of Cd, Cu, and Zn from wastewater was studied. All experiments were done at pH = 7 and at room temperature (20 ± 1°C. The solution pH was adjusted using 1N NaOH or 1N HCl solutions, and the pH value was determined by a pH meter. Results: The results showed that the adsorption of Cd, Cu, and Zn approaches equilibrium after about 2 hours, while the rates of removal efficiency for Cd, Cu, and Zn at equilibrium were 91.6%, 91.8%, and 82.9%, respectively. Kinetic studies showed that the sorption of Cd, Cu, and Zn onto APS were fitted to the pseudo-second order kinetic models. Conclusion: The results indicate that the APS is a good choice, because it is a low-cost and effective sorbent. The sorption capacity of APS as a sorbent was considerably affected by the initial concentration of metal ions in the solution and by contact time.

  3. Determination of the extractive capacity of para-tert butyl calix[8]arene octa-phosphinoylated towards uranyl ions from an aqueous-acidic-salty medium

    International Nuclear Information System (INIS)

    The extraction properties of octa-phosphinoylated para-tert butyl calix[8]arene (prepared in the laboratory) in chloroform towards uranyl ions from an aqueous-acidic-salty medium (HNO3-3.5 NaNO3) containing uranyl nitrate salt, was investigated. Two spectroscopic techniques UV/Vis and Luminescence were used for this study. The latter permitted analyze the fluorescence from the uranyl ions influenced by the surrounding medium. Both permitted to learn about the power of this calixarene as extractant towards the mentioned ions. Its extraction ability or capability using this calixarene at 5.91 x 10-4 M towards the uranyl ions was 400% as determined by UV/Vis while fluorescence revealed 100% of uranyl ion extraction. A closed analysis of the results obtained by using these techniques revealed that the stoichiometry of the main extracted species was 1calixarene:2 uranyl ions. The loading capacity of the calixarene ligand towards the uranyl ions was also investigated using both techniques. UV/Vis resulted to be inadequate for quantifying exactly the loading capacity of the calixarene whereas luminescence was excellent indeed, using a 5.91 x 10-4 M calixarene concentration, its loading capacity was 0.157 M of free uranyl ions from 0.161 M of uranyl ions present in the aqueous-acidic-salty medium. The extracts from the ability and capacity studies were concentrated to dryness, purified and the dried extracts were analyzed by infrared and neutron activation analysis. By these techniques it was demonstrated that during the extraction of the uranyl ions by the calixarene ligand they form thermodynamically and kinetically stable complexes, since in the solid state, the 1:2, calixarene; uranyl ions stoichiometry was kept with the minimum formula: (UO2)2B8bL8(NO3)4(H2O)4CHCl3(CH3OH)3 the methanol molecules come from its purification. It is proposed that B8bL8 calixarene in chloroform medium is a good extractant for the treatment of nuclear wastes or radioactive wastes containing

  4. Evaluation of carbon-based nanosorbents synthesised by ethylene decomposition on stainless steel substrates as potential sequestrating materials for nickel ions in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    X.J.Lee; L.Y.Lee; L.P.Y.Foo; K.W.Tan; D.G.Hassell

    2012-01-01

    The present work covers the preparation of carbon-based nanosorbents by ethylene decomposition on stainless steel mesh without the use of external catalyst for the treatment of water containing nickel ions (Ni2+).The reaction temperature was varied from 650 to 850℃,while reaction time and ethylene to nitrogen flow ratio were maintained at 30 min and 1:1 cm3/min,respectively.Results show that nanosorbents synthesised at a reaction temperature of 650℃ had the smallest average diameter (75 nm),largest BET surface area (68.95m2/g) and least amount of impurity (0.98 wt.% Fe).A series of batch sorption tests were performed to evaluate the effects of initial pH,initial metal concentration and contact time on Ni2+ removal by the nanosorbents.The equilibrium data fitted well to Freundlich isotherm.The kinetic data were best correlated to a pseudo second-order model indicating that the process was of chemisorption type.Further analysis by the Boyd kinetic model revealed that boundary layer diffusion was the controlling step.This primary study suggests that the prepared material with Freundlich constants compared well with those in the literature,is a promising sorbent for the sequestration of Ni2+ in aqueous solutions.

  5. Fixed-bed column study for the removal of cadmium (II) and nickel (II) ions from aqueous solutions using peat and mollusk shells

    Energy Technology Data Exchange (ETDEWEB)

    Li Chenxi [Civil Engineering Department, Queen' s University, 58 University Avenue, Kingston, Ontario, K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Civil Engineering Department, Queen' s University, 58 University Avenue, Kingston, Ontario, K7L 3N6 (Canada)

    2009-11-15

    The study was conducted to examine the effectiveness of 4.0-4.75 mm crushed shells and Sphagnum peat moss as low-cost natural adsorbent filter materials for the removal of cadmium and nickel ions from binary aqueous solutions. The effects of column depth and flow rate on effluent metal breakthrough, metal removal and pH were investigated as a function of throughput volume (TPV). Metal removal efficiencies and adsorption capacities for each of the columns were estimated to identify the better filter material and operational conditions for the treatment of cadmium and nickel. During the column testing, a flow rate of 1.5 mL/min (surface loading of 27.5 cm{sup 3}/cm{sup 2} day) and bed depth of 15 cm were found to represent the better operational conditions, where 47.9% and 42.7% cadmium and nickel cumulative removals were obtained under these operational conditions, respectively. The results will be valuable in the development of a mixed-media adsorption system for the treatment of metal-rich wastewaters such as municipal landfill leachate.

  6. Hydration and ion pair formation in common aqueous La(III) salt solutions--a Raman scattering and DFT study.

    Science.gov (United States)

    Rudolph, Wolfram W; Irmer, Gert

    2015-01-01

    Raman spectra of aqueous lanthanum perchlorate, triflate (trifluorosulfonate), chloride and nitrate solutions were measured over a broad concentration (0.121-3.050 mol L(-1)) range at room temperature (23 °C). A very weak mode at 343 cm(-1) with a full width at half height at 49 cm(-1) in the isotropic spectrum suggests that the nona-aqua La(III) ion is thermodynamically stable in dilute perchlorate solutions (∼0.2 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The La(3+) nona-hydrate was also detected in a 1.2 mol L(-1) La(CF3SO3)3(aq). In lanthanum chloride solutions chloro-complex formation was detected over the measured concentration range from 0.5-3.050 mol L(-1). The chloro-complexes in LaCl3(aq) are fairly weak and disappear with dilution. At a concentration complexes disappeared. In LaCl3 solutions, with additional HCl, a series of chloro-complexes of the type [La(OH2)(9-n)Cln](+3-n) (n = 1-3) were formed. The La(NO3)3(aq) spectra were compared with a spectrum of a 0.409 mol L(-1) NaNO3(aq) and it was concluded that in La(NO3)3(aq) over the concentration range from 0.121-1.844 mol L(-1), nitrato-complexes, [La(OH2)(9-n)(NO3)n](+3-n) (n = 1, 2) were formed. These nitrato-complexes are quite weak and disappear with dilution La(OH2)9](3+) with the polarizable dielectric continuum are in good agreement with data from recent structural experimental measurements and high quality simulations. The DFT frequency of the La-O stretching mode at 328.2 cm(-1), is only slightly smaller than the experimental one.

  7. Na3Ti2(PO4)(3) as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Ravnsbaek, DB; Xiang, K; Chiang, YM

    2014-07-01

    Na3Ti2(PO4)(3) synthesized as fine carbon-coated powders is demonstrated for the first time to be a suitable sodium-bearing anode material for rechargeable aqueous sodium-ion batteries (ANaBs). Importantly, Na3Ti2(PO4)(3) is found to be stable in deoxygenated water, enabling use of this material in aqueous systems. As a sodiated anode, it allows use of sodium-depleted cathode materials that require supply of sodium-ions from the anode. As an example, we demonstrate for the first time the use of olivine FePO4 as a cathode in an ANaB. (C) 2014 Elsevier B.V. All rights reserved.

  8. Remediation of alkaline intermediate level radioactive aqueous liquid waste stored along with organic waste at PREFRE Tarapur for ion exchange process: a laboratory scale study

    International Nuclear Information System (INIS)

    Dibutyl phosphate (DBP) and monobutyl phosphate (MBP) are formed during reprocessing of spent fuel as degradation products of Tributyl phosphate (TBP). To maintain the efficiency of TBP solvent during its repeated use, the degraded products are removed by sodium carbonate washing of the solvent. This radioactive sodium carbonate solution is stored in a separate tank along with the exhausted TBP solvent. The presence of degraded products of TBP and their complexes, ion exchange treatment of this waste is creating problems during alpha decontamination step. The present paper deals with the remediation of the aqueous phase of the above waste. For the treatment of the aqueous phase of waste, first the TBP degraded products are required to be removed so that the normal ion exchange treatment can be adopted. (author)

  9. Equilibrium and kinetic studies for the biosorption system of copper(II) ion from aqueous solution using Tectona grandis L.f. leaves powder

    International Nuclear Information System (INIS)

    The biosorption of copper(II) ions from aqueous solution by Tectona grandis L.f. was studied in a batch adsorption system as a function of pH, metal ion concentration, adsorbent concentration and adsorbent size. The biosorption capacities and rates of copper(II) ions onto T. grandis L.f. were evaluated. The Langmuir, Freundlich, Redlich-Peterson and Temkin adsorption models were applied to describe the isotherms and isotherm constants. Biosorption isothermal data could be well interpreted by the Langmuir model with maximum adsorption capacity of 15.43 mg/g of copper(II) ion on T. grandis L.f. leaves powder. The kinetic experimental data properly correlated with the second-order kinetic model. Various thermodynamic parameters such as ΔGo, ΔHo, and ΔSo were calculated indicating that this system was a spontaneous and exothermic process

  10. Adsorption Kinetics of Cd(ll) and Pb(ll) Ions from Aqueous Solutions by Bamboo-Based Activated Charcoal and Bamboo Dust

    OpenAIRE

    Stevens Azubuike Odoemelam; Francis Kalu Onwu; Christopher Uchechukwu Sonde; Mgbeahuruike A. Chinedu

    2015-01-01

    The use of bamboo dust (BD) and bamboo-based activated charcoal for adsorption of Pb(ll) and Cd(ll) ions from aqueous solutions were assessed in this work. The effect of contact time on the uptake of these metal ions was studied in batch process. The adsorption data were correlated with pseudo first-order, pseudo second-order and diffusivity kinetic models. Results show that pseudo second-order kinetic model gave the best description for the adsorption process. Kinetic studies further showed ...

  11. Kinetic modeling of the biosorption of Cd2+ ions from aqueous solutions onto Eichhornia crassipes roots using potentiometry: low-cost alternative to conventional methods

    Directory of Open Access Journals (Sweden)

    Carolina Martínez-Sánchez

    2013-01-01

    Full Text Available This work presents the use of potentiometric measurements for kinetic studies of biosorption of Cd2+ ions from aqueous solutions on Eichhornia crassipes roots. The open circuit potential of the Cd/Cd2+ electrode of the first kind was measured during the bioadsorption process. The amount of Cd2+ ions accumulated was determined in real time. The data were fit to different models, with the pseudo-second-order model proving to be the best in describing the data. The advantages and limitations of the methodology proposed relative to the traditional method are discussed.

  12. Electroanalytical tools to investigate the divalent state of Eu(Ⅲ) and Nd(Ⅲ) ions in non-aqueous medium

    Institute of Scientific and Technical Information of China (English)

    Jignasu P Mehta; Himanshu M Pandya; Kahan I Pandya

    2012-01-01

    The divalent state of Ln(Ⅲ) ions has attracted much interest because of their ability to serve isomorphously in many biological system of divalent Ca(Ⅱ) ion.Therefore,present paper deals with the study of divalent state of Eu(Ⅲ) and Nd(Ⅲ) ions in non-aqueous medium.In present study,cyclic voltammetry and chronopotentiometry were utilized to establish the divalent state of Eu(Ⅲ) and Nd(Ⅲ) ions.The cyclic voltammetric technique showed two-step reduction process at cathode for both Ln(Ⅲ) ions under specified experimental conditions and chronopotentiomeuic method also showed two different transition times (τ).Looking to the shape of cyclic voltammogram we calculated heterogeneous forward rate constant (K0fh,cm/s) and diffusion coefficient (D,cm2/s) for both ions,which suggested that sweep rate had great effect on the shape of cyclic voltammogram of Eu(Ⅲ) and Nd(Ⅲ) ions.The result of chronopotentiometry also suggested that stable divalent states of Eu(Ⅲ) and Nd(Ⅲ) ions existed with chronopotenuogram with two distinct transition times.The diffusion coefficients (D,cm2/s)were calculated from Sand equation.The diffusion coefficients of both techniques were compared and the results suggested that the system at electrode surface was changing from being reversible to irreversible.

  13. Characteristics of lithium-ion batteries during fire tests

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Lorén, Anders; Mellander, Bengt-Erik

    2014-12-01

    Commercial lithium-ion battery cells are exposed to a controlled propane fire in order to evaluate heat release rate (HRR), emission of toxic gases as well as cell temperature and voltage under this type of abuse. The study includes six abuse tests on cells having lithium-iron phosphate (LFP) cathodes and, as a comparison, one test on conventional laptop battery packs with cobalt based cathode. The influence of different state of charge (SOC) is investigated and a limited study of the effect of water mist application is also performed. The total heat release (THR) per battery energy capacity are determined to be 28-75 kJ Wh-1 and the maximum HRR values to 110-490 W Wh-1. Hydrogen fluoride (HF) is found in the released gases for all tests but no traceable amounts of phosphorous oxyfluoride (POF3) or phosphorus pentafluoride (PF5) are detected. An extrapolation of expected HF emissions for a typical automotive 10 kWh battery pack exposed to fire gives a release of 400-1200 g HF. If released in a confined environment such emissions of HF may results in unacceptable exposure levels.

  14. Functionalized macroporous copolymer of glycidyl methacrylate: The type of ligand and porosity parameters influence on Cu(II ion sorption from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Sandić Zvjezdana P.

    2009-01-01

    Full Text Available The removal of heavy metals from hydro-metallurgical and other industries' wastewaters, their safe storage and possible recovery from waste- water streams is one of the greater ecological problems of modern society. Conventional methods, like precipitation, adsorption and biosorption, electrowinning, membrane separation, solvent extraction and ion exchange are often ineffective, expensive and can generate secondary pollution. On the other hand, chelating polymers, consisting of crosslinked copolymers as a solid support and functional group (ligand, are capable of selectively loading different metal ions from aqueous solutions. In the relatively simple process, the chelating copolymer is contacted with the contaminated solution, loaded with metal ions, and stripped with the appropriate eluent. Important properties of chelating polymers are high capacity, high selectivity and fast kinetics combined with mechanical stability and chemical inertness. Macroporous hydrophilic copolymers of glycidyl methacrylate and ethylene glycol dimethacrylate modified by different amines show outstanding efficiency and selectivity for the sorption of precious and heavy metals from aqueous solutions. In this study poly(GMA-co-EGDMA copolymers were synthesized with different porosity parameters and functionalized in reactions with ethylene diamine (EDA, diethylene triamine (DETA and triethylene tetramine (TETA. Under non-competitive conditions, in batch experiments at room temperature, the rate of sorption of Cu(II ions from aqueous solutions and the influence of pH on it was determined for four samples of amino-functionalized poly(GMA-co-EGDMA. The sorption of Cu(II for both amino-functionalized samples was found to be very rapid. The sorption half time, t1/2, defined as the time required to reach 50% of the total sorption capacity, was between 1 and 2 min. The maximum sorption capacity for copper (2.80 mmol/g was obtained on SGE-10/12-deta sample. The sorption

  15. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S. [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia); Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my; Borhan, Azry [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  16. Radiation crosslinked poly (vinyl alcohol/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Yahya H.F. Al-qudah

    2014-04-01

    Full Text Available Poly(vinyl alcohol and acrylic acid (AAc were copolymerized in different compositions using gamma irradiation. Swelling characteristics of the obtained polymeric hydrogels (PVA/AAc were evaluated and showed reasonable sensitivity to both pH and temperature. The diffusion of water within the hydrogel was found to be of Fickian character, the water molecules may simply diffuse through the polymer network by diffusion processes. The adsorption of Zn2+, Co2+ and Mn2+ ions onto (PVA/AAc has been investigated. The parameters studied including; the effects of pH, contact time and the initial metal ion concentrations by batch method. It was found that the adsorption of Zn2+, Co2+ and Mn2+ ions by PVA/AAc hydrogel is pH-dependent and the maximum sorption of Zn2+, Co2+ and Mn2+ was found to be 388, 245 and 152 mg/g, respectively, at pH 5. The adsorption studies are fitted in various adsorption models such as Langmuir and Freundlich. The kinetic data was tested using pseudo-first-order, pseudo-second-order kinetic models and an intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior.

  17. Investigation of sorption of Hg(II) ions onto coconut husk from aqueous solution using radiotracer technique

    International Nuclear Information System (INIS)

    The sorption of Hg(II) ions onto coconut (Cocos nucifera) husk has been studied using radiotracer technique. Maximum sorption (96%) of Hg(II) ions (7.39 x 10-6 M) onto sorbent surface is achieved from 10-3 M HNO3 solution in 30 min agitation time using 100 mg of coconut husk. The sorption data follow the Freundlich and Dubinin-Radushkevich (D-R) isotherms. Sorption capacity (6.84±0.45 mmol g-1) and sorption energy (10.6±0.13 kJ mol-1) have been evaluated using these isotherms. Among the ions tested to monitor their influence on the sorption, Ba(II), fluoride and tartarate increased the sorption, while thiosulfate, bromide and thiocyanate reduced ( 26%) the sorption. The cations K(I), Ce(III), Cr(III), Fe(III) and Zr(IV) partially suppressed the sorption. The variation of sorption with temperature yields thermodynamic parameters ΔH = -37.4±2 kJ mol-1 ΔS = -105±7 J mol-1 K-1 and ΔG = -2.58±0.05 kJ mol-1 at 298 K. The negative values of enthalpy and free energy reflect the spontaneous and exothermic nature of sorption, respectively. The selectivity studies of sorbent show that the coconut husk column can be used to separate Hg(II) ions from Se(IV), Zn(II), I(I) and Tc (VII). The sorbent has a potential in radiochemistry to separate gamma energies of 203Hg (279 keV) from 75Se (265 and 280 keV). (orig.)

  18. Carbon-coated Na{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocomposite as a novel high rate cathode material for aqueous sodium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ludan; Huang, Tao, E-mail: huangt@fudan.edu.cn; Yu, Aishui, E-mail: asyu@fudan.edu.cn

    2015-10-15

    Aqueous rechargeable sodium ion batteries has attracted a lot of interests because of its low cost, huge abundance of sodium resources and promising application for large-scale electric energy storage. Herein, we proposed the carbon-coated Na{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocomposite (Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C) as a cathode material, which was prepared using a simple sol–gel method. The structure and morphology analyses showed that the highly crystalline Na{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanoparticle with an average size of 350 nm is well coated by a carbon layer with a thickness of 3 nm. Electrochemical tests showed that at high current rates, the Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C cathode exhibited excellent electrochemical performance. Impressively, it delivered a discharge specific capacity of 94.5 mAh/g at 10C (1176 mA/g), 90.5 mAh/g at 15C (1764 mA/g) and 71.7 mAh/g at 20C (2352 mA/g). To the best of our knowledge, the notable rate capability has never been reported before for aqueous sodium ion batteries. The enhanced electrochemical behavior could be attributed to the combined advantages of Na{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanoparticles and carbon layer in the unique core–shell structure, which improved the intrinsic poor electronic conductivity of Na{sub 3}V{sub 2}(PO{sub 4}){sub 3} greatly. Our results confirmed the prepared Na{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C nanocomposite should be a promising cathode candidate for aqueous sodium ion batteries. - Highlights: • NVP/C nanocomposite is a novel cathode material for aqueous sodium ion battery. • NVP/C nanocomposite delivered a high discharge specific capacity at high rate. • The characteristics of the unique core–shell structure are discussed in detail.

  19. Stability studies of some fluoroquinolonyl-3′-penicillin amides in aqueous DMF solution in presence of Cu(ic-Ions

    Directory of Open Access Journals (Sweden)

    Chatterjee N

    2007-01-01

    Full Text Available Stability studies of some novel dual action fluoroquinolonyl-3′-penicillin amides (1a-e in aqueous DMF (1:1 solution has been carried out in presence of Cu (ic or Hg (ic ions and their degradation rate was monitored by UV/Vis spectrophotometric method. The results thus obtained indicate that ciprofloxacin moiety offered greater stability to the β-lactam moiety of the hybrid (1d or 1e than norfloxacin (1a or 1b in the presence of heavy metal ion degradation; whereas the degradation pattern of β-lactam moiety in the hybrids under investigation (1a-e was found to be in agreement with the previously reported heavy metal ion degradation profile of the penicillins.

  20. PVDF-ErGO-GRC electrode: A single setup electrochemical system for separation, pre-concentration and detection of lead ions in complex aqueous samples.

    Science.gov (United States)

    Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd

    2016-02-01

    An effective electrode was developed based on electromembrane extraction (EME) and square wave voltammetry (SWV) for simultaneous separation, pre-concentration and determination of lead (II) (Pb(II)) ions in complex aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilized in conjunction with the SWV. Pb(II) ions were extracted from an aqueous sample solution into an acidic acceptor phase (1M HCl) in the lumen of the polyvinylidene fluoride (PVDF) membrane bag by the application of voltage of maximum 6 V across the supported liquid membrane (SLM), consisting of organic solvent and di-(2-ethylhexyl)phosphoric acid (D2EHPA). The parameters affecting the EME were optimized for Pb(II) ions. The optimum EME conditions were found to be 20% D2EHPA in 1-octanol impregnated in the wall of PVDF membrane (PVDF17) as the SLM, extraction time of 20 min, pH of sample solution of 8 and a voltage of 5 V. The PVDF-ErGO-GRC electrode system attained enrichment factors of 40 times and 80% of extraction with relative standard deviations (n=5) of 8.3%. Good linearity ranging from 0.25 to 2 nM with coefficients correlation of 0.999 was obtained. The Pb(II) ions detection limit of PVDF-ErGO-GRC electrode was found to be 0.09 nM. The newly developed single setup electrochemical system was applied to complex aqueous samples such as tap, river and sea water to evaluate the feasibility of the method for applications. PMID:26653429

  1. Monolayer g-C3N4 Fluorescent Sensor for Sensitive and Selective Colorimetric Detection of Silver ion from Aqueous Samples.

    Science.gov (United States)

    Cao, Yujuan; Wu, Wei; Wang, Song; Peng, Hong; Hu, Xiaogang; Yu, Ying

    2016-03-01

    Rapid and sensitive detection of heavy-metal ions in natural water environments worldwide is urgently needed because of their severe threats to human health. In the present work, monolayer graphite-like flake C3N4 (g-C3N4) materials were applied as a new fluorescent sensor for the detection of trace silver ion in aqueous solution. The thickness of synthesized g-C3N4 was 0.45 nm and obtained by exfoliating twice with ultrasonic. With the presence of ethylene diamine tetraacetic acid as a screening agent, the highly sensitive sensor reached a low detection limit of 52.3 nmol/L for silver (I) ion and there was no disturbance when silver (I) ion coexisted with other metal ions in water samples. Under the optimal conditions, the monolayer g-C3N4 was successfully used to detect trace silver (I) ion in different environmental water and drinking water samples. PMID:26753758

  2. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS

    Energy Technology Data Exchange (ETDEWEB)

    Maeyama, Takuya [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamashita, Shinichi; Taguchi, Mitsumasa [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Baldacchino, Gerard [CEA Saclay, IRAMIS, UMR 3299 CEA-CNRS SIS2M, Laboratoire de Radiolyse, F-91191 Gif sur Yvette Cedex (France); Sihver, Lembit [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Department of Nuclear Engineering, Texas A and M University, TX 77843-3133 (United States); Department of Roanoke College, Salem, VA 24153 (United States); Department of Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Murakami, Takeshi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-12-15

    The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with {sup 12}C{sup 6+} beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper. - Highlights: > Therapeutic ion beam has energy of several hundred MeV/u because it is necessary for a few tens cm range. > With such high energy, nuclear fragmentations of carbon ions occur resulting in production of lighter ions. > In this study, OH yield in water radiolysis near the Bragg peak of therapeutic ion beams was measured. > Measured yields are discussed considering nuclear fragmentation by PHITS code.

  3. Preliminary Tests Of The Decris-sc Ion Source

    CERN Document Server

    Efremov, A; Bechterev, V; Bogomolov, S L; Bondarenko, P G; Datskov, V I; Dmitriev, S; Drobin, V; Lebedev, A; Leporis, M; Malinowski, H; Nikiforov, A; Paschenko, S V; Seleznev, V; Shishov, Yu A; Smirnov, Yu; Tsvineva, G; Yakovlev, B; Yazvitsky, N Yu

    2004-01-01

    A new "liquid He-free" superconducting Electron Cyclotron Resonance Ion Source DECRIS-SC, to be used as injector for the IC-100 small cyclotron, has been designed by FLNR and LHE JINR. The main feature is that a compact refrigerator of Gifford-McMahon type is used to cool the solenoid coils. For the reason of very small cooling power at 4.2 K (about 1 W) our efforts were to optimize the magnetic structure and minimize an external heating of the coils. The maximum magnetic field strength is 3 T and 2 T in injection and extraction region respectively. For the radial plasma confinement a hexapole made of NdFeB permanent magnet is used. The source will be capable of ECR plasma heating using different frequencies (14 GHz or 18 GHz). To be able to deliver usable intensities of solids, the design is also allow axial access for evaporation oven and metal samples using the plasma sputtering technique. Very preliminary results of the source test are presented.

  4. Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2.

    Science.gov (United States)

    Bhide, Amrtha; Hofmann, Jonas; Dürr, Anna Katharina; Janek, Jürgen; Adelhelm, Philipp

    2014-02-01

    The present study compares the physico-chemical properties of non-aqueous liquid electrolytes based on NaPF6, NaClO4 and NaCF3SO3 salts in the binary mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). The ionic conductivity of the electrolytes is determined as a function of salt concentration and temperature. It is found that the electrolytes containing NaClO4 and NaPF6 exhibit ionic conductivities ranging from 5 mS cm(-1) to 7 mS cm(-1) at ambient temperature. The electrochemical stability window of the different electrolytes is studied by linear sweep voltammetry (LSV) and cyclic voltammetry (CV) measurements with respect to a variety of working electrodes (WE) such as glassy carbon (GC), graphite and a carbon gas diffusion layer (GDL). Electrolytes containing NaPF6 and NaClO4 are found to be electrochemically stable with respect to GC and GDL electrodes up to 4.5 V vs. Na/Na(+), with some side reactions starting from around 3.0 V for the latter salt. The results further show that aluminium is preferred over different steels as a cathode current collector. Copper is stable up to a potential of 3.5 V vs. Na/Na(+). In view of practical Na-ion battery systems, the electrolytes are electrochemically tested with Na0.7CoO2 as a positive electrode. It is inferred that the electrolyte NaPF6-EC : DMC is favorable for the formation of a stable surface film and the reversibility of the above cathode material. PMID:24336408

  5. Measurement of Uncertainty for Aqueous Ethanol Wet-Bath Simulator Solutions Used with Evidential Breath Testing Instruments.

    Science.gov (United States)

    Hwang, Rong-Jen; Beltran, Jada; Rogers, Craig; Barlow, Jeremy; Razatos, Gerasimos

    2016-09-01

    Aqueous ethanol wet-bath simulator solutions are used to perform calibration adjustments, calibration checks, proficiency testing, and inspection of breath alcohol instruments. The Toxicology Bureau of the New Mexico Department of Health has conducted a study to estimate a measurement of uncertainty for the preparation and testing of these wet-bath simulator solutions. The measurand is identified as the mass concentration of ethanol (g/100 mL) determined through dual capillary column headspace gas chromatography with flame ionization detector analysis. Three groups were used in the estimation of the aqueous ethanol wet-bath simulator solutions uncertainty: GC calibration adjustment, GC analytical, and certified reference material. The standard uncertainties for these uncertainty sources were combined using the method of root-sum-squares to give uc = 0.8598%. The combined standard uncertainty was expanded to U = 1.7% to reflect a confidence level of 95% using a coverage factor of 2. This estimation applies to all aqueous ethanol wet-bath simulator solution concentrations produced by this laboratory.

  6. ANALYSIS OF SULFONATES IN AQUEOUS SAMPLES BY ION-PAIR LC/ESI-MS/MS WITH IN-SOURCE CID FOR ADDUCT PEAK ELIMINATION

    Energy Technology Data Exchange (ETDEWEB)

    OUYANG,S.; VAIRAVAMURTHY,M.A.

    1999-06-13

    Determination of low-molecular-weight organic sulfonates (e.g. taurine and cysteic acid) in aqueous solutions is important in many applications of biological, environmental and pharmaceutical sciences. These compounds are difficult to be determined by commonly used reversed-phase liquid chromatographic separation combined with UV-Visible detection because of their high solubility and the lack chromophoric moieties. Here the authors report a method combining ion-pair liquid chromatography and electrospray ionization tandem mass spectrometry (IPLC/ESI-MS/MS)for determining sulfonates. The ability of low-molecular-weight sulfonates to form ion-pairs with quaternary ammonium cations in aqueous solutions allowed LC separation with a C{sub 18} column. Detection of the sulfonates was accomplished with ESI-MS that lends a universal mode of mass detection for polar, water soluble compounds. An in-source collision induced dissociation (CID) was applied to eliminate the adduct peaks in mass spectra. Characteristic marker ions showed in the second stage mass spectra lent a method for identifying sulfonates.

  7. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis.

    Science.gov (United States)

    Khozhaenko, Elena; Kovalev, Valeri; Podkorytova, Elena; Khotimchenko, Maksim

    2016-09-15

    Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems. PMID:26848015

  8. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis.

    Science.gov (United States)

    Khozhaenko, Elena; Kovalev, Valeri; Podkorytova, Elena; Khotimchenko, Maksim

    2016-09-15

    Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems.

  9. Removal of low levels of uranium from aqueous solutions by coprecipitation and ion exchange (Preprint no. SST-02)

    International Nuclear Information System (INIS)

    Coprecipitation of uranium(VI) from aqueous solutions with ferric hydroxide has been evaluated as a means of removing uranium from aqueous effluents. Experiments with different amounts of uranium and added carbonate showed that it was possible to remove better than 95% of uranium in a single precipitation at low concentrations of uranium. Sorption on weak acid cation exchange resin has also been studied and can be used if the uranium is to be recovered. (author)

  10. Design and test of the ion mobility spectrometer with corona discharge ion source

    International Nuclear Information System (INIS)

    In the present paper we describe in detail the design and construction of a home built ion mobility spectrometer with corona discharge as an ionization source. The ion mobility spectra have been recorded using the corona discharge in two different modes: i) chemical ionization and ii) direct ionization in the corona discharge. The chemical ionization of the organic compounds resulted in less fragmented ion mobility spectra in comparison to the direct ionization of the compounds in the corona discharge. The measured positive ion mobility spectra of several organic compounds including acetone, methanol, ethanol and benzene are presented. (Authors)

  11. Thermodynamic studies of aqueous solutions of 2,2,2-cryptand at 298.15 K: enthalpy-entropy compensation, partial entropies, and complexation with K+ ions.

    Science.gov (United States)

    Shaikh, Vasim R; Terdale, Santosh S; Ahamad, Abdul; Gupta, Gaurav R; Dagade, Dilip H; Hundiwale, Dilip G; Patil, Kesharsingh J

    2013-12-19

    The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand

  12. Cost effective and shape controlled approach to synthesize hierarchically assembled NiO nanoflakes for the removal of toxic heavy metal ions in aqueous solution

    Indian Academy of Sciences (India)

    K Yogesh Kumar; H B Muralidhara; Y Arthoba Nayaka; H Hanumanthappa; M S Veena; S R Kiran Kumar

    2015-02-01

    Hierarchical mesoporous NiO nanoflakes (NiOs) have been synthesized in high yield via a simple, economical and environmentally friendly hydrothermal route. The as-prepared NiOs were characterized by powder X-ray diffraction (PXRD), scanning electronicmicroscopy (SEM), transmission electronmicroscopy (TEM), selected area electron diffraction patterns (SAED), X-ray energy dispersive spectroscopy (EDS) and nitrogen adsorption–desorption techniques (Brunauer–Emmett–Teller, BET). Adsorption of heavy metal ions onto the as-prepared sample from aqueous solutions was investigated using differential pulse anodic stripping voltametry (DPASV) technique and discussed. The product possesses a BET surface area of 69.27 m2 g-1. It is found that NiOs exhibited the excellent performance for the removal of Hg(II), Pb(II) and Cd(II) from aqueous solution. The equilibrium adsorption data of Hg(II), Pb(II) and Cd(II) on the as-prepared NiOs were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of Hg(II), Pb(II) and Cd(II) were determined using the Langmuir equation and found to be 1324.5, 1428.9 and 1428.5 mg g-1, respectively. Adsorption kinetics of all the metal ions followed pseudo second-order model. Moreover, NiOs can be recycled by simple acid treatment, which could retain the high removal efficiency in three successive cycles. This study suggests that nanoflakes could be explored as a new adsorbent with high efficiency and recyclability for removing heavy metal ions from aqueous solution.

  13. Adsorption isotherms, kinetics, thermodynamics and desorption studies for uranium and thorium ions from aqueous solution by novel microporous composite P(HEMA-EP)

    Energy Technology Data Exchange (ETDEWEB)

    Akkaya, Recep, E-mail: rakkaya@cumhuriyet.edu.tr [Cumhuriyet University, Vocational School of Health Services, 58140 Sivas (Turkey); Akkaya, Birnur [Cumhuriyet University, Faculty of Science, Department of Molecular Biology and Genetics, 58140 Sivas (Turkey)

    2013-03-15

    Abstract: In this research, a novel composite, poly(2-hydroxyethylmethacrylate-expanded perlite) [P(HEMA-EP)], was synthesized and its adsorptive features were investigated. P(HEMA-EP)’s adsorptive features were evaluated for UO{sub 2}{sup 2+} and Th{sup 4+} ions in terms of the dependency upon the ion concentration, pH, temperature, and time. P(HEMA-EP) was able to bind UO{sub 2}{sup 2+} and Th{sup 4+} ions with strong chemical affinity. The adsorption results were fitted to the classical Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) sorption models. P(HEMA-EP) was also used to study the removal of UO{sub 2}{sup 2+} and Th{sup 4+} ions from aqueous solutions in a batch system. The adsorption capacity (X{sub L}) of UO{sub 2}{sup 2+} and Th{sup 4+} ions was found to be 0.29 and 0.44 mol kg{sup −1}, respectively. The kinetic data corresponds well to the pseudo-second-order equation. Changes in the enthalpy and entropy values demonstrated that the overall adsorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), and had increased entropy (ΔS > 0), as expected. The reusability of the composites was confirmed for five sequential reuses.

  14. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions.

    Science.gov (United States)

    Kadirvelu, K; Kavipriya, M; Karthika, C; Radhika, M; Vennilamani, N; Pattabhi, S

    2003-03-01

    Activated carbons were prepared from the agricultural solid wastes, silk cotton hull, coconut tree sawdust, sago waste, maize cob and banana pith and used to eliminate heavy metals and dyes from aqueous solution. Adsorption of all dyes and metal ions required a very short time and gave quantitative removal. Experimental results show all carbons were effective for the removal of pollutants from water. Since all agricultural solid wastes used in this investigation are freely, abundantly and locally available, the resulting carbons are expected to be economically viable for wastewater treatment.

  15. Preparation and Characterization of Poly(ethyl hydrazide) Grafted Oil Palm Empty Fruit Bunch for Removal of Ni(II) Ion in Aqueous Environment

    OpenAIRE

    Siti Mariam Mohd Nor; Nor Azah Yusof; Md Jelas Haron; Ili Syazana bt Johari

    2013-01-01

    Poly(ethyl hydrazide) grafted oil palm empty fruit bunch (peh-g-opefb) fiber has been successfully prepared by heating poly(methylacrylate)-g-opefb at 60 °C for 4 h in a solution of hydrazine hydrate in ethanol. The chelating ability of peh-g-opefb was evaluated based on removal of Ni(II) ions in aqueous solution. Adsorption of Ni(II) by peh-g-opefb was characterized based on effect of pH, isotherm, kinetic and thermodynamic study. This cheap sorbent based on oil palm empty fruit bunch fiber ...

  16. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    Science.gov (United States)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  17. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly;

    2015-01-01

    , but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry......) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method...

  18. Electrolyte dependence of the performance of a Na2FeP2O7//NaTi2(PO4)3 rechargeable aqueous sodium-ion battery

    Science.gov (United States)

    Nakamoto, Kosuke; Kano, Yusuke; Kitajou, Ayuko; Okada, Shigeto

    2016-09-01

    Aqueous sodium-ion battery is attractive, because of the low cost and the high safety. However, since the electrochemical window of the aqueous electrolyte is narrow, there have been few reports concerning the optimum cathode materials for use in aqueous sodium-ion batteries up to now. This work focused on Na2FeP2O7 as a cathode material for a novel aqueous sodium-ion battery, and investigated the electrolyte dependence of the performances of a Na2FeP2O7//NaTi2(PO4)3 full-cell. The battery performances such as the rate capability and cyclability of Na2FeP2O7//NaTi2(PO4)3 full-cell with 2 M Na2SO4 or 4 M NaClO4 aqueous electrolyte were better than that with the non-aqueous electrolyte. However, a Na2FeP2O7//NaTi2(PO4)3 full-cell with 4 M NaNO3 aqueous electrolyte exhibited a large irreversible capacity due to the corrosive side reaction.

  19. Single trapped cold ions: a testing ground for quantum mechanics

    International Nuclear Information System (INIS)

    In this article I review some results obtained during my PhD work in the group of Professor Messina, at the University of Palermo. I discuss some proposals aimed at exploring fundamental issues of quantum theory, e.g. entanglement and quantum superpositions, in the context of single trapped ions. This physical context turns out to be extremely well suited both for studying fundamental features of quantum mechanics, such as the quantum-classical border, and for technological applications such as quantum logic gates and quantum registers. I focus on some procedures for engineering nonclassical states of the vibrational motion of the centre of mass of the ion. I consider both the case in which the ion interacts with classical laser beams and the case of interaction with a quantized mode of light. In particular, I discuss the generation of Schroedinger cat-like states, Bell states and Greenberger-Horn-Zeilinger states. The schemes for generating nonclassical states stem from two different quantum processes: the parity effect and the quantum state manipulation via quantum non-demolition measurement. Finally, I consider a microscopic theory of the interaction of a quantum harmonic oscillator (the centre of mass of the ion in the trapped ion context) with a bosonic thermal environment. Using an exact approach to the dynamics, I discuss a quantum theory of heating of trapped ions able to describe both the short time non-Markovian regime and the thermalization process. I conclude showing briefly how the trapped ion systems can be used as simulators of key models of open quantum systems such as the Caldeira-Leggett model. (phd tutorial)

  20. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.;

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics (Batstone et al., 2012). Indeed, future modelling needs, such as a plant-wide phosphorus (P) description...... presented and interfaced with industry standard models. The module involves extensive consideration of non-ideality by including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of...... cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can be...

  1. Synthesis of Novel Polymeric Resins by Gamma Irradiation for Separation of In(III) ions from Cd(II) in Aqueous Media

    International Nuclear Information System (INIS)

    In this work, Zn(II)polymethacrylates and poly(acrylamide-acrylic acid) were prepared by gamma irradiation polymerization technique of the corresponding monomer at 30 kGy. The polymeric resins were mixed with Indium ions to determine its capacity in aqueous solutions using batch experiment. The adsorption efficiency of obtained polymeric resins toward In(III) and Cd(II) in different experimental conditions was established. Batch and column methods were applied for separation of indium and cadmium. The effects of various eluants such as H2SO4, NH4NO3, HNO3 and HCl on the recovery of both metal ions were studied. The polymeric resins may be regenerated using 3M HCl solutions.

  2. Solid phase extraction using silica gel modified with azo-dyes derivative for preconcentration and separation of Th(IV) ions from aqueous solutions

    International Nuclear Information System (INIS)

    Azo-dyes derivative (HL) sorbent was synthesized according to the literature to be used in the adsorption and preconcentration of Th(IV) ions from aqueous solution and it was exposed to immobilization, and new solid support material was obtained. For this purpose, azo-dyes derivative (HL) was chemically bonded to silica gel surface immobilized 3-chloropropyl trimethoxysilane, then analyzed by FTIR, BET, SEM and elemental analysis. The influence of the solution pH, initial Th(IV) concentration, amount of sorbent, contact time, temperature and foreign ion effect was investigated. The maximum Th(IV) uptake capacity was found to be 24.85 ± 0.2 mg/g. (author)

  3. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT ampersand E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A OE D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT ampersand E projects. This report details the activities to be performed under the A OE D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris

  4. Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Backus, P.M.; Benson, C.E.; Gilbert, V.P.

    1994-08-01

    The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

  5. Influence of NO2 and metal ions on oxidation of aqueous-phase S(IV in atmospheric concentrations

    Directory of Open Access Journals (Sweden)

    Cláudia R. Martins

    2008-06-01

    Full Text Available An investigation was made of the influence of atmospheric concentrations (15 or 130 ppbv of NO2 on the aqueous-phase oxidation rate of S(IV in the presence and absence of Fe(III, Mn(II and Cr(VI metal ions under controlled experimental conditions (pH, T, concentration of reactants, etc.. The reaction rate in the presence of the NO2 flow was slower than the reaction rate using only clean air with an initial S(IV concentration of 10-4 mol/L. NO2 appears to react with S(IV, producing a kind of inhibitor that slows down the reaction. Conversely, tenfold lower concentrations of S(IV ([S(IV]º = 10-5 mol/L caused a faster reaction in the presence of NO2 than the reaction using purified air. Under these conditions, therefore, the equilibrium shifts to sulfate formation. With the addition of Fe(III, Mn(II or Cr(VI in the presence of a NO2 flow, the reaction occurred faster under all the conditions in which S(IV oxidation was investigated.A reação de oxidação de S(IV em fase aquosa foi estudada em laboratório em presença de NO2 dos íons metálicos Fe(III, Mn(II, e Cr(VI sob condições experimentais controladas (pH, T, concentração dos reagentes, etc.. Na presença de corrente de ar com NO2 (15 ou 130 ppbv a reação de oxidação de S(IV ocorreu mais lentamente do que na presença de ar purificado, para uma concentração inicial de S(IV de 10-4 mol/L. Ao contrário, para concentração inicial de S(IV dez vezes menor ([S(IV]° = 10-5 mol/L a reação ocorreu mais rapidamente na presença de NO2. A explicação está relacionada com o equilíbrio envolvendo a formação de espécies intermediárias de longa vida, que impedem o prosseguimento da reação, porém a depender das concentrações relativas de S(IV e NO2, essas espécies se decompõem deslocando o equilíbrio no sentido de formação de sulfato. A adição dos íons Fe(III, Mn(II ou Cr(VI em presença de corrente de ar com NO2 indicou atividade catalítica para esses íons, em todas

  6. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test

    OpenAIRE

    Bonoy Lamou; Germain Sotoing Taiwe; André Hamadou; Abene; Justin Houlray; Mahamat Mey Atour; Paul Vernyuy Tan

    2016-01-01

    The effects of the aqueous extract of Moringa oleifera on swimming performance and related biochemical parameters were investigated in male Wistar rats (130–132 g). Four groups of rats (16 per group) were fed a standard laboratory diet and given distilled water, 100, 200, or 400 mg/kg of extract, respectively, for 28 days. On day 28, 8 rats from each group were subjected to the forced swimming test with tail load (10% of body weight). The remaining 8 rats per group were subjected to the 90-mi...

  7. Chromatographic analysis and antiproliferative potential of aqueous extracts of Punica granatum fruit peels using the Allium cepa test

    OpenAIRE

    Andrielle Wouters Kuhn; Marília Tedesco; Aline Augusti Boligon; Margareth Linde Athayde; Haywood Dail Laughinghouse IV; Solange Bosio Tedesco

    2015-01-01

    Punica granatum L., locally known as romanzeira, is native to Asia but found throughout Brazil. P. granatum is used for treating inflammatory, infectious and respiratory diseases. The aim of this study was to evaluate the chromatography and genotoxicity of an aqueous extract of P. granatum (pomegranate) fruit peel using the Allium cepa L. test. The experiment set-up entailed 7 treatments: T1-distilled water, T2-tea 5 g.L-1, T3-tea 10 g.L-1, T4-glyphosate at 9.6%, T5-glyphosate with subsequent...

  8. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Science.gov (United States)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  9. Effect of magnesium carbonate on the uptake of aqueous zinc and lead ions by natural kaolinite and clinoptilolite

    OpenAIRE

    Shahwan, Talal; Zünbül, B.; Eroğlu, Ahmet E.; S. Yılmaz

    2005-01-01

    Adsorption behavior of Zn2+ and Pb2+ ions on kaolinite and clinoptilolite, originating from natural resources, was studied as a function of contact time and concentration. Zn2+ and Pb2+ ions are quickly adsorbed on both minerals and the uptake of the latter is more favored. The uptake of both ions was then examined on kaolinite–MgCO3 and clinoptilolite–MgCO3 mixtures over a metal ions range from 1 to 10 000 mg/L. The sorption behavior of Zn2+ and Pb2+ on pure MgCO3 was also studied. MgCO3 is ...

  10. Adsorption Behaviour of La(III and Eu(III Ions from Aqueous Solutions by Hydroxyapatite: Kinetic, Isotherm, and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    F. Granados-Correa

    2013-01-01

    Full Text Available The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III and Eu(III ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with 1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III and Eu(III ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III > La(III and is dependent on ion concentration, pH, and temperature.

  11. “Turn on/off” proton transfer based fluorescent sensor for selective detection of environmentally hazardous metal ions (Zn2+, Pb2+) in aqueous media

    International Nuclear Information System (INIS)

    Sensing ability of fluorescence based chemosensor: Indole-7-carboxaldehyde (I7C) for environmentally hazardous metal ions (Xn+=Zn2+, Pb2+, Co2+, Ni2+, Cu2+, Cd2+, Cr3+, and Fe3+) has been investigated. Based on excited state proton transfer (ESPT) phenomenon, the sensing capability of I7C is verified experimentally (UV–vis, FTIR, NMR) and theoretically (DFT, TD-DFT) in aqueous media. Chemical hardness (η), electrophilicity (ω) and electronic chemical potentials (μ) confirm the selective reactivity of I7C (Nc and Nt conformers) in the presence of metal ions by the formation of (1:1) metal ion: I7C complex (MX, MX⁎). MX, MX⁎ are found to display excellent sensing capability for Zn2+ and Pb2+ ions. “Turn-On” response for Zn2+ is observed through the appearance of a new enhanced fluorescence at ~430 nm. By strong blue emission I7C establishes its strong candidature as “blue emitter”. “Turn-Off” response is observed for Pb2+ through the quenching of the existing fluorescence peak. - Highlights: • Indole-7-carboxaldehyde (I7C) shows “Turn-on” and “Turn-off” sensing for Zn2+ and Pb2+ ions. • I7C forms complex with metal ions (MX⁎). • 27-Fold strong blue fluorescence due to MZn⁎ formation indicates I7C as a good candidature to be used as blue emitter. • Computed (UV–vis absorption/emission, FTIR, NMR) data validate the experimental facts

  12. Robust long-distance entanglement and a loophole-free Bell test with ions and photons

    OpenAIRE

    Simon, Christoph; Irvine, William T M

    2003-01-01

    Two trapped ions that are kilometers apart can be entangled by the joint detection of two photons, each coming from one of the ions, in a basis of entangled states. Such a detection is possible with linear optical elements. The use of two-photon interference allows entanglement distribution without interferometric sensitivity to the path length of the photons. The present method of creating entangled ions also opens up the possibility of a loophole-free test of Bell's inequalities.

  13. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    Science.gov (United States)

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  14. Production and test of {sup 18}F samples in the SNICS ion source

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Paul, M. [Hebrew Univ., Jerusalem (Israel); Roberts, A.; Nickels, J. [Univ. of Wisconsin, Madison, MO (United States)

    1995-08-01

    For experiments with {sup 18}F beams the output of the SNICS ion source for fluorine ions was investigated. {sup 18}F, which is a well-studied PET isotope, is generated at the medical cyclotron of the University of Wisconsin. Aqueous [{sup 18}F] fluoride ions are produced via the {sup 18}O(p,n){sup 18}F reaction using a 30-{mu}A, 11.4-MeV proton beam bombarding a 95% enriched [{sup 18}O] water target. In order to minimize the {sup 18}O component of the {sup 18}F material the [{sup 18}F] fluoride must be separated from the [{sup 18}O] water. For this purpose the aqueous [{sup 18}F] fluoride solution ({approximately} 0.5-1 ml) is removed from the production target and placed in a glassy carbon vessel. The vessel is heated to 115{degrees}C with He bubbling through the solution, evaporating the water while the {sup 18}F adheres to the vessel walls. When dry, the vessel is filled with 1 ml {sup 18}O-depleted 99.98% [{sup 16}O] water which is again evaporated. After this step is repeated once more the vessel is filled with 1.5 ml [{sup 16}O] water and 200-300 mole of natural KF as carrier material.

  15. Simultaneous adsorption of Ni(II and Mn(II ions from aqueous solution unto a Nigerian kaolinite clay

    Directory of Open Access Journals (Sweden)

    Folasegun Anthony Dawodu

    2014-04-01

    Full Text Available An unmodified Nigerian kaolinite clay (UAK was utilized as a low-cost adsorbent for the removal of Ni(II and Mn(II ions from a binary solution of both metal ions. Batch adsorption methodology was used to evaluate the effect of solution pH, initial metal ion concentration, sorbent dose, particle size, contact time, temperature and ligand on adsorption. FTIR, XRD and SEM analysis were used to characterize the adsorbent. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D–R isotherm model. The Freundlich isotherm model provided the best fit to the experimental data for both metal ions as indicated by the values of the regression coefficient. The Langmuir monolayer maximum adsorption capacities for Ni(II and Mn(II ions are 166.67 mg/g and 111.11 mg/g, respectively. The kinetic data were analyzed using the pseudo-first order, pseudo-second order equations, the Elovich equation and intraparticle diffusion rate equation. The Elovich equation gave the best fit to the experimental data for both metal ions. The presence of intraparticle diffusion mechanism was indicated, although it was not the sole rate determining step. Thermodynamic studies indicated an endothermic, spontaneous and a physisorption process between both metal ions and UAK. The results showed that the kaolinite can be utilized as a low-cost adsorbent for the removal of Ni(II and Mn(II ions from solution.

  16. Selective chemosensor for Hg(II) ions based on tris[2-(4-phenyldiazenyl)phenylaminoethoxy]cyclotriveratrylene in aqueous samples

    NARCIS (Netherlands)

    Nuriman,; Kuswandi, Bambang; Verboom, Willem

    2009-01-01

    A novel chemosensor, based on tris[2-(4-phenyldiazenyl)phenylaminoethoxy]cyclotriveratrylene (TPPECTV) as chromophore, has been developed for the colorimetric determination and visual detection of Hg(II) ions. TPPECTV exhibits a pronounced chromogenic behavior toward Hg(II) ions by changing the colo

  17. Combination of ozonation and photocatalysis for purification of aqueous effluents containing formic acid as probe pollutant and bromide ion.

    Science.gov (United States)

    Parrino, F; Camera-Roda, G; Loddo, V; Palmisano, G; Augugliaro, V

    2014-03-01

    The treatment by advanced oxidation processes (AOPs) of waters contaminated by organic pollutants and containing also innocuous bromide ions may generate bromate ions as a co-product. In the present work heterogeneous photocatalysis and ozonation have individually been applied and in combination (integrated process) to degrade the organic compounds in water containing also bromide anions. The results show that: i) the sole photocatalysis does not produce bromate ions and in the case of its presence, it is able to reduce bromate to innocuous bromide ions; ii) the integration of photocatalysis and ozonation synergistically enhances the oxidation capabilities; and iii) in the integrated process bromate ions are not produced as long as some oxidizable organics are present.

  18. Synthesis and characterization of a cryo gel starting from chitosan and their study as adsorbent of Cu (II) ions in aqueous solution

    International Nuclear Information System (INIS)

    The present work consisted in the synthesis of cryo gels from chitosan, which were cross-linked with ethylene glycol diglycidyl ether to obtain a stable, porous and resistant material to the interaction with aqueous solutions, in order that can be used in metal sorption processes. The performed synthesis consisted in a aqueous chitosan gel preparation crosslinked with ethylene glycol diglycidyl ether (Edge), evaluating two levels of crosslinking (1 and 2%); later to obtain the cryo gels, the aqueous gels were subjected to an ice segregation induced self-assembly process (ISISA), considering two levels of speed of materials formation. The obtained materials were characterized first determining their solubility in aqueous solutions and to the pair was determined the degree of swelling of the materials. Later, were used techniques like: the sweeping electronic microscopy to be able to observe the morphology of the obtained cryo gels, X-ray diffraction to know the crystallinity of the same, zeta potential with the aim of know the electrical potential in the materials, specific area determination, Fourier transformation infrared spectroscopy (Ftir) and X-ray photoelectrons spectroscopy (XP S), to know the functional groups and chemical interactions of the present elements in the materials before and after the copper ions sorption. The evaluation of the cryo gels as sorbents was performed obtaining the sorption kinetics for the Cu (II) ion at 25 and 30 grades C, and adjusting the experimental data obtained to the Lagergren and Ho kinetic models, as well as was performed adsorption isotherms at 25 and 35 grades C for the copper ion, adjusting the obtained data to the Langmuir, Freundlich and Langmuir-Freundlich models. In general, it was observed that the obtained materials show a macroporous structure, which presents and uniform swelling without significant deformations. Furthermore, was observed that the speed of formation of the materials affects the pores size and the

  19. Inorganic ion exchangers based on manganese and potassium for recovery and removal of pollutant metals of aqueous effluents

    International Nuclear Information System (INIS)

    This work presents a study on the synthesis, characterization and ion exchange properties of inorganic ion exchangers based on manganese and potassium. The ion exchangers were synthesized by calcination of the mixture of manganese(II) oxalate and potassium oxalate and were characterized by granulometer distribution analysis, X-ray powder diffraction, infrared spectroscopy and scanning electron microscopic. From the data obtained in characterization it was observed that exist two distinguished groups of these materials. The first group belong to ion exchangers with up to 30% w/w potassium and the second group formed by the ion exchangers with more than 30% w / w of content of potassium in their compositions. The studies of adsorption of these materials showed that the adsorption of Cd2+ is a function of the following parameters as pH, concentration of Cd2+, time of contact between the ion exchangers the concentration of the Cd2+ solution and the interference of other ions like Ni2+. The great pH of adsorption for these materials occur in pH 9, the study of the influence of the cadmium concentration in the adsorption showed that for a group of exchangers the adsorption decreases with the increase of cadmium concentration and for the other group the adsorption increases with the increase of cadmium concentration. The kinetics of adsorption occur in a contact time between the ion exchangers and the Cd2+ solutions relatively short, at about 15 minutes is necessary to establish the equilibrium. The presence of Ni2+ as interfering ion decreases the adsorption of cadmium of 99,7% to 65%. These inorganic ion exchangers showed be good exchangers for Cd2+. (author)

  20. A PEGylated fluorescent turn-on sensor for detecting fluoride ions in totally aqueous media and its imaging in live cells.

    Science.gov (United States)

    Zheng, Fangyuan; Zeng, Fang; Yu, Changmin; Hou, Xianfeng; Wu, Shuizhu

    2013-01-14

    Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn-on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert-Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride-mediated cleavage of the Si-O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993-5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells. PMID:23197478

  1. Biosorption of Cd(II) and Pb(II) ions by aqueous solutions of novel alkalophillic Streptomyces VITSVK5 spp. biomass

    Science.gov (United States)

    Saurav, Kumar; Kannabiran, Krishnan

    2011-03-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution. The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species. The biosorption property of Streptomyces VITSVK5 spp. was investigated by absorbing heavy metals Cadmium (Cd) and Lead (Pb). Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L-1, cadmium 3.1±0.3μg L-1, zinc 8.4±2.6μg L-1 and copper 0.3±0.1μg L-1, whereas mercury was well below the detection limit. The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated. The optimum pH for maximal biosorption was 4.0 for Cd (II) and 5.0 for Pb (II) with 41% and 84% biosorption respectively. The biosorbent dosage was optimized as 3 g L-1 for both the trace metals. Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl (-COOH), hydroxyl (-CHOH) and amine (-NH2) groups of biomass with the metal ions. This could be mainly involved in the biosorption of Cd (II) and Pb (II) onto Streptomyces VITSVK5 spp. The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  2. Biosorption of Cd(Ⅱ)and Pb(Ⅱ)Ions by Aqueous Solutions of Novel Alkalophillic Streptomyces VITSVK5 spp.Biomass

    Institute of Scientific and Technical Information of China (English)

    Kumar Saurav; Krishnan Kannabiran

    2011-01-01

    Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment.Biosorption of heavy metals by metabolically inactive biomass of microbial organisms is an innovative and alternative technology for removal of these pollutants from aqueous solution.The search of marine actinobacteria with potential heavy metal biosorption ability resulted in the identification of a novel alkalophilic Streptomyces VITSVK5 species.The biosorption property of Streptomyces VITSVK5 spp.was investigated by absorbing heavy metals Cadmium(Cd)and Lead(Pb).Physiochemical characteristics and trace metal concentration analysis of the backwater showed the concentrations of different metals were lead 13±2.1 μg L·1,cadmium 3.1±0.3 μg L·1,zinc 8.4±2.6μg L·1 and copper 0.3±0.1μg L·1,whereas mercury was well below the detection limit.The effect of pH and biomass dosage on removal efficiency of heavy metal ions was also investigated.The optimum pH for maximal biosorption was4.0 for Cd(Ⅱ)and 5.0 for Pb(Ⅱ)with 41% and 84% biosorption respectively.The biosorbent dosage was optimized as 3 g L-1 for both the trace metals.Fourier transform infrared absorption spectrum results indicated the chemical interactions of hydrogen atoms in carboxyl(-COOH),hydroxyl(-CHOH)and amine(-NH2)groups of biomass with the metal ions.This could be mainly involved in the biosorption of Cd(Ⅱ)and Pb(Ⅱ)onto Streptomyces VITSVK5 spp.The results of our study revealed Streptomyces metabolites could be used to develop a biosorbent for adsorbing metal ions from aqueous environments.

  3. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abdel-Latif, D.A. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Chitosan was chemically modified through the reaction with phenylisothiocyanate. Black-Right-Pointing-Pointer The modified chitosan-phenylthiourea cross-linked with formaldehyde in presence of magnetite to produce modified magnetic resin. Black-Right-Pointing-Pointer The resulted resin characterized by various instrumental methods. Black-Right-Pointing-Pointer The resin was applied to remove Hg{sup 2+}, Cd{sup 2+} and Zn{sup 2+} from aqueous solutions. - Abstract: In this study, cross-linked magnetic chitosan-phenylthiourea (CSTU) resin were prepared and characterized by means of FTIR, {sup 1}H NMR, SEM high-angle X-ray diffraction (XRD), magnetic properties and thermogravimetric analysis (TGA). The prepared resin were used to investigate the adsorption properties of Hg(II), Cd(II) and Zn(II) metal ions in an aqueous solution. The extent of adsorption was investigated as a function of pH and the metal ion removal reached maximum at pH 5.0. Also, the kinetic and thermodynamic parameters of the adsorption process were estimated. These data indicated that the adsorption process is exothermic and followed the pseudo-second-order kinetics. Equilibrium studies showed that the data of Hg(II), Cd(II) and Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacities for Hg(II), Cd(II) and Zn(II) were estimated to be 135 {+-} 3, 120 {+-} 1 and 52 {+-} 1 mg/g, which demonstrated the high adsorption efficiency of CSTU toward the studied metal ions.

  4. Formation of ozone in the reaction between the ozonide radical ion, O/sub 3//sup -/, and the carbonate radical ion, CO/sub 3//sup -/, in aqueous alkaline solutions. [Electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Holcman, J.; Sehested, K.; Bjergbakke, E.; Hart, E.J.

    1982-05-27

    Ozone forms in aqueous alkaline solutions by a reaction between the O/sub 3//sup -/ and CO/sub 3//sup -/ radical ions. This reaction has been demonstrated under conditions favorable for the generation of suitable concentrations of these ions by a high-pressure pulse radiolysis technique. The reaction is O/sub 3//sup -/ + CO/sub 3//sup -/ ..-->.. O/sub 3/ + CO/sub 3//sup 2 -/. Its rate constant k/sub (O/sub 3//sup -/+CO/sub 3//sup -/)/ of (6 +- 2) x 10/sup 7/ dm/sup 3/ mol/sup -1/ s/sup -1/ has been determined by computer simulation of the reactions involved.

  5. EQUILIBRIUM MODELLING AND SPECTROSCOPIC STUDIES FOR THE BIOSORPTION OF ZN+2 IONS FROM AQUEOUS SOLUTION USING IMMOBILIZED SPIRULINA PLATENSIS

    OpenAIRE

    N. Gaur ، R. Dehankhar

    2009-01-01

    Biosorption equilibrium of zinc ions to Spirulina platensis both in free and immobilized forms were studied in batch system with respect to pH, metal ion concentration, algal dosages and time. The maximum adsorption was observed at pH=8, optimum metal ion concentration and algal dose were 100 mg/L and 1g/100mL, respectively. Biosorption equilibrium was established in 90 minutes. The maximum attainable biosorption was found to be 97.1% for Spirulina platensis. The equilibrium adsorption capaci...

  6. Test Ion Acceleration in the Field of Expanding Planar Electron Cloud

    OpenAIRE

    Basko, M. M.

    2006-01-01

    New exact results are obtained for relativistic acceleration of test positive ions in the non-Boltzmann laminar zone of a planar electron sheath evolving from an initially mono-energetic electron distribution. The electron dynamics is analyzed against the background of motionless foil ions. The limiting gamma-factor of accelerated ions is shown to be determined primarily by the values of the ion-electron charge-over-mass ratio and the initial gamma-factor of the accelerated electrons: there e...

  7. Rapid and efficient removal of fluoride ions from aqueous solution using a polypyrrole coated hydrous tin oxide nanocomposite.

    Science.gov (United States)

    Parashar, Kamya; Ballav, Niladri; Debnath, Sushanta; Pillay, Kriveshini; Maity, Arjun

    2016-08-15

    Polypyrrole/hydrous tin oxide nanocomposites (PPy/HSnO NC 1, 2, 3, 4 and 5) were synthesized through encapsulating HSnO by the PPy via an in situ polymerization for fluoride removal. The optimized adsorbent i.e. PPy/HSnO NC 3 was characterized using FE-SEM, HR-TEM, ATR-FTIR, XRD, BET, TGA and zeta sizer. Microscopic images revealed the encapsulation of HSnO by precipitating PPy during polymerization. The FTIR and XRD studies confirmed the presence of both constituents. The BET surface area and pHpzc of the adsorbent were estimated to be 65.758m(2)/g and 7.6, respectively. The fluoride adsorption followed pseudo-second-order model and was commendably rapid. The monolayer adsorption capacity was found to be 26.16-28.99mg/g at pH 6.5±0.1. The thermodynamic parameters indicated the sorption of F(-) was spontaneous, endothermic and that physisorption occurred. The calculated activation energy (Ea∼20.05kJ/mol) provided further evidence of a physisorption mechanism. Moreover, the adsorbent performed very well over a considerably wide pH range of 3.5-8.5 and in the presence of other co-existing ions. The regeneration of the F(-) laden PPy/HSnO NC 3 showed a high desorption efficiency of 95.81% up to 3 cycles. Ground water tested results also demonstrate the potential utility of the PPy/HSnO NC as an effective adsorbent. PMID:27209396

  8. Molecular dynamics simulation study of ionic hydration and ion association in dilute and 1 molal aqueous sodium chloride solutions from ambient to supercritical conditions

    Science.gov (United States)

    Driesner, T.; Seward, T. M.; Tironi, I. G.

    1998-09-01

    The increasing demand for accurate equations of state of fluids under extreme conditions and the need for a detailed microscopic picture of aqueous fluids in some areas of geochemistry (e.g., mineral dissolution/precipitation kinetics) potentially make molecular dynamics (MD) simulations a powerful tool for theoretical geochemistry. We present MD simulations of infinitely dilute and 1 molal aqueous NaCl solutions that have been carried out in order to study the systematics of hydration and ion association over a wide range of conditions from ambient to supercritical and compare them to the available experimental data. In the dilute case, the hydration number of the Na + ion remains essentially constant around 5.5 from ambient to supercritical temperatures when the density is kept constant at 1 g cm -3 but decreases to below 5 along the liquid-vapor curve. In both cases, the average ion-first shell water distance decreases by about 0.03 Å from ambient to near critical temperatures. The Cl - ion shows a slight expansion of the first hydration shell by about 0.02 Å from ambient to near critical temperatures. The geometric definition of the first hydration shell becomes ambiguous due to a shift of the position of the first minimum of the Cl-O radial distribution function. In the case of the 1 molal solution, the contraction of the Na + first hydration shell is similar to that in the dilute case whereas the hydration number decreases drastically from 4.9 to 2.8 due to strong ion association. The released waters are replaced on a near 1:1 basis by chloride ions. Polynuclear clusters as predicted by Oelkers and Helgeson (1993b) are observed in the high temperature systems. The hydration shell of the Cl --ion shows significant deviation from the behavior in dilute systems, that is, at near vapor saturated conditions, the expansion of the hydration shell is significantly larger (0.12 Å from ambient to near critical temperatures). Due to a very large shift of the first

  9. Immobilization of 5-aminopyridine-2-tetrazole on cross-linked polystyrene for the preparation of a new adsorbent to remove heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Chen, Youning; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2014-07-15

    Highlights: • Novel chelating resin was prepared using pyridine-2-tetrazole as ligand. • The resin has quite high adsorption capacity for Cu(II), Pb(II) and Hg(II). • The resin shows the different selectivity from the common used IDA resin. • The preparation procedure is a two-step reaction and is easy to carry out. - Abstract: Novel 5-aminopyridine-2-tetrazole-functionalized polystyrene resin (APTZ-PS) was prepared by anchoring 5-aminopyridine-2-carbonitrile onto chloromethylated polystyrene beads (CMPS) and subsequently using the cyano-tetrazole conversion reaction. The APTZ-PS resin was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and specific surface area and pore size analyses. The adsorption experiments of the prepared resin for heavy metal ions were conducted by batch methods. The effects of the experimental conditions, such as pH, contact time and initial metal ion concentration on the adsorption properties of Cu(II), Pb(II) and Hg(II) were investigated. The results showed that the resin possessed perfect adsorption capacities for Cu(II), Pb(II) and Hg(II), and the selectivity was different from the commonly used iminodiacetic acid-chelating resin. The sorption kinetics of the three metal ions followed the pseudo-second-order equation. The adsorption isotherms for Cu(II) and Pb(II) could be better fitted by the Langmuir model than the Freundlich model, whereas the Freundlich model was the best for the Hg(II) ion. Even after five consecutive adsorption–desorption cycles, no obvious change in the adsorption capacity of the resin was found, which implied that the APTZ-PS resin was suitable for the efficient removal of heavy metal ions from aqueous solution.

  10. Removal of Ni{sup 2+} and Cu{sup 2+} ions from aqueous solution on to lignite-based carbons

    Energy Technology Data Exchange (ETDEWEB)

    Samra, S.E. [University of Mansoura, Mansoura (Egypt). Faculty of Science, Dept. of Chemistry

    2000-07-01

    Non-activated lignites were prepared by the carbonization of Egyptian lignite in a limited quantity of air at 500{degree}C, 700 {degree}C and 900 {degree}C, respectively. Zinc chloride-activated carbons were also prepared by the carbonization of lignite with 20 wt%, 40 wt% and 60 wt% zinc chloride in a limited quantity of air at 600 {degree}C. The surface areas of the resulting samples were determined from nitrogen adsorption studies at 77 K and from carbon dioxide adsorption studies at 298 K. The functional acidic groups on the surface were determined by neutralization with aqueous solutions of NaHCO{sub 3}, Na{sub 2}CO{sub 3} and NaOH, respectively. The sorption of Ni{sup 2+} and Cu{sup 2+} ions on the prepared carbons as well as on the as-received lignite were investigated. The influence of the time of contact, the initial ion concentration and the temperature was studied and the kinetics of the process were investigated. Equilibrium sorption isotherms were determined and the results interpreted by applying the Freundlich and Langmuir equations. The surface area was found to generally increase with increasing carbonization temperature. For activated carbons, the surface area increased with an increase in the amount of zinc chloride used in the activation process. The chemisorption of Ni{sup 2+} and Cu{sup 2+} ions on lignite-based carbon was found to be a pseudo-second order process. The acid sites on the surface provide active sites for the chemisorption of Ni{sup 2+} and Cu{sup 2+} ions and a qualitative relationship was found to exist between the maximum sorption capacity of these metal ions and the total surface acidity.

  11. High-energy heavy ion testing of VLSI devices for single event upsets and latch up

    Indian Academy of Sciences (India)

    S B Umesh; S R Kulkarni; R Sandhya; G R Joshi; R Damle; M Ravindra

    2005-08-01

    Several very large scale integrated (VLSI) devices which are not available in radiation hardened version are still required to be used in spacecraft systems. Thus these components need to be tested for highenergy heavy ion irradiation to find out their tolerance and suitability in specific space applications. This paper describes the high-energy heavy ion radiation testing of VLSI devices for single event upset (SEU) and single event latch up (SEL). The experimental set up employed to produce low flux of heavy ions viz. silicon (Si), and silver (Ag), for studying single event effects (SEE) is briefly described. The heavy ion testing of a few VLSI devices is performed in the general purpose scattering chamber of the Pelletron facility, available at Nuclear Science Centre, New Delhi. The test results with respect to SEU and SEL are discussed.

  12. Simple optical determination of silver ion in aqueous solutions using benzo crown-ether modified gold nanoparticles

    International Nuclear Information System (INIS)

    We describe a method for the modification of gold nanoparticles (Au-NPs) with benzo-15-crown-5 that led to the development of a colorimetric assay for Ag(I) ion. The brown color of a solution of the modified Au-NPs turns to purple on addition of Ag(I) ion. The ratio of the UV-vis absorption at 600 nm and 525 nm is proportional to the concentration of Ag(I) ions in the range from 20 to 950 nM, and the detection limit is 12.5 nM. Other metal ions do not interfere if present in up to millimolar concentrations. The method enables a rapid determination of Ag(I) in lake and drinking water and is amenable to bare-eye readout. (author)

  13. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions

    Science.gov (United States)

    Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo

    2014-08-01

    All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.

  14. A napthelene-pyrazol conjugate: Al(III) ion-selective blue shifting chemosensor applicable as biomarker in aqueous solution.

    Science.gov (United States)

    Mukherjee, Manjira; Pal, Siddhartha; Lohar, Somenath; Sen, Buddhadeb; Sen, Supriti; Banerjee, Samya; Banerjee, Snehasis; Chattopadhyay, Pabitra

    2014-10-01

    A newly synthesized and crystalographically characterized napthelene–pyrazol conjugate, 1-[(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water–DMSO 5:1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and (1)H NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15–20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope. PMID:25075382

  15. The influence of metal ions on the photocatalytic oxidation of 2-chlorophenol in aqueous titanium dioxide suspensions

    International Nuclear Information System (INIS)

    This study investigated the effect of metal ions,such as Fe3+, Cu2+, Ni2+, Cr3+ and Zn2+, on the photocatalytic oxidation of 2-chlorophenol with illumination of 254 nm and 365 nm UV lights. Different metal ions have individual reduction potentials, and hence, their abilities to capture electrons also differ; the rates of 2-chlorophenol decomposition vary as well. This study was made to explore the relationships between the reduction potentials of different metal ions and their photocatalytic rates of 2-chlorophenol. Results show that when the reduction potential is greater than zero, regardless of illumination wavelength, the reaction rate increases with increasing reduction potentials of the metal ions. When the reduction potential is less than zero, the reaction rates are about the same for illumination of 365 nm or 254 nm UV lights. (author)

  16. Investigation of complexing reactions of terbium(3) ions with anions of salicylic and 5-sulfosalicylic acids in aqueous solutions

    International Nuclear Information System (INIS)

    Complexing of terbium(3) ions with anions of salicylic and 5-sulfosalicylic acids was investigated by luminescence-kinetic method. Values of stability and dissociation constants of formed complexes were obtained

  17. Test bench to commission a third ion source beam line and a newly designed extraction system.

    Science.gov (United States)

    Winkelmann, T; Cee, R; Haberer, T; Naas, B; Peters, A

    2012-02-01

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed. PMID:22380336

  18. Test bench to commission a third ion source beam line and a newly designed extraction system

    International Nuclear Information System (INIS)

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  19. The Development of Ionophore-Selective Based optical chemical sensors for the determination of heavy metal ions in aqueous environments

    OpenAIRE

    Li, Li

    2010-01-01

    The development of optical sensors for in-situ, real-time and low-cost monitoring of heavy metal ions is a tremendously and fast growing area of research. This work presents several novel sensing strategies for developing optical chemical sensors that can be used as early warning devices for heavy metal pollution in water. The optical sensors that are comprised of metal chelating reagent, together with an ion carrier immobilised within polymeric thin films, i.e. hybrid sol-gel ...

  20. Phosphorescent Chemosensor Based on Iridium(III) Complex for the Selective Detection of Cu(II) Ion in Aqueous Acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyebin; Li, Yinan; Hyun, Myungho [Pusan National Univ., Busan (Korea, Republic of)

    2013-02-15

    Iridium(III) complex 1 containing two cyclo-metalating 2-phenylpyridine (ppy) ligands and one 2,2'-bipyridine ligand tethered with two DPA moieties by a methylene linker was prepared. Iridium(III) complex 1 was found to form 1:2 complex selectively with Cu(II) ion with the Stern-Volmer constant of 5.8 Χ 10{sup 4} M{sup -1}. Cu(II) ion has two sides. In one side, Cu(II) ion is an important cofactor in nearly 20 metalloenzymes and an essential micronutrient for all living systems. But, in other side, Cu(II) ion is one of significant metal pollutants and toxic to living cells if present in slightly high concentrations, causing neurodegenerative diseases such as Menkes and Wilson's disease. In this instance, the selective detection of Cu(II) ion in environment and in living systems is very important. Consequently, various fluorescent chemosensors for the highly sensitive and selective detection of Cu (II) ion have been developed.

  1. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    Science.gov (United States)

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  2. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions.

    Science.gov (United States)

    Monier, M; Abdel-Latif, D A

    2012-03-30

    In this study, cross-linked magnetic chitosan-phenylthiourea (CSTU) resin were prepared and characterized by means of FTIR, (1)H NMR, SEM high-angle X-ray diffraction (XRD), magnetic properties and thermogravimetric analysis (TGA). The prepared resin were used to investigate the adsorption properties of Hg(II), Cd(II) and Zn(II) metal ions in an aqueous solution. The extent of adsorption was investigated as a function of pH and the metal ion removal reached maximum at pH 5.0. Also, the kinetic and thermodynamic parameters of the adsorption process were estimated. These data indicated that the adsorption process is exothermic and followed the pseudo-second-order kinetics. Equilibrium studies showed that the data of Hg(II), Cd(II) and Zn(II) adsorption followed the Langmuir model. The maximum adsorption capacities for Hg(II), Cd(II) and Zn(II) were estimated to be 135 ± 3, 120 ± 1 and 52 ± 1 mg/g, which demonstrated the high adsorption efficiency of CSTU toward the studied metal ions. PMID:22277339

  3. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde Schiff's base.

    Science.gov (United States)

    Monier, M

    2012-04-01

    A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin. PMID:22155403

  4. Chemical enrichment and separation of uranyl ions in aqueous media using novel polyurethane foam chemically grafted with different basic dyestuff sorbents.

    Science.gov (United States)

    El-Shahat, M F; Moawed, E A; Farag, A B

    2007-01-15

    The new type of the grafted polyurethane foam sorbents were prepared by coupling polyether polyol, toluene diisocyanate and basic dyestuff (Methylene blue, Rhodamine B and Brilliant green). The Me.B-PUF, Rh.B-PUF and Br.G-PUF were characterized using UV/vis, IR and TGA. The adsorption properties and chromatographic behaviour of these new adsorbents for preconcentration and separation of uranium(VI) ions at low concentrations from aqueous thiocyanate media were investigated by a batch process. The maximum sorption of U(VI) was in the pH ranges 1-4. The kinetics of sorption of the U(VI) by the Grafted-PUF were found to be fast with half life of sorption (t(1/2)) in 2.43min. The average sorption capacity of different sorbents 0.124meqg(-1) for uranyl ions, enrichment factors approximately 40 and the recovery 98-100% were achieved (R.S.D. approximately 0.73%). The basic dyestuff Grafted-PUF could be used many times without decreasing their capacities significantly. The value of the Gibbs free energy (DeltaG) for the sorbents is -7.3kJmol(-1), which reflects the spontaneous nature of sorption process. The sorption mechanism of the metal ion onto Grafted-PUF was also discussed. PMID:19071294

  5. Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan-thioglyceraldehyde Schiff's base.

    Science.gov (United States)

    Monier, M

    2012-04-01

    A chitosan-thioglyceraldehyde Schiff's base cross-linked magnetic resin (CSTG) was prepared and characterized using various instrumental methods. Then, the prepared resin was used for comparative studies on the removal of toxic metal ions like: Hg(2+), Cu(2+) and Zn(2+) from aqueous solutions. The effects of the initial pH value of the solution, contact time, the initial metal ion concentration and temperature on the adsorption capacity of the composite were investigated. The kinetics data were analyzed by pseudo-first order and pseudo-second order equations. The adsorption kinetics was well described by the pseudo-second order equation, and the adsorption isotherms were better fitted by the Langmuir equation. The maximum theoretical adsorption capacities of the CSTG resin for Hg(2+), Cu(2+) and Zn(2+) were found to be 98±2, 76±1 and 52±1 mg g(-1), respectively. The negative values of Gibbs free energy of adsorption (ΔG(ads°) indicated the spontaneity of the adsorption of all metal ions on the novel resin.

  6. ADSORPTION OF CHROMIUM (VI FROM AQUEOUS SOLUTIONS BY DIFFERENT ADMIXTURES – A BATCH EQUILIBRIUM TEST STUDY

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2014-08-01

    Full Text Available Wide variety of inorganic compounds such as nutrients and trace metals, organic chemicals, radioactive contaminants and pathogens are commonly present as contaminants in the groundwater. Migration of contaminants in soil involves important mechanisms such as molecular diffusion, dispersion under physical processes, adsorption, precipitation and oxidation - reduction under chemical processes and biodegradation under biological process. Cr (VI is a major and dangerous contaminant as per the ground water is concerned. There are numerous research work carried out with concentrated efforts by the researchers towards removal of Cr (VI contaminant from aqueous solutions. There are few studies relevant to Cr (VI removal with respect to utilization of low cost admixtures and also soil type. In the present study, different low cost admixtures like rice husk (RH, shredded tyre (ST and fly ash (FA are used to understand the performance in removal of Cr (VI from aqueous solution and also two different soil types are used along with the admixture. The results are discussed in terms of sorption capacity and performance of individual admixture and combination of admixture with soil in removal of contaminant. The fly ash, rice husk and shredded tyre admixtures are used and the results revealed that the shredded tyre showed higher performance in removal of contaminant concentration. Also, the soil which has more fine particle content (size<0.075 mm IS sieve showed reasonable reduction in concentration of contaminant at the lower levels of contaminant initial concentration. The sorption capacity results of Cr (VI contaminant, treated with various admixtures are further validated with the published work of other investigators. The shredded tyre (ST showed more adsorption capacity, i.e., 3.283 mg/g at pH of 4.8. For other admixtures, adsorption capacity value is varying in the range of 0.07 mg/g to 1.7 mg/g. Only in case of activated alumina and modified saw dust

  7. [Technical support in the testing of microoganisms for their ability to accumulate strontium and cesium from aqueous solutions]. Final reports, Task order No. 2

    Energy Technology Data Exchange (ETDEWEB)

    1987-06-15

    This report describes the binding of cesium and strontium ions from aqueous solution in a variety of microorganisms. Data is provided on the absorption by Ashbya gossyppi, Chlorella pyrenoidosa, Candida sp. Ml13, Saccharomyces cerevisiae, Scenedesmus obliqus, Streptococcus mutans, Anabaena flosaquae, Escherichia coli, Streptomyces viridochromogenes, Chlamydomonas reinhardtii, Rhizopus oryzae, Bacillus megaterium, Micrococcus luteus, Zoogloea ramigera, Coelastrum proboscideum, Pseudomonas aeruginosa, Citrobacter freundii, Paecilomyces marquandi, and Caulobacter fusiformis.

  8. Design and testing of the 2 MV heavy ion injector for the Fusion Energy Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, W.; Benjegerdes, R.; Reginato, L.; Stoker, J.; Hipple, R.; Peters, C.; Pruyn, J.; Vanecek, D.; Yu, S.

    1995-04-01

    The Fusion Energy Research Group at the Lawrence Berkeley Laboratory has constructed and tested a pulsed 2 MV injector that produces a driver size beam of potassium ions. This paper describes the engineering aspects of this development which were generated in a closely coupled effort with the physics staff. Details of the ion source and beam transport physics are covered in another paper at this conference. This paper discusses the design details of the pulse generator, the ion source, the extractor, the diode column, and the electrostatic quadrupole column. Included will be the test results and operating experience of the complete injector.

  9. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  10. The synthesis of (N 2O 2S 2)-Schiff base ligands and investigation of their ion extraction capability from aqueous media

    Science.gov (United States)

    Zoubi, Wail A. L.; Kandil, Farouk; Chebani, Mohamad Khaled

    2011-09-01

    Two new Schiff bases (I) and (II) containing nitrogen-sulfur-oxygen donor atoms were designed and synthesized in a multi-step reaction sequence. The Schiff base (I) was used in solvent extraction of metal chlorides such as Cu 2+ and Cr 3+ as well as metal picrates such as Hg 2+ and UO 22+ from aqueous phase to the organic phase. The influences of the parameter functions, such as pH, solvent, ionic strength of aqueous phase, aqueous to organic phase and concentration of the extractant were investigated to shed light on their chemical extracting properties upon the extractability of metal ions. The effect of chloroform, dichloromethane and nitrobenzene as organic solvents over the metal chlorides extraction was investigated at 25 ± 0.1 °C by using flame atomic absorption and the result is that the ability of extraction in solvents as follows: C 6H 5NO 2 > CHCl 3 > CH 2Cl 2 and the compositions of the extracted species have been determined. The metal picrate extraction was investigated at 25 ± 0.1 °C by using UV-visible spectrometry. As well that the extraction of picrates metal such as UO 22+ and Hg 2+ with Schiff base(I) in absence and presence of 2-(2-aminoethyl) pyridine was investigated in chloroform. The extraction results revealed the presence of neutral donors 2-(2-aminoethyl) pyridine shifts the extraction percentage curves towards higher pH region, indicating a synergistic effect of this donors on extraction of UO 22+ and Hg 2+ by the studied Schiff base (I).

  11. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    Science.gov (United States)

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons. PMID:19447542

  12. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment.

    Science.gov (United States)

    Zhang, Hongyan; Lin, Ling; Zeng, Xiaoxue; Ruan, Yajuan; Wu, Yongning; Lin, Minggui; He, Ye; Fu, FengFu

    2016-04-15

    We herein developed a novel biosensor for the visual detection of trace uranyl ion (UO2(2+)) in aqueous environment with high sensitivity and specificity by using DNAzyme-functionalized magnetic beads (MBs) for UO2(2+) recognition and gold nano-particles (AuNPs)-based enzymatic catalysis oxidation of TMB (3,3',5,5'-tetramethylbenzidine sulfate) for signal generation. The utilization of MBs facilitates the magnetic separation and collection of sensing system from complex sample solution, which leads to more convenient experimental operation and more strong resistibility of the biosensor to the matrix of sample, and the utilization of AuNPs-based enzymatic catalysis amplification greatly improved the sensitivity of the biosensor. Compared with the previous DNAzyme-based UO2(2+) sensors, the proposed biosensor has outstanding advantages such as relative high sensitivity and specificity, operation convenience, low cost and more strong resistibility to the matrix of sample. It can be used to detect as low as 0.02 ppb (74 pM) of UO2(2+) in aqueous environment by only naked-eye observation and 1.89 ppt (7.0 pM) of UO2(2+) by UV-visible spectrophotometer with a recovery of 93-99% and a RSD ≤ 5.0% (n=6) within 3h. Especially, the visual detection limit of 0.02 ppb (74 pM) is much lower than the maximum allowable level of UO2(2+) (130 nM) in the drinking water defined by the U.S. Environmental Protection Agency (EPA), indicating that our method meets the requirement of rapid and on-site detection of UO2(2+) in the aqueous environment by only naked-eye observation.

  13. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.

    Science.gov (United States)

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P

    2016-02-15

    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials. PMID:26619127

  14. A G-pentaplex-based assay for Cs(+) ions in aqueous solution using a luminescent Ir(III) complex.

    Science.gov (United States)

    Lin, Sheng; Yang, Chao; Mao, Zhifeng; He, Bingyong; Wang, Yi-Tao; Leung, Chung-Hang; Ma, Dik-Lung

    2016-03-15

    A series of 5 randomly designed in-house cyclometalated Ir(III) complexes were examined for their application in G-pentaplex probes and the "proof-of-principle" concept in G-pentaplex-based Cs(+) ions detection. The G-pentaplex-forming sequence (DNA1, 5'-T(iG)4T-3', where iG=isoguanine) is present in single strand DNA form ab initio, however, the addition of Cs(+) ions lead to formation of the intermolecular G-pentaplex structure which is identified by the novel Ir(III) complex 1 afterward and produce an enhanced luminescence signal for Cs(+) ions monitoring. To the best of our knowledge, this is the first G-pentaplex probe and also the first G-pentaplex-based label-free detection platform for Cs(+) ions reported in the literature. The monitoring of spiked Cs(+) ions in natural water samples demonstrates the potential application and technical sound of this "proof-of-principle" concept sensing platform.

  15. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.

    Science.gov (United States)

    Liu, Peng; Oksman, Kristiina; Mathew, Aji P

    2016-02-15

    TEMPO-mediated oxidized cellulose nanofibers (TOCNFs) have shown potential in the bioremediation of metal ions from contaminated water due to their interaction with positively charged metal ions via electrostatic interactions involving surface carboxyl groups. Copper is one of the most common pollutants in industrial effluents and is thus the target metal in the current study. The specific surface adsorption of Cu(II) was similar for TOCNFs with different degrees of functionalization and directly impacted the zeta potential. SEM imaging of the TOCNF after Cu(II) adsorption revealed interesting nanostructured clusters that were attributable to Cu(II) ions first being adsorbed by carboxylate groups on the TOCNF and subsequently being reduced and self-assembled to Cu(0) nanoparticles (NPs) or copper oxide NPs by microprecipitation. TOCNF turned superhydrophilic and resulted in faster water filtration after copper adsorption due to the stronger polarity of the copper ions or the self-assembled Cu(0) NPs creating voids or highly water-permeable channels at the interface between the interconnected TEMPO-oxidized nanofibers. Thus, the adsorption of Cu(II) ions and self-assembly into the Cu NPs on TOCNF favors a faster water purification process and provides a viable route to reuse/recycle TOCNFs studded with Cu nanoparticles as biocidal materials.

  16. A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries

    Science.gov (United States)

    Alfaruqi, Muhammad Hilmy; Islam, Saiful; Gim, Jihyeon; Song, Jinju; Kim, Sungjin; Pham, Duong Tung; Jo, Jeonggeun; Xiu, Zhiliang; Mathew, Vinod; Kim, Jaekook

    2016-04-01

    Tunnel-type α-MnO2 with a nanorod morphology was prepared via a simple solvent-free synthesis method for use in aqueous zinc-ion battery (ZIB). This synthesis method produced α-MnO2 with a high BET surface area of 153 m2 g-1. α-MnO2 electrode demonstrated remarkable zinc storage properties (first and second discharge capacities of 323 and 270 mAh g-1 at 16 mA g-1) with good capacity retentions and rate capability. After charging within only 60 s, the α-MnO2 nanorod cathode delivered a considerable discharge capacity of 115 mAh g-1 when cycled at current density of 16 mA g-1.

  17. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions

    International Nuclear Information System (INIS)

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO4 and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid α-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid α-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg2+, Cu2+ and Co2+. The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  18. Preparation and Characterization of Poly(ethyl hydrazide Grafted Oil Palm Empty Fruit Bunch for Removal of Ni(II Ion in Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Siti Mariam Mohd Nor

    2013-07-01

    Full Text Available Poly(ethyl hydrazide grafted oil palm empty fruit bunch (peh-g-opefb fiber has been successfully prepared by heating poly(methylacrylate-g-opefb at 60 °C for 4 h in a solution of hydrazine hydrate in ethanol. The chelating ability of peh-g-opefb was evaluated based on removal of Ni(II ions in aqueous solution. Adsorption of Ni(II by peh-g-opefb was characterized based on effect of pH, isotherm, kinetic and thermodynamic study. This cheap sorbent based on oil palm empty fruit bunch fiber has a great future potential in water treatment industries based on high adsorption capacity, biodegradability and renewability.

  19. Thermodynamic modeling of naringenin protonation equilibria in NaClO4 aqueous solutions by specific ion interaction theory and Pitzer equations

    Indian Academy of Sciences (India)

    Morteza Jabbari; Rahele Zhiani; Ali Farajtabar

    2015-06-01

    The protonation equilibria for the flavonoid naringenin were studied at 25°C using combined multiwavelength spectroscopic and pH-potentiometric methods as a function of the ionic strength. Over a wide range of ionic strengths, 0.10–3.00 mol dm−3, the investigation was performed in different aqueous solutions of NaClO4 as the background electrolyte. The dependence on ionic strength of protonation constants was modeled by the Brönsted–Guggenheim–Scatchard Specific Ion Interaction Theory (SIT) and Pitzer approaches. Apart from the values of SIT interaction coefficients and Pitzer parameters, the protonation constants at infinite dilution (zero ionic strength) were obtained. On the basis of these results, it was found that Pitzer mode l gives more satisfactory results rather than the SIT method.

  20. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Faculty of Science, Mansoura University, 35516 (Egypt); Nawar, N., E-mail: nnawar@mans.edu.eg [Chemistry Department, Faculty of Science, Mansoura University, 35516 (Egypt); Abdel-Latif, D.A. [Chemistry Department, Faculty of Science, Mansoura University, 35516 (Egypt)

    2010-12-15

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO{sub 4} and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid {alpha}-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid {alpha}-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+}. The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction.

  1. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.

    Science.gov (United States)

    Monier, M; Nawar, N; Abdel-Latif, D A

    2010-12-15

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO(4) and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid α-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid α-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg(2+), Cu(2+) and Co(2+). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:20810212

  2. Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption.

    Science.gov (United States)

    da Silva, Clovis Sacardo; Cuel, Maressa Fabiano; Barreto, Verônica Orlandin; Kwong, Wu Hong; Hokka, Carlos O; Barboza, M

    2012-02-15

    The clavulanic acid is a substance which inhibits the β-lactamases used with penicillins for therapeutic treatment. After the fermentation, by-products of low molecular weight such as amino acids lysine, histidine, proline and tyrosine are present in the fermented broth. To remove these impurities the techniques of extraction by an aqueous two-phase system of 17% polyethylene glycol molecular weight 600 and 15% potassium phosphate were used for a partial purification. A subsequent ion-exchange adsorption was used for the recuperation of the clavulanic acid of the top phase and purification getting a concentration factor of 2 and purification of 100% in relation to the amino acids lysine, histidine, proline and tyrosine.

  3. Testing Nonclassical Theories of Electromagnetism with Ion Interferometry

    Science.gov (United States)

    Neyenhuis, B.; Christensen, D.; Durfee, D. S.

    2007-11-01

    We discuss using a tabletop ion interferometer to search for deviations from Coulomb’s inverse-square law. Such deviations would result from nonclassical effects such as a nonzero photon rest mass. We discuss the theory behind the proposed measurement, explain which fundamental, experimentally controllable parameters are the relevant figures of merit, and calculate the expected performance of such a device in terms of these parameters. The sensitivity to deviations in the exponent of the inverse-square law is predicted to be a few times 10-22, an improvement by 5 orders of magnitude over current experiments. It could measure a nonzero photon rest mass smaller than 9×10-50grams, nearly 100 times smaller than current laboratory experiments.

  4. High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Liu, Qi; Xiao, Lifen; Ai, Xinping; Yang, Hanxi; Cao, Yuliang

    2015-08-19

    Olivine NaFePO4/C microsphere cathode is prepared by a facile aqueous electrochemical displacement method from LiFePO4/C precursor. The NaFePO4/C cathode shows a high discharge capacity of 111 mAh g(-1), excellent cycling stability with 90% capacity retention over 240 cycles at 0.1 C, and high rate capacity (46 mAh g(-1) at 2 C). The excellent electrochemical performance demonstrates that the aqueous electrochemical displacement method is an effective and promising way to prepare NaFePO4/C material for Na-based energy storage applications. Moreover, the Na2/3FePO4 intermediate is observed for the first time during the Na intercalation process through conventional electrochemical techniques, corroborating an identical two-step phase transition reaction both upon Na intercalation and deintercalation processes. The clarification of the electrochemical reaction mechanism of olivine NaFePO4 could inspire more attention on the investigation of this material for Na ion batteries. PMID:26207862

  5. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  6. Effects of dissolved Ca2+, Mg2+, and Na+ ions on the supramolecular aggregation of natural organic matter in aqueous solutions

    Science.gov (United States)

    Ahn, W.; Kalinichev, A. G.; Clark, M. M.

    2008-12-01

    The complexation of natural organic matter (NOM) with metal ions, minerals and organic species in soil and water allows NOM to form water-soluble and water-insoluble aggregates of widely differing chemical and biological stabilities. Metal-NOM interaction induces strong correlations between the concentration of natural organic matter and the speciation, solubility and toxicity of many metals in the environment. In water purification and desalination, NOM is also implicated in fouling of nanofiltration and reverse osmosis membranes, either as the primary foulant or as a conditioning layer for microbial attachment ("biofouling"). In this work we investigated the effects of various metal ions on NOM aggregation in aqueous solutions, by a combination of dynamic light scattering (DLS), small angle neutron scattering (SANS) and large-scale molecular dynamics (MD) computer simulations. This allows a detailed molecular-scale statistical analysis of the size and the structural topology of metal-NOM aggregates. The DLS measurements show that Ca2+ ions present in a Suwannee River NOM (SRNOM) solution lead to the formation of a wide range of supramolecular structures with sizes between 100 and 1,000 nm. In contrast, Mg2+ and Na+ do not affect the aggregation of SRNOM as strongly. SANS data are inconclusive but indicate the presence of quite large (>50 nm) fractal particles formed presumably through a cluster-cluster aggregation. MD simulations confirm these observations and show that NOM can aggregate in aqueous solutions by two different mechanisms. On the one hand, NOM molecules can spontaneously aggregate by hydrogen bonding between their functional groups when only Na+ and Mg2+ are present as background cations. This promotes the formation of uniformly shaped NOM clusters. On the other hand, if Ca2+ ions are present in solution, they can more strongly bind two different NOM molecules by co-complexing the carboxylate groups, thus promoting the formation of longer linear and

  7. Aqueous phase oligomerization of α,β-unsaturated carbonyls and acids investigated using ion mobility spectrometry coupled to mass spectrometry (IMS-MS)

    Science.gov (United States)

    Renard, Pascal; Tlili, Sabrine; Ravier, Sylvain; Quivet, Etienne; Monod, Anne

    2016-04-01

    One of the current essential issues to unravel our ability to forecast future climate change and air quality, implies a better understanding of natural processes leading to secondary organic aerosol (SOA) formation, and in particular the formation and fate of oligomers. The difficulty in characterizing macromolecules is to discern between large oxygenated molecules from series of oligomers containing repeated small monomers of diverse structures. In the present study, taking advantage from previously established radical vinyl oligomerization of methyl vinylketone (MVK) in the aqueous phase, where relatively simple oligomers containing up to 14 monomers were observed, we have investigated the same reactivity on several other unsaturated water soluble organic compounds (UWSOCs) and on a few mixtures of these precursor compounds. The technique used to characterize the formed oligomers was a traveling wave ion mobility spectrometry coupled to a hybrid quadrupole - time of flight mass spectrometer (IMS-MS) fitted with an electrospray source and ultra-high performance liquid chromatography (UPLC). The technique allows for an additional separation, especially for large ions, containing long carbon chains. We have shown the efficiency of the IMS-mass spectrometry technique to detect oligomers derived from MVK photooxidation in the aqueous phase. The results were then compared to other oligomers, derived from ten other individual biogenic UWSOCs. The technique allowed distinguishing between different oligomers arising from different precursors. It also clearly showed that compounds bearing a non-conjugated unsaturation did not provide oligomerization. Finally, it was shown that the IMS-mass spectrometry technique, applied to mixtures of unsaturated conjugated precursors, exhibited the ability of these precursors to co-oligomerize, i.e. forming only one complex oligomer system bearing monomers of different structures. The results are discussed in terms of atmospheric

  8. Structural phase transition of merocyanine J-aggregate induced by ion-recombination in the aqueous sub-phase

    Science.gov (United States)

    Kato, Noritaka; Saito, Kentaro; Uesu, Yoshiaki

    2000-08-01

    By using the sub-phase, which contains two different kinds of counter-ions, we found a reversible thermochromic transition between different J-aggregate states of amphiphilic merocyanine dye (MD) molecules in the monolayer at the air-water interface. This chromatic change is attributed to the structural phase transition of MD J-aggregate crystallites induced by the mutual recombination of different counter-ions to MD molecules. The drastic morphological change of the MD monolayer during the transition is revealed by the in-situ observation using a multipurpose non-linear optical microscope.

  9. Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.

    Science.gov (United States)

    Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun

    2016-02-01

    In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. PMID:26653453

  10. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  11. Modification and characterization of PET fibers for fast removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Monier, M., E-mail: monierchem@yahoo.com [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt); Abdel-Latif, D.A. [Chemistry Department, Faculty of Science, Mansoura University, Mansoura (Egypt)

    2013-04-15

    Highlights: ► PET fibers were graft copolymerized with acrylonitrile. ► Further modification was carried out through the reaction with hydrazine hydrate and then potassium thiocyanate. ► The resulted chelating fibers were characterized by various instrumental methods. ► The fibers were applied to remove Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+} from aqueous solutions. -- Abstract: A new chelating fiber (PET-TSC) was prepared with PET for fast removal of Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+} from water. Elemental analysis, SEM, BET surface area, {sup 13}C NMR, FTIR and X-ray diffraction spectra were used to characterize PET-TSC. The higher uptake capacity of the studied metal ions was observed at higher pH values. Kinetic study indicated that the adsorption of Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+} followed the pseudo-second-order equation, suggesting chemical sorption as the rate-limiting step of the adsorption process. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacities were 120.02, 96.81 and 78.08 mg/g for Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+} ions, respectively. 1 M HCl or 0.1 M EDTA could be used as effective eluant to desorb the Hg{sup 2+}, Cu{sup 2+} and Co{sup 2+} adsorbed by PET-TSC, and the adsorption capacity of PET-TSC for the three heavy metal ions could still be maintained at about 90% level at the 5th cycle. Accordingly, it is expected that PET-TSC could be used as a promising adsorbent for fast removal of heavy metal ions from water, and the present work also might provide a simple and effective method to reuse the waste PET fibers.

  12. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media.

    Science.gov (United States)

    Asha, K S; Bhattacharjee, Rameswar; Mandal, Sukhendu

    2016-09-12

    A complete transmetalation has been achieved on a barium metal-organic framework (MOF), leading to the isolation of a new Tb-MOF in a single-crystal (SC) to single-crystal (SC) fashion. It leads to the transformation of an anionic framework with cations in the pore to one that is neutral. The mechanistic studies proposed a core-shell metal exchange through dissociation of metal-ligand bonds. This Tb-MOF exhibits enhanced photoluminescence and acts as a selective sensor for phosphate anion in aqueous medium. Thus, this work not only provides a method to functionalize a MOF that can have potential application in sensing but also elucidates the formation mechanism of the resulting MOF.

  13. Fast, selective adsorption of Cu{sup 2+} from aqueous mixed metal ions solution using 1,4,7-triazacyclononane modified SBA-15 silica adsorbent (SBA-TACN)

    Energy Technology Data Exchange (ETDEWEB)

    Tapaswi, Pradip Kumar; Moorthy, Madhappan Santha; Park, Sung Soo; Ha, Chang-Sik, E-mail: csha@pnu.edu

    2014-03-15

    A new SBA-15 supported 1,4,7-triazacyclononane modified mesoporous silica adsorbent (SBA-TACN) has been synthesized using post grafting route and has thoroughly been characterized by small angle X-ray scattering (SAXS), N{sub 2} adsorption–desorption measurements, Fourier-transform infrared (FT-IR), solid-state {sup 29}Si MAS and {sup 13}C CP MAS NMR spectroscopy, transmission electron (TEM) and scanning electron microscopy (SEM), elemental analysis (EA) and thermogravimetric analysis (TGA). The synthesized material shows excellent copper (II) ion adsorption selectivity at pH 5 in mixed metal ion solution containing Cu{sup 2+}, Cr{sup 3+}, Ni{sup 2+}, Co{sup 2+} and Li{sup +}. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. Possible adsorption mechanism of metal ions on SBA-TACN has been discussed. The adsorbent can be readily regenerated by HNO{sub 3}–NH{sub 3} treatment. -- Graphical abstract: A new SBA-15 supported 1,4,7-triazacyclononane (TACN) modified mesoporous silica (SBA-TACN) adsorbent has been developed which shows excellent selectivity in Cu{sup 2+} adsorption from aqueous mixed metal ion solutions at pH 5. The copper ion adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. The adsobent is stable enough to be used atleast for three cycles. Highlights: • Synthesis of a new TACN modified mesoporous silica SBA-15 type adsorbent. • The density of 1,4,7-triazacyclononane on SBA-15 is 1.22 mmol/g. • First report on the selective Cu{sup 2+} adsorption by TACN modified mesoporous silica. • Cu{sup 2+} adsorption capacity of the SBA-TACN can reach a maximum value of 0.67 mmol/g. • Potential candidate for selective removal of Cu{sup 2+} from contaminated water samples.

  14. Vibrational frequency fluctuation of ions in aqueous solutions studied by three-pulse infrared photon echo method.

    Science.gov (United States)

    Ohta, Kaoru; Tayama, Jumpei; Saito, Shinji; Tominaga, Keisuke

    2012-11-20

    In liquid water, hydrogen bonds form three-dimensional network structures, which have been modeled in various molecular dynamics simulations. Locally, the hydrogen bonds continuously form and break, and the network structure continuously fluctuates. In aqueous solutions, the water molecules perturb the solute molecules, resulting in fluctuations of the electronic and vibrational states. These thermal fluctuations are fundamental to understanding the activation processes in chemical reactions and the function of biopolymers. In this Account, we review studies of the vibrational frequency fluctuations of solute molecules in aqueous solutions using three-pulse infrared photon echo experiments. For comparison, we also briefly describe dynamic fluorescence Stokes shift experiments for investigating solvation dynamics in water. The Stokes shift technique gives a response function, which describes the energy relaxation in the nonequilibrium state and corresponds to the transition energy fluctuation of the electronic state at thermal equilibrium in linear response theorem. The dielectric response of water in the megahertz to terahertz frequency region is a key physical quantity for understanding both of these frequency fluctuations because of the influence of electrostatic interactions between the solute and solvent. We focus on the temperature dependence of the three experiments to discuss the molecular mechanisms of both the frequency fluctuations in aqueous solutions. We used a biexponential function with sub-picosecond and picosecond time constants to characterize the time-correlation functions of both the vibrational and electronic frequency fluctuations. We focus on the slower component, with time constants of 1-2 ps for both the frequency fluctuations at room temperature. However, the temperature dependence and isotope effect for the time constants differ for these two types of fluctuations. The dielectric interactions generally describe the solvation dynamics of

  15. Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues

    International Nuclear Information System (INIS)

    Highlights: • Rapid and ultrasensitive screening of mercury ions are achieved by using gold nanoparticles based colorimetric method. • Dual labeling strategy is adopted for sensing signal amplification. • The proposed method is successfully used for analysis of mercury-poisoned animal tissues. - Abstract: Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg2+) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg2+ using the specific thymine–Hg2+–thymine (T–Hg2+–T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg2+ are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL−1 (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control

  16. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Science.gov (United States)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  17. Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi; Wang, Xin; Xue, Feng [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Zheng, Lei [School of Medical Engineering, Hefei University of Technology, Hefei 230009 (China); Liu, Jian [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Yan, Feng [Applied Physics Department, Hong Kong Polytechnic University, Hong Kong (China); Xia, Fan, E-mail: xiafan@hust.edu.cn [School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Chen, Wei, E-mail: chenweishnu@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China)

    2015-04-08

    Highlights: • Rapid and ultrasensitive screening of mercury ions are achieved by using gold nanoparticles based colorimetric method. • Dual labeling strategy is adopted for sensing signal amplification. • The proposed method is successfully used for analysis of mercury-poisoned animal tissues. - Abstract: Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg{sup 2+}) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg{sup 2+} using the specific thymine–Hg{sup 2+}–thymine (T–Hg{sup 2+}–T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg{sup 2+} are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL{sup −1} (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control.

  18. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  19. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II Ions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jungho Heo

    2016-04-01

    Full Text Available Water-dispersible ZnS:Mn nanocrystals (NCs were synthesized by capping the surface with polar L-aspartic acid (Asp molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS absorption spectrum and photoluminescence (PL emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions.

  20. Competitive adsorption of uranium(VI) and thorium(IV) ions from aqueous solution using triphosphate-crosslinked magnetic chitosan resins

    International Nuclear Information System (INIS)

    The triphosphate-crosslinked magnetic chitosan resins (TPP-MCR) with a diameter range of 200-350 nm were synthesized for the adsorption of U(VI) and Th(IV) ions from aqueous solutions. The adsorption experiments were conducted in both mono-component systems with pure actinide solution and bi-component systems with different U/Th mass ratios. The maximum adsorption capacities in mono-component systems determined by Langmuir model were 169.5 and 146.8 mg g-1 for U(VI) and Th(IV), respectively. In bi-component systems, U(VI) and Th(IV) adsorption capacities were reduced significantly, and the combined sorption capacities were substantially lower (almost halved) compared to those obtained by the addition of sorption capacities using mono-component solutions, indicating that U(VI) and Th(IV) compete for the same sorption sites. Adsorption-desorption experiments for five cycles illustrated the feasibility of the repeated use of TPP-MCR for the adsorption of U(VI) and Th(IV) ions. (author)

  1. Crystalline self-assembly of organic molecules with metal ions at the air-aqueous solution interface. A grazing incidence X-ray scattering study

    DEFF Research Database (Denmark)

    Weissbuch, I.; Buller, R.; Kjær, K.;

    2002-01-01

    The advent of intense X-rays from synchrotron sources made possible to probe, at the molecular level, the structural aspects of self-assemblies generated at interfaces. Here we present the two-dimensional (2-D) packing arrangements of two-, three- and multi-component organo-metallic self-assembli...... amphiphiles; organization of ionophores in the presence of metal ions in membrane-like environment; self-assembly of 2 x 2 and 3 x 3 silver(I) grid-type complexes generated at the air-solution interface. (C) 2002 Elsevier Science B.V. All rights reserved.......-assemblies formed via interfacial reaction at the air-aqueous solution interface, as determined by grazing incidence X-ray diffraction (GIRD) and X-ray specular reflectivity techniques. GIXD yields structural information on the crystalline part of the Langmuir film, including the ions and counterions lateral order....... Specular reflectivity yields the electron density profile of the film in the direction normal to the air-solution interface and, by modeling, gives independent information on the structure of both crystalline and amorphous parts of the film. In particular, we focus on the following systems: ordering...

  2. A new test stand for heavy ion induced gas desorption measurements at TSL

    Science.gov (United States)

    Hedlund, E.; Westerberg, L.; Malyshev, O. B.; Leandersson, M.; Fridén, C.-J.; Edqvist, E.; Kollmus, H.; Bellachioma, M. C.; Reich-Sprenger, H.; Krasnov, A.

    2008-03-01

    In several experiments at CERN, GSI and BNL it has been found that the lifetime of highly energetic heavy ions in synchrotrons decreases with increasing number of injected ions. This phenomenon occurs due to the collisions of beam ions and residual gas molecules leading to the change of charge of the ions and their loss on the vacuum chamber walls, which in turn cause ion-induced gas desorption and further pressure increase. To gain a deeper understanding of the ion-induced desorption process in the energy range 5-45 MeV/u, a dedicated test stand was built at the end of the K beamline at The Svedberg Laboratory (TSL) in Uppsala, Sweden. The energy range was chosen due to the fact that the injection energy of the heavy ion synchrotron SIS18 at GSI will be 10 MeV/u, and that there are insufficient data in this energy range. A Test Particle Monte-Carlo model of the experimental set-up was build-up, run and analysed for different sample configurations. An important result is that for the same sample material the desorption yield from a flat sample causes a 1.58 times larger pressure increase than that of a tubular sample. A detailed explanation of the set-up is presented.

  3. Running Test of VVVF Inverter Type Railcar Using Lithium Ion Battery

    OpenAIRE

    Ogihara, Takashi; YAMANAKA, Shigenobu

    2009-01-01

    Lithium ion battery was applied to the running of VVVF inverter type railcar. 15kWh of Mn type lithium ion battery was used. The relation between running time and voltage, current and integrating watt was investigated. The running test was also carried out using VVVF inverter type railcar to investigate charge performance due to regenerative energy. Lithium ion battery module was quickly charged for three times at rate of 4.68C by regenerative braking system. It was estimated that the effect ...

  4. PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing

    DEFF Research Database (Denmark)

    Fernqvist, Margit; Mayer, Philipp; Smith, Kilian;

    2014-01-01

    As part of the risk assessment process within REACh, prior to manufacturing and distribution of chemical substances their (eco)toxicological impacts have to be investigated. The fish embryo toxicity test (FET) with the zebrafish Danio rerio has gained a high significance as an in vitro alternative...

  5. Study of the oxydation, in aqueous solution, of a zirconium alloy (zircaloy 4) submitted to ion implantation

    International Nuclear Information System (INIS)

    Use of ion implantation for modification of surface properties of materials by changing the mechanical and chemical behaviour of the surface layers is now the subject of growing research and application. This work deals with the influence of ion implantation on the corrosion resistance of a zirconium alloy (Zircaloy 4). The techniques used in this study to characterize the physical and chemical properties of these corrosion films are: - alpha particle backscattering spectrometry to estimate the oxide film thickness - grazing X-ray diffraction to study the oxide structure - a-c impedance measurements to obtain information on the porosity of these films. Through the use of chromium implantation, an improved corrosion resistant layer is imparted to the Zircaloy-4 and hydrogen absorption is reduced

  6. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  7. Experimental and quantum mechanical studies on the ion-pair of levocetirizine and bromocresol green in aqueous solutions

    Science.gov (United States)

    Dena, Ahmed S. Abo; Hassan, Walid M. I.

    2016-06-01

    In the present work, levocetirizine dihydrochloride (LEV) was found to interact with bromocresol green (BCG) via ion-pair formation. UV-vis and FTIR spectroscopy were used to validate the data obtained from quantum mechanical calculations (QMC). The electrostatic potential maps show that the reaction is preferred through the interaction of the sulfonic acid group of BCG and the quaternary ammonium group of LEV. The optimized geometry of the product shows that there are six different intermolecular hydrogen bonds between the studied molecules resulting from the ionic attraction between the oppositely charged groups. The UV-vis spectra suggest the formation of an ion-pair. This finding is contradicting with the previous charge-transfer hypothesis.

  8. Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from Radio Frequency plasma) experiment: tests in BATMAN (BAvarian Test Machine for Negative ions).

    Science.gov (United States)

    Brombin, M; Spolaore, M; Serianni, G; Pomaro, N; Taliercio, C; Dalla Palma, M; Pasqualotto, R; Schiesko, L

    2014-11-01

    A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas. The sensors' holder, designed to better simulate the bias plate conditions in SPIDER, was exposed to a severe experimental campaign in BATMAN with cesium evaporation. No detrimental effect on the diagnostic due to cesium evaporation was found during the exposure to the BATMAN plasma and in particular the insulation of the electrodes was preserved. The paper presents the system prototype, the RF compensation circuit, the acquisition system (as foreseen in SPIDER), and the results obtained during the experimental campaigns.

  9. KINETICS AND EQUILIBRIUM PARAMETERS OF BIOSORPTION AND BIOACCUMULATION OF LEAD IONS FROM AQUEOUS SOLUTIONS BY TRICHODERMA LONGIBRACHIATUM

    OpenAIRE

    Enitan S. Balogun; John B. Durosanya; Sarafadeen O. Kareem; Abideen I. Adeogun

    2012-01-01

    Biosorption and bioaccumulation of Lead ions (Pb(II)) by Trichoderma longibrachiatum were investigated in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and inoculum concerntration on biosorption capacity were also studied. The maximum biosorption capacity of Trichoderma longibrachiatum was at 25 ppm of lead, showed 100 % removal at pH 7 and 25 oC after fifteen days. Biosorption equilibrium was established in 150 minutes. The proc...

  10. Biosorptive removal of copper and cobalt from aqueous solutions: Shewanella spp. put to the test

    Science.gov (United States)

    Mamba, B. B.; Dlamini, N. P.; Mulaba–Bafubiandi, A. F.

    Biosorption of copper and cobalt by Shewanella spp. was investigated in this study. The biosorption capabilities of Shewanella spp. for copper and cobalt were monitored at different ion concentrations (0.002 M, 0.07 M and 0.2 M), biomass dosages (50, 100 and 150 (×10 4 CFU/ml)) and pH (values 2-8) in batch mode. At optimum concentration (0.002 M/3.86 gl -1), biosorbent dosage (150 × 10 4 CFU/ml) and solution pH 6.5, Shewanella spp. recorded maximum copper and cobalt uptakes of 38% and 27%, respectively. The kinetic data obtained at different concentrations suggested that the biosorption rate was fast and in most cases the biosorption took place within 8 h followed by a slow attainment of equilibrium and the Langmuir sorption model fitted the data well with very high correlation efficiencies (>0.95). The results obtained in this study suggest that biosorbents, with further research, can in future be viewed as suitable sorbents in the recovery of precious metals such as copper after being discharged as effluent or as a result of mineral processing. In managing water resources, it is important that metallic species such as copper and cobalt be removed from water or reduced to acceptable levels since these metal species may cause ill-health effects to humans and livestock if the required concentration levels are exceeded. The required levels should fall within with World Health Organization (WHO) water quality guidelines and the water quality standards for various purposes (e.g. agriculture, drinking, domestic, water-reuse) as prescribed by individual countries.

  11. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    Science.gov (United States)

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules.

  12. Sorption of ion associates on polyurethane foams and its application to sorption-spectroscopic and test methods of analysis

    International Nuclear Information System (INIS)

    The results of studying the sorption of various ion associates on polyurethane foams were generalized. The main sorption-affecting factors were found to be the nature, hydrophobicity, and charge of the associate ion; the nature and concentration of the counter ion; the composition of the polymer unit of the polyurethane foam; and the ph and salt composition of the aqueous phase. Correlation equations were proposed to relate the partition coefficients with the hydration energy of counter ions in the ion accosts of cationic dyes and metal complexes of 1,10-phenanthroline and with the number of carbon atoms in the alkyl fragment of cationic alkylmethylammonium surfactants. A sorption scheme was proposed and substantiated. Examples were given of the practical use of sorption for determining anionic and cationic surfactants, phenols, 1-naphthol, Fe(III), and Ru(IV)

  13. PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing

    DEFF Research Database (Denmark)

    Seiler, Thomas-Benjamin; Best, Nina; Fernqvist, Margit Møller;

    2014-01-01

    As part of the risk assessment process within REACh, prior to manufacturing and distribution of chemical substances their (eco)toxicological impacts have to be investigated. The fish embryo toxicity test (FET) with the zebrafish Danio rerio has gained a high significance as an in vitro alternative...... without direct contact to the silicone surface showed similar mortalities as those exposed with direct contact to the silicone. Silicone oil overlaying the water phase as a novel passive dosing phase had no observable effects on the development of the fish embryos until hatching. This study provides...

  14. Amperometric Detection of Aqueous Silver Ions by Inhibition of Glucose Oxidase Immobilized on Nitrogen-Doped Carbon Nanotube Electrodes.

    Science.gov (United States)

    Rust, Ian M; Goran, Jacob M; Stevenson, Keith J

    2015-07-21

    An amperometric glucose biosensor based on immobilization of glucose oxidase on nitrogen-doped carbon nanotubes (N-CNTs) was successfully developed for the determination of silver ions. Upon exposure to glucose, a steady-state enzymatic turnover rate was detected through amperometric oxidation of the H2O2 byproduct, directly related to the concentration of glucose in solution. Inhibition of the steady-state enzymatic glucose oxidase reaction by heavy metals ions such as Ag(+), produced a quantitative decrease in the steady-state rate, subsequently creating an ultrasensitive metal ion biosensor through enzymatic inhibition. The Ag(+) biosensor displayed a sensitivity of 2.00 × 10(8) ± 0.06 M(-1), a limit of detection (σ = 3) of 0.19 ± 0.04 ppb, a linear range of 20-200 nM, and sample recovery at 101 ± 2%, all acquired at a low-operating potential of 0.05 V (vs Hg/Hg2SO4). Interestingly, the biosensor does not display a loss in sensitivity with continued use due to the % inhibition based detection scheme: loss of enzyme (from continued use) does not influence the % inhibition, only the overall current associated with the activity loss. The heavy metals Cu(2+) and Co(2+) were also detected using the enzyme biosensor but found to be much less inhibitory, with sensitivities of 1.45 × 10(6) ± 0.05 M(-1) and 2.69 × 10(3) ± 0.07 M(-1), respectively. The mode of GOx inhibition was examined for both Ag(+) and Cu(2+) using Dixon and Cornish-Bowden plots, where a strong correlation was observed between the inhibition constants and the biosensor sensitivity. PMID:26079664

  15. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    International Nuclear Information System (INIS)

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%

  16. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Xuefeng, E-mail: zhuxf@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Zhou, Shenghai [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yang, Guang [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049 (China); Gan, Wei [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Yuan, Qunhui, E-mail: yuanqh@ms.xjb.ac.cn [Laboratory of Environmental Science and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-08-30

    Highlights: • First application of a DNA derived fluorescent bio-dot for metal sensing. • Bio-dot was conveniently obtained via a mild thermal hydro-thermal synthesis. • Bio-dot was directly used for fluorescent sensing without further modification. • Bio-dot showed good fluorescent sensing property for Hg(II) and Ag(I). • Formation of T–Hg–T and C–Ag–C structures played key roles in sensing. - Abstract: Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0–0.5 μM and 0.5–6 μM for Hg(II) and one linear range of 0–10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  17. Water-soluble metal-binding polymers with ultrafiltration: A technology for the removal, concentration, and recovery of metal ions from aqueous streams

    International Nuclear Information System (INIS)

    The use of water-soluble metal-binding polymers coupled with ultrafiltration (UF) is a technology under development to selectively concentrate and recover valuable or regulated metal-ions from dilute process or waste waters. The polymers have a sufficiently large molecular size that they can be separated and concentrated using commercially available UF technology. The polymers can then be reused by changing the solution conditions to release the metal-ions, which are recovered in a concentrated form for recycle or disposal. Pilot-scale demonstrations have been completed for a variety of waste streams containing low concentrations of metal ions including electroplating wastes (zinc and nickel) and nuclear waste streams (plutonium and americium). Many other potential commercial applications exist including remediation of contaminated solids. An overview of both the pilot-scale demonstrated applications and small scale testing of this technology are presented

  18. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.

    Science.gov (United States)

    Carolan, Ashley N; Cockrell, Gregory M; Williams, Neil J; Zhang, Gang; VanDerveer, Donald G; Lee, Hee-Seung; Thummel, Randolph P; Hancock, Robert D

    2013-01-01

    Some metal ion complexing properties of DPP (2,9-Di(pyrid-2-yl)-1,10-phenanthroline) are reported with a variety of Ln(III) (Lanthanide(III)) ions and alkali earth metal ions, as well as the uranyl(VI) cation. The intense π-π* transitions in the absorption spectra of aqueous solutions of 10(-5) M DPP were monitored as a function of pH and metal ion concentration to determine formation constants of the alkali-earth metal ions and Ln(III) (Ln = lanthanide) ions. It was found that log K(1)(DPP) for the Ln(III) ions has a peak at Ln(III) = Sm(III) in a plot of log K(1) versus 1/r(+) (r(+) = ionic radius for 8-coordination). For Ln(III) ions larger than Sm(III), there is a steady rise in log K(1) from La(III) to Sm(III), while for Ln(III) ions smaller than Sm(III), log K(1) decreases slightly to the smallest Ln(III) ion, Lu(III). This pattern of variation of log K(1) with varying size of Ln(III) ion was analyzed using MM (molecular mechanics) and DFT (density functional theory) calculations. Values of strain energy (∑U) were calculated for the [Ln(DPP)(H(2)O)(5)](3+) and [Ln(qpy)(H(2)O)(5)](3+) (qpy = quaterpyrdine) complexes of all the Ln(III) ions. The ideal M-N bond lengths used for the Ln(III) ions were the average of those found in the CSD (Cambridge Structural Database) for the complexes of each of the Ln(III) ions with polypyridyl ligands. Similarly, the ideal M-O bond lengths were those for complexes of the Ln(III) ions with coordinated aqua ligands in the CSD. The MM calculations suggested that in a plot of ∑U versus ideal M-N length, a minimum in ∑U occurred at Pm(III), adjacent in the series to Sm(III). The significance of this result is that (1) MM calculations suggest that a similar metal ion size preference will occur for all polypyridyl-type ligands, including those containing triazine groups, that are being developed as solvent extractants in the separation of Am(III) and Ln(III) ions in the treatment of nuclear waste, and (2) Am(III) is very

  19. KINETICS AND EQUILIBRIUM PARAMETERS OF BIOSORPTION AND BIOACCUMULATION OF LEAD IONS FROM AQUEOUS SOLUTIONS BY TRICHODERMA LONGIBRACHIATUM

    Directory of Open Access Journals (Sweden)

    Enitan S. Balogun

    2012-04-01

    Full Text Available Biosorption and bioaccumulation of Lead ions (Pb(II by Trichoderma longibrachiatum were investigated in a batch system. The effects of some important parameters such as pH, initial metal concentration, temperature and inoculum concerntration on biosorption capacity were also studied. The maximum biosorption capacity of Trichoderma longibrachiatum was at 25 ppm of lead, showed 100 % removal at pH 7 and 25 oC after fifteen days. Biosorption equilibrium was established in 150 minutes. The process fitted well into pseudo second order kinetic model and was best explained by Langmuir isotherm.

  20. Pengaruh Konsentrasi Karbon Terhadap Performa Elektrokimia Katoda Lifepo4 Untuk Aplikasi Baterai Lithium Ion Tipe Aqueous Electrolyte

    OpenAIRE

    Ade Okta Yurwendra; Lukman Noerochim

    2014-01-01

    Baterai lithium ion rechargeable telah dipertimbangkan sebagai sebuah sumber tenaga listrik yang digunakan untuk berbagai aplikasi. LiFePO4 yang digunakan sebagai katoda, dipilih karena memiliki sifat yang ramah lingkungan tetapi memiliki konduktivitas yang lemah. LiFePO4 dilakukan proses konduktif coating menggunakan sukrosa dengan pemanasan 600oC selama 3 jam didalam atmosfer argon untuk membentuk karbon coating LiFePO4 (LiFePO4/C) dengan variasi persentase berat karbon 9%, 14.5%, dan 17....

  1. Effective Removal of Copper Ions and Dyes from Aqueous Solutions by Polymeric Nanoparticles Prepared by Gamma Radiation

    International Nuclear Information System (INIS)

    In the present investigation, gamma radiation was used to prepare poly(vinyl alcohol/acrylamide) magnetic iron-silver nanoparticles, (PVA/AAm)-Fe-Ag hydrogels as adsorbent materials for waste water treatment. The prepared hydrogels were characterized by infrared spectroscopy (FT- IR) and scanning electron microscope (SEM). The thermal gravimetric analysis (TGA) results confirm the thermal stability enhancement by incorporation of the nanometals into the prepared hydrogel. The EPR results showed that the P(PVA/AAm)-Fe hydrogels exhibited larger magnetization than the P(PVA/AAm)-Fe-Ag hydrogels. The size measurement of nanoparticles by transmission electron microscopy (TEM) which compared with the results of the dynamic light scattering (DLS) confirmed that the prepared hydrogels were in the nanoscale. The swelling percent behavior of P(PVA/AAm) -Fe-Ag hydrogel nanoparticles at different ph media was carried out. The results of the adsorption studies indicated high adsorption capacity of P(PVA/AAm)-Fe - Ag nanoparticles toward the removal of Cu+2, methylene blue (MB) and methylgreen (MG) dyes from aqueous solutions

  2. Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution.

    Science.gov (United States)

    Gao, Jining; He, Yingjuan; Zhao, Xianying; Ran, Xinze; Wu, Yonghui; Su, Yongping; Dai, Jianwu

    2016-11-01

    Amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles with an average size of 70nm have been synthesized using a single step solvothermal method by the introduction of triethylenetetramine (TETA), a chelating agent recommended for the removal of excess copper in patients with Wilson's disease. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption/desorption isotherm, vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR). It is confirmed that the magnetic nanoparticles have been functionalized with TETA during the synthetic process, and the concentration of TETA is crucial for the formation of monodisperse mesoporous nanoparticles. The obtained single-crystal magnetic nanoparticles have a high magnetization, which enhances their response to external magnetic field and therefore should greatly facilitate the manipulation of the particles in practical uses. Reaction parameters affecting the formation of mesoporous structure were explored, and a possible formation mechanism involving templated aggregation and recrystallization processes was proposed. The capacity of the synthesized amine-functionalized Fe3O4 nanoparticles toward Cu(II) removal from aqueous solution was investigated. The adsorption rate of Cu(II) on amine-functionalized Fe3O4 nanoparticles followed a pseudo-second order kinetic model. The results of this study demonstrated that the amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles could be used as an efficient adsorbent in water treatment and would also find potential application for Cu(II) removal in vivo. PMID:27475709

  3. Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution.

    Science.gov (United States)

    Gao, Jining; He, Yingjuan; Zhao, Xianying; Ran, Xinze; Wu, Yonghui; Su, Yongping; Dai, Jianwu

    2016-11-01

    Amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles with an average size of 70nm have been synthesized using a single step solvothermal method by the introduction of triethylenetetramine (TETA), a chelating agent recommended for the removal of excess copper in patients with Wilson's disease. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption/desorption isotherm, vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FTIR). It is confirmed that the magnetic nanoparticles have been functionalized with TETA during the synthetic process, and the concentration of TETA is crucial for the formation of monodisperse mesoporous nanoparticles. The obtained single-crystal magnetic nanoparticles have a high magnetization, which enhances their response to external magnetic field and therefore should greatly facilitate the manipulation of the particles in practical uses. Reaction parameters affecting the formation of mesoporous structure were explored, and a possible formation mechanism involving templated aggregation and recrystallization processes was proposed. The capacity of the synthesized amine-functionalized Fe3O4 nanoparticles toward Cu(II) removal from aqueous solution was investigated. The adsorption rate of Cu(II) on amine-functionalized Fe3O4 nanoparticles followed a pseudo-second order kinetic model. The results of this study demonstrated that the amine-functionalized mesoporous superparamagnetic Fe3O4 nanoparticles could be used as an efficient adsorbent in water treatment and would also find potential application for Cu(II) removal in vivo.

  4. A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution.

    Science.gov (United States)

    Huang, Li; Xiao, Congming; Chen, Bingxia

    2011-08-30

    A novel effective starch-based adsorbent was prepared through two common reactions, which included the esterification of starch with excess maleic anhydride in the presence of pyridine and the cross-linking reaction of the obtained macromonomer with acrylic acid by using potassium persulphate as initiator. The percentage of carboxylic groups of the macromonomer ranged from 14% to 33.4%. The cross-linking degree of the adsorbent was tailored with the amount of acrylic acid which varied from 10wt% to 80wt%. Both Fourier transform infrared spectra and thermogravimetric analysis results verified the structure of the adsorbent. The maximum gel fraction and swelling ratio of the adsorbent were about 72% and 6.25, respectively, and they were able to be adjusted with the amount of monomers. The weight loss percentage of the adsorbent could reach 96.9% after immersing in the buffer solution that contained α-amylase for 14h. It was found that the adsorption capacities of the adsorbent for lead and mercury ions could be 123.2 and 131.2mg/g, respectively. In addition, the adsorbent was able to remove ca. 51-90% Pb(II) and Hg(II) ions that existed in the decoctions of four medicinal herbals. PMID:21724326

  5. Flame Atomic Absorption Determination of Gold Ion in Aqueous Samples after Preconcentration Using 9-Acridinylamine Functionalized γ-Alumina Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Karimi

    2013-01-01

    Full Text Available A simple and sensitive solid phase extraction utilizing 9-acridinylamine functionalized alumina nanoparticles was developed, and their potential use for preconcentration and subsequent determination of gold by flame atomic absorption spectrometry (FAAS was investigated. A number of parameters, namely, type, concentration, and volume of eluent, pH of the sample solution, flow rate of extraction, and volume of the sample, were evaluated. The effect of a variety of ions on preconcentration and recovery was also investigated. Gold ions were found to be recovered quantitatively at pH 3.0, with 0.1 mol L−1 thiourea in 2 mol L−1 H2SO4 as eluent. The limit of detection (LOD, defined as five times the standard deviation of the blank, was determined to be lower than 13.0 ppb. Under optimum conditions, the accuracy and precision (RSD% of the method were >98.0 and <1.5%, respectively. To gauge its ability in terms of application to real samples, the proposed method was successfully applied for determination of gold concentration in waste water samples and one soil standard material, and satisfactory results were obtained.

  6. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, R. [Sengunthar Engineering College, Tiruchengode (India). Dept. of Civil Engineering], e-mail: gay3civil@gmail.com; Senthil Kumar, P. [SSN College of Engineering, Chennai (India). Dept. of Chemical Engineering], E-mail: senthilkumarp@ssn.edu.in

    2010-01-15

    The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI). This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI) is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively. (author)

  7. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal

    Science.gov (United States)

    Bian, Yu; Bian, Zhao-Yong; Zhang, Jun-Xiao; Ding, Ai-Zhong; Liu, Shao-Lei; Wang, Hui

    2015-02-01

    The adsorption process of graphene oxide (GO) with oxygen-containing functional groups towards cadmium ions was investigated. GO synthesized from graphite by using the modified Hummers method was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oxygen-containing groups on the surfaces of GO played an important role in Cd(II) ion adsorption onto GO. The results of batch experiments indicated that maximal adsorption, which was found to be 23.9 mg/g, could be achieved over the broad pH range of 6.0-7.0. Adsorption isotherms were better fitted by Freundlich model than by Langmuir model and kinetic studies suggested that adsorption was controlled by chemical adsorption. According to FT-IR and XPS analyses of before and after Cd(II) adsorption on GO, electrostatic attraction and cation exchange between Cd(II) and O-containing functional groups on GO were the dominant mechanisms responsible for Cd(II) sorption.

  8. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.L.

    2000-12-19

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  9. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions.

  10. Laser ion source tests at the HRIBF on stable Sn, Ge and Ni isotopes

    International Nuclear Information System (INIS)

    As one step in the ion source development for the Rare Isotope Accelerator, a hot-cavity laser ion source using an all-solid-state titanium-sapphire laser system has been tested at the Holifield Radioactive Ion Beam Facility. Resonance ionization of stable isotopes of Sn, Ge and Ni has been studied in a Ta hot cavity. Efficient three step resonant ionization schemes applying frequency tripling for the first excitation step and using auto-ionizing or atomic Rydberg states in the ionizing step have been identified for all three elements, resulting in laser ion beams of typically around 100 nA. By saturating most of the optical excitation steps involved, ionization efficiencies of 22%, 3.3% and 2.7% have been measured for Sn, Ge and Ni, respectively

  11. The preliminary tests of the superconducting electron cyclotron resonance ion source DECRIS-SC2.

    Science.gov (United States)

    Efremov, A; Bekhterev, V; Bogomolov, S; Drobin, V; Loginov, V; Lebedev, A; Yazvitsky, N; Yakovlev, B

    2012-02-01

    A new compact version of the "liquid He-free" superconducting ECR ion source, to be used as an injector of highly charged heavy ions for the MC-400 cyclotron, is designed and built at the Flerov Laboratory of Nuclear Reactions in collaboration with the Laboratory of High Energy Physics of JINR. The axial magnetic field of the source is created by the superconducting magnet and the NdFeB hexapole is used for the radial plasma confinement. The microwave frequency of 14 GHz is used for ECR plasma heating. During the first tests, the source shows a good enough performance for the production of medium charge state ions. In this paper, we will present the design parameters and the preliminary results with gaseous ions. PMID:22380181

  12. Investigation of the reaction of the ozonide ion with neptunium (VI) ions in aqueous alkaline solutions by the method of pulse radiolysis

    International Nuclear Information System (INIS)

    The method of pulse radiolysis with spectrophotometric recording of short-lived particles is used to investigate the kinetics of the reactions of O3- ion-radicals with Np(V) and Np(VI) in alkaline solutions. The rate constant of the first reaction is equal to (2.0 ± 0.3)·106, and of the second, (2.1 ± 0.2)·105 liter/(mole·sec) in 0.2-2.0 M LiOH. The peculiarities of γ-radiolysis of Np(VI) in alkaline solutions containing N2O and in aerated solutions containing K2S2O8 are elucidated. The yield of Np(VII) is determined by the behavior of O3-, which depends on the concentration of Np(VI) and OH-

  13. Corrosion rate of copper in aqueous lithium bromide concentrated solutions at room temperature by immersion tests

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Portero, M.J.; Garcia-Anton, J.; Guinon-Segura, J.L.; Perez-Herranz, V. [Departamento de Ingenieria Quimica y Nuclear, E.T.S.I. Industriales, Universidad Politecnica de Valencia, P.O. Box 22012, E-46071 Valencia (Spain)

    2004-07-01

    Concentrated solutions of lithium bromide (LiBr) are widely used in absorption refrigeration and heating systems. However, LiBr solutions can cause serious corrosion problems in structural materials (copper, steels, and other metals) in an absorption plant. The aim of the present work was the study of the corrosion rate of copper in 400 and 700 g/L (4.61 and 8.06 M) LiBr solutions pre-nitrogenous or pre-oxygenated at room temperature by immersion tests. The corroded copper concentration was determined with two techniques: weight-loss method and polarographic method. The corrosion curves of copper in LiBr solutions at room temperature as a function of the exposure time showed a similar tendency, and were fitted to a power function such as: C = kt{sup b}, where C was the corroded copper quantity per unit area (mg/cm{sup 2}), t was the exposure time (h), k was the corrosion coefficient, and b was the time exponent. From the corrosion coefficient values (k) it was deduced that the corrosion rate of copper in LiBr solutions at room temperature followed the order: 400 g/L (bubble of O{sub 2}) > 400 g/L (bubble of N{sub 2}) > 700 g/L (bubble of O{sub 2}) > 700 g/L (bubble of N{sub 2}). (authors)

  14. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Gianola, D. S. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Sedlmayr, A.; Moenig, R.; Kraft, O. [Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Volkert, C. A. [Institute for Materials Physics, Georg-August University of Goettingen, Goettingen (Germany); Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L. [Hysitron, Inc., Minneapolis, Minnesota 55344 (United States)

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  15. In situ nanomechanical testing in focused ion beam and scanning electron microscopes.

    Science.gov (United States)

    Gianola, D S; Sedlmayr, A; Mönig, R; Volkert, C A; Major, R C; Cyrankowski, E; Asif, S A S; Warren, O L; Kraft, O

    2011-06-01

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  16. Synthesis of NASICON-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries

    Science.gov (United States)

    Pang, Gang; Yuan, Changzhou; Nie, Ping; Ding, Bing; Zhu, Jiajia; Zhang, Xiaogang

    2014-05-01

    A new solvothermal strategy combined with calcination has been developed to synthesize NaTi2(PO4)3-graphene nanocomposites. X-ray diffraction, thermogravimetric analysis, field-emission scanning electron microscopy and transmission electron microscopy were performed to characterize their microstructures and morphologies. It was found that NASICON-type structured NaTi2(PO4)3 nanoparticles with highly crystallinity were homogeneously anchored on the surface of conducting graphene nanosheets, forming a two-dimensional hybrid nanoarchitecture. A possible growth mechanism was also discussed based on time-dependent experiments. When used as anode materials for Na-ion batteries, the nanocomposites exhibited excellent electrochemical performance with high-rate capability and excellent cycling stability in 1 M Na2SO4 aqueous electrolyte. The electrode delivered high specific capacities of 110, 85, 65, 40 mA h g-1 at 2, 5, 10 and 20 C, respectively, and still retained 90% of the initial capacity after 100 cycles at 2 C.A new solvothermal strategy combined with calcination has been developed to synthesize NaTi2(PO4)3-graphene nanocomposites. X-ray diffraction, thermogravimetric analysis, field-emission scanning electron microscopy and transmission electron microscopy were performed to characterize their microstructures and morphologies. It was found that NASICON-type structured NaTi2(PO4)3 nanoparticles with highly crystallinity were homogeneously anchored on the surface of conducting graphene nanosheets, forming a two-dimensional hybrid nanoarchitecture. A possible growth mechanism was also discussed based on time-dependent experiments. When used as anode materials for Na-ion batteries, the nanocomposites exhibited excellent electrochemical performance with high-rate capability and excellent cycling stability in 1 M Na2SO4 aqueous electrolyte. The electrode delivered high specific capacities of 110, 85, 65, 40 mA h g-1 at 2, 5, 10 and 20 C, respectively, and still retained

  17. Detection of divalent europium, ytterbium, and samarium ions in aqueous solution during anodic polarization of the corresponding amalgam

    International Nuclear Information System (INIS)

    Amalgams of europium, ytterbium, and samarium are oxidized both at constant current and at constant potential. It was found experimentally that the potential of the indicator electrode moved to negative values when the circuit was closed and anodic current (1.0 to 60.0 mA) or potential (of the starting wave, half wave, or limiting current) applied. The potential of the microelectrode was 0.05 V, and remained unchanged during the entire electrolysis time, when pure mercury was used as the anode. The data reported for europium, ytterbium, and samarium amalgam confirm the results otained previously. By measuring the redox potentials of couples Sm3+-Sm2, Yb3+-Yb2+ and Eu3+-Eu2+ directly at the electrode surface the authors have established the formation of divalent samarium, ytterbium, and europium ions during anodic oxidation of the corresponding amalgams

  18. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yu [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Bian, Zhao-Yong, E-mail: bian@bnu.edu.cn [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Zhang, Jun-Xiao; Ding, Ai-Zhong [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); Liu, Shao-Lei [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Wang, Hui, E-mail: wanghui@bjfu.edu.cn [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China)

    2015-02-28

    Highlights: • The role of oxygen-containing function groups of graphene oxide on the Cd(II) sorption was investigated. • The changes of carbon and oxygen state during the interaction of Cd(II) and graphene oxide were monitored using XPS. • The coordination effect of the oxygen function groups of graphene oxide should be in favor to the Cd(II) removal. • The properties of simple component and plain structure of graphene oxide greatly exclude the interference of other factors. - Abstract: The adsorption process of graphene oxide (GO) with oxygen-containing functional groups towards cadmium ions was investigated. GO synthesized from graphite by using the modified Hummers method was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS). The oxygen-containing groups on the surfaces of GO played an important role in Cd(II) ion adsorption onto GO. The results of batch experiments indicated that maximal adsorption, which was found to be 23.9 mg/g, could be achieved over the broad pH range of 6.0–7.0. Adsorption isotherms were better fitted by Freundlich model than by Langmuir model and kinetic studies suggested that adsorption was controlled by chemical adsorption. According to FT-IR and XPS analyses of before and after Cd(II) adsorption on GO, electrostatic attraction and cation exchange between Cd(II) and O-containing functional groups on GO were the dominant mechanisms responsible for Cd(II) sorption.

  19. Investigation of Durasil absorbers for the removal of radionuclides from aqueous solutions

    International Nuclear Information System (INIS)

    Inorganic ion-exchange materials supplied by the Duratek Corporation, Maryland, USA have been tested in batch contact experiments to assess their effectiveness in removing radionuclides from aqueous solutions. The three absorbers tested, D10, D70 and D190, showed an affinity for all fourteen radionuclides present in the test solutions. (author)

  20. Antioxidant and Antifatigue Properties of the Aqueous Extract of Moringa oleifera in Rats Subjected to Forced Swimming Endurance Test.

    Science.gov (United States)

    Lamou, Bonoy; Taiwe, Germain Sotoing; Hamadou, André; Abene; Houlray, Justin; Atour, Mahamat Mey; Tan, Paul Vernyuy

    2016-01-01

    The effects of the aqueous extract of Moringa oleifera on swimming performance and related biochemical parameters were investigated in male Wistar rats (130-132 g). Four groups of rats (16 per group) were fed a standard laboratory diet and given distilled water, 100, 200, or 400 mg/kg of extract, respectively, for 28 days. On day 28, 8 rats from each group were subjected to the forced swimming test with tail load (10% of body weight). The remaining 8 rats per group were subjected to the 90-minute free swim. Maximum swimming time, glycemia, lactamia, uremia, triglyceridemia, hepatic and muscle glycogen, hematological parameters, and oxidative stress parameters (superoxide dismutase, catalase, reduced glutathione, and malondialdehyde) were measured. Results. M. oleifera extract increased maximum swimming time, blood hemoglobin, blood glucose, and hepatic and muscle glycogen reserves. The extract also increased the activity of antioxidant enzymes and decreased the blood concentrations of malondialdehyde. Furthermore, it decreased blood concentrations of lactate, triglycerides, and urea. In conclusion, the antifatigue properties of M. oleifera extract are demonstrated by its ability to improve body energy stores and tissue antioxidant capacity and to reduce the tissue build-up of lactic acid. PMID:26904162

  1. Results of a 2000 hour wear test of the NEXIS ion engine

    Science.gov (United States)

    Snyder, John Steven; Goebel, Dan M.; Polk, James E.; Schneider, Analyn C; Sengupta, Anita

    2005-01-01

    The Nuclear Electric Xenon Ion System (NEXIS) ion thruster was developed for potential outer planet robotic missions under NASA's Prometheus program. This engine was designed to operate at power levels ranging from 16 to over 20 kWe at specific impulses of 6000 to 7500 s for burn times of up to 10 years, satisfying the requirements of nuclear electric propulsion systems such as that on the proposed Prometheus 1 mission to explore the icy moons of Jupiter. State-of-the-art performance and life assessment tools were used to design the thruster. Following the successful performance validation of a Laboratory Model thruster, Development Model hardware was fabricated and subjected to vibration and wear testing. The results of a 2000-hour wear test are reported herein. Thruster performance achieved the target requirements and was steady for the duration of the test. Ion optics performance was similarly stable. Discharge loss increases of 6 eV/ion were observed in the first 500 hours of the test and were attributed to primary electron energy decreases due to cathode insert conditioning. Relatively high recycle rates were observed and were identified to be high-voltage-to-ground arcs in the back of the thruster caused by wire insulation outgassing and electron penetration through the plasma screen. Field emission of electrons between the accelerator and screen grids was observed and attributed to evolution of field emitter sites at accelerator grid aperture edges caused by ion bombardment. Preliminary modeling and analysis indicates that the NEXIS engine can meet mission performance requirements over the required lifetime. Finally, successful validation of the NEXIS design methodology, design tools, and technologies with the results of the wear test and companion performance and vibration tests presents significant applicability of the NEXIS development effort to missions of near-term as well as long-term interest for NASA.

  2. Utilization of Mg2Al-layered double hydroxide as an effective sequestrator to trap Cu(II) ions from aqueous solution impacted by water quality parameters

    Science.gov (United States)

    Xu, Meng; Linghu, Wensheng; Hu, Jun; Jiang, Gongyi; Sheng, Jiang

    2016-11-01

    Recently, Mg2Al-layered double hydroxide (Mg2Al-LDH) has been extensively studied as promising candidates to trap metal ions due to their high complexation and adsorption capacity. Herein, Mg2Al-LDH was utilized as an effectiveness sequestrator to trap Cu(II) ions from aqueous solution by an adsorption process using batch technique under ambient conditions. The results showed that Cu(II) adsorption on Mg2Al-LDH increases with pH increasing and maintains a high level at pH>7.0. The adsorption of Cu(II) was obviously affected by ionic strength at low pH, which was not dependent on ionic strength at high pH. The presence of HA or FA promotes the adsorption of Cu(II) on Mg2Al-LDH at low pH values, while reduces the adsorption of Cu(II) at high pH values. The adsorption isotherms of Cu(II) on Mg2Al-LDH at three different temperatures were simulated by the Langmuir, Freundlich, and Dubinin-Radushkevitch (D-R) models very well. The thermodynamic parameters were determined from the temperature-dependent adsorption, and the results showed that Cu(II) adsorption on Mg2Al-LDH was exothermic and the process was favored at high temperature. The results suggest that Mg2Al-LDH is suitable as a sorbent material for the recovery and attenuation of Cu(II)-polluted wastewater.

  3. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: Equilibrium and kinetic studies

    International Nuclear Information System (INIS)

    Highlights: ► Adsorption of toxic Cr(VI). ► Immobilization of various weight percentage of titania on MCM-41. ► Equilibrium, kinetic and thermodynamic study of adsorption of Cr(VI) onto TiO2-MCM-41. - Abstract: This paper deals with the immobilization of various weight percentage of TiO2 on mesoporous MCM-41, characterization of the materials by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier Transform Infrared (FTIR) analysis, UV–vis diffuse reflectance spectroscopy (DRS) and evaluation of the adsorption capacity toward Cr(VI) removal. It is found that the MCM-41 structure retained after loading of TiO2 but the surface area and pore diameter decreased due to pore blockage. Adsorption of Cr(VI) from aqueous state was investigated on TiO2-MCM-41 by changing various parameters such as pH, metal ion concentration, and the temperature. When TiO2 loading was more than 20 wt.%, the adsorption activity (25)TiO2-MCM-41 reduced significantly due to considerable decrease in the surface area. It is also observed that TiO2 and neat MCM-41 exhibits very less Cr(VI) adsorption compared to TiO2-MCM-41. The adsorption of Cr(VI) onto (20)TiO2-MCM-41 at pH ∼ 5.5 and temperature 323 K was 91% at 100 mg/L Cr(VI) metal ion concentration in 80 min. The experimental data fitted well to Langmuir and Freundlich isotherms. The adsorption of Cr(VI) on TiO2-MCM-41 followed a second order kinetics with higher values of intra-particle diffusion rate. Thermodynamic parameters suggested that the adsorption process is endothermic in nature and desorption studies indicated a chemisorption mode.

  4. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO{sub 2}-MCM-41: Equilibrium and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Kulamani, E-mail: paridakulamani@yahoo.com [Colloids and Material Chemistry Department, Institute of Minerals and Materials Technology (CSIR), Bhubaneswar 751013, Odisha (India); Mishra, Krushna Gopal [Chemistry Wing, School of Applied Sciences, KIIT University, Bhubaneswar 751024, Odisha (India); Dash, Suresh Kumar [Department of Chemistry, Institute of Technical Education and Research, Siksha ' O' Anusandhan University, Bhubaneswar 751030, Odisha (India)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Adsorption of toxic Cr(VI). Black-Right-Pointing-Pointer Immobilization of various weight percentage of titania on MCM-41. Black-Right-Pointing-Pointer Equilibrium, kinetic and thermodynamic study of adsorption of Cr(VI) onto TiO{sub 2}-MCM-41. - Abstract: This paper deals with the immobilization of various weight percentage of TiO{sub 2} on mesoporous MCM-41, characterization of the materials by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, UV-vis diffuse reflectance spectroscopy (DRS) and evaluation of the adsorption capacity toward Cr(VI) removal. It is found that the MCM-41 structure retained after loading of TiO{sub 2} but the surface area and pore diameter decreased due to pore blockage. Adsorption of Cr(VI) from aqueous state was investigated on TiO{sub 2}-MCM-41 by changing various parameters such as pH, metal ion concentration, and the temperature. When TiO{sub 2} loading was more than 20 wt.%, the adsorption activity (25)TiO{sub 2}-MCM-41 reduced significantly due to considerable decrease in the surface area. It is also observed that TiO{sub 2} and neat MCM-41 exhibits very less Cr(VI) adsorption compared to TiO{sub 2}-MCM-41. The adsorption of Cr(VI) onto (20)TiO{sub 2}-MCM-41 at pH {approx} 5.5 and temperature 323 K was 91% at 100 mg/L Cr(VI) metal ion concentration in 80 min. The experimental data fitted well to Langmuir and Freundlich isotherms. The adsorption of Cr(VI) on TiO{sub 2}-MCM-41 followed a second order kinetics with higher values of intra-particle diffusion rate. Thermodynamic parameters suggested that the adsorption process is endothermic in nature and desorption studies indicated a chemisorption mode.

  5. Potentiodynamic and galvanostatic testing of NaFe0.95V0.05PO4/C composite in aqueous NaNO3 solution, and the properties of aqueous Na1.2V3O8/NaNO3/NaFe0.95V0.05PO4/C battery

    Science.gov (United States)

    Vujković, Milica; Mentus, Slavko

    2016-09-01

    The NaFe0.95V0.05PO4/C composite is synthesized by electrochemical ion displacement from LiFe0.95V0.05PO4/C composite in aqueous NaNO3 solution. A coulombic capacity amounting to ∼105 and ∼82 mAh g-1 at sodiation/desodiation rate of 500 and 5000 mAg-1, respectively, is evidenced. For the sake of comparison the same investigations is performed with LiFe0.95V0.05PO4/C composite in LiNO3 solution, and better capacity retention and rate performance is evidenced for NaFe0.95V0.05PO4/C one. This advancement is found to be due a higher participation of pseudocapacity in the sodiation/desodiation charge storage process. An aqueous battery composed of NaFe0.95V0.05PO4/C cathode, belt-like Na1.2V3O8 anode and NaNO3 solution as an electrolyte, tested galvanostatically, displays long-life performance with only 10% of capacity fade after 1000 charge/discharge cycles.

  6. Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

    Science.gov (United States)

    Rao, Gopalakishna M.; Stewart, Karen; Ameen, Syed; Banfield, Peter K.

    2005-01-01

    This document is a viewgraph presentation that reviews the Lithium Ion Battery for the Space Technology-5 (ST-5) mission. Included in the document is a review of the ST-5 Mission, a review of the battery requirements, a description of the battery and the battery materials. The testing and the integration and qualification data is reviewed.

  7. Development and testing of ion exchangers for treatment of liquid wastes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    This report addresses three areas of waste treatment: (1) treatment of newly generated low-level liquid waste and Melton Valley Storage Tank (MVST) supernate using inorganic ion exchangers; (2) treatment of processing streams at the Radiochemical Engineering Development Center (REDC); and (3) removal of radionuclides from organic solutions. Distribution of various radionuclides between simulated waste solutions and several sorbents was determined in batch tests. Inorganic ion exchangers were prepared in the form of microspheres by an intemal gelation process. Microspheres of hydrous titania, hydrous zirconia, hydrous titania containing embedded sodium cobalt hexacyanoferrate, and the corresponding phosphate forms of these materials were prepared. Several zeolites (PDZ-140, PDZ-300, EE-96, CBV-10A) and inorganic ion exchangers (hydrous titania, hydrous zirconia, polyantimanic acid, sodium cobalt hexacyanoferrate) were tested for the removal of cesium and strontium from the acidic simulated Cleanex raffinate generated at REDC. A resorcinol-based ion-exchange resin and three types of sodium titanate were tested for removal of cesium and strontium from the REDC caustic dissolver solution. Hydrous titania, hydrous zirconia, and their corresponding phosphates were tested for the removal of Eu3+ from various solutions of di-2-ethylbexyl phosphoric acid (HDEHP) in toluene or dodecane

  8. Performance and Safety Tests on Samsung 18650 Li-ion Cells with Two Capacities

    Science.gov (United States)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin

    2001-01-01

    In order to meet the applications for Space Shuttle in the future, Samsung 18650 cylindrical Li-ion cells with two different capacities have been evaluated. The capacities are 1800 mAh, and 2000 mAh. The studies focused on the performance and safety tests of the cells.

  9. Childhood cancer and exposure to corona ions from power lines: an epidemiological test

    International Nuclear Information System (INIS)

    We previously reported an association between childhood leukaemia in Britain and proximity of the child’s address at birth to high-voltage power lines that declines from the 1960s to the 2000s. We test here whether a ‘corona-ion hypothesis’ could explain these results. This hypothesis proposes that corona ions, atmospheric ions produced by power lines and blown away from them by the wind, increase the retention of airborne pollutants in the airways when breathed in and hence cause disease. We develop an improved model for calculating exposure to corona ions, using data on winds from meteorological stations and considering the whole length of power line within 600 m of each subject’s address. Corona-ion exposure is highly correlated with proximity to power lines, and hence the results parallel the elevations in leukaemia risk seen with distance analyses. But our model explains the observed pattern of leukaemia rates around power lines less well than straightforward distance measurements, and ecological considerations also argue against the hypothesis. This does not disprove the corona-ion hypothesis as the explanation for our previous results, but nor does it provide support for it, or, by extension, any other hypothesis dependent on wind direction. (paper)

  10. Tests of Theory in Rydberg States of One-Electron Ions

    Science.gov (United States)

    Tan, Joseph N.; Mohr, Peter J.

    Comparison of optical frequency measurements to predictions of quantum electrodynamics (QED) for Rydberg states of one-electron ions can test theory and allow new determinations of constants of nature to be made. Simplifications in the QED theory of high-angular-momentum states reduces the uncertainty in the prediction of transition frequencies to a level where a new value of the Rydberg constant which is independent of the proton radius can be determined. Since the energy-level spacing between neighbouring Rydberg states grows as the square of the nuclear charge number, it is possible to study transitions with optical frequencies that are accessible to femtosecond laser frequency combs. Recently at the US National Institute of Standards and Technology (NIST), highly charged ions (including bare nuclei) created in an Electron Beam Ion Trap (EBIT) were extracted and captured in a novel compact Penning trap. An ongoing experiment aims to produce one-electron ions isolated in an ion trap designed for laser spectroscopy. Tests of theory in a regime free of nuclear effects would be valuable in shedding light on the puzzle surrounding the large discrepancy in the value of the proton radius inferred from the observed Lamb shift in muonic hydrogen as compared to the value deduced from hydrogen and deuterium spectroscopy and electron scattering measurements.

  11. Evaluation of Acacia nilotica as a non conventional low cost biosorbent for the elimination of Pb(II and Cd(II ions from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Sadia Waseem

    2014-12-01

    Full Text Available In the present study a biomass derived from the leaves of Acacia nilotica was used as an adsorbent material for the removal of cadmium and lead from aqueous solution. The effect of various operating variables, viz., adsorbent dosage, contact time, pH and temperature on the removal of cadmium and lead has been studied. Maximum adsorption of cadmium and lead arises at a concentration of 2 g/50 ml and 3 g/50 ml and at a pH value of 5 and 4, respectively. The sorption data favored the pseudo-second-order kinetic model. Langmuir, Freundlich and Dubinin–Radushkevich (D–R models were applied to describe the biosorption isotherm of the metal ions by A. nilotica biomass. Based on regression coefficient, the equilibrium data found were fitted well to the Langmuir equilibrium model than other models. Thermodynamic parameters such as free energy change (ΔG°, enthalpy change (ΔH° and entropy change (ΔS° have been calculated, respectively revealed the spontaneous, endothermic and feasible nature of adsorption process. The activation energy of the biosorption (Ea was estimated as 9.34 kJ mol−1 for Pb and 3.47 kJ mol−1 for Cd from Arrhenius plot at different temperatures.

  12. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite

    International Nuclear Information System (INIS)

    The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g-1 for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH4+ ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite.

  13. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  14. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  15. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Agostinetti, P.; Antoni, V.; Baltador, C.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Cavenago, M. [INFN-LNL, Viale dell’Università n. 2, 35020 Legnaro (Italy)

    2016-02-15

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.

  16. The front end test stand high performance H- ion source at Rutherford Appleton Laboratory.

    Science.gov (United States)

    Faircloth, D C; Lawrie, S; Letchford, A P; Gabor, C; Wise, P; Whitehead, M; Wood, T; Westall, M; Findlay, D; Perkins, M; Savage, P J; Lee, D A; Pozimski, J K

    2010-02-01

    The aim of the front end test stand (FETS) project is to demonstrate that chopped low energy beams of high quality can be produced. FETS consists of a 60 mA Penning Surface Plasma Ion Source, a three solenoid low energy beam transport, a 3 MeV radio frequency quadrupole, a chopper, and a comprehensive suite of diagnostics. This paper details the design and initial performance of the ion source and the laser profile measurement system. Beam current, profile, and emittance measurements are shown for different operating conditions. PMID:20192390

  17. State-independent experimental test of quantum contextuality with a single trapped ion.

    Science.gov (United States)

    Zhang, Xiang; Um, Mark; Zhang, Junhua; An, Shuoming; Wang, Ye; Deng, Dong-Ling; Shen, Chao; Duan, Lu-Ming; Kim, Kihwan

    2013-02-15

    Using a single trapped ion, we have experimentally demonstrated state-independent violation of a recent version of the Kochen-Specker inequality in a three-level system (qutrit) that is intrinsically indivisible. Three ground states of the (171)Yb(+) ion representing a qutrit are manipulated with high fidelity through microwaves and detected with high efficiency through a two-step quantum jump technique. Qutrits constitute the most fundamental system to show quantum contextuality and our experiment represents the first one that closes the detection efficiency loophole for experimental tests of quantum contextuality in such a system. PMID:25166352

  18. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    Science.gov (United States)

    Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Cavenago, M.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.

    2016-02-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained.

  19. Complexation of uranyl ion by polyvinylimidazole. Electrochemical preparation and leaching tests investigations

    International Nuclear Information System (INIS)

    In this work, we intend to check the claims of an U.S. Patent (Westinghouse E.C.) which describes an original treatment for low level activity radioactive wastes. The process deals with electrochemical preparation of polyvinylimidazole (PVI) which is a polymer capable of complexing uranyl ions. We confirm the complexation of uranyl ions by PVI in various media by FT-IR and UV-Visible analysis but all these complexes were found to be soluble in water so we put forward new complexes with an additional polymer to shape out insoluble complex. Leaching tests demonstrate the efficiency of our process. (author)

  20. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1H-PEO and 13C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs