WorldWideScience

Sample records for aqueous foam flow

  1. Flow of an aqueous foam through a two-dimensional porous medium: a pore scale investigation

    Science.gov (United States)

    Meheust, Y.; Jones, S. A.; Dollet, B.; Cox, S.; Cantat, I.

    2012-12-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have peculiar flow properties that might be of benefit to the application. We address here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we first study the behavior of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. It is then compared to a theoretical model, the basic assumption of which is that the pressure drop along a channel is identical for both channels. This pressure drop both consists of (i) a dynamic pressure drop, which is controlled by bubble-wall friction and depends on the foam velocity in the channel, and (ii) a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. Based on this assumption, the dependence of the ratio of the foam velocities in the two channels is inferred as a function of the channel width ratio. It compares well to the measurements and shows that the flow behavior is highly dependent on the foam structure within the narrowest of the two channels, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected for the flow of a standard Newtonian fluid in the same geometry. We provide a comparison to this reference configuration. We then study the flow of the same

  2. Flow of a two-dimensional aqueous foam in two parallel channels

    Science.gov (United States)

    Jones, S.; Cantat, I.; Dollet, B.; Meheust, Y.

    2012-04-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species that are initially present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have pecular flow properties that might be used in order to reach regions of the medium that are normally the least permeable. We study here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we study the behaviour of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. The corresponding pressure drop along each channel is calculated based on theoretical arguments involving both (i) a dynamic pressure drop, which is controlled by bubble-wall friction, and (ii) possibly a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. The flow behaviour of the foam happens to not uniquely be determined by the channel width, as would be the case for a Newtonian fluid, but also to be highly dependent on the foam structure within the narrowest of the two channel, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected. We try to define a corresponding medium permeability and compare it to the permeability expected for the flow of a standard newtonian fluid in the same geometry.

  3. Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels

    CERN Document Server

    Jones, Sian A; Méheust, Yves; Cox, Simon J; Cantat, Isabelle

    2013-01-01

    The velocity of a two-dimensional aqueous foam has been measured as it flows through two parallel channels, at a constant overall volumetric flow rate. The flux distribution between the two channels is studied as a function of the ratio of their widths. A peculiar dependence of the velocity ratio on the width ratio is observed when the foam structure in the narrower channel is either single staircase or bamboo. In particular, discontinuities in the velocity ratios are observed at the transitions between double and single staircase and between single staircase and bamboo. A theoretical model accounting for the viscous dissipation at the solid wall and the capillary pressure across a film pinned at the channel outlet predicts the observed non-monotonic evolution of the velocity ratio as a function of the width ratio. It also predicts quantitatively the intermittent temporal evolution of the velocity in the narrower channel when it is so narrow that film pinning at its outlet repeatedly brings the flow to a near...

  4. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    Science.gov (United States)

    Blackwell, B. F.; Sobolik, K. B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  5. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  6. Highly enhanced electrochemical activity of Ni foam electrodes decorated with nitrogen-doped carbon nanotubes for non-aqueous redox flow batteries

    Science.gov (United States)

    Lee, Jungkuk; Park, Min-Sik; Kim, Ki Jae

    2017-02-01

    Nitrogen-doped carbon nanotubes (NCNTs) are directly grown on the surface of a three-dimensional (3D) Ni foam substrate by floating catalytic chemical vapor deposition (FCCVD). The electrochemical properties of the 3D NCNT-Ni foam are thoroughly examined as a potential electrode for non-aqueous redox flow batteries (RFBs). During synthesis, nitrogen atoms can be successfully doped onto the carbon nanotube (CNT) lattices by forming an abundance of nitrogen-based functional groups. The 3D NCNT-Ni foam electrode exhibits excellent electrochemical activities toward the redox reactions of [Fe (bpy)3]2+/3+ (in anolyte) and [Co(bpy)3]+/2+ (in catholyte), which are mainly attributed to the hierarchical 3D structure of the NCNT-Ni foam electrode and the catalytic effect of nitrogen atoms doped onto the CNTs; this leads to faster mass transfer and charge transfer during operation. As a result, the RFB cell assembled with 3D NCNT-Ni foam electrodes exhibits a high energy efficiency of 80.4% in the first cycle; this performance is maintained up to the 50th cycle without efficiency loss.

  7. Stabilized aqueous foam systems, concentrate for producing a stabilized aqueous foam and method of producing said foam

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.

    This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams. The stable foams have utility in security systems.

  8. Aqueous foams stabilized by chitin nanocrystals

    NARCIS (Netherlands)

    Tzoumaki, M.; Karefyllakis, D.; Moschakis, T.; Biliaderis, C.G.; Scholten, E.

    2015-01-01

    The aim of the present study was to explore the potential use of chitin nanocrystals, as colloidal rod-like particles, to stabilize aqueous foams. Chitin nanocrystals (ChN) were prepared by acid hydrolysis of crude chitin and foams were generated mainly by sonicating the respective dispersions. The

  9. Modeling of aqueous foam blast wave attenuation

    Directory of Open Access Journals (Sweden)

    Domergue L.

    2011-01-01

    Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  10. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  11. Marangoni effects in aqueous polypropylene glycol foams.

    Science.gov (United States)

    Tan, Su Nee; Fornasiero, Daniel; Sedev, Rossen; Ralston, John

    2005-06-15

    The foam behavior of three polypropylene glycols covering the molecular weight range between 192 and 725 g/mol has been examined. Static and dynamic surface tension data, as well as bubble size distribution and retention time in the foam, were incorporated into a simple model of foam stability. The latter clearly indicates that surface tension differences between the plateau border and lamellar region adjacent to the bubble surface are the dominant factor in controlling foamability, causing liquid flow in the direction opposite to liquid drainage, a process termed the Marangoni effect.

  12. Aqueous foam surfactants for geothermal drilling fluids: 1. Screening

    Energy Technology Data Exchange (ETDEWEB)

    Rand, P.B.

    1980-01-01

    Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics.

  13. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  14. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  15. Flowing Foam: T1 events and solid-liquid transitions.

    Science.gov (United States)

    Dennin, Michael

    2005-11-01

    Flowing aqueous foam is found in many applications ranging from oil recovery, to fire fighting, to spreading shaving cream. Aqueous foam consists of gas bubbles with liquid walls. One of the striking features of foam is that despite being composed entirely of fluids, its mechanical properties are either those of a solid (elastic response) or fluid (viscous flow), depending on the nature of the applied stress and strains. We study the transition between these two regimes using a model foam system: bubble rafts. Bubble rafts are a single layer of bubbles floating on the air-water surface. This allows us to track the motion of all the bubbles during flow. In this talk, we will present two main results. First, we will discuss the observation of the coexistence between a solid-like and fluid-like state during flow. Second, we will discuss the role played by nonlinear, topological rearrangements, known as T1 events, in determining the mechanical response of the system.

  16. Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates

    Indian Academy of Sciences (India)

    Saikat Mandal; Sujatha K Arumugam; Renu Pasricha; Murali Sastry

    2005-08-01

    In this paper, we describe the synthesis of silver nanocrystals within aqueous foams as a template. More specifically, we show that aqueous Ag+ ions may be electrostatically complexed with the anionic surfactants aerosol OT (sodium bis-2-ethylhexyl-sulfosuccinate, (AOT) and sodium dodecyl sulphate (SDS)) in a highly stable liquid foam. After drainage of the foam, the silver ions are reduced in situ by introducing sodium borohydride into the foam by capillary flow. This leads to the formation of silver nanoparticles of spherical, tape- and sheet-like morphology in the foam. The structure of the foam is extremely complex and presents reaction sites of different spatial extent. The differences in foam reaction–site geometry are believed to be responsible for the morphology variation in the silver nanoparticles observed. The silver nanoparticles are observed to be extremely stable in solution suggesting that the AOT or SDS molecules stabilize them. This approach appears promising for application in large-scale synthesis of nanoparticles and may be readily extended to other chemical compositions.

  17. Evaluation of Suppression of Synthetic Paraffinic Kerosene (SPK) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    Science.gov (United States)

    2009-12-01

    FIRES WITH AQUEOUS FILM FORMING FOAM ( AFFF ...performance of Aqueous Film-Forming Foam ( AFFF ) on synthetic fuel fires to aid Air Force firefighters’ response to an incident. Results show that AFFF can...hydrocarbons. Aqueous Film Forming Foam ( AFFF ) is used by Air Force fire departments to extinguish fuel spill fires involving jet fuel (JP-8), diesel,

  18. Aqueous foams stabilised solely by nanoparticles

    Science.gov (United States)

    Langevin, Dominique

    2011-03-01

    Particles are being increasingly used to stabilise foams and emulsions, the corresponding emulsions being known as ``Pickering'' emulsions. One of the peculiarities of these systems is the absence of Ostwald ripening: since the bubbles or drops do not grow (coalescence seems also suppressed) both foams and emulsions are stable over extremely long periods of time (months). These features make particles very interesting surface active agents as compared to standard surfactants or polymers/proteins. The origin of the suppression of ripening can be traced to the unusual behaviour of the interfacial layers made by these particles. The layers are solid-like and the usual characterisation methods (surface tension, surface rheology) are not straightforward to use. In this presentation, we will illustrate these difficulties with experiments made with partially hydrophobic silica nanoparticles. We will also discuss the relevance of foam characterisations methods such as multiple light scattering and X-ray tomography.

  19. Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, B.F.; Ortega, A.

    1983-01-01

    A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

  20. Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus; Truex, Michael J.; Shen, Xin; Li, Xiqing

    2011-04-23

    A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D column and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.

  1. Aqueous foams and foam films stabilised by surfactants. Gravity-free studies

    Science.gov (United States)

    Langevin, Dominique

    2017-01-01

    There are still many open questions and problems in both fundamental research and practical applications of foams. Despite the fact that foams have been extensively studied, many aspects of foam physics and chemistry still remain unclear. Experiments on foams performed under microgravity allow studying wet foams, such as those obtained early during the foaming process. On Earth, wet foams evolve too quickly due to gravity drainage and only dry foams can be studied. This paper reviews the foam and foam film studies that we have performed in gravity-free conditions. It highlights the importance of surface rheology as well as of confinement effects in foams and foam films behaviour.

  2. Coarse graining flow of spin foam intertwiners

    Science.gov (United States)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  3. Evaluation of Suppression of Hydroprocessed Renewable Jet (HRJ) Fuel Fires with Aqueous Film Forming Foam (AFFF)

    Science.gov (United States)

    2011-07-01

    AFRL-RX-TY-TR-2011-0101 EVALUATION OF SUPPRESSION OF HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES WITH AQUEOUS FILM FORMING FOAM ( AFFF ...Forming Foam ( AFFF ) has the capability of extinguishing HRJ fuel fires and HRJ/JP-8 blended fuel fires . The assessment included extinguishment...whether existing aqueous film- forming foam ( AFFF ) firefighting agents and equipment are capable of extinguishing alternative- fuel fires or

  4. The flow of a foam in a two-dimensional porous medium

    Science.gov (United States)

    Géraud, Baudouin; Jones, Siân. A.; Cantat, Isabelle; Dollet, Benjamin; Méheust, Yves

    2016-02-01

    Foams have been used for decades as displacing fluids for enhanced oil recovery and aquifer remediation, and more recently, for remediation of the vadose zone, in which case foams carry chemical amendments. Foams are better injection fluids than aqueous solutions due to their low sensitivity to gravity and because they are less sensitive to permeability heterogeneities, thus allowing a more uniform sweep. The latter aspect results from their peculiar rheology, whose understanding motivates the present study. We investigate foam flow through a two-dimensional porous medium consisting of circular obstacles positioned randomly in a horizontal transparent Hele-Shaw cell. The local foam structure is recorded in situ, which provides a measure of the spatial distribution of bubble velocities and sizes at regular time intervals. The flow exhibits a rich phenomenology including preferential flow paths and local flow nonstationarity (intermittency) despite the imposed permanent global flow rate. Moreover, the medium selects the bubble size distribution through lamella division-triggered bubble fragmentation. Varying the mean bubble size of the injected foam, its water content, and mean velocity, we characterize those processes systematically. In particular, we measure the spatial evolution of the distribution of bubble areas, and infer the efficiency of bubble fragmentation depending on the various control parameters. We furthermore show that the distributions of bubble sizes and velocities are correlated. This study sheds new light on the local rheology of foams in porous media and opens the way toward quantitative characterization of the relationship between medium geometry and foam flow properties. It also suggests that large-scale models of foam flows in the subsurface should account for the correlation between bubble sizes and velocities.

  5. Patterns, Instabilities, Colors, and Flows in Vertical Foam Films

    Science.gov (United States)

    Yilixiati, Subinuer; Wojcik, Ewelina; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    2015-03-01

    Foams find use in many applications in daily life, industry and biology. Examples include beverages, firefighting foam, cosmetics, foams for oil recovery and foams formed by pollutants. Foams are collection of bubbles separated by thin liquid films that are stabilized against drainage by the presence of surfactant molecules. Drainage kinetics and stability of the foam are strongly influenced by surfactant type, addition of particles, proteins and polymers. In this study, we utilize the thin film interference colors as markers for identifying patterns, instabilities and flows within vertical foam films. We experimentally study the emergence of thickness fluctuations near the borders and within thinning films, and study how buoyancy, capillarity and gravity driven instabilities and flows, are affected by variation in bulk and interfacial physicochemical properties dependent on the choice of constituents.

  6. Transient foam flow in porous media with CAT Scanner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dianbin; Brigham, W.E.

    1992-03-01

    Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a cat Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.

  7. Coarse graining flow of spin foam intertwiners

    CERN Document Server

    Dittrich, Bianca; Seth, Cameron J; Steinhaus, Sebastian

    2016-01-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behaviour on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group $\\text{SU}(2)_k \\times \\text{SU}(2)_k$, which implement the simplicity constraints analogous to 4D Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a 2D topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different ...

  8. Material flow in metal foams studied by neutron radioscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stanzick, H.; Banhart, J. [Fraunhofer Institute for Advanced Materials, Lesumer Heerstr. 36, 28717 Bremen (Germany); Klenke, J.; Danilkin, S. [Hahn-Meitner-Institute, Glienecker Str. 100, 14109 Berlin (Germany)

    2002-07-01

    Two kinds of experiments are presented in this paper: In the first lead alloy foams were generated in a furnace by expanding a foamable precursor material containing metal and a blowing agent. Vertical columns of liquid metal foam were scanned with a beam of neutrons while recording the time-dependent local neutron transmission. The resulting transmission profiles reflect the kinetics of material redistribution in liquid metallic foams under the influence of gravity (drainage). In the second experiment pre-fabricated solid lead foams were re-melted in a furnace. Neutron transmission profiles were also obtained in these experiments. Results of each type of experiment are presented and compared with theoretical predictions for the density profile of aqueous foams. (orig.)

  9. Foam separation of chromium (Ⅵ) from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    JIAO Cai-shan; DING Yan

    2009-01-01

    Removal of chromium (Ⅵ) dissolved in water by intermittent foam separation was implemented with cetyl trimethy-ammonium bromide as surfactant. The influence of various factors on removal efficiency was systematically studied. The removal efficiency has a maximum value near pH 4.0; thus, most experiments were carried out at pH 4.0. The orthogonal experiment was conducted to confirm the optimal operating parameters. The orthogonal experimental results show that when the liquid feed concentration is 10 mg/L, the pH value of feed solution is 4.00, air flow rates 0.9 L/min, surfactant dosage is 300 mg/L, the maximum removal efficiency of chromium (Ⅵ) reaches 97.80%, and condense multiple reaches 1711. The kinetic test indicates that the foam separation of chromium is a first-order process. The equivalent rate constant calculated from the slope is 0.406 4, and the equivalent rate equation is obtained.

  10. Electrochemical dechlorination of chloroform in neutral aqueous solution on palladium/foam-nickel and palladium/polymeric pyrrole film/foam-nickel electrodes

    Institute of Scientific and Technical Information of China (English)

    SUN Zhirong; LI Baohua; HU Xiang; SHI Min; HOU Qingnan; PENG Yongzhen

    2008-01-01

    Electrochemical dechlonnafion of chloroform in neutral aqueous solution was investigated using palladium-loaded electrodes at ambient temperature.Palladium/foam-nickel (Pd/foam-Ni) and palladium/polymeric pyrrole film/foam-nickel (Pd/PPy/foam-Ni)composite electrodes which provided catalytic surface for reductive dechiorination of chloroform in aqueous solution were prepared using an electrodepositing method.Scanning electron microscope (SEM) micrographs showed that polymeric pyrrole film modified the electrode-surface characteristics and resulted in the uniform dispersion of needle-shaped palladium particles on foam-Ni supporting electrode.The experimental results of dechlorination indicated that the removal efficiency of chloroform and current efficiency in neutral aqueous solution on Pd/PPy/foam-Ni electrode could be up to 36.8% and 33.0% at dechlorination current of 0.1 mA and dechlorination time of 180 rain,which is much higher than that of Pd/foam-Ni electrode.

  11. Trickle/pulse flow regime transition in downflow packed tower involving foaming liquids

    Directory of Open Access Journals (Sweden)

    Sodhi Vijay

    2012-01-01

    Full Text Available The most of past studies in foaming trickle bed reactors aimed at the improvement of efficiency and operational parameters leads to high economic advantages. Conventionally most of the industries rely on frequently used gas continuous flow (GCF where operational output is satisfactory but not yields efficiently as in pulsing flow (PF and foaming pulsing flow (FPF. Hydrodynamic characteristics like regime transitions are significantly influenced by foaming nature of liquid as well as gas and liquid flow rates. This study’s aim was to demonstrate experimentally the effects of liquid flow rate, gas flow rates and liquid surface tension on regime transition. These parameters were analyzed for the air-aqueous Sodium Lauryl Sulphate and air-water systems. More than 240 experiments were done to obtain the transition boundary for trickle flow (GCF to foaming pulsing flow (PF/FPF by use excessive foaming 15-60 ppm surfactant compositions. The trickle to pulse flow transition appeared at lower gas and liquid flow rates with decrease in liquid surface tension. All experimental data had been collected and drawn in the form of four different transitional plots which are compared and drawn by using flow coordinates proposed by different researchers. A prominent decrease in dynamic liquid saturation was observed especially during regime transitional change. The reactor two phase pressure evident a sharp rise to verify the regime transition shift from GCF to PF/FPF. Present study reveals, the regime transition boundary significantly influenced by any change in hydrodynamic as well as physiochemical properties including surface tension.

  12. Aqueous foam as a less-than-lethal technology for prison applications

    Science.gov (United States)

    Goolsby, Tommy D.

    1997-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In late 1994, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objective were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during

  13. Flow of foams in two-dimensional disordered porous media

    Science.gov (United States)

    Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team

    2015-11-01

    Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.

  14. Sorption of Ponceau 4R anionic dye from aqueous solutions on aluminum oxide and polyurethane foam

    Science.gov (United States)

    Tikhomirova, T. I.; Ramazanova, G. R.; Apyari, V. V.

    2014-12-01

    The sorption of Ponceau 4R (E-124) anionic dye on polyurethane foam based on ethers and γ-Al2O3 from aqueous solutions is studied. It is established that sorption is highest in the range of 0.5 M HCl, pH 2 on polyurethane foam and 0.2 M HCl, pH 6.5 on γ-Al2O3. Under optimum conditions, the degrees of recovery on polyurethane foam and γ-Al2O3 are 20-30 and 70-85%, respectively. A possible scheme of interactions between the dye and the surfaces of sorbents is proposed.

  15. Effect of starch particles on foam stability and dilational viscoelasticity of aqueous-foam

    Institute of Scientific and Technical Information of China (English)

    Yongqiang Zhang; Zhidong Chang; Wenli Luo; Shaonan Gu; Wenjun Li; Jianbo An

    2015-01-01

    Surface dilational rheological behavior and foam stability of starch/surfactant mixed solutions were studied at differ-ent starch concentrations and constant surfactant concentration. The results show that dilational viscoelasticity modulus, dilational elasticity modulus and dilational viscosity modulus increase with the concentration of starch particles. Foam stability increases with dilational viscoelasticity. Foam strength also increases with starch concentra-tion. Starch particles play a positive effect on foam stability and dilational viscoelasticity and the effect becomes more significant as drainage proceeds. Film pictures indicate that the film with 20%(by mass) starch particles is thicker than that without starch. Starch particles gather in Plateau border and resist drainage, making the foam more stable. © 2014 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. Al rights reserved.

  16. Foaming of aqueous piperazine and monoethanolamine for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Freeman, S.A.; Rochelle, G.T. [University of Texas Austin, Austin, TX (United States). Dept. of Chemical Engineering

    2011-03-15

    The cause of foaming in aqueous amines used for CO{sub 2} absorption was investigated in this study. The effect on foaming of amine concentration and various additives, including electrolytes, liquid hydrocarbon, and degradation products, was measured by a standard method. Both aqueous piperazine (PZ) with 0.3 mole CO{sub 2}/mole alkalinity {alpha} and 7 m monoethanolamine (MEA, {alpha} = 0.4)) were studied. Formaldehyde at 270 mM substantially increases foaming in PZ. PZ foamed after 163 h of oxidative degradation, but this effect was greatly mitigated with an oxidation inhibitor. Silicone antifoam of 1 ppm reduced the foaminess by 20 times. The tendency of 8 m PZ to foam was increased by 40% with the addition of iron (II) up to a concentration of 1.5 mM, but dissolved iron had no significant effect on 7 in MEA. The tendency to foam and foam stability of 8 m PZ solutions was only slightly affected by 1 mM iron (III), 0.1% heptane in water, 5 mM of copper sulfate, or 100 mM of an oxidation inhibitor.

  17. Capillary flow of oil in a single foam microchannel

    CERN Document Server

    Piroird, Keyvan

    2013-01-01

    Under specific physico-chemical conditions, oil droplets are able to invade the liquid network of a foam without damaging it. We study experimentally the capillary suction of oil in a single foam channel, a Plateau border. Oil flows as an unbroken stream with a dynamics that differs from classical wicking in a capillary tube due to the deformability of the foam channel. The oil forms a long and stable liquid slug inside the Plateau border, which does not break into droplets as long as the oil is confined within the Plateau Border. Yet, destabilization occurs when oil is transferred from the Plateau border to a soap film, after the break-up of a soap film as may happen in real foams.

  18. Blast wave mitigation by dry aqueous foam: numerical modelling and experimental investigation

    Science.gov (United States)

    Counilh, Denis; Ballanger, Felix; Rambert, Nicolas; Haas, Jean-Francois; Chinnayya, Aschwin; Lefrancois, Alexandre

    2016-11-01

    Dry aqueous foams (two-phase media with water liquid fraction lower than 5%) are known to mitigate blast wave effects induced by an explosion. The CEA has calibrated his numerical multiphase code MOUSSACA from shock tube and high-explosive experiments. The shock tube experiments have highlighted the foam fragmentation into droplets and the momentum transfer between the liquid and gas phases of the foam. More recently, experiments with hemispheric explosive charges from 3 g to 120 g have provided more findings about the pressure and impulse mitigation properties of foams. We have also taken into account the heat and mass transfer, as well as the droplets secondary breakup, characterized by the Weber number, ratio of inertia over surface tension. Good agreement is found between the calculation and the experiments. co-supervisor of the Felix Ballanger 's doctoral thesis.

  19. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  20. EXPERIMENTAL STUDY AND MODELING OF PRESSURE LOSS FOR FOAM-CUTTINGS MIXTURE FLOW IN HORIZONTAL PIPE

    Institute of Scientific and Technical Information of China (English)

    AMNA Gumati; HIROSHI Takahshi

    2011-01-01

    In this study,we first sought to elucidate foam rheology to describe foam flow behavior,and then to experimentally investigate the pressure losses for both foam and foam-cuttings flow in a horizontal pipe by considering both varied foam qualities of 80%,85% and 90% and foam velocities.Also,a two-layer numerical model to predict pressure loss was developed based on experimental observations of cuttings behavior.Results show that the foam behaves like a power-law fluid.Furthermore,and the pressure loss significantly increases as foam velocity increases,while the delivered cuttings concentration dramatically decreases.Moreover,results indicate that both the pressure loss and the delivered cuttings concentration increase with foam quality.Comparisons between the experimental results and numerical model predictions show satisfactory agreement.

  1. Analysis of Tube Bank Heat Transfer In Downward Directed Foam Flow

    Directory of Open Access Journals (Sweden)

    Jonas Gylys

    2004-06-01

    Full Text Available Apparatus with the foam flow are suitable to use in different technologies like heat exchangers, food industry, chemical and oil processing industry. Statically stable liquid foam until now is used in technologic systems rather seldom. Although a usage of this type of foam as heat transfer agent in foam equipment has a number of advantages in comparison with one phase liquid equipment: small quantity of liquid is required, heat transfer rate is rather high, mass of equipment is much smaller, energy consumption for foam delivery into heat transfer zone is lower. The paper analyzes the peculiarities of heat transfer from distributed in staggered order and perpendicular to foam flow in channel of rectangular cross section tube bundle to the foam flow. It was estimated the dependence of mean gas velocity and volumetric void fraction of foam flow to heat transfer in downward foam flow. Significant difference of heat transfer intensity from front and back tubes of tube row in laminar foam flow was noticed. Dependence of heat transfer on flow velocity and volumetric void fraction of foam was confirmed and estimated by criterion equations.

  2. Performance of Aqueous Film Forming Foam (AFFF) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires

    Science.gov (United States)

    2011-12-01

    AFRL-RX-TY-TR-2012-0012 PERFORMANCE OF AQUEOUS FILM FORMING FOAM ( AFFF ) ON LARGE-SCALE HYDROPROCESSED RENEWABLE JET (HRJ) FUEL FIRES ...Performance of Aqueous Film Forming Foam ( AFFF ) on Large-Scale Hydroprocessed Renewable Jet (HRJ) Fuel Fires FA4819-09-C-0030 0602102F 4915 D0 QD103001...Forming Foam ( AFFF )”. AFRL-RX-TY-TR-2011-0101, July 2011 7. Sokri, M., Beyler, CL. “Radiation from Larger Pool Fires ” SFPE Journal of Fire Protection

  3. Responsive Aqueous Foams Stabilized by Silica Nanoparticles Hydrophobized in Situ with a Conventional Surfactant.

    Science.gov (United States)

    Zhu, Yue; Pei, Xiaomei; Jiang, Jianzhong; Cui, Zhenggang; Binks, Bernard P

    2015-12-01

    In the recent past, switchable surfactants and switchable/stimulus-responsive surface-active particles have been of great interest. Both can be transformed between surface-active and surface-inactive states via several triggers, making them recoverable and reusable afterward. However, the synthesis of these materials is complicated. In this paper we report a facile protocol to obtain responsive surface-active nanoparticles and their use in preparing responsive particle-stabilized foams. Hydrophilic silica nanoparticles are initially hydrophobized in situ with a trace amount of a conventional cationic surfactant in water, rendering them surface-active such that they stabilize aqueous foams. The latter can then be destabilized by adding equal moles of an anionic surfactant, and restabilized by adding another trace amount of the cationic surfactant followed by shaking. The stabilization-destabilization of the foams can be cycled many times at room temperature. The trigger is the stronger electrostatic interaction between the oppositely charged surfactants than that between the cationic surfactant and the negatively charged particles. The added anionic surfactant tends to form ion pairs with the cationic surfactant, leading to desorption of the latter from particle surfaces and dehydrophobization of the particles. Upon addition of another trace amount of cationic surfactant, the particles are rehydrophobized in situ and can then stabilize foams again. This principle makes it possible to obtain responsive surface-active particles using commercially available inorganic nanoparticles and conventional surfactants.

  4. Plastic flow of foams and emulsions in a channel

    CERN Document Server

    Dollet, B; Sbragaglia, M

    2014-01-01

    In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified. To go beyond a limitation of the experiments, namely the presence of wall friction which complicates the relation between shear stress and shear rate, we compare the experiments with simulations of emulsion droplets based on the lattice-Boltzmann method, which are performed both with, and without, wall friction. Our results indicate a correlation between the localisation length of the velocity profiles and the localisation length of the number of plastic events. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correla...

  5. Aqueous Foams Stabilized by Hydrophilic Silica Nanoparticles via In-Situ Physisorption of Nonionic TX100 Surfactant

    Directory of Open Access Journals (Sweden)

    Suriatie Yusuf

    2013-01-01

    Full Text Available This paper present the study of aqueous CO foam prepared 2 by a mixtures hydrophilic silica nanoparticles and non-ionic Triton X100, TX100, surfactant. The synergistic effects of the mixture on stabilizing the CO2 foam were inferred into few key parameters namely; particles and surfactant concentration, adsorption of surfactant onto the particles via surface tension and adsorption isotherm, foam lifetime and, the size of the bubbles produced. It was found that the adsorption behaviour of TX100 on silica surface exhibit a particular characteristics depend on the concentration of silica, high total surface area available leads to high adsorptionof surfactant molecules. The synergetic performance of silica/TX100 in stabilizing foam can be observed at low (0.01% and intermediate (0.1% concentration of TX100. Lower concentration required low silica concentration while the intermediate concentration required high silica fraction in the dispersion to stabilize the foam.

  6. Convective heat transfer in foams under laminar flow in pipes and tube bundles

    Science.gov (United States)

    Attia, Joseph A.; McKinley, Ian M.; Moreno-Magana, David; Pilon, Laurent

    2014-01-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux. PMID:25552745

  7. Convective heat transfer in foams under laminar flow in pipes and tube bundles.

    Science.gov (United States)

    Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent

    2012-12-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.

  8. Evaluation of three percent Aqueous Film Forming Foam (AFFF) concentrates as fire fighting agents

    Science.gov (United States)

    Jablonski, E. J.

    1981-04-01

    A large-scale fire test program involving 20,000-square foot JP-4 fuel fires was conducted to evaluate the fire suppression effectiveness and compatibility of 3 percent Aqueous Film Forming Foam (AFFF) agents in Air Force fire fighting vehicles. Three commercially available 3 percent AFFF concentrates were tested in accordance with military specification MIL-F-24385B. Test results are summarized in Appendix A. As a result of these tests, an updated Revision C to this MIL SPEC has been accomplished with new requirements for both 3 percent and 6 percent AFFF extinguishing agents.

  9. Synchronized diffusive-wave spectroscopy: Principle and application to sound propagation in aqueous foams.

    Science.gov (United States)

    Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin

    2016-03-01

    We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.

  10. Effect of pH and interaction between egg white protein and hydroxypropymethylcellulose in bulk aqueous medium on foaming properties.

    Science.gov (United States)

    Sadahira, Mitie S; Lopes, Fernanda C Rezende; Rodrigues, Maria I; Yamada, Aureo T; Cunha, Rosiane L; Netto, Flavia M

    2015-07-10

    Egg white protein (EW) is used as surface-active ingredient in aerated food and hydroxypropylmethylcellulose (HPMC) is a polysaccharide that behaves as a surfactant. This study aimed at investigating the effects of process parameters biopolymer concentration (2.0-5.0%, w/w), EW:HPMC ratio (2:1-18:1), pH (3.0-6.0), and the influence of biopolymers' behavior in aqueous solution at different pH on the foaming properties (overrun, drainage, and bubble growth rate). Process parameters had effect on foaming properties. The pH was the major factor influencing the type of EW/HPMC interaction and affected the foaming properties of biopolymer mixture. At pH 3.0, EW and HPMC showed thermodynamic compatibility leading to better foaming properties, higher foaming capacity, and stability than without HPMC addition whereas at pH 4.5 and 6.0, EW and HPMC are incompatible that causes lower stability concerning the disproportionation comparing to foam without HPMC. At pH between 3.0 and 4.5, HPMC improves foaming properties of aerated products.

  11. Determination of aromatic amines in aqueous extracts of polyurethane foam using hydrophilic interaction liquid chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Riddar Johnson, Jakob, E-mail: jakob.riddarjohnson@anchem.su.se [Work Environment Chemistry, Stockholm University, P.O. Box 460, 281 24 Haessleholm (Sweden); Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar [Work Environment Chemistry, Stockholm University, P.O. Box 460, 281 24 Haessleholm (Sweden)

    2010-09-23

    A method is presented for the determination of aromatic amines in aqueous extracts of polyurethane (PUR) foam. The method is based on the extraction of PUR foam using aqueous acetic acid (0.1%, w/v) followed by determination of extracted aromatic amines using hydrophilic interaction liquid chromatography (HILIC) and tandem mass spectrometry (MS/MS) with positive electrospray ionisation. The injections of volumes up to 5 {mu}L of aqueous solutions were made possible by on-column focusing with partially filled loop injections. The fragmentation patterns for 2,4- and 2,6-toluene diamine (TDA) and 4,4'-methylene dianiline (MDA) were clarified by performing a hydrogen-deuterium exchange study. TDA and MDA were determined using trideuterated 2,4- and 2,6-TDA and dideuterated 4,4'-MDA as internal standards. Linear calibration graphs were obtained over the range 0.025-0.5 {mu}g mL{sup -1} with correlation coefficients >0.996 and the instrumental detection limit for each compound was <50 fmol. The stability of the amines was influenced by the matrix, so their concentrations decreased over time. Agreement was observed between the results of analyses of PUR foam extracts by HILIC-MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) liquid chromatography-mass spectrometry (LC-MS/MS). TDA was observed to be unstable in extracts of foam but not in pure solutions.

  12. Experimental results for oscillatory water flow in 10-ppi metal foam at low-frequencies

    Science.gov (United States)

    Bağcı, Ö.; Arbak, A.; De Paepe, M.; Dukhan, N.

    2016-09-01

    This experimental study presents results and interpretation of oscillatory water flow in open-cell metal foam. The tested foam had 10 pores per inch and a porosity of 88%. At relatively low frequencies, three flow displacements were employed in the experiment. The influence of frequency and displacement on pressure loss and friction factor is discussed. A correlation of friction factor as a function of the kinetic Reynolds number was determined. Porous media parameters, permeability and drag coefficient, were also found for the same foam via steady-state flow experiments in the Darcy and Forchheimer regimes. The friction factor of oscillating flow was found to be higher than that of steady state. The findings of this study are considered important for oscillating heat transfer in metal foam.

  13. Investigation of foam flow in a 3D printed porous medium in the presence of oil.

    Science.gov (United States)

    Osei-Bonsu, Kofi; Grassia, Paul; Shokri, Nima

    2017-03-15

    Foams demonstrate great potential for displacing fluids in porous media which is applicable to a variety of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is due to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media. The presence of oil in porous media is detrimental to the stability of foams which can influence its success as a displacing fluid. In the present work, we have conducted a systematic series of experiments using a well-characterised porous medium manufactured by 3D printing technique to evaluate the influence of oil on the dynamics of foam displacement under different boundary conditions. The effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to heavy oil. Additionally, it was observed that the dynamics of oil entrapment was dictated by the stability of foam in the presence of oil. Furthermore, foams with high gas fraction appeared to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil dynamics during displacement revealed formation of a less stable front as the foam quality increased, leading to less oil recovery. This study extends the physical understanding of oil displacement by foam in porous media and provides new physical insights regarding the parameters influencing this process.

  14. Research on Gas-liquid Flow Rate Optimization in Foam Drilling

    Science.gov (United States)

    Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.

    2010-03-01

    With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.

  15. Foaming volume and foam stability

    Science.gov (United States)

    Ross, Sydney

    1947-01-01

    A method of measuring foaming volume is described and investigated to establish the critical factors in its operation. Data on foaming volumes and foam stabilities are given for a series of hydrocarbons and for a range of concentrations of aqueous ethylene-glycol solutions. It is shown that the amount of foam formed depends on the machinery of its production as well as on properties of the liquid, whereas the stability of the foam produced, within specified mechanical limitations, is primarily a function of the liquid.

  16. Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams (AFFF) Used by the US Military

    Science.gov (United States)

    Place, Benjamin J.; Field, Jennifer A.

    2012-01-01

    Aqueous film-forming foams (AFFFs) are a vital tool to fight large hydrocarbon fires and can be used by public, commercial, and military firefighting organizations. In order to possess these superior firefighting capabilities, AFFFs contain fluorochemical surfactants, of which many of the chemical identities are listed as proprietary. Large-scale controlled (e.g. training activities) and uncontrolled releases of AFFF have resulted in contamination of groundwater. Information on the composition of AFFF formulations is needed to fully define the extent of groundwater contamination and the first step is to fully define the fluorochemical composition of AFFFs used by the US military. Fast atom bombardment mass spectrometry (FAB-MS) and high resolution quadrupole-time-of-flight mass spectrometry (QTOF-MS) were combined to elucidate chemical formulas for the fluorochemicals in AFFF mixtures and, along with patent-based information, structures were assigned. Sample collection and analysis was focused on AFFFs that have been designated as certified for US military use. Ten different fluorochemical classes were identified in the seven military-certified AFFF formulations, and include anionic, cationic, and zwitterionic surfactants with perfluoroalkyl chain lengths ranging from 4-12. The environmental implications are discussed and research needs are identified. PMID:22681548

  17. Aerobic biodegradation of two fluorotelomer sulfonamide-based aqueous film forming foam components produces perfluoroalkyl carboxylates.

    Science.gov (United States)

    D'Agostino, Lisa A; Mabury, Scott A

    2017-02-01

    The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and 6:2 fluorotelomer sulfonamide alkylbetaine (FTAB), was investigated over 109 d with aerobic wastewater treatment plant (WWTP) sludge. Results show that biodegradation of 6:2 FTAA and 6:2 FTAB produces 6:2 fluorotelomer alcohol (FTOH), 6:2 fluorotelomer carboxylic acid (FTCA), 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA), 5:3 FTCA, and short chain perfluoroalkyl carboxylates (PFCAs). Additional degradation products included 6:2 fluorotelomer sulfonamide (FTSAm), which was a major degradation product in the presence of either active or sterilized sludge, while 6:2 fluorotelomer sulfonate (FTSA) production was measured with sterilized sludge only. Six additional degradation products were tentatively identified by quadrupole time-of-flight mass spectrometry (qTOF-MS) and were attributed to N-dealkylation and oxidation of 6:2 FTAA. This article is protected by copyright. All rights reserved.

  18. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    NARCIS (Netherlands)

    Hoang, D.A.; Van Steijn V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure

  19. Study on the generation of perfluorooctane sulfonate from the aqueous film-forming foam.

    Science.gov (United States)

    Kishi, Takahiro; Arai, Mitsuru

    2008-11-15

    Perfluorooctane sulfonate (C(8)HF(17)SO(3)) and perfluorooctane acid (C(8)HF(15)O(2)) are artificial chemicals and have been used all over the world, mainly as water repellent agents, fluorochemical surfactants, coating agents, etc. However, perfluorooctane sulfonate and perfluorooctane acid are environmental contaminants because of their stability, bio-accumulativeness, and long-term persistence in the ecological environment. At the present day, they are diffused all over the world. Lately, this diffusion is viewed with suspicion and there is a movement towards their restriction, even if the environmental fate of them is still under investigation. Fluorochemical surfactants are key compounds in the aqueous film-forming foam (AFFF) formulations. AFFFs are used for massive conflagration such as industrial fire and petroleum fire because of their efficient fire control. On the other hand, a lot of AFFFs are used in case of massive conflagration and most of them enter ocean and groundwater. Actually, perfluorooctane sulfonate and perfluorooctane sulfonate related substances were detected from the fire-fighting facility of US forces. Therefore, there is the possibility of generating perfluorooctane sulfonate and perfluorooctane sulfonate related substances from fluorochemical surfactants in the AFFFs. In this study, activated sludge added AFFF were analyzed for perfluorooctane sulfonate and perfluorooctane acid with time. And the perfluorooctane sulfonate was directly detected after 2 days using LC-MS. This shows that AFFF can be decomposed perfluorooctane sulfonate by microorganisms easily. However, perfluorooctane sulfonate would not decompose at all. Additionally, activated sludge added N-polyoxyethylene-N-propyl perfluorooctane sulfonamide which is one of the fluorochemical surfactants used in the AFFF was analyzed for perfluorooctane sulfonate and perfluorooctane acid with time and the perfluorooctane sulfonate was detected too.

  20. Experimental And Analytical Study Of Heat Transfer And Fluid Flow Through Aluminum Foams

    Science.gov (United States)

    Mancin, Simone; Zilio, Claudio; Rossetto, Luisa; Cavallini, Alberto

    2010-05-01

    This paper aims at investigating the air heat transfer and fluid flow through eight Aluminum open cell foam samples with different number of pores per linear inch (PPI ranging between 5 and 40), almost constant porosity (around 0.92-0.93) and different foam core heights (20 and 40 mm). The experimental heat transfer coefficient and pressure drop measurements have been collected in a test rig built at Dipartimento di Fisica Tecnica of the University of Padova. Three different heat fluxes have been imposed: 25.0, 32.5 and 40.0 kW m-2 and the air mass flow rate has been varied between 0.005 and 0.025 kg s-1, with air approach velocity between 2 and 5 m s-1. The effect of the foam height on the heat transfer has been experimentally analysed. Finally, the pressure drop measurements have been compared against an analytical model suggested in the open literature.

  1. Halloysite nanotube with fluorinated lumen: non-foaming nanocontainer for storage and controlled release of oxygen in aqueous media.

    Science.gov (United States)

    Cavallaro, Giuseppe; Lazzara, Giuseppe; Milioto, Stefana; Palmisano, Giovanni; Parisi, Filippo

    2014-03-01

    Halloysite clay nanotubes were selectivity modified by adsorbing perfluoroalkylated anionic surfactants at the inner surface. The modified nanotubes formed kinetically stable dispersions due to the enhanced electrostatic repulsions exercised between the particles. We proved that the modified nanotubes can be used as non-foaming oxygen nanocontainers in aqueous media. The gas release from supersaturated dispersions can be controlled by external stimuli and system composition. In conclusion, we managed to put forward an easy strategy to develop smart materials from natural nanoclays, which can endow important applications like the storage and delivery of gas.

  2. Evaluation of a steady-state test of foam stability

    Science.gov (United States)

    Hutzler, Stefan; Lösch, Dörte; Carey, Enda; Weaire, Denis; Hloucha, Matthias; Stubenrauch, Cosima

    2011-02-01

    We have evaluated a steady-state test of foam stability, based on the steady-state height of a foam produced by a constant velocity of gas flow. This test is mentioned in the book by Bikerman [Foams, Springer, Berlin, 1973] and an elementary theory was developed for it by Verbist et al. [J. Phys. Condens. Matter 8 (1996) p. 3715]. For the study, we used an aqueous solution of the cationic surfactant dodecyl trimethylammonium bromide, C12TAB, at a concentration of two times the critical micelle concentration (2 cmc). During foam generation, bubbles collapse at the top of the column which, in turn, eventually counterbalances the rate of bubble production at the bottom. The resulting balance can be described mathematically by an appropriate solution of the foam drainage equation under specified boundary conditions. Our experimental findings are in agreement with the theoretical predictions of a diverging foam height at a critical gas velocity and a finite foam height in the limit of zero velocity. We identify a critical liquid fraction below which a foam is unstable as an important parameter for characterizing foam stability. Furthermore, we deduce an effective viscosity of the liquid which flows through the foam. Currently unexplained are two experimental observations, namely sudden changes of the steady-state foam height in experiments that run over several hours and a reduction in foam height once an overflow of the foam from the containing vessel has occurred.

  3. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).

  4. Foam Flow Experiments. I. Estimation of the Bubble generation-Coalescence Function

    NARCIS (Netherlands)

    Thorat, R.R.; Bruining, H.

    2016-01-01

    Gas injection leads to foam formation in porous media in the presence of surfactant solutions, which is used for flow diversion and enhanced oil recovery. We present here laboratory experiments of co-injecting nitrogen and sodium C14−16 alpha olefin sulfonate with two concentrations: 20× the critica

  5. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  6. Polyurethane foam loaded with sodium dodecylsulfate for the extraction of 'quat' pesticides from aqueous medium: Optimization of loading conditions.

    Science.gov (United States)

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-09-01

    The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time.

  7. Aqueous semi-solid flow cell: demonstration and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM

    2013-01-01

    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  8. Acoustic properties of sintered FeCrAlY foams with open cells (Ⅰ): Static flow resistance

    Institute of Scientific and Technical Information of China (English)

    LU TianJian; M.KEPETS; A.P.DOWLING

    2008-01-01

    Open celled metal foams fabricated through the route of metal sintering are a new class of material that offers novel mechanical and acoustic properties. The metal sintering approach offers a cost-effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. The mechanical properties of open-celled steel alloy (FeCrAIY) foams have been characterized in previous studies, with focus placed on the influence of processing defects on stiffness and strength. In this work, the low-Reynolds number fluid properties of FeCrAIY foams were investigated both theoretically and experimen-tally. Specifically, the static flow resistance of the sintered foams important for heat transfer, filtration and sound absorption was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow. Experimental measurements were subsequently carried out to validate theoretical predictions, with good agreement achieved.

  9. Pharmaceutical modulation of diffusion potentials at aqueous-aqueous boundaries under laminar flow conditions.

    Science.gov (United States)

    Collins, Courtney J; Strutwolf, Jörg; Arrigan, Damien W M

    2011-04-01

    In this work, the modulation of the diffusion potential formed at the microfluidic aqueous-aqueous boundary by a pharmaceutical substance is presented. Co-flowing aqueous streams in a microchannel were used to form the stable boundary between the streams. Measurement of the open circuit potential between two silver/silver chloride electrodes enabled the diffusion potential at the boundary to be determined, which is concentration dependent. Experimental results for protonated propranolol as well as tetrapropylammonium are presented. This concept may be useful as a strategy for the detection of drug substances.

  10. Partitioning of perfluorooctanesulfonate and perfluorohexanesulfonate in the aquatic environment after an accidental release of aqueous film forming foam at Schiphol Amsterdam Airport

    NARCIS (Netherlands)

    Kwadijk, C.J.A.F.; Kotterman, M.J.J.; Koelmans, A.A.

    2014-01-01

    In the summer of 2008, an accidental release of Aqueous Film Forming Foam (AFFF) took place at Schiphol Amsterdam Airport (The Netherlands). After the release, water, fish and sediment samples were collected and analyzed for perfluoroalkyl sulfonates (PFSA). In situ perfluorooctane sulfonate (PFOS)

  11. Three-dimensional foam flow resolved by fast X-ray tomographic microscopy

    CERN Document Server

    Raufaste, Christophe; Mader, Kevin; Santucci, Stéphane; Mokso, Rajmund

    2015-01-01

    Thanks to ultra fast and high resolution X-ray tomography, we managed to capture the evolution of the local structure of the bubble network of a 3D foam flowing around a sphere. As for the 2D foam flow around a circular obstacle, we observed an axisymmetric velocity field with a recirculation zone, and indications of a negative wake downstream the obstacle. The bubble deformations, quantified by a shape tensor, are smaller than in 2D, due to a purely 3D feature: the azimuthal bubble shape variation. Moreover, we were able to detect plastic rearrangements, characterized by the neighbor-swapping of four bubbles. Their spatial structure suggest that rearrangements are triggered when films faces get smaller than a characteristic area.

  12. Evaluating the performance of the two-phase flow solver interFoam

    Science.gov (United States)

    Deshpande, Suraj S.; Anumolu, Lakshman; Trujillo, Mario F.

    2012-01-01

    The performance of the open source multiphase flow solver, interFoam, is evaluated in this work. The solver is based on a modified volume of fluid (VoF) approach, which incorporates an interfacial compression flux term to mitigate the effects of numerical smearing of the interface. It forms a part of the C + + libraries and utilities of OpenFOAM and is gaining popularity in the multiphase flow research community. However, to the best of our knowledge, the evaluation of this solver is confined to the validation tests of specific interest to the users of the code and the extent of its applicability to a wide range of multiphase flow situations remains to be explored. In this work, we have performed a thorough investigation of the solver performance using a variety of verification and validation test cases, which include (i) verification tests for pure advection (kinematics), (ii) dynamics in the high Weber number limit and (iii) dynamics of surface tension-dominated flows. With respect to (i), the kinematics tests show that the performance of interFoam is generally comparable with the recent algebraic VoF algorithms; however, it is noticeably worse than the geometric reconstruction schemes. For (ii), the simulations of inertia-dominated flows with large density ratios {\\sim }\\mathscr {O}(10^3) yielded excellent agreement with analytical and experimental results. In regime (iii), where surface tension is important, consistency of pressure-surface tension formulation and accuracy of curvature are important, as established by Francois et al (2006 J. Comput. Phys. 213 141-73). Several verification tests were performed along these lines and the main findings are: (a) the algorithm of interFoam ensures a consistent formulation of pressure and surface tension; (b) the curvatures computed by the solver converge to a value slightly (10%) different from the analytical value and a scope for improvement exists in this respect. To reduce the disruptive effects of spurious

  13. Bioremediation of aqueous pollutants using biomass embedded in hydrophilic foam. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.; Radway, J.C.; Santo Domingo, J.; Zingmark, R.G.; Whitaker, M.J.

    1996-12-31

    The major objective of this project was to examine the potential of a novel hydrophilic polyurethane foam as an immobilization medium for algal, bacteria, and other types of biomass, and to test the resulting foam/biomass aggregates for their use in cleaning up waters contaminated with heavy metals, radionuclides and toxic organic compounds. Initial investigations focused on the bioremoval of heavy metals from wastewaters at SRS using immobilized algal biomass. This effort met with limited success for reasons which included interference in the binding of biomass and target metals by various non-target constituents in the wastewater, lack of an appropriate wastewater at SRS for testing, and the unavailability of bioreactor systems capable of optimizing contact of target pollutants with sufficient biomass binding sites. Subsequent studies comparing algal, bacterial, fungal, and higher plant biomass demonstrated that other biomass sources were also ineffective for metal bioremoval under the test conditions. Radionuclide bioremoval using a Tc-99 source provided more promising results than the metal removal studies with the various types of biomass, and indicated that the alga Cyanidium was the best of the tested sources of biomass for this application. However, all of the biomass/foam aggregates tested were substantially inferior to a TEVA resin for removing Tc-99 in comparative testing. The authors also explored the use of hydrophilic polyurethane foam to embed Burkholderia cepacia, which is an efficient degrader of trichloroethylene (TCE), a contaminant of considerable concern at SRS and elsewhere. The embedded population proved to be incapable of growth on nutrient media, but retained respiratory activity. Lastly, the degradative capabilities of embedded G4 were examined. Phenol- or benzene-induced bacteria retained the ability to degrade TCE and benzene. The authors were successful in inducing enzyme activity after the organisms had already been embedded.

  14. Enhanced Oil Recovery: Aqueous Flow Tracer Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rovani; John Schabron

    2009-02-01

    A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

  15. Numerical simulation of flow around a simplified high-speed train model using OpenFOAM

    Science.gov (United States)

    Ishak, I. A.; Ali, M. S. M.; Shaikh Salim, S. A. Z.

    2016-10-01

    Detailed understanding of flow physics on the flow over a high-speed train (HST) can be accomplished using the vast information obtained from numerical simulation. Accuracy of any simulation in solving and analyzing problems related to fluid flow is important since it measures the reliability of the results. This paper describes a numerical simulation setup for the flow around a simplified model of HST that utilized open source software, OpenFOAM. The simulation results including pressure coefficient, drag coefficient and flow visualization are presented and they agreed well with previously published data. This shows that OpenFOAM software is capable of simulating fluid flows around a simplified HST model. Additionally, the wall functions are implemented in order to minimize the overall number of grid especially near the wall region. This resulted in considerably smaller numbers of mesh resolution used in the current study compared to previous work, which leads to achievement of much reasonable time simulation and consequently reduces the total computational effort without affecting the final outcome.

  16. CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications.

    Science.gov (United States)

    Hu, Wei; Chen, Ruqi; Xie, Wei; Zou, Lilan; Qin, Ni; Bao, Dinghua

    2014-11-12

    We report that CoNi2S4 nanosheet arrays exhibit ultrahigh specific capacitance of 2906 F g(-1) and areal capacitance of 6.39 F cm(-2) at a current density of 5 mA cm(-2), as well as good rate capability and cycling stability, and superior electrochemical performances with an energy density of 33.9 Wh kg(-1) at a power density of 409 W kg(-1) have been achieved in an assembled aqueous asymmetric supercapacitor. The CoNi2S4 nanosheet arrays were in situ grown on nickel foams by a facile two-step hydrothermal method. The formation mechanism of the CoNi2S4 nanosheet arrays was based on an anion-exchange reaction involving the pseudo Kirkendall effect. The two aqueous asymmetric supercapacitors in series using the CoNi2S4 nanosheet arrays as the positive electrodes can power four 3-mm-diameter red-light-emitting diodes. The outstanding supercapacitive performance of CoNi2S4 nanosheet arrays can be attributed to ravine-like nanosheet architectures with good mechanical and electrical contact, low crystallinity and good wettability without an annealing process, rich redox reactions, as well as high conductivity and transport rate for both electrolyte ions and electrons. Our results demonstrate that CoNi2S4 nanosheet arrays are promising electrode materials for supercapacitor applications.

  17. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    Directory of Open Access Journals (Sweden)

    Wilson Thomas S

    2009-12-01

    Full Text Available Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  18. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  19. Plasmonic nanoshell synthesis in microfluidic composite foams.

    Science.gov (United States)

    Duraiswamy, Suhanya; Khan, Saif A

    2010-09-01

    The availability of robust, scalable, and automated nanoparticle manufacturing processes is crucial for the viability of emerging nanotechnologies. Metallic nanoparticles of diverse shape and composition are commonly manufactured by solution-phase colloidal chemistry methods, where rapid reaction kinetics and physical processes such as mixing are inextricably coupled, and scale-up often poses insurmountable problems. Here we present the first continuous flow process to synthesize thin gold "nanoshells" and "nanoislands" on colloidal silica surfaces, which are nanoparticle motifs of considerable interest in plasmonics-based applications. We assemble an ordered, flowing composite foam lattice in a simple microfluidic device, where the lattice cells are alternately aqueous drops containing reagents for nanoparticle synthesis or gas bubbles. Microfluidic foam generation enables precisely controlled reagent dispensing and mixing, and the ordered foam structure facilitates compartmentalized nanoparticle growth. This is a general method for aqueous colloidal synthesis, enabling continuous, inherently digital, scalable, and automated production processes for plasmonic nanomaterials.

  20. CHARACTERIZATION AND PROPERTIES OF A LIGNOSULFONATE-BASED PHENOLIC FOAM

    Directory of Open Access Journals (Sweden)

    Lihong Hu,

    2011-11-01

    Full Text Available Phenolated lignosulfonate was introduced into the synthesis of phenolic resol with phenol and formaldehyde in an alkaline condition. The modified resol was successfully applied to prepare phenolic foam using appropriate combinations of flowing agents. N-pentane was found to be suitable as the foaming agent. Sulphuric acid (50% aqueous solution, w/w and Tween-80 were used as catalyst and surfactant, respectively. The obtained foams were characterized by thermogravimetric analysis (TGA, scanning electron microscopy (SEM, friability, and mechanical property tests. The experimental results showed the foam to have lower density, better toughness, and excellent thermal insulation compared to those of foams obtained from conventional resol resin. The properties of phenolated lignosulfonate modified phenolic foam can comply with the required specifications for its practical utilization.

  1. Experimentally observed flows inside inkjet-printed aqueous rivulets

    Science.gov (United States)

    Bromberg, Vadim; Singler, Timothy

    2013-11-01

    Understanding the flow inside sessile liquid masses of different shapes is important in a variety of solution-based material deposition and patterning processes. We investigated the shape evolution and internal flow of inkjet-printed aqueous rivulets of finite length using optical microscopy. Rivulets were formed by printing a pre-determined number of drops at controlled frequency and spatial overlap. Capillary-driven rivulet breakup into individual drops was inhibited by chemical modification of substrates that resulted in controlled contact angle hysteresis with zero static receding contact angle. A variety of novel capillary- and evaporatively-driven flows were identified using fluorescent particles as flow tracers. Flow regimes were investigated as a function of advancing contact angle, deposition parameters, and fluid properties.

  2. Use of Aqueous Foam to Reduce Shoulder-Launched Rocket Noise Level: Feasibility Investigation.

    Science.gov (United States)

    1981-07-01

    1 tj~ * UNCLASSIFIED SECUflITY CLASSIFICATION OF THIS PAGE (**en Dese Entered) REPORT DOCUMENTATION PAGE BEFORE COOTRUTIONS I. REPORT NUMBER 2. GOVT...assistance and cooperation of Mr. Jerry Arszman of U.S. Army MIRADCOM (Missile Research and Development Command) and Mr. Charles Carter and Mr. George...REFERENCES 1. A. Clark, et al., The Reduction of Noise Levels from Explosive Test Facilities Using Aqueous Foan, Royal Armament Research and Development

  3. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    Science.gov (United States)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  4. Surfactant recovery from water using foam fractionation: Effect of temperature and added salt

    Energy Technology Data Exchange (ETDEWEB)

    Kumpabooth, K.; Osuwan, S. [Chulalongkorn Univ., Bangkok (Thailand). Petroleum and Petrochemical Coll.; Scamehorn, J.F.; Harwell, J.H. [Univ. of Oklahoma, Norman, OK (United States). Inst. for Applied Surfactant Research

    1999-01-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant present at low concentrations in aqueous streams. A simple continuous mode foam fractionation was used, and three surfactants were chosen for this study: sodium dodecyl sulfate, cetylpyridinium chloride, and sodium n-hexadecyl diphenyloxide disulfonate. In a previous study the effects of surfactant concentration, air flow rate, liquid- and vapor-phase heights, and sparger type were investigated for these surfactants. Here, the effects of temperature and added salt are studied. It is found that the foam flow rate and enrichment ratio increase whereas the foam wetness and the rate of surfactant recovery decrease with increasing temperature. Increasing the concentration of added salt decreases the CMC of the surfactants. The foam flow rate, foam wetness, and the rate of surfactant recovery increase, while the enrichment ratio decreases with increasing concentration of salt.

  5. An extension of the open-source porousMultiphaseFoam toolbox dedicated to groundwater flows solving the Richards' equation

    CERN Document Server

    Horgue, Pierre; Guibert, Romain; Debenest, Gérald

    2015-01-01

    In this note, the existing porousMultiphaseFoam toolbox, developed initially for any two-phase flow in porous media is extended to the specific case of the Richards' equation which neglect the pressure gradient of the non-wetting phase. This model is typically used for saturated and unsaturated groundwater flows. A Picard's algorithm is implemented to linearize and solve the Richards' equation developed in the pressure head based form. This new solver of the porousMultiphaseFoam toolbox is named groundwaterFoam. The validation of thesolver is achieved by a comparison between numerical simulations and results obtained from the literature. Finally, a parallel efficiency test is performed on a large unstructured mesh and exhibits a super-linear behavior as observed for the other solvers of the toolbox.

  6. Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhirong, E-mail: zrsun@bjut.edu.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Wei, Xuefeng; Han, Yanbo; Tong, Shan [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China); Hu, Xiang, E-mail: huxiang99@163.com [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-01-15

    Highlights: ► Pd/PPy-CTAB/foam-Ni electrode with high surface area and low Pd content was prepared. ► The composite electrode was applied to dechlorination of 2,4-DCP in aqueous solution. ► Complete dechlorination of 2,4-DCP was achieved with higher current efficiency. ► Removal efficiency kept 100% after 10 times dechlorination on the stable electrode. ► The electrochemically reductive activation energy was 25.8 kJ mol{sup −1} in this system. -- Abstract: The electrochemically reductive dechlorination of 2,4-dichlorophenol (2,4-DCP) in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel electrode (Pd/PPy-CTAB/foam-Ni electrode) was investigated in this paper. Pd/PPy-CTAB/foam-Ni electrode was prepared and characterized by cyclic voltammetry (CV), scanning electron microscope (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The influences of some experimental factors such as the dechlorination current, dechlorination time and the initial pH on the removal efficiency and the current efficiency of 2,4-DCP dechlorination on Pd/PPy-CTAB/foam-Ni electrode were studied. Complete removal of 2,4-DCP was achieved and the current efficiency of 47.4% could be obtained under the conditions of the initial pH of 2.2, the dechlorination current of 5 mA and the dechlorination time of 50 min when the initial 2,4-DCP concentration was 100 mg L{sup −1}. The analysis of high performance liquid chromatography (HPLC) identified that the intermediate products were 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP). The final products were mainly phenol. Its further reduction product cyclohexanone was also detected. The electrocatalytic dechlorination pathways of 2,4-DCP on Pd/PPy-CTAB/foam-Ni electrode were discussed. The stability of the electrode was favorable that it could keep dechlorination efficiency at 100% after having been reused

  7. Acoustic properties of sintered FeCrAlY foams with open cells (Ⅰ): Static flow resistance

    Institute of Scientific and Technical Information of China (English)

    M.; KEPETS; A.; P.; DOWLING

    2008-01-01

    Open celled metal foams fabricated through the route of metal sintering are a new class of material that offers novel mechanical and acoustic properties. The metal sintering approach offers a cost-effective means for the mass-production of open-cell foams from a range of materials, including high-temperature steel alloys. The mechanical properties of open-celled steel alloy (FeCrAlY) foams have been characterized in previous studies, with focus placed on the influence of processing defects on stiffness and strength. In this work, the low-Reynolds number fluid properties of FeCrAlY foams were investigated both theoretically and experimen- tally. Specifically, the static flow resistance of the sintered foams important for heat transfer, filtration and sound absorption was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow. Experimental measurements were subsequently carried out to validate theoretical predictions, with good agreement achieved.

  8. Controlling the coal dust at transshipment point:A study of the foam-sol foaming device

    Institute of Scientific and Technical Information of China (English)

    Xi Zhilin; Jiang Manman; Sun Changping; Tu Xian

    2014-01-01

    In order to effectively control the dust at the transshipment point with foam-sol, this paper attempted to study the characteristics of dust diffusion at transshipment point and the foam-sol foaming device with diffusion outlet was also designed in this paper. To study the diffusion rules of coal dust, fluent discrete phase model was utilized in the numerical simulation, as the coal dust was thrown down at a horizontal velocity of 2.5 m/s. A foam-sol foaming device was designed, through which foaming agent could be auto-matically sucked into the Venturi by the negative pressure. The automatic controller was also equipped, which could transform the energy of the compressed air into the constant pressure difference so that the gelling agent could be qualitatively added into the gel container. The diffusion outlet that could spray out foam-sol in a continuous, conical and 3D manner was also designed. Moreover, this paper also carried out the contrast experiments on dust removal efficiency among water, aqueous foam and foam-sol. The results clearly show that the symmetrical whirlpools appeared below the inlet where the largest whirl-pool diameter was 0.52 m, and the horizontal distance from swirl range to the inlet was approximately 0.69 m. By using the self-designed foaming device, the foaming was multiplied by 30 times and the vol-ume ratio with water and foaming agent reached 95%:5%. In this context, the gas pressure was controlled at 0.3 MPa, with gas flow at 15 m3/h and water flow at 0.5 m3/h, with water pressure controlled between 0.34 and 0.36 MPa. The foam-sol has the highest dust removal efficiency than other agents.

  9. Foam Microrheology

    Energy Technology Data Exchange (ETDEWEB)

    KRAYNIK,ANDREW M.; LOEWENBERG,MICHAEL; REINELT,DOUGLAS A.

    1999-09-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams.

  10. Discrete Particle Model for Porous Media Flow using OpenFOAM at Intel Xeon Phi Coprocessors

    Science.gov (United States)

    Shang, Zhi; Nandakumar, Krishnaswamy; Liu, Honggao; Tyagi, Mayank; Lupo, James A.; Thompson, Karten

    2015-11-01

    The discrete particle model (DPM) in OpenFOAM was used to study the turbulent solid particle suspension flows through the porous media of a natural dual-permeability rock. The 2D and 3D pore geometries of the porous media were generated by sphere packing with the radius ratio of 3. The porosity is about 38% same as the natural dual-permeability rock. In the 2D case, the mesh cells reach 5 million with 1 million solid particles and in the 3D case, the mesh cells are above 10 million with 5 million solid particles. The solid particles are distributed by Gaussian distribution from 20 μm to 180 μm with expectation as 100 μm. Through the numerical simulations, not only was the HPC studied using Intel Xeon Phi Coprocessors but also the flow behaviors of large scale solid suspension flows in porous media were studied. The authors would like to thank the support by IPCC@LSU-Intel Parallel Computing Center (LSU # Y1SY1-1) and the HPC resources at Louisiana State University (http://www.hpc.lsu.edu).

  11. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Réthoré, Pierre-Elouan; Bechmann, Andreas;

    2016-01-01

    The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k– turbulence model. One of the main modeling differences...... between the two solvers is the wall-function approach. The Open-FOAM v.1.7.1 uses a Nikuradse’s sand roughness model, while EllipSys3D uses a model based on the atmospheric roughness length. It is found that Nikuradse’s model introduces an error dependent on the near-wall cell height. To mitigate...... this error the near-wall cells should be at least 10 times larger than the surface roughness. It is nonetheless possible to obtain very similar results between EllipSys3D and OpenFOAM v.1.7.1. The more recent OpenFOAM v.2.2.1, which includes the atmospheric roughness length wall-function approach, has also...

  12. Laser driven supersonic flow over a compressible foam surface on the Nike lasera)

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.

    2010-05-01

    A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.

  13. Effects of strain rate and elevated temperature on compressive flow stress and absorbed energy of polyimide foam

    Directory of Open Access Journals (Sweden)

    Horikawa K.

    2012-08-01

    Full Text Available In this study, at first, the effect of strain rate on the strength and the absorbed energy of polyimide foam was experimentally examined by carrying out a series of compression tests at various strain rates, from 10−3 to 103 s−1. This polyimide foam has open cell structure with small cell size of 0.3 ∼ 0.6 mm. In the measurement of impact load, a special load cell with a small part for sensing load was adopted. For the measurement of the displacement, a high-speed camera was used. It was found that the flow stress of polyimide foam and the absorbed energy up to a strain of 0.4 increased with the increase of the strain rates. Secondly, the effect of ambient temperature on the strength and absorbed energy of polyimide foam was also investigated by using a sprit Hopkinson pressure bar apparatus and testing at elevated temperatures of 100 and 200 ∘C. With the increase of temperature, the strength and absorbed energy decreased and the effect is smaller in dynamic tests than static tests.

  14. Effect of mesocelluar carbon foam electrode material on performance of vanadium redox flow battery

    Science.gov (United States)

    Jeong, Sanghyun; An, Sunhyung; Jeong, Jooyoung; Lee, Jinwoo; Kwon, Yongchai

    2015-03-01

    Languid reaction rate of VO2+/VO2+ redox couple is a problem to solve for improving performance of vanadium redox flow battery (VRFB). To facilitate the slow reaction materials including large pore sized mesocellular carbon foam (MSU-F-C and Pt/MSU-F-C) are used as new catalyst. Their catalytic activity and reaction reversibility are estimated and compared with other catalysts, while cycle tests of charge-discharge and polarization curve tests are implemented to evaluate energy efficiency (EE) and maximum power density (MPD). Their crystal structure, specific surface area and catalyst morphology are measured by XRD, BET and TEM. The new catalysts indicate high peak current ratio, small peak potential difference and high electron transfer rate constant, proving that their catalytic activity and reaction reversibility are superior. Regarding the charge-discharge and polarization curve tests, the VRFB single cells including new catalysts show high EE as well as low overpotential and internal resistance and high MPD. Such excellent results are due to mostly unique characteristics of MSU-F-C having large interconnected mesopores, high surface area and large contents of hydroxyl groups that serve as active sites for VO2+/VO2+ redox reaction and platinums (Pts) supporting the MSU-F-C. Indeed, employment of the catalysts including MSU-F-C leads to enhancement in performance of VRFB by facilitating the slow VO2+/VO2+ redox reaction.

  15. A metal-free organic-inorganic aqueous flow battery

    Science.gov (United States)

    Huskinson, Brian; Marshak, Michael P.; Suh, Changwon; Er, Süleyman; Gerhardt, Michael R.; Galvin, Cooper J.; Chen, Xudong; Aspuru-Guzik, Alán; Gordon, Roy G.; Aziz, Michael J.

    2014-01-01

    As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br- redox couple, yields a peak galvanic power density exceeding 0.6Wcm-2 at 1.3Acm-2. Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and

  16. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  17. Foam process models.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  18. Reduction of 5in./54 Gun Blast Overpressure by Means of an Aqueous Foam- Filled Muzzle Device

    Science.gov (United States)

    1981-08-01

    W. Shea S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Naval Surface Weapons Center AREA & WORK UNIT NUMUERS Code N43...more than 15 dB was attained. Containment of the foam in a muzzle-mounted canister was investigated. This report addresses related areas of gun...the internal pressure distribucion could be established and in- formation could be provided about the strength requirement of the device. Pres- sure

  19. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport

    Science.gov (United States)

    Sun, Rui; Xiao, Heng

    2016-04-01

    With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.

  20. Surfactant monitoring by foam generation

    Science.gov (United States)

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  1. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Pecci, Raffaella; Bedini, Rossella; Dentini, Mariella

    2013-01-08

    In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.

  2. Foam Cushioning

    Science.gov (United States)

    1988-01-01

    One innovation developed by a contractor at Ames Research Center was an open cell polymeric foam material with unusual properties. Intended as padding for aircraft seats the material offered better impact protection against accidents, and also enhanced passenger comfort because it distributed body weight evenly over the entire contact area. Called a slow springback foam, it flows to match the contour of the body pressing against it, and returns to its original shape once the pressure is removed. It has many applications including aircraft cushions and padding, dental stools, and athletic equipment. Now it's used by Dynamic Systems, Inc. for medical applications such as wheel chairs for severely disabled people which allow them to sit for 3-8 hours where they used to be uncomfortable in 15-30 minutes.

  3. Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    Franziska Greifzu

    2016-01-01

    Full Text Available In the present study two benchmark problems for turbulent dispersed particle-laden flow are investigated with computational fluid dynamics (CFD. How the CFD programs OpenFOAM and ANSYS FLUENT model these flows is tested and compared. The numerical results obtained with Lagrangian–Eulerian (LE point-particle (PP models for Reynolds-averaged Navier–Stokes (RANS simulations of the fluid flow in steady state and transient modes are compared with the experimental data available in the literature. The effect of the dispersion model on the particle motion is investigated in particular, as well as the order of coupling between the continuous carrier phase and the dispersed phase. First, a backward-facing step (BFS case is validated. As a second case, the confined bluff body (CBB is used. The simulated fluid flows correspond well with the experimental data for both test cases. The results for the dispersed solid phase reveal a good accordance between the simulation results and the experiments. It seems that particle dispersion is slightly under-predicted when ANSYS FLUENT is used, whereas the applied solver in OpenFOAM overestimates the dispersion somewhat. Only minor differences between the coupling schemes are detected due to the low volume fractions and mass loadings that are investigated. In the BFS test case the importance of the spatial dimension of the numerical model is demonstrated. Even if it is reasonable to assume a two-dimensional fluid flow structure, it is crucial to simulate the turbulent particle-laden flow with a three-dimensional model since the turbulent dispersion of the particles is three-dimensional.

  4. Numerical study of metal foam heat sinks under uniform impinging flow

    Science.gov (United States)

    Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.

  5. Experimental investigation on the rheology of foams

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, L. F. [Univ. Surcolombiana, Neiva, Huila (Colombia); Shah, S. N. [Oklahoma Univ., Norman, OK (United States)

    2000-07-01

    The rheology of foams was investigated using aqueous and gelled foams and employing a pipe-type viscometer. Surfactant at 0.5 per cent concentration was used as the foaming agent. Results indicated that foam fluid rheology can be adequately characterized by the Herschel-Bulkley model. The experimental data served as the starting point for the development of new empirical correlations to predict foam fluid apparent viscosity. The use of these new correlations is expected to provide more accurate estimates of foam fluid rheological properties. 14 refs., 5 tabs., 14 figs.

  6. Numerical modeling of first experiments on PbLi MHD flows in a rectangular duct with foam-based SiC flow channel insert

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, S., E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles (United States); Courtessole, C.; Abdou, M.; Sharafat, S. [University of California, Los Angeles (United States); Sahu, S. [Institute of Plasma Research (India); Sketchley, T. [University of California, Los Angeles (United States)

    2016-10-15

    Highlights: • Numerical studies were performed as a pre-experimental analysis to the experiment on MHD PbLi flows in a rectangular duct with a flow channel insert (FCI). • Dynamic testing of foam-based SiC foam-based CVD coated FCI has been performed using MaPLE facility at UCLA. • Two physical models were proposed to explain the experimental results and 3D and 2D computations performed using COMSOL, HIMAG and UCLA codes. • The obtained results suggest that more work on FCI development, fabrication and testing has to be done to assure good hermetic properties before the implementation in a fusion device. - Abstract: A flow channel insert (FCI) is the key element of the DCLL blanket concept. The FCI serves as electrical and thermal insulator to reduce the MHD pressure drop and to decouple the temperature-limited ferritic structure from the flowing hot lead-lithium (PbLi) alloy. The main focus of the paper is on numerical computations to simulate MHD flows in the first experiments on PbLi flows in a stainless steel rectangular duct with a foam-based silicon carbide (SiC) FCI. A single uninterrupted long-term (∼6500 h) test has recently been performed on a CVD coated FCI sample in the flowing PbLi in a magnetic field up to 1.5 T at the PbLi temperature of 300 °C using the MaPLE loop at UCLA. An unexpectedly high MHD pressure drop measured in this experiment suggests that a PbLi ingress into the FCI occurred in the course of the experiment, resulting in degradation of electroinsulating FCI properties. The ingress through the protective CVD layer was further confirmed by the post-experimental microscopic analysis of the FCI. The numerical modeling included 2D and 3D computations using HIMAG, COMSOL and a UCLA research code to address important flow features associated with the FCI finite length, fringing magnetic field, rounded FCI corners and also to predict changes in the MHD pressure drop in the unwanted event of a PbLi ingress. Two physical

  7. Adding Complex Terrain and Stable Atmospheric Condition Capability to the OpenFOAM-based Flow Solver of the Simulator for On/Offshore Wind Farm Applications (SOWFA): Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M. J.; Sang, L.; Moriarty, P. J.

    2013-09-01

    This paper describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver such that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with somepreliminary results calculations of a stable atmospheric boundary layer and flow over a simply set of hills.

  8. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  9. Mechanical Characterization of Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  10. 熔体流动速率对微孔发泡的影响%The effect of microcellular foams from melt flow rate

    Institute of Scientific and Technical Information of China (English)

    高晓晨

    2015-01-01

    This paper discusses the different melt flow rate of microporous polypropylene foam research, using home-made foam masterbatches Foaming agents after the Second Injection Molding Process standards as a "dumbbell" sample of its conventional mechanical properties, density measurement, and the scanning electron microscope to observe the different melt flow rate of microporous polypropylene fired the bubble hole size and distribution of Study of the matrix melt flow rate and porous foam relations.%本文对不同熔体流动速率的聚丙烯进行了微孔发泡的研究,用自制的发泡母粒,发泡助剂经过二次开模工艺注塑成标准“哑铃”样条,对其常规力学性能,密度进行了测试,并在扫描电镜下观察了不同熔体流动速率的聚丙烯微孔发炮的泡孔尺寸及分布情况,研究了基体熔体流动速率与微孔发泡的关系。

  11. SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport

    CERN Document Server

    Sun, Rui

    2016-01-01

    With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport a...

  12. The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: physiological and transcriptomic effects of two Forafac(®) fluorosurfactants in turbot.

    Science.gov (United States)

    Hagenaars, A; Meyer, I J; Herzke, D; Pardo, B G; Martinez, P; Pabon, M; De Coen, W; Knapen, D

    2011-08-01

    Fluorosurfactants are the key components in aqueous film forming foams (AFFF). They provide these fire fighting agents with the required low surface tension and they enable film formation on top of lighter fuels to prevent burn back. Development of effective and environmentally acceptable PFOS alternatives is one of the most important priorities in the fire fighting foam industry. DuPont™ offers the fluorosurfactant mixtures Forafac(®)1157 and Forafac(®)1157N for the formulation of AFFFs which are alternatives to the persistent and toxic perfluorooctane sulphonate (PFOS). Ecotoxicological testing of these inadequately documented mixtures is necessary to include them in AFFF hazard and risk assessment. Juvenile turbot (Scophthalmus maximus) were exposed for 14 days to 0.1; 0.5 and 1.5mg/L of the fluorosurfactant mixtures used in Forafac(®)1157 and Forafac(®)1157N. In an initial transcriptomics experiment, microarray analysis revealed differentially expressed transcripts of genes which were mainly involved in digestion and in the immune system. This discovery-driven screening approach offered the basis for new hypotheses that were tested in two subsequent experiments in which food intake, energy reserves, growth and a set of haematological parameters were examined. Additionally, effects of the two mixtures were compared to those of PFOS. Based on the results of this study, the mode of action of Forafac(®)1157N was the activation of the acute phase reaction resulting in increased leukocyte concentrations and the inhibition of growth due to the high energetic cost of toxicant exposure. For Forafac(®)1157, evidences of immunosuppression were found on the transcriptional level and the altered differential leukocyte profiles indicated that stress was induced in these fish. However, food intake, energy reserves and growth were not compromised, even at high exposure concentrations, which was in contrast to the effects seen after PFOS exposure. Taking into account

  13. Flow pattern and void fraction distribution measurements during ebullition of weakly foaming two-hase mixtures by using conductivity probes; Ermittlung der Stroemungsform und der Dampfgehaltverteilung bei dem Aufwallen von schwach schaeumenden Zweiphasengemischen mit Hilfe von Leitfaehigkeitsonden

    Energy Technology Data Exchange (ETDEWEB)

    Friedel, L. [Technische Univ. Hamburg-Harburg (Germany); Prasser, H.M. [Forschungszentrum Rossendorf (Germany); Schecker, J. [Airbus Deutschland GmbH, Hamburg (Germany)

    2006-02-15

    On account of recalculating pressure relief experiments with foaming systems by using multiphysics codes regularly as level swell submodel bubble flow is considered since this conforms best with the impression. On the basis of measurements of the void fraction during venting of non-foaming as well as weakly foaming, isobutanolic hot water it will be demonstrated that actually a so called homogeneous bubble flow in the form as described in the level swell model bubbly flow by DIERS for use in dynamic simulations of venting establishes. (orig.)

  14. Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology

    Science.gov (United States)

    2003-01-01

    where floating sludge is removed via a skimming system into the overflow/sludge tank. The clarified water flows over a weir into a clearwell , which...pump - Operation / Maintenance Manual - Recirculation / clearwell discharge pump - 1 Week on-site start up training - Chemical tanks (3) 29 5.3 COST

  15. Experimental investigation of foam spread and extinguishment of the large-scale methanol pool fire.

    Science.gov (United States)

    Zhang, Qinglin; Wang, Lu; Bi, Yixing; Xu, Dajun; Zhi, Huiqiang; Qiu, Peifang

    2015-04-28

    A steel channel with the size of 30m×2 m×1.2m has been made to simulate the full surface fire of a 50,000m(3) methanol tank. Several large-scale methanol fire extinguishment experiments have been conducted under different foam application rates and foam concentrations in order to investigate the flow length, flow velocity and fire extinguishing effectiveness of the alcohol-resistant foam. The result showed that the alcohol-resistant aqueous film forming foam (AFFF/AR) and alcohol-resistant fluoro-protein foam (FP/AR) could flow beyond 30m on the burning methanol surface and extinguish the fire successfully even with the foam application rate of 4Lmin(-1)m(-2). Under the same condition, the fire extinguishing performance of AFFF/AR was better than FP/AR, and the flow velocity of AFFF/AR on the burning methanol surface was 0.203ms(-1), while the value of FP/AR was 0.082ms(-1).

  16. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.

    Science.gov (United States)

    Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L

    2016-01-20

    In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles.

  17. Removal of biological stains from aqueous solution using a flow-through decontamination procedure.

    Science.gov (United States)

    Lunn, G; Klausmeyer, P J; Sansone, E B

    1994-01-01

    Chromatography columns filled with Amberlite XAD-16 were used to decontaminate, using a continuous flow-through procedure, aqueous solutions of the following biological stains: acridine orange, alcian blue 8GX, alizarin red S, azure A, azure B, brilliant blue G, brilliant blue R, Congo red, cresyl violet acetate, crystal violet, eosin B, eosin Y, erythrosin B, ethidium bromide, Giemsa stain, Janus green B, methylene blue, neutral red, nigrosin, orcein, propidium iodide, rose Bengal, safranine O, toluidine blue O, and trypan blue. Adsorption was most efficient for stains of lower molecular weight (removing stains from aqueous solution.

  18. Analysis on Experimental Investigation and Mathematical Modeling of Incompressible Flow Through Ceramic Foam Filters

    Science.gov (United States)

    Akbarnejad, Shahin; Jonsson, Lage Tord Ingemar; Kennedy, Mark William; Aune, Ragnhild Elizabeth; Jönsson, Pӓr Göran

    2016-08-01

    This paper presents experimental results of pressure drop measurements on 30, 50, and 80 pores per inch (PPI) commercial alumina ceramic foam filters (CFF) and compares the obtained pressure drop profiles to numerically modeled values. In addition, it is aimed at investigating the adequacy of the mathematical correlations used in the analytical and the computational fluid dynamics (CFD) simulations. It is shown that the widely used correlations for predicting pressure drop in porous media continuously under-predict the experimentally obtained pressure drop profiles. For analytical predictions, the negative deviations from the experimentally obtained pressure drop using the unmodified Ergun and Dietrich equations could be as high as 95 and 74 pct, respectively. For the CFD predictions, the deviation to experimental results is in the range of 84.3 to 88.5 pct depending on filter PPI. Better results can be achieved by applying the Forchheimer second-order drag term instead of the Brinkman-Forchheimer drag term. Thus, the final deviation of the CFD model estimates lie in the range of 0.3 to 5.5 pct compared to the measured values.

  19. Adding complex terrain and stable atmospheric condition capability to the OpenFOAM-based flow solver of the simulator for on/offshore wind farm applications (SOWFA

    Directory of Open Access Journals (Sweden)

    Churchfield Matthew J.

    2014-01-01

    Full Text Available The National Renewable Energy Laboratory's Simulator for On/Offshore Wind Farm Applications contains an OpenFOAM-based flow solver for performing large-eddy simulation of flow through wind plants. The solver computes the atmospheric boundary layer flow and models turbines with actuator lines. Until recently, the solver was limited to flows over flat terrain and could only use the standard Smagorinsky subgrid-scale model. In this work, we present our improvements to the flow solver that enable us to 1 use any OpenFOAM-standard subgrid-scale model and 2 simulate flow over complex terrain. We used the flow solver to compute a stably stratified atmospheric boundary layer using both the standard and the Lagrangian-averaged scale-independent dynamic Smagorinsky models. Surprisingly, the results using the standard Smagorinsky model compare well to other researchers' results of the same case, although it is often said that the standard Smagorinsky model is too dissipative for accurate stable stratification calculations. The scale-independent dynamic subgrid-scale model produced poor results, probably due to the spikes in model constant with values as high as 4.6. We applied a simple bounding of the model constant to remove these spikes, which caused the model to produce results much more in line with other researchers' results. We also computed flow over a simple hilly terrain and performed some basic qualitative analysis to verify the proper operation of the terrain-local surface stress model we employed.

  20. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  1. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  2. Parameters affect foaming and foam stability during foam drilling

    Institute of Scientific and Technical Information of China (English)

    Hazaea Mohammed; Youhong SUN; Ould El Houssein Yarbana

    2007-01-01

    The authors presented indoor practice experiments of parameters affect on foaming and foam stability. Experiments were carried out and special equipments were used to determine foaming and foam stability; tests were tabulated and charted. The effects of chemical and physical parameters on foaming and foam stability have been conducted.

  3. Development of Defoamers for Confinenment Foam

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D M; Mitchell, A R

    2005-08-10

    Aqueous foam concentrate (AFC) 380 foam was developed by Sandia National Laboratory as a blast mitigation foam for unexploded ordnance (UXO) and its ''engineered foam structure'' is reported to be able to ''envelop chemical or biological aerosols'' [1]. It is similar to commercial fire-fighting foams, consisting mostly of water with small amounts of two alcohols, an ether and surfactant. It also contains xanthan gum, probably, to strengthen the foam film and delay drainage. The concentrate is normally diluted in a 6:94 ratio with water for foaming applications. The diluted solution is normally foamed with air to an expansion factor of about 100 (density 0.01 g/cc), which is called ''dry'' foam. Higher density foam (0.18 > {rho} > 0.03 g/cc) was discovered which had quite different characteristics from ''dry'' foam and was called ''wet'' foam. Some characterization of these foams has also been carried out, but the major effort described in this document is the evaluation, at the small and medium scale, of chemical, mechanical and thermal approaches to defoaming AFC 380 foam. Several chemical approaches to defoaming were evaluated including oxidation and precipitation of the xanthan, use of commercial oil-emulsion or suspension defoamers, pH modification, and cation exchange with the surfactant. Of these the commercial defoamers were most effective. Two mechanical approaches to defoaming were evaluated: pressure and foam rupture with very fine particles. Pressure and vacuum techniques were considered too difficult for field applications but high surface area silica particles worked very well on dry foam. Finally simple thermal techniques were evaluated. An order-disorder transition occurs in xanthan solutions at about 60 C, which may be responsible for the effectiveness of hot air as a defoamer. During defoaming of 55 gallons of foam with hot air, after about 70% of

  4. Foaming properties of guar foaming albumin

    OpenAIRE

    細見, 典子; Hosomi, Noriko; 原田, 麻子; Harada, Asako; 下山, 亜美; Shimoyama, Ami; 土居, 幸雄; Doi, Yukio

    2009-01-01

    From guar meal we recently isolated an albumin fraction with a high foaming ability, named guar foaming albumin (GFA) . Here, we further characterized the foaming activity, foam stability and surface tension of GFA solutions. Foaming activity and foam stability were estimated by measuring the conductivity of foam using a glass column with a conductivity cell. Surface tension was measured by the drop weight method using a stalagmometer. GFA showed higher foaming activity than casein at any pro...

  5. Preparation of Nanostructured Microporous Metal Foams through Flow Induced Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2015-01-01

    Full Text Available Monolithic nanostructured metallic porous structures with a hierarchy of pore size ranging from ca. 10 μm to 1 nm are processed for use as microreactors. The technique is based on flow induced electroless deposition of metals on a porous template known as PolyHIPE Polymer. The process is conducted in a purpose built flow reactor using a processing protocol to allow uniform and efficient metal deposition under flow. Nickel chloride and sodium hypophosphite were used as the metal and reducing agent, respectively. Electroless deposition occurs in the form of grains with a composition of NixPy in which the grain size range was ca. 20–0.2 μm depending on the composition of the metal deposition solution. Structure formation in the monoliths starts with heat treatment above 600°C resulting in the formation of a 3-dimensional network of capillary-like porous structures which form the walls of large arterial pores. These monoliths have a dense but porous surface providing mechanical strength for the monolith. The porous capillary-like arterial pore walls provide a large surface area for any catalytic activity. The mechanisms of metal deposition and nanostructure formation are evaluated using scanning electron microscopy, energy dispersive X-ray analysis, XRD, BET-surface area, and mercury intrusion porosimetry.

  6. Spin foams

    CERN Document Server

    Engle, Jonathan

    2013-01-01

    The spin foam framework provides a way to define the dynamics of canonical loop quantum gravity in a spacetime covariant way, by using a path integral over histories of quantum states which can be interpreted as `quantum space-times'. This chapter provides a basic introduction to spin foams aimed principally at beginning graduate students and, where possible, at broader audiences.

  7. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.

    Science.gov (United States)

    Long, Xuwei; Shen, Chong; He, Ni; Zhang, Guoliang; Meng, Qin

    2017-01-01

    In this study, a stop valve was used as a foam breaker for dealing with the massive overflowing foam in rhamnolipid fermentation. As found, a stop valve at its tiny opening could break over 90% of the extremely stable rhamnolipid foam into enriched liquid when foam flows through the sharp gap in valve. The efficient foam-control by the stop valve considerably improved the rhamnolipid fermentation and significantly enhanced the rhamnolipid productivity by 83% compared to the regular fermentation. This efficient foam breaking was mainly achieved by a high shear rate in combination with fast separation of air from the collapsed foam. Altogether, the stop valve possessed a great activity in breaking rhamnolipid foam, and the involving mechanism holds the potential for developing efficient foam breakers for industrial rhamnolipid fermentation.

  8. In Vivo Evaluation of Hydroxyapatite Foams

    Directory of Open Access Journals (Sweden)

    P. Sepulveda

    2002-09-01

    Full Text Available Porous hydroxyapatite manufactured by foaming of aqueous ceramic suspensions and setting via gelcasting of organic monomers was tested for in vivo biocompatibility in rabbit tibia for a period of 8 weeks. The foams provide tortous frameworks and large interconnected pores that support cell attachment and organisation into 3D arrays to form new tissue. The HA foam implants were progressively filled with mature new bone tissue and osteoid after the implanted period, confirming the high osteoconductive potential and high biocompatibility of HA and the suitability of foam network in providing good osteointegration. No immune or inflammatory reactions were detected.

  9. Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.

  10. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative.

  11. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  12. 泡沫分离水溶液中硫酸铜和曙红Y色素工艺研究%Study on removal of copper sulfate and eosin Y in aqueous solution using foam separation

    Institute of Scientific and Technical Information of China (English)

    王烨; 吴兆亮; 吴心蕊; 隋立鹏

    2011-01-01

    In this work, dodecylbenzenesulphonicacid (DBSA) and (1-Hexadecyl) trimethyl ammonium hydroxide (CTAOH) were used as surfactants for studying removal of CuSO4 and eosin Y from aqueous solution by foam separation.The processes of desalination and decolorization were integrated as one process. The effects of surfactants concentration,pH, gas flow rate, loading volume on the removal percentage and the enrichment ratio were studied. Under the optimized conditions, the removal percentages of Cu2+, SO24- and eosin Y were 97.2%, 91.2% and 95.1%, respectively; the enrichment ratios of Cu2+, SO24- and eosin Y were 10.8, 7.4 and 8.5, respectively. The results indicated that the method has been proved to be effective for desalination and decolorization without introducing new ions by adding DBSA and CTAOH into aqueous solution.%对泡沫分离法除去水溶液中微量硫酸铜及曙红Y的工艺进行研究,以十二烷基苯磺酸(DBSA)和十六烷基三甲基氢氧化铵(CTAOH)作为表面活性物质研究除去水溶液中的硫酸铜及色素曙红Y,将脱盐和脱色有机的结合在一起.考察了表面活性剂浓度、pH、气速和装液量对分离效果的影响.确定了最佳操作工艺,在DBSA浓度0.23g/L,CTAOH浓度0.12g/L,pH5/pH6;气速150mL/min,装液量300mL时,Cu2+的去除率为97.2%,富集比为10.8;SO2-4的去除率为91.2%,富集比为7.4;曙红Y的去除率为95.1%,富集比为8.5.实验结果说明,通过先后加入DBSA和CTAOH两种活性剂,实现了盐离子和色素的同时去除,且泡沫分离过程结束不会引入新的盐离子解决了离子残留问题,脱盐脱色获得了良好的效果.

  13. Maximizing the power density of aqueous electrochemical flow cells with in operando deposition

    Science.gov (United States)

    Goulet, Marc-Antoni; Ibrahim, Omar A.; Kim, Will H. J.; Kjeang, Erik

    2017-01-01

    To transition toward sustainable energy systems, next generation power sources must provide high power density at minimum cost. Using inexpensive and environmentally friendly fabrication methods, this work describes a room temperature electrochemical flow cell with a maximum power density of 2.01 W cm-2 or 13.4 W cm-3. In part, this is achieved by minimizing ohmic resistance through decreased electrode spacing, implementation of current collectors and improvement of electrolyte conductivity. The majority of the performance gain is provided by a novel in operando dynamic flowing deposition method for which the cell design has been optimized. Carbon nanotubes (CNTs) are deposited dynamically at the entrance of and within the carbon paper electrodes during operation of the cell. A natural equilibrium is reached between deposition and detachment of CNTs at which the electrochemical surface area and pore size distribution of the flow-through porous electrodes are greatly enhanced. In this way, the novel deposition method more than doubles the power density of the cell and sets a new performance benchmark for what is practically attainable with aqueous electrochemical flow cells. Overall, it is expected that the design and operation methods illustrated here will enable a wide range of electrochemical flow cell technologies to achieve optimal performance.

  14. Description and performance of a novel aqueous all-copper redox flow battery

    Science.gov (United States)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Kontturi, Kyösti

    2014-12-01

    In this paper we present a novel aqueous redox flow battery chemistry based on copper chloro complexes. The energy density (20 Wh L-1) achieved is comparable to traditional vanadium redox flow batteries. This is due to the high solubility of copper (3 M), which offsets the relatively low cell potential (0.6 V). The electrolyte is cheap, simple to prepare and easy to recycle since no additives or catalysts are used. The stack used is based on plain graphite electrode materials and a low-cost microporous separator. The system can be operated at 60 °C eliminating the need for a heat exchanger and delivers an energy efficiency of 93, 86 and 74% at 5, 10 and 20 mA cm-2 respectively.

  15. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  16. New Flexible FR Polyurethane Foams for Energy Absorption Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of new polyurethane (PU) insulation foams through a non-toxic environmentally friendly composite approach. Target FR foams will exhibit high heat flow...

  17. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Mehmet A., E-mail: mehmet.sen@mathworks.com [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Kowalski, Gregory J., E-mail: gkowal@coe.neu.edu [Northeastern University, Department of Mechanical and Industrial Engineering, 360 Hungtington Avenue, 334 Snell Engineering Center, Boston, MA 02115 (United States); Fiering, Jason, E-mail: jfiering@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States); Larson, Dale, E-mail: dlarson@draper.com [Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139 (United States)

    2015-03-10

    Highlights: • A co-flow microreactor is modeled in flow, reaction/diffusion, and thermal domains. • Analysis shows how arrayed temperature sensors can provide enthalpy of reaction. • Optical plasmonic temperature sensors could be arrayed suitably for calorimetry. • The reactor studied has a volume of 25 nL. - Abstract: A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier–Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.

  18. Critical transport issues for improving the performance of aqueous redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2017-01-01

    As the fraction of electricity generated from intermittent renewable sources (such as solar and wind) grows, developing reliable energy storage technologies to store electrical energy in large scale is of increasing importance. Redox flow batteries are now enjoying a renaissance and regarded as a leading technology in providing a well-balanced solution for current daunting challenges. In this article, state-of-the-art studies of the complex multicomponent transport phenomena in aqueous redox flow batteries, with a special emphasis on all-vanadium redox flow batteries, are reviewed and summarized. Rather than elaborating on the details of previous experimental and numerical investigations, this article highlights: i) the key transport issues in each battery's component that need to be tackled so that the rate capability and cycling stability of flow batteries can be significantly improved, ii) the basic mechanisms that control the active species/ion/electron transport behaviors in each battery's component, and iii) the key experimental and numerical findings regarding the correlations between the multicomponent transport processes and battery performance.

  19. Molecular dynamics simulation of the electrokinetic flow of an aqueous electrolyte solution in nanochannels

    CERN Document Server

    Yoshida, Hiroaki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-01-01

    Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics (MD) simulations. The four transport coefficients that characterise the response to weak electric and pressure fields, namely the coefficients for the electrical current in response to the electric field ($M^{jj}$) and the pressure field ($M^{jm}$), and those for the mass flow in response to the same fields ($M^{mj}$ and $M^{mm}$), are obtained in the linear regime using a Green-Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsager's reciprocal relation ($M^{jm} = M^{mj}$) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the trans- port coefficients are found to be smaller for larger surface charge density, be...

  20. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  1. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    Science.gov (United States)

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  2. Drag-Reducing Agent for Aqueous Liquid Flowing in Turbulent Mode through Pipelines

    Directory of Open Access Journals (Sweden)

    Zainab Y. Shnain

    2014-06-01

    Full Text Available In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experimental piping rig was used to study the DR properties of the mucilage on water under the effect of varying pipe dimensions and mucilage concentrations. It is shown that these additives can dramatically reduce friction drag provided that the flow is occurring under turbulent conditions. Experimental results also show that DR increases when the mucilage concentration increases.

  3. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.

    Science.gov (United States)

    Alzobaidi, Shehab; Da, Chang; Tran, Vu; Prodanović, Maša; Johnston, Keith P

    2017-02-15

    Ultralow water content carbon dioxide-in-water (C/W) foams with gas phase volume fractions (ϕ) above 0.95 (that is foams may be stabilized with viscoelastic aqueous phases formed with a single zwitterionic surfactant at a concentration of only 1% (w/v) in DI water and over a wide range of salinity. Moreover, they are stable with a foam quality ϕ up to 0.98 even for temperatures up to 120°C. The properties of aqueous viscoelastic solutions and foams containing these solutions are examined for a series of zwitterionic amidopropylcarbobetaines, R-ONHC3H6N(CH3)2CH2CO2, where R is varied from C12-14 (coco) to C18 (oleyl) to C22 (erucyl). For the surfactants with long C18 and C22 tails, the relaxation times from complex rheology indicate the presence of viscoelastic wormlike micelles over a wide range in salinity and pH, given the high surfactant packing fraction. The apparent viscosities of these ultralow water content foams reached more than 120cP with stabilities more than 30-fold over those for foams formed with the non-viscoelastic C12-14 surfactant. At 90°C, the foam morphology was composed of ∼35μm diameter bubbles with a polyhedral texture. The apparent foam viscosity typically increased with ϕ and then dropped at ϕ values higher than 0.95-0.98. The Ostwald ripening rate was slower for foams with viscoelastic versus non-viscoelastic lamellae as shown by optical microscopy, as a consequence of slower lamellar drainage rates. The ability to achieve high stabilities for ultralow water content C/W foams over a wide temperature range is of interest in various technologies including polymer and materials science, CO2 enhanced oil recovery, CO2 sequestration (by greater control of the CO2 flow patterns), and possibly even hydraulic fracturing with minimal use of water to reduce the requirements for wastewater disposal.

  4. Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems

    Directory of Open Access Journals (Sweden)

    Vijay Sodhi

    2011-11-01

    Full Text Available An experimental investigation was carried out to determine the effects of gas and liquid flow velocities and surface tension on the two-phase phase pressure drop a in a downflow trickle bed reactor. Water and non- Newtonian foaming solutions were employed as liquid phase. More than 240 experimental points for the trickle flow (GCF and foaming pulsing flow (PF/FPF regime were obtained for present study. Hydrodynamic characteristics involving two-phase pressure drop significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, two-phase pressure drop increases with higher liquid and gas flow velocities in trickle flow and foaming/pulsing flow regimes. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, two-phase pressure drop increases very sharply during change in regime transition at significantly low liquid and gas velocities. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 14th March 2011, Revised: 29th June 2011; Accepted: 4th July 2011[How to Cite: V. Sodhi, and R. Gupta. (2011. Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2: 115-122. doi:10.9767/bcrec.6.2.828.115-122][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.828.115-122 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/828 ] | View in 

  5. A continuous flow microfluidic calorimeter: 3-D numerical modeling with aqueous reactants.

    Science.gov (United States)

    Sen, Mehmet A; Kowalski, Gregory J; Fiering, Jason; Larson, Dale

    2015-03-10

    A computational analysis of the reacting flow field, species diffusion and heat transfer processes with thermal boundary layer effects in a microchannel reactor with a coflow configuration was performed. Two parallel adjacent streams of aqueous reactants flow along a wide, shallow, enclosed channel in contact with a substrate, which is affixed to a temperature controlled plate. The Fluent computational fluid dynamics package solved the Navier-Stokes, mass transport and energy equations. The energy model, including the enthalpy of reaction as a nonuniform heat source, was validated by calculating the energy balance at several control volumes in the microchannel. Analysis reveals that the temperature is nearly uniform across the channel thickness, in the direction normal to the substrate surface; hence, measurements made by sensors at or near the surface are representative of the average temperature. Additionally, modeling the channel with a glass substrate and a silicone cover shows that heat transfer is predominantly due to the glass substrate. Finally, using the numerical results, we suggest that a microcalorimeter could be based on this configuration, and that temperature sensors such as optical nanohole array sensors could have sufficient spatial resolution to determine enthalpy of reaction.

  6. A chemiluminescence-based continuous flow aqueous ozone analyzer using photoactivated chromotropic acid.

    Science.gov (United States)

    Takayanagi, Toshio; Dasgupta, Purnendu K

    2005-05-15

    Ozone has become the oxidant of choice for water disinfection, especially in large water treatment facilities. This paper describes a fast and sensitive method for the determination of ozone content by reaction with photoactivated chromotropic acid (CA, 4,5-dihydroxynaphthalene-2,7-disulfonic acid), which results in intense chemiluminescence (CL). Freshly ozonated water from a recirculating ozonizer/reservoir is injected into a carrier stream of deionized water in the flow-injection mode. This flow mixes with a stream of photoactivated CA solution in a spiral cell placed directly on top of an inexpensive miniature (8mm diameter active area) photomultiplier tube (PMT). Alkaline CA is photoactivated by passing it through a FEP-Teflon((R)) coil (residence time approximately 50s) wrapped around a 1W UV lamp emitting at 254nm; without photoactivation, the signal is approximately 70-fold lower. The S/N=3 limit of detection for aqueous ozone is 3mugl(-1) and good response slope is obtained up to an ozone concentration of 1.4mgl(-1), the highest that could be made in this study. The response obeyed a quadratic equation with r(2)=0.9984. No interference from permanganate ion is observed. The proposed system was applied to the monitoring of ozonation status of a playa lake water that exhibited significant ozone demand.

  7. Determination of total iron in food samples after flow injection preconcentration on polyurethane foam functionalized with N,N-bis(salicylidene)-1,3-propanediamine.

    Science.gov (United States)

    Abdel-Azeem, S M; Bader, N R; Kuss, H M; El-Shahat, M F

    2013-06-01

    A highly selective flow injection sorption system was developed for the fast determination of total iron in food samples. Iron (III) was reduced to iron (II) by ascorbic acid and preconcentrated on a mini-column packed with polyurethane foam (PUF) functionalized with N,N-bis(salicylidene)-1,3-propanediamine (SPDA). The retained Fe (II) was eluted with hydrochloric acid and subsequently reacted to 2,4,6-tri(2'-pyridyl)-1,3,5-triazine (TPTZ) then measured at 593 nm. The procedure has resulted preconcentration factor 36, sample frequency 20 h(-1) and detection limit 18 μg L(-1). The precision (RSD) was found to be 5.7% and 3.1% at concentration levels 0.1 and 5.0 μg mL(-1) iron (II), respectively. Finally, the method was successfully applied to determination of total iron in reference material and food samples.

  8. Method of foaming a liquid metal

    Science.gov (United States)

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  9. Method of foaming a liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A.K.; Johnson, C.E.

    1980-01-15

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  10. Foam for Enhanced Oil Recovery: Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our mo

  11. Co-doped titanium oxide foam and water disinfection device

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jian-Ku; Wu, Pinggui; Xie, Rong-Cai

    2016-01-26

    A quaternary oxide foam, comprises an open-cell foam containing (a) a dopant metal, (b) a dopant nonmetal, (c) titanium, and (d) oxygen. The foam has the advantages of a high surface area and a low back pressure during dynamic flow applications. The inactivation of Escherichia coli (E. coli) was demonstrated in a simple photoreactor.

  12. Analysis of neutral surfactants by non-aqueous capillary electrophoresis using an electroosmotic flow reversal.

    Science.gov (United States)

    Desbène, A M; Geulin, L; Morin, C J; Desbène, P L

    2005-03-11

    The separation of KM 20, that is in fact a mixture of non-ionic surfactants, was carried out by non-aqueous capillary electrophoresis. This complex mixture resulting from the condensation of ethylene oxide with fatty alcohols does not have chromophoric moieties. So, we analysed it after derivatization by means of 3,5-dinitrobenzoyl chloride. The proposed approach is based both on the formation of complexes with alkaline or ammonium cations in methanol and on the utilisation of a positively charged capillary. From a comparative study on the capillary treatment procedure, we used hexadimethrine bromide as electroosmotic flow reverser in order to obtain both repeatable analyses and good resolutions of the largest KM 20 oligomers. Then, among the five cations used to form complexes with KM 20, we pointed out that ammonium cation led to the best resolutions. Moreover, we evidenced that the counter-ion of this cation had a great influence on resolution because it modified the magnitude of electroosmotic flow. Ion pair formation that is more or less strong between ammonium and its counter-ion was involved in this variation of electroosmotic flow. So, we calculated the association constants for various ammonium salts in methanol. Then, using ammonium chloride as background electrolyte, we optimised the concentration of this salt, in methanol, in order to reach the optimal separation of KM 20 oligomers. Thus, a baseline separation was obtained by using 6 x 10(-2) mol/L NH4Cl as running electrolyte. In these conditions, we separated, in about 30 min, more than 30 oligomers of KM 20. The distribution of these oligomers that was determined from the optimal separation, appeared consistent with that obtained from HPLC analyses. Indeed, we determined that the mean ethoxylation number was equal to 18 while its real value is equal to 20.

  13. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    Science.gov (United States)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  14. Continuous flowing micro-reactor for aqueous reaction at temperature higher than 100 °C.

    Science.gov (United States)

    Xie, Fei; Wang, Baojun; Wang, Wei; Dong, Tian; Tong, Jianhua; Xia, Shanhong; Wu, Wengang; Li, Zhihong

    2013-01-01

    Some aqueous reactions in biological or chemical fields are accomplished at a high temperature. When the reaction temperature is higher than 100 °C, an autoclave reactor is usually required to elevate the boiling point of the water by creating a high-pressure environment in a closed system. This work presented an alternative continuous flowing microfluidic solution for aqueous reaction with a reaction temperature higher than 100 °C. The pressure regulating function was successfully fulfilled by a small microchannel based on a delicate hydrodynamic design. Combined with micro heater and temperature sensor that integrated in a single chip by utilizing silicon-based microfabrication techniques, this pressure regulating microchannel generated a high-pressure/high-temperature environment in the upstream reaction zone when the reagents continuously flow through the chip. As a preliminary demonstration, thermal digestion of aqueous total phosphorus sample was achieved in this continuous flowing micro-reactor at a working pressure of 990 kPa (under the working flow rate of 20 nl/s) along with a reaction temperature of 145 °C. This continuous flowing microfluidic solution for high-temperature reaction may find applications in various micro total analysis systems.

  15. Foams Stabilized with Nanoparticles for Gas Well Deliquification

    OpenAIRE

    Knapik Ewa; Stopa Jerzy; Marzec Anna

    2014-01-01

    This study examined the interaction of solid nanoparticles and anionic and non-ionic surfactant at an air–water interface. Aqueous foams stabilized by silica nanoparticles in water with different levels of salinity were studied in detail. The stability of solid/surfactant dispersion was evaluated visually. Nanoparticles content impact and concentration of surfactant on the foamability, deliquification of foams and structure of wet foams were studied. It was found that the foamability of dispe...

  16. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  17. Small core flood experiments for foam EOR: screening surfactant applications

    NARCIS (Netherlands)

    Jones, S.A.; Van der Bent, V.; Farajzadeh, R.; Rossen, W.R.; Vincent-Bonnieu, S.

    2015-01-01

    Aqueous foams are a means of increasing the sweep efficiency of enhanced oil recovery processes. An understanding of how a foam behaves in the presence of oil is therefore of great importance when selecting suitable surfactants for EOR processes. The consensus is currently that the most reliable met

  18. Foam formation in a biotechnological process for the removal of hydrogen sulfide from gas streams

    NARCIS (Netherlands)

    Kleinjan, W.E.; Marcelis, C.L.M.; Keizer, de A.; Janssen, A.J.H.; Cohen Stuart, M.A.

    2006-01-01

    Foam formation in aqueous suspensions of biologically produced sulfur is studied in a foam generator at 30°C, with the objective of describing trends and phenomena that govern foam formation in a biotechnological hydrogen sulfide removal process. Air is bubbled through a suspension and the developme

  19. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  20. An all-organic non-aqueous lithium-ion redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2012-11-15

    A non-aqueous lithium-ion redox flow battery employing organic molecules is proposed and investigated. 2,5-Di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene and a variety of molecules derived from quinoxaline are employed as initial high-potential and low-potential active materials, respectively. Electrochemical measurements highlight that the choice of electrolyte and of substituent groups can have a significant impact on redox species performance. The charge-discharge characteristics are investigated in a modified coin-cell configuration. After an initial break-in period, coulombic and energy efficiencies for this unoptimized system are {proportional_to}70% and {proportional_to}37%, respectively, with major charge and discharge plateaus between 1.8-2.4 V and 1.7-1.3 V, respectively, for 30 cycles. Performance enhancements are expected with improvements in cell design and materials processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Hager, Martin D; Schubert, Ulrich S

    2016-11-07

    Redox-flow batteries (RFB) can easily store large amounts of electric energy and thereby mitigate the fluctuating output of renewable power plants. They are widely discussed as energy-storage solutions for wind and solar farms to improve the stability of the electrical grid. Most common RFB concepts are based on strongly acidic metal-salt solutions or poorly performing organics. Herein we present a battery which employs the highly soluble N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) and the viologen derivative N,N'-dimethyl-4,4-bipyridinium dichloride (MV) in a simple and safe aqueous solution as redox-active materials. The resulting battery using these electrolyte solutions has capacities of 54 Ah L(-1) , giving a total energy density of 38 Wh L(-1) at a cell voltage of 1.4 V. With peak current densities of up to 200 mA cm(-2) the TEMPTMA/MV system is a suitable candidate for compact high-capacity and high-power applications.

  2. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties.

    Science.gov (United States)

    Anderson, R Hunter; Long, G Cornell; Porter, Ronald C; Anderson, Janet K

    2016-05-01

    The use of aqueous film-forming foam (AFFF) to extinguish hydrocarbon-based fires is recognized as a significant source of environmental poly- and perfluoroalkyl substances (PFASs). Although the occurrence of select PFASs in soil and groundwater at former fire-training areas (FTAs) at military installations operable since 1970 has been consistently confirmed, studies reporting the occurrence of PFASs at other AFFF-impacted sites (e.g. emergency response locations, AFFF lagoons, hangar-related AFFF storage tanks and pipelines, and fire station testing and maintenance areas) are largely missing from the literature. Further, studies have mostly focused on a single site (i.e., FTAs at military installations) and, thus, lack a comparison of sites with diverse AFFF release history. Therefore, the purpose of this investigation was to evaluate select PFAS occurrence at non-FTA sites on active U.S. Air Force installations with historic AFFF use of varying magnitude. Concentrations of fifteen perfluoroalkyl acids (PFAAs) and perfluorooctane sulfonamide (PFOSA), an important PFOS precursor, were measured from several hundred samples among multiple media (i.e., surface soil, subsurface soil, sediment, surface water, and groundwater) collected from forty AFFF-impacted sites across ten installations between March and September 2014, representing one of the most comprehensive datasets on environmental PFAS occurrence to date. Differences in detection frequencies and observed concentrations due to AFFF release volume are presented along with rigorous data analyses that quantitatively demonstrate phase-dependent (i.e., solid-phase vs aqueous-phase) differences in the chemical signature as a function of carbon chain-length and in situ PFOS (and to a slightly lesser extent PFHxS) formation, presumably due to precursor biotransformation.

  3. Comparison of bacteria and fungus-binding mesh, foam and gauze as fillers in negative pressure wound therapy--pressure transduction, wound edge contraction, microvascular blood flow and fluid retention.

    Science.gov (United States)

    Malmsjö, Malin; Ingemansson, Richard; Lindstedt, Sandra; Gustafsson, Lotta

    2013-10-01

    Bacteria- and fungus-binding mesh binds with and inactivates bacteria and fungus, which makes it an interesting alternative, wound filler for negative pressure wound therapy (NPWT). This study was conducted to compare the performance of pathogen-binding mesh, foam and gauze as wound fillers in NPWT with regard to pressure transduction, fluid retention, wound contraction and microvascular blood flow. Wounds on the backs of 16 pigs were filled with pathogen-binding mesh, foam or gauze and treated with NPWT. The immediate effects of 0, -40, -60, -80 and -120 mmHg, on pressure transduction and blood flow were examined in eight pigs using laser Doppler velocimetry. Wound contraction and fluid retention were studied during 72 hours of NPWT at -80 and -120 mmHg in the other eight pigs. Pathogen-binding mesh, gauze and foam provide similar pressure transduction to the wound bed during NPWT. Blood flow was found to decrease 0.5 cm laterally from the wound edge and increase 2.5 cm from the wound edge, but was unaltered 5.0 cm from the wound edge. The increase in blood flow was similar with all wound fillers. The decrease in blood flow was more pronounced with foam than with gauze and pathogen-binding mesh. Similarly, wound contraction was more pronounced with foam, than with gauze and pathogen-binding mesh. Wound fluid retention was the same in foam and pathogen-binding mesh, while more fluid was retained in the wound when using gauze. The blood flow 0.5-5 cm from the wound edge and the contraction of the wound during NPWT were similar when using pathogen-binding mesh and gauze. Wound fluid was efficiently removed when using pathogen-binding mesh, which may explain previous findings that granulation tissue formation is more rapid under pathogen-binding mesh than under gauze. This, in combination with its pathogen-binding properties, makes this mesh an interesting wound filler for use in NPWT.

  4. Dynamic control of gold nanoparticle morphology in a microchannel flow reactor by glucose reduction in aqueous sodium hydroxide solution.

    Science.gov (United States)

    Ishizaka, Takayuki; Ishigaki, Atsushi; Kawanami, Hajime; Suzuki, Akira; Suzuki, Toshishige M

    2012-02-01

    Continuous flow synthesis of gold nanoparticles was demonstrated using a microchannel reactor with glucose reduction in aqueous alkaline medium. Particle size, morphology, and visual/optical properties of the dispersion liquid were controlled dynamically by tuning of the rate of NaOH addition. Characteristic star-like nanoparticles formed spontaneously as a quasi-stable state, but they changed the morphology to round shape and showed spectral change over time.

  5. Extended Ergun Equation of the Flow Resistance Characteristics in Porous Graphitic Foam%多孔石墨泡沫材料内流动阻力的扩展Ergun方程

    Institute of Scientific and Technical Information of China (English)

    张新铭; 凌娅; 谷沁洋

    2012-01-01

    Graphitic foam and metal foam were newly-developed porous materials with low density, high thermal conductivity, heat resistance, corrosion resistance and so on. Based on the pore structure of the graphitic foam, the face centered cubic(FCC) foam model was created for numerical analysis on flow resistance. According to the classic Ergun equation for particle packed bed, under the condition of same specific surface area in the flow resistance, the functional relationship between the pore diameter of FCC foam model and the particle diameter of packed bed was derived, a flow resistance equation named extended Ergun equation for the type of porous foam medium such as graphite foam was presented, and the predicted values of the equation were compared with the numerical simulations, the results indicate that the applicability of the Equation presented.%近年来,金属泡沫、石墨泡沫等多孔功能材料因具有低密度、高导热、耐高温和耐腐蚀等特点而被广泛关注和研究.为了简化石墨泡沫内流动阻力的预测计算,根据石墨泡沫材料微孔的空间几何结构,对比颗粒填充床流动模型的Ergun型方程,建立面心立方(Face centered cubic,FCC)泡沫模型,以流速、孔隙率和比表面积分别相等则流动阻力相等为假设,推导了多孔泡沫孔径与颗粒床粒径间的对应关系,提出了适用于多孔泡沫介质内流动阻力预测的扩展Ergun方程.用所得方程进行了验证计算,并与数值模拟结果作了比较分析.

  6. Smart Nonaqueous Foams from Lipid-Based Oleogel.

    Science.gov (United States)

    Fameau, Anne-Laure; Lam, Stephanie; Arnould, Audrey; Gaillard, Cédric; Velev, Orlin D; Saint-Jalmes, Arnaud

    2015-12-22

    Oil foams are composed of gas bubbles dispersed in an oil phase. These systems are scarcely studied despite their great potential in diverse fields such as the food and cosmetic industries. Contrary to aqueous foams, the production of oil foams is difficult to achieve due to the inefficiency of surfactant adsorption at oil-air interfaces. Herein, we report a simple way to produce oil foams from oleogels, whose liquid phase is a mixture of sunflower oil and fatty alcohols. The temperature at which the oleogel formed was found to depend on both fatty alcohol chain length and concentration. The air bubbles in the oleogel foam were stabilized by fatty alcohol crystals. Below the melting temperature of the crystals, oleogel foams were stable for months. Upon heating, these ultrastable foams collapsed within a few minutes due to the melting of the crystal particles. The transition between crystal formation and melting was reversible, leading to thermoresponsive nonaqueous foams. The reversible switching between ultrastable and unstable foam depended solely on the temperature of the system. We demonstrate that these oleogel foams can be made to be photoresponsive by using internal heat sources such as carbon black particles, which can absorb UV light and dissipate the absorbed energy as heat. This simple approach for the formulation of responsive oil foams could be easily extended to other oleogel systems and could find a broad range of applications due to the availability of the components in large quantities and at low cost.

  7. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.

    Science.gov (United States)

    Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo

    2017-01-25

    Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H2O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N(1)-ferrocenylmethyl-N(1),N(1),N(2),N(2),N(2)-pentamethylpropane-1,2-diaminium dibromide, (FcN2Br2, 3.1 M in H2O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN2Br2/MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm(2). Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm(2) with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm(2). These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.

  8. Gel cast foam diesel particulate filters

    Energy Technology Data Exchange (ETDEWEB)

    Binner, J.G.P.; Hughes, S. [IPTME, Loughborough Univ., Loughborough (United Kingdom); Sambrook, R.M. [Dytech Corp. Ltd., Dronfield (United Kingdom)

    2004-07-01

    A new manufacturing route for foam ceramics based on gel casting has been developed and is being commercialised. Gel casting employs an organic monomer that is polymerised to cause the in-situ gelation of a foamed aqueous ceramic slurry. The primary advantage is the inherent flexibility of the process; the foams can be near net shape manufactured in a variety of shapes and sizes and after production are simply dried and fired. In addition, the porosity and pore size distribution can be varied to suit the application and a wide range of ceramics can be foamed with densities ranging from 5-40% of theoretical. Applications are diverse and include the potential to be used as diesel particulate filters (DPF). The present work examines this and concludes that filtration efficiencies of {>=}90% are achievable without generating a significant backpressure for the engine. (orig.)

  9. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  10. CFD analysis for the hydrogen transport in the primary contention of a BWR using the codes OpenFOAM and Gas-Flow; Analisis CFD para el transporte de hidrogeno en la contencion primaria de un reactor BWR usando los codigos OpenFOAM y GasFlow

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez P, D. A.

    2014-07-01

    using a limited number of semi-empirical data, and instead, mathematical relationships are used taking into account the various physical phenomena as well the interactions that occur among them, such as heat transfer between the fluid and the solid walls condensation of water vapor on the walls, the turbulent effects in areas of restricted passage, etc. Taking into account these advantages, this study presents a qualitative and quantitative comparison between the CFD codes OpenFOAM and Gas-Flow related to the transport phenomena of Hydrogen and other gases in the primary containment of a BWR reactor. Gas-Flow is a code of commercial license that is well validated, developed in Germany to analyze the transport of gases in nuclear reactor containments. On the other hand, OpenFOAM is an open source CFD code offering several solvers for different phenomena assessments, in this work, the reacting Foam solver is used because it has a strong similarity to the intended application of Hydrogen transport. In this thesis the results obtained using the reacting Foam solver of OpenFOAM for the calculation of transport of Hydrogen are compared with the results of the Gas-Flow code in order to assess if it is feasible to use the open source code OpenFOAM in the case of Hydrogen transport in primary containment of a BWR reactor. Some differences in the qualitative and quantitative results from both codes were found, the differences (with a maximum error rate of 4%) in the quantitative results were found are small and are considered more than acceptable for this type of analysis, moreover, these differences are mainly attributed to the transport models used, mainly because OpenFOAM uses a homogeneous mixture model and Gas-Flow a heterogeneous one. Implementing appropriate solvers in codes like OpenFOAM has the goal to develop own tools that are applicable to the transport of Hydrogen in the primary containment of a BWR reactor and thus, to gain some independence while not relying on

  11. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2003-03-31

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media. Significant progress was made during this period on all three Tasks. Regarding Task 1, we studied the behavior of foam made without polymer, with low-molecular-weight and high-molecular-weight polyacrylamide, and with xanthan polymer in sandpacks. Results consistently showed that polymer does not stabilize foam in porous media per se. Rather, it destabilizes foam to some extent, but may increase the viscosity of water sufficiently to increase the resistance to flow in spite of the lower intrinsic stability of the foam. This is consistent with the hypothesis the motivated our study. Results also showed that polymer shifts behavior from the high-quality foam-flow regime toward the low-quality regime, consistent with our initial hypothesis. Other aspects of the experimental results were puzzling and are discussed in the text of this report. Research on Task 2 included building an apparatus for gas-phase tracer tests for direct measurement of trapped-gas saturation with foam. We also investigated the nature of the low-quality foam regime, which is thought to be controlled by gas trapping and mobilization. In both the studies of polymers and foam and separate studies of CO{sub 2} foam, we observed behavior that seems to be related to the low-quality regime, but shows unexpected trends: specifically, a decrease in pressure gradient with increasing liquid injection rate, at fixed gas injection rate

  12. Effect of surface modification of silica nanoparticles on foam stability in decontamination foam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In-Ho; Jung, Chong-Hun; Kim, Chorong; Yang, Han-Beom; Choi, Mansoo; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Decontamination foam is a non-stable, two-phase fluid with aqueous and gas phases representing not more than 10% and 90% of the total volume, respectively. This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, the application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. Solid colloidal particles increase the foam stability in the foam formulation. These particles can be specifically hydrophobized for optimal adsorption at the liquid/gas interface, which creates armor for the bubbles and prevents coalescence by reducing the internal gas transfer. Conversely, hydrophilic particles remain confined in the liquid phase, and to enhance the foam stability. In this study, we aimed to modify the surface of silica nanoparticles with dichlorodimethylsilane (DCDMS) reagents using methods proposed in previous literatures. We plan to investigate further the influence pH and the concentration of chemical reagent in decontamination foam system. In future studies, decontamination tests will be conducted on a surface contaminated with radionuclides such as cesium and cobalt.

  13. Piezoresistive Foam Sensor Arrays for Marine Applications

    CERN Document Server

    Dusek, Jeff E; Lang, Jeffrey H

    2016-01-01

    Spatially-dense pressure measurements are needed on curved surfaces in marine environments to provide marine vehicles with the detailed, real-time measurements of the near-field flow necessary to improve performance through flow control. To address this challenge, a waterproof and conformal pressure sensor array comprising carbon black-doped-silicone closed-cell foam (CBPDMS foam) was developed for use in marine applications. The response of the CBPDMS foam sensor arrays was characterized using periodic hydrodynamic pressure stimuli from vertical plunging, from which a piecewise polynomial calibration was developed to describe the sensor response. Inspired by the distributed pressure and velocity sensing capabilities of the fish lateral line, the CBPDMS foam sensor arrays have significant advantages over existing commercial sensors for distributed flow reconstruction and control. Experimental results have shown the sensor arrays to have sensitivity on the order of 5 Pascal, dynamic range of 50-500 Pascal; are...

  14. Surfactant recovery from water using foam fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Tharapiwattananon, N.; Osuwan, S. [Chulalongkorn Univ., Bangkok (Thailand); Scamehorn, J.F. [Inst. of Oklahoma, Norman, OK (United States)] [and others

    1996-05-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  15. Coalescence In Draining Foams Made of Very Small Bubbles

    Science.gov (United States)

    Briceño-Ahumada, Zenaida; Drenckhan, Wiebke; Langevin, Dominique

    2016-03-01

    We studied the stability of foams containing small bubbles (radius ≲ 50 μ m ). The foams are made from aqueous surfactant solutions containing various amounts of glycerol. The foams start breaking at their top, when the liquid volume fraction has decreased sufficiently during liquid drainage. Unlike in foams with larger bubbles, the liquid fraction at which the foam destabilizes is surprisingly high. In order to interpret this observation we propose that film rupture occurs during reorganization events (T 1 ) induced by bubble coarsening, which is particularly rapid in the case of small bubbles. New films are therefore formed rapidly and if their thickness is too small, they cannot be sufficiently covered by surfactant and they break. Using literature data for the duration of T 1 events and the thickness of the new films, we show that this mechanism is consistent with the behavior of the foams studied.

  16. Rupture mechanism and interface separation in foam rubber models of earthquakes: a possible solution to the heat flow paradox and the paradox of large overthrusts

    Science.gov (United States)

    Brune, James N.; Brown, Stephen; Johnson, Peggy A.

    1993-02-01

    Spontaneous stick-slip along the interface between stressed foam rubber blocks is a simple analog of earthquake rupture and stick-slip. Results from this model are used to elucidate the role of normal stress variations along the interface in the stick-slip process. Observations indicate significant normal interface vibrations and separation during slip, suggesting that dynamic changes in normal stress (rather than a drop in the coefficient of friction) may control stick-slip, as suggested, for example, by Tolstoi, Oden and Martins and Brune and co-workers. Observations of particle trajectories indicate that stick-slip shear motion is associated with various degrees of fault separation. For an asymmetric model, the motion is consistent with slipping motion of the type suggested by Schallamach and Price. For a symmetric model, the motion is similar to that suggested by Comninou and Dundurs. If interface waves of this type, involving separation during slip, occur in earthquakes, they may be a solution to the heat flow paradox, since a major part of the slip occurs during separation and during low normal stress. Thus frictional heat generation is reduced. Normal interface vibrations during stick-slip may explain the high corner frequency of P wave spectra and the generally high levels of P wave spectra beyond the corner frequency. Schallamach-Comninou type waves are consistent with the partial stress drop-abrupt locking-self healing models of Brune and Heaton.

  17. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  18. Foam granulation: new developments in pharmaceutical solid oral dosage forms using twin screw extrusion machinery.

    Science.gov (United States)

    Thompson, M R; Weatherley, S; Pukadyil, R N; Sheskey, P J

    2012-07-01

    This paper investigates foam granulation in a twin screw extruder as a new continuous wet granulation technique for pharmaceutical powder drug formulations. Foamed aqueous binder has a reportedly lower soak-to-spread ratio than drop or spray liquid addition in batch granulation. This work demonstrates a twin screw extruder configuration for foam granulation and subsequently compares the new approach against liquid injection in the granulation of α-lactose monohydrate with a methylcellulose binder. Trials were conducted at high powder output rates (20-40 kg/h) and high screw speeds (220-320 RPM) with two screw configurations. Process stability improved with the new technique allowing granulation with less binder. The extruded mass maintained a low exit temperature, being insensitive to operating conditions unlike the liquid injection approach, where temperatures rose significantly as flow rate increased. The particle size distribution by foam granulation reflected a more uniformly wetted mass with larger granule growth noted even for conditions where dry powder exited by liquid injection. Other factors were found similar between the two binder delivery methods such as consumed mechanical energy, as well as fracture strength and compressibility of produced granules.

  19. The consequences of air flow on the distribution of aqueous species during dielectric barrier discharge treatment of thin water layers

    Science.gov (United States)

    Tian, Wei; Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    The desired outcomes of wet tissue treatment by dielectric barrier discharges (DBDs) strongly depend on the integrated fluences of reactive species incident onto the tissue, which are determined by power, frequency and treatment time. The reactivity produced by such plasmas is often expected to be proportional to treatment time due to the accumulation of radicals in the liquid over the tissue. However, one of the typically uncontrolled parameters in DBD treatment of liquids and tissue is gas flow, which could affect the delivery of plasma produced radicals to the tissue. Gas flow can redistribute long-lived, plasma produced gas phase species prior to solvating in the liquid, while not greatly affecting the solvation of short-lived species. Gas flow can therefore potentially be a control mechanism for tailoring the fluences of reactive species to the tissue. In this paper, we report on a computational investigation of the consequences of gas flow on treatment of liquid layers covering tissue by atmospheric DBDs by up to 100 pulses. We found that gas flow (through residence time of the gas) can control the production of gas phase species requiring many collisions to form, such as reactive nitrogen species (RNS). The resulting solvation of the RNS in turn controls the production of aqueous species such as \\text{NO}\\text{3aq}- and \\text{ONOO}\\text{aq}- (aq denotes an aqueous species). With the exception of O3 and O3aq, reactive oxygen species (ROS) are less sensitive to gas flow, and so OHaq and H2O2aq, are determined primarily by discharge properties.

  20. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  1. Catalytic performance of functionalized polyurethane foam on the reductive decolorization of Reactive Red K-2G in up-flow anaerobic reactor under saline conditions.

    Science.gov (United States)

    Zhou, Yang; Lu, Hong; Wang, Jing; Li, Jianan; Zhou, Jiti; Jin, Ruofei

    2015-01-01

    Soluble anthraquinone compounds including anthraquinone-2-sulfonate (AQS) and anthraquinone-2,6-disulfonate can accelerate anaerobic decolorization of azo dyes. To realize the application of these compounds, the catalytic performance and stability of AQS-modified polyurethane foam (AQS-PUF) for Reactive Red K-2G decolorization were investigated in an up-flow anaerobic bioreactor under saline conditions. The results showed that the optimal influent pH value and hydraulic retention time were 7 and 10 h, respectively, in a continuous-flow bioreactor amended with AQS-PUF (R1). Under the above conditions, R1 (93.8 % color removal) displayed better decolorization performance than the bioreactor amended with PUF (R2, 64 % color removal) in 10 days, when influent K-2G concentration was 50 mg/L. Moreover, compared with R2, R1 could more effectively cope with 50-400 mg/L K-2G and exhibited better stability with over 85 % color removal efficiency within 75 days. Further bacterial community analysis using polymerase chain reaction-denaturing gradient gel electrophoresis showed that AQS-reducing bacteria played an important role in accelerating K-2G decolorization in R1. Extracellular polymeric substances analysis found that biofilm formed on AQS-PUF had very limited negative effects on K-2G decolorization. The catalytic performance of used AQS-PUF only decreased less than 9 % in batch experiments. These findings indicate that AQS-PUF has potential application for the treatment of azo dye-containing wastewater.

  2. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    Science.gov (United States)

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  3. Modelling of gas-liquid, two-phase flow in porous media and channels of a PEM water electrolysis cell using the Euler-Euler framework of OpenFOAM

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    , it also secures an even heat removal of the cell. In a previous research effort, the gas-liquid, two-phase flow was investigated in the commercial CFD framework of ANSYS CFX using the Euler-Euler model. Particularly, the treatment of gas-liquid flow in a porous medium domain subject to capillary pressure...... was shown to push the limits of the codes ca-pabilities. In order to improve simulation stability and time, a new model is developed in the open source CFD software OpenFOAM. The customizability of this code not only allows for specific relaxation strategies, it also permits the implementation of various...

  4. Extensional flow behavior of aqueous guar gum derivative solutions by capillary breakup elongational rheometry (CaBER).

    Science.gov (United States)

    Szopinski, Daniel; Handge, Ulrich A; Kulicke, Werner-Michael; Abetz, Volker; Luinstra, Gerrit A

    2016-01-20

    The extensional rheological properties of aqueous ionic carboxymethyl hydroxypropyl guar gum (CMHPG) and non-ionic hydroxypropyl guar gum (HPG) solutions between the semi-dilute solution state and the concentrated network solution state were investigated by capillary breakup elongational rheometry (CaBER). Carboxymethylated guar gum derivatives show an instable filament formation in deionized water. The ratio of elongational relaxation time λE over the shear relaxation time λS follows a power law of λE/λS∼(c · [η])(-2). The difference of the relaxation times in shear and elongation can be related to the loss of entanglements and superstructures in elongational flows at higher strains.

  5. Foam drainage wave coalescing and its energy evolution

    Institute of Scientific and Technical Information of China (English)

    SUN QiCheng; HUANG Jin; WANG GuangQian

    2008-01-01

    Liquid foam is a dense packing of gas bubbles in a small amount of surfactant solution. Liquid drains out of foams until equilibrium is reached due to the compromise between gravity and capillarity, which greatly affects the stability of foam. Based on a series of work on foam structure and drainage we conducted previously, this paper reports the results on coalescence of an original forced drainage wave at a low flow rate with subsequent drainage waves with higher flow rates. The evolutions of vis-cous energy and surface energy during the process of coalescence are theoretically analyzed.

  6. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  7. Foam stabilization by solid particle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Pitois, O. [UniversiteParis-Est Marne-La-Valle, Lab. Physique des Materiaux Divises et des Interfaces (LPMDI), 77 - Marne la Vallee (France)

    2008-07-01

    irreversible plugs. To establish the respective role of aggregates size and concentration, a series of experiments is currently performed consisting in studying the flow of foaming solution through glass-beds of various pore sizes containing the aggregates. The behaviour of foams containing sonicated particles appears to be more surprising since they do not display any yield stress and their sizes prevent them from being efficient plugs. Study of the flow of suspensions on the Plateau Border scale is currently performed to elucidate this behaviour. (authors)

  8. Survey of reformed continuous flow carbon nanotubes column efficiency in removal of natural organic matters from aqueous solution

    Directory of Open Access Journals (Sweden)

    A Naghizadeh

    2015-08-01

    Full Text Available Background and Objective: Natural organic matters (NOMs are a mixture of chemically complex polyelectrolytes with varying molecular weights, produced mainly from the decomposition of plants and animal residues. Various purification methods are used for removal of NOMs from water. The objective of this study was to remove NOMs from aqueous solution using reformed continuous carbon nanotubes column. Materials and Methods: The removal of NOMs from aqueous solution using reformed continuous carbon nanotubes column was studied. Effect of several variables such as zero point of pH (pHZPC, pH, influent concentration of natural organic matters were studied and different isotherms were assessed. Results: Investigation of pH effect showed that the adsorbability of NOMs increased with decreasing of pH. The experiments indicated that carbon nanotubes (CNT samples exhibit pHZPC around 6. Results from Freundlich, Langmuir, and BET isotherm experiments revealed that the correlation coefficient R2 in Freundlich model was higher than that of Langmuir. In addition, experiments of continuous flow in different initial concentrations of NOMs showed that the adsorption capacities of CNT were 53.46, 30.40, and 24.75 mg/g for NOMs initial concentrations of 10, 5, and 3 mg/L, respectively. Conclusion: The present study shows that CNTs have high potential for adsorption of NOMs from aqueous solution

  9. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  10. 水成膜泡沫灭火剂致土壤污染的健康风险分析%Health risks of aqueous film forming foam extinguishing agent in a polluted soil site

    Institute of Scientific and Technical Information of China (English)

    李屹; 朱江; 耿红; 姚晨婷

    2012-01-01

    目的 了解消防训练场附近水成膜泡沫灭火剂(AFFF)所致的全氟辛烷磺酸盐(PFOS)和全氟辛酸及其盐(PFOA)的土壤环境风险.方法 通过高效液相-串联质谱法(HPLC-MS/MS)检测太原市某消防训练场附近土壤中PFOS、PFOA含量,并运用健康风险模型就该区域土壤中PFOS和PFOA对附近居民的致癌和非致癌风险进行评估.结果 训练场附近河流下游土壤中PFOS和PFOA的含量范围分别为127.2~510.5 ng/g和100.3~417.9 ng/g,其对附近居民的综合致癌累积风险值为7.70×10-6,超过了可接受风险水平.结论 排入环境中的消防泡沫残液可引起附近土壤中“C8类”氟碳表面活性剂如PFOS和PFOA的含量增加并不断蓄积,造成PFOS和PFOA对附近居民的健康损害风险.%Objective To investigate the environmental risks of C8 fluorochemicals such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in aqueous film forming foam extinguishing agents (AFFF) which were used for fire-fighting exercises. Methods Concentrations of PFOS and PFOA in the soil near a fire-fighting training field in Taiyuan, China were detected by using a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS); and the non-cancer and cancer risk values of PFOS and PFOA in soil caused by AFFF were calculated by using a health risk assessment model. Results The levels of PFOS and PFOA in the soil were 127.2-510.5 ng/g and 100.3-417.9 ng/g, respectively, which were significantly higher than those in the background sites; their overall cancer risk on local inhabitants was 7.70×lO-6, greatly exceeding the acceptable risk value. Conclusion The soil near the fire-fighting training field has been polluted by PFOS and PFOA due to usage of fire-fighting foams, likely making damages on local inhabitants' health.

  11. Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years.

    Science.gov (United States)

    de Haas, T; Hauber, E; Conway, S J; van Steijn, H; Johnsson, A; Kleinhans, M G

    2015-06-23

    Liquid water is currently extremely rare on Mars, but was more abundant during periods of high obliquity in the last few millions of years. This is testified by the widespread occurrence of mid-latitude gullies: small catchment-fan systems. However, there are no direct estimates of the amount and frequency of liquid water generation during these periods. Here we determine debris-flow size, frequency and associated water volumes in Istok crater, and show that debris flows occurred at Earth-like frequencies during high-obliquity periods in the last million years on Mars. Results further imply that local accumulations of snow/ice within gullies were much more voluminous than currently predicted; melting must have yielded centimetres of liquid water in catchments; and recent aqueous activity in some mid-latitude craters was much more frequent than previously anticipated.

  12. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  13. Effects of cell size on compressive properties of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    CAO Xiao-qing; WANG Zhi-hua; MA Hong-wei; ZHAO Long-mao; YANG Gui-tong

    2006-01-01

    The effects of cell size on the quasi-static and dynamic compressive properties of open cell aluminum foams produced by infiltrating process were studied experimentally. The quasi-static and dynamic compressive tests were carried out on MTS 810 system and SHPB(split Hopkinson pressure bar) respectively. It is found that the elastic moduli and compressive strengths of the studied aluminum foam are not only dependent on the relative density but also dependent on the cell size of the foam under both quasi-static loading and dynamic loading. The foams studied show a significant strain rate sensitivity, the flow strength can be improved as much as 112%, and the cell size also has a sound influence on the strain rate sensitivity of the foams. The foams of middle cell size exhibit the highest elastic modulus, the highest flow strength and the most significant strain rate sensitivity.

  14. Silica Foams for Fire Prevention and Firefighting.

    Science.gov (United States)

    Vinogradov, Alexander V; Kuprin, D S; Abduragimov, I M; Kuprin, G N; Serebriyakov, Evgeniy; Vinogradov, Vladimir V

    2016-01-13

    We report the new development of fire-extinguishing agents employing the latest technology of fighting and preventing fires. The in situ technology of fighting fires and explosions involves using large-scale ultrafast-gelated foams, which possess new properties and unique characteristics, in particular, exceptional thermal stability, mechanical durability, and full biocompatibility. We provide a detailed description of the physicochemical processes of silica foam formation at the molecular level and functional comparison with current fire-extinguishing and fire-fighting agents. The new method allows to produce controllable gelation silica hybrid foams in the range from 2 to 30 s up to 100 Pa·s viscosity. Chemical structure and hierarchical morphology obtained by scanning electron microscopy and transmission electron microscopy images develop thermal insulation capabilities of the foams, reaching a specific heat value of more than 2.5 kJ/(kg·°C). The produced foam consists of organized silica nanoparticles as determined by X-ray photoelectron spectroscopy and X-ray diffraction analysis with a narrow particle size distribution of ∼10-20 nm. As a result of fire-extinguishing tests, it is shown that the extinguishing efficiency exhibited by silica-based sol-gel foams is almost 50 times higher than that for ordinary water and 15 times better than that for state-of-the-art firefighting agent aqueous film forming foam. The biodegradation index determined by the time of the induction period was only 3 d, while even for conventional foaming agents this index is several times higher.

  15. Thermoforming of foam sheet

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud M.

    1997-01-01

    Thermoforming is a widely used process for the manufacture of foam sheet products. Polystyrene foam food trays for instance can be produced by first heating the thermoplastic foam sheet, causing the gas contained to build up pressure and expand, after which a vacuum pressure can be applied to draw t

  16. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm(-2)  day(-1) (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.

  17. Coarsening of firefighting foams containing fluorinated hydrocarbon surfactants

    Science.gov (United States)

    Kennedy, Matthew J.; Dougherty, John A.; Otto, Nicholas; Conroy, Michael W.; Williams, Bradley A.; Ananth, Ramagopal; Fleming, James W.

    2013-03-01

    Diffusion of gas between bubbles in foam causes growth of large bubbles at the expense of small bubbles and leads to increasing mean bubble size with time thereby affecting drainage. Experimental data shows that the effective diffusivity of nitrogen gas in aqueous film forming foam (AFFF), which is widely used in firefighting against burning liquids, is several times smaller than in 1% sodium dodecyl sulfate (SDS) foam based on time-series photographs of bubble size and weighing scale recordings of liquid drainage. Differences in foam structure arising from foam production might contribute to the apparent difference in the rates of coarsening. AFFF solution produces wetter foam with initially smaller bubbles than SDS solution due in part to the lower gas-liquid surface tension provided by the fluorosurfactants present in AFFF. Present method of foam production generates microbubble foam by high-speed co-injection of surfactant solution and gas into a tube of 3-mm diameter. These results contribute to our growing understanding of the coupling between foam liquid fraction, bubble size, surfactant chemistry, and coarsening. NRC Resident Research Associate at NRL

  18. Multiscale modelling of evolving foams

    Science.gov (United States)

    Saye, R. I.; Sethian, J. A.

    2016-06-01

    We present a set of multi-scale interlinked algorithms to model the dynamics of evolving foams. These algorithms couple the key effects of macroscopic bubble rearrangement, thin film drainage, and membrane rupture. For each of the mechanisms, we construct consistent and accurate algorithms, and couple them together to work across the wide range of space and time scales that occur in foam dynamics. These algorithms include second order finite difference projection methods for computing incompressible fluid flow on the macroscale, second order finite element methods to solve thin film drainage equations in the lamellae and Plateau borders, multiphase Voronoi Implicit Interface Methods to track interconnected membrane boundaries and capture topological changes, and Lagrangian particle methods for conservative liquid redistribution during rearrangement and rupture. We derive a full set of numerical approximations that are coupled via interface jump conditions and flux boundary conditions, and show convergence for the individual mechanisms. We demonstrate our approach by computing a variety of foam dynamics, including coupled evolution of three-dimensional bubble clusters attached to an anchored membrane and collapse of a foam cluster.

  19. Shooting in a foam.

    Science.gov (United States)

    Le Goff, Anne; Quéré, David; Clanet, Christophe

    2014-09-21

    We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.

  20. Magnetic self-assembly of microparticle clusters in an aqueous two-phase microfluidic cross-flow

    Science.gov (United States)

    Abbasi, Niki; Jones, Steven G.; Moon, Byeong-Ui; Tsai, Scott S. H.

    2015-11-01

    We present a technique that self-assembles paramagnetic microparticles on the interface of aqueous two-phase system (ATPS) fluids in a microfluidic cross-flow. A co-flow of the ATPS is formed in the microfluidic cross channel as the flows of a dilute dextran (DEX) phase, along with a flow-focused particle suspension, converges with a dilute polyethylene glycol (PEG) phase. The microparticles arrive at the liquid-liquid interface and self-assemble into particle clusters due to forces on the particles from an applied external magnetic field gradient, and the interfacial tension of the ATPS. The microparticles form clusters at the interface, and once the cluster size grows to a critical value, the cluster passes through the interface. We control the size of the self-assembled clusters, as they pass through the interface, by varying the strength of the applied magnetic field gradient and the ATPS interfacial tension. We observe rich assembly dynamics, from the formation of Pickering emulsions to clusters that are completely encapsulated inside DEX phase droplets. We anticipate that this microparticle self-assembly method may have important biotechnological applications that require the controlled assembly of cells into clusters.

  1. Foam consolidation and drainage.

    Science.gov (United States)

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  2. Domain growth kinetics in stratifying foam films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2015-11-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Typical foam films consist of two surfactant-laden surfaces that are ~ 5 nm - 10 micron apart. Sandwiched between these interfacial layers is a fluid that drains primarily under the influence of viscous and interfacial forces, including disjoining pressure. Interestingly, a layered ordering of micelles inside the foam films (thickness growth regimes with characteristic scaling laws. Though several studies have focused on the expansion dynamics of isolated domains that exhibit a diffusion-like scaling, the change in expansion kinetics observed after domains contact with the Plateau border has not been reported and analyzed before.

  3. Mechanical properties and network structure of wheat gluten foams.

    Science.gov (United States)

    Blomfeldt, Thomas O J; Kuktaite, Ramune; Johansson, Eva; Hedenqvist, Mikael S

    2011-05-09

    This Article reports the influence of the protein network structure on the mechanical properties of foams produced from commercial wheat gluten using freeze-drying. Foams were produced from alkaline aqueous solutions at various gluten concentrations with or without glycerol, modified with bacterial cellulose nanosized fibers, or both. The results showed that 20 wt % glycerol was sufficient for plasticization, yielding foams with low modulus and high strain recovery. It was found that when fibers were mixed into the foams, a small but insignificant increase in elastic modulus was achieved, and the foam structure became more homogeneous. SEM indicated that the compatibility between the fibers and the matrix was good, with fibers acting as bridges in the cell walls. IR spectroscopy and SE-HPLC revealed a relatively low degree of aggregation, which was highest in the presence of glycerol. Confocal laser scanning microscopy revealed distinct differences in HMW-glutenin subunits and gliadin distributions for all of the different samples.

  4. Spin foam models as energetic causal sets

    CERN Document Server

    Cortês, Marina

    2014-01-01

    Energetic causal sets are causal sets endowed by a flow of energy-momentum between causally related events. These incorporate a novel mechanism for the emergence of space-time from causal relations. Here we construct a spin foam model which is also an energetic causal set model. This model is closely related to the model introduced by Wieland, and this construction makes use of results used there. What makes a spin foam model also an energetic causal set is Wieland's identification of new momenta, conserved at events (or four-simplices), whose norms are not mass, but the volume of tetrahedra. This realizes the torsion constraints, which are missing in previous spin foam models, and are needed to relate the connection dynamics to those of the metric, as in general relativity. This identification makes it possible to apply the new mechanism for the emergence of space-time to a spin foam model.

  5. Rheology of Foam Near the Order-Disorder Transition

    Science.gov (United States)

    Holt, R. Glynn; McDaniel, J. Gregory

    2001-01-01

    The first part of our research results are summarized in the recent journal publication: J. Gregory McDaniel and R. Glynn Holt, 'Measurement of aqueous foam rheology by acoustic levitation', Phys. Rev. E 61, 2204 (2000). This aspect of the work was a combination of experiment and analysis. We built a levitation system capable of acoustically levitating small samples of aqueous foam of arbitrary gas and liquid volume fractions. We then modulated the acoustic field to induce normal mode oscillations of the foam samples. The observables from the experiment were frequency and mode number. For dry (roughly > 70% gas by volume) foams and small deformations, we developed an effective medium, normal-modes analysis which took the frequency and mode number from experiment, and gave us the shear elastic modulus of the foam as a function of Poisson's ratio. The second part of our results may be found in a soon-to-be submitted manuscript 'Dynamics of aqueous foam drops', I.Sh. Akhatov, J.G. McDaniel and R.G. Holt, describing our modeling in the wet foam limit by considering the acoustic problem. This aspect of the research is purely theoretical. Beginning from a mass-conserving mixture law, the fully nonlinear equations of motion for a wet (roughly < 10% gas by volume) foam drop of initially spherical shape were derived. The frequencies for normal mode oscillations were derived in the linear inviscid limit. The nonlinear equations were numerically solved to elicit the motion of a foam drop under acoustic excitation. The role of the time-varying void fraction in breathing-mode oscillations is of particular interest. As of the end of the current (NAG#3-2121) grant, this work was not yet concluded. We continue to work on this aspect in order to extend the analysis to cover the transition regime of gas volume fractions, as well as to compare to experiments in the wet regime.

  6. Flow behavior in grooves with foam walls for sandwich panels%泡沫夹芯结构板泡沫壁流道内的流动特性

    Institute of Scientific and Technical Information of China (English)

    雷波; 周持兴; 俞炜; 张羽; 周华; 王健

    2012-01-01

    沟槽型真空辅助树脂传递模塑成型工艺(VARTM)是一种新型的泡沫夹芯结构板成型方法,利用实验探明了泡沫夹芯结构板芯材上不可渗泡沫壁流道内的流动行为.实验结果表明,液体在泡沫壁流道的流动能力大幅降低,只有光滑壁流道的60%左右,泡沫壁流道的粗糙内表面是造成这种现象的主要原因.提出了相应的压力驱动流动方程,并采用等效渗透率来表征液体在泡沫壁流道内的流动能力,得到了考虑粗糙表面影响的等效渗透率计算公式,提出了一个正确计算不可渗泡沫壁流道内流动的处理方法.%Foam core sandwich panels are widely used in many technical fields, especially in aerospace and wind power structures, due to their high specific strength and high specific stiffness. Among the various manufacturing processes for sandwich panels, vacuum assisted resin transfer molding (VARTM) is used extensively for manufacturing large composite structures. The success of VARTM depends upon the complete filling of the mold with adequate wetting of the fiber preform. The addition of grooves on the surface of the low-density core is used to shorten the fill time, because of the high permeability of grooves. Therefore, the resin flow through the grooves is an important step to ensure that the resin infusion process can be finished before the resin gels. The flow characteristics in grooves with impermeable foam walls for sandwich panels were investigated through experimental observations. An empirical equation for the volume flow rate in a glass tube and cylindrical grooves with impermeable foam walls was obtained. It was shown that the volume flow rate was a function of pressure drop, pipe dimension and fluid viscosity. When compared to pipe flow with no-slip boundary conditions, the flow ability in grooves dropped by about 40%. This was ascribed to the rough surface of grooves and demonstrated by scanning electron microscope (SEM), which

  7. Rheological properties and the mechanism of a viscous flow of aqueous pectin solutions

    Science.gov (United States)

    Netesova, G. A.; Kotov, V. V.; Bodyakina, I. M.; Lukin, A. L.

    2012-09-01

    The rheological properties and mechanisms of a viscous flow of diluted apple pectin solutions are investigated. It is found that the rise in solution viscosity upon an increase in concentration and a drop in temperature is, along with the corresponding degree to which the interaction between pectin molecules and solvent is reduced, associated with the processes of structuring. The entropy of a viscous flow of pectin solutions is found to be positive: it grows with a rise in concentration is virtually temperature independent. It is established that the entropy factor makes the main contribution to the free energy value of a viscous flow.

  8. Intraocular Pressure and the Mechanisms Involved in Resistance of the Aqueous Humor Flow in the Trabecular Meshwork Outflow Pathways.

    Science.gov (United States)

    Tamm, Ernst R; Braunger, Barbara M; Fuchshofer, Rudolf

    2015-01-01

    Intraocular pressure (IOP), the critical risk factor for glaucoma, is generated and maintained by the aqueous humor circulation system. Aqueous humor is secreted from the epithelial layers of the ciliary body and exits the eye through the trabecular meshwork or the uveoscleral outflow pathways. IOP builds up in response to a resistance to aqueous humor flow in the trabecular outflow pathways. The trabecular outflow resistance is localized in the inner wall region, which comprises the juxtacanalicular connective tissue (JCT) and the inner wall endothelium of Schlemm's canal (SC). Outflow resistance in this region is lowered through the relaxation of contractile myofibroblast-like cells in trabecular meshwork and the adjacent scleral spur, or the contraction of the ciliary muscle. In primary open-angle glaucoma, the most frequent form of glaucoma, outflow resistance of the inner wall region is typically higher than normal. There is evidence that the increase in resistance is related to characteristic biological changes in the resident cells of the JCT, which more and more acquire the structural and functional characteristics of contractile myofibroblasts. The changes involve an augmentation of their actin cytoskeleton and of their surrounding fibrillary extracellular matrix, which connects to JCT cells via integrins. This scenario leads to an overall stiffening of the inner wall region, and is modulated by transforming growth factor-β/connective tissue growth factor signaling. Essentially comparable changes appear to occur in SC endothelial cells. Stiffening of JCT and SC cells is very likely a critical causative factor for the increase in trabecular outflow resistance in POAG.

  9. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  10. Practical thermodynamic quantities for aqueous vanadium- and iron-based flow batteries

    Science.gov (United States)

    Hudak, Nicholas S.

    2014-12-01

    A simple method for experimentally determining thermodynamic quantities for flow battery cell reactions is presented. Equilibrium cell potentials, temperature derivatives of cell potential (dE/dT), Gibbs free energies, and entropies are reported here for all-vanadium, iron-vanadium, and iron-chromium flow cells with state-of-the-art solution compositions. Proof is given that formal potentials and formal temperature coefficients can be used with modified forms of the Nernst Equation to quantify the thermodynamics of flow cell reactions as a function of state-of-charge. Such empirical quantities can be used in thermo-electrochemical models of flow batteries at the cell or system level. In most cases, the thermodynamic quantities measured here are significantly different from standard values reported and used previously in the literature. The data reported here are also useful in the selection of operating temperatures for flow battery systems. Because higher temperatures correspond to lower equilibrium cell potentials for the battery chemistries studied here, it can be beneficial to charge a cell at higher temperature and discharge at lower temperature. Proof-of-concept of improved voltage efficiency with the use of such non-isothermal cycling is given for the all-vanadium redox flow battery, and the effect is shown to be more pronounced at lower current densities.

  11. The impact of pH on side reactions for aqueous redox flow batteries based on nitroxyl radical compounds

    Science.gov (United States)

    Orita, A.; Verde, M. G.; Sakai, M.; Meng, Y. S.

    2016-07-01

    Electrochemical and UV-VIS measurements demonstrate that the pH value of a 4-hydroxy-2,2,6,6-tetramethyl-1-pipperidinyloxyl (TEMPOL) electrolyte significantly impacts its redox reversibility. The diffusion coefficient and kinetic rate constant of TEMPOL in neutral aqueous solution are determined and shown to be comparable to those of vanadium ions used for industrially utilized redox flow batteries (RFBs). RFBs that incorporate a TEMPOL catholyte and Zn-based anolyte have an average voltage of 1.46 V and an energy efficiency of 80.4% during the initial cycle, when subject to a constant current of 10 mA cm-2. We demonstrate several factors that significantly influence the concentration and capacity retention of TEMPOL upon cycling; namely, pH and atmospheric gases dissolved in electrolyte. We expand upon the known reactions of TEMPOL in aqueous electrolyte and propose several concepts to improve its electrochemical performance in a RFB. Controlling these factors will be the key to enable the successful implementation of this relatively inexpensive and environmentally friendly battery.

  12. Acoustic properties of sintered FeCrAlY foams with open cells (Ⅱ): Sound attenuation

    Institute of Scientific and Technical Information of China (English)

    M.; KEPETS; A.; P.; DOWLING2

    2008-01-01

    Open-celled metal foams fabricated through metal sintering offers novel mechani- cal, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structural applications of these foams are inherently limited. The metal sintering approach provides a cost-effective means for the mass-production of open-cell foams from a range of materials, in- cluding high-temperature steel alloys. The low Reynolds number fluid properties of sintered steel alloy (FeCrAlY) foams were investigated in a previous study. The static flow resistance of the foams was modeled based on a cylinder and a sphere arranged in a periodic lattice at general incidence to the flow, with the resulting predictions correlating well to measurements. The application of the flow resis- tance in an acoustic model is the primary focus of the present study. The predic- tions for the static flow resistance of the sintered foams are first used in a theo- retical model to determine the characteristic impedances, as well as the propaga- tion constants of the foams. Subsequently, the predicted acoustic performance of the foams is compared to experimental results. Finally, the design space for a simple acoustic absorber incorporating sintered foams is examined, with the ef- fects of absorber size, foam selection, and foam spacing explored.

  13. Acoustic properties of sintered FeCrAlY foams with open cells (Ⅱ): Sound attenuation

    Institute of Scientific and Technical Information of China (English)

    LU TianJian; M.KEPETS; A.P.DOWLING

    2008-01-01

    Open-celled metal foams fabricated through metal sintering offers novel mechani-cal, thermal and acoustic properties. Previously, polymer foams were used as a means of absorbing acoustic energy. However, the structural applications of these foams are inherently limited. The metal sintering approach provides a cost-effective means for the mass-production of open-cell foams from a range of materials, in-cluding high-temperature steel alloys. The low Reynolds number fluid properties of sintered steel alloy (FeCrAIY) foams were investigated in a previous study. The static flow resistance of the foams was modeled based on s cylinder and s sphere arranged in a periodic lattice at general incidence to the flow, with the resulting predictions correlating well to measurements. The application of the flow resis-tance in an acoustic model is the primary focus of the present study. The predic-tions for the static flow resistance of the sintered foams are first used in a theo-retical model to determine the characteristic impedances, as well as the propaga-tion constants of the foams. Subsequently, the predicted acoustic performance of the foams is compared to experimental results. Finally, the design space for a simple acoustic absorber incorporating sintered foams is examined, with the ef-fects of absorber size, foam selection, and foam spacing explored.

  14. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  15. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  16. Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery

    Science.gov (United States)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Anderson, Marc; Kontturi, Kyösti

    2015-03-01

    In recent studies, the employment of the aqueous solution system comprised of Cu(II)-Cu(I)-Cl system was addressed for massive energy storage in Redox Flow Batteries (RFBs) [5,6], providing important practical advantages compared to the widespread all-vanadium or Zn/Br systems [5]. The substitution of vanadium electrolytes by copper-chloride electrolytes allows the simplification of the process and notably reduces the cost, allowing for a better commercialization of RFBs. Here, a complete physico-chemical characterization of positive copper electrolytes and their electrochemical performance using different supporting electrolytes, HCl and CaCl2, is presented. Once the physical properties and the electrochemical performance of each one of the supporting electrolytes were determined, the final composition of supporting electrolyte for this Cu(II)/Cu(I) redox couple could be optimized by mixing different sources of chloride, regarding its practical application in the all-copper RFB.

  17. Comparative Evaluation of Firefighting Foam Agents

    Science.gov (United States)

    1979-08-01

    end is hydrophilic, or water loving, interfacial equilibrium condition. and the other is hydrophobic and/or oleophobic ; that is, water and oil...controllable oleophobic and foam surface. this hydrocarbon film hydrophilic properties. These proper- in itself is not destructive to the ties provide a...Yw + Yi ) forms an oleophobic or oil-repelling where: SC spreading coefficient of barrier at the interface btetween the the aqueous fluorocarbon

  18. Effect of frozen storage on the foaming properties of wheat gliadin.

    Science.gov (United States)

    Wang, Pei; Tao, Han; Wu, Fengfeng; Yang, Na; Chen, Feng; Jin, Zhengyu; Xu, Xueming

    2014-12-01

    In this study, the effect of frozen storage on the foaming properties of wheat gliadin was investigated and further elucidated by evaluating its physicochemical changes. The foaming volumes of gliadin solution decreased while the foaming stability increased during the frozen storage. This was directly attributed to decreased gliadin content and increased foam density and protein concentration involved in the foams. A more rigid conformation was observed when the frozen storage time increased: the α-helix structure increased at the cost of β-sheet and unordered structure with the decreased surface hydrophobicity and increased surface tension of gliadin aqueous solutions. The percentage of γ-gliadin within gliadin foams gradually decreased, indicating that γ-gliadin was the most sensitive to freezing and the main contributor to the weakened foaming properties during the frozen storage. This study extended the knowledge of gliadin deterioration upon frozen storage and might contribute to the better understanding of frozen dough quality loss.

  19. Flow condensation in tube filled with annular metal foam%内壁填充环状金属泡沫的管内流动凝结换热

    Institute of Scientific and Technical Information of China (English)

    徐会金; 屈治国; 杜艳平; 何雅玲; 陶文铨; 卢天健

    2011-01-01

    通过采用在圆管内壁填充环状金属泡沫的方法强化管内对流凝结换热,实验研究了制冷剂R134a在内壁填充环状金属泡沫管内的流动凝结的压降和换热,克服了完全填充金属泡沫管流动阻力大的缺点.用于计算传热系数的管壁温度通过热电偶测量得到.综合分析了质量流速和两相流体干度对流动凝结压降及传热系数的影响.研究结果表明内壁填充环状金属泡沫管压降远大于光管,压降随质量流速和干度的增加而迅速增大且呈非线性.通过壁面温度分布和温度波动对内壁填充环状金属泡沫管内的两相流型进行判别.发现影响该类强化管凝结换热的两种主要流型:分层流和环状流.内壁填充环状金属泡沫管的凝结传热系数大于光管,且随着质量流速和干度的增加传热系数增大,该类强化管流动凝结传热系数是光管的2倍左右.%The tube with internally sintered annular metal foam layer is used to enhance the flow condensation heat transfer. The pressure drop and heat transfer of flow condensation for refrigerant R134a in the tube partially filled with annular metal foam are experimentally investigated to overcome the disadvantage of large pressure drop for tubes fully filled with metal foam. The tube wall temperatures are measured with thermal couples to determine the heat transfer coefficient. The effects of mass flux and vapor quality of two-phase fluid on the pressure drop and heat transfer coefficient are analyzed accordingly. It is found that the pressure drop of tubes partially filled with metal-foam is much higher than that of smooth tubes and the pressure drop increases non-linearly and greatly as the mass flux and vapor quality increase. The flow regime is predicted by monitoring the distribution and fluctuation of crosssection temperatures, from which the stratified wavy flow and annular flow are detected. It is also revealed that the flow condensation heat

  20. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  1. The science of foaming.

    Science.gov (United States)

    Drenckhan, Wiebke; Saint-Jalmes, Arnaud

    2015-08-01

    The generation of liquid foams is at the heart of numerous natural, technical or scientific processes. Even though the subject of foam generation has a long-standing history, many recent progresses have been made in an attempt to elucidate the fundamental processes at play. We review the subject by providing an overview of the relevant key mechanisms of bubble generation within a coherent hydrodynamic context; and we discuss different foaming techniques which exploit these mechanisms.

  2. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  3. Aqueous flow and transport in analog systems of fractures embedded in permeable matrix

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Butts, Michael Brian; Jensen, Karsten Høgh

    1999-01-01

    different configurations: (1) matrix only, (2) and (3) matrix blocks containing single fractures of different mean apertures, and (4) a brickwork pattern setup simulating a tortuous multiple fracture network. The observed partitioning of flow and solute concentrations suggested mass exchange between...

  4. Dynamic compressive behavior of foamed polyethylene film

    Directory of Open Access Journals (Sweden)

    Tateyama Kohei

    2015-01-01

    Full Text Available The foamed film as the shock absorption material has attracted much attention because it is thin (100 μm ∼ 400 μm and has a closed cell structure. However, the dynamic mechanical properties have not been reported in the foamed film. The purpose of this study is to elucidate the compressive behavior of the foamed polyethylene film at the wide strain rate range. First, the new compressive test apparatus for the dynamic strain rate, the drop-weight testing machine with opposed load cell, was developed, which can be also evaluated the dynamic stress equilibrium of the specimen. It is confirmed that the compressive flow stress increased with increasing the strain rate, regardless of the film thickness. The foamed polyethylene film has the high strain rate sensitivity in the quasi-static deformation. On the other hand, there is almost no change of the strain rate sensitivity in the dynamic and the impact deformation. In order to investigate the mechanism of strain rate dependence, the foamed polyethylene film was observed by X-ray computed tomography scanner before and after compressive test. The fracture of the closed cell only occurred in the quasi-static deformation. It was clarified that the strain rate sensitivity of the foamed film depends strongly on that of the construction material, polyethylene.

  5. Shape memory polymer foams

    Science.gov (United States)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  6. Operator Spin Foam Models

    CERN Document Server

    Bahr, Benjamin; Kamiński, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2010-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes...

  7. Anionic Polyelectrolyte-Cationic Surfactant Interactions in Aqueous Solutions and Foam Films Stability Interactions entre polyélectrolytes anioniques et tensioactifs cationiques en solutions aqueuses et stabilité des films de mousses

    Directory of Open Access Journals (Sweden)

    Langevin D.

    2006-12-01

    Full Text Available The objective of this work is to study polymer/surfactant interactions in aqueous solution and at the air/water interface. These interations are involved in many physicochemical phenomena, such as colloidal stabilization and wettability which are of major importance in oil application as for exemple drilling muds. More precisely, we have attempted to characterize interactions between a non surface active anionic copolymer (acrylamide/acrylamide sulfonate and an oppositely charged cationic surfactant (C12 TAB. Our results show a synergestic surface tension lowering (coadsorption at extremely low surfactant concentrations (10 to the power of (-3 to 10 to the power of (-1 CMC. At higher concentrations, namely above the so called Critical Aggregation Concentration (CAC, polymer-surfactant complexes form in the bulk and the macromolecules precipitate out of the solution. Foam films made from these mixed solutions are stable while C12TAB films are unstable. Disjoining pressure measurements on mixed films with surfactant concentration two orders of magnitude below the CAC show the existence of long range repulsive forces and a discrete film thickness transition. At the CAC, we obtain mixed films with gel-like networks that are strongly affected by the film thinning rate. L'objectif de cette étude est d'étudier les interactions polymère/tensioactif en solution aqueuse et à l'interface eau/air. Ces interactions interviennent dans de nombreux phénomènes physico-chimiques tels que la stabilisation de suspensions colloïdales et la mouillabilité qui sont d'une importance majeure dans les applications pétrolières comme, par exemple, les boues de forage. Plus précisément, nous avons essayé de caractériser les interactions entre un copolymère anionique n'ayant pas d'activité de surface (acrylamide/acrylamide sulfoné avec un tensioactif de charge opposée cationique (C12TAB. Nos résultats montrent une diminution synergique de la tension

  8. Foam Glass for Construction Materials: Foaming Mechanism and Thermal Conductivity

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  9. Application of sustainable foaming agents to control the mobility of carbon dioxide in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Roozbeh Rafati

    2012-12-01

    Full Text Available Carbon dioxide (CO2 flooding is a conventional process in which the CO2 is injected into the oil reservoir to increase the quantity of extracting oil. This process also controls the amount of released CO2 as a greenhouse gas in the atmosphere which is known as CO2 sequestration process. However, the mobility of the CO2 inside the hydrocarbon reservoir is higher than the crude oil and always viscous fingering and gravity override problems occur during a CO2 injection. The most common method to overcome these problems is to trap the gas bubbles in the liquid phase in the form of aqueous foam prior to CO2 injection. Although, the aqueous foams are not thermodynamically stable, special care should be considered to ensure bulk foam preparation and stability. Selection of a proper foaming agent from a large number of available surfactants is the main step in the bulk foam preparation. To meet this purpose, many chemical and crude oil based surfactants have been reported but most of them are not sustainable and have disposal problems. The objective of this experimental study is to employ Lignosulfonate and Alkyl Polyglucosides (APGs as two sustainable foaming agents for the bulk foam stability investigations and foam flooding performance in porous media. In the initial part, the bulk foam stability results showed that APGs provided more stable foams in comparison with Lignosulfonate in all surfactant concentrations. In the second part, the results indicated that the bulk foam stability measurements provide a good indication of foam mobility in porous media. The foaming agent’s concentration which provided the maximum foam stability also gave the highest value of mobility reduction in porous media.

  10. Velocity Field in a Vertical Foam Film

    Science.gov (United States)

    Seiwert, Jacopo; Kervil, Ronan; Nou, Soniraks; Cantat, Isabelle

    2017-01-01

    The drainage of vertical foam films governs their lifetime. For a foam film supported on a rectangular solid frame, when the interface presents a low resistance to shear, the drainage dynamics involves a complex flow pattern at the film scale, leading to a drainage time proportional to the frame width. Using an original velocimetry technique, based on fluorescent foam films and photobleaching, we measure the horizontal and vertical components of the velocity in a draining film, thus providing the first quantitative experimental evidence of this flow pattern. Upward velocities up to 10 cm /s are measured close to the lateral menisci, whereas a slower velocity field is obtained in the center of the film, with comparable downwards and horizontal components. Scaling laws are proposed for all characteristic velocities, coupling gravitational effects, and capillary suction.

  11. Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space

    Directory of Open Access Journals (Sweden)

    Sarafraz M.M.

    2012-01-01

    Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.

  12. Beer foam physics.

    NARCIS (Netherlands)

    Ronteltap, L.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and coalescence we

  13. Chronicles of foam films.

    Science.gov (United States)

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  14. Metal foams: A survey

    Institute of Scientific and Technical Information of China (English)

    Michael; F.; Ashby; LU; Tianjian(卢天健)

    2003-01-01

    The current state-of-the-art in the development of cellular metal foams is reviewed, with focus on their fabrication, mechanical/thermal/acoustic properties, and potential applications as lightweight panels, energy absorbers, heat exchangers, and acoustic liners. Foam property charts with scaling relations are presented, allowing scoping and selection through the use of material indices.

  15. Elasticity and plasticity : foams near jamming

    NARCIS (Netherlands)

    Siemens, Alexander Oltmann Nicolaas

    2013-01-01

    Many materials, like foams, emulsions, suspensions and granular media obtain finite rigidity once their constituent particles are brought in contact. Nevertheless, all these materials can be made to flow by the application of relatively small stresses. By varying thermodynamic (temperature or densit

  16. Toughening of phenolic foam

    Science.gov (United States)

    Shen, Hongbin

    2003-06-01

    Phenolic foam has excellent FST performance with relatively low cost, and thus is an attractive material for many applications. However, it is extremely brittle and fragile, precluding it from load-bearing applications. In order to make it tougher and more viable for structural purposes, an effective approach has been proposed and investigated in this study. Composite phenolic foam with short fiber reinforcements resulted in significant improvement in mechanical performance while retaining FST properties comparable to conventional phenolic foam. For example, composite phenolic foam with aramid fibers exhibited a seven-fold increase in peel resistance together with a five-fold reduction in friability. In shear tests, aramid composite foam endured prolonged loading to high levels of strain, indicating the potential for use in structural applications. On the other hand, glass fiber-reinforced phenolic foam produced substantial improvement in the stiffness and strength relative to the unreinforced counterpart. In particular, the Young's modulus of the glass fiber composite foam was increased by as much as 100% relative to the plain phenolic foam in the foam rise direction. In addition, different mechanical behavior was observed for aramid and glass fiber-reinforced foams. In an attempt to understand the mechanical behavior of composite foam, a novel NDT technique, micro-CT, was used to acquire information on fiber length distribution (FLD) and fiber orientation distribution (FOD). Results from micro-CT measurements were compared with theoretical distribution models, achieving various degrees of agreement. Despite some limitations of current micro-CT technology, the realistic observation and measurement of cellular morphology and fiber distribution within composite foams portend future advances in modeling of reinforced polymer foam. To explain the discrepancy observed in shear stiffness between traditional shear test results and those by the short sandwich beam test, a

  17. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  18. Novel foaming agent used in preparation process of aluminum foams

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The performances of a novel foaming agent used in the preparation process of aluminum foams were investigated,and the effects of some factors,such as addition of the foaming agent,foaming temperature on the porosity,and appearance of aluminum foams were also discussed.Experimental results show that the novel foaming agent has a wide decomposition temperature range and a mild decomposed rate; the foaming agent has the ability to enhance the viscosity of aluminum melt,as a result,an extra viscosifier such as Ca or SiCp is unnecessary while using this foaming agent; the bubble-free zone in material decreases and the foaming efficiency increases with the increase of foaming agent; the bubble-free zone disappears and the foaming efficiency is near 100% when the addition of foaming agent is more than 1.4wt% ; the porosity of the aluminum foam increases with the increase of foaming agent when the addition of foaming agent is less than 2.2wt% .

  19. 泡沫钻井与井筒多相流动试验装置研制%Development of Experimental Unit about Foam Drilling and Multiphase Flowing in Well

    Institute of Scientific and Technical Information of China (English)

    刘宗恩; 韩兵奇; 高旺熙

    2015-01-01

    泡沫钻井在欠平衡钻井工艺中占有重要地位,能解决低压、低渗、易漏地层的钻井难题。研制了泡沫钻井与井筒多相流动试验装置,该装置由井筒模拟系统、起升装置、供液系统、供气系统、采集系统等组成。模拟井筒采用透明有机玻璃材料,实现了试验过程可视化。对装置流体进行实时压力、流量检测,进行泡沫钻井试验定性和定量分析。试验表明,该装置能清晰观察泡沫携带钻屑及钻铤处流体对井壁的冲蚀过程,实时检测钻井液的黏度、流速、密度、剪切力等参数,定量分析钻井液对钻进过程的影响特性。%It is important for foam drilling to drill in drilling technology,and it can solve problems such as drilling in low-pressure,low permeability,leaky layer,and it must be researched deeply. Therefore,an experimental unit about foam drilling and multiphase flowing in well was devel-oped.It is made up of simulation wellbore system,hoisting units,liquid system,gas system,data acquisition system,etc.The transparent Polymethyl methacrylate was used in simulation well-bore,and visualization was achieved.The pressure and flow discharge of the fluid in units was mo-nitored in line,and the qualitative and quantitative analysis was achieved.Tests showed that it was clearly to see the course of the foam drilling fluid carrying cuttings and the fluid eroding well-bore in drill collar,and the parameters of the drilling fluid had been monitored in line,such as vis-cosity,flow rate,density,shearing force,etc.and could analysis the performance of drilling fluid influencing on drilling quantitatively.

  20. Experiments for foam model development and validation.

    Energy Technology Data Exchange (ETDEWEB)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  1. Experimental study and modeling of the rheology and hydraulics in the foam drilling; Estudos experimentais e modelagem da reologia e da hidraulica na perfuracao com espuma

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre L.; Sa, Carlos H.M. de; Lourenco, Affonso M.F.; S. Junior, Valter [PETROBRAS, S.A, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: aleibsohn@cenpes.petrobras.com.br; chsa@cenpes.petrobras.com.br; affonso-lourenco@utulsa.edu; vsj@cenpes.petrobras.com.br

    2000-07-01

    This article describes the extense experimental effort for analyzing the foam stability and rheological properties for application as light drilling fluid. The study considered the influence of the foaming and concentration on the foam rheology and the gas volumetric fraction on the foam rheological properties. Simple correlations were proposed for quantification of the experimental behaviour. Field tests were performed to evaluate one of the foaming agents analyzed in laboratory by using 16 combinations of the gas-fluid flow.

  2. The foaming of lavas

    Science.gov (United States)

    Okeefe, J. A.; Walton, W.

    1976-01-01

    Foaming is of great practical and theoretical significance for volcanic processes on the earth, the moon, and perhaps the meteorite parent bodies. The theory of foams agrees with steelmaking experience to indicate that their presence depends on the existence of solutes in the lavas which reduce the surface tension, and are not saturated. These solutes concentrate at the surface, and are called surfactants. The surfactant responsible for the formation of volcanic ash was not identified; it appears to be related to the oxygen partial pressure above the lava. This fact may explain why lunar and meteoritic melts are not observed to foam. Experimental studies are needed to clarify the process.

  3. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  4. Visualization of the Crystallization in Foam Extrusion Process

    Science.gov (United States)

    Tabatabaei Naeini, Alireza

    In this study, crystal formation of polypropylene (PP) and poly lactic acid (PLA) in the presence of CO2 in foam extrusion process was investigated using a visualization chamber and a CCD camera. The role of pre-existing crystals on the foaming behavior of PP and PLA were studied by characterizing the foam morphology. Visualization results showed that crystals formed within the die before foaming and these crystals affect the cell nucleation behavior and expansion ratio of PP and PLA significantly. Due to the fast crystallization kinetics of PP, crystallinity should be optimum to achieve uniform cell structure with high cell density and high expansion ratio. In PLA, enhancement of crystallinity is crucial for getting foam with a high expansion ratio. It was also visualized that CO2 significantly suppresses the crystallization temperature in PP through the plasticization effect as well as its influence on flow induced crystallinity.

  5. RANS Simulations using OpenFOAM Software

    Science.gov (United States)

    2016-01-01

    Mattias has been active in research in numerical analysis of partial differential equations , electromagnetism, nonlinear stability, optimization... partial differential equations . Consider, for example, the momentum equation for incompressible laminar flow. In vector form this is: ( ) ( ) p1U t ∇ ρ...σε = 1.3 OpenFOAM uses a cell centred finite volume method to solve the partial differential equations of continuum mechanics and fluid flow. In this

  6. Photo-Fenton degradation of the insecticide esfenvalerate in aqueous medium using a recirculation flow-through UV photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, Renata, E-mail: colombo@iqsc.usp.br [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Ferreira, Tanare C.R.; Alves, Suellen A.; Lanza, Marcos R.V. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The photo-Fenton reaction provides an efficient process by which to degrade esfenvalerate in aqueous suspensions. Black-Right-Pointing-Pointer Photo-Fenton oxidation with Fe{sup 3+} is more efficient in degrading esfenvalerate than the Fe{sup 2+}-based reaction. Black-Right-Pointing-Pointer Esfenvalerate was degraded most efficiently by photo-Fenton reaction in the presence of 5 mM Fe{sup 3+} complex and 25 mM hydrogen peroxide at pH 2.5. Black-Right-Pointing-Pointer The degradation of esfenvalerate by photo-Fenton (Fe{sup 3+}) generates organic by-products. Black-Right-Pointing-Pointer Organic compounds present in commercial esfenvalerate-based insecticides affect the degradation process. - Abstract: The aim of the study was to evaluate the efficiencies of photo-Fenton (Fe{sup 2+}) and (Fe{sup 3+}) processes in the degradation of high-concentrations of esfenvalerate (in the form of aqueous emulsion of a commercial formulation) using a recirculation flow-through photoreactor irradiated with UV light from a 15 W lamp (254 nm emission peak). The results obtained using a basic photo-Fenton (Fe{sup 2+}) reaction (esfenvalerate 17 mg L{sup -1}; ferrous sulphate 1 mM; hydrogen peroxide 25 mM; pH 2.5) were compared with those acquired when ferrioxalate (1, 3 or 5 mM) served as the iron source. Degradation of the active component of the commercial formulation was significantly greater, and the rate of oxidation more rapid, using a photo-Fenton (Fe{sup 3+}) process compared with its Fe{sup 2+} counterpart. The most efficient degradation of the insecticide (75% in 180 min) was achieved with a reaction mixture containing 5 mM ferrioxalate. However, under the same experimental conditions, degradation of pure esfenvalerate preceded much faster (99% in 60 min) and was 100% complete within 180 min reaction time.

  7. Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams

    Directory of Open Access Journals (Sweden)

    M. Antunes

    2010-01-01

    Full Text Available This work presents the preparation and characterization of compression-moulded montmorillonite and carbon nanofibre-polypropylene foams. The influence of these nanofillers on the foaming behaviour was analyzed in terms of the foaming parameters and final cellular structure and morphology of the foams. Both nanofillers induced the formation of a more isometric-like cellular structure in the foams, mainly observed for the MMT-filled nanocomposite foams. Alongside their crystalline characteristics, the nanocomposite foams were also characterized and compared with the unfilled ones regarding their dynamic-mechanical thermal behaviour. The nanocomposite foams showed higher specific storage moduli due to the reinforcement effect of the nanofillers and higher cell density isometric cellular structure. Particularly, the carbon nanofibre foams showed an increasingly higher electrical conductivity with increasing the amount of nanofibres, thus showing promising results as to produce electrically improved lightweight materials for applications such as electrostatic painting.

  8. Mathematical models for foam-diverted acidizing and their applications

    Institute of Scientific and Technical Information of China (English)

    Li Songyan; Li Zhaomin; Lin Riyi

    2008-01-01

    Foam diversion can effectively solve the problem of uneven distribution of acid in layers of different permeabilities during matrix acidizing.Based on gas trapping theory and the mass conservation equation,mathematical models were developed for foam-diverted acidizing,which can be achieved by a foam slug followed by acid injection or by continuous injection of foamed acid.The design method for foam-diverted acidizing was also given.The mathematical models were solved by a computer program.Computed results show that the total formation skin factor,wellhead pressure and bottomhole pressure increase with foam injection,but decrease with acid injection.Volume flow rate in a highpermeability layer decreases,while that in a low-permeability layer increases,thus diverting acid to the low-permeability layer from the high-permeability layer.Under the same formation conditions,for foamed acid treatment the operation was longer,and wellhead and bottomhole pressures are higher.Field application shows that foam slug can effectively block high permeability layers,and improve intake profile noticeably.

  9. Foaming in stout beers

    OpenAIRE

    Lee, W. T.; M. G. Devereux

    2011-01-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same m...

  10. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  11. Hyperbranched exopolysaccharide-enhanced foam properties of sodium fatty alcohol polyoxyethylene ether sulfate.

    Science.gov (United States)

    Deng, Quanhua; Li, Haiping; Sun, Haoyang; Sun, Yange; Li, Ying

    2016-05-01

    The foam properties, such as the foamability, foam stability, drainage, coalescence and bulk rheology, of aqueous solutions containing an eco-friendly exopolysaccharide (EPS) secreted by a deep-sea mesophilic bacterium, Wangia profunda SM-A87, and an anionic surfactant, sodium fatty alcohol polyoxyethylene ether sulfate (AES), were studied. Both the foamability and foam stability of the EPS/AES solutions are considerably higher than those of single AES solutions, even at very low AES concentrations, although pure EPS solutions cannot foam. The improved foamability and foam stability arise from the formation of the EPS/AES complex via hydrogen bonds at the interfaces. The synergism between the EPS and AES decreases the surface tension, increases the interfacial elasticity and water-carrying capacity, and suppresses the coalescence and collapse of the foams. The EPS/AES foams are more salt-resistant than the AES foams. This work provides not only a new eco-friendly foam with great potential for use in enhanced oil recovery and health-care products but also useful guidance for designing other environmentally friendly foam systems that exhibit high performance.

  12. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  13. Flow of Aqueous Humor

    Science.gov (United States)

    ... Grant Terms & Conditions Patent & Intellectual Property Policy For Current Awardees FAQs Our Funding Philosophy ... Alzheimer’s Disease Research Macular Degeneration Research National Glaucoma Research ...

  14. On the growth of pneumatic foams.

    Science.gov (United States)

    Karakashev, Stoyan I; Georgiev, Petyr; Balashev, Konstantin

    2013-02-01

    This work reports on the behaviour of tenacious and transient pneumatic foams produced at large range of values of gas delivery rates (or superficial velocities) and surface tensions. Experimental data from the literature and produced in the course of this study were processed and analyzed. The tenacious foams were stabilized via Polyoxiethylene-2 sulfate (SDP(2)S) in presence of 0.024M NaCl and 0.003M AlCl(3) ( CMC = 1.83×10(-2) M) in the concentration range of 3.33×10(-3) M to 3.8×10(-2) M (0.18CMC -2.08CMC corresponding to values of the dynamic surface tension in the range of 42.7mN/m to 37.5mN/m. The range of gas delivery rates was from 20.5ml/min to 482.8ml/min. It was found out that the rate of foam generation coincides with the gas delivery rate until a certain critical value of the latter, beyond which the rate of foam growth exceeds the rate of gas delivery. The level of this exceeding depends on the dynamic surface tension. The lower the value of the dynamic surface tension the larger the level of this exceeding. This rule was found valid until a certain upper limit of the gas delivery rate, at which the dependence on the dynamic surface tension ceases to exist. The second set of experiments was conducted on transient foams. The latter were stabilized by three members of homologue surfactants series: sodium octylsulfate (SOS), sodium decylsulfate (SDeS), and sodium dodecylsulfate (SDS) in the concentration range of 0.01CMC -0.1CMC corresponding to 72.75mN/m to 68.18mN/m. The aqueous solutions of the three surfactant homologues had identical values of static surface tension at the same ratio C/CMC . Bikerman's "unit of foaminess" was measured for each particular case. It was shown that at identical equilibrium surface tensions both the foaminess and the rate of foam decay increase upon lengthening of the surfactant's hydrocarbon chain. It was indicated as well that the foaminess increases linearly upon raising the gas delivery rate until a certain

  15. Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.

    Science.gov (United States)

    Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo

    2015-04-09

    Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased.

  16. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Ajay Bansal

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.775.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.775.31-37 ][Cited by: Scopus 1 |

  17. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids

    Directory of Open Access Journals (Sweden)

    Renu Gupta

    2010-10-01

    Full Text Available Hydrodynamic studies of trickle bed reactors (TBRs are essential for the design and prediction of their performance. The hydrodynamic characteristics involving pressure drop and dynamic liquid saturation are greatly affected by the physical properties of the liquids. In the present study experiments have been carried out in a concurrent downflow air - liquid trickle bed reactor to investigate the dynamic liquid saturation and pressure drop for the water (non-foaming and 3% polyethylene glycol and 4% polyethylene glycol foaming liquids in the gas continuous regime (GCF and foaming pulsing regime (FP. In the GCF regime the dynamic liquid saturation was found to increase with increase in liquid flow rate for non-foaming and foaming liquids. While for 3% and 4% polyethylene glycol solutions the severe foaming was observed in the high interaction regime and the regime is referred to as foaming pulsing (FP regime. The decrease in dynamic liquid saturation followed by a sharp rise in the pressure drop was observed during transition from gas GCF to FP regime. However in the FP regime, a dip in the dynamic liquid saturation was observed. The pressure drop for foaming liquids is observed to be manifolds higher compared to non-foaming liquid in the GCF regime. ©2010 BCREC UNDIP. All rights reserved(Received: 16th January 2010, Revised: 10th February 2010, Accepted: 21st Feberuary 2010[How to Cite: R. Gupta, A. Bansal. (2010. Hydrodynamic Studies on a Trickle Bed Reactor for Foaming Liquids. Bulletin of Chemical Reaction Engineering & Catalysis, 5 (1: 31-37. doi:10.9767/bcrec.5.1.7127.31-37][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.5.1.7127.31-37 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/7127][Cited by: Scopus 1 | ] 

  18. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Gaiser, Peter W.; Anguelova, Magdalena D.

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  19. Behavior of slag foaming caused by blowing gas in molten slags

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.

    2000-10-01

    The relationship between the height of foaming slag and blowing gas flow rate has been investigated at different temperature and with additives such as coal, coke, graphite and CaO, in order to understand the foaming phenomenon in most metallurgical processes comprehensively. On the basis of experimental results, the regressed foam behavior equations ({delta}=b(center dot)V{sup m}) were obtained. Those correlation coefficients were in range from 0.995 to 0.999. It means that the foam behavior equation can be used to describe foaming ability of the slag foaming caused by blowing gas quantitatively. The foaming index {sigma} is only a limited case for of the foam behavior equation and can be used only at high temperature and without additives for the foaming phenomenon caused by blowing gas. It was found also that the large carbonaceous particles could decrease the height of foaming slag, however the fine carbonaceous and CaO powder could increase it. The basicity of the slag affects the height of foaming slag. (author)

  20. Influence of filler selection on twin screw foam granulation.

    Science.gov (United States)

    Rocca, K E; Weatherley, S; Sheskey, P J; Thompson, M R

    2015-01-01

    The influence of filler selection in wet granulation was studied for the novel case where the binder is delivered as an unstable, semi-rigid aqueous foam to an extrusion process. The work primarily examined the impact of differing concentrations of microcrystalline cellulose (Avicel PH® 101) in a formulation with spray-dried α-lactose monohydrate (Flowlac® 100) in regards to wetting and granule nucleation for this relatively new technique known as continuous foam granulation. Foam stability was varied within the work to change its drainage and coarsening behavior atop these powder excipients, by use of different foamable binding agents (METHOCEL™ F4 PLV and METHOCEL™ Premium VLV) as well as by adjusting the foam quality. A static bed penetration test was first used to study the foam behavior in wetting these powders without the processing constraints of an extruder which limit possible liquid-to-solids ratios as well as introduce shear which may complicate interpretation of the mechanism. The test found that the penetration time to saturate these powders decreased as their water absorption capacity increased which in turn decreased the size of the formed nuclei. Differences in the stability of the foamed binder had minimal influence on these attributes of wetting despite its high spread-to-soak behavior. The size of granules produced by extrusion similarly demonstrated sensitivity to the increasing water absorption capacity of the filler and little dependency on foam properties. The different liquid-to-solids ratios required to granulate these different formulations inside the extruder highlighted an evolving concept of powder lubricity for continuous foam granulation.

  1. Foaming in stout beers

    CERN Document Server

    Lee, W T

    2011-01-01

    We review the differences between bubble formation in champagne and other carbonated drinks, and stout beers which contain a mixture of dissolved nitrogen and carbon dioxide. The presence of dissolved nitrogen in stout beers gives them a number of properties of interest to connoisseurs and physicists. These remarkable properties come at a price: stout beers do not foam spontaneously and special technology, such as the widgets used in cans, is needed to promote foaming. Nevertheless the same mechanism, nucleation by gas pockets trapped in cellulose fibres, responsible for foaming in carbonated drinks is active in stout beers, but at an impractically slow rate. This gentle rate of bubble nucleation makes stout beers an excellent model system for the scientific investigation of the nucleation of gas bubbles. The equipment needed is very modest, putting such experiments within reach of undergraduate laboratories. Finally we consider the suggestion that a widget could be constructed by coating the inside of a beer...

  2. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  3. Acoustic absorption behaviour of an open-celled aluminium foam

    CERN Document Server

    Han Fu Sheng; Zhao Yu Yuan; Gibbs, B

    2003-01-01

    Metal foams, especially close-celled foams, are generally regarded as poor sound absorbers. This paper studies the sound absorption behaviour of the open-celled Al foams manufactured by the infiltration process, and the mechanisms involved. The foams show a significant improvement in sound absorption compared with close-celled Al foams, because of their high flow resistance. The absorption performance can be further enhanced, especially at low frequencies, if the foam panel is backed by an appropriate air gap. Increasing the air-gap depth usually increases both the height and the width of the absorption peak and shifts the peak towards lower frequencies. The foam samples with the smallest pore size exhibit the best absorption capacities when there is no air gap, whereas those with medium pore sizes have the best overall performance when there is an air gap. The typical maximum absorption coefficient, noise reduction coefficient and half-width of the absorption peak are 0.96-0.99, 0.44-0.62 and 1500-3500 Hz, r...

  4. Steam foam studies in the presence of residual oil

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.A.; Demiral, B.; Castanier, L.M.

    1992-05-01

    The lack of understanding regarding foam flow in porous media necessitates further research. This paper reports on going work at Stanford University aimed at increasing our understanding in the particular area of steam foams. The behavior of steam foam is investigated with a one dimensional (6 ft. {times} 2.15 in.) sandpack under residual oil conditions of approximately 12 percent. The strength of the in-situ generated foam, indicated by pressure drops, is significantly affected by injection procedure, slug size, and steam quality. The surfactant concentration effect is minor in the range studied. In the presence of residual oil the simultaneous injection of steam and surfactant fails to generate foam in the model even though the same procedure generates a strong foam in the absence of oil. Nevertheless when surfactant is injected as a slug ahead of the steam using a surfactant alternating (SAG) procedure, foam is generated. The suggested reason for the success of SAG is the increased phase mixing that results from steam continually having to reestablish a path through a slug of surfactant solution.

  5. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  6. Foam flotation as a separation process

    Science.gov (United States)

    Currin, B. L.

    1986-01-01

    The basic principles of foam separation techniques are discussed. A review of the research concerning bubble-particle interaction and its role in the kinetics of the flotation process is given. Most of the research in this area deals with the use of theoretical models to predict the effects of bubble and particle sizes, of liquid flow, and of various forces on the aperture and retention of particles by bubbles. A discussion of fluid mechanical aspects of particle flotation is given.

  7. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    Energy Technology Data Exchange (ETDEWEB)

    Small, Leo J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pratt, Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Staiger, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Rachel Irene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chalamala, Babu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soundappan, Thiagarajan [Univ. of Washington, Seattle, WA (United States); Tiwari, Monika [Univ. of Washington, Seattle, WA (United States); Subarmanian, Venkat R. [Univ. of Washington, Seattle, WA (United States)

    2017-01-01

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  8. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    with different gas compositions. The foam glasses were characterised concerning densities, open/closed porosity and crystallinity. We find out, through analytical calculations and experiments, how the thermal conductivity of foam glass depends on density, glass composition and gas composition. Certain glass......Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...

  9. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  10. Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications

    Science.gov (United States)

    Maurya, Sandip; Shin, Sung-Hee; Sung, Ki-Won; Moon, Seung-Hyeon

    2014-06-01

    A simple, single step and environmentally friendly process is developed for the synthesis of anion exchange membrane (AEM) by simultaneous polymerization and quaternization, unlike the conventional membrane synthesis which consists of separate polymerization and quaternization step. The membrane synthesis is carried out by dissolving polyvinyl chloride (PVC) in cyclohexanone along with 4-vinyl pyridine (4VP) and 1,4-dibromobutane (DBB) in the presence of thermal initiator benzoyl peroxide, followed by film casting to get thin and flexible AEMs. The membrane properties such as ion exchange capacity, ionic conductivity and swelling behaviour are tuned by varying the degree of crosslinking. These AEMs exhibit low vanadium permeability, while retaining good dimensional and chemical stability in an electrolyte solution, making them appropriate candidates for non-aqueous vanadium acetylacetonate redox flow battery (VRFB) applications. The optimized membrane displays ion exchange capacity and ionic conductivity of 2.0 mequiv g-1 and 0.105 mS cm-1, respectively, whereas the efficiency of 91.7%, 95.7% and 87.7% for coulombic, voltage and energy parameter in non-aqueous VRFB, respectively. This study reveals that the non-aqueous VRFB performance is greatly influenced by membrane properties; therefore the optimal control over the membrane properties is advantageous for the improved performance.

  11. Sida rhomboidea.Roxb aqueous extract down-regulates in vivo expression of vascular cell adhesion molecules in atherogenic rats and inhibits in vitro macrophage differentiation and foam cell formation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Salunke, Sunita P; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-10-01

    The present study evaluates efficacy of Sida rhomboidea.Roxb (SR) leaves extract in ameliorating experimental atherosclerosis using in vitro and in vivo experimental models. Atherogenic (ATH) diet fed rats recorded significant increment in the serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), very LDL (VLDL), autoantibody against oxidized LDL (Ox-LDL), markers of LDL oxidation and decrement in high-density lipoprotein (HDL) along with increment in aortic TC and TG. The ex vivo LDL oxidation assay revealed an increased susceptibility of LDL isolated from ATH rats to undergo copper mediated oxidation. These set of changes were minimized by simultaneous co-supplementation of SR extract to ATH diet fed rats. Histopathology of aorta and immunolocalization studies recorded pronounced atheromatous plaque formation, vascular calcification, significant elastin derangements and higher expression of macrophage surface marker (F4/80), vascular cell adhesion molecule-1 (VCAM-1) and p-selectin in ATH rats. Whereas, ATH+SR rats depicted minimal evidence of atheromatous plaque formation, calcium deposition, distortion/defragmentation of elastin and accumulation of macrophages along with lowered expression of VCAM-1 and P-selectin compared to ATH rats. Further, monocyte to macrophage differentiation and in vitro foam cell formation were significantly attenuated in presence of SR extract. In conclusion, SR extract has the potency of controlling experimental atherosclerosis and can be used as promising herbal supplement in combating atherosclerosis.

  12. Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams

    Science.gov (United States)

    Kim, Ijung; Worthen, Andrew J.; Johnston, Keith P.; DiCarlo, David A.; Huh, Chun

    2016-04-01

    Nanoparticles are a promising alternative to surfactants to stabilize emulsions or foams in enhanced oil recovery (EOR) processes due to their effectiveness in very harsh environments found in many of the oilfields around the world. While the size-dependent properties of nanoparticles have been extensively studied in the area of optics or cellular uptake, little is known on the effects of nanoparticle size on emulsion/foam generation, especially for EOR applications. In this study, silica nanoparticles with four different sizes (5, 12, 25, and 80 nm nominal diameter) but with the same surface treatment were employed to test their emulsion or foam generation behavior in high-salinity conditions. The decane-in-brine emulsion generated by sonication or flowing through sandpack showed smaller droplet size and higher apparent viscosity as the nanoparticle size decreased. Similarly, the CO2-in-brine foam generation in sandstone or sandpacks was also significantly affected by the nanoparticle size, exhibiting higher apparent foam viscosity as the nanoparticle size decreased. In case of foam generation in sandstone cores with 5 nm nanoparticles, a noticeable hysteresis occurred when the flow velocity was initially increased and then decreased, implying a strong foam generation initially; and then the trapping of the generated foam in the rock pores, as the flow velocity decreased. On the other hand, weak foams stabilized with larger nanoparticles indicated a rapid coalescence of bubbles which prevented foam generation. Overall, stable emulsions/foams were achievable by the smaller particles as a result of greater diffusivity and/or higher number concentration, thus allowing more nanoparticles with higher surface area to volume ratio to be adsorbed at the fluid/fluid interfaces of the emulsion/foam dispersion.

  13. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Bozhilov, Krassimir N; Yan, Dong; Ozkan, Mihrimah; Ozkan, Cengiz S

    2013-11-11

    Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte.

  14. Pore-level mechanics of foam generation and coalescence in the presence of oil.

    Science.gov (United States)

    Almajid, Muhammad M; Kovscek, Anthony R

    2016-07-01

    The stability of foam in porous media is extremely important for realizing the advantages of foamed gas on gas mobility reduction. Foam texture (i.e., bubbles per volume of gas) achieved is dictated by foam generation and coalescence processes occurring at the pore-level. For foam injection to be widely applied during gas injection projects, we need to understand these pore-scale events that lead to foam stability/instability so that they are modeled accurately. Foam flow has been studied for decades, but most efforts focused on studying foam generation and coalescence in the absence of oil. Here, the extensive existing literature is reviewed and analyzed to identify open questions. Then, we use etched-silicon micromodels to observe foam generation and coalescence processes at the pore-level. Special emphasis is placed on foam coalescence in the presence of oil. For the first time, lamella pinch-off as described by Myers and Radke [40] is observed in porous media and documented. Additionally, a new mechanism coined "hindered generation" is found. Hindered generation refers to the role oil plays in preventing the successful formation of a lamella following snap-off near a pore throat.

  15. Generalized entering coefficients: A criterion for foam stability against oil in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Fagan, M.E.; Radke, C.J.

    1993-09-01

    The unique mobility-control properties of foam in porous media make it an attractive choice as an injection fluid for enhanced oil recovery. Unfortunately, in many cases oil has a major destabilizing effect on foam. Therefore, it is important to understand how oil destabilizes foam and what surfactant properties lead to increased stability against oil. To explain the stability of foam in porous media in the presence of oil, we generalize the ideas of spreading and entering behavior using Frumkin-Deryaguin wetting theory. This formulation overcomes the inherent deficiencies in the classical spreading and entering coefficients used to explain foam stability against oil. We find that oil-tolerant foam can be produced by making the oil surface ``water wet``. To test our theoretical ideas, we measure foam-flow resistance through 45--70 {mu}m glass beadpacks, surface and interfacial tensions, and disjoining pressure isotherms for foam and pseudoemulsion films for a variety of surfactant/oil systems. Most notably, we measure pseudoemulsion-film disjoining pressure isotherms for the first time and directly establish that pseudoemulsion film stability controls the stability of the foam in the systems we tested. Moreover, we demonstrate the correspondence between stable pseudoemulsion films, negative entering behavior, and oil-tolerant foams.

  16. Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane-dimethyl sulfoxide solvent mixture

    Science.gov (United States)

    Herr, T.; Fischer, P.; Tübke, J.; Pinkwart, K.; Elsner, P.

    2014-11-01

    Different solvent mixtures were investigated for non-aqueous vanadium acetylacetonate (V(acac)3) redox flow batteries with tetrabutylammonium hexafluorophosphate as the supporting electrolyte. The aim of this study was to increase the energy density of the non-aqueous redox flow battery. A mixture of acetonitrile, dimethyl sulfoxide and 1-3-dioxolane nearly doubles the solubility of the active species. The proposed electrolyte system was characterized by Raman and FT-IR spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge set-up. Spectroscopic methods were applied to understand the interactions between the solvents used and their impact on the solubility. The potential difference between oxidation and reduction of V(acac)3 measured by cyclic voltammetry was about 2.2 V. Impedance spectroscopy showed an electrolyte resistance of about 2400 Ω cm2. Experiments in a charge-discharge test cell achieved coulombic and energy efficiencies of ∼95% and ∼27% respectively. The highest discharge power density was 0.25 mW cm-2.

  17. A non-foaming proteosurfactant engineered from Ranaspumin-2.

    Science.gov (United States)

    Frey, Shelli L; Todd, Jacob; Wurtzler, Elizabeth; Strelez, Carly R; Wendell, David

    2015-09-01

    Advances in biological surfactant proteins have already yielded a diverse range of benefits from dramatically improved survival rates for premature births to artificial photosynthesis. Presented here is the design, development, and analysis of a novel biosurfactant protein we call Surfactant Resisting Foam formatioN (SRFN). Starting with the Tungara frog's foam forming protein Ranaspumin-2, we have engineered a new surfactant protein with a destabilized hinge region to alter the kinetics and equilibrium of the protein structural transition from aqueous globular form to an extended surfactant structure at the air/water interface. SRFN is capable of approximately the same total surface tension reduction, but with the unique property of forming quickly collapsible foams. The difference in foam formation is attributed to the destabilizing glycine substitutions engineered into the hinge region. Surfactants used specifically to increase wettability, such as those used in agricultural applications would benefit from this new proteosurfactant since foamed liquid has greater wind resistance and decreased dispersal. Indeed, given growing concern of organsilicone surfactant effects on declining bee populations, biological surfactant proteins have several unique advantages over more common amphiphiles in that they can be renewably sourced, are environmentally friendly, degrade readily into non-toxic byproducts, and reduce surface tension without deleterious effects on cell membranes.

  18. Using egg albumin foam to extinguish fires

    Directory of Open Access Journals (Sweden)

    Hytham A. Alsaati

    2003-12-01

    Full Text Available Oil, coal and chemical fires are often difficult to put out using water. In certain hydrocarbon fires, protein foam can extinguish fires better than water by keeping air (oxygen away from the flames and by ''blowing'' the flame away from its fuel source. Egg albumin is a relatively inexpensive protein and is representative of foaming proteins, which are candidates for use as fire suppression agents. This paper begins to deal with the effect of the foam bulk pH, foam protein concentration and generating air flow rate into the foam on the fire extinguishing time in laboratory experiments. A Bunsen burner was used to generate a small, controlled laboratory fire within a plastic container, which represented a point source in a partially open room in the experiments. The Bunsen burner represents a gaseous hydrocarbon fire, which can be difficult to extinguish. Both a low pH foam and one made with a high air flow rate favor a reduction in time required to put out the Bunsen burner flame.Chamas produzidas por óleo, carvão e produtos químicos (incêndios provocados são difíceis de ser extinguidos com água. Algumas chamas de hidrocarbonetos podem ser extinguidas por espumas protéicas melhor do que a manutenção de ar (oxigênio fora do alcance das chamas ou pelo sopramento da chama para longe da sua fonte. Albumina de ovo é uma proteína relativamente barata e é representativa dentre as proteínas usadas como espuma para a (supressão extinção de agentes causadores de incêndio. Este artigo trata do estudo do efeito do pH e concentração da espuma protéica, além da geração de ar no interior da espuma, sobre o tempo de extinção de incêndio em experimentos laboratoriais. Nos experimentos um bico de Bunsen foi usado para gerar uma pequena chama, controlada em um container de plástico, representando uma fonte pontual em um ambiente parcialmente aberto. A chama do bico de Bunsen representa uma chama gasosa de hidrocarbonetos, que são dif

  19. An overview of polyurethane foams in higher specification foam mattresses.

    Science.gov (United States)

    Soppi, Esa; Lehtiö, Juha; Saarinen, Hannu

    2015-02-01

    Soft polyurethane foams exist in thousands of grades and constitute essential components of hospital mattresses. For pressure ulcer prevention, the ability of foams to control the immersion and envelopment of patients is essential. Higher specification foam mattresses (i.e., foam mattresses that relieve pressure via optimum patient immersion and envelopment while enabling patient position changes) are claimed to be more effective for preventing pressure ulcers than standard mattresses. Foam grade evaluations should include resiliency, density, hardness, indentation force/load deflection, progressive hardness, tensile strength, and elongation along with essential criteria for higher specification foam mattresses. Patient-specific requirements may include optimal control of patient immersion and envelopment. Mattress cover characteristics should include breathability, impermeability to fluids, and fire safety and not affect mattress function. Additional determinations such as hardness are assessed according to the guidelines of the American Society for Testing and Materials and the International Organization for Standardization. At this time, no single foam grade provides an optimal combination of the above key requirements, but the literature suggests a combination of at least 2 foams may create an optimal higher specification foam mattress for pressure ulcer prevention. Future research and the development of product specification accuracy standards are needed to help clinicians make evidence-based decisions about mattress use.

  20. Mg Alloy Foam Fabrication via Melt Foaming Method

    Institute of Scientific and Technical Information of China (English)

    Donghui YANC; Changhwan SEO; Bo-Young HUR

    2008-01-01

    For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melt foaming method using CaCO3 as blowing agent. It is revealed that the blowing gas to foam the melt is not CO2 but CO, which comes from liquid-solid reaction between Mg melt. The reaction temperature is more than 100℃ lower than CaCO3 decomposition, which makes Mg alloy melts foam into cellular structure much more easily in the temperature range from 690℃ to 750℃.

  1. Foaming and cell flotation in suspended plant cell cultures and the effect of chemical antifoams.

    Science.gov (United States)

    Wongsamuth, R; Doran, P M

    1994-08-01

    Foam development and stability in Atropa belladonna suspensions were investigated as a function of culture conditions. Foaming was due mainly to properties of the cell-free broth and was correlated with protein content; effects due to presence of cells increased towards the end of batch culture. Highest foam levels were measured 11 days after inoculation. Air flow rate was of major importance in determining foam volume; foam volume and stability were also strongly dependent on pH. Foam flotation of plant cells was very effective. After 30 min foaming, ca. 55% of cells were found in the foam; this increased to ca. 75% after 90 min. Polypropylene glycol 1025 and 2025, Pluronic PE 6100, and Antifoam-C emulsion were tested as chemical antifoams. Polypropylene glycol 1025 and Antifoam C at concentrations up to 600 ppm had no adverse effect on growth in shake flasks; Pluronic PE 6100 has an inhibitory effect at all levels tested. Concentrations of polypropylene glycol 2025 and Pluronic PE 6100 as low as 20 ppm reduced foam volumes by a factor of ca. 10. Addition of antifoam reduced k(L)a values in bubble-column and stirred-tank bioreactors. After operation of a stirred reactor for 2 days using Antifoam C for foam control, cell production was limited by oxygen due to the effect of antifoam on mass transfer. Theoretical analysis showed that maximum cell concentrations and biomass levels decline with increasing reactors working volume due to greater consumption of antifoam to prevent foam overflow. The results indicate that when chemical foam control is used in plant cell cultures, head-space volume and tolerable foam levels must be considered to optimize biomass production. (c) 1994 John Wiley & Sons, Inc.

  2. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  3. Foaming in manure based digesters

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occurred in the Danish full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically formatted in the main biogas reactor or in the pre-storage tank and the entrapped solids in the foam...... cause severe operational problems, such as blockage of mixing devices, and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses derived from the reduced biogas production, extra labour work and additional maintenance costs....... Moreover, foaming presents adverse environmental impacts owing to the overflowing of the pre-storage or digester tanks. So far, there has never been thoroughly investigation of foaming problem in manure-based digester, which is the main anaerobic digestion applied in Denmark. The purpose of the present...

  4. Nickel foam-supported polyaniline cathode prepared with electrophoresis for improvement of rechargeable Zn battery performance

    Science.gov (United States)

    Xia, Yang; Zhu, Derong; Si, Shihui; Li, Degeng; Wu, Sen

    2015-06-01

    Porous nickel foam is used as a substrate for the development of rechargeable zinc//polyaniline battery, and the cathode electrophoresis of PANI microparticles in non-aqueous solution is applied to the fabrication of Ni foam supported PANI electrode, in which the corrosion of the nickel foam substrate is prohibited. The Ni foam supported PANI cathode with high loading is prepared by PANI electrophoretic deposition, and followed by PANI slurry casting under vacuum filtration. The electrochemical charge storage performance for PANI material is significantly improved by using nickel foam substrate via the electrophoretic interlayer. The specific capacity of the nickel foam-PANI electrode with the electrophoretic layer is higher than the composite electrode without the electrophoretic layer, and the specific capacity of PANI supported by Ni foam reaches up to 183.28 mAh g-1 at the working current of 2.5 mA cm-2. The present electrophoresis deposition method plays the facile procedure for the immobilization of PANI microparticles onto the surface of non-platinum metals, and it becomes feasible to the use of the Ni foam supported PANI composite cathode for the Zn/PANI battery in weak acidic electrolyte.

  5. Influence of turbulent flow on the corrosion kinetics of API X52 pipeline steel in aqueous solutions containing H{sub 2}S

    Energy Technology Data Exchange (ETDEWEB)

    Galvan-Martinez, Ricardo; Genesca-Llongueras, Juan [Departamento Ingenieria Metalurgica, Facultad Quimica, Universidad Nacional Autonoma de Mexico, UNAM, Ciudad Universitaria, 04510 Mexico D.F. (Mexico); Mendoza-Flores, Juan; Duran-Romero, Ruben [Corrosion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico)

    2004-07-01

    A corrosion process can be influenced by the relative movement between the corroding environment and the metal. This relative movement could increase the heat transfer and the mass transfer of reactants towards and from the surface of the corroding metal, with a consequent increase in the corrosion rate. Also, if solid particles are present, removal of protective films, erosion and wear can occur on the metallic surface. Many industrial processes involve the movement of corrosive liquids in close contact to metallic structures. Therefore, the influence of flow on the corrosion processes is an important issue to be considered in the design and operation of industrial equipment. This influence is complex and many variables are involved. Several observations of flow-accelerated corrosion problems have been documented, particularly in the oil and gas industries, where the combined effect of flow and dissolved gases, such as hydrogen sulphide (H{sub 2}S) and carbon dioxide (CO{sub 2}), is important. Turbulent flow conditions are commonly found in industrial processes. However, few corrosion studies in controlled turbulent flow conditions are available. With the increasing necessity to describe the corrosion of metals in turbulent flow conditions some laboratory hydrodynamic systems have been used with different degrees of success. The use of the rotating cylinder electrode (RCE), as a laboratory hydrodynamic test system, has gained popularity in corrosion studies. This popularity is due to its characteristics, such as, its operation mainly at turbulent flow conditions; its well understood mass transfer properties and its easiness of construction and operation. The aim of the present work is to explore the effect that turbulent flow conditions have on the electrochemical kinetics of steel samples immersed in aqueous environments containing H{sub 2}S. In order to control the turbulent flow conditions in the laboratory, a rotating cylinder electrode (RCE) was used. In

  6. Shape memory polyurethane foams

    Directory of Open Access Journals (Sweden)

    B. K. Kim

    2012-01-01

    Full Text Available Molded flexible polyurethane (PU foams have been synthesized from polypropylene glycol (PPG with different molecular weights (Mw and functionalities (f, and 2,4/2,6-toluene diisocyanate (TDI-80 with water as blowing agent. It was found that the glassy state properties of the foam mainly depended on the urethane group content while the rubbery state properties on the crosslink density. That is, PPG of low MW and low f (more urethane groups provided superior glass state modulus, strength, density, shape fixity and glass transition temperature (Tg, while that of high Mw and high f (higher crosslink density showed high rubbery modulus and shape recovery. Consequently shape fixity of low Mw PPG decreased from 85 to 72% while shape recovery increased from 52 to 63% as the content of high Mw PPG increased from 0 to 40%.

  7. Laser assisted foaming of aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kathuria, Y.P. [Laser X Co. Ltd., Aichi (Japan)

    2001-09-01

    Recently aluminum foams have evoked considerable interest as an alternative material owing to their wide range of applications ranging from microelectronics, through automobiles to aerospace industries. The manufacturing techniques and characterization methods for aluminum foams require further development to achieve effective and economical use of this material. In this communication the authors demonstrate the feasibility of unidirectional and localized expansion of the aluminum foam using the Nd-YAG/CO{sub 2} laser and powder metallurgy. (orig.)

  8. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Directory of Open Access Journals (Sweden)

    Hidefumi Uchiyama

    Full Text Available Electron paramagnetic resonance (EPR-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH radicals and hydrogen (H atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO, and phenyl N-t-butylnitrone (PBN. The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and

  9. EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu.

    Science.gov (United States)

    Uchiyama, Hidefumi; Zhao, Qing-Li; Hassan, Mariame Ali; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2015-01-01

    Electron paramagnetic resonance (EPR)-spin trapping and flow cytometry were used to identify free radicals generated using argon-cold atmospheric plasma (Ar-CAP) in aqueous solutions and intracellularly in comparison with those generated by X-irradiation. Ar-CAP was generated using a high-voltage power supply unit with low-frequency excitation. The characteristics of Ar-CAP were estimated by vacuum UV absorption and emission spectra measurements. Hydroxyl (·OH) radicals and hydrogen (H) atoms in aqueous solutions were identified with the spin traps 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline-N-oxide (M4PO), and phenyl N-t-butylnitrone (PBN). The occurrence of Ar-CAP-induced pyrolysis was evaluated using the spin trap 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) in aqueous solutions of DNA constituents, sodium acetate, and L-alanine. Human lymphoma U937 cells were used to study intracellular oxidative stress using five fluorescent probes with different affinities to a number of reactive species. The analysis and quantification of EPR spectra revealed the formation of enormous amounts of ·OH radicals using Ar-CAP compared with that by X-irradiation. Very small amounts of H atoms were detected whereas nitric oxide was not found. The formation of ·OH radicals depended on the type of rare gas used and the yield correlated inversely with ionization energy in the order of krypton > argon = neon > helium. No pyrolysis radicals were detected in aqueous solutions exposed to Ar-CAP. Intracellularly, ·OH, H2O2, which is the recombination product of ·OH, and OCl- were the most likely formed reactive oxygen species after exposure to Ar-CAP. Intracellularly, there was no practical evidence for the formation of NO whereas very small amounts of superoxides were formed. Despite the superiority of Ar-CAP in forming ·OH radicals, the exposure to X-rays proved more lethal. The mechanism of free radical formation in aqueous solutions and an

  10. Causal spin foams

    CERN Document Server

    Immirzi, Giorgio

    2016-01-01

    I discuss how to impose causality on spin-foam models, separating forward and backward propagation, turning a given triangulation to a 'causal set', and giving asymptotically the exponential of the Regge action, not a cosine. I show the equivalence of the prescriptions which have been proposed to achieve this. Essential to the argument is the closure condition for the 4-simplices, all made of space-like tetrahedra.

  11. Polyurethane Foam Roofing.

    Science.gov (United States)

    1987-04-01

    underfilled a second or third application of foam may be required to completely fill the void . If a second or third application or pour is required, pour(s...often creates other problems such as pinholes, voids (or "holidays") and cracking. Occasionally, small areas of marginal coating coverage may be found on...which can be worked down into small voids , crevices and pinholes. Suitable caulk sealants can also be used to make corrections. Such corrective

  12. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  13. DISCRETE MODELLING OF TWO-DIMENSIONAL LIQUID FOAMS

    Institute of Scientific and Technical Information of China (English)

    Qicheng Sun

    2003-01-01

    Liquid foam is a dense random packing of gas or liquid bubbles in a small amount of immiscible liquid containing surfactants. The liquid within the Plateau borders, although small in volume, causes considerable difficulties to the investigation of the spatial structure and physical properties of foams, and the situation becomes even more complicated as the fluid flows. To solve these problems, a discrete model of two-dimensional liquid foams on the bubble scale is proposed in this work. The bubble surface is represented with finite number of nodes, and the liquid within Plateau borders is discretized into lattice particles. The gas in bubbles is treated as ideal gas at constant temperatures. This model is tested by choosing an arbitrary shape bubble as the initial condition. This then automatically evolves into a circular shape, which indicates that the surface energy minimum routine is obeyed without calling external controlling conditions. Without inserting liquid particle among the bubble channels, periodic ordered and disordered dry foams are both simulated, and the fine foam structures are developed. Wet foams are also simulated by inserting fluid among bubble channels. The calculated coordination number, as a function of liquid fractions, agrees well with the standard values.

  14. Permeability of Aluminium Foams Produced by Replication Casting

    Directory of Open Access Journals (Sweden)

    Maxim L. Cherny

    2012-12-01

    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  15. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  16. Comments on "Cahill's Quantum Foam Inflow Theory of Gravity"

    CERN Document Server

    Martin, T D

    2004-01-01

    We reveal an underlying flaw in Reginald T. Cahill's recently promoted quantum foam inflow theory of gravity. It appears to arise from a confusion of the idea of the Galilean invariance of the acceleration of an individual flow with what is obtained as an acceleration when a homogeneous flow is superposed with an inhomogeneous flow. We also point out that the General Relativistic covering theory he creates by substituting a generalized Painleve-Gullstrand metric into Einstein's field equations leads to absurd results.

  17. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Dan R. Lipsa; Roberts, Richard C; Laramee, Robert S

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  18. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.

  19. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    on a complex geological model for quick feasibility studies, either for onward practical pilot or as justification for more detailed technical study. The simulation showed that Foam model is applicable. The mismatch between history and actual GOR in some periods of injection is due to the complexity...... as quick reference for future general foam pilot simulations at field scale....

  20. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  1. Average foam life and foaming intensity of foaming phenomenon originating from decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.; Wang, Y.; Liang, Z.; Liu, X.; Yao, K.; Zhao, J. [Beijing Univ. of Science and Technology, Metallurgy School (China)

    2003-06-01

    The average foam life anti {tau} and foam intensity i have been defined. The expression of anti {tau} and i were given through the relationship between the gas quantity of carbonate decomposition and time, which could be determined by the mass and heat balance. anti {tau} means the effective foaming endurance time. i is a dimensionless number and means the intensity of the foaming process. With these two parameters and the supplement formation and rupture coefficients (K and k), the foaming process originating from decomposition reaction in the melt can be described quantitatively. Through the experiment in the laboratory, the foam height has been measured during the foaming process originating from reaction of the carbonate decomposition in Na{sub 2}B{sub 4}O{sub 7} melt. By means of the experimental results and through the self-developed calculation program, the foam behaviour parameters (K, k, anti {tau} and i) for the foaming process could be determined under different conditions, such as variations of crucible diameter, added carbonate quantity, initial slag height and foaming agent radius and so on. In this way the foam behaviour of the different foaming processes originating from reaction of carbonate decomposition in Na{sub 2}B{sub 4}O{sub 7} melt would be analysed quantitatively. It was shown that the crucible diameter has little effect on rupture coefficient k, average foam life anti {tau} and foam intensity i, just like the foam caused by blowing gas. However, formation coefficient K was affected by the crucible diameter quite a lot. With increased carbonate and initial slag height, anti {tau} and i increase too. In addition anti {tau} and i are influenced by the particle size of the carbonate added to the Na{sub 2}B{sub 4}O{sub 7} melt. The larger the particle, the lower anti {tau} and i. With addition of the two different sizes of particles, both of them were getting larger. The composition of the melt has also an influence on the foaming process

  2. Microfluidic Foaming: A Powerful Tool for Tailoring the Morphological and Permeability Properties of Sponge-like Biopolymeric Scaffolds.

    Science.gov (United States)

    Costantini, Marco; Colosi, Cristina; Jaroszewicz, Jakub; Tosato, Alessia; Święszkowski, Wojciech; Dentini, Mariella; Garstecki, Piotr; Barbetta, Andrea

    2015-10-28

    Ordered porous polymeric materials can be engineered to present highly ordered pore arrays and uniform and tunable pore size. These features prompted a number of applications in tissue engineering, generation of meta materials, and separation and purification of biomolecules and cells. Designing new and efficient vistas for the generation of ordered porous materials is an active area of research. Here we investigate the potential of microfluidic foaming within a flow-focusing (FF) geometry in producing 3D regular sponge-like polymeric matrices with tailored morphological and permeability properties. The challenge in using microfluidic systems for the generation of polymeric foams is in the high viscosity of the continuous phase. We demonstrate that as the viscosity of the aqueous solution increases, the accessible range of foam bubble fraction (Φb) and bubble diameter (Db) inside the microfluidic chip tend to narrow progressively. This effect limits the accessible range of geometric properties of the resulting materials. We further show that this problem can be rationally tackled by appropriate choice of the concentration of the polymer. We demonstrate that via such optimization, the microfluidic assisted synthesis of porous materials becomes a facile and versatile tool for generation of porous materials with a wide range of pore size and pore volume. Moreover, we demonstrate that the size of interconnects among pores-for a given value of the gas fraction-can be tailored through the variation of surfactant concentration. This, in turn, affects the permeability of the materials, a factor of key importance in flow-through applications and in tissue engineering.

  3. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    Science.gov (United States)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  4. Water-head-driven microfluidic oscillators for autonomous control of periodic flows and generation of aqueous two-phase system droplets.

    Science.gov (United States)

    Dang, Van Bac; Kim, Sung-Jin

    2017-01-17

    Generating periodic flows with an oscillator driven only by water-head pressure has potential for the operation of microfluidic systems without any dynamic off-chip controllers. However, its operational characteristic is not well understood due to complex dynamic interactions of the microfluidic components. Here, we focus on the mechanism of a water-head-driven oscillator and analyze the functions of its flow-switching period (T) and flow rate (Q) in a wide range (0.1 s-5.9 h and 2 μL min(-1)-2 mL min(-1)). We show linear control of T and Q by their corresponding fluidic resistors even with the complex and nonlinear relation of the microfluidic components. This allows independent regulation of T and Q within their operational ranges but we found the two parameters mutually constrain their ranges via fluidic resistance. Also, we characterize the control of T by water-head pressure and present operational ranges of input water-head pressure decrease with increasing output water-head pressure. To show its utility, we apply the oscillator to generate droplets with low interfacial tension aqueous two-phase systems. Our study would be useful and provide the foundation for various functions of water-head-driven microfluidic circuits.

  5. Oil-foam interactions in a micromodel

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, N.S.; Castanier, L.M.

    1997-11-01

    This report presents results of a pore-level visualization study of foam stability in the presence of oil. Many laboratory investigations have been carried out in the absence of oil, but comparatively few have been carried out in the presence of oil. For a field application, where the residual oil saturation may vary from as low as 0 to as high as 40% depending on the recovery method applied, any effect of the oil on foam stability becomes a crucial matter. Sandstone patterns were used in this study. The micromodels used are two-dimensional replicas of the flow path of Berea sandstone etched on to a silicon wafer to a prescribed depth, adapting fabrication techniques from the computer chip industry. After flooding the models up to connate water and residual oil saturations, surfactant flood followed by gas injection to generate foam was done. Visual observations were made using a high resolution microscope and pictures were recorded on videotape before being processed as they appear in this report.

  6. Final Report: Use of Graphite Foam as a Thermal Performance Enhancement of Heavy Hybrid Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klett, James William [ORNL; Conklin, Jim [ORNL

    2011-06-01

    Oak Ridge National Laboratory's graphite foam has the potential to be used as a heat exchanger for the Army's Future Combat System Manned Ground Vehicle and thus has the potential to improve its thermal performance. The computational fluid dynamics (CFD) program FLOW3D was used to develop a new CFD model for the graphite foam to be used in the development of a proper heat exchanger. The program was calibrated by first measuring the properties of the solid foams and determining the parameters to be used in the CFD model. Then the model was used to predict within 5% error the performance of finned foam heat sinks. In addition, the f factors and j factors commonly used to predict pressure drop and heat transfer were calculated for both the solid and finned structures. There was some evidence that corrugating the foams would yield higher j/f ratios than state of the art heat exchangers, confirming previously measured data. Because the results show that the CFD model was validated, it is recommended that the funding for Phases 2 through 5 be approved for the design of both the finned heat exchanger using tubes and round fin structures and the solid foam design using corrugated foams. It was found that the new CFD model using FLOW3D can predict both solid foam heat transfer and finned foam heat transfer with the validated model parameters. In addition, it was found that the finned foam structures exhibited j/f ratios that indicate that significant heat transfer is occurring within the fin structures due to aerodynamically induced flow, which is not present in solid aluminum fin structures. It is possible that the foam surfaces can act as turbulators that increase heat transfer without affecting pressure drop, like the vortex generators seen in state of the art heat exchangers. These numbers indicate that the foam can be engineered into an excellent heat exchanger. It was also found that corrugating the solid foams would increase the j/f ratio dramatically

  7. Scaling up the Fabrication of Mechanically-Robust Carbon Nanofiber Foams

    Directory of Open Access Journals (Sweden)

    William Curtin

    2016-02-01

    Full Text Available This work aimed to identify and address the main challenges associated with fabricating large samples of carbon foams composed of interwoven networks of carbon nanofibers. Solutions to two difficulties related with the process of fabricating carbon foams, maximum foam size and catalyst cost, were developed. First, a simple physical method was invented to scale-up the constrained formation of fibrous nanostructures process (CoFFiN to fabricate relatively large foams. Specifically, a gas deflector system capable of maintaining conditions supportive of carbon nanofiber foam growth throughout a relatively large mold was developed. ANSYS CFX models were used to simulate the gas flow paths with and without deflectors; the data generated proved to be a very useful tool for the deflector design. Second, a simple method for selectively leaching the Pd catalyst material trapped in the foam during growth was successfully tested. Multiple techniques, including scanning electron microscopy, surface area measurements, and mechanical testing, were employed to characterize the foams generated in this study. All results confirmed that the larger foam samples preserve the basic characteristics: their interwoven nanofiber microstructure forms a low-density tridimensional solid with viscoelastic behavior. Fiber growth mechanisms are also discussed. Larger samples of mechanically-robust carbon nanofiber foams will enable the use of these materials as strain sensors, shock absorbers, selective absorbents for environmental remediation and electrodes for energy storage devices, among other applications.

  8. Lost Foam Casting in China

    Institute of Scientific and Technical Information of China (English)

    YE Sheng-ping; WU Zhi-chao

    2006-01-01

    @@ 1. Lost Foam Casting Committee of Foundry Institution of Chinese Mechanical Engineering Society (FICMES) From the beginning of the 1990s, China entered a research and expansion climax in lost foam casting technology realm after the United States, Germany, and Japan etc.

  9. Foaming-electrolyte fuel cell

    Science.gov (United States)

    Nanis, L.; Saunders, A. P.

    1970-01-01

    Foam structure feeds fuel gas solution into electrolyte. Fuel gas reacts at static, three-phase interface between fuel gas, electrolyte, and electrode material. The foam forms an electrical contact between main body of electrolyte and the electrode, and aids in removal of by-products of the chemical reaction.

  10. 罐壁式泡沫系统扑救密封圈火灾试验研究%Experiment research on tank-shell foam extinguishing system of rim seal fire

    Institute of Scientific and Technical Information of China (English)

    任常兴; 王婕; 张欣; 吴伟; 李晋; 涂建新; 徐大军

    2013-01-01

    According to the characteristics and shortage of tank-shell fire fighting system of open-top large floating roof oil tanks , an experiment oil groove of rim seal fire with 30 meters long was designed by the related code , and some foam extinguishing experiments of 3%aqueous film-forming foam concentrate ( AFFF) and 6%fluoroprotein foam concentrate ( FP) were conducted .In the experiment process , foam expansion ratio and 25%drainage time of 3%AFFF and 6%FP were tested on spot , and accorded with the standard of fire extinguish agent , but were both less than testing report value of lab .Moreover, foam flow speed in the foam weir plate and overspread rate on the fire oil surface were determined , and oil fire development condition was observed and recorded .The temperature and heat flow of oil groove fire were contrasted and analyzed with different foam and application rate of foam solu -tion.Furthermore, the effectiveness of tank-shell foam extinguishing system of open-top large floating roof oil tanks for rim seal fire was descried and discussed .The test results showed that 3%AFFF and 6%FP may control and ex-tinguish even the rim seal fire with the effective application density of foam concentrate , and foam type and applica-tion density have important effect on the time of total flooding oil surface .This experiment has some positive refer-ence and engineering application value for foam extinguishing rim seal fire of large floating roof oil tanks with low liquid level.%针对大型浮顶罐罐壁式泡沫灭火系统的特点及不足,依据相关规范要求设计了30m长的密封圈火灾模拟试验油槽,开展了3%型水成膜泡沫液和6%型氟蛋白泡沫液灭火试验。现场测定了泡沫的发泡倍数和析液时间,符合规范要求但略低于检测值。试验过程测定了泡沫在泡沫堰板内的流动速度和燃烧油面的蔓延速度,观察了不同的泡沫液和泡沫混合液供给强度下

  11. Spin foams without spins

    Science.gov (United States)

    Hnybida, Jeff

    2016-10-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. In doing so the sums over spins have been carried out. The boundary data of each n-valent node is explicitly reduced with respect to the local gauge invariance and has a manifest geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  12. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  13. Operator Spin Foams: holonomy formulation and coarse graining

    CERN Document Server

    Bahr, Benjamin

    2011-01-01

    A dual holonomy version of operator spin foam models is presented, which is particularly adapted to the notion of coarse graining. We discuss how this leads to a natural way of comparing models on different discretization scales, and a notion of renormalization group flow on the partially ordered set of 2-complexes.

  14. Foaming behaviour of polymer-surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-MartInez, Alfredo [Departamento de Investigacion en PolImeros y Materiales, Universidad de Sonora, Apartado Postal 130, 83000 Hermosillo, Sonora (Mexico); Maldonado, Amir [Departamento de Fisica, Universidad de Sonora, Apartado Postal 1626, 83000 Hermosillo, Sonora (Mexico)

    2007-06-20

    We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.

  15. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    Directory of Open Access Journals (Sweden)

    Peter W. Gaiser

    2012-04-01

    Full Text Available Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam impedance; wavelength variations in foam thickness, roughness of foam layer interfaces with air and seawater; and foam scattering parameters such as size parameter, and refraction index. Using these, we analyze the scattering, absorption, reflection and transmission in foam and gain insights into why volume scattering in foam is weak; why the main absorption losses are confined to the wet portion of the foam; how the foam impedance matching provides the transmission of electromagnetic radiation in foam and maximizes the absorption; and what is the potential for surface scattering at the foam layers boundaries. We put all these elements together and offer a conceptual understanding for the high, black-body-like emissivity of foam floating on the sea surface. We also consider possible scattering regimes in foam.

  16. Addressing Student Misconceptions Concerning Electron Flow in Aqueous Solutions with Instruction Including Computer Animations and Conceptual Change Strategies.

    Science.gov (United States)

    Sanger, Michael J.; Greenbowe, Thomas J.

    2000-01-01

    Investigates the effects of both computer animations of microscopic chemical processes occurring in a galvanic cell and conceptual-change instruction based on chemical demonstrations on students' conceptions of current flow in electrolyte solutions. Finds that conceptual change instruction was effective at dispelling student misconceptions but…

  17. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors.

    Science.gov (United States)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH(3))(2)](+), with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 degrees C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH(3))(2)](+), by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size approximately 3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min(-1)) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  18. Access to small size distributions of nanoparticles by microwave-assisted synthesis. Formation of Ag nanoparticles in aqueous carboxymethylcellulose solutions in batch and continuous-flow reactors

    Science.gov (United States)

    Horikoshi, Satoshi; Abe, Hideki; Torigoe, Kanjiro; Abe, Masahiko; Serpone, Nick

    2010-08-01

    This article examines the effect(s) of the 2.45-GHz microwave (MW) radiation in the synthesis of silver nanoparticles in aqueous media by reduction of the diaminesilver(i) complex, [Ag(NH3)2]+, with carboxymethylcellulose (CMC) in both batch-type and continuous-flow reactor systems with a particular emphasis on the characteristics of the microwaves in this process and the size distributions. This microwave thermally-assisted synthesis is compared to a conventional heating (CH) method, both requiring a reaction temperature of 100 °C to produce the nanoparticles, in both cases leading to the formation of silver colloids with different size distributions. Reduction of the diaminesilver(i) precursor complex, [Ag(NH3)2]+, by CMC depended on the solution temperature. Cooling the reactor during the heating process driven with 390-Watt microwaves (MW-390W/Cool protocol) yielded silver nanoparticles with sizes spanning the range 1-2 nm. By contrast, the size distribution of Ag nanoparticles with 170-Watt microwaves (no cooling; MW-170W protocol) was in the range 1.4-3.6 nm (average size ~3 nm). The overall results suggest the potential for a scale-up process in the microwave-assisted synthesis of nanoparticles. Based on the present data, a flow-through microwave reactor system is herein proposed for the continuous production of silver nanoparticles. The novel flow reactor system (flow rate, 600 mL min-1) coupled to 1200-Watt microwave radiation generated silver nanoparticles with a size distribution 0.7-2.8 nm (average size ca. 1.5 nm).

  19. A comparison of the thermal resistance of a foam neoprene wetsuit to a wetsuit fabricated from aerogel-syntactic foam hybrid insulation

    Energy Technology Data Exchange (ETDEWEB)

    Bardy, Erik [Department of Mechanical and Aerospace Engineering State University of New York at Buffalo 318 Jarvis Hall, Buffalo, NY 14260-4400 (United States); Mollendorf, Joseph [Department of Mechanical and Aerospace Engineering State University of New York at Buffalo 318 Jarvis Hall, Buffalo, NY 14260-4400 (United States); Pendergast, David [Department of Mechanical and Aerospace Engineering State University of New York at Buffalo 318 Jarvis Hall, Buffalo, NY 14260-4400 (United States)

    2006-09-21

    The purpose of this study was to compare the thermal resistance of a wetsuit fabricated from aerogel-syntactic foam hybrid insulation developed by Bardy et al [1] to a foam neoprene wetsuit. The thermal resistance of the hybrid wetsuit and a foam neoprene wetsuit was measured on a human test subject in water at 0.25 MPa (15.25 msw) of hyperbaric pressure. Measurements showed that although certain body regions of the hybrid wetsuit had a higher thermal resistance than foam neoprene, the overall thermal resistance of the hybrid wetsuit was 41% less than a foam neoprene wetsuit, and 51-88% less than predicted values. This was postulated, based on sample testing in water, to be due, in part, to increased heat flow through the hybrid insulation from water filled surface depressions at higher pressures. Other factors may have included water flow over the skin and the presence of thermal bridges in the insulation. Due to a smooth surface and tighter fit, the measured thermal resistance of the foam neoprene wetsuit was within 2-23% of the values predicted using data from Bardy et al [2]. It was concluded that unless the surface depressions can be eliminated, and alternative methods for a tighter fit achieved, foam neoprene provides more thermal protection.

  20. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    Energy Technology Data Exchange (ETDEWEB)

    Vila, M.; Sanchez-Salcedo, S.; Cicuendez, M.; Izquierdo-Barba, I. [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Vallet-Regi, Maria, E-mail: vallet@farm.ucm.es [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2011-08-15

    Highlights: {yields} 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. {yields} HA stable foams coated with biopolymers. {yields} Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 {mu}mol/g in the case of Pb{sup 2+}, 378 {mu}mol/g of Cu{sup 2+} and 316 {mu}mol/g of Cd{sup 2+}. These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  1. Solvent stimulated actuation of polyurethane-based shape memory polymer foams using dimethyl sulfoxide and ethanol

    Science.gov (United States)

    Boyle, A. J.; Weems, A. C.; Hasan, S. M.; Nash, L. D.; Monroe, M. B. B.; Maitland, D. J.

    2016-07-01

    Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased T g when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

  2. Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds.

    Science.gov (United States)

    Costantini, Marco; Colosi, Cristina; Mozetic, Pamela; Jaroszewicz, Jakub; Tosato, Alessia; Rainer, Alberto; Trombetta, Marcella; Święszkowski, Wojciech; Dentini, Mariella; Barbetta, Andrea

    2016-05-01

    In the design of scaffolds for tissue engineering applications, morphological parameters such as pore size, shape, and interconnectivity, as well as transport properties, should always be tailored in view of their clinical application. In this work, we demonstrate that a regular and ordered porous texture is fundamental to achieve an even cell distribution within the scaffold under perfusion seeding. To prove our hypothesis, two sets of alginate scaffolds were fabricated using two different technological approaches of the same method: gas-in-liquid foam templating. In the first one, foam was obtained by insufflating argon in a solution of alginate and a surfactant under stirring. In the second one, foam was generated inside a flow-focusing microfluidic device under highly controlled and reproducible conditions. As a result, in the former case the derived scaffold (GF) was characterized by polydispersed pores and interconnects, while in the latter (μFL), the porous structure was highly regular both with respect to the spatial arrangement of pores and interconnects and their monodispersity. Cell seeding within perfusion bioreactors of the two scaffolds revealed that cell population inside μFL scaffolds was quantitatively higher than in GF. Furthermore, seeding efficiency data for μFL samples were characterized by a lower standard deviation, indicating higher reproducibility among replicates. Finally, these results were validated by simulation of local flow velocity (CFD) inside the scaffolds proving that μFL was around one order of magnitude more permeable than GF.

  3. Coarse graining methods for spin net and spin foam models

    CERN Document Server

    Dittrich, Bianca; Martin-Benito, Mercedes

    2011-01-01

    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.

  4. Synthesis of nanoparticles with frog foam nest proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyo-Jick, E-mail: choihc@ucmail.uc.edu; Ebersbacher, Charles F. [University of Cincinnati, School of Energy, Environmental, Biological and Medical Engineering (United States); Myung, Nosang V. [University of California, Riverside, Department of Chemical and Environmental Engineering (United States); Montemagno, Carlo D., E-mail: montemcd@ucmail.uc.edu [University of Cincinnati, School of Energy, Environmental, Biological and Medical Engineering (United States)

    2012-09-15

    Microemulsions provide an efficient means of synthesizing monodispersed nanoparticles. Recent studies have demonstrated potential problems of surfactant due to the interaction with nanoparticles/precursors. To solve the problems, various types of chemical surfactants have been tested, but natural biosurfactants have not received a great deal of attention in engineering application. Here, we report the formation of microemulsions using frog foam nest protein, ranaspumin-2 (RSN-2), based on the hypothesis that RSN-2 assembles at the water-oil interface as a result of conformational change into an extended form. Fluorescence spectroscopic studies showed that RSN-2 undergoes a reversible transition between extended and globular conformation in foams/microemulsions and aqueous solution, respectively. Microemulsions were formulated with RSN-2 to synthesize 8-10 nm superparamagnetic iron oxide nanoparticles by mixing precursor-containing microemulsions with base-containing microemulsions. RSN-2 proteins were recovered from microemulsions and found to be recycled to make foams and microemulsions. Fluorescence spectroscopic analyses showed that RSN-2 maintained its mechanical agitation-induced amphiphilicity throughout multiple foaming/defoaming processes. These results suggest that conformational flexibility and structural stability of RSN-2 in aggressive environments enable the recycled use of RSN-2, elucidating the cost-effective advantage.

  5. Synthesis of nanoparticles with frog foam nest proteins

    Science.gov (United States)

    Choi, Hyo-Jick; Ebersbacher, Charles F.; Myung, Nosang V.; Montemagno, Carlo D.

    2012-09-01

    Microemulsions provide an efficient means of synthesizing monodispersed nanoparticles. Recent studies have demonstrated potential problems of surfactant due to the interaction with nanoparticles/precursors. To solve the problems, various types of chemical surfactants have been tested, but natural biosurfactants have not received a great deal of attention in engineering application. Here, we report the formation of microemulsions using frog foam nest protein, ranaspumin-2 (RSN-2), based on the hypothesis that RSN-2 assembles at the water-oil interface as a result of conformational change into an extended form. Fluorescence spectroscopic studies showed that RSN-2 undergoes a reversible transition between extended and globular conformation in foams/microemulsions and aqueous solution, respectively. Microemulsions were formulated with RSN-2 to synthesize 8-10 nm superparamagnetic iron oxide nanoparticles by mixing precursor-containing microemulsions with base-containing microemulsions. RSN-2 proteins were recovered from microemulsions and found to be recycled to make foams and microemulsions. Fluorescence spectroscopic analyses showed that RSN-2 maintained its mechanical agitation-induced amphiphilicity throughout multiple foaming/defoaming processes. These results suggest that conformational flexibility and structural stability of RSN-2 in aggressive environments enable the recycled use of RSN-2, elucidating the cost-effective advantage.

  6. A Total Organic Aqueous Redox Flow Battery Employing Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tianbiao L.; Wei, Xiaoliang; Nie, Zimin; Sprenkle, Vincent L.; Wang, Wei

    2016-02-04

    The worldwide increasing energy demands and rising CO2 emissions motivate a search of new technologies to take advantage of renewable energy such as solar and wind. Rechargeable redox flow batteries (RFBs) with their high power density, high energy efficiency, scalability (up to MW and MWh), and safety features are one suitable option for integrating such energy sources and overcoming their intermittency. Source limitation and forbidden high system costs of current RFBs technologies impede wide implementation. Here we report a total organic aqueous redox flow battery (OARFB), using low cost and sustainable MV (anolyte) and 4-HO-TEMPO (catholyte), and benign NaCl supporting electrolyte. The electrochemical properties of the organic redox active materials were studied using cyclic voltammetry and rotating disk electrode voltammetry. The MV/4-HO-TEMPO ARFB has an exceptionally high cell voltage, 1.25 V. Prototypes of the organic ARFB can be operated at high current densities ranging from 20 to 100 mA/cm2, and deliver stable capacity for 100 cycles with nearly 100% coulombic efficiency. The overall technical characters of the MV/4-HO-TEMPO ARFB are very attractive for continuous technic development.

  7. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes; Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-waessrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Tatjana

    2015-07-01

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac){sub 3}) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac){sub 3}. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac){sub 3} from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac){sub 3}. In galvanostatic charge-discharge tests, single cell V(acac){sub 3} RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac){sub 3} RFB is able to operate at temperatures such as 0 C and -25 C.

  8. Modeling of Mold Filling and Solidification in Lost Foam Casting

    Institute of Scientific and Technical Information of China (English)

    Fengjun LI; Houfa SHEN; Baicheng LIU

    2003-01-01

    Based on the characteristics of the lost foam casting (LFC) and the artificial neural network technique, a mathematicalmodel for the simulation of the melt-pattern interface movement during the mold filling of LFC has been proposed andexperimentally verified. The simulation results are consistent with the experiments in both the shapes of melt frontand filling sequences. According to the calculated interface locations, the fluid flow and the temperature distributionsduring the mold filling and solidification processes were calculated, and the shrinkage defect of a lost foam ductileiron casting was predicted by considering the mold wall movement in LFC. The simulation method was applied tooptimize the casting design of lost foam ductile iron castings. It is shown that the model can be used for the defectsprediction and for casting design optimization in the practical LFC production.

  9. Radiation effects on the foaming of atactic polypropylene with supercritical carbon dioxide

    Science.gov (United States)

    Yang, Chenguang; Zhe, Xing; Zhang, Mingxing; Wang, Mouhua; Wu, Guozhong

    2017-02-01

    Atactic polypropylene (PP) samples with melt flow indices (MFI) of 7.0 g/10 min were irradiated and then foamed with supercritical carbon dioxide (scCO2). A detailed investigation was carried out to understand the effect of radiation on the scCO2 foaming of polypropylene. Variations in the molecular weight, branching degree, crystallinity, and melting and crystallization temperatures of irradiated PP were investigated. The cell diameter, cell density, volume expansion ratio and foaming rate were analyzed in detail under different conditions. It was found that the cell structure of PP foam became more uniform and the foaming temperature window increased to 10 °C. This compares favorably to the 4 °C observed with pristine atactic PP. The best cell morphology was observed at a dose of 30 kGy. The corresponding average diameter and cell density were 16.4 μ m and 5.7×107 cells/cm3, respectively.

  10. EFFECTS OF COMPRESSED AIR FOAM APPLICATION ON HEAT

    Directory of Open Access Journals (Sweden)

    Adam THOMITZEK

    2015-12-01

    Full Text Available This article evaluates the knowledge obtained in firefighting tests using compressed air foam system (CAFS within a confined space. Six experiments were conducted for verification during the cooling of rooms and the self-extinguishing effect. The simulation was for a fully developed fire within a room. The fuel was chosen to simulate ordinary combustible materials utilized in residential areas. Mantel thermocouples were placed in the rooms to record the temperature changes. Compressed air foam was first applied with a standard fire hose nozzle to the ceiling and then to the epicenter of fire. Fire extinguishing was initiated after reaching the desired temperature in the room. The temperature for the start of fire extinguishing matched the third phase of development of a fire. Fire extinguishing was terminated after no obvious signs of fire were shown in epicenter of fire. The outputs of the experiments were evaluated on the basis of the amount of time passed for the temperature to drop below the suggested limit. Individual experiments were also conducted with various different admixing foaming agents over different locations. In the experiments, it has been verified that the application of compressed air foam has a positive effect on room cooling. Use of a compressed air foaming agent does not allow for the development of steam that can scald firefighters and reduce visibility. Furthermore, the extinguishing agent used is more efficient utilizing less water flow out of the fire area.

  11. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    Science.gov (United States)

    Pidchenko, I.; Heberling, F.; Kvashnina, KO; Finck, N.; Schild, D.; Bohnert, E.; Schäfer, T.; Rothe, J.; Geckeis, H.; Vitova, T.

    2016-05-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too.

  12. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  13. Spin Foams Without Spins

    CERN Document Server

    Hnybida, Jeff

    2015-01-01

    We formulate the spin foam representation of discrete SU(2) gauge theory as a product of vertex amplitudes each of which is the spin network generating function of the boundary graph dual to the vertex. Thus the sums over spins have been carried out. We focus on the character expansion of Yang-Mills theory which is an approximate heat kernel regularization of BF theory. The boundary data of each $n$-valent node is an element of the Grassmannian Gr(2,$n$) which carries a coherent representation of U($n$) and a geometrical interpretation as a framed polyhedron of fixed total area. Ultimately, sums over spins are traded for contour integrals over simple poles and recoupling theory is avoided using generating functions.

  14. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  15. Composite carbon foam electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Equipment compatibility and logistics assessment for containment foam deployment.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Vincent M.; Martell, Mary-Alena; Jones, Joseph A.

    2005-09-01

    The deployment of the Joint Technical Operations Team (JTOT) is evolving toward a lean and mobile response team. As a result, opportunities to support more rapid mobilization are being investigated. This study investigates three specific opportunities including: (1) the potential of using standard firefighting equipment to support deployment of the aqueous foam concentrate (AFC-380); (2) determining the feasibility and needs for regional staging of equipment to reduce the inventory currently mobilized during a JTOT response; and (3) determining the feasibility and needs for development of the next generation AFC-380 to reduce the volume of foam concentrate required for a response. This study supports the need to ensure that requirements for alternative deployment schemes are understood and in place to support improved response activities.

  17. Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones

    Science.gov (United States)

    Bernini, Diego; Wiedenbeck, Michael; Dolejš, David; Keppler, Hans

    2013-01-01

    We have performed phase equilibrium experiments in the system forsterite-enstatite-pyrope-H2O with MgCl2 or MgF2 at 1,100 °C and 2.6 GPa to constrain the solubility of halogens in the peridotite mineral assemblage and the fluid-mineral partition coefficients. The chlorine solubility in forsterite, enstatite and in pyrope is very low, 2.1-3.9 and 4.0-11.4 ppm, respectively, and it is independent of the fluid salinity (0.3-30 wt% Cl), suggesting that some intrinsic saturation limit in the crystal is reached already at very low chlorine concentrations. Chlorine is therefore exceedingly incompatible in upper-mantle minerals. The fluorine solubility is 170-336 ppm in enstatite and 510-1,110 ppm in pyrope, again independent of fluid salinity. Forsterite dissolves 1,750-1,900 ppm up to a fluid salinity of 1.6 wt% F. At higher fluorine contents in the system, forsterite is replaced by the minerals of the humite group. The lower solubility of chlorine by three orders of magnitude when compared to fluorine is consistent with increasing lattice strain. Fluid-mineral partition coefficients are 100-102 for fluorine and 103-105 for chlorine. Since the latter values are orders of magnitude higher than those for hydroxyl partitioning, fluid flow from the subducting slab through the mantle wedge will lead to an efficient sequestration of H2O into the nominally anhydrous minerals in the wedge, whereas chlorine becomes enriched in the residual fluid. Simple mass balance calculations reveal that rock-fluid ratios of up to >3,000 are required to produce the elevated Cl/H2O ratios observed in some primitive arc magmas. Accordingly, fluid flow from the subducted slab into the zone of melting in the mantle wedge does not only occur rapidly in narrow channels, but at least in some subduction zones, fluid pervasively infiltrates the mantle peridotite and interacts with a large volume of the mantle wedge. Together with the Cl/H2O ratios of primitive arc magmas, our data therefore constrain

  18. Amorphous microcellular polytetrafluoroethylene foam film

    Science.gov (United States)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  19. Spin Foams and Canonical Quantization

    CERN Document Server

    Alexandrov, Sergei; Noui, Karim

    2011-01-01

    This review is devoted to the analysis of the mutual consistency of the spin foam and canonical loop quantizations in three and four spacetime dimensions. In the three-dimensional context, where the two approaches are in good agreement, we show how the canonical quantization \\`a la Witten of Riemannian gravity with a positive cosmological constant is related to the Turaev-Viro spin foam model, and how the Ponzano-Regge amplitudes are related to the physical scalar product of Riemannian loop quantum gravity without cosmological constant. In the four-dimensional case, we recall a Lorentz-covariant formulation of loop quantum gravity using projected spin networks, compare it with the new spin foam models, and identify interesting relations and their pitfalls. Finally, we discuss the properties which a spin foam model is expected to possess in order to be consistent with the canonical quantization, and suggest a new model illustrating these results.

  20. Mechanical Property of Foamed Metal

    Institute of Scientific and Technical Information of China (English)

    LIU Pei-sheng; SANG Hai-bo

    2004-01-01

    A comprehensive study on the mechanical behavior of foamed metals was demonstrated. The relationship among their mechanical properties, preparation method, porosity and the structure was briefly studied as well.

  1. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  2. A generalized entering coefficient to characterize foam stability against oil in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Fagan, M.E.; Radke, C.J.

    1992-11-01

    This work unifies the two approaches presently accounting for oil-foam interactions: spreading behavior and thin-film stability. We demonstrate the correspondences between stable pseudoemulsion films, negative entering coeffients, and oil-tolerant foams. Frumkin-Deryaguin theory is applied to the problem of oil-foam interactions and reveals that stable pseudoemulsion films are essential to maintain oil-tolerant foams. This hypothesis is critically tested by comparing steady-state foam flow behavior in glass beadpacks that contain residual oil, with newly measured, equilibrium disjoining pressure isotherms for both foam and pseudoemulsion films, along with bulk surface and interfacial tensions. Experimental results together with similar data on a wide variety of systems lead us to conclude that highly repulsive pseudoemulsion film disjoining pressure isotherms (i.e., stable pseudoemulsion films) produce negative generalized entering coefficients and oil-tolerant foams. This in turn provides us with a surfactant design criterion needed to produce oil-tolerant foam in porous media.

  3. Stability of metallic foams studied under microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Wuebben, Th [University of Bremen (Germany); Stanzick, H [Fraunhofer-Institute (IFAM), Bremen (Germany); Banhart, J [Hahn-Meitner-Institute Berlin, (Germany); Odenbach, S [University of Bremen (Germany)

    2003-01-15

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  4. Composite and Nanocomposite Metal Foams

    Directory of Open Access Journals (Sweden)

    Isabel Duarte

    2016-01-01

    Full Text Available Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  5. Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell

    NARCIS (Netherlands)

    Jeremiasse, A.W.; Hamelers, H.V.M.; Saakes, M.; Buisman, C.J.N.

    2010-01-01

    Valuable, “green” H2 can be produced with a microbial electrolysis cell (MEC). To achieve a high volumetric production rate of high purity H2, a continuous flow MEC with an anion exchange membrane, a flow through bioanode and a flow through Ni foam cathode was constructed. At an electrical energy in

  6. Microcellular foams made from gliadin.

    Science.gov (United States)

    Quester, S; Dahesh, M; Strey, R

    2014-01-01

    We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an atmosphere of carbon dioxide or nitrogen in a high-pressure cell at 250 bar. Subsequent heating to temperatures close to but still below 100 °C followed by sudden expansion and simultaneous cooling resulted in closed-cell microcellular foam. The spherical gliadin templates along with the resulting foam have been analyzed by scanning electron microscope (SEM) pictures. The size distribution of the primary particles shows diameters peaked around 0.54 μm, and the final foam cell size peaks around 1.2 μm, at a porosity of about 80 %. These are the smallest foam cell sizes ever reported for gliadin. Interestingly, the cell walls of these microcellular foams are remarkably thin with thicknesses in the lower nanometer range, thus nourishing the hope to be able to reach gliadin nanofoam.

  7. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    Science.gov (United States)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  8. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    William R. Rossen

    2005-03-16

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  9. Development of drilling foams for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  10. Bubble motion measurements during foam drainage and coarsening.

    Science.gov (United States)

    Maurdev, G; Saint-Jalmes, A; Langevin, D

    2006-08-15

    We have studied bubble motion within a column of foam allowed to undergo free drainage. We have measured bubble motion upward with time and as a function of their initial positions. Depending on the gas used, which sets the coarsening and drainage rates, different bubble upward motion types have been identified (constant speed, acceleration or deceleration) and explained in relation with liquid downward flows. The proofs of the consistency between bubble upward motion and liquid downward flow are obtained both by comparing the bubble motion curves to the liquid drainage ones, and by comparing the time variations of the liquid fraction extracted from bubble motion to direct liquid fraction measurements by electrical conductimetry. The agreement between bubble position tracking and electrical conductivity shows in particular that it is possible to determine the drainage regime from such simple bubble motion measurements. This work also allowed us to demonstrate a special case of foam coarsening and expansion, occurring when the foam gas is less soluble than the outside one, caused by diffusion of this external gas into the foam. All these results allow us to build a picture of drainage and coarsening seen from the bubble point of view.

  11. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    Science.gov (United States)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  12. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  13. Research on experiment and calculation of foam bursting device

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This research presents experimental data on mechanical foam bursting device, based on the high speed of air fluid impinging insidethe foam bursting device, foam bubbles disrupted as a consequence of pressures changed very quickly as shear force and their impact forces. Experimental data on foam-bursting capacity have been presented. Designed device can provide effective foam bursting on collapse foam.

  14. Stability analysis of uniform equilibrium foam states for EOR processes

    NARCIS (Netherlands)

    Ashoori, E.; Marchesin, D.; Rossen, W.R.

    2011-01-01

    The use of foam for mobility control is a promising mean to improve sweep efficiency in EOR. Experimental studies discovered that foam exhibits three different states (weak foam, intermediate foam, and strong foam). The intermediate-foam state is found to be unstable in the lab whereas the weak- and

  15. Changes in porosity of foamed aluminum during solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to control the porosity of foamed aluminum, the changes in the porosity of foamed aluminum melt in the processes of foaming and solidification, the distribution of the porosity of foamed aluminum, and the relationship between them were studied. The results indicated that the porosity of foamed aluminum coincides well with the foaming time.

  16. The influence of structural parameters on the permeability of ceramic foams

    Directory of Open Access Journals (Sweden)

    E. A. Moreira

    2004-01-01

    Full Text Available Ceramic foams are a new structural material, characterized by a high porosity and a large surface area and made of megapores interconnected by filaments. This results in a structure with low resistance to fluid flow, making them appropriate for use as a filter. This work studies the influence of several structural parameters, such as porosity, tortuosity, surface area and pore diameter, in predicting the permeability of ceramic foams. Foams with different pore densities were used as porous media. Permeability was measured utilizing water as the flowing fluid. The results show that the predicted permeability scatters widely with the parameters under study. Pore diameter was the structural parameter that best represented the media. An Ergun-type correlation was fitted to the data and represented very well the permeability of the media in all foams under the experimental conditions studied.

  17. Numerical simulation and analysis of mould filling process in lost foam casting

    Institute of Scientific and Technical Information of China (English)

    Jiang Junxia; Wu Zhichao; Chen Liliang; Hao Jing

    2008-01-01

    In lost foam casting (LFC) the foam pattern is the key criterion, and the filling process is crucial to ensure the high quality of the foam pattern. Filling which lacks uniformity and denseness will cause various defects and affect the surface quality of the casting. The influential factors of the filling process are realized in this research. Optimization of the filling process, enhancement of efficiency, decrease of waste, etc., are obtained by the numerical simulation of the filling process using a computer. The equations governing the dense gas-solid two-phase flow are established, and the physical significance of each equation is discussed. The Euler/Lagrange numerical model is used to simulate the fluid dynamic characteristics of the dense two-phase flow during the mould filling process in lost foam casting. The experiments and numerical results showed that this method can be a very promising tool in the mould filling simulation of beads' movement.

  18. On-line coupling of flow field-flow fractionation and multiangle laser light scattering for the characterization of macromolecules in aqueous solution as illustrated by sulfonated polystyrene samples.

    Science.gov (United States)

    Thielking, H; Kulicke, W M

    1996-04-01

    Seven sulfonated polystyrene standards (18 000-3 000 000 g/mol), taken as model substances for macromolecular polyelectrolytes, were dissolved in aqueous 0.1 M sodium nitrate solution and characterized by multiangle laser light scattering coupled on-line to flow field-flow fractionation. The distributions of molar mass and root mean square radius and the diffusion coefficients were obtained for each sample using a constant field of force for separation. Relationships between molar mass and root mean square radius [〈R(G)(2)〉(z)(0.5) = (2.71 × 10(-)(2))M(w)(0.56)] or diffusion coefficient [D = (7.10 × 10(-)(8))M(w)(-)(0.68)] were calculated. To investigate the static analytical range of this novel hyphenated technique a mixture of all seven samples was fractionated applying a programmed field. The relationship obtained between root mean square radius and molar mass was used to calculate a Mark-Houwink equation [[η]calcd = (2.99 × 10(-)(2))M(w)(0.68)]. To verify this result, the intrinsic viscosities for all samples were measured at low shear rate and found to be in good agreement [[η]calcd = (2.77 × 10(-)(2))M(w)(0.67)].

  19. Foaming of mixtures of pure hydrocarbons

    Science.gov (United States)

    Robinson, J. V.; Woods, W. W.

    1950-01-01

    Mixtures of pure liquid hydrocarbons are capable of foaming. Nine hydrocarbons were mixed in pairs, in all possible combinations, and four proportions of each combination. These mixtures were sealed in glass tubes, and the foaming was tested by shaking. Mixtures of aliphatic with other aliphatic hydrocarbons, or of alkyl benzenes with other alkyl benzenes, did not foam. Mixtures of aliphatic hydrocarbons with alkyl benzenes did foam. The proportions of the mixtures greatly affected the foaming, the maximum foaming of 12 of 20 pairs being at the composition 20 percent aliphatic hydrocarbon, 80 percent alkyl benzene. Six seconds was the maximum foam lifetime of any of these mixtures. Aeroshell 120 lubricating oil was fractionated into 52 fractions and a residue by extraction with acetone in a fractionating extractor. The index of refraction, foam lifetime, color, and viscosity of these fractions were measured. Low viscosity and high index fractions were extracted first. The viscosity of the fractions extracted rose and the index decreased as fractionation proceeded. Foam lifetimes and color were lowest in the middle fractions. Significance is attached to the observation that none of the foam lifetimes of the fractions or residue is as high as the foam lifetime of the original Aeroshell, indicating that the foaming is not due to a particular foaming constituent, but rather to the entire mixture.

  20. Towards Modeling Local Foam Drainage Using the Arbitrary Lagrangian Eulerian Method

    Science.gov (United States)

    Brandon, Andrew; Ananth, Ramagopal

    2014-11-01

    Liquid drainage in foams is a multi-scale, multi-dimensional phenomena that is tied directly to how well a foam performs. For example, the amount of metal within a metal foam after it solidifies affects the strength of the foam and the amount of liquid within an aqueous fire fighting foam determines how effective it is at extinguishing a fire. Liquid drainage is driven by gravity and is governed by the liquid's density and viscosity as well as the surface tension at the liquid gas interface. There are numerous one dimensional, single phase models that approximate liquid drainage by employing a global description but there are no multidimensional models that use a local description. In this presentation, I will describe an ongoing effort to develop a two dimensional, multiphase, Arbitrary Lagrangian Eulerian model for the study of local liquid drainage in foams. I will present an improved algorithm for the solution of the incompressible fluid equations in the Arbitrary Lagrangian Eulerian method, the novel method used for moving the domain in time, and results from this model development effort.

  1. Interfacial and foaming properties of prolylenglycol alginates. Effect of degree of esterification and molecular weight.

    Science.gov (United States)

    Baeza, Rosa; Sanchez, Cecilio Carrera; Pilosof, Ana M R; Patino, Juan M Rodríguez

    2004-08-01

    In the present work we have studied the characteristics of propylene glycol alginates (PGA) adsorption at the air-water interface and the viscoelastic properties of the films in relation to its foaming properties. To evaluate the effect of the degree of PGA esterification and viscosity, different commercial samples were studied--Kelcoloid O (KO), Kelcoloid LVF (KLVF) and Manucol ester (MAN). The temperature (20 degrees C) and pH (7.0) were maintained constant. For time-dependent surface pressure measurements and surface dilatational properties of adsorbed PGA at the air-water interface an automatic drop tensiometer was used. The foam was generated by whipping and then the foam capacity and stability was determined. The results reveal a significant interfacial activity for PGA due to the hydrophobic character of the propylene glycol groups. The kinetics of adsorption at the air-water interface can be monitored by the diffusion and penetration of PGA at the interface. The adsorbed PGA film showed a high viscoelasticity. The surface dilatational modulus depends on the PGA and its concentration in the aqueous phase. Foam capacity of PGA solutions increased in the order KO > MAN > KLVF, which followed the increase in surface pressure and the decrease in the viscosities of PGA solutions. The stability of PGA foams monitored by the drainage rate and collapse time follows the order MAN > KLVF > KO. The foam stability depends on the combined effect of molecular weight/degree of esterification of PGA, solution viscosity and viscoelasticity of the adsorbed PGA film.

  2. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  3. Some aspects of image processing using foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Freire, M.V.; Tufaile, A.P.B.

    2014-08-28

    We have explored some concepts of chaotic dynamics and wave light transport in foams. Using some experiments, we have obtained the main features of light intensity distribution through foams. We are proposing a model for this phenomenon, based on the combination of two processes: a diffusive process and another one derived from chaotic dynamics. We have presented a short outline of the chaotic dynamics involving light scattering in foams. We also have studied the existence of caustics from scattering of light from foams, with typical patterns observed in the light diffraction in transparent films. The nonlinear geometry of the foam structure was explored in order to create optical elements, such as hyperbolic prisms and filters. - Highlights: • We have obtained the light scattering in foams using experiments. • We model the light transport in foams using a chaotic dynamics and a diffusive process. • An optical filter based on foam is proposed.

  4. The dynamics of foams with mobile interfaces

    Science.gov (United States)

    Gratton, Michael B.; Davis, Stephen H.

    2011-11-01

    Using a novel technique for resolving nearly singular integrals, we investigate the dynamics of two-dimensional foams with mobile interfaces and an incompressible, inviscid gas phase by a boundary integral method. For foams with small liquid fractions (CMMI-0826703.

  5. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  6. Carbon foam derived from pitches modified with mineral acids by a low pressure foaming process

    Energy Technology Data Exchange (ETDEWEB)

    Tsyntsarski, B.; Petrova, B.; Budinova, T.; Petrov, N.; Krzesinska, M.; Pusz, S.; Majewska, J.; Tzvetkov, P. [Bulgarian Academy of Science, Sofia (Bulgaria). Inst. of Organic Chemistry

    2010-10-15

    Carbon foams with an anisotropic texture and high mechanical strength were produced using precursors obtained after thermo-oxidation treatment of commercial coal-tar pitch with H{sub 2}SO{sub 4} and HNO{sub 3}. The investigations of the relation between the properties of the precursor and the structure of obtained foam indicate, that the composition and softening point of the pitch precursor significantly affect the foaming process, foam structure and foam mechanical strength. The composition and properties of the modified pitches allow foam formation at relatively low pressure and fast heating rate during the foaming process without a stabilization treatment. The foaming process of pitch-based carbon foams, pretreatment of the precursors, and the properties of resultant foams are discussed in this paper.

  7. THE STRUCTURE CONTROL OF ALUMINUM FOAMS PRODUCED BY POWDER COMPACTED FOAMING PROCESS

    Institute of Scientific and Technical Information of China (English)

    X.H. You; F. Wang; L.C. Wang

    2004-01-01

    A new technique, powder compact foaming process for the production of aluminum foams has been studied in this article. According to this method, the aluminum powder is mixed with a powder foaming agent (TiH2). Subsequent to mixing, the powder blend is hot compacted to obtain a dense semi-finished product. Upon heating to temperatures within the range of the melting point, the foaming agent decomposes to evolve gas and the semi-finished product expands into a porous cellular aluminum. Foaming process is the key in this method. Based on experiments, the foaming characteristics were mainly analyzed and discussed. Experiments show that the aluminum-foam with closed pores and a uniform cell structure of high porosity can be obtained using this method by adjusting the foaming parameters: the content of foaming agent and foaming temperature.

  8. Electrical Conductivity of Aluminium Alloy Foams

    Institute of Scientific and Technical Information of China (English)

    凤仪; 郑海务; 朱震刚; 祖方遒

    2002-01-01

    Closed-cell aluminium alloy foams were produced using the powder metallurgical technique. The effect of porosityand cell diameter on the electrical conductivity of foams was investigated and the results were compared with anumber of models. It was found that the percolation theory can be successfully applied to describe the dependenceof the electrical conductivity of aluminium alloy foams on the relative density. The cell diameter has a negligibleeffect on the electrical conductivity of foams.

  9. Anaerobic digestion foaming causes – A review

    OpenAIRE

    Ganidi, Nafsika; Tyrrel, Sean F.; Cartmell, Elise

    2009-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water companies due to significant impacts on process efficiency and operational costs. Several foaming causes have been identified over the past few years by researchers. However, the supporting experimental information is limited and in some cases absent. The present report aims to provide a detailed review of the current anaerobic digestion foaming proble...

  10. Basics of compounding foam dosage forms.

    Science.gov (United States)

    Allen, Loyd V

    2013-01-01

    The purpose of this article is to provide information on the use of foam dosage forms and pharmacists' ability to extemporaneously compound them. The article provides: (1) a discussion on the rationale and advantages of using foams, (2) a differentiation between the various types and structures of foams, (3) a list of the various types of ingredients and examples of each, and (4) a description of the preparation of pharmaceutical foams.

  11. Effect of Process Parameters on Porosity in Aluminum Lost Foam Process

    Institute of Scientific and Technical Information of China (English)

    Kiyoung KIM; Kyongwhoan LEE

    2005-01-01

    Porosity is a main defect in aluminum alloy castings, which is also thought to be severe in aluminum alloy castings produced by lost foam process due to the pyrolysis of the polystyrene foam pattern during pouring. Fundamental experiments were carried out to evaluate the effect of process parameters such as the melt treatment, the cooling rate and the density of expanded polystyrene (EPS) foam on porosity in A356.2 bar casting. The effect of melt treatment including degassing and refining was investigated. The effect of cooling rate was also evaluated by changing the mold packing material such as the silica sand, the zircon sand and the steel shots. Gas entrapment due to the turbulent metal flow during mold filling in conventional molding process results in porosity. Mold filling sequence in lost foam process is different from that in conventional molding process. The effect of molten metal flow was estimated by comparing the density of the casting by conventional sodium silicate molding with that by lost foam process. Density measurement was conducted to analyze the extent of porosity in the casting. Source of the porosity in lost foam process can be divided into two factors, i.e. turbulence in molten metal flow and entraining residue or gas from the pattern during pouring.

  12. Effect of Foamed Pattern Density on the Lost Foam Process

    OpenAIRE

    T. Pacyniak

    2007-01-01

    The study examines the effect of the foamed polystyrene pattern density on the process of making castings by the lost foam technique with emphasis put on the analysis of simulation tests. The simulation regarded the effect that pattern density is said to have on the mould cavity filling rate, pressure in the gas gap, and size of this gap. For simulation tests of the full mould process, a mathematical model presented in this study was used. For calculations, the author's own algorithm was appl...

  13. Accelerated Aging of BKC 44306-10 Rigid Polyurethane Foam: FT-IR Spectroscopy, Dimensional Analysis, and Micro Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gilbertson, Robert D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-02

    An accelerated aging study of BKC 44306-10 rigid polyurethane foam was carried out. Foam samples were aged in a nitrogen atmosphere at three different temperatures: 50 °C, 65 °C, and 80 °C. Foam samples were periodically removed from the aging canisters at 1, 3, 6, 9, 12, and 15 month intervals when FT-IR spectroscopy, dimensional analysis, and mechanical testing experiments were performed. Micro Computed Tomography imaging was also employed to study the morphology of the foams. Over the course of the aging study the foams the decreased in size by a magnitude of 0.001 inches per inch of foam. Micro CT showed the heterogeneous nature of the foam structure likely resulting from flow effects during the molding process. The effect of aging on the compression and tensile strength of the foam was minor and no cause for concern. FT-IR spectroscopy was used to follow the foam chemistry. However, it was difficult to draw definitive conclusions about the changes in chemical nature of the materials due to large variability throughout the samples.

  14. Foam formation and mitigation in a three-phase gas-liquid-particulate system.

    Science.gov (United States)

    Vijayaraghavan, Krishna; Nikolov, Alex; Wasan, Darsh

    2006-11-16

    Foaming is of great concern in a number of industrial processes involving three-phase gas-liquid-finely divided solid systems such as those encountered in the vitrification of highly radioactive nuclear waste slurries and sludges. Recent work has clearly shown that the surface properties of the particles such as hydrophilicity, hydrophobicity or biphilicity (i.e. partially wetted by water) are the cause of foamability and foam stability. The literature data on particles causing foaminess and foam stability in the absence of any surfactant are rather scarce. This paper presents experimental observations on aqueous foams with polyhedral structures containing over 90% air generated due to the presence of irregularly-shaped fine crystalline particles of sodium chloride which were modified into amphiphilic particles by physical adsorption of a cationic surfactant. Cross-polarized light microscopy was used to visualize the physical adsorption of the surfactant on the crystal surface. It is shown that these biphilic or amphiphilic particles attach to the air bubble surface and prevent the coalescence of bubbles, thereby extending the life of the foam. The foaming power of solid particles increases with an increase in the concentration of amphiphilic particles, and a maximum in foaminess is observed which is due to two competing effects. Amphiphilic particles promote foamability by attachment to the bubble surfaces as individual particles and foam inhibition due to the clustering or flocculation of particles in the bulk at high particle concentrations. We studied the adsorption of amphiphilic particles at a planar air-water surface and found that the degree of foamability correlates well with the particle coverage (i.e. adsorption density) at the air-liquid surface. An exploratory study was also conducted using an antifoam recently developed by IIT researchers to mitigate foaming in particle-laden gas-liquid systems.

  15. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  16. Carbon dioxide foaming of glassy polymers

    NARCIS (Netherlands)

    Wessling, M.; Borneman, Z.; Boomgaard, van den Th.; Smolders, C.A.

    1994-01-01

    The mechanism of foaming a glassy polymer using sorbed carbon dioxide is studied in detail. A glassy polymer supersaturated with nitrogen forms a microcellular foam, if the polymer is quickly heated above its glass transition temperature. A glassy polymer supersaturated with CO2 forms this foam-like

  17. Investigation of field temperature in moulds of foamed plaster

    Directory of Open Access Journals (Sweden)

    M. Pawlak

    2007-12-01

    Full Text Available Plaster moulds used in precision foundry are characterized by a very low permeability which, in the case of classic plaster moulds, equals to about 0,01÷0,02 m2/(MPa·s. One of the most effective methods for increasing the permeability is a foaming treatment. Another characteristic feature of plaster is its very good insulating power which has influence on the process of solidification and cooling of a cast and also on a knock-out property. This insulating power is a function of thermophysical properties of plaster which, in turn, depend mainly on the mineralogical composition of the mould material, its bulk density as well as on the temperature of the pouring alloy. In the case of a foamed plaster mould an increase of the degree of foaming increases its porosity which causes a change in its thermophysical properties, thereby increasing susceptibility of the mass to overheating. The susceptibility of the plaster layer surrounding the cast to overheating is favorable because it makes it easier to knock-out of the cast by immersing the hot mould in cold water. Thermal and phase tensions that are created during this process cause fast destruction of plaster. This paper describes our investigations aimed at the determination of the dependence of the mould temperature field on the time of the cast stay in the mould, as recorded in a process of an unsteady heat flow. The determined data were planned to be used for estimation of the technological properties of the plaster mould. The tests were carried out using the plaster α-Supraduro and Alkanol XC (foaming agent. The test mould had a diameter of Ø 120 mm with centrally situated mould cavity of Ø 30 mm. Plaster moulds with a degree of foaming 20; 32,5 and 45% and comparatively from non-foaming plaster were tested and their temperatures were measured at the distance x=2; 9; 21; 25;27; 30 mm from the mould cavity within 25 min. Analysis of the results leads to the conclusion, that the highest

  18. Various Facets of Spacetime Foam

    CERN Document Server

    Ng, Y Jack

    2011-01-01

    Spacetime foam manifests itself in a variety of ways. It has some attributes of a turbulent fluid. It is the source of the holographic principle. Cosmologically it may play a role in explaining why the energy density has the critical value, why dark energy/matter exists, and why the effective dynamical cosmological constant has the value as observed. Astrophysically the physics of spacetime foam helps to elucidate why the critical acceleration in modified Newtonian dynamics has the observed value; and it provides a possible connection between global physics and local galactic dynamics involving the phenomenon of flat rotation curves of galaxies and the observed Tully-Fisher relation. Spacetime foam physics also sheds light on nonlocal gravitational dynamics.

  19. Influence of gravity on foams

    Science.gov (United States)

    Monnereau, C.; Vignes-Adler, M.; Kronberg, B.

    1999-06-01

    The feasibility of experiments on the physics of foams in microgravity environment was investigated during a parabolic flight campaign. Transient foams from surfactant-free organic liquids and stable foams from a soapy solution of a Sodium Dodecyl Sulfate + Dodecanol mixture were investigated. In 0g, the transient foam is stabilized; whatever the liquid the foam bubbles are spherical and their diameter does not change during the flight. When the gravity constant is equal to 1.8 g, the bubbles of the stable foam become polyhedral and numerous topological transformations could be observed. La faisabilité d'expériences permettant d'étudier la physique de la mousse en microgravité a été démontrée au cours de vols paraboliques. Nous avons testé des mousses de liquides organiques sans tensioactif qui sont éphémères dans le champ terrestre, et des mousses à base d'une solution aqueuse d'un mélange de Dodécyl Sulfate de Sodium et de Dodécanol qui sont au contraire très stables. En microgravité, les mousses éphémères sont stabilisées; quel que soit le liquide, les bulles sont sphériques et leur diamètre reste égal à leur valeur initiale. Lorsqu'au cours de la parabole, la gravité devient égale à 1,8 g, les bulles de la mousse stable dont les films sont très rigides prennent une forme polyédrique ; de très nombreuses transformations topologiques de type T1 ont pu alors être observées.

  20. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay.

    Directory of Open Access Journals (Sweden)

    Ricky Y T Chiu

    Full Text Available The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system's potential to be applied to patient samples.

  1. CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model.

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas H. (Brigham Young University, Provo, UT); Thompson, Kyle Richard; Erickson, Kenneth L.; Dowding, Kevin J.; Clayton, Daniel (Brigham Young University, Provo, UT); Chu, Tze Yao; Hobbs, Michael L.; Borek, Theodore Thaddeus III

    2003-07-01

    A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the

  2. A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Mondy, Lisa Ann [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Noble, David R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Brunini, Victor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Roberts, Christine Cardinal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Long, Kevin Nicholas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Soehnel, Melissa Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Celina, Mathias C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Wyatt, Nicholas B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Thompson, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Tinsley, James

    2015-09-01

    We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to

  3. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  4. Ultralightweight silver nanowires hybrid polyimide composite foams for high-performance electromagnetic interference shielding.

    Science.gov (United States)

    Ma, Jingjing; Zhan, Maosheng; Wang, Kai

    2015-01-14

    Ultralightweight silver nanowires (AgNWs) hybrid polyimide (PI) composite foams with microcellular structure and low density of 0.014-0.022 g/cm(3) have been fabricated by a facile and effective one-pot liquid foaming process. The tension flow generated during the cell growth induced the uniform dispersion of AgNWs throughout the cell walls. The interconnected AgNWs network in the cell walls combined with the large 3D AgNWs network caused by 3D structure of foams provided fast electron transport channels inside foams. The electromagnetic interference (EMI) shielding effectiveness (SE) of these foams increased with increasing AgNWs loading as well as the nanowire aspect ratio due to the increasing connections of the conduction AgNWs network. Appropriate surface treatment like etching or spraying facilitated the construction of the seamlessly interconnected 2D AgNWs network on the surface, which could effectively reflect electromagnetic waves. Maximum specific EMI SE of values of 1210 dB·g(-1)·cm(3) at 200 MHz, 957 dB·g(-1)·cm(3) at 600 MHz, and 772 dB·g(-1)·cm(3) at 800-1500 MHz were achieved in sprayed composite foams containing composite materials. The reflections of interconnected AgNWs networks on the surface and inside foams combined with the multiple reflections at interfaces contributed to the shielding effect.

  5. Foams Stabilized with Nanoparticles for Gas Well Deliquification

    Directory of Open Access Journals (Sweden)

    Knapik Ewa

    2014-06-01

    Full Text Available This study examined the interaction of solid nanoparticles and anionic and non-ionic surfactant at an air–water interface. Aqueous foams stabilized by silica nanoparticles in water with different levels of salinity were studied in detail. The stability of solid/surfactant dispersion was evaluated visually. Nanoparticles content impact and concentration of surfactant on the foamability, deliquification of foams and structure of wet foams were studied. It was found that the foamability of dispersion depends either on the surfactant concentration or on the nanoparticles concentration. The adsorption of hydrophobically modified silica particles and surfactants reduces the air/water interface tension. The results of the examinations showed that the use of nanoparticles allows to increase the efficiency of brine unloading even up to 20%. Surfactant particle and nanosilica present synergistic action, use of 4 wt% of nanoparticles allows to reduce surfactant consumption up to half. The cost of the preparation of the proposed dispersion is slightly higher, about 5%, compared to the sole surfactant.

  6. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  7. Quasicrystalline three-dimensional foams

    Science.gov (United States)

    Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.

    2017-03-01

    We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.

  8. Is Quantum Spacetime Foam Unstable?

    CERN Document Server

    Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo

    1993-01-01

    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.

  9. Thermal Expansion of Polyurethane Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  10. Carbon Fiber Foam Composites and Methods for Making the Same

    Science.gov (United States)

    Leseman, Zayd Chad (Inventor); Atwater, Mark Andrew (Inventor); Phillips, Jonathan (Inventor)

    2014-01-01

    Exemplary embodiments provide methods and apparatus of forming fibrous carbon foams (FCFs). In one embodiment, FCFs can be formed by flowing a fuel rich gas mixture over a catalytic material and components to be encapsulated in a mold to form composite carbon fibers, each composite carbon fiber having a carbon phase grown to encapsulate the component in situ. The composite carbon fibers can be intertwined with one another to form FCFs having a geometry according to the mold.

  11. Poroelastic Foams for Simple Fabrication of Complex Soft Robots.

    Science.gov (United States)

    Mac Murray, Benjamin C; An, Xintong; Robinson, Sanlin S; van Meerbeek, Ilse M; O'Brien, Kevin W; Zhao, Huichan; Shepherd, Robert F

    2015-11-01

    Open-celled, elastomeric foams allow the simple design of fully 3D pneumatic soft machines using common forming techniques. This is demonstrated through the fabrication of simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. The device pumps at physiologically relevant frequencies and pressures and attains a flow rate higher than all previously reported soft pumps.

  12. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  13. Method of making a cyanate ester foam

    Science.gov (United States)

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  14. Toluene diisocyanate emission to air and migration to a surface from a flexible polyurethane foam.

    Science.gov (United States)

    Vangronsveld, Erik; Berckmans, Steven; Spence, Mark

    2013-06-01

    Flexible polyurethane foam (FPF) is produced from the reaction of toluene diisocyanate (TDI) and polyols. Because of the potential for respiratory sensitization following exposure to TDI, concerns have been raised about potential consumer exposure to TDI from residual 'free TDI' in FPF products. Limited and conflicting results exist in the literature concerning the presence of unreacted TDI remaining in FPF as determined by various solvent extraction and analysis techniques. Because residual TDI results are most often intended for application in assessment of potential human exposure to TDI from FPF products, testing techniques that more accurately simulated human contact with foam were designed. To represent inhalation exposure to TDI from polyurethane foam, a test that measured the emission of TDI to air was conducted. For simulation of human dermal exposure to TDI from polyurethane foam, a migration test technique was designed. Emission of TDI to air was determined for a representative FPF using three different emission test cells. Two were commercially available cells that employ air flow over the surface of the foam [the Field and Laboratory Emission Cell (FLEC®) and the Micro-Chamber/Thermal Extraction™ cell]. The third emission test cell was of a custom design and features air flow through the foam sample rather than over the foam surface. Emitted TDI in the air of the test cells was trapped using glass fiber filters coated with 1-(2-methoxyphenyl)-piperazine (MP), a commonly used derivatizing agent for diisocyanates. The filters were subsequently desorbed and analyzed by liquid chromatography/mass spectrometry. Measurement of TDI migration from representative foam was accomplished by placing glass fiber filters coated with MP on the outer surfaces of a foam disk and then compressing the filters against the disk using a clamping apparatus for periods of 8 and 24 h. The sample filters were subsequently desorbed and analyzed in the same manner as for the

  15. Viscous Control of the Foam Glass Process

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    The production of foam glass as heat insulating material is an important industrial process because it enables low-cost recycling of glass waste from a variety of chemical compositions. Optimization of the foaming process of new glass waste compositions is time consuming, since many factors affect...... in which the foaming process should take place, particularly when the type of recycled cullet is changed or several types of cullet are mixed in one batch. According to recent glass literature, the foaming process should occur at viscosity 103 to 105 Pa s. However, no systematic studies have hitherto been...... conducted concerning how the melt rheology influences the foam glass process and if any universal optimum viscosity exist for foaming different types of glass cullet. In this work, we show the details of viscous control of glass foaming processes. We have measured the viscosity-temperature relationships...

  16. Studies on a Foam System of Ultralow Interfacial Tension Applied in Daqing Oilfield after Polymer Flooding

    Directory of Open Access Journals (Sweden)

    Hong-sheng Liu

    2013-01-01

    Full Text Available In order to study the effects of oil displacement by a foam system of ultralow interfacial tension, the interfacial activities and foam properties of a nonionic gemini surfactant (DWS were investigated under Daqing Oilfield reservoir conditions. Injection methods and alternate cycle of the foam system were discussed here on the basis of results from core flow experiments. It was obtained that the surface tension of DWS was approximately 25 mN/m, and ultralow interfacial tension was reached between oil and DWS with a surfactant concentration between 0.05wt% and 0.4wt%. The binary system showed splendid foam performances, and the preferential surfactant concentration was 0.3wt% with a polymer concentration of 0.2wt%. When gas and liquid were injected simultaneously, flow control capability of the foam reached its peak at the gas-liquid ratio of 3 : 1. Enhanced oil recovery factor of the binary foam system exceeded 10% in a parallel natural cores displacement after polymer flooding.

  17. In vitro analysis of polyurethane foam as a topical hemostatic agent.

    Science.gov (United States)

    Broekema, Ferdinand I; van Oeveren, Wim; Zuidema, Johan; Visscher, Susan H; Bos, Rudolf R M

    2011-04-01

    Topical hemostatic agents can be used to treat problematic bleedings in patients who undergo surgery. Widely used are the collagen- and gelatin-based hemostats. This study aimed to develop a fully synthetic, biodegradable hemostatic agent to avoid exposure to animal antigens. In this in vitro study the suitability of different newly developed polyurethane-based foams as a hemostatic agent has been evaluated and compared to commonly used agents. An experimental in vitro test model was used in which human blood flowed through the test material. Different modified polyurethane foams were compared to collagen and gelatin. The best coagulation was achieved with collagen. The results of the polyurethane foam improved significantly by increasing the amount of polyethylene glycol. Therefore, the increase of the PEG concentration seems a promising approach. Additional in vivo studies will have to be implemented to assess the application of polyurethane foam as a topical hemostatic agent.

  18. Vacuum forming of thermoplastic foam

    NARCIS (Netherlands)

    Akkerman, Remko; Pronk, Ruud

    1999-01-01

    The process of thermoforming of foam sheet is analyzed using both finite element modeling and experiments. A simple constitutive model for finite tensile deformations of closed cellular material around its glass transition temperature is proposed, starting from well-known results from Gibson and Ash

  19. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after an el...... brushing with fluoride toothpaste....

  20. Open-celled polyurethane foam

    Science.gov (United States)

    Russell, L. W.

    1970-01-01

    Open-celled polyurethane foam has a density of 8.3 pounds per cubic foot and a compressive strength of 295 to 325 psi. It is useful as a porous spacer in layered insulation and as an insulation material in vacuum tight systems.

  1. "Grinding" cavities in polyurethane foam

    Science.gov (United States)

    Brower, J. R.; Davey, R. E.; Dixon, W. F.; Robb, P. H.; Zebus, P. P.

    1980-01-01

    Grinding tool installed on conventional milling machine cuts precise cavities in foam blocks. Method is well suited for prototype or midsize production runs and can be adapted to computer control for mass production. Method saves time and materials compared to bonding or hot wire techniques.

  2. Foaming of Ethyl Hydroxyethyl Cellulose

    OpenAIRE

    Carrillo Agilera, Marc

    2015-01-01

    The current depletion of petroleum resources together with environmental issues have led to new approaches in plastic manufacturing. This trend involves using ecofriendly materials coming from renewable resources. Good candidates for this, due to their properties and availability, are the cellulose derivatives. Some of them, such as hydroxypropyl methylcellulose (HPMC), showed in previous studies a promising behavior when making polymeric foams. Unfortunately, the corresponding...

  3. Preparation and Characterization of Directionally Freeze-cast Copper Foams

    Directory of Open Access Journals (Sweden)

    Aurelia I. Cuba Ramos

    2012-08-01

    Full Text Available Because of their excellent thermal and electric conductivities, copper foams are ideally suited for applications such as heat exchangers, catalyst supports and EMI-shields. Here, we demonstrate the preparation of copper with ~80% aligned, elongated, interconnected pores via directional freeze casting, a well established processing technique for porous ceramics. First, an aqueous slurry of 40−80 nm cupric oxide powders was directionally solidified, resulting in a preform consisting of elongated, aligned dendrites of pure ice separated by interdendritic ice walls with high oxide powder content. Oxide rather than metallic nanometric particles are used, as the latter would oxidize rapidly and uncontrollably when suspended in the aqueous solution used during directional casting. The preforms were then freeze-dried to sublimate the ice and sintered in a hydrogen-bearing atmosphere to reduce the copper oxide to metallic copper particles and densify these copper particles. Microstructural analysis of the copper foams shows that three types of porosities are present: (i aligned, elongated pores replicating the ice dendrites created during the freeze-casting process; (ii micro-porosity in the partially sintered copper walls separating the elongated pores; and (iii cracks in these copper walls, probably created because of shrinkage associated with the reduction of the oxide powders.

  4. Three-phase gas-liquid-solid foaming bubble reactors and self-lubricated transport of bitumen froth

    Science.gov (United States)

    Mata, Clara E.

    Two distinct topics in multi-phase flow of interest of the oil industry are considered in this thesis. Studies of three-phase gas-liquid-solid foaming bubble reactors and self-lubricated transport of bitumen froth are reported. Applications of foams and foaming are found in many industrial processes such as flotation of minerals, enhanced oil recovery, drilling in oil reservoirs, and refining processes. However the physics of foaming and defoaming are not fully understood. Foams trap gas and are not desirable in some processes such as oil refining. Previously, it has been found that foaming may be strongly suppressed in a cold slit bubble reactor by fluidizing hydrophilic particles in the bubbly mixture below the foam. In this work, we fluidized hydrophobic and hydrophilic versions of two different sands in a cold slit foaming bubble reactor. We found that the hydrophobic sands suppress the foam substantially better than their hydrophilic counterparts. To study the capacity of foams to carry particles, we built a new slit foaming bubble reactor, which can be continuously fed with solid particles. Global gas, liquid, and solid holdups were measured for given gas and liquid velocities and solid flow rates. This research provides the fundamental ground work for the identification of flow types in a slit three-phase foaming bubble reactor with continuous injection of particles. Bitumen froth is produced from the oil sands of Athabasca, Canada. When transported in a pipeline, water present in the froth is released in regions of high shear (at the pipe wall). This results in a lubricating layer of water that allows bitumen froth pumping at greatly reduced pressures and hence the potential for savings in pumping energy consumption. Experimental results establishing the features of this self lubrication phenomenon are presented. The pressure gradient of lubricated flows closely follow the empirical law of Blasius for turbulent pipe flow with a constant of proportionality

  5. 46 CFR 108.463 - Foam rate: Protein.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Foam rate: Protein. 108.463 Section 108.463 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.463 Foam rate: Protein. (a) If the outlets of a protein foam extinguishing system are in a space, the foam rate at each outlet must be...

  6. Acoustic properties of aluminium foams

    Directory of Open Access Journals (Sweden)

    García, L. E.

    2008-09-01

    Full Text Available The article discusses normal incidence sound absorption by aluminium foam manufactured with powder metallurgy technology. Aluminium foams with different surface morphologies were obtained by varying the type of precursor and adding filler materials during the foaming process. The sound absorption coefficients found for these aluminium foams were compared to the coefficient for commercial foams marketed under the name ALPORAS. The effect of foam thickness on the absorption coefficient was studied for each sample prepared. The combination of good acoustic and mechanical properties makes aluminium foams particularly attractive products. The study included an analysis of the effect of 2-, 5- and 10-cm air gaps on the sound absorption coefficient. The results showed that such gaps, which are routinely used in construction to reduce the reverberation period in indoor premises, raised the low frequency absorption coefficient significantly. This increase was found to depend on aluminium foam density and thickness and the depth of the air gap. In this same line, we have investigated the absorption coefficient of the aluminium foams combined with a mineral fiber panel.Se presenta un estudio del coeficiente de absorción acústica a incidencia normal de espumas de aluminio fabricadas mediante la técnica pulvimetalúrgica. Se fabricaron espumas de aluminio de distinta morfología superficial variando el tipo de precursor y usando materiales de relleno durante el proceso de espumación. Se muestra un estudio comparativo del coeficiente de absorción acústica de las espumas de aluminio fabricadas y las espumas comerciales conocidas como ALPORAS. Para cada muestra fabricada se estudió la influencia del espesor sobre el valor del coeficiente de absorción.El atractivo de las espumas de aluminio radica en que en ellas se combinan interesantes propiedades acústicas y mecánicas. Se analizó el efecto de una cámara de aire de 2, 5 y 10 cm de anchura sobre el

  7. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.

  8. Characterization of Functionalized Polyurethane Foam for Lead Ion Removal from Water

    Directory of Open Access Journals (Sweden)

    Subhashini Gunashekar

    2014-01-01

    Full Text Available Polyurethane foams functionalized with sulfonic acid groups are used in this study to exchange lead (Pb2+ ions from aqueous solutions. Toluene-2, 4-diisocyanate, 2,6-diisocyanate (TDI was reacted with Polypropylene glycol 1200 (PPG in 2 : 1 molar ratio to form a linear prepolymer. The linear prepolymer was further polymerized using N,N-bis(2-hydroxyethyl-2-aminoethanesulfonic acid (BES, which acts both as a chain extender and an ion-exchanger for Pb2+ ions. The functionalized polyurethane foam was characterized by Fourier transform infrared spectroscopy (FTIR, gel permeation chromatography (GPC, scanning electron microscopy (SEM, and energy dispersive X-ray spectroscopy (EDX. The Pb2+ ion exchange capacity was determined using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS. The maximum Pb2+ ion exchange capacity of the foam was found to be 51 ppb/g from a 100 ppb Pb2+ solution over a period of two hours. In addition, pH analysis was carried out on the foam composition with the best Pb2+ ion removal capacity. The pH results based on two-hour exposures showed that the functionalized polyurethane foam performed better at lower pH levels.

  9. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam

    Science.gov (United States)

    Wang, Yan; Zhou, Jing; Lv, Weixin; Fang, Hailin; Wang, Wei

    2016-01-01

    Sn/f-Cu electrode has been prepared by electrodeposition Sn on a Cu foam substrate in aqueous plating solution, which has been used as the cathode for electrochemical reduction of carbon dioxide (CO2) in aqueous KHCO3 solution. Here, we have explored the effects of the deposition time and the electrolysis potential on the Faradaic efficiency for producing formate. The results demonstrate that maximum Faradaic efficiency of 83.5% is obtained at -1.8 V vs. Ag/AgCl when the Sn/f-Cu electrode is prepared by electrodeposition for 35 min. The Sn/f-Cu electrode exhibits excellent catalytic activity for CO2 reduction compared with the Cu foam electrode and the Sn plate electrode. The average current density and the production rate of formate for the Sn/f-Cu electrode are more than twice those for the Sn plate electrode during electrochemical reduction of CO2.

  10. On background-independent renormalization of spin foam models

    CERN Document Server

    Bahr, Benjamin

    2014-01-01

    In this article we discuss an implementation of renormalization group ideas to spin foam models, where there is no a priori length scale with which to define the flow. In the context of the continuum limit of these models, we show how the notion of cylindrical consistency of path integral measures gives a natural analogue of Wilson's RG flow equations for background-independent systems. We discuss the conditions for the continuum measures to be diffeomorphism-invariant, and consider both exact and approximate examples.

  11. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    Science.gov (United States)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-09-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  12. Effect of Foamed Pattern Density on the Lost Foam Process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2007-07-01

    Full Text Available The study examines the effect of the foamed polystyrene pattern density on the process of making castings by the lost foam technique with emphasis put on the analysis of simulation tests. The simulation regarded the effect that pattern density is said to have on the mould cavity filling rate, pressure in the gas gap, and size of this gap. For simulation tests of the full mould process, a mathematical model presented in this study was used. For calculations, the author's own algorithm was applied. The investigations have proved that with decreasing pattern density the pouring rate increases, while pressure in the gas gap and the size of the gap are decreasing. The increasing pouring rate ensures correct making of castings, even if their shapes are very intricate and the wall cross-sections are very small. Smaller size of the gas gap and lower pressure of gases in this gap reduce the risk of mould damage. The author’s own investigations have proved a very significant effect of the density of foamed polystyrene pattern on the casting process, and specially on the mould pouring rate. The best pouring rate is ensured by patterns of the density comprised in a range of ρ2 =18÷25 kg/m3.

  13. Continuous microcellular foaming of polylactic acid/natural fiber composites

    Science.gov (United States)

    Diaz-Acosta, Carlos A.

    the processing temperature had a strong effect of the rheology of the melt and cell morphology. Processing at a lower temperature significantly increased the cell nucleation rate of neat PLA (amorphous and semi-crystalline) because of the fact that a high melt viscosity induced a high pressure drop rate in the polymer/gas solution. The presence of nanoclay did not affect the homogeneous nucleation but increased the heterogeneous nucleation, allowing both nucleation mechanisms to occur during the foaming process. The effect of wood-flour (0-30 wt.%) and rheology modifier contents on the melt viscosity and cell morphology of microcellular foamed composites was investigated. The viscosity of the melt increased with wood-flour content and decreased with rheology modifier content, affecting the processing conditions (i.e., pressure drop and pressure drop rate) and foamability of the composites. Matching the viscosity of the composites with that of neat PLA resulted in the best cell morphologies. Physico-mechanical characterization of microcellular foamed PLA as a function of cell morphology was performed to establish process-morphology-property relationships. The processing variables, i.e., amount of gas injected, flow rate, and processing temperature affected the development of the cellular structure and mechanical properties of the foams.

  14. Predicting permeability tensors of foams using vector kinetic method

    Science.gov (United States)

    Jobic, Y.; Kumar, P.; Topin, F.; Occelli, R.

    2016-09-01

    Light cellular materials are increasingly used in many engineering applications due to several attractive properties including heat and mass transfer enhancement, low pressure drop compared to packed bed of spheres. It is therefore important to simulate the complex and unsteady flows by reliable numerical methods to determine intrinsic macroscopic hydraulic properties on actual foam structures. The approach of numerical simulations at pore scale has become popular criterion with the development of high performance computational power. Numerical studies based on a type of Lattice Boltzmann Method (LBM) were performed in the present work. Another kinetic method than LBM has been explored. A vector kinetic method is proposed which has the advantage of being non-diffusive, explicit, parallel, and use only physical variables instead of discrete velocity. The proposed numerical method is validated against experimental and numerical permeability data obtained on idealized isotropic idealized as well as real foam samples.

  15. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  16. Application and future of solid foams

    Science.gov (United States)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  17. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  18. Picture analysing method of slag foaming behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Juhart, M.; Peter, M.; Koch, K. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Metallurgy; Lamut, J. [Faculty of Natural Science and Technology, Univ. Ljubljana, Ljubljana (Slovenia)

    2001-03-01

    Hot tests of foaming behaviour of steelmaking slags were conducted on a laboratory scale up to 1760 C using a Tammann furnace. The foaming behaviour of the slags was quantified on the basis of a new measuring method. The volume increase and the progress of the foaming process can be continuously observed and calculated by means of picture analysis. The gas content of foaming slags was compared with the results of the measurements performed in steel plants. The influence of the magnesia content on the foaming behaviour is investigated. The chemical composition of the slag is beside the CO evolution the decisive factor influencing slag foaming behaviour. The highest volume increase values observed lie in the region of 2500% in relation to the initial volume. (orig.)

  19. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  20. Activated, coal-based carbon foam

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Darren Kenneth [Wheeling, WV; Plucinski, Janusz Wladyslaw [Glen Dale, WV

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  1. Synthesis of CO2 Copolymer Based Polyurethane Foams

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    CO2-copolymer based polyurethane foams were synthesized and characterized in this paper. The foams were found to have higher strength and lower heat of combustion than the conventional polyether polyurethane foams. They may find wide applications in many fields.

  2. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    Science.gov (United States)

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  3. Models for metallic foam lamellae

    Science.gov (United States)

    Gratton, Michael B.; Davis, Stephen H.

    2010-11-01

    We consider a pure liquid film with two liquid-gas interfaces --- a free film --- in two dimensions. Assuming that the aspect ratio of the film thickness to the arc length of the center-line is small, we develop a set of models using lubrication theory for the evolution of the film including the effects of different gas pressures above and below the liquid as well as strong surface tension. These models show a separation of timescales between center-line relaxation, thickness averaging, and drainage due to an applied pressure gradient along the film. Interpreted in the case of surfactant-free foams, these results show that the lamella separating two bubbles in an unstable foam will quickly assume a center-line that is an arc of a circle. Thereafter, the film will become uniform in thickness and drain due to capillary suction from adjoining Plateau borders.

  4. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... an electronic search for literature published in English between 2003 and 2014. The included papers were assessed for their risk of bias and the results were narratively synthesized due to study heterogeneity. The quality of evidence was expressed according to GRADE. RESULTS: A total of 19 papers were included...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse...

  5. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  6. Hydrophobins, beer foaming and gushing

    OpenAIRE

    Shokribousjein, Zahra; Deckers, Sylvie; Gebruers, Kurt; Lorgouilloux, Yannick; Baggerman, Geert; Verachtert, Hubert; Delcour, Jan; Etienne, Pierre; Rock, Jean-Marie; Michiels, Chris; Derdelinckx, Guy

    2011-01-01

    Hydrophobins belong to the most important proteins produced by filamentous fungi. They are surface active and their foaming potential is due to the presence of particular spatial arrangements of hydrophobic and hydrophilic amino acids. However, their presence eventually leads to overfoaming of beers. In beers and other liquids hydrophobin molecules aggregate around hydrophobic carbon dioxide molecules and form nano-structures, containing entrapped carbon dioxide. By pressure relea...

  7. Microcellular foams made from gliadin

    OpenAIRE

    Quester, S; Dahesh, M.; Strey, R.

    2014-01-01

    We have generated closed-cell microcellular foams from gliadin, an abundantly available wheat storage protein. The extraction procedure of gliadin from wheat gluten, which involves only the natural solvents water and ethanol, respectively, is described with emphasis on the precipitation step of gliadin which results in a fine dispersion of mostly spherical, submicron gliadin particles composed of myriad of protein molecules. A dense packing of these particles was hydrated and subjected to an ...

  8. Preparation of High Performance Foamed Concrete from Cement, Sand and Mineral Admixtures

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; Fujiwara Hiromi; Wee Tionghuan

    2007-01-01

    The titled high performance foamed concrete was developed from Portland cement, ultra fine granulated blast-furnace slag, pulverized fly ash and condensed silica fume by means of pre-foaming process. The resultant foamed concrete presents its thermal conductivity of about 0.16-0.75 W/(m·℃) and 28 d compressive strength of about 1.1-23.7 MPa when its mix proportion varies in the range of cement content 280 kg-650 kg/m3, fly ash 42-97 kg/m3, slag 64-146 kg/m3, silica fume 34-78 kg/m3, and sand 0-920 kg/m3. The compressive strength of the foamed concrete with oven dried bulk density of 1500 kg/m3 in appropriate mix proportion and with small amount of superplasticizer reached as high as 44.1 MPa. Meanwhile, the fresh foamed concrete behaves like an excellent flow-ability, therefore, is especially suitable for the application in case of massive foamed concrete casting in situ and in the case of filling casting into large volume underground irregular voids, except for pre-casting of building components like blocks, bricks, and wall panels.

  9. Enhanced oil recovery by CO/sub 2/ foam flooding. First annual report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-01

    An extensive review of the literature revealed that the use of foam to lower the mobility of gases used to displace oil has been considered since 1956. Although early work was related mainly to light hydrocarbons, it is natural to extend the concept to the CO/sub 2/ flooding process. Samples of foaming agents, compatible with oil reservoir environments, were obtained from major manufacturers. Ninety-three samples were tested both alone and in admixture. The most promising class of additives appears to be ionic surfactants produced by ethoxylation of a linear alcohol followed by sulfation. One of the best, Plurafoam NO-2N was tested in a linear sandpack and found to reduce the mobility of gas relative to water an average of 300-fold. Viscosity measurements of the foam at varying shear rates were made to help explain the dramatic change in gas mobility in the linear flow model. The foam is non-Newtonian but many-fold more viscous than the liquid from which it is generated at all reasonable shear rates. Viscosities exceeding 1000 centipose are routinely obtained. Addition of water-soluble polymers to the foaming liquid greatly enhances the stability of the foam. Five different polymer structures were tested, all of which had a common cellulosic type backbone. Of this group, hydroxypropyl cellulose and zanthan gum appear to be the most promising candidates. The superiority of these polymers lies primarily in their stability at reservoir conditions in the acid environment created when carbon dioxide dissolves in water.

  10. A Numerical Analysis on a Compact Heat Exchanger in Aluminum Foam

    Science.gov (United States)

    Buonomo, B.; Ercole, D.; Manca, O.; Nardini, S.

    2016-09-01

    A numerical investigation on a compact heat exchanger in aluminum foam is carried out. The governing equations in two-dimensional steady state regime are written in local thermal non-equilibrium (LTNE). The geometrical domain under investigation is made up of a plate in aluminum foam with inside a single array of five circular tubes. The presence of the open-celled metal foam is modeled as a porous media by means of the Darcy-Forchheimer law. The foam has a porosity of 0.93 with 20 pores per inch and the LTNE assumption is used to simulate the heat transfer between metal foam and air. The compact heat exchanger at different air flow rates is studied with an assigned surface tube temperature. The results in terms of local heat transfer coefficient and Nusselt number on the external surface of the tubes are given. Moreover, local air temperature and velocity profiles in the smaller cross section, between two consecutive tubes, as a function of Reynolds number are showed. The performance evaluation criteria (PEC) is assessed in order to evaluate the effectiveness of the metal foam.

  11. Carbon-foam finned tubes in air-water heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qijun [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B8 (Canada)]. E-mail: qyu4@eng.uwo.ca; Straatman, Anthony G. [Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6A 5B8 (Canada)]. E-mail: astraatman@eng.uwo.ca; Thompson, Brian E. [Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)]. E-mail: thompson@eng.uottawa.ca

    2006-02-01

    An engineering model is formulated to account for the effects of porosity and pore diameter on the hydrodynamic and thermal performance of a carbon-foam finned tube heat exchanger. The hydrodynamic and thermal resistances are obtained from well-established correlations that are extended herein to account for the influence of the porous carbon foam. The influence of the foam is characterized on the basis of a unit-cube geometric model that describes the internal structure, the exposed surface, the permeability and the effective conductivity as a function of porosity and pore diameter. The engineering model is validated by comparison with experiments that characterize heat transfer in an air-water radiator made from porous carbon foam. The model is also used in to conduct a parametric study to show the influence of the porosity and pore diameter of the foam. The parametric study suggests that in comparison to conventional aluminum finned-tube radiators, improvements of approximately 15% in thermal performance are possible without changing the frontal area, or the air flow rate and pressure drop. The engineering model developed herein can be used by engineers to assess quantitatively the suitability of porous carbon foam as a fin material in the design of air-water heat exchangers.

  12. Carbon-foam finned tubes in air-water heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qijun; Straatman, Anthony G. [Department of Mechanical and Materials Engineering, The University of Western Ontario, London, ON (Canada); Thompson, Brian E. [Department of Mechanical Engineering, The University of Ottawa, Ottawa, ON (Canada)

    2006-02-01

    An engineering model is formulated to account for the effects of porosity and pore diameter on the hydrodynamic and thermal performance of a carbon-foam finned tube heat exchanger. The hydrodynamic and thermal resistances are obtained from well-established correlations that are extended herein to account for the influence of the porous carbon foam. The influence of the foam is characterized on the basis of a unit-cube geometric model that describes the internal structure, the exposed surface, the permeability and the effective conductivity as a function of porosity and pore diameter. The engineering model is validated by comparison with experiments that characterize heat transfer in an air-water radiator made from porous carbon foam. The model is also used in to conduct a parametric study to show the influence of the porosity and pore diameter of the foam. The parametric study suggests that in comparison to conventional aluminum finned-tube radiators, improvements of approximately 15% in thermal performance are possible without changing the frontal area, or the air flow rate and pressure drop. The engineering model developed herein can be used by engineers to assess quantitatively the suitability of porous carbon foam as a fin material in the design of air-water heat exchangers. (author)

  13. Cells on foam and fiber

    Energy Technology Data Exchange (ETDEWEB)

    Clyde, R. [Clyde Engineering, New Orleans, LA (United States)

    1996-12-31

    Cells grow on high area foam and, when a screen is put around the foam, it is made heavier so it can be fluidized. When foam is rotated in a half full RBC (rotary biological contactor), drops are formed and mass transfer of oxygen to drops is much faster. Most fungi and some mammalian cells need oxygen. Corrugated fibers with holes in the valleys also produce drops. White rot fungus needs oxygen and it degrades many chlorine compounds, azo dyes, PAHs (polycyclic aromatic hydrocarbons), and TNT. Old cardboard boxes are readily available and when buried in soil, oxygen is entrapped. In a lake, the boxes expose high area. Celite entrapped in fibers provides even more area. Fibers have high surface area for immobilizing cells and, when the fibers are rotated, fast reactions occur, converting one chemical to another. Sugar has been fermented to alcohol in 10--15 minutes. Ethanol has high octane and does not need lead. Old cars and trucks still use lead, and high levels have been found in the drinking water of several large cities. Bacteria on fibers can remove lead in a few seconds. When an RBC of plain fiber discs is rotated and a light shone in the tope, the light hits a thin moving film to degrade chlorine compounds and sterilize water. Titania can be fused to the fiberglass discs. Microbes and light remove sulfur from oil. Calcium magnesium acetate is a non-corrosive road deicer. Salt on roads causes millions of dollars damage to bridges and cars.

  14. Shock compression of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Stahl D.B.

    2012-08-01

    Full Text Available Several shock studies have been made on polyurethane materials, both fully dense and distended in the form of foams. However, there is a lack of shock data between the densities of 0.321 and 1.264g/cm3 (fully dense. We present here data obtained from two different types of shock experiments at densities of 0.35, 0.5, 0.68, 0.78, and 0.9g/cm3 in order to fill in the density deficiencies and make it easier to develop an unreacted equation of state (EOS for polyurethane as a function of density. A thermodynamically consistent EOS was developed, based on the Helmholtz free energy, and was used to predict the shock properties of polyurethane materials at densities from 1.264 to 0.348g/cm3. These estimates are compared to the available data. The data match quite close to the predictions and provide a basis for calculating polyurethane foam shock processes. Chemical reaction has been observed at relatively high pressure (21.7 GPa in fully dense polyurethane in an earlier study, and the equation of state presented here is representative of the unreacted polyurethane foam. Lowering the density is expected to drop the shock pressure for chemical reaction, yet there is not enough data to address the low density shock reaction thresholds in this study.

  15. Microgravity Foam Structure and Rheology

    Science.gov (United States)

    Durian, Douglas J.

    1997-01-01

    To exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest is in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate. The unusual elastic character of foams will be quantified macroscopically by measurement of the shear stress as a function of static shear strain, shear strain rate, and time following a step strain; such data will be analyzed in terms of a yield stress, a static shear modulus, and dynamical time scales. Microscopic information about bubble packing and rearrangement dynamics, from which these macroscopic non-Newtonian properties presumably arise, will be obtained non-invasively by novel multiple-light scattering diagnostics such as Diffusing-Wave Spectroscopy (DWS). Quantitative trends with materials parameters, such as average bubble size, and liquid content, will be sought in order to elucidate the fundamental connection between the microscopic structure and dynamics and the macroscopic rheology.

  16. Heat-regulated foaming in surfactant solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, M.Y.; Eremina, L.D.; Vlasenko, I.G.

    1984-01-01

    This article examines the mechanism of the foam-inhibiting action resulting from the use of propylene oxide derivatives in solutions both of anionic and of nonionic surfactants. The objective is the creation of a detergent composition with heat-regulated foaming, which would foam well at 30-50/sup 0/ and poorly at 80-90/sup 0/, which is the usual temperature of washing machines. It is demonstrated that foaming can be regulated by the variation of the cloud points of solutions with the aid of additions of polypropylene glycols and their alkyl derivatives or block copolymers in solutions of surfactants. Foaming and foam stability decrease sharply above the cloud points of the solutions due to the foam-inhibiting action of the coacervate phase on the coexisting foam-forming solution. The foam inhibition of polypropylene glycols increases and becomes apparent at lower concentrations with the increase of the average molecular weight of the hydrophobic blocks, the increase of their relative content (in block copolymers with oxyethylene groups), and upon the introduction of alkyl groups.

  17. One-step microwave foaming and curing

    Science.gov (United States)

    Gagliani, J.; Lee, R.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1981-01-01

    Process that combines microwave foaming and curing of polyimide precursors in single step produces fire-resistant foam slabs of much larger volume than has previously been possible. By adding selected conductive fillers to powder precursors and by using high-power microwave oven, foam slabs with dimensions in excess of 61 by 61 by 7.6 cm are made. Typical foaming and curing and curing time is 35 minutes in microwave oven with additional 1 to 2 hour postcure in conventional oven.

  18. TEPIC - A New High Temperature Structural Foam

    Energy Technology Data Exchange (ETDEWEB)

    Whinner, L L; Goods, S H; Tootle, M L; Neuschwanger, C L

    1998-10-01

    The formulation, processing characteristics, microstructure and mechanical properties of a new structural foam, suitable for use at service temperatures up to 200 degrees C, are reported. In each of the respects, the foam is compared to an existing material, called APO-BMI that is currently in use. When these two foams are directly compared, the new foam, called TEPIC, is found to be superior in its mechanical performance. TEPIC is formulated from a non-carcinogenic isocyanate, a di-functional epoxide, and glass microballoons. Compared to APO-BMI processing, TEPIC processing is facile and economical.

  19. The manufacturing of lightweight refractories by direct freeze foaming technique; Die Herstellung von Feuerleichtsteinen ueber die Gefrier-Direktschaeumungsmethode

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhelm, Matthias; Moritz, T.; Michaelis, A. [Fraunhofer-Institut fuer Keramische Technologien und Systeme IKTS, Dresden (Germany); Fruhstorfer, J. [IKGB Freiberg (Germany)

    2011-07-01

    Refractories are a key component for cost effective and energetic sustainable processes. Depending on the operation temperature of industrial furnace thermal characteristics of porous refractory linings have to be adjusted. There are a lot of possible porosity adjusting methods, e.g. placeholder, replica and gas injection/development approaches. Now, the freeze-foaming as direct foaming technique shall be introduced as an environmentally friendly way to refractories. In this presented work an aqueous ceramic mullite suspension is foamed within minutes just by the reduction of the ambient pressure in a freeze drying device. The foam structure suddenly freezes when the suspension temperature, related to the vacuum pressure, reaches the liquid-solid equilibrium line (p, T-diagram of water). The porous structure is then dried by sublimating the frozen water. The resulting bricklike lightweight refractories exhibit a high amount of open porosity and dense struts. Just 5-10 mass.% organic additives, required for a stable foaming, minimize the effect of crack formation during the sintering step and provide an environmentally friendly processing route to the final product. The pore morphology is being determined by X-ray computed tomographic images and mercury porosimetry. Measurements of the thermal conductivity, compressive strength and creep have been carried out to evaluate the freeze-foaming process as a promising approach for manufacturing refractories. (orig.)

  20. New decontamination process using foams containing particles

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France)

    2008-07-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  1. Evaluate shock capturing capability with the numerical methods in OpenFOAM

    Directory of Open Access Journals (Sweden)

    Khodadadi Azadboni Reza

    2013-01-01

    Full Text Available Simulations for both multiphase flows and supersonic single phased flows are well known, however the combination is a less investigated area of research, as the two basic approaches of CFD, the pressure and the density based approach, each describe one of the phases in a better way than the other one. In this paper, we systematically investigate the solver quality of the open source CFD code OpenFOAM in handling transonic flow phenomena that typically occur inside the breaking chamber of high voltage circuit breakers, during contact separation. The solver quality is then compared with that of chosen commercial CFD tools. The main advantage of OpenFOAM is that, contrary to most of the commercial simulation tools, it is license fee free and allows access to the source code. This means that complicated multi physics phenomena inside the arcing chamber can be directly modeled into the code by users, which opens an opportunity to remove limitations of commercial CFD tools. Particularly, the shock capturing capability of OpenFOAM will be evaluated for the transonic internal flow which typically occurs in high voltage circuit breakers. Overall, Open-FOAM shows acceptable shock capturing capabilities in the performed verification and validation studies, with the solver quality comparable to some of the tested commercial CFD tools. There is still room for further solver quality improvements in OpenFOAM by implementing better shock capturing schemes such as a density-based flux-difference-splitting scheme or by writing better physical modeling of the shock/boundary layer interaction into the open architecture of OpenFOAM.

  2. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers.

    Science.gov (United States)

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T

    2015-01-06

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS.

  3. Detailed investigation of the microbial community in foaming activated sludge reveals novel foam formers

    Science.gov (United States)

    Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.

    2015-01-01

    Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS.

  4. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    Energy Technology Data Exchange (ETDEWEB)

    Shang, J.T. [Key laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096 (China)], E-mail: Jshang@seu.edu.cn; Xuming, Chu; Deping, He [School of Materials Science and Engineering, Southeast University, Nanjing 210096 (China)

    2008-06-25

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores.

  5. [Obtainment of pineapple juice powder by foam-mat drying].

    Science.gov (United States)

    Beristain, C I; Cortés, R; Casillas, M A; Díaz, R

    1991-06-01

    The foam-mat production and stability using pineapple juice concentrate (25, 30 and 40 degrees Brix), adding a surfactants mixture and maltodextrin (DE 10) as co-adjuvant, stirred in a commercial mixer, was studied. Adequate foam formation conditions were as follows: concentrate of 25 degrees Brix using surface active agents (Sorbac 60-Polisorbac 80) 0.285% surface active agent/total solids, HLB = 6, and stirring time, 7 min. The foam was dehydrated in an oven dried with a horizontal air flow circulation set at 60, 70 and 80 degrees C using 3, 5 and 10 mm bed depths. The best conditions were obtained at 60 degrees C and 5 mm bed depth. The product had a particle size of sieve 40-80, and a moisture content of 3%. It was then packaged in multilayer plastic film and stored at environmental conditions. No brown color formation or mold growth was detected during storage. Pineapple juice and a refreshing drink were prepared. The general acceptability in a community indicated that 95% of the population involved accepted the product.

  6. Injectivity Errors in Simulation of Foam EOR

    NARCIS (Netherlands)

    Leeftink, T.N.; Latooij, C.A.; Rossen, W.R.

    2013-01-01

    Injectivity is a key factor in the economics of foam EOR processes. Poor injectivity of lowmobility foam slows the production of oil and allows more time for gravity segregation of injected gas. The conventional Peaceman equation, when applied in a large grid block, makes two substantial errors in e

  7. Injectivity errors in simulation of foam EOR

    NARCIS (Netherlands)

    Leeftink, T.N.; Latooij, C.A.; Rossen, W.R.

    2014-01-01

    Injectivity is a key factor in the economics of foam enhanced oil recovery (EOR) processes. Poor injectivity of low-mobility foam slows the production of oil and allows more time for gravity segregation of injected gas. The conventional Peaceman equation (1978), when applied in a large grid block, m

  8. Development of Steel Foam Materials and Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  9. Advanced Processing of Hollow Sphere Foams

    Science.gov (United States)

    2007-11-02

    composition is close to that of 405 stainless. Carburization in CO/CO2 atmosphere followed by heat treatment produces foams of either 410 or 420 type...after carburization . A sample with 0.5 wt% carbon at a relative density of 15% indicated a yield strength of 16 MPa. Specific strengths of the foams were

  10. Foam drilling in natural gas hydrate

    Directory of Open Access Journals (Sweden)

    Wei Na

    2015-01-01

    Full Text Available The key problem of foam drilling in natural gas hydrate is prediction of characteristic parameters of bottom hole. The simulation shows that when the well depth increases, the foam mass number reduces and the pressure increases. At the same depth, pressure in drill string is always higher than annulus. The research findings provide theoretical basis for safety control.

  11. Expanded polylactide bead foaming - A new technology

    Science.gov (United States)

    Nofar, M.; Ameli, A.; Park, C. B.

    2015-05-01

    Bead foaming technology with double crystal melting peak structure has been recognized as a promising method to produce low-density foams with complex geometries. During the molding stage of the bead foams, the double peak structure generates a strong bead-to-bead sintering and maintains the overall foam structure. During recent years, polylactide (PLA) bead foaming has been of the great interest of researchers due to its origin from renewable resources and biodegradability. However, due to the PLA's low melt strength and slow crystallization kinetics, the attempts have been limited to the manufacturing methods used for expanded polystyrene. In this study, for the first time, we developed microcellular PLA bead foams with double crystal melting peak structure. Microcellular PLA bead foams were produced with expansion ratios and average cell sizes ranging from 3 to 30-times and 350 nm to 15 µm, respectively. The generated high melting temperature crystals during the saturation significantly affected the expansion ratio and cell density of the PLA bead foams by enhancing the PLA's poor melt strength and promoting heterogeneous cell nucleation around the crystals.

  12. New views on foams from protein solutions

    NARCIS (Netherlands)

    Wierenga, P.A.; Gruppen, H.

    2010-01-01

    The stabilization of foam by proteins has been mostly studied in relation to the food industry. The main aim of the research is to understand the relation between proteins used and the product properties. The molecular properties of proteins and their foam forming and stabilizing properties are typi

  13. Effects of protonation on foaming properties of dodecyldimethylamine oxide solutions: a pH-study.

    Science.gov (United States)

    Schellmann, Kathrin; Preisig, Natalie; Claesson, Per; Stubenrauch, Cosima

    2015-01-21

    The critical micelle concentration (cmc), the surface excess (Γ), as well as the micelle aggregation number (m) of the surfactant dodecyldimethylamine oxide (C12DMAO) have been reported to strongly depend on the pH-value of the aqueous surfactant solution. At high ionic strength, the cmc displays a minimum, while both Γ and m have a maximum at a pH-value close to the pKa of the surfactant. These experimental observations have been explained as being due to specific hydrogen bonds between the head groups, which are formed once the surfactant is partly or fully protonated. This investigation addresses the question of whether the pH also affects the foaming properties of C12DMAO solutions. To answer this question we measured the foamability and the foam stability of C12DMAO solutions at a fixed C12DMAO concentration of 5 cmc for five different pH-values, namely pH = 2, 3, 5, 8, and 10. We found that the foamability is hardly affected by the pH-value, while the foam stability strongly depends on the pH. As is the case for the above mentioned properties, the foam stability also displays an extremum in the studied pH-range, namely a maximum at pH = 5. We discuss our results in terms of the hydrogen bond hypothesis and show that this hypothesis indeed is in line with the observed trend for the foam stability. Moreover, we discuss that hydrogen bond formation may rationalize how the molecular structure of a surfactant affects foam stability.

  14. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    CHU,TZE YAO; ERICKSON,KENNETH L.; HOBBS,MICHAEL L.

    1999-11-01

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam which contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  15. Modeling Decomposition of Unconfined Rigid Polyurethane Foam

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS,MICHAEL L.; ERICKSON,KENNETH L.; CHU,TZE YAO

    1999-11-08

    The decomposition of unconfined rigid polyurethane foam has been modeled by a kinetic bond-breaking scheme describing degradation of a primary polymer and formation of a thermally stable secondary polymer. The bond-breaking scheme is resolved using percolation theory to describe evolving polymer fragments. The polymer fragments vaporize according to individual vapor pressures. Kinetic parameters for the model were obtained from Thermal Gravimetric Analysis (TGA). The chemical structure of the foam was determined from the preparation techniques and ingredients used to synthesize the foam. Scale-up effects were investigated by simulating the response of an incident heat flux of 25 W/cm{sup 2} on a partially confined 8.8-cm diameter by 15-cm long right circular cylinder of foam that contained an encapsulated component. Predictions of center, midradial, and component temperatures, as well as regression of the foam surface, were in agreement with measurements using thermocouples and X-ray imaging.

  16. Method to evaluate foaming in petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, A.K.; Rezende, D.A.; Santos, R.F.; Mansur, C.R.E. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas], e-mail: celias@ima.ufrj.br

    2011-01-15

    In oil fields, gravitational separation tanks are generally used to separate the oil, gas and water phases, remove emulsifying agents present at the interfaces and permit the coalescence of water droplets associated with the crude oil being pumped. The main problem that influences the performance of these separators is the formation of foam. In this work, a method was developed to evaluate foaming in crude oil in laboratory scale, reproducing the operation conditions in gas-oil separators in real fields. This method was employed with seven crude oil samples, and the performance of silicone anti foams with different molar masses could be tested. The results indicated that the method of evaluating the breakdown of foam in oil by using the Aging Cell apparatus in a roller oven proved to be suitable. It was observed that the oil viscosity is a determining factor in predicting whether or not foam will form. (author)

  17. Biodegradable foam plastics based on castor oil.

    Science.gov (United States)

    Wang, Hong Juan; Rong, Min Zhi; Zhang, Ming Qiu; Hu, Jing; Chen, Hui Wen; Czigány, Tibor

    2008-02-01

    In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced.

  18. Autoclave foam concrete: Structure and properties

    Science.gov (United States)

    Mestnikov, Alexei; Semenov, Semen; Strokova, Valeria; Nelubova, Viktoria

    2016-01-01

    This paper describes the technology and properties of autoclaved foam concrete taking into account practical experience and laboratory studies. The results of study of raw materials and analysis of structure and properties of foam-concrete before and after autoclave treatment are basic in this work. Experimental studies of structure and properties of foam concrete are carried out according to up-to-date methods and equipment on the base of the shared knowledge centers. Results of experimental studies give a deep understanding of properties of raw materials, possible changes and new formations in inner layers of porous material providing the improvement of constructional and operational properties of autoclaved foam concrete. Principal directions of technology enhancement as well as developing of production of autoclave foam concretes under cold-weather conditions in Russia climate are justified.

  19. Cells on foam and fiber

    Energy Technology Data Exchange (ETDEWEB)

    Clyde, R. [Clyde Engineering, New Orleans, LA (United States)

    1995-11-01

    Cells growing on high area foam and when a screen is put around the foam, it is made heavier so it can be fluidized. When foam is rotated in a half full RBC, drops are formed and mass transfer of oxygen to drops in much faster. Most fungi and some mammalian cells need oxygen. Corrugated fibers with holes in the valleys also produce drops. White rot fungus needs oxygen and it degrades many chlorine compounds, azo dyes, and TNT. Old cardboard boxes are readily available and when buried in soil, oxygen is entrapped. In a lake, the boxes expose high area. Fibers have high surface area for immobilizing cells and when the fibers are rotated, fast reactions occur, converting one chemical to another. Sugar has been fermented to alcohol in 10-15 minutes. Ethanol has high octane and does not need lead. Old cars and trucks still use lead and high levels have been found in the drinking water of several large cities. Bacteria on fibers can remove lead in a few seconds. When an RBC of plain fiber discs is rotated and a light shone in the top the light hits a thin moving film to degrade chlorine compounds. Microbes and light remove sulfur from oil. Calcium magnesium acetate is a non corrosive road deicer. Salt on roads causes millions of dollars damage to bridges and cars. An inexpensive reactor has been made for organization studies of mammalian and plant cells. A magnet is near the bottom but not touching and oxygen is put on the top where there is no seal that can leak.

  20. Vascular dynamics of a shape memory polymer foam aneurysm treatment technique.

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan; Wilson, Tom; Tsai, William; Savaş, Omer; Saloner, David

    2007-11-01

    The vascular dynamics of a shape memory polymer foam aneurysm treatment technique are assessed through the simulated treatment of a generic basilar aneurysm using coupled fluid dynamics and heat transfer calculations. The shape memory polymer foam, which expands to fill the aneurysm when heated, is modeled at three discrete stages of the treatment procedure. To estimate an upper bound for the maximum amount of thermal damage due to foam heating, a steady velocity is specified through the basilar artery, corresponding to a minimum physiological flow velocity over a cardiac cycle. During expansion, the foam alters the flow patterns within the aneurysm by shielding the aneurysm dome from a confined jet that issues from the basilar artery. The time scales for thermal damage to the artery walls and surrounding blood flow are computed from the temperature field. The flow through the post-treatment bifurcation is comprised of two counter-rotating vortex tubes that are located beneath the aneurysm neck and extend downstream into the outlet arteries. Beneath the aneurysm neck, a marked increase in the wall shear stress is observed due to the close proximity of the counter-rotating vortex tubes to the artery wall.

  1. Fracture of open- and closed-cell metal foams

    NARCIS (Netherlands)

    Onck, P; van Merkerk, R.; Raaijmakers, A; De Hosson, JTM

    2005-01-01

    Two closed cell aluminium foams and one open cell nickel-chromium foam were subjected to microstructural characterization, in situ fracture tests and fractography. The failure process of the open cell foam was observed to be rather ductile, while that of the closed cell foams was found to be brittle

  2. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    Energy Technology Data Exchange (ETDEWEB)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K., E-mail: kp2952002@gmail.com

    2014-11-15

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO{sub 2} adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO{sub 2} at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability.

  3. Stability of carbon dioxide foam and effect of polymer on its foam properties%二氧化碳泡沫稳定性及聚合物对其泡沫性能的影响

    Institute of Scientific and Technical Information of China (English)

    吕明明; 王树众

    2014-01-01

    基于CO2气体性质的特殊性以及CO2泡沫在多孔介质中表现出不同于其他气体泡沫的现象,利用气流法,选用十二烷基苯磺酸钠(SDBS)作为起泡剂,研究了 CO2泡沫的稳定性和衰减规律,以及聚合物部分水解聚丙烯酰胺(HPAM)对CO2泡沫性能的影响。结果表明,在相同条件下,CO2泡沫的稳定性比N2泡沫差,并且CO2泡沫的稳定性基本不受表面活性剂浓度的影响;CO2泡沫的衰减曲线近似一条直线,泡沫形成后体积迅速减小。CO2在水中具有较大的溶解度,泡沫的液膜渗透率系数大,因而泡沫稳定性差,也是造成CO2泡沫在岩心内渗流规律区别于 N2泡沫的一个重要原因。HPAM 的加入可以在一定程度上增强 CO2泡沫的稳定性,但同时也会使溶液起泡性能降低,所以实际应用时需要综合考虑泡沫特性,选择最佳的聚合物浓度。%Considering the special nature of CO2 and the behavior of CO2 foam in the porous medium different from foams of other gases, CO2 foam stability, decay property of CO2 foam and effect of partially hydrolyzed polyacrylamide (HPAM) on CO2 foam properties were studied. The gas-flow method was used for foaming and sodium dodecyl benzene sulfonate (SDBS) was used as the foaming agent. The stability of CO2 foam was worse than that of N2 foam under the same conditions and was nearly not influenced by surfactant concentration. Besides, the decay curve of CO2 foam was approximately a straight line and the volume of CO2 foam decreased rapidly after foaming. An important factor leading to the poor stability of CO2 foam lay on the large film permeability coefficient because of higher solubility of CO2 in water, which further led to the different propagation behavior of CO2 foam from N2 foam in the core. The adding of polymer HPAM enhanced the stability of CO2 foam to a certain extent, but reduced the foaming property of surfactant solution. Therefore, both

  4. USING BIOPOLYMERS TO STABILIZE THE PROTEIN OXYGEN FOAM

    Directory of Open Access Journals (Sweden)

    N. V. Nepovinnyh

    2013-01-01

    Full Text Available The cottage cheese whey as an oxygen cocktail foaming base and natural juices as a flavoring ingredient are analyzed. The lifetime of foam generated by the serum proteins is not long: foam falls off rapidly; because from the foam liquid is released (syneresis. The effects of plant polysaccharides on the stabilization of the protein foam oxygen cocktail is studied. It was shown that the use of plant polysaccharides (guar gum, high methoxyl citrus pectin, locust been gum prolong the life of the foam up to 20 times, compared with conventional blowing agents. It was found that oxygen foam properties depend on the molecular weight of guar gum.

  5. Metal Foaming Investigated by X-ray Radioscopy

    Directory of Open Access Journals (Sweden)

    Catalina Jiménez

    2011-12-01

    Full Text Available The use of X-ray radioscopy for in-situ studies of metal foam formation and evolution is reviewed. Selected results demonstrate the power of X-ray radioscopy as diagnostic tool for metal foaming. Qualitative analyses of foam nucleation and evolution, drainage development, issues of thermal contact, mold filling, cell wall rupture and more are given. Additionally, quantitative analyses based on series of images of foam expansion yielding coalescence rates, density distributions, etc., are performed by dedicated software. These techniques help us to understand the foaming behavior of metals and to improve both foaming methods and foam quality.

  6. ZrP nanoplates based fire-fighting foams stabilizer

    Science.gov (United States)

    Zhang, Lecheng; Cheng, Zhengdong; Li, Hai

    2015-03-01

    Firefighting foam, as a significant innovation in fire protection, greatly facilitates extinguishments for liquid pool fire. Recently, with developments in LNG industry, high-expansion firefighting foams are also used for extinguishing LNG fire or mitigating LNG leakage. Foam stabilizer, an ingredient in fire-fighting foam, stabilizes foam bubbles and maintains desired foam volume. Conventional foam stabilizers are organic molecules. In this work, we developed a inorganic based ZrP (Zr(HPO4)2 .H2O, Zirconium phosphate) plates functionalized as firefighting foam stabilizer, improving firefighting foam performance under harsh conditions. Several tests were conducted to illustrate performance. The mechanism for the foam stabilization is also proposed. Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA. Mary Kay O'Connor Process Safety Center, Texas A&M University, College Station, TX, 77843-3122

  7. Energy absorbing efficiency of various aluminum foam filled tube

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jin Man; Lee, Won Sik; Ko, Se Hyun [Korea Institute of Industrial Technology, Chonan (Korea, Republic of)

    2005-04-15

    In this study various types of A1 foam filled tubes were fabricated using foam of A1-12wt.%Si by powder metallurgical process. Their energy absorbing efficiencies were investigated with compression test, focusing on the structure and bonding effects between tube and foam. The results show that the energy absorption is affected by structure of A1 foam filled tube. Among fully foam filled tube, partially foam filled tube and A1 hollow tube with the same weight, fully foam filled tube seems to have superior potential for industrial application to energy absorption parts. Also energy absorption efficiency is increased by interaction between tube and foam and especially, bonding between tube and metallic foam gives rise to increase the energy absorption efficiency up to above 1.2 times. This results from the arrest of folding of tube by metallic foam and the change of stress mode from uni-axial to multi-axial during compression.

  8. Analysis of Water Mist Suppression with Foam Additive in Wind Generator

    Institute of Scientific and Technical Information of China (English)

    Chen-Wei Chiu[1; Yin-Tsz Lin[1; Yi-Liang Shu[2

    2015-01-01

    The study adopted a 20-foot long container to simulate the situation inside a turbine cabin. Water mist sprays were installed internally and used to perform fire extinguishing tests. Under these different scenarios, several operating factors were adjusted with the results of each adjustment subsequently measured. The operating factors studied included: operating pressures, foam concentrations, cabin opening issues, and obstacles. Each of the factors was compared with the others so as to find out which combinations would be most suitable for a water mist spray system installed inside a wind turbine cabin. The presence of obstructions hinders the direct impact of the mist spray on the fire source and in average an additional 2 to 3 minutes is required to put out the fire. This study found that the effect of the foam-water ratio is linear. Regardless of the scenario, the optimum mixture ratio is 3%. The line graph shows that the most unsuitable aqueous film-forming mixture ratio is 6%. This experiment found that the main fire extinguishing mechanism of water mist spray is the cooling of a large area via water droplets. This system is very effective in bringing down the temperature. The addition of foam in water mist spray, however, impaired the effectiveness of the cooling effect although the fire control mechanism via emulsification markedly reduced the time required to put out the fire. The increase in foam magnification will considerably enhance the fire extinguishing efficiency.

  9. Low Overpotential and High Current CO2 Reduction with Surface Reconstructed Cu Foam Electrodess

    KAUST Repository

    Min, Shixiong

    2016-06-23

    While recent reports have demonstrated that oxide-derived Cu-based electrodes exhibit high selectivity for CO2 reduction at low overpotential, the low catalytic current density (<2 mA/cm2 at -0.45 V vs. RHE) still largely limits its applications for large-scale fuel synthesis. Here we report an extremely high current density for CO2 reduction at low overpotential using a Cu foam electrode prepared by air-oxidation and subsequent electroreduction. Apart from possessing three-dimensional (3D) open frameworks, the resulting Cu foam electrodes prepared at higher temperatures exhibit enhanced electrochemically active surface area and distinct surface structures. In particular, the Cu foam electrode prepared at 500 °C exhibits an extremely high geometric current density of ~9.4 mA/cm2 in CO2-satrurated 0.1 M KHCO3 aqueous solution and achieving ~39% CO and ~23% HCOOH Faradaic efficiencies at -0.45 V vs. RHE. The high activity and significant selectivity enhancement are attributable to the formation of abundant grain-boundary supported active sites and preferable (100) and (111) facets as a result of reconstruction of Cu surface facets. This work demonstrates that the structural integration of Cu foam with open 3D frameworks and the favorable surface structures is a promising strategy to develop an advanced Cu electrocatalyst that can operate at high current density and low overpotential for CO2 reduction.

  10. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    Science.gov (United States)

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles.

  11. Transient behavior of simultaneous flow of gas and surfactant solution in consolidated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Baghdikian, S.Y.; Handy, L.L.

    1991-07-01

    The main objective of this experimental research was to investigate the mechanisms of foam generation and propagation in porous media. Results obtained give an insight into the conditions of foam generation and propagation in porous media. The rate of propagation of foam is determined by the rates of lamellae generation, destruction, and trapping. Several of the factors that contribute to foam generation have studied with Chevron Chaser SD1000 surfactant. Interfacial tension (IFT) measurements were performed using a spinning drop apparatus. The IFT of two surfactant samples of different concentrations were measured with dodecane and crude oil from the Huntington Beach Field as a function of temperature and time. Foam was used as an oil-displacing fluid. However, when displacing oil, foam was not any more effective than simultaneous brine and gas injection. A series of experiments was performed to study the conditions of foam generation in Berea sandstone cores. Results show that foam may be generated in sandstone at low flow velocities after extended incubation periods. The effect of pregenerating foam before injection into the sandstone was also studied. The pressure profiles in the core were monitored using three pressure taps along the length of the core. A systematic study of foaming with different fluid velocities and foam qualities provides extensive data for foam flow conditions. 134 refs., 57 figs., 2 tabs.

  12. Damping of liquid sloshing by foams

    CERN Document Server

    Sauret, Alban; Cappello, Jean; Dressaire, Emilie; Stone, Howard A

    2014-01-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of wa ter is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, wh ich suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscill ations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissi pation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D a...

  13. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  14. DRY MIX FOR OBTAINING FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available Composition of a dry mix has been developed for production of non-autoclaved foam concrete with natural curing. The mix has been created on the basis of Portland cement, UFAPORE foaming agent, mineral additives (RSAM sulfoaluminate additive, MK-85 micro-silica and basalt fiber, plasticizing and accelerating “Citrate-T” additive and   redispersible Vinnapas-8034 H powder. It has been established that foam concrete with  density of 400–800 kg/m3, durability of 1,1–3,4 MPa, low water absorption (40–50 %, without shrinkable cracks has been formed while adding water of Water/Solid = 0.4–0.6 in the dry mix,  subsequent mechanical swelling and curing of foam mass.Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and  time reduction of its drying and curing. An investigation on microstructure of foam-concrete chipping surface carried out with the help of a scanning electron microscope has shown that the introduction of  basalt fiber and redispersible Vinnapas-8034 H powder into the composition of the dry mix promotes formation of more finely-divided crystalline hydrates. Such approach makes it possible to change purposefully morphology of crystalline hydrates and gives the possibility to operate foam concrete structurization process.

  15. Feynman diagrammatic approach to spin foams

    CERN Document Server

    Kisielowski, Marcin; Puchta, Jacek

    2011-01-01

    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on thei...

  16. TEPIC -- A new high temperature structural foam

    Energy Technology Data Exchange (ETDEWEB)

    L. L. Whinnery; S. H. Goods; M. L. Tootle; C. L. Neuschwanger

    1998-10-01

    The formulation, processing characteristics, microstructure and mechanical properties of a new structural foam, suitable for use at service temperatures up to 200 C, are reported. In each of these respects, the foam is compared to an existing material, called APO-BMI that is currently in use. When these two foams are directly compared, the new foam, called TEPIC, is found to be superior in its mechanical performance. TEPIC is formulated from a non-carcinogenic isocyanate, a di-functional epoxide, and glass microballoons. The authors' approach was to combine chemistries known to form thermally stable products. The principal polymerization products are an oxizolidinone produced by the reaction of the isocyanate with the epoxide and isocyanurate rings formed by the trimerization of the isocyanate. Processing has been examined and large-scale production is discussed in detail. Compared to APO-BMI processing, TEPIC processing is facile and economical. The structure of the foam resembles a traditional rigid polyurethane foam rather than that of the APO-BMI. That is, the foam is comprised of a continuous resin phase rather than weakly bonded glass microballoons. At a density of 0.42 g/cm{sup 3} or greater, maximum pore size in TEPIC was less than 2 mm, as required for the application.

  17. Thermal Infrared Signatures and Heat Fluxes of Sea Foam

    Science.gov (United States)

    2015-01-13

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Thermal Infrared Signatures and Heat Fluxes of Sea Foam ...Number: N000141110703 ABSTRACT The goal of this research is to quantitatively characterize the temperature change of natural sea foam in the wake...heat flux from foam and foam free surfaces in a laboratory wind tunnel. The results show that foam enhances the heat flux from seawater by a factor

  18. Fabrication of superhydrophobic film by microcellular plastic foaming method

    Science.gov (United States)

    Zhang, Zhen Xiu; Li, Ya Nan; Xia, Lin; Ma, Zhen Guo; Xin, Zhen Xiang; Kim, Jin Kuk

    2014-08-01

    To solve the complicated manufacturing operation and the usage of toxic solvent problems, a simple and novel method to fabricate superhydrophobic film by surface foaming method was introduced in this paper. The superhydrophobic property of the foamed material was obtained at a contact angle >150° and a rolling angle about 8°. The foamed material can instantly generate its superhydrophobicity via peeling process. The effects of blowing agent content, foaming time and peeling rate on the foam structure and superhydrophobicity were studied.

  19. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of particle size is ≤33 μm (D50). The foams have a homogeneous pore distribution and a major fraction of the pores are smaller than 0.5 mm. Only when using the smallest particles (13 μm) does the pore size increase to 1...

  20. Foaming in manure based digesters: Effect of overloading and foam suppression using antifoam agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan

    production, methane content in biogas, pH, VFA concentration and the volume of foam formed in the reactor were monitored and recorded in daily basis. The investigation of possible solutions to counteract foam formation was achieved through the evaluation of the antifoam efficiency of five commercial and non......Anaerobic digestion foaming is one of the major problems that occasionally occur in full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically created either in the main biogas reactor or/and in the pre-storage tank and the entrapped solids in the foam cause...... severe operational problems, such as blockage of mixing devices and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses derived from the reduced biogas production, extra labour work and additional maintenance costs. Moreover...

  1. Frog Foam Nest Protein Diversity and Synthesis.

    Science.gov (United States)

    Hissa, Denise Cavalcante; Bezerra, Walderly Melgaço; Freitas, Cléverson Diniz Teixeira De; Ramos, Márcio Viana; Lopes, José Luiz De Souza; Beltramini, Leila Maria; Roberto, Igor Joventino; Cascon, Paulo; Melo, Vânia Maria Maciel

    2016-08-01

    Some amphibian species have developed a breeding strategy in which they deposit their eggs in stable foam nests to protect their eggs and larvae. The frog foam nests are rich in proteins (ranaspumin), especially surfactant proteins, involved in the production of the foam nest. Despite the ecological importance of the foam nests for evolution and species conservation, the biochemical composition, the long-term stability and even the origin of the components are still not completely understood. Recently we showed that Lv-RSN-1, a 23.5-kDa surfactant protein isolated from the nest of the frog Leptodacylus vastus, presents a structural conformation distinct from any protein structures yet reported. So, in the current study we aimed to reveal the protein composition of the foam nest of L. vastus and further characterize the Lv-RSN-1. Proteomic analysis showed the foam nest contains more than 100 of proteins, and that Lv-RSN-1 comprises 45% of the total proteins, suggesting a key role in the nest construction and stability. We demonstrated by Western blotting that Lv-RSN-1 is mainly produced only by the female in the pars convoluta dilata, which highlights the importance of the female preservation for conservation of species that depend on the production of foam nests in the early stages of development. Overall, our results showed the foam nest of L. vastus is composed of a great diversity of proteins and that besides Lv-RSN-1, the main protein in the foam, other proteins must have a coadjuvant role in building and stability of the nest.

  2. Simply enhancing throughput of free-flow electrophoresis via organic-aqueous environment for purification of weak polarity solute of phenazine-1-carboxylic acid in fermentation of Pseudomonas sp. M18.

    Science.gov (United States)

    Yang, Jing-Hua; Shao, Jing; Wang, Hou-Yu; Dong, Jing-Yu; Fan, Liu-Yin; Cao, Cheng-Xi; Xu, Yu-Quan

    2012-09-01

    Herein, a simple novel free-flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine-1-carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous-organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water-methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10-min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9-fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE.

  3. Foam Finishing%发泡涂饰

    Institute of Scientific and Technical Information of China (English)

    Dr. W. Wenzel; K. Pisaric; W. Schwaiger

    2006-01-01

    介绍了发泡剂在制革中的应用.详细给出了发泡剂的生产工艺以及需要不同成革的涂饰配方.结果表明,发泡涂饰对成革性能有明显改善.%The article introduced the application of foam in leather-making. The rules and production process of foam were supplied indetails. It also discussed the finish formulation and possible methods of application for different leather. The foam finishing can evidently improve the properties of leather.

  4. A new insight into foaming mechanisms in injection molding via a novel visualization mold

    Directory of Open Access Journals (Sweden)

    V. Shaayegan

    2016-06-01

    Full Text Available The complex mechanisms of bubble nucleation and dynamics in foam injection molding have not been uncovered despite many previous efforts due to the non-steady stop-and-flow nature of injection molding and the non-uniform temperature and pressure distributions in the mold. To this end, a new visualization mold was designed and manufactured for the direct observation of bubble nucleation and growth/collapse in foam injection molding. A reflective prism was incorporated into the stationary part of the injection mold with which the nucleation and growth behaviors of bubbles were successfully observed. The mechanisms of bubble nucleation in low- and high-pressure foam injection molding, with and without the application of gas-counter pressure, was investigated. We identified how the inherently non-uniform cell structure is developed in low-pressure foam injection molding with gate-nucleated bubbles, and when and how cell nucleation occurs in high-pressure foam injection molding with a more uniform pressure drop.

  5. Influence of flushing foam time with flowing water for hand washing%流动水冲洗皂液时间对洗手效果的影响

    Institute of Scientific and Technical Information of China (English)

    张富玉; 阚志超; 龙莉; 杨亚敏

    2011-01-01

    OBJECTIVE To know the influence of flushing time after washing hand with soap fluid for hand washing effect, and determine the optimal flushing time.METHODS The clinical staff 60 were engaged in work were randomly divided into two groups and collected specimen respectively before washing hands, Then flushed the foam afterwashing hands with soap fluid and rubbing 15 seconds according to the method of six-step.Group 1: flushed for 20 seconds, group 2: flushed for 30 seconds.The groups were respectively collected specimen again after waiting for dry hands.The bacterium colony after cultivating for 48 hours in 37 ℃ incubator was counted.RESULTS After washing and flushing for 20 seconds or 30 seconds, the number of bacterial colony decreased, and the effect and qualified rate of flushing for 30 seconds was better than flushing for 20 seconds.CONCLUSION Flushing time for hand washing effect has influence, the effect of flushing for 30 seconds is better than flushing for 20 seconds.%目的 了解使用皂液洗手后流动水冲洗时间对洗手效果的影响,并确定最佳冲水时间.方法 对临床正在从事工作的60名医务人员随机分为两组,洗手前分别采集标本,采集后用皂液按六步洗手法洗手,揉搓15 s后用流动水按六步洗手法冲洗手上肥皂沫,第1组冲洗20 S,第2组冲洗30 s,两组待手干后分别再次采集标本;标本采集后均置37℃温箱培养48 h后进行细菌学计数.结果 洗手后冲洗20、30 s细菌菌落数均较洗手前下降(P=12.273,P<0.05).结论 冲洗时间对洗手效果有影响,冲洗30 s效果优于冲洗20 s效果.

  6. X-ray reflectivity investigation of the foam bilayer film formed by hexaethylene glycol dodecyl ether

    Institute of Scientific and Technical Information of China (English)

    SHEN Qiang; J. J. Benattar; LI Xin; LIU Shaojie

    2003-01-01

    Structural parameters for the free-standing foam film of hexaethylene glycol monododecyl ether (C12E6) have been measured by using X-ray reflectometry. The results indicate that a "five-laminae" model corresponds to this inverted bilayer and divides it into five regions. The thicknesses of the aliphatic chainregions, the polar head-group regions, and the central aqueous core are 0.90, 1.35 and 1.31 nm, respectively; and their corresponding electron densities are 2.4 ( 10?3, 2.6 ( 10?3 and 2.3(10?3 electron/nm3, respectively; the interfacial roughness between adjacent regions is 0.34 nm. The central core of this foam film does not contain free water, its thickness decreased 0.40 nm under the irradiation of infrared rays due to the loss of structural water.

  7. A Method to Produce Foam Glasses

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a production process of foam glass from a mixture of glass cullet or slag or fly ash with a foaming agent and an oxidizing agent and heating to below 1100 C under low oxygen atmosphere. The invention relates more particularly to a process wherein pure carbon...... or a compound which yields pure carbon as the foaming agent is oxidized by a sufficient amount of an efficient oxidizing agent essentially added to the glass-carbon powder mixture, where the oxidizing agent supplies oxygen in the relevant temperature range, to release CO/CO2 gas mixture in the softened glass...... at elevated temperature, to form a foamed material with CO2 gas filled cells....

  8. Foam inflated rigidized structures for space applications

    Science.gov (United States)

    Lester, D. M.; Warner, M. J.; Blair, M.

    1993-11-01

    Large lightweight stowable structures that can be deployed in space without astronaut extra vehicular activity are vital to expanding space exploration and utilization. To meet this challenge Foam Inflated Rigidized (FIR) structures have been developed by Thiokol Corporation on the Air Forces's Gossamer Baggie Torus program. In this paper the development, proof of concept demonstration of an eight foot diameter octagonal torus, and design application of this technology for structural elements to stabilize the solar collector of a solar thermal rocket are discussed. A FIR structure uses foam to inflate and pre-stress a resin impregnated fabric skin. The predeployed foam used was a solvent swelled polymer that foams immediately when exposed to vacuum due to rapid solvent loss. This property allows a very simple deployment mechanism to be used in erecting these structures. Once inflated, the skin resin is cured using the available ultraviolet radiation. By using high strength and stiffness fiber materials a stiff, strong lightweight structure was produced.

  9. Dynamic indentation on layered polypropylene foams

    Science.gov (United States)

    Maheo, L.; Viot, P.

    2012-08-01

    Foams, and particularly the polypropylene foam, are more and more often used in the area of injury protection and passive safety for its energy absorption capacity. This multi-scale material is constituted of mesoscopic beads with a large variability of the material properties. First, to study the effects of these mesoscopic heterogeneities on both the macroscopic and the local behaviors, numerical simulations on virtual volumes of foam under dynamic loading have been performed. The influence of the organized system of heterogeneities has also been studied in the cases of a random distribution and a multi-layered volume. Experimental dynamic compressive tests have been performed on multi-layered volumes of foam and compared with the results of the Finite Element Method. Second, indentation experiments have also been performed using a cylindrical shape indenter.

  10. Dynamic indentation on layered polypropylene foams

    Directory of Open Access Journals (Sweden)

    Viot P.

    2012-08-01

    Full Text Available Foams, and particularly the polypropylene foam, are more and more often used in the area of injury protection and passive safety for its energy absorption capacity. This multi-scale material is constituted of mesoscopic beads with a large variability of the material properties. First, to study the effects of these mesoscopic heterogeneities on both the macroscopic and the local behaviors, numerical simulations on virtual volumes of foam under dynamic loading have been performed. The influence of the organized system of heterogeneities has also been studied in the cases of a random distribution and a multi-layered volume. Experimental dynamic compressive tests have been performed on multi-layered volumes of foam and compared with the results of the Finite Element Method. Second, indentation experiments have also been performed using a cylindrical shape indenter.

  11. Shock wave compression behavior of aluminum foam

    Institute of Scientific and Technical Information of China (English)

    程和法; 黄笑梅; 薛国宪; 韩福生

    2003-01-01

    The shock wave compression behavior of the open cell aluminum foam with relative density of 0. 396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is 0. 286. Furthermore, the Hugoniot relation, νs = 516.85+ 1.27νp,for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.

  12. Spherical foam growth in Al alloy melt

    Institute of Scientific and Technical Information of China (English)

    SHANG; Jintang; HE; Deping

    2005-01-01

    Due to the demand of high-tech Al alloy foam with spherical pores, high strength and high energy-absorption capacity has become one of the research foci. The aim of this study is to ascertain the growth regularity of spherical foam in Al alloy melt. Three-dimensional packing model such as face-centered cubic is established to study the spherical foam growth. Theoretical results are compared with experimental ones, and the face-centered cubic model corresponds well with the experiment. It is reasonable to assume that the pores have the same radius, the total pore number keeps unchanged and spherical foam grows with face-centered cubic packing mode. This study presents a useful help to control the average pore radius and film thickness.

  13. Open Cell Metal Foams for Beam Liners?

    CERN Document Server

    Croce, R P; Stabile, A

    2013-01-01

    The possible use of open-cell metal foams for particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are pointed out, and a study program is outlined.

  14. Multifunctional nanocomposite foams for space applications

    Science.gov (United States)

    Rollins, Diandra J.

    Materials combined with a small amount of nanoparticles offer new possibilities in the synthesizing of multifunctional materials. Graphene nanoplatelets (GnP) are multifunctional nanoreinforcing agents consisting of stacks of graphene sheets with comparable properties to a single graphene layer at an overall lower cost in a more robust form. Such particles have been shown to have good thermal, mechanical and electrical properties. In addition, a low density multifunctional nanocomposite foam has the potential for multiple applications and potential use for the aerospace industry. This dissertation investigates two different microporous (foam) polymers that are modified by the addition of GnP to combat this density effect to improve the foam's macroscopic properties Three sizes of GnP with varying aspect ratio were used to improve the polymeric foams' dielectric, electrical and mechanical properties. (Abstract shortened by ProQuest.).

  15. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  16. Espresso coffee foam delays cooling of the liquid phase.

    Science.gov (United States)

    Arii, Yasuhiro; Nishizawa, Kaho

    2017-04-01

    Espresso coffee foam, called crema, is known to be a marker of the quality of espresso coffee extraction. However, the role of foam in coffee temperature has not been quantitatively clarified. In this study, we used an automatic machine for espresso coffee extraction. We evaluated whether the foam prepared using the machine was suitable for foam analysis. After extraction, the percentage and consistency of the foam were measured using various techniques, and changes in the foam volume were tracked over time. Our extraction method, therefore, allowed consistent preparation of high-quality foam. We also quantitatively determined that the foam phase slowed cooling of the liquid phase after extraction. High-quality foam plays an important role in delaying the cooling of espresso coffee.

  17. Macroporous polymer foams by hydrocarbon templating

    OpenAIRE

    Shastri, Venkatram Prasad; Martin, Ivan; Langer, Robert

    2000-01-01

    Porous polymeric media (polymer foams) are utilized in a wide range of applications, such as thermal and mechanical insulators, solid supports for catalysis, and medical devices. A process for the production of polymer foams has been developed. This process, which is applicable to a wide range of polymers, uses a hydrocarbon particulate phase as a template for the precipitation of the polymer phase and subsequent pore formation. The use of a hydrocarbon template allows for enhanced control ov...

  18. Fire resistant resilient foams. [for seat cushions

    Science.gov (United States)

    Gagliani, J.

    1976-01-01

    Primary program objectives were the formulation, screening, optimization and characterization of open-cell, fire resistant, low-smoke emitting, thermally stable, resilient polyimide foams suitable for seat cushions in commercial aircraft and spacecraft. Secondary program objectives were to obtain maximum improvement of the tension, elongation and tear characteristics of the foams, while maintaining the resiliency, thermal stability, low smoke emission and other desirable attributes of these materials.

  19. Basic Physics Of Foam Stability And Collapse

    Science.gov (United States)

    2012-06-18

    Milton, “ Surfactants and Interfacial Phenomena ”, John Wiley & Sons, New York, 1978, pg. 149-151, 174-178, 200-210. [9] Bergeron, V., Cooper, P...Young for a single soap bubble 6 4.2 ........................................................................... Surfactant transport due to film...research is to understand how to reduce foam formation in oils; there is more fundamental understanding of how surfactants stabilize foams. The stability

  20. voFoam - A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM

    CERN Document Server

    Maric, Tomislav; Bothe, Dieter

    2013-01-01

    A new parallelized unsplit geometrical Volume of Fluid (VoF) algorithm with support for arbitrary unstructured meshes and dynamic local Adaptive Mesh Refinement (AMR), as well as for two and three dimensional computation is developed. The geometrical VoF algorithm supports arbitrary unstructured meshes in order to enable computations involving flow domains of arbitrary geometrical complexity. The implementation of the method is done within the framework of the OpenFOAM library for Computational Continuum Mechanics (CCM) using the C++ programming language with modern policy based design for high program code modularity. The development of the geometrical VoF algorithm significantly extends the method base of the OpenFOAM library by geometrical volumetric flux computation for two-phase flow simulations. For the volume fraction advection, a novel unsplit geometrical algorithm is developed, which inherently sustains volume conservation utilizing unique Lagrangian discrete trajectories located in the mesh points. ...