WorldWideScience

Sample records for aqueous electrolyte solutions

  1. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  2. Drag enhancement of aqueous electrolyte solutions in turbulent pipe flow.

    Science.gov (United States)

    Doherty, Andrew P; Spedding, Peter L; Chen, John J J

    2010-04-22

    Detailed experimental results are presented for both laminar and turbulent flow of aqueous solutions in pipes of different diameters. Nonelectrolytes, such as sugar solutions followed the normal Moody pressure loss curves. Drag enhancement was demonstrated for turbulent flow of aqueous electrolyte solutions but not for laminar flow. The increased pressure drop for turbulent electrolyte flow was attributed to an electroviscous effect and a theory was developed to explain the drag enhancement. The increased pressure drop for the turbulent region of flow was shown to depend on the Debye length in the laminar sublayer on the pipe wall. Reasonable predictions of the increasing drag were obtained for both 1:1 and 2:1 electrolyte solutions. PMID:20337452

  3. Solvation of electrolytes and nonelectrolytes in aqueous solutions.

    Science.gov (United States)

    Afanas'ev, V N

    2011-05-26

    A new theory of electrolyte and nonelectrolyte solutions has been developed which, unlike the Debye-Hückel method applicable for small concentrations only, makes it possible to estimate thermodynamic properties of a solution in a wide range of state parameters. One of the main novelties of the proposed theory is that it takes into account the dependence of solvation numbers upon the concentration of solution, and all changes occurring in the solution are connected with solvation of the stoichiometric mixture of electrolyte ions or molecules. The present paper proposes a rigorous thermodynamic analysis of hydration parameters of solutions. Ultrasound and densimetric measurements in combination with data on isobaric heat capacity have been used to study aqueous solutions of electrolytes NaNO3, KI, NaCl, KCl, MgCl2, and MgSO4 and of nonelectrolytes urea, urotropine, and acetonitrile. Structural characteristics of hydration complexes have been analyzed: hydration numbers h, the proper volume of the stoichiometric mixture of ions without hydration shells V(2h), compressibility β(1h), and the molar volume of water in hydration shells V(1h), their dependencies on concentration and temperature. It has been shown that for aqueous solutions the electric field of ions and molecules of nonelectrolytes has a greater influence on the temperature dependence of the molar volume of solution in hydration shells than a simple change of pressure. The cause of this effect may be due to the change in the dielectric permeability of water in the immediate vicinity of hydrated ions or molecules. The most studied compounds (NaCl, KCl, KI, MgCl2) have been studied in a wider range of solute concentrations of up to 4-5 mol/kg. Up to the complete solvation limit (CSL), the functions V(1h) = f(T) and β(1h) = f(T) are linear with a high correlation factor, and the dependence Y(K,S) = f(β1V1*) at all investigated concentrations of electrolytes and nonelectrolytes up to the CSL enables h and

  4. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  5. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  6. A lithium ion battery using an aqueous electrolyte solution.

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  7. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    OpenAIRE

    Mohamad Javad Kamali; Zakarya Kamali; Gholamhossein Vatankhah

    2015-01-01

    Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other...

  8. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  9. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  10. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  11. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    International Nuclear Information System (INIS)

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg[2+] or NO3[−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li+, Na+, K+, NH4+, Cl−, Br−, I−, NO3−, and SO42− at salt molalities of 0.5, 1.0, and 3.0 mol · kg−1, respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  12. Self-association and thermodynamic behavior of etilefrine hydrochloride in aqueous electrolyte solution

    International Nuclear Information System (INIS)

    Highlights: • The self-association of etilefrine HCl in aqueous solution has been studied. • Conductivity and 1H NMR measurements were used to study the self association. • The critical micelle concentrations and the degree of ionizations were calculated. • The effect of different temperatures and NaCl concentrations were studied. • The thermodynamic parameters of self association of etilefrine HCl were evaluated. - Abstract: The self-association (micellization) behavior of etilefrine HCl, an amphiphilic drug, in aqueous electrolyte solution has been investigated as a function of temperature and sodium chloride (NaCl) concentration by conductivity and 1H NMR measurements. The critical micelle concentration (CMC) was calculated from the inflection in the data obtained from both techniques. The CMC and the degree of ionization (α) values were determined over the temperature range (298.15 to 313.15) K in water and in presence of different concentrations of NaCl. The thermodynamic parameters of micellization for etilefrine HCl i.e. the standard Gibbs free energy change ΔG°m, the standard enthalpy change, ΔH°m, and the standard entropy change, ΔS°m, were evaluated according to the pseudo-phase model. The obtained CMC values, in presence and absence of electrolyte, showed an inverted U-shaped behavior. While the degree of micelle ionization (α) showed a linear response to the increase in temperature in absence of electrolyte, addition of NaCl did not cause a specific response

  13. Aggregation of manufactured nanoparticles in aqueous solutions of mono- and bivalent electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Godymchuk, Anna, E-mail: godymchuk@tpu.ru; Karepina, Elizaveta; Yunda, Elena; Bozhko, Irina; Lyamina, Galina [National Research Tomsk Polytechnic University (Russian Federation); Kuznetsov, Denis; Gusev, Alexander [National University of Science and Technology “MISIS” (Russian Federation); Kosova, Natalia [National Research Tomsk State University (Russian Federation)

    2015-05-15

    The study of biological activity of manufactured nanopowders lacks experimental data concerning the influence of electrolyte nature and content on the degree of nanoparticles aggregation in aqueous suspensions. Using the dynamic light scattering technique, it has been shown how the ionic strength (0.0001…100 mM) of mono- and bivalent electrolyte (Na{sup +}, Ca{sup 2+}) solutions influences the size and zeta-potential of Al (90 nm) and Al{sub 2}O{sub 3} (30 nm) nanoparticles. It has been determined that the aggregative effect of counterions decreases when their charge increases. The weaker influence of Ca{sup 2+} concentration on the aggregation of both nanoparticles has been demonstrated. For Al{sub 2}O{sub 3} nanoparticles, the stronger influence of Na{sup +} concentration on the size and charge of aggregates has been observed.

  14. Aggregation of manufactured nanoparticles in aqueous solutions of mono- and bivalent electrolytes

    International Nuclear Information System (INIS)

    The study of biological activity of manufactured nanopowders lacks experimental data concerning the influence of electrolyte nature and content on the degree of nanoparticles aggregation in aqueous suspensions. Using the dynamic light scattering technique, it has been shown how the ionic strength (0.0001…100 mM) of mono- and bivalent electrolyte (Na+, Ca2+) solutions influences the size and zeta-potential of Al (90 nm) and Al2O3 (30 nm) nanoparticles. It has been determined that the aggregative effect of counterions decreases when their charge increases. The weaker influence of Ca2+ concentration on the aggregation of both nanoparticles has been demonstrated. For Al2O3 nanoparticles, the stronger influence of Na+ concentration on the size and charge of aggregates has been observed

  15. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

  16. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions

    International Nuclear Information System (INIS)

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

  17. Thin wetting films from aqueous electrolyte solutions on SiC/Si wafer.

    Science.gov (United States)

    Diakova, B; Filiatre, C; Platikanov, D; Foissy, A; Kaisheva, M

    2002-02-25

    The stability and rupture of thin wetting films from aqueous NaCl or Na2SO4 solutions of different concentrations on silicon carbide were investigated. The flat surface of SiC was obtained by plasma-enhanced chemical vapor deposition (PE-CVD) on top of a silicon wafer. The microinterferometric method was used for measuring the film thickness with time. The light reflectance was calculated as a function of film thickness for the four-layer system: air/aqueous solution/SiC/Si wafer. The microinterferometric experiments showed that films from aqueous NaCl and Na2SO4 solutions with concentrations up to 0.01 M were stable independent of the pre-treatment of the substrate. The pre-treatment of the SiC surface was crucial for the wetting film stability at electrolyte concentrations greater than 0.01 M. The films were unstable and ruptured if SiC was washed with 5% hydrofluoric acid and concentrated sulfuric acid, while they were stable if washing was in sulfuric acid only, without immersing SiC in HF. The average equilibrium film thickness was determined as a function of electrolyte concentration. Measurements of the electrokinetic potential zeta were performed by electrophores of SiC powder in 0.001 M NaCl. It was shown that silicon carbide surface was negatively charged. The theory of heterocoagulation was used for the interpretation of the results. Besides the DLVO forces, the structural disjoining pressure (both positive and negative) has been included in the analysis. PMID:11908786

  18. Volumetric properties of MES, MOPS, MOPSO, and MOBS in water and in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    4-Morpholineethanesulfonic acid (MES), 4-morpholinepropanesulfonic acid (MOPS), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), and 4-(N-morpholino)butanesulfonic acid (MOBS), are useful for pH control as standard buffers in the physiological region of 5.5-6.7 for MES, 6.5-7.9 for MOPS, 6.2-7.6 for MOPSO, and 6.9-8.3 for MOBS, respectively. On the basis of density measurements at 298.15 K, the apparent molar volumes, Vφ, of the above-mentioned buffers in water and in (0.05, 0.16, and 0.25) mol kg-1 aqueous solutions of NaCl, KCl, KBr, and CH3COOK have been calculated. The partial molar volumes at infinite dilution, Vφo, obtained from Vφ, have been used to calculate the volume of transfer, ΔtrVφo, from water to aqueous electrolyte solutions. It was found that both Vφo and ΔtrVφo vary linearly with increasing the number of carbon atoms in the alkyl group side chain of the zwitterionic buffers. These linear correlations have been utilized to estimate the contributions of the zwitterionic end group (morpholinium ion, -SO3-) and -CH2- group to Vφo and ΔtrVφo. The values of Vφo and ΔtrVφo for some functional group contributions of the zwittierionic buffers with salts have also been reported.

  19. System for absolute measurement of electrolytic conductivity in aqueous solutions based on van der Pauw's theory

    International Nuclear Information System (INIS)

    Based on an innovative application of van der Pauw's theory, a system was developed for the absolute measurement of electrolytic conductivity in aqueous solutions. An electrolytic conductivity meter was designed that uses a four-electrode system with an axial–radial two-dimensional adjustment structure coupled to an ac voltage excitation source and signal collecting circuit. The measurement accuracy, resolution and repeatability of the measurement system were examined through a series of experiments. Moreover, the measurement system and a high-precision electrolytic conductivity meter were compared using some actual water samples. (paper)

  20. Partition Equilibrium on the Interface Between a Charged Membrane and a Mixed Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Ionic partition equilibrium on a charged membrane immersed in a mixed electrolyte solution was systematically investigated and several models were established for the determination of partition coefficients. On the basis of theoretical models, the effects of the concentration ratio λ of the fixed group(charged density) to reference electrolyte, the concentration ratio η between the two electrolytes existing in the solution and the valence of the electrolyte ions on the partition equilibrium in a positively charged membrane were analyzed and simulated within the chosen parameters in detail. The obtainable results can also be applicable to a sytem of mixed electrolytes contacting with a negatively charged membrane. The theoretical calculations were confirmed with the experimental data of model mixed electrolytes, NaCl+HCl and CaCl2+NaCl partitioned in the system of self-made negatively charged membrane-sulphonated poly(phenylene oxide)(SPPO) with different charge densities.

  1. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.;

    2004-01-01

    higher salt concentrations in NaCl and Na2SO4, and in (NH4)(2)SO4 the solubility is almost constant. The densities of the solutions have been determined experimentally, and the volume expansions by dissolving salt and dipeptide in water have been calculated. (C) 2003 Elsevier B.V. All rights reserved....... 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect at......Solubilities of glycylglycine and glycyl-L-alanine in aqueous electrolyte solutions containing 0-6 molal NaCl, 0-1 molal Na2SO4, and 0-1 molal (NH4)(2)SO4, have been determined experimentally at 298.15 K and atmospheric pressure. The solubility of glycylglycine and glycyl-L-alanine in pure water is...

  2. Clathrate hydrate equilibria in mixed monoethylene glycol and electrolyte aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: ► New water activity of mixed salt(s) and MEG aqueous solutions were measured. ► New 3-phase H–Lw–V data for methane and a natural gas in equilibrium with MEG and NaCl solutions are reported. ► The CPA-EoS combined with a modified Debye Hückel electrostatic term is employed to model the phase equilibria. ► Water activity data were used to adjust parameters of the modified Debye Hückel electrostatic term. ► The modified model was independently validated using hydrate data. - Abstract: Monoethylene glycol (MEG) is commonly added in the formulation of hydraulic and drilling fluids and injected into pipelines to prevent the formation of gas hydrates. It is therefore necessary to establish the effect of a combination of salts and thermodynamic inhibitors on gas hydrate equilibria. In this communication, water activity of five ternary solutions (MEG–H2O–NaCl, MEG–H2O–CaCl2, MEG–H2O–MgCl2, MEG–H2O–KCl and MEG–H2O–NaBr) and four multicomponent solutions have been measured by a reliable resistive electrolytic humidity sensor. We also report new experimental measurements of the locus of incipient hydrate-liquid water–vapour curve for systems containing methane or natural gas with aqueous solution of ethylene glycol and NaCl over a wide range of concentrations, pressures and temperatures. A thermodynamic approach in which the Cubic-Plus-Association equation of state is combined with a modified Debye Hückel electrostatic term is employed to model the phase equilibria. These new data have been used to optimise binary interaction parameters between salts and MEG implemented in the modified Debye Hückel electrostatic term. The model developed has been evaluated using the new generated hydrate data and literature data. Good agreement between predictions of the modified model and experimental data is observed, supporting the reliability of the developed model.

  3. Concentration dependences of the stability constants of iodine-iodide-amylose complexes in aqueous solutions of electrolytes

    International Nuclear Information System (INIS)

    Thermodynamics of iodine-iodide particles complexing with amylose in aqueous solutions of electrolytes (LiCl, KCl, CsCl, KNO3, CaCl2) at 298.15 K was studied by potentiometric method. Equilibrium constants characterizing the process were obtained. Changes in enthalpy and entropy were calculated in KCl and CaCl2 solutions, relying on temperature dependence (T=283.15-313.15 K). It is shown that different effect of the electrolytes on equilibrium constant dependence on ionic strength stems from I30 and I2Cl- ions competition for entering the cavity of amylose spiral, electrolyte influence on interphase distribution of the ions and solvation state of low-molecular reagents, amylose and complexes in the solutions

  4. A process for reductive plutonium stripping from an organic reprocessing solution into an aqueous, nitric solution by use of an electrolytic current

    International Nuclear Information System (INIS)

    A process for reductive plutonium stripping from an organic reprocessing solution into an aqueous, nitric solution by use of an electrolytic current, in which the aqueous solution is free of agents for the stabilization of the reduced valence of the plutonium, a HNO3 concentration in the range of 0.05 to 1.0 mol/l is established in the aqueous solution, and the reduction of Pu(IV) to Pu(III) is carried out at a maximum temperature of 400C. (orig./PW)

  5. Estimation of the stability constants of monoaniono metal complexes in aqueous solutions of 1:2 electrolytes

    International Nuclear Information System (INIS)

    On the basis of the isoactive-solutions model it is shown that the osmotic pressure of aqueous solutions of 1:2 electrolytes is described satisfactorily by the van der Waals model for an ideal associated gas. Stability, constants of monoaniono metal complexes in solutions are calculated using the osmotic mole fractions of interacting species as a concentration scale. Stability constants on the scale of osmotic mole fractions are equal to the thermodynamic constants normalized to the infinitely dilute solution. 15 refs., 1 fig., 2 tabs

  6. Effect of Counterion and Configurational Entropy on the Surface Tension of Aqueous Solutions of Ionic Surfactant and Electrolyte Mixtures

    OpenAIRE

    Youichi Takata; Hiroaki Tagashira; Atsushi Hyono; Hiroyuki Ohshima

    2010-01-01

    In order to clarify the adsorption behavior of cationic surfactants on the air/aqueous electrolyte solution surface, we derived the theoretical equation for the surface tension. The equation includes the electrical work required for charging the air/water surface and the work attributable to the configurational entropy in the adsorbed film. By fitting the equation to the experimental data, we determined the binding constant between adsorbed surfactant ion and counterion, and found that the br...

  7. Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution

    Czech Academy of Sciences Publication Activity Database

    Vlčková Živcová, Zuzana; Frank, Otakar; Petrák, Václav; Tarábková, Hana; Vacík, Jiří; Nesládek, M.; Kavan, Ladislav

    2013-01-01

    Roč. 87, JAN 2013 (2013), s. 518-525. ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400804; GA AV ČR KAN200100801 Grant ostatní: European Commission CORDIS(XE) FP7-ENERGY-2010-FET, projekt 256617 Institutional support: RVO:61389005 ; RVO:61388955 ; RVO:68378271 Keywords : boron doped diamond * electrochemistry * aqueous electrolyte solution Subject RIV: CG - Electrochemistry Impact factor: 4.086, year: 2013

  8. Effect of electrolytes on surface tension and surface adsorption of 1-hexyl-3-methylimidazolium chloride ionic liquid in aqueous solution

    International Nuclear Information System (INIS)

    Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (Amin) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C6mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I- > Br- > Cl- for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.

  9. Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation.

    Science.gov (United States)

    Lyubimova, Olga; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy

    2015-06-30

    The X-ray crystal structure-based models of Iα cellulose nanocrystals (CNC), both pristine and containing surface sulfate groups with negative charge 0-0.34 e/nm(2) produced by sulfuric acid hydrolysis of softwood pulp, feature a highly polarized "crystal-like" charge distribution. We perform sampling using molecular dynamics (MD) of the structural relaxation of neutral pristine and negatively charged sulfated CNC of various lengths in explicit water solvent and then employ the statistical mechanical 3D-RISM-KH molecular theory of solvation to evaluate the solvation structure and thermodynamics of the relaxed CNC in ambient aqueous NaCl solution at a concentration of 0.0-0.25 mol/kg. The MD sampling induces a right-hand twist in CNC and rearranges its initially ordered structure with a macrodipole of high-density charges at the opposite faces into small local spots of alternating charge at each face. This surface charge rearrangement observed for both neutral and charged CNC significantly affects the distribution of ions around CNC in aqueous electrolyte solution. The solvation free energy (SFE) of charged sulfated CNC has a minimum at a particular electrolyte concentration depending on the surface charge density, whereas the SFE of neutral CNC increases linearly with NaCl concentration. The SFE contribution from Na(+) counterions exhibits behavior similar to the NaCl concentration dependence of the whole SFE. An analysis of the 3D maps of Na(+) density distributions shows that these model CNC particles exhibit the behavior of charged nanocolloids in aqueous electrolyte solution: an increase in electrolyte concentration shrinks the electric interfacial layer and weakens the effective repulsion between charged CNC particles. The 3D-RISM-KH method readily treats solvent and electrolyte of a given nature and concentration to predict effective interactions between CNC particles in electrolyte solution. We provide CNC structural models and a modeling procedure for

  10. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...

  11. Method for the preparation of uranium compounds via electrolytic amalgamation of uranium ion directly from an aqueous solution

    International Nuclear Information System (INIS)

    The preparation of nuclear fuels such as uranium dioxide, carbide and nitride employing the ammonium uranate, (NH4)2U2O7, as starting material usually must undergo a series of chemical and metallurgical processes at relatively high temperature and under strictly controlled working condition. A simple method for the preparation of these nuclear fuels has evolved with respect to the electrolytic amalgamation of uranium ion directly from an aqueous solution. The thereby obtained uranium amalgam maybe thermally decomposed into a fine metallic powder which reacts readily with water vapor, methane and nitrogen gas to bring forth uranium dioxide, carbide and nitride, respectively

  12. Xanthan Rheological: a review about the influence of electrolytes on the viscosity of aqueous solutions of xanthan gums

    Directory of Open Access Journals (Sweden)

    João Luiz Silva Vendruscolo

    2004-01-01

    Full Text Available Several strains of Xanthomonas campestris are able to produce a bacterial biopolymer called xanthan which is widely used in the food industry. In order to have an effective use of the xanthan in the industry, not only the studies concerning the chemical properties of the xanthan should be considered, but also the studies related to its addition of electrolytes, and its effects in the rheological behaviour. When a new bacterial biopolymer is sinthetized, new rheological behaviours appear. This study aims at review the influence of the chemical structural and addition of salts to the rheological behaviour of the xanthan aqueous solution.

  13. Effect of Counterion and Configurational Entropy on the Surface Tension of Aqueous Solutions of Ionic Surfactant and Electrolyte Mixtures

    Directory of Open Access Journals (Sweden)

    Youichi Takata

    2010-04-01

    Full Text Available In order to clarify the adsorption behavior of cationic surfactants on the air/aqueous electrolyte solution surface, we derived the theoretical equation for the surface tension. The equation includes the electrical work required for charging the air/water surface and the work attributable to the configurational entropy in the adsorbed film. By fitting the equation to the experimental data, we determined the binding constant between adsorbed surfactant ion and counterion, and found that the bromide ions, rather than the chloride ions, are preferentially adsorbed by the air/water surface. Furthermore, it was suggested that the contribution of configurational entropy to the surface tension is predominant in the presence of electrolytes because of the increase in the surface density of surfactant molecules associated with decreasing the repulsive interaction between their hydrophilic groups.

  14. Study of Interfacial Tension between an Organic Solvent and Aqueous Electrolyte Solutions Using Electrostatic Dissipative Particle Dynamics Simulations

    CERN Document Server

    Mayoral, E; 10.1063/1.4766456

    2012-01-01

    The study of the modification of interfacial properties between an organic solvent and aqueous electrolyte solutions is presented by using electrostatic Dissipative Particle Dynamics (DPD) simulations. In this article the parametrization for the DPD repulsive parameters aij for the electrolyte components is calculated considering the dependence of the Flory-Huggins \\c{hi} parameter on the concentration and the kind of electrolyte added, by means of the activity coefficients. In turn, experimental data was used to obtain the activity coefficients of the electrolytes as a function of their concentration in order to estimate the \\c{hi} parameters and then the aij coefficients. We validate this parametrization through the study of the interfacial tension in a mixture of n-dodecane and water, varying the concentration of different inorganic salts (NaCl, KBr, Na2SO4 and UO2Cl2). The case of HCl in the mixture n-dodecane/water was also analyzed and the results presented. Our simulations reproduce the experimental da...

  15. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  16. Structure of hydrated complexes formed by metal ions of groups I-III of the Periodic table in aqueous electrolyte solutions under ambient conditions

    International Nuclear Information System (INIS)

    Published and authors' experimental data on the structure of aqueous electrolyte solutions under standard conditions were generalized to ascertain the dependences of the solution structural parameters on chemical nature of dissolved compounds of alkali, alkaline-earth metals, cadmium, scandium, yttrium, lanthanum and indium. Hydrate complexes of metal ions formed in aqueous solutions were systematized, depending on cation size, charge and structure of their external electronic shell

  17. Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory

    DEFF Research Database (Denmark)

    Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen

    2005-01-01

    The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model was...... extended to charged compounds using a Debye-Huckel term for the electrostatic interactions. Two model parameters for each ion were fitted to experimental pVT and vapor-pressure data. The model is able to excellently reproduce the experimental data up to high salt molalities and even to predict vapor...

  18. Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels

    OpenAIRE

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-01-01

    Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics (MD) simulations. The four transport coefficients that characterise the response to weak electric and pressure fields, namely the coefficients for the electrical current in response to the electric field ($M^{jj}$) and the pressure field ($M^{jm}$), and those for the mass flow in response to the same fields ($M^{mj}$ and $M^{mm}$), are obtained in the linear r...

  19. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    Science.gov (United States)

    Clynne, M.A.; Potter, R.W., II; Haas, J.L., Jr.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  20. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    Science.gov (United States)

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. PMID:27196963

  1. A conductivity study of unsymmetrical 2:1 type "complex ion" electrolyte: cadmium chloride in dilute aqueous solutions.

    Science.gov (United States)

    Apelblat, Alexander; Esteso, Miguel A; Bešter-Rogač, Marija

    2013-05-01

    Systematic and precise measurements of electrical conductivities of aqueous solutions of cadmium chloride were performed in the 2 × 10(-5)-1 × 10(-2) mol·dm(-3) concentration range, from 278.15 to 313.15 K. Determined conductances were interpreted in terms of molecular model which includes a mixture of two 1:1 and 2:1 electrolytes. The molar limiting conductances of λ(0)(CdCl(+), T) and λ(0)(1/2Cd(2+), T), the equilibrium constants of CdCl(+) formation K(T) and the corresponding standard thermodynamic functions were evaluated using the Quint-Viallard conductivity equations, the Debye-Hückel equations for activity coefficients and the mass-action equation. An excellent agreement between calculated and experimental conductivities was reached. PMID:23534843

  2. Molecular dynamics simulation of the electrokinetic flow of an aqueous electrolyte solution in nanochannels

    CERN Document Server

    Yoshida, Hiroaki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-01-01

    Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics (MD) simulations. The four transport coefficients that characterise the response to weak electric and pressure fields, namely the coefficients for the electrical current in response to the electric field ($M^{jj}$) and the pressure field ($M^{jm}$), and those for the mass flow in response to the same fields ($M^{mj}$ and $M^{mm}$), are obtained in the linear regime using a Green-Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsager's reciprocal relation ($M^{jm} = M^{mj}$) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the trans- port coefficients are found to be smaller for larger surface charge density, be...

  3. Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels.

    Science.gov (United States)

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-06-01

    Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics simulations. The four transport coefficients that characterize the response to weak electric and pressure fields, namely, the coefficients for the electrical current in response to the electric field (M(jj)) and the pressure field (M(jm)), and those for the mass flow in response to the same fields (M(mj) and M(mm)), are obtained in the linear regime using a Green-Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsager's reciprocal relation (M(jm) = M(mj)) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the transport coefficients are found to be smaller for larger surface charge density, because the counter-ions strongly bound near the channel surface interfere with the charge and mass flows. A reversal of the streaming current and of the reciprocal electro-osmotic flow, with a change of sign of M(mj) due to the excess co-ions, takes places for very high surface charge density. PMID:24908029

  4. Estimation and interpretation of infinite dilution solute-solvent interaction enthalpies in non-electrolyte aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Michael I., E-mail: mdavis@utep.edu [Department of Chemistry, University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968-0513 (United States); Douheret, Gerard [Thermodynamique des Solutions et des Polimeres, Universite Blaise Pascal, 63177 Aubiere Cedex (France); Reis, Joao Carlos R. [Departamento de Quimica e Bioquimica, Centro de Ciencias Moleculares e Materiais, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2009-12-10

    An empirical strategy has been developed for estimating the enthalpy and the volume requirement for the formation of cavities in liquid water from purely thermodynamic experimental data. The ultimate objective was to complete a scheme for determining the enthalpies of solute-solvent interaction, from experimental enthalpies of mixing of water with non-ionic organic amphiphiles. Results are given for the analysis of several sets of enthalpy of mixing data, taken from the literature. These results were subjected to a group additivity analysis. The results of these analyses were judged to be consistent with the existence of a substantial enthalpy contribution that is derived from molecular reorganization of the aqueous solvent sheath in addition to the hydrogen bonding between the solute species and solvent water.

  5. pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions

    Science.gov (United States)

    Gence, Nermin; Ozbay, Nurgul

    2006-09-01

    In this paper, electrokinetic potential and isoelectric point of dolomite (CaMg(CO 3) 2) and magnesite (MgCO 3) were determined. The effect of various ions such as Mg 2+, Ca 2+, Na + and CO 32- on surface properties of dolomite and magnesite were also examined. Isoelectric points of dolomite and magnesite were determined as 6.3 and 6.8, respectively, in the absence of any electrolyte. H + and OH - ions are the potential determining ions of magnesite and dolomite, as predicted by electrokinetic potential studies.

  6. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  7. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented....

  8. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering; Prausnitz, John M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  9. The kinetics of anodic dissolution of rhenium in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    The kinetics of anodic rhenium dissolution was investigated by means of potentiodynamic and potentiostatic polarization curves recorded at temperature from 293 to 333 K in different media (NaOH, KOH, NaCl, NaBr, HCl, H2SO4) using the rotating disc technique. It is shown that the kinetics of anodic rhenium dissolution and effective activation energy depend not only on the composition and pH value of the solutions but also on the structure of the dissolving rhenium surface. The investigation of the anodic behaviour of the rhenium monocrystal revealed the existence of anisotropy of the monocrystal electrochemical properties. The experimental results point to an important role of adsorption processes in anodic rhenium dissolution. Rhenium dissolution proceeds with formation of intermediate surface adsorption complexes between the metal and the components of the solution

  10. Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride, over the range of pH 2.5 - 11.5 and for ionic strengths to 2. 0 M. The dependence of lysozyme's net proton charge, zP' on pH and ionic-strength in potassium-chloride solution is measured. From the ionic-strength dependence of zP' interactions of lysozynie with potassium and chloride ions are calculated using the molecular-thennodynamic theory of Fraaije and Lyklema 1. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electricdouble-layer theory. New experimental pKa data are reported for eleven ammo acids in potassium-chloride solutions of ionic strength to 3.0 M.

  11. Electrical Potential, Mass Transport and Velocity Distribution of Electro-osmotic Flow in a Nanochannel by Incorporating the Variation of Dielectric Constant of Aqueous Electrolyte Solution

    CERN Document Server

    Padidhapu, Rajendra; Brahmajirao, V

    2016-01-01

    We consider a coupled system of Navier Stokes, Maxwell Stefan and Poisson Boltzmann equations by incorporating the variation of dielectric constant, which governs the electro osmotic flow in nano channel, describing the evolution of the velocity, concentration and potential fields of dissolved constituents in an aqueous electrolyte solution. We apply the finite difference technique to solve one and two dimensional systems of these equations. The solutions give an extremely accurate prediction of the dielectric constant for a variety of salts and a wide range of concentrations.

  12. Electrochemical Characterization of Cellulose Acetate Butyrate-Prmutit Composite Membrane in Aqueous Uni-Uni Valent Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    A.K. Tiwari

    2015-06-01

    Full Text Available Co-mixed cellulose acetate butyrate and permutit in a definite composition was prepared and coded as MRS-2. The membrane potential was measured with uni-uni valent electrolyte, NaCl solutions using saturated calomel electrodes (SCEs.The effective fixed charge density of the membrane was determined by TMS method and it showed dependence on the porosity, charge on the membrane matrix, charge and size of permeating ions. Other important electrochemical parameters were calculated. Conductance-time data were generated for the kinetic study of the permeating ions in terms of membrane permeability, flow and flux parameters. Donnan membrane equilibrium condition was examined. Membrane adsorbability showed concave dependence with external electrolyte solution and convex type dependence was showed by swelling and conductance parameters. This membrane had no characteristic of anomalous osmosis, indicates that there is no water flooding will take place during membrane operation.

  13. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  14. Investigation of High-Energy-Density Lithium Battery with Aqueous Electrolyte Solution%高比能水体系锂电池研究

    Institute of Scientific and Technical Information of China (English)

    刘兴江; 杨同欢; 桑林; 丁飞

    2012-01-01

    实现水溶液锂电池的关键技术是如何保护金属锂电极不与水反应。提出了一种保护金属锂电极,其不仅在有机电解液体系稳定而且在水溶液中也可稳定工作,这种锂电极可以用于水体系锂电池。该研究制备了双层锂离子电解质保护的金属锂电极,其外层采用的LAGP(Li1+x+yAlxGe2-x SiyP3-yO12)玻璃陶瓷电解质相对于包括水溶液等电解液是稳定的,该玻璃陶瓷电解质的电导率达到0.57 mS cm^-1。通过交流阻抗评估发现不同电解质间的界面阻抗是水体系锂电池内阻的主要来源。最终采用双层保护金属锂电极制备的水体系锂空气电池和锂水电池可以稳定工作。%The key technology for aqueous lithium battery is protecting lithium from water.A protected lithium electrode which is stable not only in organic electrolyte but also in aqueous solutions and which can be used in aqueous lithium battery is proposed.The double layer Li-ion conductive electrolyte protected lithium electrode has been prepared.The front layer of LAGP(Li1+x+y AlxGe2-x SiyP3-yO12) glass-ceramic with ionic conductivity of 0.57 mS cm^-1 which is stable to electrolyte including aqueous solution.It is found that the impedance of interface of LAGP/liquid electrolyte is the major one for aqueous lithium battery.Finally,Li-Air battery and Li-Water battery have been assembled,and the two types of aqueous lithium battery are capable of work by using double layer protected lithium electrode.

  15. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  16. Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries.

    Science.gov (United States)

    Miyazaki, Kohei; Shimada, Toshiki; Ito, Satomi; Yokoyama, Yuko; Fukutsuka, Tomokazu; Abe, Takeshi

    2016-04-11

    An efficient electrolyte solution containing organic sulfonates for use in aqueous rechargeable lithium-ion batteries (ARLBs) is shown to provide a wide potential window and enable a high operating voltage for ARLBs. PMID:26911197

  17. Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism - The PhreeSCALE code

    Science.gov (United States)

    Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre

    2016-07-01

    The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.

  18. Wetting in electrolyte solutions.

    Science.gov (United States)

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2013-06-01

    Wetting of a charged substrate by an electrolyte solution is investigated by means of classical density functional theory applied to a lattice model. Within the present model the pure, i.e., salt-free solvent, for which all interactions are of the nearest-neighbor type only, exhibits a second-order wetting transition for all strengths of the substrate-particle and the particle-particle interactions for which the wetting transition temperature is nonzero. The influences of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition are studied. If the substrate is neutral, the addition of salt to the solvent changes neither the order nor the transition temperature of the wetting transition of the system. If the surface charge is nonzero, upon adding salt this continuous wetting transition changes to first-order within the wide range of substrate surface charge densities and ionic strengths studied here. As the substrate surface charge density is increased, at fixed ionic strength, the wetting transition temperature decreases and the prewetting line associated with the first-order wetting transition becomes longer. This decrease of the wetting transition temperature upon increasing the surface charge density becomes more pronounced by decreasing the ionic strength. PMID:23758391

  19. Wetting phenomena in electrolyte solutions

    OpenAIRE

    Ibagon, Ingrid

    2014-01-01

    The present study analyzes wetting phenomena in electrolyte solutions. They are investigated by means of classical density functional theory. First, the wetting of a charged substrate by an electrolyte solution is studied with emphasis on the influence of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition. The corresponding models consist of solvent particles, anions, and cations. Two mean field approaches ar...

  20. Molecular Simulations of Aqueous Electrolyte Solubility: 1. The Expanded-Ensemble Osmotic Molecular Dynamics Method for the Solution Phase

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Smith, W.R.; Kolafa, J.

    2006-01-01

    Roč. 109, č. 26 (2006), s. 12956-12965. ISSN 1520-6106 R&D Projects: GA AV ČR 1ET400720507; GA AV ČR IAA4072309 Grant ostatní: NRCC(CA) OGP1041 Institutional research plan: CEZ:AV0Z40720504 Keywords : simulation * molecular dynamics * electrolyte Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  1. Xanthan Rheological: a review about the influence of electrolytes on the viscosity of aqueous solutions of xanthan gums

    OpenAIRE

    João Luiz Silva Vendruscolo; Patrícia Silva Diaz; Claire Tondo Vendruscolo

    2004-01-01

    Several strains of Xanthomonas campestris are able to produce a bacterial biopolymer called xanthan which is widely used in the food industry. In order to have an effective use of the xanthan in the industry, not only the studies concerning the chemical properties of the xanthan should be considered, but also the studies related to its addition of electrolytes, and its effects in the rheological behaviour. When a new bacterial biopolymer is sinthetized, new rheological behaviours appear. This...

  2. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  3. On interference types in electrolyte solutions

    International Nuclear Information System (INIS)

    A brief analysis of component interference types in electrolyte aqueous solutions is presented. On the example of studying ClO4- ion state in different (lithium, sodium, magnesium, cadmium, europium...) perchlorate solutions using molecular spectroscopy methods it is shown that ion-water interaction essentially depends on counterion nature. For deep understanding of interference processes in solutions with ion-molecular level usefulness of considering the system solubility isotherms is marked. On the example of solubility isotherms of several ternary systems (PrCl3-LiCl-H2O; Sc(ClO4)3-HClO4-H2O; PrCl3-RbCl-H2O; CdCl2-KCl-H2O) it is shown that different chemical nature of components results in various dominating interactions (mutual dehydration of electrolytes, dehydration of one of the components etc.). 6 refs.; 4 figs

  4. Universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution and its application in the NaCl-KCI-H2O system

    Institute of Scientific and Technical Information of China (English)

    Weijie Zhao; Hanjie Guo; Xuemin Yang; higang Dan

    2008-01-01

    A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong elec-trolyte aqueous solution has been developed based on the ion and molecule coexistence theory, and verified in the NaCl-KCl-H2Oternary system at 298.15 K, To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions, the mass action concentrations of components in the NaCI-H20 binary strong electrolyte aqueous solution were also com-puted at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activ-ity because they were obtained at different standard states and concentration units. The results show that the transformation coeffi-cients between calculated mass action concentrations and reported activities of the same components change in a very narrow range.The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.

  5. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1H-PEO and 13C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  6. Pyrophosphate complexation of tin(II) in aqueous solutions as applied in electrolytes for the deposition of tin and tin alloys such as white bronze.

    Science.gov (United States)

    Buchner, Magnus R; Kraus, Florian; Schmidbaur, Hubert

    2012-08-20

    Electrodeposition of tin and tin alloys from electrolytes containing tin(II) and pyrophosphates is an important process in metal finishing, but the nature of the tin pyrophosphate complexes present in these solutions in various pH regions has remained unknown. Through solubility and pH studies, IR and (31)P and (119)Sn NMR spectroscopic investigations of solutions obtained by dissolving Sn(2)P(2)O(7) in equimolar quantities of either Na(4)P(2)O(7)·10H(2)O or K(4)P(2)O(7) the formation of anionic 1:1 complexes {[Sn(P(2)O(7))]}(n)(2n-) has now been verified and the molecular structures of the monomer (n = 1) and the dimer (n = 2) have been calculated by density functional theory (DFT) methods. Whereas the alkali pyrophosphates Na/K(4)P(2)O(7) give strongly alkaline aqueous solutions (pH ∼13), because of partial protonation of the [P(2)O(7)](4-) anion, the [Sn(P(2)O(7))](2-) anion is not protonated and the solutions of Na/K(2)[Sn(P(2)O(7))] are almost neutral (pH ∼8). The monomeric dianion appears to have a ground state with C(2v) symmetry with the Sn atom in a square pyramidal coordination and the lone pair of electrons in the apical position, while the dimer approaches C(2) symmetry with the Sn atoms in a rhombic pyramidal coordination, also with a sterically active lone pair. A comparison of experimental and calculated IR details favors the monomer as the most abundant species in solution. With an excess of pyrophosphate, 3:2 and 2:1 complexes (P(2)O(7)):(Sn) are first formed, which, in the presence of more pyrophosphate, undergo rapid ligand exchange on the NMR time scale. The structure of the 2:1 complex [Sn(P(2)O(7))(2)](6-) was calculated to have a pyramidal complexation by two 1,5-chelating pyrophosphate ligands. Neutralization of these alkaline solutions by sulfuric or sulfonic acids (H(2)SO(4), MeSO(3)H), as also practiced in electroplating, appears to afford the tin(II) hydrogen pyrophosphates [Sn(P(2)O(7)H)](-) and [Sn(H(2)P(2)O(7))](0). The molecular

  7. Aqueous electrolyte modeling in ASPEN PLUS{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Bloomingburg, G.F. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States); Simonson, J.M.; Moore, R.C.; Mesmer, R.E.; Cochran, H.D. [Oak Ridge National Lab., TN (United States)

    1995-02-01

    The presence of electrolytes in aqueous solutions has long been recognized as contributing to significant departures from thermodynamic ideality. The presence of ions in process streams can greatly add to the difficulty of predicting process behavior. The difficulties are increased as temperatures and pressures within a process are elevated. Because many chemical companies now model their processes with chemical process simulators it is important that such codes be able to accurately model electrolyte behavior under a variety of conditions. Here the authors examine the electrolyte modeling capability of ASPEN PLUS{trademark}, a widely used simulator. Specifically, efforts to model alkali metal halide and sulfate systems are presented. The authors show conditions for which the models within the code work adequately and how they might be improved for conditions where the simulator models fail.

  8. Strategies for enhancing the performance of carbon/carbon supercapacitors in aqueous electrolytes

    International Nuclear Information System (INIS)

    Presented paper describes and critically comments major recent strategies for improving electrochemical capacitor performance. Particularly, carbon based electrodes and aqueous electrolytes have been considered. A novel concept of redox active electrolytes as a source of pseudocapacitance effect as well as profits and cons of such system have been discussed. The electrochemical performance of capacitor operating in such electrolyte solution is reported. Furthermore, some advantageous features of bio-inspired system based on bromine-cerium solution acting as oscillator are also presented

  9. Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model

    International Nuclear Information System (INIS)

    The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes

  10. Investigation of the State of Radionuclides in Ultramicroconcentrations by the Method of a Horizontal Zone Electrophoresis in a Free Electrolyte. Ions of In(III) in Aqueous Solutions

    CERN Document Server

    Bontchev, G D; Priemyshev, A N; Bozhikov, G A; Filossofov, D V; Ivanov, P I; Maslov, O D; Milanov, M V; Dmitriev, S N

    2000-01-01

    Using the electromigration method in a free electrolyte the behaviour of In(III) in some water solutions has been investigated. Data on electrophoretic mobility of In(III) as well as its complexes with DTPA and EDTA in a wide range of pH and temperature have been collected. On the basis of experimental results the diffusion coefficient of In(III) and concentration stability constant of a complex [InDTPA]^2- have been estimated.

  11. A Type of Lithium-ion Battery Based on Aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    G.J.Wang; N.H.Zhao; L.J.Fu; B.Wang; Y.P.Wu

    2007-01-01

    1 Introduction A new type of rechargeable lithium ion battery with an aqueous electrolyte was announced by W. Li et al. in 1994[1].This type of battery uses the lithium intercalation compounds LiMn2O4 and VO2 as electrode materials and an alkaline aqueous electrolytic solution. By this combination, the disadvantages of the non-aqueous Li-ion battery type, i.e. high cost and safety problems could be faded away[2]. So this type of aqueous Li-ion battery was regarded as the promising power for electric veh...

  12. Thermodynamics of surface tension: application to electrolyte solution

    OpenAIRE

    Levin, Yan

    2001-01-01

    In this contribution to the special issue of the Journal of Statistical Physics dedicated to Michael Fisher on his 70'th birthday, I shall review two thermodynamically distinct routes for obtaining the interfacial tension of liquid-vapor interfaces in mixtures. A specific application to the calculation of the excess surface tension of aqueous electrolyte solutions will be presented.

  13. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  14. Mass transport in aqueous zinc chloride-potassium chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Leaist, D.G.

    1986-09-01

    Conductimetric and diaphragm cell techniques have been used to measure ternary diffusion coefficients for aqueous zinc chloride-potassium chloride solutions at 25/sup 0/C. At low concentrations where Zn/sup 2 +/ is the major zinc-transporting species, the diffusion-induced electric field along zinc chloride concentration gradients drives large co-current flows of potassium chloride. In concentrated solutions where a large proportion of zinc diffusses as anionic ZnCl/sub 3//sup -/ and ZnCl/sub 4//sup 2 -/ complexes, flow of zinc chloride generates counterflow of potassium chloride. If a sharp zinc chloride is formed in an otherwise uniform solution of potassium chloride, coupled diffusion can concentrate potassium ions within the diffusion boundary. Equations are developed to predict multicomponent transport coefficients for zinc chloride in supporting electrolytes.

  15. Terahertz characteristics of electrolytes in aqueous Luria-Bertani media

    Science.gov (United States)

    Oh, Seung Jae; Son, Joo-Hiuk; Yoo, Ocki; Lee, Dong-Hee

    2007-10-01

    We measured the optical constants of aqueous biomaterial mixtures with various electrolyte concentrations using terahertz time-domain spectroscopy. The mixtures were divided into water and other electrolyte parts in mass fractions for analysis. The optical constants of the electrolyte, excluding water, were obtained by applying the ideal mixture equation, and the power absorption of the electrolyte was observed to be larger than that of water above 1THz. Data from the measurement were fitted with the modified double Debye model, and the reorientation and hydrogen-bond formation decomposition times were found to decrease as the electrolyte concentration increased.

  16. Non-aqueous electrolytes for lithium-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Chen, Zonghai; Zhang, Zhengcheng

    2016-06-07

    A lithium-air cell includes a negative electrode; an air positive electrode; and a non-aqueous electrolyte which includes an anion receptor that may be represented by one or more of the formulas. ##STR00001##

  17. Solution phase thermodynamics of strong electrolytes based on ionic concentrations, hydration numbers and volumes of dissolved entities

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2013-01-01

    Roč. 24, č. 6 (2013), s. 1895-1901. ISSN 1040-0400 Institutional support: RVO:68081707 Keywords : Solution thermodynamics * Aqueous electrolytes * Partial electrolytic dissociation Subject RIV: BO - Biophysics Impact factor: 1.900, year: 2013

  18. Handbook of Aqueous Electrolyte Thermodynamics Theory & Application

    CERN Document Server

    Zemaitis, Joseph F; Rafal, Marshall

    1986-01-01

    Expertise in electrolyte systems has become increasingly important in traditional CPI operations, as well as in oil/gas exploration and production. This book is the source for predicting electrolyte systems behavior, an indispensable "do-it-yourself" guide, with a blueprint for formulating predictive mathematical electrolyte models, recommended tabular values to use in these models, and annotated bibliographies. The final chapter is a general recipe for formulating complete predictive models for electrolytes, along with a series of worked illustrative examples. It can serve as a usef

  19. Interfacial Tension of Electrolyte Solutions

    OpenAIRE

    Levin, Yan

    2000-01-01

    A theory is presented to account for the increase in surface tension of water in the presence of electrolyte. Unlike the original ``grand-canonical'' calculation of Onsager and Samaras, which relied on the Gibbs adsorption isotherm and lead to a result which could only be expressed as an infinite series, our approach is ``canonical'' and produces an analytic formula for the excess surface tension. For small concentrations of electrolyte, our result reduces to the Onsager-Samaras limiting law.

  20. Potentiometric and spectrophotometric characterization of the UO22+-citrate complexes in aqueous solution, at different concentrations, ionic strengths and supporting electrolytes

    International Nuclear Information System (INIS)

    In this paper we report an investigation on the interactions between dioxouranium(VI) and citrate using potentiometry (H+-glass electrode) and UV-spectrophotometry. Potentiometric measurements were carried out in NaCl and KNO3 aqueous solutions at t = 25 C in a wide range of experimental conditions (concentrations, ligand/metal molar ratio, pH, titrants). Measurements in NaCl were carried out at different ionic strength values (0.1 ≤ I/mol L-1 ≤ 1.0); different procedures were employed for the acquisition of experimental data and careful analysis of these data performed. In all cases the speciation model that best fits experimental data takes into account the formation of the following species: UO2(Cit)-, (UO2)2(Cit)22-, (UO2)2(Cit)2(OH)24-, (UO2)2(Cit)2(OH)3-, (UO2)2(Cit)(OH)2-, (UO2)2(Cit)(OH)0, (UO2)3(Cit)2(OH)55-. The dependence on ionic strength of formation constants was taken into account by using both a simple Debye-Hueckel type equation and the SIT (specific ion interaction theory) approach. Moreover, a visible absorption spectrum for each complex reaching a significant percentage of formation in solution (KNO3 medium) has been calculated to characterise the compounds found by pH-metric refinement. Recommended values for the uranyl-citrate species were proposed for each ionic strength values in NaCl aqueous solution. Comparison with literature stability constants is reported too. (orig.)

  1. Non-aqueous electrolyte for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Zhang, Lu; Zhang, Zhengcheng

    2016-01-26

    A substantially non-aqueous electrolyte solution includes an alkali metal salt, a polar aprotic solvent, and an organophosphorus compound of Formula IA, IB, or IC: ##STR00001## where R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each independently hydrogen, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, alkenoxy, alkynoxy, cycloalkoxy, aryloxy, heterocyclyloxy, heteroaryloxy, siloxyl, silyl, or organophosphatyl; R.sup.5 and R.sup.6 are each independently alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; R.sup.7 is ##STR00002## and R.sup.8, R.sup.9 and R.sup.10 are each independently alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; provided that if the organophosphorus compound is of Formula IB, then at least one of R.sup.5, and R.sup.6 are other than hydrogen, alkyl, or alkenyl; and if the organophosphorus compound is of Formula IC, then the electrolyte solution does not include 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one.

  2. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    Science.gov (United States)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  3. Electrochemical Behavior of Spherical LiFePO4/C Nanomaterial in Aqueous Electrolyte, and Novel Aqueous Rechargeable Lithium Battery with LiFePO4/C anode

    International Nuclear Information System (INIS)

    We designed a novel aqueous rechargeable lithium battery with LiFePO4/C (LFP) and LiMn2O4/C (LMO) as the anode and cathode, respectively; then investigated the battery in Li2SO4 aqueous electrolyte. We also studied the electrochemical behavior of LFP in aqueous electrolyte using cyclic voltammetry (CV). The material exhibited excellent electrochemical performance in the aqueous electrolyte, including good oxidation/reduction reversibility and cycling stability; almost no decays were observable after 200CV cycles. The diffusion coefficients of Li ions through the interface between the liquid electrolyte and the solid LiFePO4 in terms of intercalation and deintercalation were 1.22 × 10−14 and 9.97 × 10−15 cm2/s, respectively. The material could be completely intercalated/deintercalated with Li ions in the aqueous electrolyte, indicating the excellent performance of LFP in an aqueous solution. Further, an aqueous rechargeable lithium battery (ARLB), which we fabricated using LFP as the anode and LMO as the cathode, also exhibited quite good performance in aqueous Li2SO4 solution: after 1,000 charge–discharge cycles at 2 C, the capacity loss was less than 30%, indicating that this type of ARLB has excellent cycling stability and may be promising for future research and application

  4. Ionic enhancement of silica surface nanowear in electrolyte solutions

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs+ and Ca2+, was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs+ showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl2 solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO3)2 did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed. © 2012 American Chemical Society.

  5. Spectroscopic studies of solutes in aqueous solution.

    Science.gov (United States)

    Chai, Bing-hua; Zheng, Jian-ming; Zhao, Qing; Pollack, Gerald H

    2008-03-20

    Absorption and fluorescence characteristics of aqueous solutions of salts, sugars, and amino acids were studied using UV-vis spectroscopy and spectrofluorometry. Motivation stemmed from unanticipated absorption spectral and fluorescence features of the "exclusion zone" seen adjacent to various hydrophilic surfaces. Those features implied a structure distinct from that of bulk water (Adv. Colloid Interface Sci. 2006, 127, 19). Absorption peaks at approximately 270 nm similar to those observed in the exclusion zone were seen in solutions of the following substances: salts, Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose. To determine the fate of the absorbed energy, we studied the fluorescence properties of these solutions. The salts showed fluorescence emission around 480-490 nm under different excitation wavelengths. The fluorescence intensity of LiCl was higher than NaCl, which was in turn higher than KCl-the same ordering as the absorption intensities. Fluorescence of Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose were observed as well, with multiple excitation wavelengths. Hence, at least some of the absorbed energy is released as fluorescence. The results show features closely similar to those observed in the exclusion zone, implying that the aqueous region around the solutes resembles the aqueous zone adjacent to hydrophilic surfaces. Both may be more extensively ordered than previously thought. PMID:18298105

  6. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt solution, its concentration, and pH of the electrolyte. At a leakage current density of 50 μA/cm2, a 5 M solution of LiNO3 had an electrolytic window of 2.3 V, spanning from -0.55 to 1.75 V with respect to the standard hydrogen electrode. These results demonstrate the feasibility of operating lithium batteries at voltages appreciably above the theoretical decomposition voltage of water. © 2010 The Electrochemical Society.

  7. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  8. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian; Zhang, Zhengcheng; Amine, Khalil

    2016-07-12

    A electrolyte for a lithium battery includes a silane/siloxane compound represented by SiR.sub.4-x-yR'.sub.xR''.sub.y, by Formula II, or Formula III: ##STR00001## where each R is individually an alkenyl, alkynyl, alk(poly)enyl, alk(poly)ynyl, aryl; each R' is represented by; ##STR00002## each R'' is represented by Formula I-B; ##STR00003## R.sup.1 is an organic spacer; R.sup.2 is a bond or an organic spacer; R.sup.3 is alkyl or aryl; k is 1-15; m is 1-15; n is 1 or 2; p is 1-3; x' is 1-2; and y' is 0-2.

  9. Polyethylene glycol-electrolyte solution (PEG-ES)

    Science.gov (United States)

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by ...

  10. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  11. Ionic liquids behave as dilute electrolyte solutions

    OpenAIRE

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical contr...

  12. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  13. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N2O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N2O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H2). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  14. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes

    Science.gov (United States)

    Aburto, Claudio Contreras; Nägele, Gerhard

    2013-10-01

    On the basis of a versatile mode-coupling theory (MCT) method developed in Paper I [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134109 (2013)], we investigate the concentration dependence of conduction-diffusion linear transport properties for a symmetric binary electrolyte solution. The ions are treated in this method as charged Brownian spheres, and the solvent-mediated ion-ion hydrodynamic interactions are accounted for also in the ion atmosphere relaxation effect. By means of a simplified solution scheme, convenient semi-analytic MCT expressions are derived for the electrophoretic mobilities, and the molar conductivity, of an electrolyte mixture with equal-sized ions. These expressions reduce to the classical Debye-Falkenhagen-Onsager-Fuoss results in the limit of very low ion concentration. The MCT expressions are numerically evaluated for a binary electrolyte, and compared to experimental data and results by another theoretical method. Our analysis encloses, in addition, the electrolyte viscosity. To analyze the dynamic influence of the hydration shell, the significance of mixed slip-stick hydrodynamic surface boundary conditions, and the effect of solvent permeability are explored. For the stick boundary condition employed in the hydrodynamic diffusivity tensors, our theoretical results for the molar conductivity and viscosity of an aqueous 1:1 electrolyte are in good overall agreement with reported experimental data for aqueous NaCl solutions, for concentrations extending even up to two molar.

  15. DEHYDRATION CONDENSATION IN AQUEOUS SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Steinman, Gary; Kenyon, Dean H.; Calvin, Melvin

    1965-04-01

    EARLIER investigations have demonstrated that di-cyandiamide (DCDA), the dimer of cyanamide, can successfully promote the dehydration condensation of: (1) glucose and orthophosphate to give glucose-6-phosphate; (2) adenosine and orthophosphate to give adenosine-5'-monophosphate; (3) orthophosphate to give pyrophosphate; (4) alanine to give alanylalanine and alanylalanylalanine. These reactions were carried out in dilute aqueous solutions in the dark. (It was also demonstrated that the combination of ultra-violet light and dicyandiamide could promote the synthesis of dipeptides. This observation has since been confirmed by other investigators.) These experiments were designed to demonstrate one possible means by which such compounds could have been formed on the prebiotic Earth, thus providing materials needed for the origin of living systems. Dicyandiamide itself could have been, present on the primitive Earth as was demonstrated with the ultra-violet irradiation of cyanide solution.

  16. Aqueous Solutions on Silica Surfaces: Structure and Dynamics from Simulations

    Science.gov (United States)

    Striolo, Alberto; Argyris, Dimitrios; Tummala, Naga Rajesh

    2009-03-01

    Our group is interested in understanding the properties of aqueous electrolyte solutions at interfaces. The fundamental questions we seek to answer include: (A) how does a solid structure perturb interfacial water? (B) How far from the solid does this perturbation persist? (C) What is the rate of water reorientation and exchange in the perturbed layer? (D) What happens in the presence of simple electrolytes? To address such topics we implemented atomistic molecular dynamics simulations. Recent results for water and simple electrolytes near silicon dioxide surfaces of various degrees of hydroxylation will be presented. The data suggest the formation of a layered aqueous structure near the interface. The density profile of interfacial water seems to dictate the density profiles of aqueous solutions containing NaCl, CaCl2, CsCl, and SrCl2 near the solid surfaces. These results suggest that ion-ion and ion-water correlations are extremely important factors that should be considered when it is desired to predict the distribution of electrolytes near a charged surface. Our results will benefit a number of practical applications including water desalination, exploitation of the oil shale in the Green River Basin, nuclear waste sites remediation, and design of nanofluidic devices.

  17. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems that are...... very soluble in water, for example, up to more than 30 mol kg-1. Phase behaviors for the systems are analyzed at concentrations of salt up to the solubility in water at temperatures between 273 and 373 K by comparing calculated results with available experimental data and available models....

  18. Self-diffusion in electrolyte solutions a critical examination of data compiled from the literature

    CERN Document Server

    Mills, R

    1989-01-01

    This compilation - the first of its kind - fills a real gap in the field of electrolyte data. Virtually all self-diffusion data in electrolyte solutions as reported in the literature have been examined and the book contains over 400 tables covering diffusion in binary and ternary aqueous solutions, in mixed solvents, and of non-electrolytes in various solvents.An important feature of the compilation is that all data have been critically examined and their accuracy assessed. Other features are an introductory chapter in which the methods of measurement are reviewed; appendices containing tables

  19. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  20. Electrolyte ion adsorption and charge blocking effect at the hematite/aqueous solution interface: an electrochemical impedance study using multivariate data analysis.

    Science.gov (United States)

    Shimizu, K; Nyström, J; Geladi, P; Lindholm-Sethson, B; Boily, J-F

    2015-05-01

    A model-free multivariate analysis using singular value decomposition is employed to refine an equivalent electrical circuit model in order to probe the electrochemical properties of the hematite/water interface in dilute NaCl and NH4Cl solutions using electrochemical impedance spectroscopy. The result shows that the surface protonation is directly related to the mobility and trapping of charge carriers at the mineral surface. Moreover, the point of zero charge can be found at pH where the charge transfer resistance is the highest, in addition to the minimum double layer capacitance. The inner-sphere interaction of the NH4(+) ion with the surface is indicated by an increase of capacitance for charge carrier trapping from the protonated surface as well as lower double layer capacitance and open circuit potential. It is clear that the intrinsic electrochemical activity of hematite depends on the degree of surface (de)protonation and other inner-sphere adsorption, as these processes affect the charge carrier density in the surface state. This work also highlights an important synergistic effect of the two spectral analyses that enables EIS to be utilized in an in-depth investigation of mineral/water interfaces. PMID:25857599

  1. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen; West, Keld

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  2. Is oral rice electrolyte solution superior to glucose electrolyte solution in infantile diarrhoea?

    OpenAIRE

    Patra, F. C.; Mahalanabis, D.; Jalan, K N; Sen, A.; Banerjee, P.

    1982-01-01

    In a controlled trial of oral rehydration therapy, a rice-based electrolyte solution was evaluated in a group (n=26) of infants and young children aged between 3 months and 5 years with moderate to severe dehydration owing to acute diarrhoea, and the results were compared with a matched control group (n=26) receiving WHO recommended glucose electrolyte solution. The former was found to be more effective than the latter as shown by an appreciably lower rate of stool output, a shorter duration ...

  3. Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery

    Science.gov (United States)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Anderson, Marc; Kontturi, Kyösti

    2015-03-01

    In recent studies, the employment of the aqueous solution system comprised of Cu(II)-Cu(I)-Cl system was addressed for massive energy storage in Redox Flow Batteries (RFBs) [5,6], providing important practical advantages compared to the widespread all-vanadium or Zn/Br systems [5]. The substitution of vanadium electrolytes by copper-chloride electrolytes allows the simplification of the process and notably reduces the cost, allowing for a better commercialization of RFBs. Here, a complete physico-chemical characterization of positive copper electrolytes and their electrochemical performance using different supporting electrolytes, HCl and CaCl2, is presented. Once the physical properties and the electrochemical performance of each one of the supporting electrolytes were determined, the final composition of supporting electrolyte for this Cu(II)/Cu(I) redox couple could be optimized by mixing different sources of chloride, regarding its practical application in the all-copper RFB.

  4. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    Science.gov (United States)

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte. PMID:26759354

  5. Electrodeposition of metals from non-aqueous solutions

    International Nuclear Information System (INIS)

    Electrodeposition of metals from non-aqueous solutions is reviewed. Attention is paid mainly to surface morphology of deposits and their adhesion. The major reasons for carrying out electrodeposition in non-aqueous electrolytes (such as conventional organic solvents, ionic liquids and molten salts) are the water and air stability and the wide electrochemical window of these media. The following metals have been electrodeposited and investigated for the last 15 years: aluminum, zinc, silver, palladium, tantalum, zirconium, gadolinium, plutonium, nickel, cobalt, and other alloys.

  6. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy

    Science.gov (United States)

    Seidel, Robert; Winter, Bernd; Bradforth, Stephen E.

    2016-05-01

    The valence orbital electron binding energies of water and of embedded solutes are crucial quantities for understanding chemical reactions taking place in aqueous solution, including oxidation/reduction, transition-metal coordination, and radiation chemistry. Their experimental determination based on liquid-photoelectron spectroscopy using soft X-rays is described, and we provide an overview of valence photoelectron spectroscopy studies reported to date. We discuss principal experimental aspects and several theoretical approaches to compute the measured binding energies of the least tightly bound molecular orbitals. Solutes studied are presented chronologically, from simple electrolytes, via transition-metal ion solutions and several organic and inorganic molecules, to biologically relevant molecules, including aqueous nucleotides and their components. In addition to the lowest vertical ionization energies, the measured valence photoelectron spectra also provide information on adiabatic ionization energies and reorganization energies for the oxidation (ionization) half-reaction. For solutes with low solubility, resonantly enhanced ionization provides a promising alternative pathway.

  7. Order of wetting transitions in electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ibagon, Ingrid, E-mail: ingrid@is.mpg.de; Bier, Markus, E-mail: bier@is.mpg.de; Dietrich, S. [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  8. Order of wetting transitions in electrolyte solutions

    International Nuclear Information System (INIS)

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent

  9. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  10. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    DEFF Research Database (Denmark)

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    difference. In highly concentrated aqueous electrolytes, the mass of the PPy/DBS film at the end of each redox cycle is found to drift, which can be controlled by changing the concentration of the electrolyte. The PPy/DBS films were also cycled at different scan rates in various alkali halide aqueous...

  11. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes

    International Nuclear Information System (INIS)

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac)3) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac)3. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac)3 from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac)3. In galvanostatic charge-discharge tests, single cell V(acac)3 RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac)3 RFB is able to operate at temperatures such as 0 C and -25 C.

  12. Electrochemical behavior of nanostructured MnO2/C (Vulcan® composite in aqueous electrolyte LiNO3

    Directory of Open Access Journals (Sweden)

    Vujković Milica

    2011-01-01

    Full Text Available The electrolytic solutions of contemporary Li-ion batteries are made exclusively with the organic solvents since anodic materials of these batteries have potentials with greater negativity than the potential of the water reduction, thus the organic electrolytes can withstand the voltages of 3-5 V that are characteristic for these batteries. Ever since it was discovered that some materials can electrochemically intercalate and deintercalate Li+ ions in aqueous solutions, numerous studies have been conducted with the aim of extending operational time of the aqueous Li-ion batteries. Manganese oxide has been studied as the electrode material in rechargeable lithium-ion batteries with organic electrolytes. In this paper its electrochemical behavior as an anode material in aqueous electrolyte solutions was examined. MnO2 as a component of nanodispersed MnO2/C (Vulcan® composite was successfully synthesized hydrothermally. Electrochemical properties of this material were investigated in aqueous saturated LiNO3 solution by both cyclic voltammetry and galvanostatic charging/discharging (LiMn2O4 as cathode material techniques. The obtained composite shows a relatively good initial discharge capacity of 96.5 mAh/g which, after 50th charging/discharging cycles, drops to the value of 57mAh/g. MnO2/C (Vulcan® composite, in combination with LiMn2O4 as a cathode material, shows better discharge capacity compared to other anodic materials used in aqueous Li-ion batteries according to certain studies that have been conducted. Its good reversibility and cyclability, and the fact that hydrothermal method is simple and effective, makes MnO2/C(Vulcan® composite a promising anodic material for aqueous Li-ion batteries.

  13. Reduction of CO{sub 2} solute by hydrogen microplasmas in an electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Osamu; Morita, Tadasuke [Department of Electronic Science and Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Sano, Noriaki [Department of Chemical Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Shirafuji, Tatsuru [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Nozaki, Tomohiro [Multidisciplinary Education and Research Center for Energy Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Tachibana, Kunihide, E-mail: osakai@kuee.kyoto-u.ac.j [Department of Plasma and Photon Technology Research Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan)

    2009-10-21

    CO{sub 2} as a solute of aqueous solution was deoxidized by hydrogen microplasmas generated in an electrolyte. Dielectric barrier discharges were generated in H{sub 2} microbubbles created by electrolysis, and optical emission spectra included carbon-oriented lines as well as an atomic H line. From a chromatogram of a gas in a trap on the electrolyte surface, CO was detected, which was a product of the reduction reaction of CO{sub 2} induced by underwater hydrogen microplasmas. (fast track communication)

  14. Interfacial Thermodynamics of Coexisting Aqueous Polymer Solutions

    NARCIS (Netherlands)

    Vis, M.

    2015-01-01

    Phase separation is commonly observed when two different polymers are present in aqueous solution, forming aqueous two-phase systems which typically consist for 90% of water. It is demonstrated that the presence of charge on one of the polymers results in an electric potential difference between the

  15. Photographic study of bubble departure diameter in saturated pool boiling to electrolyte solutions

    OpenAIRE

    Peyghambarzadeh S.M.; Hatami A.; Ebrahimi A; Fazel Alavi S.A.

    2014-01-01

    Bubble departure diameters during saturated pool boiling to pure water and three different electrolyte solutions including NaCl, KNO3, and KCl aqueous solutions are experimentally measured. Variable heat fluxes up to 90 kW/m2 and different salt concentrations from 10.6 to 69.6 kg/m3 are applied in order to investigate their effects on the bubble size during pool boiling around the horizontal rod heater. Visual observations demonstrated that larger vapor bub...

  16. Analysis of the electrodeposition process of rhenium and rhenium oxides in alkaline aqueous electrolyte

    International Nuclear Information System (INIS)

    Highlights: • The electrodeposition of rhenium and rhenium oxides from alkaline aqueous electrolyte was investigated. • The authors propose that the electrocrystallization process follows a multi-step reduction mechanism. • The electrodeposited material corresponds to a mixture of metallic rhenium, rhenium (IV) oxide and rhenium (VI) oxide. -- Abstract: The electrodeposition of rhenium and rhenium oxides from an alkaline aqueous solution containing 0.125 mol dm−3 NH4ReO4 + 0.01 mol dm−3 NaOH (pH 13.3 ± 0.1) has been studied. Cyclic voltammetry studies were carried out using two electrodes, polycrystalline platinum and polycrystalline gold, and the galvanostatic electrodeposition was conducted on a pure copper electrode (99.9%). Information regarding rhenium electrodeposits has been obtained by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results in an alkaline aqueous electrolyte suggest that the electrocrystallization process follows a multi-step mechanism influenced by hydrogen adsorption. The main conclusion was that rhenium, rhenium (IV) oxide and rhenium (VI) oxide coexist in the electrodeposited material

  17. Tannin (Polyphenol) Stability in Aqueous Solutions

    Science.gov (United States)

    Understanding the chemical stability of tannins (polyphenolics) in soils is critical to understanding their biological activities and fate. We examined the stability of chemically defined tannins in aqueous solutions under conditions simulating natural and laboratory conditions. We evaluated tanni...

  18. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti02 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry

  19. Oral therapy with glucose electrolyte solution.

    Science.gov (United States)

    Clements, M L; Levine, M M; Black, R E; Hughes, T P; Nalin, D R; Pizarro, D; Hirschhorn, N

    1980-07-01

    Doctors Kahn and Blum based their views on oral rehydration on only 7 cases, and they fail to provide their methodological details. In their letter on oral rehydration with UNICEF/WHO (United Nations International Children's Emergency Fund/World Health Organization) glucose electrolyte solution (GES), they maintain that hyperkalemia is a danger of GES therapy, that hypernatremia will be aggravated, that therapy should not last for longer than 24 hours, that after 24 hours monitoring of plasma potassium will be needed, and that except for developing countries where material milk is used, no plan of treatment has been proposed after the first 24 hours of rehydration. The experience of Kahn and Blum is at variance with extensive data from many carefully monitored balanced studies in infants treated with GES. GES is a potent medication and needs to be used properly. Guidelines for use are listed. Kahn and Blum fail to indicate whether their 7 patients comprised their entire treatment group or only those with biochemical or clinical problems. They also fail to indicate the degree of dehydration of the infants at onset of therapy or the extent of ongoing diarrheal losses, and they do not describe the precise treatment regimen. Their mean time of treatment -- 41 hours -- was particularly long. The hyperkalemia reported by Kahn and Blum may have resulted from excessive GES administration, without a source of free water, to infants having few diarrheal stools. Proper use of GES formula rapidly rehydrates 95-98% of mildly to severely dehydrated infants, irrespective of etiology. PMID:6104241

  20. Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions

    Science.gov (United States)

    Magdelenat, H.; And Others

    1978-01-01

    Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)

  1. Modeling Electrolyte Solutions with the extended universal quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2005-01-01

    The extended universal quasichemical (UNIQUAC) model is a thermodynamic model for solutions containing electrolytes and non-electrolytes. The model is a gibbs excess function consisting of a Debye-Hückel term and a standard UNIQUAC term. The model only requires binary, ion specific interaction pa...... parameters. A unique choice of standard states makes the model able to reproduce solid-liquid, vapor-liquid, and liquid-liquid phase equilibria as well as thermal properties of electrolyte solutions using one set of parameters....

  2. Interfacial Thermodynamics of Coexisting Aqueous Polymer Solutions

    OpenAIRE

    Vis, M

    2015-01-01

    Phase separation is commonly observed when two different polymers are present in aqueous solution, forming aqueous two-phase systems which typically consist for 90% of water. It is demonstrated that the presence of charge on one of the polymers results in an electric potential difference between the two phases. Upon phase separation, the polyelectrolyte is confined in majority to one of the phases. Although small ions can equilibrate freely between the phases, the restriction of macroscopic c...

  3. Precipitation of neptunium dioxide from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  4. Atomistic simulations of electrolyte solutions and hydrogels with explicit solvent models

    CERN Document Server

    Walter, Jonathan; Reiser, Steffen; Horsch, Martin; Vrabec, Jadran; Hasse, Hans

    2011-01-01

    Two of the most challenging tasks in molecular simulation consist in capturing the properties of systems with long-range interactions (e.g. electrolyte solutions) as well as systems containing large molecules such as hydrogels. For the development and optimization of molecular force fields and models, a large number of simulation runs have to be evaluated to obtain the sensitivity of the target properties with respect to the model parameters. The present work discusses force field development for electrolytes regarding thermodynamic properties of their aqueous solutions. Furthermore, simulations are conducted for the volume transition of hydrogels in the presence of electrolytes. It is shown that the properties of these complex systems can be captured by molecular simulation.

  5. Development and calibration of an electrolytic cell for ion determination in a soil solution

    Directory of Open Access Journals (Sweden)

    Omar Cleo Neves Pereira

    2015-05-01

    Full Text Available An electrolytic cell was developed to monitor soil modifications after crop fertigation with wastewaters from agroindustrial plants. The device was first calibrated with different levels of potassium chloride dissolved in aqueous solutions at various temperatures. Nernst´s model was used to fit the voltage indicated from the electrolytic cell versus the ionic activity of the potassium from the aqueous solutions of electrical conductivity and known ionic concentrations and the diluted wastewater samples. The equipment accurately indicated the tensions after appropriated correction of the electrical current and the temperature. The device estimated with accuracy the ionic coefficient of activity, the concentration of the potassium chloride and the concentration of the ion K dissolved in the agro-industrial wastewater.

  6. Diffusion coefficients of paracetamol in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, Dm0, and ionized forms, D±0, of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm−3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.

  7. Hydrophobic Solvation: Aqueous Methane Solutions

    Science.gov (United States)

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  8. Issues in Freeze Drying of Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    王维; 陈墨; 陈国华

    2012-01-01

    Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.

  9. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  10. Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases

    OpenAIRE

    Sharma, Ramankur; Corcoran, Timothy E.; Garoff, Stephen; Przybycien, Todd M.; Swanson, Ellen R.; Tilton, Robert D.

    2013-01-01

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface active dye, was added to the surfactant solution. T...

  11. Coalescence of Bubbles in Electrolyte Solutions.

    Czech Academy of Sciences Publication Activity Database

    Orvalho, Sandra; Růžička, Marek

    Ozarow Mazowiecki : Nobell Compressing sp. z o.o, 2015 - (Kosinsky, K.; Urbanczyk, M.; Žerko, S.), s. 106 ISBN N. [Smart and Green Interfaces: Fundamentals and Diagnostics. Sofia (BG), 29.10.2015-31.10.2015] R&D Projects: GA ČR GAP504/12/1186 Institutional support: RVO:67985858 Keywords : coalescence * bubble * electrolytes Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  13. Radium removal from aqueous sulphate solutions

    International Nuclear Information System (INIS)

    A process for removing radium from an aqueous sulphate solution also containing magnesium is claimed. The pH of the solution is less than 10. A soluble barium salt is added to the solution to precipitate radium as barium radium sulphate. The pH of the solution is then raised to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate. The precipitates are separated from the solution. If the sulphate solution contains dissolved magnesium and other impurities at a pH not greater than 7, then the first step in the process involves raising the pH of the solution to a value not greater than 10 to precipitate some of the magnesium and a substantial proportion of the other impurities and separating the precipitate from the solution. The radium removal is a step in the treatment of liquids resulting from the sulphuric acid leaching of uranium ores

  14. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    J.M. Vicent-Luna; D. Dubbeldam; P. Gómez-Álvarez; S. Calero

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactio

  15. SEPARATION OF SCANDIUM FROM AQUEOUS SOLUTIONS

    Science.gov (United States)

    Peppard, D.F.; Nachtman, E.S.

    1958-02-25

    This patent relates to a process for the separation of scandium from yttrium, thorium, and trivalent rare earths and with their separation from each other. It has been found that scandium and yttrium can be separated from trivalent rare earths in acidic solution, for example, a solution 6 M in HCl, by contacting with tributyl phosphate, whereupon the scandum is preferentially extracted into the organic phase, leaving the yttrium and trivalent rare earths in the aqueous phase.

  16. Study of aqueous solutions of sodium linoleate

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linde, G.J. (Phosphate Development Corporation, Phalaborwa); Van Berge, P.C. (Rand Afrikaans Univ., Johannesburg (South Africa))

    1983-12-01

    During the development of a technique for measuring fatty acid absorption on finely divided minerals using a radiochemical method, absorption isotherms were obtained which displayed maxima. It was found that these results were due to the presence of stable micelles in the solutions. This has been established by measuring the surface tension, surface film pressure, and specific conductance of dilute aqueous solutions of sodium linoleate.

  17. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  18. Microscopic Insights into the Electrochemical Behavior of Non-aqueous Electrolytes in Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Deen [ORNL; Wu, Jianzhong [ORNL

    2013-01-01

    Electric double-layer capacitors (EDLC) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLC with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLC hinges on the judicious selection of the electrode pore size and the electrolyte composition that requires a comprehension of the charging behavior from a microscopic view. In this perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic-liquid and organic-electrolyte EDLC. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

  19. An electrochemical treatment for aqueous radioactive solutions using pottery

    International Nuclear Information System (INIS)

    A bench scale electrolytic cell made from plexiglas was used for electrochemical separation of 137Cs and 60Co from simullated aqueous radioactive solutions. In this cell, a stainless steel plate represented the anode. The electrochemical treatment technique used depends on forcing the radioactive cations of the solution (137Cs+ and 60Co++) towards the opposite electrode under the influence of applied electric current, where they highly sorbed in the pottery body. The highest removal for137Cs+ and 60Co was in the alkalina medium, especially at pH>9. The investigated factors affected the electrochemicla processes are, applied voltage, treatment duration, hydrogen ion concentration of the radioactive solution, and the consumed electrical energy . It was found that at pH 11, applied voltage 30V and current 100 mA, the highest removal of 137Cs is 99.8% after 2.5 hours, and 99.3% and 99.3% for 60Co after 1.25 hour.The total consumed energy for 137Cs and 60Co were 33.75 and 16.88 W.h.dm-3, respectively. Comparing with other treatment methods, the electrochemical method revealed three advantages: shorter treatment time, low-cost materials, and low consumed energy. The results obtained showed that the dual application of electric current and sorption on the surface of pottery are feasible for the treatment of aqueous radioactive solutions

  20. Removal of radium from aqueous sulphate solutions

    International Nuclear Information System (INIS)

    Radium is often present in ores and an aqueous solution associated with the ore may consequently contain dissolved radium. It is frequently necessary to remove radium from such solutions to reduce the total radium content to a prescribed low level before the solution can be returned to the environment. The present invention is based on the discovery that the total radium content can be reduced to a satisfactory level within a reasonable time by adding a soluble barium salt to a radium-containing sulphate solution which also contains dissolved magnesium at a pH not greater than about 0 to precipitate radium as barium radium sulphate, raising the pH to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate, and separating substantially all of the precipitates from the solution

  1. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO2F2. Studies on the effect of added LiNO3 or Na2WO4·2H2O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF6 content of WF6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF6

  2. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  3. Electrolytes. From dilute solutions to fused salts

    International Nuclear Information System (INIS)

    Solutions with composition extending continuously from molecular liquids such as water to fused salts are relatively unusual but of considerable interest. Conductance and thermodynamic properties are considered for several examples. New equations for the activities of the respective components represent the data more accurately than previous treatments and delineate the similarities and differences between such systems and nonelectrolyte solutions

  4. Does Dimeric Melittin Occur in Aqueous Solutions?

    OpenAIRE

    Schubert, D; Pappert, G.; Boss, K.

    1985-01-01

    Melittin, a peptide from bee venom, is known to undergo a monomer / tetramer conversion in aqueous solutions. We have studied the possible participation of dimers in the association equilibrium of melittin by sedimentation equilibrium experiments in the analytical ultracentrifuge and subsequent mathematical analysis of the concentration distributions obtained. It was found that the dimeric state is not significantly populated, the contribution of dimer to the total peptide weight probably bei...

  5. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  6. Photolysis of imidacloprid in aqueous solution

    International Nuclear Information System (INIS)

    The photolysis of the insecticide imidacloprid in aqueous solution has been examined. Irradiation at 290 nm resulted in 90 % substrate transformation in 4 h. The degradation approximately followed first order kinetics; the rate constant is 1.6 × 10−4s−1 and half-life 1.2 h. 6-Chloronicotinaldehyde, N-methylnicotinacidamide, 1-(6-chloronicotinyl)imidazolidone and 6-chloro-3-pyridyl-methylethylendiamine were the main photoproducts identified by CG-MS analysis. (author)

  7. Simple Molecular Models of Aqueous Solutions

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Škvor, J.; Nezbeda, Ivo

    - : -, 2013. ISBN N. [EMLG - JMLG Annual Meeting 2013 Global Perspectives in the Structure and Dynamics in Liquids and Mixtures: Experiment and Simulation. Lille (FR), 09.09.2013-13.09.2013] Grant ostatní: GA ČR(CZ) GPP208/12/P710 Institutional support: RVO:67985858 Keywords : aqueous solutions * thermodynamic modeling * simulation data Subject RIV: CF - Physical ; Theoretical Chemistry http://emlg2013.univ-lille1.fr/

  8. Electrolytes supramolecular interactions and non-equilibrium phenomena in concentrated solutions

    CERN Document Server

    Aseyev, Georgii Georgievich

    2014-01-01

    Electrolyte solutions play a key role in traditional chemical industry processes as well as other sciences such as hydrometallurgy, geochemistry, and crystal chemistry. Knowledge of electrolyte solutions is also key in oil and gas exploration and production, as well as many other environmental engineering endeavors. Until recently, a gap existed between the electrolyte solution theory dedicated to diluted solutions, and the theory, practice, and technology involving concentrated solutions.Electrolytes: Supramolecular Interactions and Non-Equilibrium Phenomena in Concentrated Solutions addresse

  9. Autoxidation of tryptophan in aqueous solutions

    OpenAIRE

    LJUBICA R. JOSIMOVIC; IVANA A. JANKOVIC

    2001-01-01

    Autoxidation of tryptophan was investigated in aqueous solutions by the gamma radiolytic technique. The oxygen uptake and formation of peroxide materials was followed as a function of pH, dose rate and concentration of tryptophan. The results obtained indicate that TrpH(OH)OO. radicals react with tryptophan by adduct formation thus propagating autoxidation. The chain propagation length (CPL) for a 2·102 mol dm3 tryptophan solution at pH 9.5 and a dose rate 0.01 Gy s1 was estimated to be ~ 5.8...

  10. Optimization of non-aqueous electrolytes for Primary lithium/air batteries operated in Ambient Enviroment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Xiao, Jie; Zhang, Jian; Wang, Deyu; Zhang, Jiguang

    2009-07-07

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte has reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.

  11. New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes

    OpenAIRE

    Liang Chen; Qingwen Gu; Xufeng Zhou; Saixi Lee; Yonggao Xia; Zhaoping Liu

    2013-01-01

    Rechargeable batteries made from low-cost and abundant materials operating in safe aqueous electrolytes are attractive for large-scale energy storage. Sodium-ion battery is considered as a potential alternative of current lithium-ion battery. As sodium-intercalation compounds suitable for aqueous batteries are limited, we adopt a novel concept of Li+/Na+ mixed-ion electrolytes to create two batteries (LiMn2O4/Na0.22MnO2 and Na0.44MnO2/TiP2O7), which relies on two electrochemical processes. On...

  12. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  13. Electrochemical Removal of Methylene Blue from Aqueous Solutions Using Taguchi Experimental Design

    OpenAIRE

    A ASghari; Kamalabadi, M.; Farzinia, H.

    2012-01-01

    Taguchi optimization method (L32 orthogonal array) was applied as an experimental design to determine optimum conditions for methylene blue dye removal from aqueous solutions by electrocoagulation (EC). Various electrocoagualtion parameters such as initial pH, time of electrolysis, concentration of dye, electrodes gap, applied current, solution temperature, amount of supporting electrolyte, design and materials of electrodes were investigated. The results have been analyzed using signal-to-no...

  14. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  15. Optical manipulation of proteins in aqueous solution

    International Nuclear Information System (INIS)

    Optical trapping of lysozyme, cytochrome c, or myoglobin based on photon pressure generated by focusing 1064 nm laser beam in an aqueous solution was explored. For all the proteins, microparticle formation was observed at the focal point under an optical microscope. Furthermore, the microparticles were identified to the molecular assemblies of the corresponding protein by means of confocal Raman microspectroscopy. For lysozyme, molecular clusters in solution were optically trapped to form the microparticle and it took more than 1 h to produce the microparticle. By contrast, molecular assembling proceeded within 1 min for cytochrome c and myoglobin. Since heme in cytochrome c or myoglobin would have a high polarizability, that would contribute to rapid assembling of the protein. Thus we demonstrated that a focused laser beam was a powerful tool to manipulate protein molecules in solution.

  16. NIR Spectroscopic Properties of Aqueous Acids Solutions

    Directory of Open Access Journals (Sweden)

    Mohd Zubir MatJafri

    2012-06-01

    Full Text Available Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R2 above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918–925 nm and 990–996 nm, while at 975 nm for water.

  17. Excess Thermodynamic Properties of Concentrated Aqueous Solutions at High Temperatures

    International Nuclear Information System (INIS)

    Measurements of the vapor pressure of the solvent in wide ranges of concentration and temperature provide information on solute solvation and ion pairing--the two phenomena most often invoked for description of dilute solutions. Even in moderately concentrated solutions, as interionic distances become comparable to ionic diameters, these simple concepts gradually lose their meaning and solutions behave like molten salts. The usefulness of experimental vapor pressure results increases rapidly with their accuracy, since derived properties, such as solution enthalpies and heat capacities, can be calculated. Very accurate results can be obtained by the isopiestic method, but primary vapor pressure data for standard solutions are needed. In order to obtain vapor pressures at conditions where accurate isopiestic standards are not available and to establish more accurate standards, the ORNL isopiestic apparatus was modified for simultaneous direct vapor pressure measurements and isopiestic comparisons. There are no comprehensive solution theories derived from molecular level models and able to predict thermodynamic properties of various electrolytes as the composition changes from dilute solutions to molten salts in a wide range of temperatures. Empirical and semi-empirical models are useful for representation of experimental results, interpretation of measurements of other properties such as conductance., solubility or liquid-vapor partitioning of solutes, and for verification of theoretical predictions. Vapor pressures for aqueous CaCl(sub 2), CaBr(sub 2), LiCl, LiBr, LiI, NaI were measured at temperatures between 380 and 523 K in the concentration range extended to water activities below 0.2 (over 30 mol/kg for LiCl). General equations based on the modified Pitzer ion-interaction model were used to obtain enthalpy and heat capacity surfaces, which are compared with direct calorimetric measurements

  18. Aqueous Solution Vessel Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  19. Photographic study of bubble departure diameter in saturated pool boiling to electrolyte solutions

    Directory of Open Access Journals (Sweden)

    Peyghambarzadeh S.M.

    2014-01-01

    Full Text Available Bubble departure diameters during saturated pool boiling to pure water and three different electrolyte solutions including NaCl, KNO3, and KCl aqueous solutions are experimentally measured. Variable heat fluxes up to 90 kW/m2 and different salt concentrations from 10.6 to 69.6 kg/m3 are applied in order to investigate their effects on the bubble size during pool boiling around the horizontal rod heater. Visual observations demonstrated that larger vapor bubbles generate on the heat transfer surface at higher salt concentrations and lower heat fluxes in all of the solutions tested while in distilled water bubbles become slightly larger with increasing heat flux. Furthermore, the effects of different important physical properties like surface tension, viscosity, and density of the solutions on the bubble departure diameter are also discussed. NaCl solutions have surface tension higher than the other electrolyte solutions. Furthermore, the addition of NaCl to distilled water slightly increases the viscosity of the solution whereas other salts have no measurable effect on the viscosity. Therefore, it is expected that larger bubbles to be appeared on the heat transfer surface during the boiling of NaCl solutions which is in agreement with the experimental results.

  20. Ion separation from dilute electrolyte solutions by nanofiltration

    International Nuclear Information System (INIS)

    Nanofiltration (NF) is a pressure-driven process which is considered potential for the separation of ionic species selectively from solutions containing mixture of electrolyte solutes. The lower operating pressure requirement of NF than reverse osmosis (RO) makes the earlier potentially economical. In the separation of ions, many authors believed that there are membranes with characteristic fixed surface charge and that the mechanism of separation of ions is by the differences in valences of the ions. In this study, experiments involving dilute single-solute and multiple-solute electrolyte solutions were performed using three different NF membranes. Permeate fluxes and ion rejections of the different species of ions in samples of permeate solutions were measured at varied conditions. The mechanism of separation in NF was determined based on the analysis of the trends and behavior of ion rejection relative to the solution temperature, pressure, type of solute, feed concentration and feed solution pH. The results of the experiments show that there is no evidence of the presence of fixed surface charge on the NF membranes. Ion separation was made possible by the combination of sieve effect and ion-hydration effect. Ions having higher hydration numbers showed higher ion rejection than those having lower hydration numbers. A method to determine the effective membrane pore size of NF membranes using hydrodynamic model was proposed. The proposed method is based on the assumptions that the membrane is neutral and that the separation is based on sieving effect. (Author)

  1. Development of high efficiency 100% aqueous cobalt electrolyte dye-sensitised solar cells.

    Science.gov (United States)

    Ellis, Hanna; Jiang, Roger; Ye, Sofie; Hagfeldt, Anders; Boschloo, Gerrit

    2016-03-28

    In this study we report the application of three cobalt redox shuttles in 100% aqueous electrolyte dye-sensitised solar cells (DSCs). By using chloride as a counter-ion for cobalt bipyridine, cobalt phenanthroline and cobalt bipyridine pyrazole, the redox shuttles were made water soluble; no surfactant or further treatment was necessary. A simple system of merely the redox shuttles and 1-methylbenzimidazole (MBI) in water as an electrolyte in combination with an organic dye and a mesoporous PEDOT counter electrode was optimised. The optimisation resulted in an average efficiency of 5.5% (record efficiency of 5.7%) at 1 sun. The results of this study present promising routes for further improvements of aqueous cobalt electrolyte DSCs. PMID:26931779

  2. Modeling of electrolytic solutions and implementation of the models in Flowbat

    OpenAIRE

    Hautala, M. (Mikko)

    2016-01-01

    The purpose of this thesis was to create a Flowbat program for the calculation of the activity coefficients of species in different electrolyte solutions. In these solutions, electrolytes have dissociated into ions, which greatly increases the non-ideality of the solution even in small concentrations. Modeling of electrolytic solutions becomes essential when bioprocesses are considered, as they typically have several electrolytes present in the considered system. The highly non-ideal behavior...

  3. Studies on anodic corrosion of the electroplated CdSe in aqueous and non-aqueous media for photoelectrochemical cells and characterization of the electrode/electrolyte interface

    International Nuclear Information System (INIS)

    Polycrystalline n-CdSe thin films were prepared by electrodeposition at controlled current density on conducting substrates. The optical characteristics were determined through transmittance spectra. Scanning electron microscopy and atomic force microscopy were employed to study the morphology of the semiconductor (SC) surfaces. Chemical composition of the SC film was established by EDAX analysis. The n-CdSe/electrolyte junctions in water and non-aqueous solvents like acetonitrile (ACN), dimethyl formamide (DMF), dimethyl sulphoxide (DMSO) and propylene carbonate (PC) were characterized by Mott-Schottky analysis using frequency response analyzer. The stability of CdSe layers in water and in non-aqueous solvents was determined through anodic polarization studies. Anodic stripping voltammetry was employed to find out the dissoluted Cd2+ in solution. Photovoltage was measured under illuminated conditions using ferrocene-ferricenium couple in aqueous and non-aqueous solvents throughout the temperature range of 20-70 deg. C. The results are indicative of the potential use of the electrodeposited n-CdSe in selected non-aqueous medium for solar energy conversion by photoelectrochemical (PEC) devices

  4. Suppression of Photoanodic Surface Oxidation of n-Type 6H-SiC Electrodes in Aqueous Electrolytes.

    Science.gov (United States)

    Sachsenhauser, Matthias; Walczak, Karl; Hampel, Paul A; Stutzmann, Martin; Sharp, Ian D; Garrido, Jose A

    2016-02-16

    The photoelectrochemical characterization of silicon carbide (SiC) electrodes is important for enabling a wide range of potential applications for this semiconductor. However, photocorrosion of the SiC surface remains a key challenge, because this process considerably hinders the deployment of this material into functional devices. In this report, we use cyclic voltammetry to investigate the stability of n-type 6H-SiC photoelectrodes in buffered aqueous electrolytes. For measurements in pure Tris buffer, photogenerated holes accumulate at the interface under anodic polarization, resulting in the formation of a porous surface oxide layer. Two possibilities are presented to significantly enhance the stability of the SiC photoelectrodes. In the first approach, redox molecules are added to the buffer solution to kinetically facilitate hole transfer to these molecules, and in the second approach, water oxidation in the electrolyte is induced by depositing a cobalt phosphate catalyst onto the semiconductor surface. Both methods are found to effectively suppress photocorrosion of the SiC electrodes, as confirmed by atomic force microscopy and X-ray photoelectron spectroscopy measurements. The presented study provides straightforward routes to stabilize n-type SiC photoelectrodes in aqueous electrolytes, which is essential for a possible utilization of this material in the fields of photocatalysis and multimodal biosensing. PMID:26795116

  5. Pulse Radiolysis of Aqueous Thiocyanate Solution

    International Nuclear Information System (INIS)

    The pulse radiolysis of N2O saturated aqueous solutions of KSCN was studied under neutral pH conditions. The observed optical absorption spectrum of the SCN#lgbullet# radical in solution is more complex than previously reported, but it is in good agreement with that measured in the gas phase. Kinetic traces at 330 nm and 472 nm corresponding to SCN#lgbullet# and (SCN)2#lgbullet#-, respectively, were fit using a Monte Carlo simulation kinetic model. The rate coefficient for the oxidation of SCN- ions by OH radicals, an important reaction used in competition kinetics measurements, was found to be 1.4 ± 0.1 x 1010 M-1 s-1, about 30% higher than the normally accepted value. A detailed discussion of the reaction mechanism is presented

  6. Raman and infrared spectroscopic studies of the structure of water (H2O, HOD, D2O) in stoichiometric crystalline hydrates and in electrolyte solutions

    International Nuclear Information System (INIS)

    The chapter of reviews presents in particular the Badger-Bauer-rule, distance and angle dependence of O-H...Y hydrogen bond and the structure of aqueous electrolyte solutions. A chapter of vibrational spectroscopic investigations of crystalline hydrates - metal perchlorate hydrates follows. Two further chapters just so investigate metal halide hydrates and some sulfate hydrates and related systems. The following chapter describes near infrared spectroscopic investigations of HOD(D2O) and its electrolyte solutions. The concluding chapter contains thermodynamic consequences and some properties of electrolyte solutions from vibrational spectroscopic investigations. (SPI)

  7. Novel non-aqueous nano-composite electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Missan, H.P.S. [West Indies Univ., St. Augustine (Trinidad and Tobago). Dept. of Physics

    2009-07-01

    Fuel cell technology is increasingly being considered as a replacement for non-renewable energy sources. However, the use of commercial perfluorinated sulfonated membranes such as Nafion increases the cost of fuel cells. This paper discussed new and novel non-aqueous proton conducting membranes based on an ionic liquid ternary system containing nano-tubular inorganic oxides. Experiments conducted to demonstrate the system showed that a high non-aqueous ionic conductivity of 10-2 S per cm at temperatures up to 150 degrees can be obtained. Thermographic analyses determined that the membranes maintain stability up to temperatures of 250 degrees C. It was concluded that the addition of a nano-tubular composite phase optimize membrane morphology and increase thermal stability.

  8. Stability of selenourea in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mel' chekova, Z.E.

    1983-06-10

    Studies of the synthesis of metal selenides from aqueous solutions are being conducted within the framework of investigations on the creation of new semiconductor materials. Selenourea in solution is a complex multicomponent system. The products of hydrolytic decomposition are H/sub 2/CN/sub 2/, Se/sup 2 -/, and HSe/sup -/. As a result of the oxidation of selenium-containing decomposition products by atmospheric oxygen, elementary selenium is formed. The decomposition of selenourea in alkaline sulfite solutions is accompanied by the dissolution of Se/sup 2 -/ and HSe/sup 0/ ions (Se/sup 0/), with the formation of selenosulfate. A study of the kinetics of decomposition was conducted under the conditions of formation of metal selenides, which do not exclude the oxidation process. The end product of the decomposition of selenourea in alkaline sulfite solutions is selenosulfate. The formation of selenosulfate was demonstrated by the isolation of elementary selenium under the action of formaldehyde. The rate constants of the decomposition of selenourea were calculated by the method of changes in concentration, slope of the straight lines, and a logarithmic method. The use of methods of monitoring of selenourea and its decomposition products permitted a theoretical substantiation of the selection of the optimum conditions of formation of metal selenides.

  9. Catalyzed reduction of nitrate in aqueous solutions

    International Nuclear Information System (INIS)

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH3, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH4NO3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  10. Heterogeneous nucleation of aspartame from aqueous solutions

    Science.gov (United States)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  11. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.

    Science.gov (United States)

    Yang, SeungCheol; Choi, Jiyeon; Yeo, Jeong-Gu; Jeon, Sung-Il; Park, Hong-Ran; Kim, Dong Kook

    2016-06-01

    Flow-electrode capacitive deionization (FCDI) is novel capacitive deionization (CDI) technology that exhibits continuous deionization and a high desalting efficiency. A flow-electrode with high capacitance and low resistance is required for achieving an efficient FCDI system with low energy consumption. For developing high-performance flow-electrode, studies should be conducted considering porous materials, conductive additives, and electrolytes constituting the flow-electrode. Here, we evaluated the desalting performances of flow-electrodes with spherical activated carbon and aqueous electrolytes containing various concentrations of NaCl in the FCDI unit cell for confirming the effect of salt concentration on the electrolyte of a flow-electrode on desalting efficiency. We verified the necessity of a moderate amount of salt in the flow-electrode for compensating for the reduction in the performance of the flow-electrode, attributed to the resistance of water used as the electrolyte. Simultaneously, we confirmed the potential use of salt water with a high salt concentration, such as seawater, as an aqueous electrolyte for the flow-electrode. PMID:27162028

  12. The electrochemical reduction of perrhenate ion in non–aqueous dimethylsulfoxide solutions

    OpenAIRE

    Leila Kudreeva; Zh. Kulbayeva; Andrey Kurbatov; Mikhail Nauryzbayev; M. Ainamkulova

    2012-01-01

    The electrochemical deposition of perrenate ion in non – aqueous dimethylsulphoxide solutions of electrolytes investigation. The obtained polarization curves show that several waves are observed before electrochemical deposition of renium. The results of x-ray spectral analysis and electron microscopy allowed to determine the fact that these waves correspond to formation of a passivating film, which is formed at reduction of the solvent, on the surface of a metal substrate. 

  13. Functionalized polymers for binding to solutes in aqueous solutions

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  14. Photodegradation of Lincomycin in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Aqueous solutions of lincomycin were irradiated with UV light in homogeneous and heterogeneous systems. Lincomycin disappeared in both systems but the presence of TiO 2 noticeably accelerated the degradation of the antibiotic in comparison with direct photolysis. The rate of decomposition was dependent on the concentration of lincomycin and followed a pseudo-first-order kinetics. Photolysis involved only the oxidation of lincomycin without mineralization. Differently, the treatment with TiO 2 and UV light resulted in a complete mineralization of the antibiotic. The degradation pathways involved S- and N-demethylation and propyldealkylation. The mineralization of the molecule led to the formation of sulfate, ammonium, and nitrate ions.

  15. Radiolysis of paracetamol in dilute aqueous solution

    International Nuclear Information System (INIS)

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2–3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily. - Highlights: ► Paracetamol is easily degraded in aqueous solution by low dose irradiation. ► Main degradation products are hydroxylated molecules, acetamide and hydroquinone. ► Toxicity of solutions goes through a maximum as a function of dose.

  16. Process for separating cesium ions from aqueous solutions

    International Nuclear Information System (INIS)

    A precipitation agent is added to the aqueous solution and the resulting precipitate containing Cs+ ions is separated from the solution. By this process, caesium is to be separated selectively compared with other alkaline metal ions with great efficiency from aqueous solutions, particularly aqueous MAW (medium activity waste). This is achieved by using a sodium tetraphenyl borate attracting electrons to the phenyl rings and having substitutes. (orig./PW)

  17. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size. PMID:26398675

  18. Onsager's reciprocal relations in electrolyte solutions. I. Sedimentation and electroacoustics

    Science.gov (United States)

    Gourdin-Bertin, S.; Chassagne, C.; Bernard, O.; Jardat, M.

    2015-08-01

    In the framework of irreversible thermodynamics, we show that the sedimentation current in electrolyte solutions is mathematically equivalent to the low frequency limit of the ionic vibration current, appearing in the presence of an acoustic wave. This non-trivial result is obtained thanks to a careful choice of the reference frame used to express the mass fluxes in the context of electroacoustics. Coupled transport phenomena in electrolyte solutions can also be investigated in a mechanical framework, with a set of Newtonian equations for the dynamics of charged solutes. Both in the context of sedimentation and of electroacoustics, we show that the results obtained in the mechanical framework, in the ideal case (i.e., without interactions between ions), do satisfy the Onsager's reciprocal relations. We also derive the general relation between corrective forces accounting for ionic interactions which must be fulfilled so that the Onsager's reciprocal relations are verified. Finally, we show that no additional diffusion term needs to be taken into account in the flux of solutes (far from the walls), even if local concentration gradients exist, contrarily to what was done previously in the literature.

  19. Electrochemical Reduction of Carbon Monoxide in Aqueous Electrolytes at Gas Diffusion Hydrophobic Electrodes

    International Nuclear Information System (INIS)

    This paper investigates the influence of the material of the electro-catalyst, the electrode composition, the type and concentration of the electrolyte, the temperature and the potential of the electrode on the electroreduction of carbon monoxide in aqueous electrolytes. The following metal powders were used as electrocatalysts: Co, Ni, Fe, Nb, Pt, W, Cu, Cd, Pb, Zn, and Raney nickel. A large series of tests showed that no organic products were synthesized in the electroysis in the presence of CO on the metals Pt, Nb, Cd, W, Cu, Pb, and Zn. The only product in the whole potential range was hydrogen, derived from the decomposition of the electrolyte. Methane, ethane, and traces of ethylene were obtained on Ni, Co, Fe, and Raney nickel. With respect to the other hydrocarbons the methane content was equal to 95%. Best results were obtained on nickel electrodes

  20. Quick analytical method for the determination of iodide and iodate ions in aqueous solutions

    International Nuclear Information System (INIS)

    An analytical quick-test method was developed to determine iodide and iodate ions in aqueous solutions using solid phase extraction cartridges for sample preparation. Work was focussed on finding simple, but efficient conditions for quantitative separation of iodate and iodide. Iodine amounts were then determined by standard methods. Ion-exchange absorbers in cartridge form were used. Selectivity and yield of the species separation were studied at pH value of 5-10 and various solution compositions using 131I radioactive tracer. The electrolytes used were diluted alkaline, nitrate and boric acid-borate solutions. Application to nuclear reactor cooling water analysis or environmental investigations and monitoring is proposed. (author)

  1. Excited state intramolecular charge transfer reaction in non-aqueous reverse micelles: Effects of solvent confinement and electrolyte concentration

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Harun Al Rasid Gazi; Biswajit Guchhait; Ranjit Biswas

    2012-03-01

    Steady state and time resolved fluorescence emission spectroscopy have been employed to investigate the effects of solvent confinement and electrolyte concentration on excited state intramolecular charge transfer (ICT) reaction in 4-(1-pyrrolidinyl) benzonitrile (P5C), 4-(1-piperidinyl) benzonitrile (P6C), and 4-(1-morpholenyl) benzonitrile (M6C) in AOT/n-heptane/acetonitrile and AOT/n-heptane/methanol reverse micelles. Dramatic confinement effects have been revealed via a huge reduction (factor ranging between 100 and 20) over bulk values of both equilibrium and reaction rate constants. A strong dependence on the size of the confinement () of these quantities has also been observed. dependent average static dielectric constant, viscosity and solvation time-scale have been determined. Estimated dielectric constants for confined methanol and acetonitrile show a decrease from the respective bulk values by a factor of 3-5 and viscosities increased by a factor of 2 at the highest considered. Addition of electrolyte at = 5 for acetonitrile is found to produce a linear increase of confined solvent viscosity but leads to a non-monotonic electrolyte concentration dependence of average solvation time. Reaction rate constant is found to decrease linearly with electrolyte concentration for P5C and P6C but non-monotonically for M6C, the highest decrease for all the molecules being ∼ 20% over the value in the absence of added electrolyte in the solvent pool. The observed huge reduction in reaction rate constant is attributed to the effects of decreased solution polarity, enhanced viscosity and slowed-down solvent reorganization of the solvent under confinement in these non-aqueous reverse micelles.

  2. The radiation chemistry of aqueous dihydropyrimidine solutions

    International Nuclear Information System (INIS)

    The radiation chemistry of N2O-saturated aqueous solutions of dihydropyrimidines in the presence pf various oxidants has been studied. From dihydrouracil (DHU) solutions in the presence of Fe(CN)63- the major products are uracil and 5-hydro-6-hydroxyuracil which have been isolated by chromatographic techniques using DHU-14C. From 6-methyldihydrouracil (6-MeDHU), under similar conditions, the parent pyrimidine and the 6-hydroxy compound are also formed. The pH-dependence of the yields of these products in the above DHU and 6-MeDHU systems have been determined and the results interpreted in terms of an electron transfer reaction from the organic radicals to the oxidant. Pulse radiolysis has shown that the isomerisation of the isopyrimidine is base catalysed. The influence of the oxidants IO4-, S2O82-, H2O2 and p-nitroacetophenone has been investigated using various dihydropyrimidines. Specific effects have been noted, particularly a chain reaction in the case of IO4- and S2O82-, and also the formation of barbituric acid derivatives in addition to pyrimidines and the 6-hydroxy compounds, more particularly in the case of IO4- and H2O2. The pH-dependencies of the yields have been studied and possible specific mechanisms discussed. These particular studies are of interest with regard to radiation sensitisation in vivo. (author)

  3. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes

    OpenAIRE

    Zheng Bo; Huachao Yang; Shuo Zhang; Jinyuan Yang; Jianhua Yan; Kefa Cen

    2015-01-01

    Vertically-oriented graphenes (VGs) are promising active materials for electric double layer capacitors (EDLCs) due to their unique morphological and structural features. This study, for the first time, reports the molecular dynamics (MD) simulations on aqueous NaCl electrolytes confined within VG channels with different surface charge densities and channel widths. Simulation results show that the accessibility of ions and the structure of EDLCs are determined by the ion type/size, surface ch...

  4. A Comparative Study of Anodized Titania Nanotube Architectures in Aqueous and Nonaqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R [ORNL; Lai, Peng [ORNL; Hu, Michael Z. [ORNL

    2011-01-01

    The unique and highly utilized properties of TiO2 nanotubes are a direct result of nanotube architecture. In order to create different engineered architectures, the effects of electrolyte solution, time, and temperature on the anodization of titanium foil were studied along with the resultant anodized titanium oxide (ATO) nanotube architectures encompassing nanotube length, pore diameter, wall thickness, smoothness, and ordered array structure. Titanium foil was anodized in three different electrolyte solutions: one aqueous (consisting of NH4F and (NH4)2SO4)) and two nonaqueous (glycerin or ethylene glycol, both containing NH4F) at varying temperatures and anodization times. Variation in anodization applied voltage, initial current, and effect of F- ion concentration on ATO nanotube architecture were also studied. Anodization in the aqueous electrolyte produced short, rough nanotube arrays, whereas anodization in organic electrolytes produced long, smooth nanotube arrays greater than 10 m in length. Anodization in glycerin at elevated temperatures for several hours presents the possibility of producing freely dispersed individual nanotubes.

  5. Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure

    Science.gov (United States)

    Kohns, Maximilian; Reiser, Steffen; Horsch, Martin; Hasse, Hans

    2016-02-01

    A method for determining the activity of the solvent in electrolyte solutions by molecular dynamics simulations is presented. The electrolyte solution is simulated in contact with the pure solvent. Between the two phases, there is a virtual membrane, which is permeable only for the solvent. In the simulation, this is realized by an external field which acts only on the solutes and confines them to a part of the simulation volume. The osmotic pressure, i.e., the pressure difference between both phases, is obtained with high accuracy from the force on the membrane, so that reliable data on the solvent activity can be determined. The acronym of the new method is therefore OPAS (osmotic pressure for activity of solvents). The OPAS method is verified using tests of varying complexity. This includes a comparison of results from the OPAS method for aqueous NaCl solutions to results from the literature which were obtained with other molecular simulation methods. Favorable agreement is observed not only for the solvent activity but also for the activity coefficient of NaCl, which is obtained by application of the Gibbs-Duhem equation.

  6. Electrolytic denitrification of alkaline nitrate and nitrite solution

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce a low-level alkaline salt solution, containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement wasteform, saltstone, and placed in an engineered landfill. Laboratory experiments have demonstrated the technical feasibility of electrochemically reducing the nitrate and nitrite in a synthetic, nonradioactive salt solution similar in composition to that expected to be produced at SRP. Greater than ninety-five percent of the sodium nitrate and sodium nitrite can be reduced electrolytically, producing ammonia, nitrogen, oxygen, and sodium hydroxide. Reduction of the nitrate and nitrite will reduce the leaching of nitrate and nitrite from the saltstone monolith. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  7. Desarrollo de un Calorímetro para la Determinación de la Entalpía de Dilución en Disoluciones Acuosas de Electrolitos Development of a Calorimeter to Determine the Enthalpy of Dilution in Aqueous Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    J.M Arsuaga

    2004-01-01

    Full Text Available El objetivo del trabajo presentado fue la construcción de un calorímetro de envoltura isotérmica destinado a medir entalpía de dilución de disoluciones acuosas de electrolitos de alta carga. Para verificar la capacidad del calorímetro se ha medido la entalpía de dilución de cloruro de potasio a 25ºC, y hasta concentraciones (m de 1.6 mol·kg-1, obteniéndose una concordancia satisfactoria con los datos de la literatura. Con este calorímetro se han medido las entalpías de dilución de los sistemas acuosos [Co(en3]Cl3 y [Co(tn3]Cl3. Los resultados obtenidos para estos sistemas se muestran como entalpía molar aparente relativa frente la raíz cuadrada de la concentración, m½. Los resultados de este estudio confirman que el calorímetro es idóneo para la medida de entalpías de dilución de complejos del tipo cobaltoamina.The goal of this work was the development of an isothermal jacket calorimeter to measure enthalpies of dilution for aqueous solution of high charge electrolytes. The accuracy of the calorimeter has been verified with the aqueous system potassium chloride at 25ºC and up to concentrations (m of 1.6 mol·kg-1, finding satisfactory agreement with literature data. Enthalpies of dilution have been measured with this calorimeter for aqueous systems [Co(en3]Cl3 and [Co(tn3]Cl3, The experimental values for these systems are shown as relative apparent molar enthalpy against the square root of the concentration, m½. This work confirms that the calorimeter is suitable to measure the enthalpy of dilution for cobalt-amine-type salts.

  8. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  9. ESR study on carboxymethyl chitosan radicals in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Saiki, Seiichi, E-mail: saiki.seiichi@jaea.go.j [Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagasawa, Naotsugu; Hiroki, Akihiro; Morishita, Norio; Tamada, Masao [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Muroya, Yusa; Kudo, Hisaaki [Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Katsumura, Yosuke [Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2010-03-15

    Carboxymethyl chitosan (CMCTS) at a highly concentrated aqueous solution forms hydrogel by ionizing irradiation. To study on radiation-induced reaction mechanism of CMCTS in an aqueous solution, CMCTS radicals formed by reactions with OH radical were observed by ESR method. As a result of ESR spectral analysis, CMCTS radicals were identified as radicals on carboxymethyl groups.

  10. Raman spectroscopy application to analyses of components in aqueous solutions

    Science.gov (United States)

    Li, Gang; Zhang, Guoping

    2006-09-01

    The characterization of species in aqueous solutions has presented a challenge to analytical and physical chemist, because the JR absorption of the aqueous solvent is so intense that it becomes difficult to observe the solute in the water by JR absorption. In contrast, Raman spectrum of the solute is unaffected by the water, so the weak scattering of water makes the technique well suited to aqueous samples, and the Raman spectrum exhibits well-defined bands corresponding to fundamental modes of vibration. In addition, Raman spectroscopy has some inherent advantages in aqueous solution analysis, because the spectral features of signals from different species are much more distinct, and it provides characteristic signatures for samples, such as blood, protein and cholesterol. All the advantages make Raman spectroscopy be a potential alternative for the study of aqueous solutions. Now, Raman spectroscopy has been applied to studying samples in aqueous solutions, blood serum, intracellular protein levels. Now, industrial wasted water contains many organic contaminants, and it is necessary to determine and monitor these contaminants. The paper first introduces Raman spectroscopy, and then describes its applications to determining the components in aqueous solutions, analyzes and assignes the Raman spectra of o-dichlorobenzene, o-xylene, m-xyiene and p-xylene in detail. The experimental results demonstrate that Raman spectroscopy is a particularly powerful technique for aqueous solutions analyses.

  11. Studying the frequency dispersion of the dielectric permeability of electrolyte solutions

    Science.gov (United States)

    Odinaev, S.; Makhmadbegov, R. S.

    2016-01-01

    Analytical equations for coefficients of dielectric permeability ɛ1(ω) and dielectric losses ɛ2(ω) of electrolyte solutions are obtained, based on the relationship between complex dielectric permeability and specific conductivity coefficients. The region of frequency dispersion is considered for dynamic dielectric permeability coefficient ɛ1(ω) of an aqueous NaCl solution. Friction coefficients β a and β b , relaxation times τ a , τ b , and τ ab , and dielectric permeability coefficient ɛ1(ω) are numerically calculated for selected intermolecular interaction potentials {Φ _{ab}}(| {bar r} |) and equilibrium radial distribution functions {g_{ab}}(| {bar r} |) over a wide range of variation in density ρ, concentration c, temperature T, and frequencies ω. The theoretically calculated results for ɛ1(ω) are found to be in quantitative agreement with experimental data.

  12. Frequency dispersion of the dynamic moduli of elasticity of electrolyte solutions

    Science.gov (United States)

    Odinaev, S.; Akdodov, D. M.; Sharifov, N.

    2016-02-01

    The frequency dispersion range of the dynamic bulk relaxation modulus K(ω) and shear relaxation modulus µ(ω) of electrolyte solutions has been determined in relation to the nature of stress tensor damping in the momentum and configuration spaces. Numerical calculations have been carried out for an aqueous NaCl solution in wide frequency, temperature, and density ranges using analytical expressions obtained for K(ω) and µ(ω) for the exponential-law damping of the fluxes at a certain molecular interaction potential Φ (| {vec r} | ) and radial distribution function g( | {vec r} | ). It has been demonstrated that the frequency dispersion range of K r (v) and µ(v) for the exponential-law damping of the corresponding fluxes is narrow (˜102 Hz).

  13. Reactions of alkoxy radicals in aqueous solutions

    International Nuclear Information System (INIS)

    The kinetic and mechanistic properties of alkoxy radicals in organic solvents are briefly reviewed. Owing to the scarcity of such data in aqueous solutions and since reactions at the membrane/water interface may be also biologically important, we have studied the reactivity of these radicals in water and the results of our investigations are reported. Alkoxy radicals were generated by photolytic or radiolytic cleavage of peroxide precursors (tert-butyl hydroperoxide and di-tert-butyl peroxide as well as hydroperoxides of polyunsaturated fatty acids). A quantitative correlation between the structure of various substances, in particular, phenolic antioxidants, and their activity in inhibiting the alkoxy radical-induced bleaching of the water-soluble carotenoid crocin will be discussed. Rate constants for intermolecular reactions of t-BuO. radicals were determined by pulse radiolysis. The diffusion-controlled reaction with the catechol antioxidant nordihydroguaiaretic acid demonstrates an effective competition with the very rapid intra molecular β-fragmentation in water. The results aupport the view that a considerable amount of alkoxy radicals interact with substrates before they can rearrange intramolecularly

  14. Reactions of alkoxy radicals in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bors, W.; Tait, D.; Michel, C.; Saran, M.; Erben-Russ, M. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Abt. fuer Strahlenbiologie)

    1984-01-01

    The kinetic and mechanistic properties of alkoxy radicals in organic solvents are briefly reviewed. Owing to the scarcity of such data in aqueous solutions and since reactions at the membrane/water interface may be also biologically important, we have studied the reactivity of these radicals in water and the results of our investigations are reported. Alkoxy radicals were generated by photolytic or radiolytic cleavage of peroxide precursors (tert-butyl hydroperoxide and di-tert-butyl peroxide as well as hydroperoxides of polyunsaturated fatty acids). A quantitative correlation between the structure of various substances, in particular, phenolic antioxidants, and their activity in inhibiting the alkoxy radical-induced bleaching of the water-soluble carotenoid crocin will be discussed. Rate constants for intermolecular reactions of t-BuO. radicals were determined by pulse radiolysis. The diffusion-controlled reaction with the catechol antioxidant nordihydroguaiaretic acid demonstrates an effective competition with the very rapid intra molecular ..beta..-fragmentation in water. The results aupport the view that a considerable amount of alkoxy radicals interact with substrates before they can rearrange intramolecularly.

  15. Removal of radium from aqueous solutions

    International Nuclear Information System (INIS)

    Adsorption of radium from aqueous solution with montmorillonite clay was investigated. Adsorption isotherm data of the radium and montmorillonite clay system were developed and fitted to both the Langmuir and Freundlich isotherm equations. The Langmuir isotherm equation was determined to be q = 6.700 C/1 + 8.447 x 10-5C and the Freundlich isotherm equation is q = 45.431 C/sup 1/1.401/. A rotary precoat filtration technique was used for dewatering the slurries of the montmorillonite clay and diatomaceous earth mixture. The rate of filtration was found to be a function of the weight percent of the clay, applied vacuum, drum speed and precoat thickness. The functional relationship is of the form Q = (0.682 + 0.035 X1 - 0.014 X2 + 0.140 X3 + 0.007 X1X2)/1 + (3.744 - 0.767 X3 + 0.079 X1X2)C125. 15 figures, 11 tables

  16. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. PMID:27120336

  17. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions

    International Nuclear Information System (INIS)

    Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions

  18. The reducibility of sulphuric acid and sulphate in aqueous solution

    International Nuclear Information System (INIS)

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100oC. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300oC. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130oC, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  19. Prediction of Swelling Behavior of N-Isopropylacrylamide Hydrogels in Aqueous Solution of Sodium Chloride

    Institute of Scientific and Technical Information of China (English)

    许小平; 李忠琴; 黄兴华; 王绪绪; 付贤; HiitherAndreas; MaurerGerd

    2004-01-01

    In this paper, a model is presented to correlate and predict the swelling behavior of hydrogels in aqueous solutions of electrolytes. The model is a combination of VERS-model, "phantom network" theory and "free-volume" contribution. The VERS-model is used to calculate Gibbs excess energy; "phantom network" theory to describe the elastic properties of polymer network, and "free-volume" contribution to account for additional difference in the size of the species. To test the model, a series of N-isopropylacrylamide based hydrogels are synthesized by free radical polymerization in oxygen-free, deionized water at 25~C under nitrogen atmosphere. Then, the degree of swelling of all investigated gels as well as the partition of the solute between the gel phase and the surrounding coexisting liquid phase are measured in aqueous solution of sodium chloride. The model test demonstrates that the swelling behavior correlated and predicted by the model agrees with the experimental data within the experimental uncertainty. The phase transition appeared in the experiment, and the influences of the total mass fraction of polymerizable materials ξgel as well as the mole fraction of the crosslinking agent YCR on the swelling behavior of IPAAm-gels can also be predicted correctly. All these show the potential of such model for correlation and prediction of the swelling behavior of hydrogels in aqueous solutions of electrolytes.

  20. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Science.gov (United States)

    Saksono, Nelson; Febiyanti, Irine Ayu; Utami, Nissa; Ibrahim

    2015-12-01

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H2O2 amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  1. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    International Nuclear Information System (INIS)

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H2O2 amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode

  2. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  3. A Hybrid Metal Oxide Supercapacitor in Aqueous KOH Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANG,Xiao-Feng; YOU,Zheng; RUAN,Dian-Bo

    2006-01-01

    A novel type of composite electrode based on sheet like cobalt oxide particles has been used in supercapacitors.Cobalt oxide cathodically deposited from Co(NO3)2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F·g-1 in 6 mol·L-1 KOH. A sol-gel process for the preparation of ultrafine RuO2 particles was developed to design electrodes with large surface area. The composite electrodes were developed by the deposition of RuO2 on the surface of carbon nanotubes. A specific capacitance of 785 F·g-1 can be achieved with the 20% carbon nanotubes loaded. To characterize the metal oxide nanocomposite electrode, a cyclic voltammetry and AC impedance test are executed. This study also reports a hybrid capacitor, which consists of cobalt oxide composite as a cathode and ruthenium oxide composite as an anode. The electrochemical performance of the hybrid capacitor is characterized by a dc charge/discharge test and cyclic voltammograms. The hybrid capacitor shows capacitor behavior with an extended operating voltage of 1.4 V. The maximum energy density and specific power density of the cell reach the value of 23.7 and 8.1 kW·g-1 respectively. The hybrid capacitor exhibits high-energy density and stable power characteristics.

  4. Resonant X-ray scattering studies of concentrated aqueous solutions

    International Nuclear Information System (INIS)

    The microscopic structure of concentrated aqueous electrolyte solutions has been studied by resonant X-ray diffraction (RXD). This technique provides a method for the measurement of the structure around a specific atom or ion in solution. In that sense, RXD is the X-ray equivalent of neutron diffraction with isotopic substitution (NDIS). The use of RXD as an alternative to NDIS has been considered of interest for some time; it is potentially one of the best methods for overcoming the most important limitation of the neutron diffraction technique, i.e. the lack of suitable isotopes for every atomic species. Third generation synchrotron sources offer an unprecedented opportunity for the further development of RXD to study the microscopic structure of liquids and amorphous materials. One of the main aims of this thesis was to check whether it could be possible to obtain results of comparable accuracy to those of NDIS. In this work, the hydration structures of Br-, Rb+, Sr2+ and Y3+ in concentrated aqueous solutions have been studied by RXD. A detailed account of how the experiments were carried out and the data analysis procedure is given. The results are compared with those obtained for the same ion by other techniques and to those obtained for similar systems by NDIS. The reliability of these results and the observed trends in the measured structure when compared to other ions in the same series are discussed. A comparative study of the structure of the three cations is also presented in this thesis. This work illustrates one of the main advantages of RXD: the possibility of carrying out systematic structural studies on all elements with atomic number greater than 28 (Ni). Finally, a critical discussion on the actual stage of development of RXD is presented. The results shown offer evidence of the future prospects of the technique and justify further efforts to develop it to the level of reliability and ease of use that NDIS has reached after more than three decades

  5. Ozone photolysis of paracetamol in aqueous solution.

    Science.gov (United States)

    Neamţu, Mariana; Bobu, Maria; Kettrup, Antonius; Siminiceanu, Ilie

    2013-01-01

    The degradation of a paracetamol (N-acetil-para-aminofenol) aqueous solution (C (0) P = 5 mmol L(-1)) is studied in a bench-scale setup by means of simple ozonation (O3) and ozonation catalyzed with UV light (O3/UV) in order to quantify the influence of UV light on the degradation process. The results have shown that under the adopted experimental conditions (25°C, applied ozone dose = 9.8 mg L(-1) and gas flow rate of 20 L h(-1)) both oxidative systems are capable of removing the substrate with mineralization degrees up to 51% for ozonation and 53% for O3/UV. HPICE chromatography allowed the detection of nitrate ions and maleic and oxalic acids as ultimate carboxylic acids. The experimental data have been interpreted through 5 indicators: the conversion of paracetamol (XP ), the conversion degree of TOC (XTOC ), the apparent rate constant (kap ), the Hatta number (Ha) and the enhancement factor (E). The main advantage of photo-ozonation compared to simple ozonation was a more advanced conversion (79% vs. 92% after 90 min). The paracetamol decay follows a pseudo-first-order reaction with a superior rate constant (higher by 54%) for the UV catalyzed system in comparison with direct ozonation. Mineralization is slightly accelerated (+4%) in the O3/UV system, due to the additional production of hydroxyl radicals induced by the UV light and a higher Hatta number (+24%). Nevertheless, the process was still in the slow reaction kinetic regime (Ha < 0.3), and the enhancement factor was not significantly increased. The results are useful for the design and scale-up of the gas-liquid processes. PMID:23647117

  6. Water rotational jump driven large amplitude molecular motions of nitrate ions in aqueous potassium nitrate solution

    CERN Document Server

    Banerjee, Puja; Bagchi, Biman

    2016-01-01

    Molecular dynamics simulations of aqueous potassium nitrate solution reveal a highly complex rotational dynamics of nitrate ions where, superimposed on the expected continuous Brownian motion, are large amplitude angular jumps that are coupled to and at least partly driven by similar large amplitude jump motions in water molecules which are associated with change in the hydrogen bonded water molecule. These jumps contribute significantly to rotational and translational motions of these ions. We explore the detailed mechanism of these correlated (or, coupled) jumps and introduce a new time correlation function to decompose the coupled orientational- jump dynamics of solvent and solute in the aqueous electrolytic solution. Time correlation function provides for the unequivocal determination of the time constant involved in orientational dynamics originating from making and breaking of hydrogen bonds. We discover two distinct mechanisms-both are coupled to density fluctuation but are of different types.

  7. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    OpenAIRE

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  8. Water and solute absorption from hypotonic glucose-electrolyte solutions in human jejunum.

    OpenAIRE

    Hunt, J B; Elliott, E. J.; Fairclough, P D; Clark, M. L.; Farthing, M J

    1992-01-01

    While oral rehydration therapy with glucose-electrolyte solutions is highly effective, the optimal formulation has not yet been defined. Recent clinical studies suggest that stool volume, and thus water losses, may be reduced if glucose is replaced by a polymeric substrate which reduces osmolality. It is possible that the efficacy of glucose monomer based oral rehydration solutions (ORS) will also improve if osmolality is decreased. Using jejunal triple lumen perfusion in healthy adult volunt...

  9. Physical and electrochemical characteristics of supercapacitors based on carbide derived carbon electrodes in aqueous electrolytes

    Science.gov (United States)

    Eskusson, Jaanus; Jänes, Alar; Kikas, Arvo; Matisen, Leonard; Lust, Enn

    FIB-SEM, XPS and gas adsorption methods have been used for the characterisation of physical properties of microporous carbide derived carbon electrodes prepared from Mo 2C at 600 °C (noted as CDC-Mo 2C). Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for supercapacitors consisting of the 1 M Na 2SO 4, KOH, tetraethyl ammonium iodide or 6 M KOH aqueous electrolyte and CDC-Mo 2C electrodes. The N 2 sorption values obtained have been correlated with electrochemical characteristics for supercapacitors in various aqueous electrolytes. The maximum gravimetric energy, E max, and gravimetric power, P max, for supercapacitors (taking into consideration the active material weight) have been obtained at cell voltage 0.9 V for 6 M KOH aqueous supercapacitor (E max = 5.7 Wh kg -1 and P max = 43 kW kg -1). For 1 M TEAI based SC somewhat higher E max (6.2 Wh kg -1) and comparatively low P max (7.0 kW kg -1) have been calculated.

  10. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dhondge, Sudhakar S., E-mail: s_dhondge@hotmail.co [P.G. Department of Chemistry, S.K. Porwal College, Kamptee, Nagpur 441 002 (India); Zodape, Sangesh P.; Parwate, Dilip V. [Department of Chemistry, R.T.M. Nagpur University, Nagpur 440 033 (India)

    2011-01-15

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg{sup -1} at three different temperatures. The derived parameters, such as apparent molar volume of solute ({phi}{sub V})), limiting apparent molar volume of solute ({phi}{sub V}{sup 0}), limiting apparent molar expansivity ({phi}{sub E}{sup 0}), thermal expansion coefficient ({alpha}*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT)). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  11. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    International Nuclear Information System (INIS)

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg-1 at three different temperatures. The derived parameters, such as apparent molar volume of solute (φV)), limiting apparent molar volume of solute (φV0), limiting apparent molar expansivity (φE0), thermal expansion coefficient (α*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT) ). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  12. Radiolysis of aqueous-ethanolic solution of tryptophan

    International Nuclear Information System (INIS)

    The effect of ethanol on radiation stability of tryptophan during γ-irradiation of its aqueous solutions was investigated. In comparison with radiation losses of tryptophan irradiated in pure water, the losses in aqueous-ethanolic solutions are considerably higher and they increase with increasing ethanol concentration. Basic radiation products of tryptophan formed on irradiation of its aqueous-ethanolic solutions in consequence of the reaction of tryptophan with acetaldehyde as the main product of radiolysis of ethanol were followed by paper electrophoresis. (author)

  13. Electrolytic preparation of vanadium(5) oxide from oxovanadium(4) sulfate solution in the presence of sodium ions

    International Nuclear Information System (INIS)

    Influence of anodic current density, pH value and reagents concentration on the character of anodic processes, current efficiency and properties of deposits during electrolytic deposition of vanadium(5) oxide from aqueous solutions of oxovanadium(4) sulfate in the presence of sodium ions was studied. It was ascertained that in the presence of sodium ions some deposits are formed on the anode, which differ qualitatively from the ones prepared from solutions without additions. According to data of X-ray phase analysis the sediments after annealing at 500 deg C for 5-7 h were sodium-vanadium bronze of NaxV2O5 composition, featuring elevated electrochemical activity

  14. Photoelectrochemical oxidation of anions by WO_3 in aqueous and nonaqueous electrolytes

    OpenAIRE

    Mi, Qixi; Coridan, Robert H.; Brunschwig, Bruce S.; Gray, Harry B.; Lewis, Nathan S.

    2013-01-01

    The behavior of WO_3 photoanodes has been investigated in contact with a combination of four anions (Cl−, CH_3SO_3−, HSO_4−, and ClO_4−) and three solvents (water, acetonitrile, and propylene carbonate), to elucidate the role of the semiconductor surface, the electrolyte, and redox kinetics on the current density vs. potential properties of n-type WO_3. In 1.0 M aqueous strong acids, although the flat-band potential (E_(fb)) of WO_3 was dominated by electrochemical intercalation of protons in...

  15. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    OpenAIRE

    Bin LI; Nie, Zimin; Vijayakumar, M.; Li, Guosheng; LIU Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l−1). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l−1 is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functio...

  16. A novel isotonic balanced electrolyte solution with 1% glucose for perioperative fluid management in children- an animal experimental pre- authorisation study Running title: A novel balanced electrolyte solution

    OpenAIRE

    Witt, Lars; Osthaus, Wilhelm Alexander; Buente, Christoph; Teich, Natascha; Hermann, Elvis; Kaske, Martin; Koppert, Wolfgang; Sümpelmann, Robert

    2010-01-01

    Abstract Background: The recommendations for perioperative maintenance fluid in children have been adapted from hypotonic to isotonic electrolyte solutions with lower glucose concentrations (1-2.5% instead of 5%) in order to avoid hyponatraemia or hyperglycaemia. Objective: The objective of this prospective animal study was to determine the margin of safety of a novel isotonic balanced electrolyte solution with 1% glucose (BS-G1) in comparison to normal saline with 1% glucose (N...

  17. Nanoscale lubricating film formation by linear polymer in aqueous solution

    Science.gov (United States)

    Liu, Shuhai; Guo, Dan; Xie, Guoxin

    2012-11-01

    Film-forming properties of polymer in aqueous solution flowing through a nanogap have been investigated by using a thin film interferometry. The film properties of linear polymer in aqueous solution flowing through a confined nanogap depend on the ratio of water film thickness to averaged radius of polymer chains H0/RPolymer. It was found that the lubrication film thickness of linear polymer in aqueous solution decreases as the polymer molecular weight increasing when H0/RPolymer < 2 ˜ 3. A new lubrication map was proposed, which includes the lubrication regime of weak confinement influence, the lubrication regime of strong confinement influence (LRSCI), and the transition regime of confinement influence. It is very difficult to increase the lubrication film thickness using the higher molecule weight in the LRSCI regime. The lubrication mechanism inferred from our experimental results may help to better understand the dynamic film properties of linear polymer in aqueous solution flowing through a nanogap.

  18. γ-Irradiation-induced radiolysis of inulin in aqueous solutions

    International Nuclear Information System (INIS)

    Radiochemical transformations of inulin in aqueous solutions, in air, in the presence of inert gases, helium, nitrogen and in nitrous oxide exposed to various doses of 60Co γ-irradiation were investigated. It was shown that interactions in inulin with OH radicals are principally responsible for radiolytic decomposition of inulin. The data on radiolysis of more simple model systems were used to make available decomposition spectra of γ-irradiated aerated aqueous solution of inulin. 9 refs., 6 figs

  19. Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte

    KAUST Repository

    Ruffo, Riccardo

    2011-06-01

    The development of lithium ion aqueous batteries is getting renewed interest due to their safety and low cost. We have demonstrated that the layer-structure LiCoO2 phase, the most commonly used electrode material in organic systems, can be successful delithiated and lithiated again in a water-based electrolyte at currents up to 2.70 A/g. The capacity is about 100 mAh/g at 0.135 A/g and can be tuned by cycling the electrode in different potential ranges. In fact, increasing the high cut-off voltage leads to higher specific capacity (up to 135 mAh/g) but the Coulomb efficiency is reduced (from 99.9% to 98.5%). The very good electrode kinetic is probably due to the high conductivity of the electrolyte solution (0.17 Scm- 1 at 25 °C) but this behavior is affected by the electrode load. © 2010 Elsevier B.V. All rights reserved.

  20. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution. PMID:27394120

  1. Electrostatics of polymer translocation events in electrolyte solutions

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  2. Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Xianyou; Jiang, Lanlan; Wu, Hao; Wu, Chun; Su, Jingcang

    2012-10-01

    Hierarchically porous carbons (HPCs) have been prepared by sol-gel self-assembly technology with nickel oxide and surfactant as the dual template. The porous carbons are further activated by nitric acid. The electrochemical behaviors of supercapacitors using HPCs as electrode material in different aqueous electrolytes, e.g., (NH4)2SO4, Na2SO4, H2SO4 and KOH are studied by cyclic voltametry, galvanostatic charge/discharge, cyclic life, leakage current, self-discharge and electrochemical impedance spectroscopy. The results demonstrate that the supercapacitors in various electrolytes perform definitely capacitive behaviors; especially in 6 M KOH electrolyte the supercapacitor represents the best electrochemical performance, the shortest relaxation time, and nearly ideal polarisability. The energy density of 8.42 Wh kg-1 and power density of 17.22 kW kg-1 are obtained at the operated voltage window of 1.0 V. Especially, the energy density of 11.54 Wh kg-1 and power density of 10.58 kW kg-1 can be achieved when the voltage is up to 1.2 V.

  3. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Science.gov (United States)

    Nemla, Fatima; Cherrad, Djellal

    2016-07-01

    Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98-2.9 μm) and of moderate surface roughness RMS (∼47-58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  4. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, M.; Honda, K.; Kondo, T.; Rao, T.N.; Tryk, D.A.; Fujishima, A

    2002-10-15

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity.

  5. Electrochemical examination of the ascorbic acid radical anion in non-aqueous electrolytes

    International Nuclear Information System (INIS)

    A quasi-reversible redox reaction involving ascorbic acid was observed in non-aqueous electrolytes at conductive diamond electrode. The chemical reversibility of these reactions is consistent with ascorbic acid being reduced to the ascorbic acid radical anion in a one-electron process, with subsequent reoxidation to ascorbic acid. This is the first report on the electrochemical production of the ascorbic acid radical anion in non-aqueous electrolytes. Ascorbyl 6-stearate and 4-hydroxy 2(5H)-furanone, which have somewhat similar structures as ascorbic acid, also showed one-electron transfer reduction reaction producing radicals with a single negative charge, suggesting that these compounds follow the same electrochemical behavior as ascorbic acid. The double bond and hydroxyl substituent on the five-membered ring are shown to be necessary for the stabilization of the radical anions. It was confirmed by the calculation of the total energy using molecular orbital methods that resonance structures involving the double-bond and hydroxyl group provide significant stabilization of the radical anions. Electrochemical preparation may be a useful method for the detailed study of radicals, their molecular structure and reactivity

  6. Adsorption of moble metal complexes of alumina and silica from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Knoezinger, H. [Universitaet Muenchen (Germany)

    1993-12-31

    The equilibrium of Pd and Pt complexes from aqueous solutions on alumina and silica is reported. Uptake isotherms were measured as a function of pH and added background electrolyte. Simulations based on a triple layer model permitted the determination of the mode of adsorption (electrostatic vs. ligand exchange) and of the adsorption equilibrium constants. UV/VIS and Raman spectroscopy were used to characterize the adsorbed complexes. The results provide a basis for the controlled preparation of defined concentration profiles in support pellets.

  7. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.

    Science.gov (United States)

    Wang, Zhong-Li; Xu, Dan; Xu, Ji-Jing; Zhang, Xin-Bo

    2014-11-21

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more important in the future than it has ever been in the past. Although lithium-ion batteries (LIBs) are traditionally considered to be the most likeliest candidate thanks to their relatively long cycle life and high energy efficiency, their limited energy density as well as cost are still causing a bottleneck for their long-term application. Alternatively, metal-air batteries have been proposed as a very promising large-scale electricity storage technology with the replacement of the intercalation reaction mechanism by the catalytic redox reaction of a light weight metal-oxygen couple. Generally, based on the electrolyte, these metal-air batteries can be divided into aqueous and nonaqueous systems, corresponding to two typical batteries of Zn-air and Li-air, respectively. The prominent feature of both batteries are their extremely high theoretical energy density, especially for nonaqueous Li-air batteries, which far exceeds the best that can be achieved with LIBs. In this review, we focus on the major obstacle of sluggish kinetics of the cathode in both batteries, and summarize the fundamentals and recent advances related to the oxygen catalyst materials. According to the electrolyte, the aqueous and nonaqueous electrocatalytic mechanisms of the oxygen reduction and evolution reactions are discussed. Subsequently, seven groups of oxygen catalysts, which have played catalytic roles in both systems, are selectively reviewed, including transition metal oxides (single-metal oxides and mixed-metal oxides), functional carbon materials (nanostructured carbons and doped carbons), metal oxide-nanocarbon hybrid materials, metal-nitrogen complexes (non-pyrolyzed and pyrolyzed), transition metal nitrides, conductive polymers, and precious metals (alloys). Nonaqueous systems have the advantages of energy density and rechargeability over aqueous systems and have

  8. Study on specific enthalpy of ice including solute in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Izumi, Yasuyuki [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2010-05-15

    Effects of solute included in a sample on the specific enthalpy of ice are investigated experimentally. In the experiments, ice including the solute was made from an aqueous solution, and the specific enthalpy was measured by melting the ice in the aqueous solution. Moreover, a physical model of the ice including the solute is proposed. As a result, when the concentration of the aqueous solution is set at a value equivalent to the concentration of the sample, the specific enthalpy of the sample increases with the concentration of the sample. The measurement results and the calculated values agree well, and it was found that the method for calculating the specific enthalpy of the sample is valid. Moreover, when the concentration of the aqueous solution is higher than that of the ice including the solute, it was found the calculation method for the specific enthalpy of the sample is appropriate. (author)

  9. Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation

    International Nuclear Information System (INIS)

    The study was to investigate the performance of electrocoagulation (EC) for the efficient removal of polyvinyl alcohol (PVA) from aqueous solutions. Several parameters were evaluated to characterize the PVA removal efficiency, such as various electrode pairs, current densities, supporting electrolytes, temperatures, and initial electrolyte concentrations. The effects of the current density, supporting electrolyte, and temperature on the electrical energy consumption were also investigated. The experimental results indicate that a Fe/Al electrode pair is the optimum choice out of four different electrode pair combinations. The optimum current density, supporting electrolyte concentration, and temperature were found to be 5 mA cm-2, 0.008N NaCl, and 298 K, respectively. The PVA removal efficiency decreased with increasing in the initial concentrations. The kinetic studies indicated that the EC process was best described using pseudo-second-order kinetics. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of PVA was best fitted by the Langmuir adsorption isotherm model. Thermodynamic parameters such as the Gibbs free energy, enthalpy, and entropy indicated that the adsorption of PVA on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  10. Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2010-05-15

    The study was to investigate the performance of electrocoagulation (EC) for the efficient removal of polyvinyl alcohol (PVA) from aqueous solutions. Several parameters were evaluated to characterize the PVA removal efficiency, such as various electrode pairs, current densities, supporting electrolytes, temperatures, and initial electrolyte concentrations. The effects of the current density, supporting electrolyte, and temperature on the electrical energy consumption were also investigated. The experimental results indicate that a Fe/Al electrode pair is the optimum choice out of four different electrode pair combinations. The optimum current density, supporting electrolyte concentration, and temperature were found to be 5 mA cm{sup -2}, 0.008N NaCl, and 298 K, respectively. The PVA removal efficiency decreased with increasing in the initial concentrations. The kinetic studies indicated that the EC process was best described using pseudo-second-order kinetics. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of PVA was best fitted by the Langmuir adsorption isotherm model. Thermodynamic parameters such as the Gibbs free energy, enthalpy, and entropy indicated that the adsorption of PVA on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  11. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Science.gov (United States)

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  12. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    Science.gov (United States)

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  13. Radiolysis of aqueous solutions of sodium sulfides. Chapter 8

    International Nuclear Information System (INIS)

    To study the radiolysis of the aqueous solutions of sodium sulphide, use was made of infrared spectroscopy, mass-spectrometry and iodometric titration. During the γ-irradiation of the aqueous solutions of sodium sulphide one can observe the appearance of various stable sulphur-containing products. Data are discussed on the radiolysis in a nitrous environment, on oxygen bubbling, at varying radiation doses, pH and temperature values. Consideration is also given to the low-temperature radiolysis of the aqueous solutions of sodium sulphide by the EPR method. In the radiolysis of both crystalline and glassy solutions of Na2S there appear an ion-radical S- and a radical SO2-

  14. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    Science.gov (United States)

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  15. Tritium exchange reactions in imidazole in aqueous and organic solutions

    International Nuclear Information System (INIS)

    Tritium exchange reactions were studied in aqueous and organic solutions of imidazole and methylimidazole. For the exchange in an aqueous solution the mechanism through ylide intermediate formation postulated by VAUGHAN et al. was modified in this study. The rate constant obtained by MASLOVA et al. was found to be too small compared to ours. For the exchange reaction of methylimidazole in an aqueous solution the rate decreased due to the effect of a methyl group attached to the aromatic ring. The C-2 tritiation of imidazole was studied in chloroform, acetone and dioxane for the first time. It was dependent on polymer properties. An intramolecular exchange mechanism was applicable to the trimer while an intermolecular exchange mechanism was applicable to the dimer. The rate constants of the exchange reactions in organic solutions were obtained for both mechanisms. (orig.)

  16. Synthesis and Aqueous Solution Viscosity of Hydrophobically Modified Xanthan Gum

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-lin; WU Wen-hui; YU Pei-zhi; WANG Jian-quan

    2007-01-01

    Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investigated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.

  17. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    OpenAIRE

    Masanobu Chiku; Shoji Tomita; Eiji Higuchi; Hiroshi Inoue

    2011-01-01

    Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  18. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R.

    2013-04-01

    Thirteen of the most common aqueous NaCl solution force fields based on the SPC/E water solvent are examined with respect to their prediction at ambient conditions of the concentration dependence of the total electrolyte chemical potential and the solution density. We also calculate the salt solubility and the chemical potential and density of the NaCl crystalline solid. We obtain the solution chemical potential in a computationally efficient manner using our recently developed Osmotic Ensemble Monte Carlo method [F. Moučka, M. Lísal, and W. R. Smith, J. Phys. Chem. B 116, 5468 (2012), 10.1021/jp301447z]. We find that the results of the force fields considered are scattered over a wide range of values, and none is capable of producing quantitatively accurate results over the entire concentration range, with only two of them deemed to be acceptable. Our results indicate that several force fields exhibit precipitation at concentrations below the experimental solubility limit, thus limiting their usefulness. This has important implications, both in general and for their use in biomolecular simulations carried out in the presence of counter-ions. We conclude that either different parameter fitting techniques taking high-concentration properties into account must be used when determining force field model parameters, or that the class of models considered here is intrinsically incapable of the task and more sophisticated mathematical forms must be used.

  19. Salt dependent stability of stearic acid Langmuir-Blodgett films exposed to aqueous electrolytes

    NARCIS (Netherlands)

    Kumar, Naveen; Wang, Lei; Siretanu, Igor; Duits, Michel; Mugele, Frieder

    2013-01-01

    We use contact angle goniometry, imaging ellipsometry, and atomic force microscopy to study the stability and wettability of Langmuir–Blodgett (LB) monolayers of stearic acid on silica substrates, upon drying and exposure to aqueous solutions of varying salinity. The influences of Ca2+ and Na+ ions

  20. Comparison of two electrolyte models for the carbon capture with aqueous ammonia

    DEFF Research Database (Denmark)

    Darde, Victor; Thomsen, Kaj; van Well, Willy J.M.;

    2012-01-01

    Post-combustion carbon capture is attracting much attention due to the fact that it can be retrofitted on existing coal power plants. Among the most interesting technologies is the one that employs aqueous ammonia solutions to absorb the generated carbon dioxide. The evaluation of such process...

  1. Electrolytic process for producing hydrogen peroxide

    International Nuclear Information System (INIS)

    An electrolytic process for producing hydrogen peroxide in an aqueous alkaline solution includes simultaneously passing an aqueous alkaline electrolyte and oxygen through a fluid permeable conductive cathode comprising reticulated vitreous carbon foam, separating the fluid permeable conductive cathode from an anode by a barrier and connecting the fluid permeable conductive electrode and the anode with an external power source to cause generation of hydrogen peroxide ion within the aqueous alkaline solution

  2. [Photochemical degradation of chlorothalonil in aqueous solution].

    Science.gov (United States)

    Li, Xuede; Hua, Rimao; Yue, Yongde; Li, Ying; Tang, Feng; Tang, Jun

    2006-06-01

    The study on the effects of light source, solution pH and temperature, and surfactant on the photochemical degradation of chlorothalonil showed that the half-life of chlorothalonil photodegradation under high pressure mercury lamp (HPML), UV lamp and sunlight was 22.4, 82.5 and 123.8 min, respectively. Under HPML and sunlight, chlorothalonil had a higher photolysis rate in alkaline solution than in neutral and acid solution. The photolysis rate increased with increasing solution temperature in the range of 10 degrees C - 40 degrees C, which was doubled when the temperature increased every 10 degrees C. Sodium laurylsulfonate (SDS), sodium dodecylbenzene sulfonate (SDBS), Tween 60 and Span 20 showed significant photosensitizing effects, while cetyltrimethylammonium bromide (CTAB) had significant photoquench effect on the photolysis of chlorothalonil. PMID:16964947

  3. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  4. Synthesis of a Lewis-acidic boric acid ester monomer and effect of its addition to electrolyte solutions and polymer gel electrolytes on their ion transport properties

    International Nuclear Information System (INIS)

    A polymerizable anion receptor based on a boric acid ester was synthesized. When the anion receptor was added to different electrolyte solutions consisting of an aprotic solvent and a lithium salt, the ionic conductivity of certain electrolyte solutions, composed of low polar solvents or salts with low dissociation abilities, was enhanced appreciably. Viscosity measurements for the electrolyte solutions, with and without the added anion receptor, indicated that the conductivity enhancement was caused by an increase in the ionic dissociation due to the addition of the anion receptor. Pulse-field-gradient spin-echo (PGSE) NMR and 11B-NMR spectra supported that the ionic dissociation was facilitated by interaction between the Lewis-acidic anion receptor and Lewis-basic anions. The polymerizable anion receptor was crosslinked with a polyether macromonomer in different electrolyte solutions. Ionic conductivity of the resulting polymer gel electrolytes was also altered like that of the electrolyte solutions containing the anion receptor monomer

  5. Modeling of 1-1-electrolyte solubility processes in ternary aqueous-organic systems using Chen's theory

    International Nuclear Information System (INIS)

    A model for the calculation of MCl electrolyte salting-out process (M = Na - Cs) in water-organic media is suggested on the basis of the Chen model for aquerous solutions of electrolytes and the Izmailov continual approximation. For the calculations made for unstudied systems the values of couple interaction parameters, obtained by the optimization of coefficients of the given electrolyte activity in water and coefficient B by the results of calculation of the given electrolyte solubility in one of the known systems, are required

  6. Flotation separation of hafnium(IV) from aqueous solutions

    International Nuclear Information System (INIS)

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175+181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author)

  7. Modeling reactive geochemical transport of concentrated aqueous solutions

    Science.gov (United States)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2005-02-01

    Aqueous solutions with ionic strength larger than 1 M are usually considered concentrated aqueous solutions. These solutions can be found in some natural systems and are also industrially produced and released into accessible natural environments, and as such, they pose a big environmental problem. Concentrated aqueous solutions have unique thermodynamic and physical properties. They are usually strongly acidic or strongly alkaline, with the ionic strength possibly reaching 30 M or higher. Chemical components in such solutions are incompletely dissociated. The thermodynamic activities of both ionic and molecular species in these solutions are determined by the ionic interactions. In geological media the problem is further complicated by the interactions between the solutions and sediments and rocks. The chemical composition of concentrated aqueous solutions when migrating through the geological media may be drastically altered by these strong fluid-rock interactions. To effectively model reactive transport of concentrated aqueous solutions, we must take into account the ionic interactions. For this purpose we substantially extended an existing reactive transport code, BIO-CORE2D©, by incorporating a Pitzer ion interaction model to calculate the ionic activity. In the present paper, the model and two test cases of the model are briefly introduced. We also simulate a laboratory column experiment in which the leakage of highly alkaline waste fluid stored at Hanford (a U.S. Department of Energy site, located in Washington State) was studied. Our simulation captures the measured pH evolution and indicates that all the reactions controlling the pH evolution, including cation exchanges and mineral dissolution/precipitation, are coupled.

  8. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Lixia Bian

    2014-06-01

    Full Text Available The transmembrane electrical potential (TMEP in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2, concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  9. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  10. The rheology of oxide dispersions and the role of concentrated electrolyte solutions

    International Nuclear Information System (INIS)

    Stability control of particulate dispersions is critical to a wide range of industrial processes. In the UK nuclear industry, significant volumes of waste materials arising from the corrosion products of Magnox fuel rods currently require treatment and storage. The majority of this waste is present as aqueous dispersions of oxide particulates. Treatment of these dispersions will require a variety of unit operations including mobilisation, transport and solid- liquid separation. Typically these processes must operate across a narrow optimal range of pH and the dispersions are, almost without exception, found in complex electrolyte conditions of high overall concentration. Knowledge of the behaviour of oxides in various electrolyte conditions and over a large pH range is essential for the efficient design and control of any waste processing approach. The transport properties of particle dispersions are characterised by the rheological properties. It is well known that particle dispersion rheology is strongly influenced by particle-particle interaction forces, and that particle-particle interactions are strongly influenced by adsorbed ions on the particle surfaces. Here we correlate measurements of the shear yield stress and the particle zeta potentials to provide insight as to the role of ions in moderating particle interactions. The zeta potential of model TiO2 suspensions were determined (Colloidal Dynamics Zeta Probe) over a range of pH for a series of alkali metal halides and quaternary ammonium halides at a range of solution concentrations (0.001 M - 1 M). The results show some surprising co-ion effects at high electrolyte concentrations (>0.5 M) and indicate that even ions generally considered to be indifferent induce a shift in iso-electric point (i.e.p.) which is inferred as being due to specific adsorption of ions. The shear yield stress values of concentrated titania dispersions were measured using a Bohlin C-VOR stress controlled rheometer. The shear yield

  11. Method and device for removing ruthenium in aqueous solution

    International Nuclear Information System (INIS)

    Highly soluble and reactive high order ruthenium oxides assumed to be ruthenium tetraoxide, it they are not reduced on a cathode immediately, would evaporate as they are or react with nitrogen oxides formed by oxidation-decomposition of nitrosyl complex to return again to their nitrosyl complex. Accordingly, it is necessary for the aqueous solution to brought into contact with the anode and the cathode repeatedly. The present invention complies with the demand, in which one or plural pairs of plate-like electrodes are stacked as layers and an aqueous solution incorporating ruthenium is passed between the layers so that it is brought into contact with the anode and the cathode repeatedly to repeat oxidations and reductions. In view of the above, since the water soluble high order ruthenium oxides generated on the anode in the aqueous solution are immediately brought into contact with the cathode and reduced into insoluble lower order oxides, ruthenium can be removed. (T.M.)

  12. Study of free acidity determinations in aqueous solution

    International Nuclear Information System (INIS)

    The object of this work is the study of the principal methods which can be applied to the measurement of 'free' acidity. In the first part, we define the various types of acidity which can exist in aqueous solution; then, after having studied some hydrolysis reactions, we compare the value of the neutralisation pH of the hydrated cation and that of the precipitation of the hydroxide. In the second part we have started to study the determination of the acidity of an aqueous solution. After having rapidly considered the 'total' acidity determination, we deal with the problem of the 'free' acidity titration. We have considered in particular certain methods: extrapolation of the equivalent point, colorimetric titrations with or without a complexing agent, and finally the use of ion-exchange resins with mixed aqueous and solvent solutions. (author)

  13. Molecular Weight and Aggregation of Erwinia Gum in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erwinia(E) gum is composed of glucose, fucose, galactose and glucuronic acid. The weight-average molecular weights Mw, number-average molecular weights Mn and intrinsic viscosities[η] of the four fractions and the unfractionated E gum in aqueous solutions at desired temperatures were studied by light scattering, membrane osmometry, size exclusion chromatography(SEC) and viscometry. The experimental results prove that E gum formed aggregates in the aqueous solution at 25 ℃ and the aggregates were broken gradually with increasing temperature. The dissociation of the aggregates of E gum in the aqueous solution started at 36 ℃, and was completed at around 90 ℃. The [η] values of E gum and its fractions are much higher than those of the conventional polymers with the similar molecular weights, and decrease with increasing NaCl concentration.

  14. Self-aggregation of liquids from biomass in aqueous solution

    International Nuclear Information System (INIS)

    Highlights: • Aggregation behaviour of liquids from biomass in aqueous solution has been studied. • Standard Gibbs free energies of aggregation have been calculated. • Solubility in water of these compounds has been determined. • Critical aggregation concentration decreases as the solubility in water does. -- Abstract: Aggregation of several chemicals from biomass: furfural derived compounds (furfural, 5-methylfurfural, furfuryl alcohol and tetrahydrofurfuryl alcohol), lactate derived compounds (methyl lactate, ethyl lactate and butyl lactate), acrylate derived compound (methyl acrylate) and levulinate compounds (methyl levulinate, ethyl levulinate and butyl levulinate) in aqueous solution has been characterised at T = 298.15 K through density, ρ, speed of sound, u, and isentropic compressibilities, κS, measurements. In addition the standard Gibbs free energies of aggregation have been also calculated. Furthermore, in order to deepen insight the behaviour of these chemicals in aqueous solution, the solubility of these compounds has been measured at T = 298.15 K

  15. Mutual diffusion coefficients of L-lysine in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Mutual diffusion coefficients of L-lysine in aqueous solutions. • Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. • Estimation of the hydrodynamic radius of L-lysine. - Abstract: Mutual diffusion coefficients, D, were determined for aqueous solutions of L-lysine at T = 298.15 K at concentrations from (0.001 to 0.100) mol · dm−3. From these experimental results, the hydrodynamic radius Rh, diffusion coefficients at infinite dilution D0, the thermodynamic factors and activity coefficients γ, by using the Hartley equation, have been estimated, permitting us to have a better understanding of the thermodynamic of these systems of L-lysine in aqueous solutions

  16. Correspondence between Experiment and Theory of Bulk Electrocrystallisation at Solid Electrodes in Aqueous Electrolyte

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    A theory of bulk-metal electrocrystallisation at solid-metal surfaces in aqueous electrolytes is presented. The electrochemical processes in the vicinity of the electrode surface are dynamic interactions between charged and uncharged species. Redox processes in the classical sense constitute only...... depletion layer devoid of charged species distant from the electrode surface. The treatment shows that long-range reduction and oxidation is likely to proceed solely as a result of thermodynamic arguments. The dependence on distance was compared to earlier predictions of long-distance tunneling phenomena....... Since the kinetics at the electrode is also included in the treatment of electroactivity, the position of the peak-current density versus potential-sweep rate was also estimated. Finally, the trace of the cyclic voltammogram was calculated by a simplified version of convolution methodology. The impact...

  17. The Effect of Aqueous Electrolyte on Electrochemical Properties of Low-temperature Reduced Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuan Hou

    2014-06-01

    Full Text Available Reduced graphene oxide (RGO was prepared via low-temperature heat treatment, which was used to study on the effect of aqueous electrolyte on electrochemical properties of RGO. The RGO were characterized by X-ray diffraction (XRD, field emission scanning electron microscope (FESEM and transmission electron microscope (TEM, the electrochemical properties of RGO were investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques. The results indicate that the retained functional groups were benefit for the improvement of specific capacitance and the specific capacitance of RGO in 1 mol/LH2SO4 was better than that in 1 mol/L Na2SO4.

  18. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  19. Thermal Properties, Conductivity, and Spin-lattice Relaxation of Gel Electrolyte Based on Low Molecular Weight Gelator and Solution of High Temperature Ionic Liquid

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted - Abstract: Gel electrolyte based on low molecular weight organic gelator methyl-4,6-O-(p-nitrobenzylidene)-α-D-glucopyranoside was formed by the self-assembly phenomena in aqueous solution of high temperature ionic liquid tetramethylammonium bromide. The solidification process was based on sol-gel technique with controlled gelation temperature. When the temperature was below the characteristic gel-sol phase transition temperature, Tgs, the gel electrolyte was solid-like. The gel electrolytes showed enhanced ionic conductivity to those of the pure electrolyte in liquid state in whole temperature range below Tgs. The thermal stability, ionic conductivity and molecular dynamics investigated as a function of temperature and concentration of the gelator, together with the gel microstructure were performed to get some insight in to the origin of the enhanced conductivity properties. Intermolecular interaction between ion complexes and gelator aggregates was implicated by the data obtained and suggested as the origin of the conductivity enhancement effect

  20. Photoemission spectra of aqueous solutions of salts from many-body perturbation theory

    Science.gov (United States)

    Gaiduk, Alex P.; Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    The computational design of electrode materials for energy conversion and storage processes requires an accurate description of the energy levels of the electrolyte and of electrolyte/electrode interfaces. Conventional density-functional approximations are in general not well suited for this task as they yield inaccurate orbital energies. Many-body perturbation theory (MBPT) predicts vertical ionization potentials and energy gaps in better agreement with experiments, providing the possibility for an accurate description of the electronic properties of electrolytes. We coupled ab initio molecular dynamics with MBPT calculations to investigate the photoemission spectra of a 1 M aqueous solution of NaCl. For the first time we were able to determine the absolute positions of the spectra peaks, with excellent agreement with experiments for both the solute and solvent peak positions. The best results were obtained using wavefunctions obtained from dielectric-dependent hybrid calculations as a starting point for MBPT. Work supported by DOE BES DE-SC0008938. Computer time provided by the Argonne Leadership Computing Facility through the INCITE program.

  1. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes.

    Science.gov (United States)

    Bo, Zheng; Yang, Huachao; Zhang, Shuo; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2015-01-01

    Vertically-oriented graphenes (VGs) are promising active materials for electric double layer capacitors (EDLCs) due to their unique morphological and structural features. This study, for the first time, reports the molecular dynamics (MD) simulations on aqueous NaCl electrolytes confined within VG channels with different surface charge densities and channel widths. Simulation results show that the accessibility of ions and the structure of EDLCs are determined by the ion type/size, surface charging, and VG channel width. For relatively narrow VG channels with the same width, the threshold charge density (to compensate the energy penalty for shedding hydration shell) and the dehydration rate of Cl(-) ions are larger than those of Na(+) ions. To achieve the highest ion concentration coefficient, the effective VG channel width should be between the crystal and hydration diameters of the ions. The results are further quantified and elucidated by calculating the electrolyte density profiles. The molecular insights obtained in the current work are useful in guiding the design and fabrication of VGs for advancing their EDLC applications. PMID:26424365

  2. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-01-01

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications. PMID:25709083

  3. Sustainable AC/AC hybrid electrochemical capacitors in aqueous electrolyte approaching the performance of organic systems

    Science.gov (United States)

    Abbas, Qamar; Babuchowska, Paulina; Frąckowiak, Elżbieta; Béguin, François

    2016-09-01

    A high energy hybrid AC/AC electrochemical capacitor has been realized in aqueous Li2SO4+KI electrolyte mixture. Owing to the redox processes associated with the 2I-/I2 system, the positive electrode operates in narrow potential range and displays high capacity. During prolonged potentiostatic floating at 1.6 V, the hybrid cell demonstrates remarkably stable capacitance and resistance. Analyses by temperature programmed desorption after floating at 1.6 V proved that oxidation of the positive AC electrode is prevented by the use of Li2SO4+KI, which enables the maximum potential of this electrode to be shifted below the water oxidation potential. When charged at 0.2 A g-1 up to U = 1.6 V, the hybrid cell displays a high capacitance of 75 F g-1 (300 F g-1 per mass of one electrode) compared to 47 F g-1 (188 F g-1 per mass of one electrode) for a symmetric cell in Li2SO4. At 0.2 A g-1 up to 1.6 V, the hybrid capacitor in Li2SO4+KI displays an energy density of 26 Wh kg-1 which approaches the energy density of 30.9 Wh kg-1 measured when the same carbon is implemented in a capacitor using TEABF4/ACN electrolyte and charged up to 2.5 V.

  4. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    Directory of Open Access Journals (Sweden)

    Feng-Hua Sun

    2015-05-01

    Full Text Available The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05. The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min than during the PL trial (91.6 ± 5.9 min (p < 0.05. At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05. The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.

  5. Removal of Phosphate from Aqueous Solution with Modified Bentonite

    Institute of Scientific and Technical Information of China (English)

    唐艳葵; 童张法; 魏光涛; 李仲民; 梁达文

    2006-01-01

    Bentonite combined with sawdust and other metallic compounds was used to remove phosphate from aqueous solutions in this study. The adsorption characteristics of phosphate on the modified bentonite were investigated, including the effects of temperature, adsorbent dosage, initial concentration of phosphate and pH on removal of phosphate by conducting a series of batch adsorption experiments. The results showed that 98% of phosphate removal rate was obtained since sawdust and bentonite used in this investigation were abundantly and locally available. It is concluded that modified bentonite is a relatively efficient, low cost and easily available adsorbent for the removal of phosphate from aqueous solutions.

  6. Degradation kinetics of benzyl nicotinate in aqueous solution

    Directory of Open Access Journals (Sweden)

    Mbah C

    2010-01-01

    Full Text Available The degradation of benzyl nicotinate in aqueous solution over a pH range of 2.0-10.0 at 50±0.2 o was studied. The degradation was determined by high performance liquid chromatography. The degradation was observed to follow apparent first-order rate kinetics and the rate constant for the decomposition at 25 o was estimated by extrapolation. The reaction was shown to be hydroxide ion catalyzed and the Arrhenius plots showed the temperature dependence of benzyl nicotinate degradation. A significant increase in the stability of benzyl nicotinate was observed when glycerol or polyethylene glycol 400 was incorporated into the aqueous solution.

  7. Ionisation constants of inorganic acids and bases in aqueous solution

    CERN Document Server

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  8. Criticality in aqueous solutions of 3-methylpyridine and sodium bromide.

    Science.gov (United States)

    Kostko, A F; Anisimov, M A; Sengers, J V

    2004-08-01

    We address a controversial issue regarding the nature of critical behavior in ternary electrolyte solutions of water, 3-methylpyridine, and sodium bromide. Earlier light-scattering studies showed an anomalous critical behavior in this system that was attributed to the formation of a microheterogeneous phase associated with ion-molecule clustering [M.A. Anisimov, J. Jacob, A. Kumar, V.A. Agayan, and J. V. Sengers, Phys. Rev. Lett. 85, 2336 (2000)

  9. Acoustical Studies of L-leucine and L-asparagine in aqueous electrolyte through thermal expansion coefficient

    Science.gov (United States)

    Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.

    2012-12-01

    Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.

  10. Contact nuclei formation in aqueous dextrose solutions

    Science.gov (United States)

    Cerreta, Michael K.; Berglund, Kris A.

    1990-06-01

    A laser Raman microprobe was used in situ to observe the growth of alpha dextrose monohydrate on alpha anhydrous dextrose crystals. The Raman spectra indicate growth of the monohydrate below 28.1°C, but the presence of only the anhydrous form above 40.5°C. Contact nucleation experiments with parent anhydrous crystals yielded only monohydrate nuclei below 28.1°C, while contacts in solutions between 34.5 and 41.0°C produced both crystalline forms, and contacts in solutions above 43.5°C produced only anhydrous nuclei. The inability of the monohydrate to grow on anhydrous crystals in the same solution that forms the two crystalline phases with a single contact precludes a simple attrition mechanism of nuclei formation. For the same reason, the hypothetical mechanism involving parent crystal stabilization of pre-crystalline clusters, allowing the clusters to grow into nuclei, is also contradicted. A third, mechanism, which may be a combination of the two, is believed to apply.

  11. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  12. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Aqueous solution blanket using lithium salts such as LiNO3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  13. Phytoremediation of Heavy Metals in Aqueous Solutions

    OpenAIRE

    Felix Aibuedefe AISIEN; Oluwole FALEYE; Eki Tina AISIEN

    2010-01-01

    One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd), lead (Pb) and zinc (Zn). Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especia...

  14. Chemical denitration of aqueous nitrate solutions

    International Nuclear Information System (INIS)

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO3 and involves the formate radical (HCOO.). The second mechanism holds at 3 and involves the hyponitrous radical (HNO.). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  15. Photocatalytic degradation of molinate in aqueous solutions.

    Science.gov (United States)

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes. PMID:24928378

  16. Measurement and Analysis of Gas Bubbles Near a Reference Electrode in Aqueous Solutions

    International Nuclear Information System (INIS)

    Bubble size distributions (BSDs) near a reference electrode (RE) in aqueous glycerol solutions of an electrolyte NaCl have been investigated under various gas superficial velocities (US). BSD and voltage reading of the solution were measured by using a high-speed digital camera and a pH/voltage meter, respectively. The results show that bubble size (b) increases with liquid viscosity (μc) and US. Self-similarity is seen and can be described by the log-normal form of the continuous number frequency distribution. The result shows that b controls the voltage reading in each solution. As b increases, the voltage increases because of gas bubbles interrupting their electrolyte paths in the solutions. An analysis of bubble rising velocity reveals that Stokes Law should be used cautiously to describe the system. The fundamental equation for bubble formation was developed via Newton's second law of motion and shown to be the function of three dimensionless groups--Weber number, Bond number, and Capillary number. After linking an electrochemical principle in the practical application, the result indicates that the critical bubble size is ∼177 (micro)m. Further analysis suggests that there may be 3000 to 70,000 bubbles generated on the anode surface depending on the size of initial bubbles and provides the potential cause of the efficiency drop observed in the practical application

  17. γ-radiation induced tetracycline removal in an aqueous solution

    International Nuclear Information System (INIS)

    Degradation effect of tetracycline (TC) by γ-radiation was investigated in an aqueous solution. The effects of initial concentrations of TC, pH values, combining with H2O2 or CH3OH on degradation of TC were studied. Results showed that TC can be effectively degradated by γ-irradiation in an aqueous solution. Degradation of TC could be remarkably improved both in acid solution and alkaline solution, especially when pH value was 9.0. In addition, H2O2 could gently promote degradation of TC induced by γ-radiation. While, CH3OH markedly restrained degradation of TC induced by γ-radiation. The degradation mechanism of TC was supposed by results of quantum chemical calculations and LC-MS. Results proved that degradation of TC induced by γ-radiation was mainly ascribed to · OH oxidation. (authors)

  18. Dissociation of methane hydrate in aqueous NaCl solutions.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Andoh, Yoshimichi; Okazaki, Susumu; Tanaka, Hideki

    2014-10-01

    Molecular dynamics simulations of the dissociation of methane hydrate in aqueous NaCl solutions are performed. It is shown that the dissociation of the hydrate is accelerated by the formation of methane bubbles both in NaCl solutions and in pure water. We find two significant effects on the kinetics of the hydrate dissociation by NaCl. One is slowing down in an early stage before bubble formation, and another is swift bubble formation that enhances the dissociation. These effects arise from the low solubility of methane in NaCl solution, which gives rise to a nonuniform spatial distribution of solvated methane in the aqueous phase. We also demonstrate that bubbles form near the hydrate interface in dense NaCl solutions and that the hydrate dissociation proceeds inhomogeneously due to the bubbles. PMID:25237735

  19. Mercury removal from aqueous and organo-aqueous solutions by natural Mexican erionite

    International Nuclear Information System (INIS)

    The sorption of Hg(II) from aqueous and organo aqueous solutions was investigated by Mexican natural erionite. The mercury chemical species (anionic, cationic or neutral) were determined by high voltage electrophoresis, and the mercury chemical species present in the aqueous media were simulated by a program MEDUSA. The mercury sorption process was monitored during 48 hours. The mercury content was determined by neutron activation analysis. Mixtures of benzene/water[Hg(II)], toluene/water[Hg(II)] and ethanol/water[Hg(II)] were chosen as organo-aqueous media. It was found that both the mercury chemical species and the dielectric constant of solvents play an important role in the mercury sorption by erionite. (author)

  20. Radiolysis of paracetamol in dilute aqueous solution

    Science.gov (United States)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  1. Development of three-dimensional site-site Smoluchowski-Vlasov equation and application to electrolyte solutions

    International Nuclear Information System (INIS)

    Site-site Smoluchowski-Vlasov (SSSV) equation enables us to directly calculate van Hove time correlation function, which describes diffusion process in molecular liquids. Recently, the theory had been extended to treat solute-solvent system by Iida and Sato [J. Chem. Phys. 137, 034506 (2012)]. Because the original framework of SSSV equation is based on conventional pair correlation function, time evolution of system is expressed in terms of one-dimensional solvation structure. Here, we propose a new SSSV equation to calculate time evolution of solvation structure in three-dimensional space. The proposed theory was applied to analyze diffusion processes in 1M NaCl aqueous solution and in lithium ion battery electrolyte solution. The results demonstrate that these processes are properly described with the theory, and the computed van Hove functions are in good agreement with those in previous works

  2. Photocatalytical oxidation of de-icing agents in aqueous solutions and aqueous extract of jet fuel.

    Science.gov (United States)

    Krichevskaya, M; Malygina, T; Preis, S; Kallas, J

    2001-01-01

    Improper handling of jet fuel at abandoned military bases has resulted in heavy pollution of the soil and groundwater. Experimental research of photocatalytical oxidation (PCO) of jet fuel aqueous extract and aqueous solutions of de-icing agents was undertaken. The influence of different parameters - pH, concentration of substances to be oxidised, presence of inorganic admixtures, effect of OH. radical generators--on the PCO of solutions of de-icing agents and jet fuel aqueous extract was determined. The role of OH. radicals was found to be less important in determining the PCO rate. The PCO of organic pollutants was also investigated using a catalyst immobilised onto the surface of buoyant hollow glass microspheres. Attached titanium dioxide (TiO2) showed lower photocatalytical activity than when suspended in slurry, although it allows waters to be treated in simple shallow ponds without intensive stirring. The biodegradability of aqueous solutions of de-icing agents and jet fuel aqueous extract increased as PCO proceeded. PMID:11695445

  3. The coacervation of aqueous solutions of tetraalkylammonium halides

    International Nuclear Information System (INIS)

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction

  4. Ion equilibrium in aqueous solutions of pectin materials

    International Nuclear Information System (INIS)

    By means of electro conductivity method the comparative study of ion equilibrium of pectin materials of apple, orange and sunflower in aqueous solution at various ph was conducted. According to experimental data on specific conductivity the value of equivalent conductivity, level, functions and dissociation constant were evaluated. (author)

  5. Why Urea Eliminates Ammonia Rather Than Hydrolyzes in Aqueous Solution

    OpenAIRE

    Alexandrova, Anastassia N.; Jorgensen, William L.

    2007-01-01

    A joint QM/MM and ab initio study on the decomposition of urea in the gas phase and in aqueous solution is reported. Numerous possible mechanisms of intramolecular decomposition and hydrolysis have been explored; intramolecular NH3-elimination assisted by a water molecule is found to have the lowest activation energy. The solvent effects were elucidated using the TIP4P explicit w...

  6. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  7. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies of...

  8. NMR study of thermosensitive homopolymers and copolymers in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Šťastná, J.; Starovoytova, Larisa; Hanyková, L.

    Ireland : University College Dublin, 2012. s. 198. [EUROMAR 2012. Magnetic Resonance Conference. 01.07.2012-05.07.2012, Dublin] R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : thermosensitive polymer * aqueous solution * phase transition Subject RIV: CD - Macromolecular Chemistry

  9. Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Mason, Philip E.; Jungwirth, Pavel

    2014-01-01

    Roč. 118, č. 28 (2014), s. 7902-7909. ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Institutional support: RVO:61388963 Keywords : calcium chloride * aqueous solution * molecular dynamics * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.302, year: 2014

  10. Neodymium(3) complexing with bischloromethylphosphinic acid in aqueous solution

    International Nuclear Information System (INIS)

    High resolution spectrography is used to study Nd3+ complexing with (ClCH2)2POOH(HL) in aqueous solution. NdL2+ complex (lg Kstab = 0.44±0.04) with the corresponding absorption band with a maximum at λ=4283 A is formed in a system

  11. Densities concentrations of aqueous of uranyl nitrate solutions

    International Nuclear Information System (INIS)

    The ratio density-concentration of aqueous uranyl nitrate solutions expressed as U3O8 grams/liter, U grams/liter and hexahydrate uranyl nitrate weight percent at different temperatures, are established. Experimental values are graphically correlated and compared whit some published data. (Author) 2 refs

  12. [Pulsed radiolysis of aqueous solutions of serum albumin containing naphthoquinones].

    Science.gov (United States)

    Pribush, A G; Savich, A V

    1987-01-01

    As was shown by the pulse radiolysis method the simultaneous presence of naphthoquinone and human serum albumin molecules in an aqueous solution leads to the adsorption of the former on the surface of the latter. It is suggested that in these conditions the protein tertiary structure changes. New conformation reduces the reactivity of albumin toward the hydrated electron. PMID:3628723

  13. Gamma radiolysis of aqueous solutions of glycerin α-monochlorohydrin

    International Nuclear Information System (INIS)

    Data on γ-radiolysis of 0.1 mol/l aqueous solutions of glycerin α-monochlorohydrin (GMC) are presented. The radiolysis mechanism is considered. The rate constant of GMC reaction with esub(aq) k=(6.8+-0.8)x108 l/molxs is determined on the basis of experimental data

  14. Solubility of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    In the present work, new experimental data are presented on the solubility of carbon dioxide in aqueous piperazine solutions, for concentrations of 0.2 and 0.6 molar piperazine and temperatures of 25, 40, and 70°C respectively. The present data, and other data available in the literature, were corr

  15. Demonstration of reverse symmetry waveguide sensing in aqueous solutions

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Larsen, N.B.

    2002-01-01

    A reverse symmetry waveguide is presented for evanescent wave sensing in aqueous solutions. The waveguide consists of a thin polystyrene film, supported by a thicker substrate layer of nanoporous silica on glass. The nanoporous substrate layer has a refractive index of n(S)=1.193, hence, with an ...

  16. EXAFS studies of actinide ions in aqueous solution

    International Nuclear Information System (INIS)

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO2F2 and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed

  17. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  18. Adsorption of lead ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto; Krstev, Aleksandar

    2014-01-01

    The adsorption of lead ions from synthetic aqueous solutions was performed by using natural zeolite (clinoptilolite). In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial concentration of lead ions, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90...

  19. Adsorption of copper ions from aqueous solutions on natural zeolite

    OpenAIRE

    Zendelska, Afrodita; Golomeova, Mirjana; Blažev, Krsto; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2015-01-01

    The adsorption of copper ions from synthetic aqueous solutions on natural zeolite (clinoptilolite) was examined. In order to determine the rate of adsorption and the copper uptake at equilibrium, a series of experiments were performed under batch conditions from single ion solutions. Equilibrium data were evaluated based on adsorption (Langmuir and Freundlich) isotherms. The adsorption kinetics is reasonably fast. In the first 20 min of the experiment, approximately 80% of Cu2+ io...

  20. A study of aqueous solutions of sodium linoleate

    International Nuclear Information System (INIS)

    During the development of a technique for measuring fatty acid absorption on finely divided minerals using a radiochemical method, absorption isotherms were obtained which displayed maxima. It was found that these results were due to the presence of stable micelles in the solutions. This has been established by measuring the surface tension, surface film pressure, and specific conductance of dilute aqueous solutions of sodium linoleate

  1. Removal of azo dye from aqueous solutions using chitosan

    OpenAIRE

    Zuhair Jabbar; G. Hadi Ferdoos Sami; A , Angham

    2014-01-01

    Adsorption of Congo Red (CR) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Results indicated that chitosan could be used as a biosorbent to remove the azo dyes from contaminated water. Synthesize of chitosan involved three main stages as preconditioning, demineralization, deproteinization and deacetylation. Chitosan was characterized using Fourier Transform Infrared Spectroscopy (FTI...

  2. Tracer-diffusion of sulphate ions in NaNO3 and KNO3 aqueous solutions of radio-tracer techniques (Preprint No. CT-55)

    International Nuclear Information System (INIS)

    The tracer-diffusion coefficients of sulphate ions in NaNO3 and KNO3 aqueous solutions were determined in different gel concentrations at various temperatures by radio-tracer technique. The diffusion coefficients are f ound to increase with temperature and decrease with increase in the concentration of the supporting electrolyte as well as gel concentration. (author). 9 refs

  3. THE AQUEOUS AND NON-AQUEOUS ELECTROCHEMISTRY OF POLYACETYLENE : APPLICATION IN HIGH POWER DENSITY RECHARGEABLE BATTERIES

    OpenAIRE

    MacDiarmid, A.; Kaner, R.; Mammone, R.; Heeger, A.

    1983-01-01

    Polyacetylene can be doped either chemically or electrochemically in aqueous solution to the metallic regime. The characteristics of selected rechargeable batteries employing (CH)x, electrodes in non-aqueous electrolytes are described.

  4. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH3CO2NH4) and sodium acetate (CH3CO2Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  5. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  6. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  7. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  8. Thermal and oxidation stability of organo-fluorine compound-mixed electrolyte solutions for lithium ion batteries

    Science.gov (United States)

    Nishikawa, Daiki; Nakajima, Tsuyoshi; Ohzawa, Yoshimi; Koh, Meiten; Yamauchi, Akiyoshi; Kagawa, Michiru; Aoyama, Hirokazu

    2013-12-01

    Thermal and oxidation stability of fluorine compound-mixed electrolyte solutions have been investigated. Charge/discharge behavior of natural graphite electrode has been also examined in the same electrolyte solutions. Fluorine compounds demonstrate much lower reactivity with metallic Li than ethylene carbonate/dimethyl carbonate. Fluorine compound-mixed electrolyte solutions show the lower reactivity with LiC6 and the smaller exothermic peaks due to decomposition of electrolyte solutions and surface films than original solutions without fluorine compound. Oxidation currents are also smaller in fluorine compound-mixed electrolyte solutions than in original ones. First coulombic efficiencies in fluorine compound-mixed electrolyte solutions are similar to those in original ethylene carbonate-based solutions except one case. Mixing of fluorine compounds highly increase first coulombic efficiencies of natural graphite electrode in propylene carbonate-containing solution.

  9. Tritium and excess heat generation during electrolysis of aqueous solutions of alkali salts with nickel cathode

    International Nuclear Information System (INIS)

    A number of open cell electrolysis experiments of the Mills and Kneizys type using Nickel as cathode, Pt wire as anode and aqueous solutions of carbonates of Potassium, Sodium and Lithium (natural and enriched) as electrolyte have been carried out in three different laboratories at Trombay. The cells were fabricated out of commercial dewar vacuum flasks. The difference in temperature at equilibrium between the operating cells and that of an identical dummy reference flask was measured to deduce excess heat. The cells were calibrated using resistance heaters. In all, studies have been carried out so far in 29 electrolytic cells with various electrolytes. In some cases a mixture of H2O and D2O was used. The cells were operated for a few weeks at a time and excess heat up to a maximum of 70% appears to be present in most cells when the input joule power is upto a watt or two. The current density was less than 40 mA/cm2. Electrolyte samples before and after electrolysis were analysed for tritium content after microdistillation to eliminate chemiluminescence effects. Samples from 18 out of 29 experiments analysed have indicated tritium levels varying in the region of 46 Bq/ml to 3390 Bq/ml. One cell with enriched Li2CO3 solution in H2O which was monitored continuously for over a month indicated that tritium generation is continuous. Although the highest amount of tritium produced so far was with a K2CO3 in 25% D2O cell, the generation of tritium in cells containing only H2O is a new finding. (author)

  10. Assembly of DNA Architectures in a Non-Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thomas J. Proctor

    2012-08-01

    Full Text Available In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD spectroscopy and on the surface (using atomic force microscopy (AFM. Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  11. Electronic properties of H-terminated diamond in electrolyte solutions

    Czech Academy of Sciences Publication Activity Database

    Nebel, C.E.; Rezek, Bohuslav; Shin, D.; Watanabe, H.; Yamamoto, T.

    2006-01-01

    Roč. 99, č. 3 (2006), 033711/1-033711/4. ISSN 0021-8979 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface conductivity * electrochemical analytical methods * electrical properties of semiconductor–electrolyte contacts Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  12. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions. PMID:23177250

  13. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

    Science.gov (United States)

    Gao, Xiangwen; Chen, Yuhui; Johnson, Lee; Bruce, Peter G.

    2016-08-01

    On discharge, the Li-O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal-2 for cathodes with capacities of >4 mAh cmareal-2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

  14. Removal of iodide from aqueous solutions by polyethylenimine-epichlorohydrin resins

    International Nuclear Information System (INIS)

    The iodide removal from aqueous solutions (initial I--concentration: 300-5,000 mg/L) by a low and a high molecular weight polyethylenimine-epichlorohydrin resin was investigated both in absence and presence of background electrolytes (NaCl and Na2SO4, ionic strength due to background electrolyte 0.1 M) using a batch technique, 131I as radioactive tracer and high-resolution γ-ray spectrometry. The experiments in absence of background electrolyte were performed using solutions of initial pH 3 and 7, whereas those in presence using solutions of initial pH 3. The results, which demonstrated the high iodide-removal efficiency of both resins, were modeled using the Langmuir and Freundlich isotherm equations. The experimental data were better reproduced using the Langmuir equation. Using this equation maximum sorption capacity values (Qmax) of 638.8 and 603.3 mg/g were obtained for the high molecular weight resin from solutions of initial pH 3 and 7 respectively, whereas the corresponding values for the low molecular weight one were slightly lower (552.4 and 507.5 mg/g respectively). The iodide uptake by the resins strongly depended on the presence of competing anions and especially of sulfates. The examination of sections of the I-loaded resins grains by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) revealed that iodine was evenly distributed throughout the bulk of the resins and not only bound to their surface. (author)

  15. Adsorption of EDTA on activated carbon from aqueous solutions

    International Nuclear Information System (INIS)

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R2 = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (Ea, ΔG0, ΔH0, ΔS0) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  16. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  17. Comparison of interionic/intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solutions

    Science.gov (United States)

    Fujisawa, Tomotsumi; Nishikawa, Keiko; Shirota, Hideaki

    2009-12-01

    In this study, we have compared the interionic/intermolecular vibrational dynamics of ionic liquids (ILs) and concentrated electrolyte solutions measured by femtosecond optically heterodyne-detected Raman-induced Kerr effect spectroscopy. A typical anion in ILs, bis(trifluoromethanesulfonyl)amide ([NTf2]-), has been chosen as the anion for the sample ILs and concentrated electrolyte solutions. ILs used in this study are 1-butyl-3-methylimidazolium, 1-butylpyridinium, N-butyl-N,N,N-triethylammonium, and 1-butyl-1-methylpyrrolidinium with [NTf2]-. Li[NTf2] solutions (˜3.3M) of water, methanol, propylene carbonate, and poly(ethylene glycol) have been selected as control samples. Kerr transients of the ILs and electrolyte solutions show intra- and interionic/intermolecular vibrational dynamics followed by slow picosecond overdamped relaxation. Fourier transform Kerr spectra have shown a difference in the relative intensities of intraionic vibrational bands of [NTf2]- (280-350 cm-1) between the ILs and electrolyte solutions. The origin of the difference is attributed to the change in the conformational equilibrium between cisoid and transoid forms of [NTf2]-, which is caused by a favorable stabilization of dipolar cisoid form due to Li+ and dipolar solvent molecules in the electrolyte solutions. Low-frequency Kerr spectra (0-200 cm-1) exhibit unique features with the variation of cation and solvent species. The aromatic ILs have a prominent high-frequency librational motion at about 100 cm-1 in contrast to the case for the nonaromatic ones. The common structure of the spectra observed at about 20 cm-1 likely comes from an interionic motion of [NTf2]-. The nonaromatic ILs allow a fair comparison with the electrolyte solutions of propylene carbonate and poly(ethylene glycol) because of the structural similarities. The comparison based on the first moment of the interionic/intermolecular vibrational spectrum suggests the stronger interionic/intermolecular interaction in

  18. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  19. ESR spectra of VOBr2 in alcohols and aqueous solutions

    International Nuclear Information System (INIS)

    ESR spectra of VOBr2 solutions in absolutized alcohols ROH (R - Me, Et, i-Pr) and aqueous solutions in the presence of LiBr and HBr are investigated and parameters of spin-hamiltonian of vanadium oxocomplexes are determined. Stabilization of [VOBr(ROH)4]+ complex, in which bromide-ion occupies position in xy plane, is detected. Isotropic additional HFS from 79,81Br atoms at the temperature close to the solution boiling point is found, and at 77 K -anisotropic additional HFS in the range of transitions corresponding to perpendicular orientation of particles as to magnetic field

  20. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF4-, (CF3SO2)2N- (TFSA-) and ClO4-. The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF6- with the contaminate water will act as an F- source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF6 salt or adding HF in the electrolyte

  1. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Science.gov (United States)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  2. Effect of electrolytes on wettability of glass surface using anionic and cationic surfactant solutions.

    Science.gov (United States)

    Chaudhuri, Rajib Ghosh; Paria, Santanu

    2014-01-01

    Wetting behavior of a flat glass surface using pure nonionic, anionic, and cationic surfactants solutions has been studied by the dynamic contact angle (Wilhelmy plate) measurement technique. The advancing contact angle increases with the increasing concentration of surfactant and the value is maximum in the presence of cationic surfactant CTAB. The effect of different electrolytes in the presence of ionic surfactants was also studied to see the wetting behavior in the presence of electrolytes. The presence of electrolytes on ionic surfactant solutions significantly enhance the contact angle at very low concentration, which in turn lead to reduction in ionic surfactant requirement by more than 90% to achieve a particular contact angle. The effectiveness of electrolyte highly depends on the valance of counter ion. The reduction of ionic surfactant requirement is mostly useful for different applications such as flotation, and colloidal stability to reduce the production cost as well as environmental pollution. PMID:24183426

  3. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    OpenAIRE

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-01-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of ...

  4. A Novel Application of Lithium Heteropoly Blue as Non-aqueous Electrolyte in Polyacenic Semiconductor-Li Secondary Batteries

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lithium heteropoly blue(Li5PWⅥ10WⅤ2O40) was used as a non-aqueous electrolyte in the polyacenic semiconductor (PAS)-Li secondary battery instead of LiClO4. The properties of the PAS-Li secondary battery, especially the effect of Li5PWⅥ10WⅤ2O40 on the capacity, the cycle property and the self-discharging of the battery have been investigated. The results indicate that not only Li5PWⅥ10WⅤ2O40 can overcome the disadvantages of LiClO4, which is apt to explode when heated or rammed, but also the PAS-Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self-discharging than that assembled with LiClO4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.

  5. Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid

    International Nuclear Information System (INIS)

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of α-aminobutyric acid were studied. • Density, electrolytic conductivity, refractive index, and viscosity of the solution were measured. • The concentrations of amino acid salt ranges from x1 = 0.009 to 0.06. • The temperature range studied was (303.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: In this study, density, electrical conductivity, refractive index and viscosity of aqueous potassium and sodium salt solutions of α-aminobutyric acid were presented. Measurements were done over the temperature range (303.15 to 343.15) K and atmospheric pressure for salt compositions from x1 = 0.009 to 0.062. A modified Graber et al. equation was used to correlate the density, electrical conductivity, and refractive index with temperature and composition leading to average absolute deviations (AAD) between the predicted and calculated values of 0.04%, 0.7%, and 0.01%, respectively. The viscosity data were represented as a function of temperature and composition via Vogel–Tamman–Fulcher (VTF) type equation at an AAD of 0.6%

  6. Purification and concentration of DNA from aqueous solutions.

    Science.gov (United States)

    Moore, David; Dowhan, Dennis

    2007-09-01

    This unit presents basic procedures for manipulating solutions of single- or double-stranded DNA through purification and concentration steps. These techniques are useful when proteins or solute molecules need to be removed from aqueous solutions, or when DNA solutions need to be concentrated. The Basic Protocol, using phenol extraction and ethanol (or isopropanol) precipitation, is appropriate for purification of DNA from small volumes (DNA using butanol, and extract residual organic solvents with ether, respectively. An alternative to these methods is nucleic acid purification using glass beads, and this technique is also presented. These protocols may also be used for purifying RNA. The final two alternate protocols are used for concentrating RNA and extracting and precipitating DNA from larger volumes and from dilute solutions, and for removing low-molecular-weight oligonucleotides and triphosphates. PMID:21948158

  7. Radiation induced intra-track reactions in aqueous solutions

    International Nuclear Information System (INIS)

    Radiation chemistry of aqueous solutions is inevitably important not only in physics and chemistry but also in biology and medicine. More than five decades much effort has been paid to clarify the elementary processes induced by irradiation. Then, pulse radiolysis study in the time scale of picosecond is now available. In addition, radiation chemistry studies with high LET radiation have been actively investigated. Furthermore, radiolysis study of aqueous solution at high temperatures and even in supercritical water is under progress. In the present lecture, experimental results on the radiolysis of water in ps time scale and LET effect obtained at Nuclear Engineering Research Laboratory (NERL), the University of Tokyo, will be presented relevant to the theoretical calculation. (author)

  8. Vapor Pressure of Aqueous Solutions of Ethylene Glycol

    Science.gov (United States)

    Fujita, Toshihiko; Kikuchi, Sakae

    Vapor pressures of aqueous solutions of ethylene glycol are measured in the range of temperature from -10 to 60°C and concentration from 20 to 50wt%. In a low concentration range, the measured values of vapor pressure decrease according to the Raoult's law independent of temperature, while in a high concentration range, they show a trend to decrease towards the estimated values of freezing point with decreasing temperature. The following correlation equation is obtained for practical calculations on heating towers and the like. log(p/P0) = 5.351 - 6.4×10-4y + (1817 + 0.008y(y + 10))/(t + 240) where p, vapor perssure of aqueous solutions of ethylene glycol [kPa] ; P0, atmospheric pressure [=101.325kPa] ; y, concentration [wt%] ; t, temperature [°C].

  9. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.

    Science.gov (United States)

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Bernal, M D; Ortega, S

    2014-01-01

    Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF. PMID:24701913

  10. Photodegradation of Norfloxacin in aqueous solution containing algae

    Institute of Scientific and Technical Information of China (English)

    Junwei Zhang; Dafang Fu; Jilong Wu

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W,λmax =365 nm) was investigated.Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algaewater systems.The photodegradation rate of Norfloxacin increased with increasing algae concentration,and was greatly influenced by the temperature and pH of solution.Meanwhile,the cooperation action of algae and Fe(Ⅲ),and the ultrasound were beneficial to photodegradation of Norfloxaciu.The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae.In addition,we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae.This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae,for providing a new method to deal with antibiotics pollution.

  11. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution, II

    Science.gov (United States)

    Saita, Takao; Matumura, On

    1983-08-01

    It has been found that Na-PAA molecules in dilute aqueous solution are degraded by shearing stress, oxidation and photolysis during usual viscosity measurements with a capillary viscometer. The results of previous viscosity measurements, mainly about the mechanochemical degradation in air and in air-free conditions, showed that the degradation rate increases with increasing shear stress, and with decreasing polymer concentration. In this work, the effects of the molecular weight and temperature on the degradation rate are measured using a capillary viscometer in air, and the photodegradation of Na-PAA and PAA in aqueous solution irradiated with UV light are studied by viscosity measurements in air, and by UV absorption and ESR methods. The results show that the degradation of molecules is enhanced by an increase in the molecular weight and strongly accelerated by a rise in temperature and by UV irradiation, and is accompanied by free-radical chain reactions.

  12. Ternary mutual diffusion in aqueous (ethambutol dihydrochloride + hydrochloric acid) solutions

    International Nuclear Information System (INIS)

    Highlights: • Ternary diffusion coefficients for aqueous system ethambutol dihydrochloride and hydrochloric acid. • Diffusion of ethambutol dihydrochloride driven by hydrochloric acid gradients. • Coupled diffusion as indicated by cross-diffusion coefficients. - Abstract: Ternary mutual diffusion coefficients measured by the Taylor dispersion method are reported for aqueous solutions of {ethambutol dihydrochloride (1) + HCl (2)} at 25 °C and various carrier solution compositions. Mutual diffusion coefficients estimated from limiting ionic conductivities using Nernst equations are used to discuss the composition dependence of the measured diffusion coefficients. 1H NMR studies, combined with DFT calculations, confirm a fully extended conformation for the diprotonated form of the drug present under these conditions, and are consistent with an electrostatic mechanism for the strongly coupled diffusion of diprotonated ethambutol and HCl

  13. Laser purification of ultradispersed diamond in aqueous solution

    International Nuclear Information System (INIS)

    The effect of pulsed radiation from a 2.92-μm, 130-ns Cr3+:Yb3+:Ho3+:YSGG holmium laser and a 510-nm, 20-ns copper vapour laser on an aqueous suspension of ultradispersed diamond is studied. X-ray photoelectron spectroscopy and electron energy loss spectroscopy revealed that exposure of the suspension to holmium laser radiation reduces the concentration of nondiamond carbon impurity in it. This is due to the dissolution of carbon impurity in supercritical aqueous solution, caused by radiation absorption. Dissolution of the nondiamond fraction may serve as an indicator of the solution being in the supercritical state as a result of laser irradiation of liquids. This process can be used for efficient purification of ultradispersed diamonds. (laser applications and other topics in quantum electronics)

  14. Zinc chloride aqueous solution as a solvent for starch.

    Science.gov (United States)

    Lin, Meiying; Shang, Xiaoqin; Liu, Peng; Xie, Fengwei; Chen, Xiaodong; Sun, Yongyi; Wan, Junyan

    2016-01-20

    It is important to obtain starch-based homogeneous systems for starch modification. Regarding this, an important key point is to find cheap, low-cost and low-toxicity solvents to allow complete dissolution of starch and its easy regeneration. This study reveals that a ZnCl2 aqueous solution is a good non-derivatizing solvent for starch at 50 °C, and can completely dissolve starch granules. The possible formation of a "zinc-starch complex" might account for the dissolution; and the degradation of starch, which was caused by the H(+) inZnCl2 aqueous solution, could not contribute to full dissolution. From polarized light microscopic observation combined with the solution turbidity results, it was found that the lowest ZnCl2 concentration for full dissolution was 29.6 wt.% at 50 °C, with the dissolving time being 4h. Using Fourier-transform infrared (FTIR), solid state (13)C nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), it was revealed that ZnCl2 solution had no chemical reaction with starch glucosides, but only weakened starch hydrogen bonding and converted the crystalline regions to amorphous regions. In addition, as shown by intrinsic viscosity and thermogravimetric analysis (TGA), ZnCl2 solution caused degradation of starch macromolecules, which was more serious with a higher concentration of ZnCl2 solution. PMID:26572355

  15. Radiolytic degradation of malathion and lindane in aqueous solutions

    International Nuclear Information System (INIS)

    Degradation of malathion and lindane pesticides present in an aqueous solution was investigated on a laboratory scale upon gamma-irradiation from a 60Co source. The effects of pesticide group, presence of various additives and absorbed dose on efficiency of pesticide degradation were investigated. Gamma-irradiation was carried out in distilled water solutions (malathion and lindane) and in combination with humic solution (HS), nitrous oxide (N2O) and HS/N2O (lindane) over the range 0.1-2 kGy (malathion) and 5-30 kGy (lindane). Malathion was easily degraded at low absorbed doses compared to lindane in distilled water solutions. Absorbed doses required to remove 50% and 90% of initial malathion and lindane concentrations in distilled water solutions were 0.53 and 1.77 kGy (malathion) and 17.97 and 28.79 kGy (lindane), respectively. The presence of HS, N2O and HS/N2O additives in aqueous solutions, significantly improved the effectiveness of radiolytic degradation of lindane. Chemical analysis of the pesticides and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated with mass spectrometry (GC-MS). Additionally, the final degradation products of irradiation as detected by ion chromatography (IC) were acetic acid and traces of some anions (phosphate and chloride).

  16. Correspondence between Experiment and Theory of Bulk Electrocrystallisation at Solid Electrodes in Aqueous Electrolyte

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2009-01-01

    A model of electrodeposition and electrodissolution at electrode surfaces in aqueous solution is presented. The description is based on the assumption that redox reaction of water is the more important process controlling the electrode kinetics. Chronoamperometric measurements and experiments of...... cyclic voltammetry indicate that the current fundamentally is proportional to inverse time. It was proposed that redox-active species different from water never touch the surface but they predominantly interact with surface-active hydrogen or oxygen formed at the surface by redox processes of water. An...

  17. Determination of concentration of saturated ferrocene in aqueous solution

    OpenAIRE

    Aoki, Koichi

    2013-01-01

    Chun Ouyang, Koichi Jeremiah Aoki, Jingyuan Chen, Toyohiko Nishiumi, Bo Wang Department of Applied Physics, University of Fukui, Bunkyo, Fukui, Japan Abstract: The solubility of ferrocene in aqueous solution is known to be approximately 0.04 mmol/dm3. The solubility values determined by voltammetry have been overestimated because of adsorption on electrodes. This work deals with discerning diffusion from adsorption by altering not only the voltammetric time scale but also the solvents used. ...

  18. Liquid crystalline phases in concentrated aqueous solutions of Na+ DNA.

    OpenAIRE

    Rill, R L

    1986-01-01

    Concentrated aqueous saline solutions of short (146-base-pair) DNA fragments suddenly become turbid and iridescent when the DNA concentration is slightly increased or the temperature is decreased. Microscopic examination through crossed polarizing filters shows that turbidity and iridescence is due to formation of a liquid crystalline DNA phase similar to cholesteric liquid crystals formed by other semirigid, but nonelectrolyte, chiral polymers. Several distinct textures of the liquid crystal...

  19. Ozone chemistry in aqueous solution : ozone decomposition and stabilisation

    OpenAIRE

    Eriksson, Margareta

    2005-01-01

    Ozone is used in many applications in the industry as an oxidising agent for example for bleaching and sterilisation. The decomposition of ozone in aqueous solutions is complex, and is affected by many properties such as, pH, temperature and substances present in the water. Additives can either accelerate the decomposition rate of ozone or have a stabilising effect of the ozone decay. By controlling the decomposition of ozone it is possible to increase the oxidative capacity of ozone. In this...

  20. Pulse radiolysis of aqueous lignin solutions with acryl monomers

    International Nuclear Information System (INIS)

    Radiation-induced polymerization in aqueous solutions of methylmethacrylate and methylacrylate with and without lignin added was studied by pulse radiolysis method. Optical spectra of intermediates taking part in the chain evolution were obtained. The rate constant of the chain polymerization termination diminished when lignin added from 1.2 x 109 up to 2 x 108 mol-1 s-1. A reaction scheme of radiation-induced polymerization was proposed which included the lignin entering in chain propagation reactions. (author)

  1. NMR studies of thermoresponsive polymers in aqueous solutions and hydrogels

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří

    Poznań : Department of Macromolecular Physics, Faculty of Physics and NanoBioMedical Centre, Adam Mickiewicz University in Poznań, The Centre for European Integration, 2014 - (Jurga, S.). s. 27 [Ampere NMR School. 22.06.2014-28.06.2014, Zakopane] R&D Projects: GA ČR(CZ) GA13-23392S Institutional support: RVO:61389013 Keywords : NMR * thermoresponsive polymer * aqueous solution Subject RIV: CD - Macromolecular Chemistry

  2. NMR investigations of thermoresponsive polymers in aqueous solutions

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří

    Poznaň : Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 2012. s. 26. [Ampere NMR School. 24.06.2012-30.06.2012, Poznaň] R&D Projects: GA ČR GA202/09/1281 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : thermoresponsive polymer * aqueous solution * NMR Subject RIV: CD - Macromolecular Chemistry

  3. Fluorescence of lanthanide(III) complexes in aqueous solutions

    International Nuclear Information System (INIS)

    The fluorescence of lanthanide ions and of their complexes with EDTA, NTA and AA in aqueous solutions was investigated. It has been shown that the fluorescence band intensities of Sm(III), Eu(III), Gd(III), Tb(III) and Dy(III) complexes depend on the pH and the complexing agent concentration. Fluorescence measurements were used to characterise the lanthanide complexes formed and an attempt was made to interpret the results theoretically. (Author)

  4. Degradation of α-naphthol by plasma in aqueous solution

    International Nuclear Information System (INIS)

    Degradation of α-naphthol induced by plasma in aqueous solution was investigated in different initial concentration with contact glow discharge electrolysis (CGDE). The results showed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphthol disappearance caused by plasma was proposed according to the detected intermediate products

  5. Photocatalytic oxidation of fuel oxygenated additives in aqueous solutions

    OpenAIRE

    Krichevskaya, M.; Kachina, A.; T. Malygina; Preis, S.; J. Kallas

    2003-01-01

    Experimental research of photocatalytical oxidation (PCO) of aqueous solutions of de-icing agents (ethylene glycol and ethylene glycol monoethyl ether) and methyl tert-butyl ether (MTBE) was undertaken. These chemicals are water-soluble components of jet and motor fuels accidentally disposed to the environment. Titanium dioxide (Degussa P25) under near-UV irradiation was selected as a photocatalyst. A slightly acidic medium was preferable for the process efficiency for MTBE, whereas a neutral...

  6. Pulse Radiolysis of Methyl Viologen in Aqueous Solutions

    DEFF Research Database (Denmark)

    Solar, S.; Solar, W.; Getoff, N.; Holcman, Jerzy; Sehested, Knud

    Pulse radiolysis of air-free aqueous methyl viologen (MV2+) solutions was carried out at various pH. The attack of e–aq on MV2+, with k(e–aq+ MV2+)= 7.5 × 1010 dm3 mol–1 s–1, leads to the formation of the long-lived radical cation (MV˙+), which possesses two absorption maxima at 392.5 nm (ε392...

  7. Adsorption of Cr (III) from aqueous solution by groundnut shell

    OpenAIRE

    Tasrina Rabia Choudhury; Mustafa, A. I.

    2012-01-01

    Adsorption and de-sorption of chromium (III) ions on groundnut shell from aqueous solutions have been studied using batch adsorption techniques with respect to the influence of contact time, pH, adsorbent dose, initial chromium concentration and particle size. Appropriate adsorption isotherm and kinetic parameters of chromium (III) adsorption on groundnut shell have also been determined. The results of this study showed that adsorption of chromium (III) by groundnut shell reached to equilibr...

  8. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  9. Solubility of chlorine in aqueous hydrochloric acid solutions.

    Science.gov (United States)

    Alkan, Mahir; Oktay, Münir; Kocakerim, M Muhtar; Copur, Mehmet

    2005-03-17

    The solubility of chlorine in aqueous hydrochloric acid solutions was studied. The effects of HCl concentration and temperature on the solubility were evaluated, and the thermodynamic parameters of the dissolution were calculated. It was found that the solubility isotherms had a minimum at about 0.5M HCl concentration at all the temperatures studied and that solubility decreased with the increase of temperature at all the HCl concentration range investigated. PMID:15752843

  10. Salt-effects in aqueous surface-active ionic liquid 1-dodecyl-3-methylimidazolium bromide solutions: Volumetric and compressibility property changes and critical aggregation concentration shifts

    International Nuclear Information System (INIS)

    Graphical abstract: Plot of ϕV against mIL, for solutions of [C12mim]Br in water (solid lines) and in aqueous solutions of 0.035 mol · kg−1 NaCl (dotted lines) at: ○ and ●, T = 288.15 K; △ and ▴,T = 293.15 K; □ and ■, T = 298.15 K. - Highlights: • Salt effect on the aggregation of [C12mim]Br in aqueous solutions were studied. • The effect of 6 chloride electrolytes and 5 sodium electrolytes were investigated. • Investigated electrolytes have salting-out effect on the aggregation of [C12mim]Br. • Changes in the volumes and compressibilities upon micellization were derived. - Abstract: Systematic studies on the volumetric and compressibility properties of aqueous solutions of model surface-active ionic liquid 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) are performed in the absence and presence of a large series of electrolytes in order to achieve a deeper understanding about the molecular mechanism behind the specific salt effect on the aggregation behavior of [C12mim]Br in aqueous solution. For this purpose, 6 chloride electrolytes (NaCl, KCl, NH4Cl, (CH3)4NCl, MgCl2 and FeCl3) and 5 sodium electrolytes (NaCl, NaNO3, Na2CO3, Na2SO4, and Na3Cit.) were used in order to individualize the effect of the anion and the cation. The values of the critical aggregation concentration (CAC) were obtained and it was found that all the investigated electrolytes have salting-out effect on the aggregation of [C12mim]Br in aqueous solutions, leading to significant downward shifts of the CAC. The magnitude of the shifts depends on the water-structuring nature of the electrolyte and follows the Hofmeister series. Changes in the apparent molar volumes and isentropic compressibilities upon micellization were derived using a pseudophase-transition approach and the infinite dilution apparent molar properties of the monomer and micellar form of [C12mim]Br were determined

  11. Dermal absorption of a dilute aqueous solution of malathion

    Directory of Open Access Journals (Sweden)

    Scharf John

    2008-01-01

    Full Text Available Malathion is an organophosphate pesticide commonly used on field crops, fruit trees, livestock, agriculture, and for mosquito and medfly control. Aerial applications can result in solubilized malathion in swimming pools and other recreational waters that may come into contact with human skin. To evaluate the human skin absorption of malathion for the assessment of risk associated with human exposures to aqueous solutions, human volunteers were selected and exposed to aqueous solutions of malathion. Participants submerged their arms and hands in twenty liters of dilute malathion solution in either a stagnant or stirred state. The "disappearance method" was applied by measuring malathion concentrations in the water before and after human exposure for various periods of time. No measurable skin absorption was detected in 42% of the participants; the remaining 58% of participants measured minimal absorbed doses of malathion. Analyzing these results through the Hazard Index model for recreational swimmer and bather exposure levels typically measured in contaminated swimming pools and surface waters after bait application indicated that these exposures are an order of magnitude less than a minimal dose known to result in a measurable change in acetylcholinesterase activity. It is concluded that exposure to aqueous malathion in recreational waters following aerial bait applications is not appreciably absorbed, does not result in an effective dose, and therefore is not a public health hazard.

  12. Dissolution of gaseous methyl iodide into aqueous sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Absorption process of gaseous methyl iodide by water or sodium hydroxide solutions was investigated using a semi-flow type experimental apparatus by measuring the concentration of all measurable chemical species in both the gas and the liquid phase. The experimental temperature ranged from 288 to 311 K and the gaseous methyl iodide and aqueous sodium hydroxide concentrations were approximately 0.6 x 10-3 to 7 x 10-3 and 0 to 0.2 mol/dm3, respectively. It is estimated that the dissolution of methyl iodide into the sodium hydroxide solution proceeds according to the following steps. Step (1) Methyl iodide in air dissolves physically into the aqueous phase. Physical dissolution process obeys Henry's law. Step (2) Methyl iodide dissolved into the aqueous phase is decomposed by a base catalytic hydrolysis and produces methyl alcohol and iodide ion. The equilibrium constants of physical dissolution were obtained from the steady concentration in both the gas and the liquid phases in the semi-flow type experiment because the hydrolysis reaction rate of methyl iodide is very slow in comparison with the physical dissolution in this experimental conditions. The obtained value of the standard heat of solution of methyl iodide into water was 7.2 kcal/mol. Salting-out effect was observed when the concentration of sodium hydroxide in the absorbent was over 0.01 mol/dm3. (auth.)

  13. Catalytic oxidation of calcium sulfite in solution/aqueous slurry

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao; WANG Da-hui

    2004-01-01

    Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10-4 mol/L, and oxygen is of 0.2-0.4 atm.

  14. Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes

    OpenAIRE

    Wenhua Zuo; Pan Xu; Yuanyuan Li; Jinping Liu

    2015-01-01

    As promising candidates for next-generation energy storage devices, aqueous rechargeable batteries are safer and cheaper than organic Li ion batteries. But due to the narrow voltage window of aqueous electrolytes, proper anode materials with low redox potential and high capacity are quite rare. In this work, bismuth electrode film was directly grown by a facile hydrothermal route and tested in LiOH, NaOH and KOH electrolytes. With low redox potential (reduction/oxidation potentials at ca. −0....

  15. Radiolysis of berberine or palmatine in aqueous solution

    Science.gov (United States)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  16. Recovery of Ionic Liquids from aqueous solution by Nanofiltration

    OpenAIRE

    Fernández Dámaso, José Francisco

    2011-01-01

    The T-SAR methodology was combined with membrane characterization methods. An application of the combined approach was demonstrated with two commercial nanofiltration membranes and it was possible to successfully predict their performance for the recovery of ionic liquids from aqueous solution. Using model solutions of Pyr16 (CF3SO2)2N, it could be evidenced the formation of a new phase of ionic liquid during the concentration process. In this case, 66% of the ionic liquid was separated and t...

  17. Observations on the Solubility of Skeletal Carbonates in Aqueous Solutions.

    Science.gov (United States)

    Chave, K E; Deffeyes, K S; Weyl, P K; Garrels, R M; Thompson, M E

    1962-07-01

    Carbonate skeletal materials of marine organisms exhibit a wide range of solubilities in aqueous solutions. In most cases, the dissolution of the carbonate mineral is irreversible and therefore the material can have no true equilibrium solubility. Relative solubilities have been measured in distilled water and in sea water. The least soluble mineral appears to be calcite with low magnesium content; the most soluble is calcite containing 20 to 30 percent MgCO(3) in solid solution. Aragonite has an intermediate solubility. PMID:17774123

  18. Characterization of aqueous silver nitrate solutions for leakage tests

    OpenAIRE

    José Ferreira Costa; Walter Luiz Siqueira; Alessandro Dourado Loguercio; Alessandra Reis; Elizabeth de Oliveira; Cláudia Maria Coelho Alves; José Roberto de Oliveira Bauer; Rosa Helena Miranda Grande

    2011-01-01

    OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silv...

  19. Kinetic studies of cadmium sulfide precipitation from aqueous thiourea solutions

    International Nuclear Information System (INIS)

    Kinetics of cadmium sulfide precipitation by thiourea from aqueous solutions containing ammonia complexes of cadmium(II) under conditions of spontaneous initiation of solid phase within solution volume at temperatures of 298-318 K was studied. It was ascertained that the process activation energy is 77843 J/mol, while the reaction order by initial cadmium complex equals unity. Kinetic equation, which permits control over cadmium sulfide precipitation and preparation of CdS films of desired morphology was derived on the basis of the experimental data

  20. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  1. Genotoxicity study of photolytically treated 2-chloropyridine aqueous solutions

    International Nuclear Information System (INIS)

    2-Chloropyridine (2-CPY) has been identified as a trace organic chemical in process streams, wastewater and even drinking water. Furthermore, it appears to be formed as a secondary pollutant during the decomposition of specific insecticides. As reported in our previous work, 2-CPY was readily removed and slowly mineralised when subjected to ultraviolet (UV) irradiation at 254 nm. Moreover, 2-CPY was found to be genotoxic at 100 μg ml-1 but it was not genotoxic at or below 50 μg ml-1. In this work 2-CPY aqueous solutions were treated by means of UV irradiation at 254 nm. 2-CPY mineralisation history under different conditions is shown. 2-CPY was found to mineralise completely upon prolonged irradiation. Identified products of 2-CPY photolytic decomposition are presented. Solution genotoxicity was tested as a function of treatment time. Aqueous solution samples, taken at different photo-treatment times were tested in cultured human lymphocytes applying the cytokinesis block micronucleus (CBMN) assay. It was found that the solution was genotoxic even when 2-CPY had been practically removed. This shows that photo-treatment of 2-CPY produces genotoxic products. Upon prolonged irradiation solution genotoxicity values approached the control value.

  2. Plasma induced degradation of aniline in aqueous solution

    International Nuclear Information System (INIS)

    The degradation of aniline by plasma which was generated in a localized zone between an electrolytic solution and an anode was reported. The influence of the initial concentration, temperature, pH value and different mediums of aniline on the reaction kinetic was investigated. The results showed that temperature had a remarkable effect on the degradation of aniline, but the concentration had no appreciable effect on the degradation. There is a maximum elimination rate on the degradation of aniline in neutral condition. Iron (II) and other cations had a remarkable catalytic action on it. On the basis of the detailed analysis of the kinetic consideration, it was demonstrated that the oxidative degradation would be a first-order reaction. Some of the intermediate products of the degradation process in the solution were detected by HPLC

  3. Radiolysis of HA in aqueous solutions using gamma rays

    International Nuclear Information System (INIS)

    The present work investigated the radiolysis of HA (Humic acids) in aqueous solutions and under gamma radiation. Absorbances at the range of 200-800 nm and chemical oxygen demand (COD) were used to characterize the degree of degradation of HA, The results indicated that absorbances and the concentrations of COD were decreased with increasing of irradiation dose while with increasing of irradiation dose the pH of the solutions was decreased at first and then increase. In addition, the effects of initial pH and primary solution concentrations on HA degradation were also investigated. It is shown that the higher primary solution concentrations, the lower degradation efficiency under the same irradiation dose. And the degradation efficiency of HA under neutral conditions is better than in acidic or alkaline conditions. (authors)

  4. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  5. Depolarization of negative muons in water and aqueous solutions

    International Nuclear Information System (INIS)

    The dependence of negative muon depolarization on temperature and hydrogen peroxide concentration is measured in various aqueous solutions located in longitudinal or transverse magnetic fields. It is shown that the experimental data are mot inconsistent with the familiar concepts regarding the behaviour of free radicals in aqueous solutions. The residual polarization in pure water solution of hydrogen peroxide is found to 1.8 times higher than that in pure water. This is interpreted as being the result of chemical interaction between meso nitrogen and hydrogen peroxide molecules leading to the formation of diamagnetic compounds. It is shown that the degree of depolarization does not depend on the magnetic field strength. According to the depolarization model in which meso nitrogen chemical reactions are taken into account this signifies that the meso atom enters the chemical reactions during a time t≅10-11 sec. at T=300 K; the paramagnetic products of these primary reactions which contain meso nitrogen then participate in secondary reactions during a time t1≤10-7 sec. The rate constants of the reactions leading to the formation of diamagnetic products can be obtained by treating the concentration and temperature dependences of depolarization in an aqueous solution of hydrogen peroxide in accordance with the model assuming chemical reactions between the meso atom and H2O molecules. The order of magnitude of the constant k≅10-11 sec-1⋅sm3is the same as that of the constant for reactions between free H and OH radicals in water. The temperature dependences of depolarization in water and a water solution of hydrogen peroxide are same consistent with the concept that the meso nitrogen reactions are chemical reactions by diffusion. (author)

  6. Characterization of aqueous solution of congored for food irradiation dosimetry

    International Nuclear Information System (INIS)

    Aqueous solution of congored has been investigated spectrophotometrically for possible applications in food irradiation dosimetry. Absorption spectra of the solution showed two absorption bands with peaks at 346 and 498 nm. Radiation induced bleaching of the dye was measured at the wavelengths of maximum absorbance (346 and 498 nm) as well as at several other wavelengths (491, 540 and 570 nm). At 498 mn, the decrease in absorbance of the dosimeter was linear with respect to the absorbed dose from 50 to 600 Gy. At the other peak wavelength (346 mn), the response was linear up to 400 Gy, however, the upper limit was increased to 600 Gy when the response was measured at longer wavelengths (491, 540 or 570 mn). If the negative logarithm of the absorbance (-log A) at these wavelengths is plotted versus absorbed dose, a linear response was observed from 50 to 1200 Gy. Postirradiation stability of dosimetric solution was studied at room temperature and showed almost stable response up to 50 days when stored in dark. The response was found almost stable for 50 days when the solution after irradiation was exposed to white fluorescent light or to diffused sunlight inside the laboratory. The aqueous congored solution is unstable when exposed to direct sunlight, showing rapid decrease in absorbance for the first few hours followed by a slower decrease. The results suggest that the aqueous congored dosimeter with linear response up to 1200 Gy is suitable for a number of food irradiation applications, such as, sprout inhibition of potatoes, onion and garlic and for ripening delay and ripening stimulation of fruits and vegetables. (author)

  7. The Gibbs-free-energy landscape for the solute association in nanoconfined aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    赵亮; 王春雷; 方海平; 涂育松

    2015-01-01

    The theoretical model and the numerical analyses on the Gibbs-free-energy of the association states of am-phiphilic molecules in nanoconfined aqueous solutions are presented in detail. We exhibit the continuous change of the Gibbs-free-energy trend, which plays a critical role in the association states of the system transforming from the dispersion state, through the “reversible state”, and finally to the aggregation state in amphiphilic molecule solutions. Furthermore, for the“reversible state”, we present the difference in the free-energy bar-rier heights of the dispersion state and aggregation state, resulting from the competition between the entropy, which makes the solute molecules evenly disperse in the solution and the energy contribution driving the am-phiphilic molecules to aggregate into a larger cluster. These findings provide a comprehensive understanding of confinement effects on the solute association processes in aqueous solutions and may further improve the techniques of material fabrication.

  8. Isotope separation by electrolytic amalgamation of lithium: preliminary studies

    International Nuclear Information System (INIS)

    Preliminary experiments on electrolytic amalgamation of lithium aqueous solutions were performed in order to obtain data for the design of an electrolytic cell with a moving mercury cathode. Among the two electrolytes analyzed Li OH gave best yield than Li Cl. Current concentration, current density and lithium amalgam concentration were determined. (author)

  9. Uranium, thorium and rare earth extraction and separation process by processing their chloride aqueous solutions

    International Nuclear Information System (INIS)

    The different steps of the process are the following: uranium and iron extraction by a neutral organic phosphorus compound and thorium and rare earth recovery in an aqueous solution, iron recovery in acid aqueous phase, concentration of the thorium and rare earth aqueous solution followed by thorium extraction with a organic phosphorus compound and rare earth recovery in the aqueous phase, thorium recovery in acid aqueous phase

  10. RHEOLOGICAL BEHAVIOR OF ERWINIA GUM IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Li-na Zhang; Mei Zhang; Jing-hua Chen; Hideki Iijima; Hiromichi Tsuchiya

    1999-01-01

    Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose and glucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and a rotational viscometer. Its weight-average molecular weight Mw and intrinsic viscosity [η] in 0.2 mol/L NaCl aqueous solution were measured by light scattering method at 35℃ and viscometry at 25℃ and found to be 1.06 × 106 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gel permeation chromatography (GPC). These results indicated that E gum in water has exceedingly high viscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreased with increasing temperature, and the turning point appeared at 38℃ for dilute solution and 80℃ for concentrated solution suggesting that the aggregates of E gum in water started to disaggregate under these temperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimental results indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.

  11. Aqueous solution of basic fuchsin as food irradiation dosimeter

    International Nuclear Information System (INIS)

    Dosimetric characterization of aqueous solution of basic fuchsin has been studied spectrophotometrically for the possible application in the low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined and decrease in the absorption with the radiation dose was noted down. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorption λmax (540nm) as well as 510, 460 and 400 nm wavelengths. At all these wavelengths, the decrease in the absorbance of the dosimeter was linear with respect to the absorbed dose from 0.05 to 0.6 kGy. The stability of dosimetric solution during the post-irradiation storage in the dark at room temperature showed that after initial bleaching during first eight days, the response was almost stable for about 34 days. The effect of different light and temperature conditions also showed that the response gradually decreased during the storage period of 34 days, which shows that the basic fuchsin dye is photosensitive as well as thermally sensitive. The possibility of using aqueous solution of basic fuchsin as food irradiation dosimeter will be discussed. (authors)

  12. Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions

    OpenAIRE

    Dabeka, Robert; Fouquet, Andre; Belisle, Stephane; Turcotte, Stephane

    2011-01-01

    Lead (Pb), cadmium (Cd) and aluminum (Al) were determined in 437 individual samples of infant formulae, oral electrolytes and 5% glucose solutions available in Canada. In the electrolytes, Cd and Pb concentrations were all below 0.01 and 0.041 ng g−1, respectively. In the 5% glucose solutions, Pb and Cd levels averaged 0.01 and 0.09 ng g−1, respectively. Reported on an as-consumed basis, Pb levels in milk- and soya-based formulae averaged 0.90 and 1.45 ng g−1, respectively, while Cd levels av...

  13. Electrolyte and Haemogram changes post large volume liposuction comparing two different tumescent solutions

    OpenAIRE

    Kumar Vivek; Shah Amiti; Saha Shivshankar; Choudhary Lalit

    2014-01-01

    Background: The most common definitions of large volume liposuction refer to total 5 l volume aspiration during a single procedure (fat plus wetting solution). Profound haemodynamic and metabolic alterations can accompany large volume liposuction. Due to paucity of literature on the effect of different tumescent solutions on the electrolyte balance and haematological changes during large volume liposuction, we carried out this study using two different wetting solutions to study the same. Mat...

  14. Mutual diffusion of sodium hyaluranate in aqueous solutions

    International Nuclear Information System (INIS)

    Highlights: • Binary diffusion coefficients for the systems containing sodium hyaluronate. • Influence of the aggregation on diffusion of the sodium hyaluronate in the aqueous media. • Estimation of the thermodynamic and mobility factors from mutual diffusion. -- Abstract: The Taylor dispersion technique has been used for measuring mutual diffusion coefficients of sodium hyaluronate in aqueous solutions at T = 298.15 K, and concentrations ranging from (0.00 to 0.50) g · dm−3. The results are interpreted on the basis of Nernst, and Onsager and Fuoss theoretical equations. From the diffusion coefficient at infinitesimal concentration, the limiting ionic conductivity and the tracer diffusion coefficient of hyaluronate ion were estimated. These studies have been complemented by molecular mechanics calculations

  15. Physical chemistry of the interface between oxide and aqueous solution

    International Nuclear Information System (INIS)

    The behavior and properties of small oxide particles in aqueous suspension are dominated by the physico-chemistry of their surface. It is electrostatically charged and strongly solvated. The origin of the surface charge is discussed through the MUSIC model [Hiemstra 1996], allowing to estimate the acid-base behavior of surface oxygen atoms. The stability of aqueous dispersions of particles is analysed following the DLVO model, with a special attention on the hydration layers allowing the peptization of flocs. Different adsorption mechanisms of metal cations are presented in terms of coordination chemistry (outer- and inner-sphere complexes) emphasizing the coordinating ability of the surface towards metal complexes in solution. The anion adsorption is also studied in relation with some interesting consequences on spinel iron oxide nano-particles. (author)

  16. Nano particles@Calix arenas via aqueous solution

    Directory of Open Access Journals (Sweden)

    Sahar Dehghani

    2016-05-01

    Full Text Available The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8 COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8 COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8 COOH nano particles can be controlled by the aqueous. The electrical properties such as NMR Shielding, electron densities, energy densities, potential energy densities, ELF, LOL, ellipticity of electron density, eta index and ECP for nano particles@ Calix (8COOH have been calculated.

  17. Oral salt supplements to compensate for jejunostomy losses: comparison of sodium chloride capsules, glucose electrolyte solution, and glucose polymer electrolyte solution.

    OpenAIRE

    Nightingale, J M; Lennard-Jones, J E; Walker, E. R.; Farthing, M J

    1992-01-01

    Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol...

  18. Transient species produced in irradiated alkaline aqueous solutions containing oxygen

    International Nuclear Information System (INIS)

    The spectra and decay kinetics of the optical absorption in the UV region and at 430nm (maximum of the ozonide ion absorption), were investigated in oxygenated neutral, slightly and strongly alkaline aqueous solutions. It is assumed that the initial absorption after the pulse in oxygenated alkaline solutions is due to the ozonide ion O3-, superoxide radical ion O2- and ozone O3. The long-living absorption in these solutions cannot be excluded as to be probably caused by the ozone O3 or some product formed from O2- or an alkaline stabilized form of this radical-ion. The advantage of applying additional non-optical measurements of the system is shown on the example of H2O2 role played in the mechanism. (author)

  19. Gamma-ray inactivation of biotin in dilute aqueous solution

    International Nuclear Information System (INIS)

    The relative roles of the radicals produced by water radiolysis in the inactivation of biotin in aqueous solution were investigated. The effects of nitrous oxide and isopropanol used as selective free radical scavengers allowed the inactivation efficiencies per unit G-value of OH, H, and esub(aq)- to be estimated; these efficiencies were 0.73, 0.10, and 0.02 in neutral solution, respectively. Hydrogen gas and hydrogen peroxide unaffected the activity of biotin. G0-Value for biotin inactivation in oxygen-free neutral solution was 2.08. Under these conditions the hydroxyl radical attack was found to be responsible for the large part of inactivation. On the other hand, in oxygenated neutral solution, G0-value was 4.16. This large increase of inactivation in oxygenated solution suggested that, although hydrated electrons were considerably ineffective as an inactivating species in oxygen-free solution, superoxide ions would be much more effective in causing inactivation of biotin in oxygenated solution. A rate constant for the reaction of biotin with hydroxyl radical was 1.34 x 1010M-1 sec-1 as determined by the PNDA method. (auth.)

  20. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol

    International Nuclear Information System (INIS)

    The enthalpies of solution of CO2 in aqueous solution of 2-amino-2-methyl-1-propanol (AMP) 15 wt% and 30 wt% were measured at 322.5 K and pressures range from (0.2 to 5) MPa using a flow calorimetric technique. The gas solubilities were simultaneously determined from the calorimetric data. The solubilities were compared to available literature values obtained by direct measurements. The experimental enthalpies of solution were compared to the values derived from the literature vapor liquid equilibrium data. This work provides calorimetric data that will be used later for the development of a thermodynamic model to predict both solubilities and enthalpies of solution of acid gases in aqueous amine solutions

  1. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    International Nuclear Information System (INIS)

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm2, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  2. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  3. Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    WANG Jiade; MEI Yu; LIU Chenliang; CHEN Jianmeng

    2008-01-01

    This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis. The effects of current density, pH, and electrolyte concentration on CB degradation were determined. The degradation efficiency of CB was almost 100% with an initial CB concentration of 50 mg/L, current density 15 mA/cm2, initial pH 10, electrolyte concentration 0.1 mol/L, and temperature 25℃ after 90 min of reaction. Under the same conditions, the degradation efficiency of CB was only 51% by electrochemical (EC) process, which showed that electro-heterogeneous catalysis was more efficient than EC alone. The analysis results of Purge-and-Trap chromatography-mass spectrometry (P&T/GC/MS) and ion chromatography the release of Cl-. Further oxidation of phenol and biphenyl produced p-Vinylbenzoic acid and hydroquinol. Finally, the compounds were oxidized to butenedioic acid and other small-molecule acids.

  4. Preferential adsorption of uranium ions in aqueous solutions by polymers

    International Nuclear Information System (INIS)

    Amidoxime fiber and triazine fiber were prepared by chemical modification of commercially available polyacrylonitril fiber. It was found that the Amidoxime fiber is efficient to adsorb uranium ions in the artificial sea water. The efficiency of the preferential adsorption decreases by treatment the material with an acid-or an alkaline-solution. The triazine fiber adsorbs uranium ions only in aqueous solutions of such uranyl acetate, in the absence of other ions. In the artificial sea water, it adsorbs other ions instead of uranium. The preferential adsorption of uranium ions was further investigated with a series of polystyrenesulfonamides. Among the polystyrene derivatives, those having carboxyl groups, derived from imino diacetic acid (PSt-Imi), β-alanine (PSt-Ala), glycine (PSt-Gly), and sarcosine (PSt-Sar) were qualified for further discussion. However, it was found that the amount of adsorption of uranium ions by PSt-Imi decreases with increasing the volume of the artificial sea water and/or the duration of the treatment. Taking into account the facts, the preferential adsorption of uranium ions by PSt-Imi in aqueous solution was discussed in detail. (author)

  5. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  6. Boron removal from aqueous solution by direct contact membrane distillation

    International Nuclear Information System (INIS)

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 μg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution.

  7. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles.

    Directory of Open Access Journals (Sweden)

    Xianze Wang

    Full Text Available The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO4(2-, NO3(- and Cl(-; however, CO3(2- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions.

  8. Removing Phosphorus from Aqueous Solutions Using Lanthanum Modified Pine Needles

    Science.gov (United States)

    Wang, Xianze; Liu, Zhongmou; Liu, Jiancong; Huo, Mingxin; Huo, Hongliang; Yang, Wu

    2015-01-01

    The renewable pine needles was used as an adsorbent to remove phosphorus from aqueous solutions. Using batch experiments, pine needles pretreated with alkali-isopropanol (AI) failed to effectively remove phosphorus, while pine needles modified with lanthanum hydroxide (LH) showed relatively high removal efficiency. LH pine needles were effective at a wide pH ranges, with the highest removal efficiency reaching approximately 85% at a pH of 3. The removal efficiency was kept above 65% using 10 mg/L phosphorus solutions at desired pH values. There was no apparent significant competitive behavior between co-existing anions of sulfate, nitrate, and chloride (SO42-, NO3- and Cl-); however, CO32- exhibited increased interfering behavior as concentrations increased. An intraparticle diffusion model showed that the adsorption process occurred in three phases, suggesting that a boundary layer adsorption phenomena slightly affected the adsorption process, and that intraparticle diffusion was dominant. The adsorption process was thermodynamically unfavorable and non-spontaneous; temperature increases improved phosphorus removal. Total organic carbon (TOC) assays indicated that chemical modification reduced the release of soluble organic compounds from 135.6 mg/L to 7.76 mg/L. This new information about adsorption performances provides valuable information, and can inform future technological applications designed to remove phosphorus from aqueous solutions. PMID:26630014

  9. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  10. Thermodynamics of Binary and Ternary Solutions of Multivalent Electrolytes with Formation of 1: 1 and 1: 2 Complexes, within the Mean Spherical Approximation

    International Nuclear Information System (INIS)

    The mean activity (γ±) and osmotic (Φ) coefficients for binary and ternary aqueous solutions of trivalent electrolytes (mainly made up of lanthanide salts) are described in the framework of the primitive model of ionic solutions, using the binding mean spherical approximation (BiMSA). This model, based on the Wertheim formalism, accounts for (chemical or electrostatic) association of ions. In this work, the multivalent cation and the anion are allowed to form 1: 1 (pairs) and 1: 2 (trimers) complexes. Expressions for γ±) and Φ are given which satisfy the Gibbs-Duhem relation. The model involves concentration-dependent cation size and effective relative permittivity, variations that can be interpreted in terms of solvent effects. The theory is applied to aqueous solutions of binary and ternary mixtures at 25 C with common anion. (authors)

  11. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  12. Characterization of aqueous silver nitrate solutions for leakage tests

    Science.gov (United States)

    COSTA, José Ferreira; SIQUEIRA, Walter Luiz; LOGUERCIO, Alessandro Dourado; REIS, Alessandra; de OLIVEIRA, Elizabeth; ALVES, Cláudia Maria Coelho; BAUER, José Roberto de Oliveira; GRANDE, Rosa Helena Miranda

    2011-01-01

    Objectives To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. Material and Methods A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). Results The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). Conclusions Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of

  13. Density and activity of perrhenic acid aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Highlights: • Water activity and osmolality measurements on highly concentrated perrhenic acid binary solutions have been carried out. • The study led to a new expression of the stoichiometric activity coefficient γ±vs. m. • The parameters of the two most frequently referenced Pitzer and specific interaction theory models have been determined. • The partial molar volume has been calculated. • The density law of the binary solution as a function of its concentration has been determined. - Abstract: Published isopiestic molalities for aqueous HReO4 solutions at T = 298.15 K are completed. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for perrhenic acid HReO4 are determined by direct water activity and osmolality measurements. The variation of the osmotic coefficient of this acid in water is represented mathematically according to a model recommended by the National Institute of Standards and Technology and according to the specific interaction theory. The data are also used to evaluate the parameters of the standard three-parameters of Pitzer’s ion-interaction model, along with the parameters of Archer’s four-parameter extended ion-interaction model, to higher molalities than previously advised. Experimental thermodynamic data are well represented by these models. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scales

  14. A solubility model for aqueous solutions containing sodium, fluoride, and phosphate ions

    International Nuclear Information System (INIS)

    A significant problem in the processing of radioactive wastes is uncontrolled precipitation in solutions containing hydroxide, fluoride, and phosphate ions. A computational model is developed to calculate thermodynamic phase equilibria in aqueous solutions of fluoride, phosphate, and hydroxide up to 100 C. A variety of data are used, including isopiestic and electromotive force measurements, freezing point data, vapor pressure data at 100 C, heat capacities, heats of dilution, and solubility measurements. Pitzer's ion-interaction treatment is used to model electrolyte solutions, and many unknown parameters are determined from existing data through nonlinear least-squares fitting. Phase equilibria are determined by minimization of the total Gibbs energy using a modification of the code SOLGASMIX. Results calculated using the model accurately predict phase equilibria from many quantitative experiments. Qualitative experiments are performed to evaluate calculated solubilities in regions of sparse or nonexistent data; the calculated results are reasonable and exhibit a general qualitative agreement with such data. Model predictions are useful in understanding problems that may arise in the treatment of waste streams containing fluoride and phosphate anions in highly caustic solutions

  15. Electrochemical reduction of /Ru edta L/ compounds in aqueous solution

    International Nuclear Information System (INIS)

    Electrochemical reduction of the complexes [Ru edta L], [L= 2,2' bipyridine (2,2' bipy) pyrazinamide (pz CONH2); 4-cyanopyridine 4-cyanopyridine (4-CNpy); nicotinamide (NIC); hydroxil; 3-aminophenol (3-NH2 φ OH) and 2-aminopyridine (2-NH2 py)] in aqueous solution (acetate buffer, pH 4.65 or phosphate buffer, pH=8.2), μ=0,2 M p-cH3φSO3Li is investigated. The measurements have been made by cyclic voltammetry technique, using platinum, gold and mercury pool as working electrodes. (M.J.C.)

  16. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  17. Effect of Surface Quality in Viscometry of Aqueous Polymer Solutions

    Czech Academy of Sciences Publication Activity Database

    Večeř, M.; Wein, Ondřej

    Praha: Process Engineering Publisher, 2010, s. 1093. ISBN 978-80-02-02248-0. [International Congress of Chemical and Process Engineering CHISA 2010 and 7th European Congress of Chemical Engineering ECCE-7 /19./. Prague (CZ), 28.08.2010-01.09.2010] R&D Projects: GA ČR GA104/09/0972; GA ČR GA104/08/0428 Institutional research plan: CEZ:AV0Z40720504 Keywords : apparent wall slip * surface quality * aqueous polymer solutions Subject RIV: CI - Industrial Chemistry, Chemical Engineering www.chisa.cz/2010, www.ecce7.com

  18. E-beam radiolysis of aqueous dimethyl phthalate solution

    International Nuclear Information System (INIS)

    To investigate the influence of radiolysis on kinetics and factors of dimethyl phthalate (DMP), the aqueous DMP solution is degraded by 1.8 MeV E-beam, following pseudo-first-order kinetics. The rate constant of DMP degradation decreased exponentially with increasing initial DMP concentration. The DMP is favorably degraded by radical scavengers under its low concentration and alkaline condition. At high doses, the DMP is attacked by eaq- and ·OH, producing monomethyl phthalate, phthalate acid, and a series of aliphatic carboxylic acids, which are completely mineralized into H2O and CO2. (authors)

  19. Strong adhesion and cohesion of chitosan in aqueous solutions

    OpenAIRE

    Lee, DW; Lim, C. (Cheryl); Israelachvili, JN; Hwang, DS

    2013-01-01

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0-8.5), achieving a maximum value at pH 3.0 after a contact time of 1 h (Wad ∼ ...

  20. Strong adhesion and cohesion of chitosan in aqueous solutions

    OpenAIRE

    Lee, Dong Woog; Lim, Chanoong; Israelachvili, Jacob N.; Hwang, Dong Soo

    2013-01-01

    Chitosan, a load-bearing biomacromolecule found in the exoskeletons of crustaceans and insects, is a promising biopolymer for the replacement of synthetic plastic compounds. Here, surface interactions mediated by chitosan in aqueous solutions, including the effects of pH and contact time, were investigated using a surface forces apparatus (SFA). Chitosan films showed an adhesion to mica for all tested pH ranges (3.0–8.5), achieving a maximum value at pH 3.0 after a contact time of 1 hr (Wad ~...

  1. Nano particles@Calix arenas via aqueous solution

    OpenAIRE

    Sahar Dehghani

    2016-01-01

    The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8) COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8) COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8) C...

  2. Recovery of niobium anions from aqueous solutions by ion flotation

    International Nuclear Information System (INIS)

    In principle the feasibility of recovering niobates (K2NbOF5 and K2NbF7) from aqueous media by ion flotation was established. When using quaternary ammonium bases or amines as the collectors, the optimal conditions lie in the interval pH = 5.0-9.0. The interaction of niobates with cationic surfactants may proceed through an anion-exchange mechanism. The presence of acid in the solution suppresses this interaction, owing to the competition from the anions that are present and owing to binding of the surface-active collectors into a complex. 3 figures

  3. Removal of heavy metals from aqueous solutions using opalized tuff

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Golomeov, Blagoj; Krstev, Boris; Jakupi, Shaban

    2015-01-01

    This paper presents the results of the examination of the possibility of applying opalized tuff as a natural raw material for disposal of heavy metals (copper, zinc, manganese and lead) from aqueous solutions. Of actual experiments obtained results show that working conditions attaching to the removal of Cu and Pb ions is more than 91% of zinc ions is above 81%, while manganese ions are removed about 77% .On this can be concluded that the removal of examined heavy metals using opalized tuff i...

  4. VUV irradiation studies of plasmid DNA in aqueous solution

    Science.gov (United States)

    Śmialek, M. A.; Hoffmann, S. V.; Folkard, M.; Prise, K. M.; Shuker, D. E. G.; Braithwaite, N. S.; Mason, N. J.

    2008-02-01

    Interactions of VUV light and DNA samples in aqueous solutions are reported. The damage induced by such radiation is quantified by monitoring both loss of supercoiled DNA and formation of single and double strand breaks using agarose gel electrophoresis. Irradiations were performed using synchrotron VUV photons of 130, 150, 170 and 190 nm. VUV irradiation experiments revealed enhanced damage upon irradiation with 170 nm photons as compared with irradiations with photons of 150 nm and 130 nm. Irradiations carried at 190 nm caused the least damage.

  5. Polymerization of beta-amino acids in aqueous solution

    Science.gov (United States)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  6. Fluorescence of aqueous solutions of commercial humic products

    Science.gov (United States)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  7. The characterization methods for colloids in aqueous solutions

    International Nuclear Information System (INIS)

    This literature review deals with characterization methods for colloids in aqueous solutions and in groundwater. The basis for the review has been the needs of nuclear waste disposal studies and methods applicable in such studies. The methods considered include non-destructive laserspectroscopic methods (e.g. TRLFS, LPAS, PALS), several separation methods (e.g. ultrafiltration, dialysis, electrophoresis, field-flow-fractionation) and also some surface analytical methods, as well as some other methods giving additional information on formation and migration properties of colloids. (au.) (71 refs., 13 figs., 3 tabs.)

  8. Radiolysis of phenol in aqueous solution at elevated temperatures

    International Nuclear Information System (INIS)

    γ-Radiolysis and pulse radiolysis of phenol in aqueous solution up to supercritical condition have been carried out. G-values of phenol consumption and product formation have been determined. While dihydroxybenzenes were major products at room temperature, multi-ring compounds and benzene were formed above 300 deg. C. This indicates reaction mechanism was changed above 300 deg. C, where phenoxyl radical plays a predominant role. This is supported by the observation of phenoxyl radical in pulse radiolysis. In supercritical water, the G-values increased with decrease of density

  9. Degradation of Sodium-Polyacrylate in Dilute Aqueous Solution

    Science.gov (United States)

    Saita, Takao

    1980-12-01

    It is shown using a capillary viscometer that the viscosity of a dilute aqueous solution of sodium-polyacrylate at 20°C decreases gradually for each flow time measurement and also decreases with the time of rest. Assuming that the polymer degradation is caused by shearing stress and oxidation, their effects are discussed with the data obtained using a closed-type capillary viscometer derived for this investigation. It is proved from the results that rupture of the Na-PAA molecule is caused by mechanochemical degradation, and also photo-degradation under the usual illumination and sunlight in a laboratory.

  10. VUV irradiation studies of plasmid DNA in aqueous solution

    International Nuclear Information System (INIS)

    Interactions of VUV light and DNA samples in aqueous solutions are reported. The damage induced by such radiation is quantified by monitoring both loss of supercoiled DNA and formation of single and double strand breaks using agarose gel electrophoresis. Irradiations were performed using synchrotron VUV photons of 130, 150, 170 and 190 nm. VUV irradiation experiments revealed enhanced damage upon irradiation with 170 nm photons as compared with irradiations with photons of 150 nm and 130 nm. Irradiations carried at 190 nm caused the least damage

  11. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    See, Kimberly A. [Univ. of Illinois, Urbana-Champaign, IL (United States); Chapman, Karena W. [Argonne National Lab. (ANL), Argonne, IL (United States); Zhu, Lingyang [Univ. of Illinois, Urbana-Champaign, IL (United States); Wiaderek, Kamila M. [Argonne National Lab. (ANL), Argonne, IL (United States); Borkiewicz, Olaf J. [Argonne National Lab. (ANL), Argonne, IL (United States); Barile, Christopher J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Chupas, Peter J. [Argonne National Lab. (ANL), Argonne, IL (United States); Gewirth, Andrew A. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, 27Al and 35Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ–Cl)3·6THF]+ complex that is observed in the solid state structure. Additionally, conditioning creates free Cl– in the electrolyte solution, and we suggest the free Cl– adsorbs at the electrode surface to enhance Mg electrodeposition.

  12. Mordanting of mercury on styrene-divinylbenzene copolymer beads from aqueous solutions

    International Nuclear Information System (INIS)

    The sorption of mercury ions from aqueous solutions on styrene-divinylbenzene copolymer beads (St-DVB) has been investigated for the decontamination of mercury from aqueous media. Various physico-chemical parameters, such as selection of appropriate electrolyte, contact time, amount of adsorbent, concentration of adsorbate, effect of diverse ions and temperature were optimized to simulate the best conditions which can be used to decontaminate mercury from aqueous media using St-DVB beads as an adsorbent. The radiotracer technique was used to determine the distribution of mercury. The highest adsorption was observed at 0.001 mol L-1 acid solutions (HNO3, H2SO4 and HClO4) using 0.2 g of adsorbent for 5.14 x 10-5mol L-1 mercury concentration in five minutes equilibration time. Studies show that the adsorption decreases with the increase in the concentrations of all the acids. The adsorption data follows the Freundlich isotherm over the mercury concentration range of 2.19 x 10-4 to 5.90 x 10-3mol L-1. The characteristic Freundlich constants, i.e. 1/n = 0.42±0.01 and A (1.54±0.03) x 10-3mol g-1 have been computed for the sorption system. The sorption mean free energy from Dubinin-Radushkevich isotherm is 11.9±0.1 kJ mol-1 indicating ion-exchange mechanism of chemisorption. The uptake of mercury increases with the rise in temperature. Thermodynamic parameters, i.e. ΔG, ΔS and ΔH have also been calculated for the system. (orig.)

  13. The McMillan-Mayer framework and the theory of electrolyte solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen

    2006-01-01

    In electrolyte thermodynamics one often speaks of two thermodynamic frameworks; the Lewis-Randall framework (characterised by temperature, pressure. and mole numbers) and the McMillan-Mayer framework (characterised by temperature, total volume, solute mole numbers, and solvent chemical potential)...

  14. A note on the standard electron transfer potential at the interface between two immiscible electrolyte solutions

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk

    2009-01-01

    Roč. 55, č. 2 (2009), s. 75-81. ISSN 0034-6691 R&D Projects: GA ČR(CZ) GA203/07/1257 Institutional research plan: CEZ:AV0Z40400503 Keywords : interface between two immiscible electrolyte solutions * interfacial electron transfer * standard electron trasfer potential * homogeneous electron transfer Subject RIV: CG - Electrochemistry

  15. Conductometric and volumetric studies of atorvastatin in aqueous solution of arginine from 298.15 to 313.15 K

    Directory of Open Access Journals (Sweden)

    M. M. R. Meor Mohd Affandi

    2016-01-01

    Full Text Available Categorized as a Biopharmaceutics Classification System Class II drugs, atorvastatin (ATV exhibits low aqueous solubility and bioavailability thus presenting an obstacle and great challenge to formulation researchers. Numerous studies are available in regard to the solubility enhancement of ATV, but very few actually describe this phenomenon in terms of thermodynamics and the solute-solvent interaction. Arginine (ARG is an amino acid that has been reported to enhance the solubility of the highly insoluble wheat protein gluten through hydrogen bonding and π electron-cation interaction. To our knowledge, ARG has never been investigated as a solubility enhancement agent of aqueous insoluble drugs. Thus, this study aimed to elucidate the solute-solvent and solute-cosolute interactions and derive thermodynamic parameters that bolstered the solubility of ATV in the presence of ARG. We examined the electrolytic conductance and densities of ATV-ARG binary system covering the temperature ranging from 298.15 K to 313.15 K. Conductometric and volumetric parameters such as limiting molar conductance, association constants, limiting partial molar volumes, and expansibility values were calculated. Additionally, thermodynamic parameters (ΔG0, ΔH0, ΔS0, and Es involved in the association process of the solute in the aqueous solution of ARG were also determined.

  16. Radiolysis of berberine or palmatine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Marszalek, Milena [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland); Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.p [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland)

    2011-01-15

    The reactions of hydrated electron (e{sub aq}{sup -}), hydrogen atom (H{sup {center_dot}}) (reducing species) and Cl{sub 2}{sup {center_dot}}{sup -},Br{sub 2}{sup {center_dot}}{sup -},{sup {center_dot}}N{sub 3},{sup {center_dot}}OH radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of e{sub aq}{sup -} and {sup {center_dot}}OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with e{sub aq}{sup -} and radicals generated during radiolysis are unstable and undergo further reactions.

  17. Rheological properties of aqueous solutions of biopolymeric hyaluronan

    Science.gov (United States)

    Szwajczak, Elzbieta

    2004-09-01

    Aqueous solutions of hyaluronic acid (hyaluronan, HA) were studied. The HA compound is a natural polysaccharide, bipolymer. It plays an important role in numerous biological processes as a component of the extracellular matrix, connective tissues and, especially, human and animal synovial joints. Natural and artificial solutions of the HA have demonstrated the viscoelastic nature. These properties are shown to be related to the microstructure parameters (bulk concentration, molecular weight) and external parameters (temperature, stress, shear rate). We emphasize the role of the flow properties of polymeric systems. It is found a liquid crystalline "order" can be "induced" during the material flow. The dynamic properties, such as the elastic shear modulus and viscous shear modulus, are given. These results are discussed in relation to the postulated function of hyaluronic acid in synovial joint and with respect to possibilities o their application in medicine and pharmacology.

  18. Dielectric properties of aqueous solutions of holmium formates

    International Nuclear Information System (INIS)

    SHF-dielectric properties in the range of free-quenches 7-23.5 GHz and electric conductivity of aqueous solutions of holmium formates in the temperature range from 10 to 40 deg C were studied. Parameters of the process of dipole relaxation of water molecules: static dielectric constant, relaxation time and parameters of relaxation time distribution have been ascertained. Activation characteristics of the dipole relaxation and specific electric conductivity have been calculated. The change in the structural-kinetic state of water H-bond net in solution under the action of Ho3+ and HCOO- ions is considered on the basis of the data obtained. 10 refs., 2 figs.; 3 tabs

  19. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  20. Molybdenum trioxide reaction kinetics with magnesium molybdate aqueous solution

    International Nuclear Information System (INIS)

    The influence of temperature (40, 60, 75, 100 deg C) and concentration of aqueous solution of magnesium molybdate on kientics of MoO3 interaction with MgMoO4 solution was studied. It is shown that interaction between MoO3 and MgMoO4 proceeds by the following mechnism: molybdenum trioxide interacts with water with formation of molybdate-ion, and MgMoO4 dissociates with formation of MoO42- and Mg2+ ions. Appearance of excess molybdate-ions breaks the equilibrium between MoO42-and Mg2+, which is restored at the expense of polymerization of molybdate-ions and their transfer to dimolybdate-ions

  1. Radiation chemistry of amino acids and peptides in aqueous solutions

    International Nuclear Information System (INIS)

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions (-, OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  2. Sorption of 137Cs from Aqueous Waste Solutions using Pottery

    International Nuclear Information System (INIS)

    A simple and inexpensive method for sorption of 137Cs from aqueous solutions using a highly available vase shape pottery material has been investigated. Porosity of the used pottery allowed for the penetration of the radioactive solution through its permeable body. Two routes had been investigated for cesium removal from the radioactive solutions. In the first one, pottery bodies were immersed into the radioactive solutions. In the second method; the radioactive solutions were filled the inner volumes of the pottery bodies. Vase shape pottery showed higher sorption capability for 137Cs much more than its powder forms, especially in the alkaline medium. Pottery bodies showed high potential for 137Cs removal. Adsorption isotherms revealed good lit to the Freundlich and Langumir isotherms. During sorption processes outside and inside the pottery body, 137Cs was well captured inside the amorphous microstructure of the pottery body. In this respect, micro filtration of cesium radionuclides through the used pottery could be postulated. Desorption experiments indicated higher immobilization affinity for radiocesium into pottery bodies, which indicates a high containment for 137Cs with an irreversible fixation mechanism

  3. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10-4M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10-4M and 1 x 10-2M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA2-) : k(OH + CO32-) : k(OH + HCO3-) = 1 : 0.105 : 0.0036

  4. Solution properties of the acrylamide-modified cellulose polyelectrolytes in aqueous solutions.

    Science.gov (United States)

    Song, Yongbo; Zhou, Jinping; Li, Qian; Lue, Ang; Zhang, Lina

    2009-07-27

    A novel cellulose-based polyelectrolyte (AM-C) containing acylamino (DS=0.625) and carboxyl (DS=0.148) groups was homogeneously synthesized from cellulose with acrylamide in NaOH/urea aqueous solutions. Solution properties of AM-C in aqueous solutions were investigated by laser light scattering, rheometry, and viscometry. The results indicated that AM-C could form large aggregates spontaneously in water with or without the addition of salts by the strong hydrogen bonds and electrostatic interaction between acylamino and carboxyl groups. Steady-shear flow study showed a Newtonian behavior of the solutions in the dilute regime while a shear-thinning behavior as the concentration increases. The critical concentration (c(e)) for transition from dilute to concentrated solution was determined to be 0.7wt%. Aqueous solutions of AM-C displayed good thermo-stability, reversible liquid-like characters attributing to the chemical modification. The derivation from Cox-Merz rule at relatively low concentration was related to the co-existence of single chain and large aggregates of AM-C in dilute regime. As the polymer concentration increased, the AM-C system was transformed into a homogeneous entanglement structure, resulting in the disappearance of deviations from the Cox-Merz rule. PMID:19464674

  5. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomiştilor St., PO Box MG-36, 077125, Bucharest-Măgurele (Romania)

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  6. Gamma radiolytic degradation of naphthalene in aqueous solution

    Science.gov (United States)

    Chu, Libing; Yu, Shaoqing; Wang, Jianlong

    2016-06-01

    The decomposition of naphthalene in aqueous solution was studied using gamma irradiation combined with both H2O2 and TiO2 nanoparticles. Gamma irradiation led to a complete degradation of naphthalene and a partial mineralization. With initial concentration of 5-32 mg/L, more than 98% of naphthalene was removed and TOC reduction reached 28-31% at an absorbed dose of 3.0 kGy. The degradation of naphthalene was faster at neutral pH and the initial degradation rate increased with increasing the initial concentration of naphthalene. Addition of H2O2 and TiO2 nanoparticles all enhanced the degradation and mineralization of naphthalene. TOC removal efficiency increased from 28% (irradiation alone) to 35% with addition of H2O2 (40 mg/L), and to 48% with addition of TiO2 (0.8 g/L). The degradation of naphthalene in aqueous solution by gamma irradiation was mainly through the oxidation by ·OH radicals. The intermediate naphthol and carboxylic acids such as formic acid and oxalic acid were identified by LC-MS and IC.

  7. New terahertz dielectric spectroscopy for the study aqueous solutions

    CERN Document Server

    George, Deepu K; Vinh, N Q

    2015-01-01

    We present a development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As a first application we report on the measurement of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17 to 37.36 cm-1 or 0.268 to 60 mm). The system provides a coherent radiation source with a power up to 20 mW in the gigahertz-to-terahertz region. The power signal-to-noise ratio of our instrument reaches 1015 and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with an error bars of 0.02 oC from above 0 oC to 90 oC. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  8. Removal of Some Chelators from Aqueous Solutions Using Polymeric Ingredients

    International Nuclear Information System (INIS)

    This work tries to throw a light on the removal of thenoyl trifluoroacetone (TTA) and ethylene diamine tetraacetic acid (EDTA), extractants extensively used in many nuclear facilities, from aqueous solutions under different experimental conditions using Amberlite XAD resins. The applied resins exhibit high retention ability for the studied chelators with a maximum sorption capacity has the values of 23.9 and 38.0 mgg-1 for sorption of TTA and EDTA on Amberlite XAD4 and 18.6 and 21.2 mgg-1 for their sorption of on Amberlite XAD7. Factors affecting the resin retention ability such as ph value of aqueous solution and presence of co solvent have been studied. The kinetics of sorption behavior, in the applied system, indicate the process to be controlled by more than one diffusion mechanism. Therefore, two diffusion models were utilized to understand and verify the mechanism of sorption processes; they are the film mass transfer model and the interparticle diffusion model. The first model, based on film resistance, gave a successful depiction for sorption of TTA onto Amberlite XAD4 and XAD7 and the second one displayed an acceptable prediction for sorption of EDTA onto Amberlite XAD4

  9. Pulse radiolysis of aqueous solutions of sodium tetraphenylborate

    International Nuclear Information System (INIS)

    In previous work on the 60Co γ-radiolysis of aqueous tetraphenylborate (TPB-) solutions carried out in this laboratory, it was found that several organic products, including benzene, phenol and biphenyl, are produced with substantial yield. However, the reaction mechanism was not established. In the present study, reactions initiated by OH· radicals, N3· radicals and e-aq in aqueous TPB- solutions were studied by pulse radiolysis using a 600 keV Febetron electron accelerator. The lack of reactivity between TPB- and e-aq was demonstrated by directly monitoring the transient optical absorbance of e-aq. Concerning the reaction with OH·, two schemes were considered: (1) electron transfer from B(C6H5)4- to OH·; or (2) OH· addition to B(C6H5)4-. Comparison of observed transient absorption spectra with expectations based on the two different schemes suggests that OH· addition is the dominant reaction pathway under conditions of N2O saturation, with an experimentally determined second-order rate constant of 6.2 x 109 M-1 s-1. A mechanism based on an initial first-order self-decomposition of the OH· adduct, (C6H5)3BC6H5OH·-, with measured rate constant of 4 x 104s-1 is proposed. Kinetic modeling on the proposed mechanistic scheme gives good agreement with our experimental results. (author)

  10. New terahertz dielectric spectroscopy for the study of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    George, Deepu K.; Charkhesht, Ali; Vinh, N. Q., E-mail: Vinh@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-12-15

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17–37.36 cm{sup −1} or 0.268–60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10{sup 12} and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  11. Examination of rheological properties of aqueous solutions of sodium caseinate

    Directory of Open Access Journals (Sweden)

    Jolanta Gawałek

    2012-12-01

    Full Text Available Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The material for investigations was typical commercial sodium caseinate in the form of dry powder manufactured in Poland from acid casein using the method of extrusion. The objective of the undertaken empirical studies was the assessment of the impact of the concentration on rheological properties of sodium caseinate concentrates. Investigations were carried out for five concentrates manufactured in a mixer equipped in a mechanical agitator at concentrations ranging X (% Î (2.5¸12.5 and changing mass proportions of sodium caseinate in the aqueous solution as follows: GS/G (kgS·kg-1 = 0.025. On the basis of the obtained research results, classical flow curves were plotted for individual concentrates. The determined values of viscosity and density of the examined solutions were correlated in the form of h = f(GS/G and r = f(GS/G dependencies which were used during the determination of classical characteristics of mixing forces essential for the assessment of energetic expenditures required to manufacture concentrates in a mixer equipped in a mechanical agitator. The density of the examined concentrates increased in a way directly proportional, while the dynamic viscosity coefficient increased exponentially together with the increase of sodium caseinate concentration. Sodium caseinate concentrates exhibited Newtonian character in the examined range of concentrations.

  12. Electrolyte and Haemogram changes post large volume liposuction comparing two different tumescent solutions

    Directory of Open Access Journals (Sweden)

    Kumar Vivek

    2014-01-01

    Full Text Available Background: The most common definitions of large volume liposuction refer to total 5 l volume aspiration during a single procedure (fat plus wetting solution. Profound haemodynamic and metabolic alterations can accompany large volume liposuction. Due to paucity of literature on the effect of different tumescent solutions on the electrolyte balance and haematological changes during large volume liposuction, we carried out this study using two different wetting solutions to study the same. Materials and Methods: Total 30 patients presenting with varying degrees of localized lipodystrophy in different body regions were enrolled for the study. Prospective randomized controlled trial was conducted by Department of Plastic and Cosmetic Surgery, Sir Ganga Ram Hospital, New Delhi from January 2011 to June 2012. Patients were randomized into two groups of 15 patients each by using computer generated random numbers. Tumescent formula used for Group A (normal saline [NS] was our modification of Klein′s Formula and Tumescent formula used for Group B (ringer lactate [RL] was our modification of Hunstadt′s formula. Serum electrolytes and hematocrit levels were done at preinduction, immediate postoperative period and postoperative day 1. Result: Statistical analysis was performed using SPSS software version 15.0. Which showed statistically significant electrolytes and hematocrit changes occur during large volume liposuction. Conclusion: Statistically significant electrolytes and hematocrit changes occur during large volume liposuction and patients should be kept under observation of anaesthesist for at least 24 h. Patients require strict monitoring of vital parameters and usually Intensive Care Unit is not required. There was no statistical difference in the electrolyte changes using NS or RL as tumescent solution and both solutions were found safe for large volume liposuction.

  13. Design of electrolyte solutions for Li and Li-ion batteries: a review

    International Nuclear Information System (INIS)

    This paper reviews approaches to the design of advanced electrolyte solutions for Li and Li-ion batteries. Important challenges are wide electrochemical windows, a wide temperature range of operation, acceptable safety features, and most important, appropriate surface reactions on the electrodes that induce efficient passivation, but not on the account of low impedance. We describe research tools, quick tests, and discuss some selected examples and strategies for R and D of solutions of improved performance

  14. Method of precipitating uranium from an aqueous solution and/or sediment

    Science.gov (United States)

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  15. Investigation of heterogeneous equilibria in saturated aqueous solutions of uranosilicates of uranophane-kasolite group

    International Nuclear Information System (INIS)

    State of mineral-like uranosilicates of uranophane-kasolite group in saturated aqueous solutions at 25 Deg Cis investigated. Using experimental data on solubility quantitative physicochemical model of state of heterogeneous crystalline uranosilicate - aqueous solution system is built. Using this model equilibrium constants of solution reactions and formation standard Gibbs functions of the investigated compounds are calculated. The model permits forecasting the processes of solution of uranosilicates in a wide range of aqueous phase acidity at standard conditions

  16. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  17. Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution.

    Science.gov (United States)

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-Yoon; Lee, Eil-Hee; Song, Kyusuk; Song, Kee-Chan

    2009-11-15

    This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO(2) gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH(-) concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution. PMID:19604641

  18. Isotonicity of liver and of kidney tissue in solutions of electrolytes.

    Science.gov (United States)

    OPIE, E L

    1959-07-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need. PMID:13664872

  19. Structure of the electrical double layer at aqueous gold and silver interfaces for saline solutions.

    Science.gov (United States)

    Hughes, Zak E; Walsh, Tiffany R

    2014-12-15

    We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60 mol kg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au. PMID:25265591

  20. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Hosseini, Rahim [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2009-02-15

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C{sub 3}), hexyl (C{sub 6}), heptyl (C{sub 7}), and octyl (C{sub 8})) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg{sup -1} were taken. The values of the compressibilities, expansivity and apparent molar properties for [C{sub n}mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.

  1. Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations.

    Science.gov (United States)

    Liao, Chenyi; Esai Selvan, Myvizhi; Zhao, Jun; Slimovitch, Jonathan L; Schneebeli, Severin T; Shelley, Mee; Shelley, John C; Li, Jianing

    2015-08-20

    Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed—for the first time in atomistic detail—that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety. PMID:26208115

  2. Pulse Radiolysis of Aqueous Solutions of Aniline and Substituted Anilines

    International Nuclear Information System (INIS)

    The primary reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with aniline and the aniline cation in aqueous solutions have been studied by the technique of pulse radiolysis and by determination of end products after y-radiolysis. Hydrogen atoms and hydrated electrons react with aniline under formation of the cyclohexadienyl type radical with absorption maximum at 355 nm and an extinction coefficient of 4100/M/cm. A similar radical formed by reaction of hydrogen atoms with the aniline cation has its absorption maximum at 31 0 nm and an extinction coefficient of 3200/M/cm. Hydrogen atoms react with the acid and neutral forms of aniline with rate constants of (1.3 ± 0.2 ) x 109/M/s and (2.9 ± 0.7) x 109/M/s, respectively. OH radicals react with aniline with a rate constant of (1.4 ± 0.3) x 1010/M/s under formation of the cyclohexadienyl radical with absorption maximum at 355 nm and the anilino radical with absorption maxima at 300 and 400 nm. The cyclohexadienyl radical decayed in a first order process with a rate constant of 1.4 x 105/s by elimination of NH3, whereas the anilino radical disappeared in a second order reaction under formation of hydrazobenzene. O- radicals react with aniline at pH 13.3 with a rate constant of (3.1 ± 0.6) x 109 under formation of anilino radicals. The reaction of OH radicals with the aniline cation produced the anilino radical cation with a rate constant of (4.8 ± 0.8) x 109 . The absorption maximum was placed at 415 nm, The cyclohexadienyl type radical with absorption maximum at 350 nm was also found in aqueous solutions of 2-amino-1,3-dimethylbenzene but was not formed in solutions of N,N' -dimethylaniline

  3. Ionic Conductivity and Mechanical Properties of Slide-Ring Gel Swollen with Electrolyte Solution Including Lithium Ions

    International Nuclear Information System (INIS)

    Polymer gel electrolytes with both high ionic conductivity and mechanical ductility are produced using a slide-ring (SR) gel swollen with an electrolyte solution (ES) composed of propylene carbonate (PC) and lithium salt. The SR gel was derived from polyrotaxane (PR), in which cyclic molecules known as cyclodextrins (CDs) are threaded on the axial polymer chain of polyethylene glycol (PEG) capped by bulky ends, through intermolecular crosslinking between the CDs. The molar conductivity of the SR gel electrolyte with a high swelling ratio and small crosslinking density was more than 95% for pristine ES, and the activation energy and potential window of the SR gel electrolyte was close to that of pristine ES. The compressive properties of the SR gel electrolyte were also investigated; the Young's modulus of the SR gel electrolyte decreased with the crosslinking density and the SR gel electrolyte with a low crosslinking density was not fractured under compression to almost half of the original thickness

  4. Dielectric relaxation of electrolyte solutions using terahertz transmission spectroscopy

    Science.gov (United States)

    Asaki, M. L. T.; Redondo, A.; Zawodzinski, T. A.; Taylor, A. J.

    2002-05-01

    We use terahertz (THz) transmission spectroscopy to obtain the frequency dependent complex dielectric constants of water, methanol, and propylene carbonate, and solutions of lithium salts in these solvents. The behavior of the pure solvents is modeled with either two (water) or three (methanol and propylene carbonate) Debye relaxations. We discuss the effects of ionic solvation on the relaxation behavior of the solvents in terms of modifications to the values of the Debye parameters of the pure solvents. In this way we obtain estimates for numbers of irrotationally bound solvent molecules, the numbers of bonds broken or formed, and the effects of ions on the higher-frequency relaxations.

  5. Electrolytic decontamination of the dismantled metallic wastes contaminated with uranium compounds in neutral salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Wang Kyu; Lee, Sung Yeal; Kim, Kye Nam; Won, Hee Jun; Jung, Jong Heon; Oh, Won Zin [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    Electrolytic dissolution study was carried out to evaluate the applicability of electrochemical decontamination process using a neutral salt electrolyte as a decontamination technology for the recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant using SUS-304 and Inconel-600 specimen as the main materials of internal system components of the plant. The effects of type of neutral salt as an electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO{sub 2}, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion plant were performed in Na{sub 2}SO{sub 4} and NaNO{sub 3} solution. It was verified that the electrochemical decontamination of the dismantled metallic wastes was quite successful in Na{sub 2}SO{sub 4} and NaNO{sub 3} neutral salt electrolyte by reducing {beta} radioactivities below the level of self disposal with authorization within 10 minutes regardless of the type of contaminants and the degree of contamination.

  6. Electrolytic decontamination of the dismantled metallic wastes contaminated with uranium compounds in neutral salt solutions

    International Nuclear Information System (INIS)

    Electrolytic dissolution study was carried out to evaluate the applicability of electrochemical decontamination process using a neutral salt electrolyte as a decontamination technology for the recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds generated by dismantling a retired uranium conversion plant using SUS-304 and Inconel-600 specimen as the main materials of internal system components of the plant. The effects of type of neutral salt as an electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. On the basis of the results obtained through the basic inactive experiments, electrochemical decontamination tests using the specimens contaminated with uranium compounds such as UO2, AUC (ammonium uranyl carbonate) and ADU (ammonium diuranate) taken from an uranium conversion plant were performed in Na2SO4 and NaNO3 solution. It was verified that the electrochemical decontamination of the dismantled metallic wastes was quite successful in Na2SO4 and NaNO3 neutral salt electrolyte by reducing β radioactivities below the level of self disposal with authorization within 10 minutes regardless of the type of contaminants and the degree of contamination

  7. Solubility of some phenolic compounds in aqueous alkali metal nitrate solutions from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    This paper is continuation of the study concerning the solubility-temperature dependence data for some phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in two nitrate salts (KNO3 and NaNO3) aqueous solutions. The solubilities of PhC were determined in the temperature ranging from (293.15 to 318.15) K. It has been observed that the solubility, in aqueous nitrate solutions, increases with increasing temperature. Results showed that alkali metal nitrate has a salting-out effect on the solubility of PhC. The effect of the anion of the electrolyte on the solubility of PhC is observed by comparing these results with values reported in the previous papers for the effect of LiCl, NaCl and KCl. For each cation, the solubilites of the phenolic compounds are higher with nitrate anion than with chloride anion. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data were accurately correlated by a semi empirical equation. The standard molar Gibbs free energies of transfer of PhC (ΔtrG0) from pure water to aqueous solutions of the nitrate salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive ΔtrG0 value which is mainly of enthalpic origin

  8. Formation of magnetite (Fe3O4)in aqueous media and properties of the interface magnetite/solution

    International Nuclear Information System (INIS)

    The formation of Fe3O4 particles in aqueous media and the properties of the Fe3O4/aqueous solution interface are studied. This system is of particular interest in nuclear reactor chemistry, since Fe3O4 was identified as the main component of the corrosion products of nuclear power plants cooled with pressurized water, of the Atucha I and II, and Embalse type. Four methods for the synthesis of Fe3O4 are described: a) controlled oxidation of Fe(OH)2 in the presence of NaNO3 at 25 deg C; b) controlled oxidation of Fe(OH)2 in the presence of NaNO3 and N2H4 and at 100 deg C; c) alkalinization of a F2+ and Fe3+ solutions at 80 deg C; d) simultaneous oxidation and alkalinization of a Fe2+. The interfacial properties of Fe3O4 particles suspended in aqueous solutions of indifferent electrolytes are described. These properties are essential for the activity transport associated with the corrosion products. Finally, the adsorption of H3BO3, Hsub(n)PO4sup(n-3) and n Co(II) in the Fe3O4/solution interface at 30 deg C. It is concluded that the adsorbed species are chemically bonded to surface metal ions. (M.E.L.)

  9. In situ AFM studies of the stability of MgO(1 0 0) in aqueous electrolytes

    International Nuclear Information System (INIS)

    Highlights: • Stability and dissolution of MgO(1 0 0) surfaces in alkaline solutions of NaCl and NaClO4. • Stability determined by the hydrogen network between the water and the oxide surface. • Formation of a hydroxide gel-like layer in absence of chloride. • Report of square pits oriented in the 〈1 1 0〉 directions during immersion in NaCl. • Substitution of hydroxides by chlorides at the electrolyte/MgO interface. - Abstract: The stability and dissolution of MgO(1 0 0) single crystal surfaces in alkaline solutions of NaClO4 and NaCl were investigated by means of in situ atomic force microscopy (AFM) and ex situ angle resolved X-ray photoelectron spectroscopy (AR-XPS). MgO surfaces showed higher resistance to dissolution in NaClO4 electrolyte due to the formation of a gel-like hydroxide layer. The emergence of rectangular/square formed pits oriented in the 〈1 1 0〉 directions during immersion in NaCl electrolytes at alkaline pH was observed. The results are discussed on the basis of a substitution of hydroxides by chlorides at the electrolyte/MgO interface

  10. An electrochemical study in aqueous solutions on the binding of dopamine to a sulfonated cyclodextrin host

    International Nuclear Information System (INIS)

    Highlights: ► DA and Sβ-CD form an Inclusion complex. ► Electrochemical techniques demonstrated this inclusion complex. ► The association constant, K, was computed as 331.3. ► 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. ► NMR studies confirmed the structural information on the inclusion complex. - Abstract: Clear evidence for the formation of a weak inclusion complex between dopamine (DA) and a sulfonated β-CD host in aqueous solution was obtained using a combination of electrochemical approaches. Using cyclic voltammetry, a distinct increase in the oxidation potential of DA and a reduction in the peak oxidation current were observed on adding an excess concentration of the sulfonated β-CD to the electrolyte solution. Equally, a clear increase in the half-wave oxidation potential of DA was observed in the presence of the sulfonated β-CD using rotating disc voltammetry. The association constant, K, was computed as 331.3 ± 5.8, indicating the formation of a weak inclusion complex, while a 1:1 stoichiometry for the inclusion complex was deduced from a Job's plot analysis. The rate constant for the oxidation of DA was found to decrease on formation of the inclusion complex. This was attributed to higher reorganization energy for the oxidation of the included DA. These changes in the electrochemistry of DA were not observed when an excess of the smaller sulfonated α-CD was added to the electrolyte, indicating that these variations are not connected with simple electrostatic interactions between the protonated DA and the anionic sulfonated groups. It is proposed that the aromatic ring of the DA molecule includes within the cyclodextrin cavity, while the protonated amine group remains outside the cavity, bound electrostatically with the anionic sulfonated groups.

  11. Performance efficiency of electro-coagulation coupled electro-flotation process (EC–EF) versus adsorption process in Doxycycline removal from aqueous solutions

    OpenAIRE

    Zaidi, S; Chaabane, T.; Sivasankar, V.; Darchen, A.; Maachi, R.; Msagati, T. A. M; Prabhakaran, M

    2016-01-01

    International audience Two treatment methodologies such as electro-coagulation coupled electro-flotation (EC–EF) and adsorption have been adopted to remove doxycycline hyclate (DCH) from the aqueous solution. An electro-coagulation (EC) coupled electro-flotation (EF) system has been designed in a closed reactor with a capacity of 1.5L on a laboratory scale. Electro-synthesis of alumina (electro-generated alumina, EGA) using aluminium electrodes with magnesium chloride as an electrolyte was...

  12. Thermodynamics of the formation of the Ni2+-glycine-L-histidine complex in aqueous solutions at 298.15 K

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.; Bychkova, S. A.

    2015-05-01

    The Ni2+-glycine-L-histidine system in aqueous solution at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 with potassium nitrate as the supporting electrolyte has been investigated calorimetrically. Standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°) of complexation have been determined. The NiLY complex is highly stable with respect to decomposition into homoligand complexes.

  13. DNA dynamics in aqueous solution: opening the double helix

    Science.gov (United States)

    Pohorille, A.; Ross, W. S.; Tinoco, I. Jr; MacElroy, R. D. (Principal Investigator)

    1990-01-01

    The opening of a DNA base pair is a simple reaction that is a prerequisite for replication, transcription, and other vital biological functions. Understanding the molecular mechanisms of biological reactions is crucial for predicting and, ultimately, controlling them. Realistic computer simulations of the reactions can provide the needed understanding. To model even the simplest reaction in aqueous solution requires hundreds of hours of supercomputing time. We have used molecular dynamics techniques to simulate fraying of the ends of a six base pair double strand of DNA, [TCGCGA]2, where the four bases of DNA are denoted by T (thymine), C (cytosine), G (guanine), and A (adenine), and to estimate the free energy barrier to this process. The calculations, in which the DNA was surrounded by 2,594 water molecules, required 50 hours of CRAY-2 CPU time for every simulated 100 picoseconds. A free energy barrier to fraying, which is mainly characterized by the movement of adenine away from thymine into aqueous environment, was estimated to be 4 kcal/mol. Another fraying pathway, which leads to stacking between terminal adenine and thymine, was also observed. These detailed pictures of the motions and energetics of DNA base pair opening in water are a first step toward understanding how DNA will interact with any molecule.

  14. Forecasting of thermodynamic properties of solution for non-polar molecules in aqueous salt solutions and in aqueous organic solutions

    International Nuclear Information System (INIS)

    The scaled particle theory has been used rather successfully to predict the values of thermodynamic properties of solution for non-polar molecules. Two very important parameters has been used in the equations of the scaled particle theory: the hard sphere diameter of the solute and the closeness of the solvent (closeness in which the diameters of the hard sphere particles forming the solvent are taken into account). With non-polar solutes, a correlation exists between calculated and experimental values of: free enthalpy of solution - enthalpy of solution - molar heat capacity change for the solution process. The fit between calculated and experimental values is only more qualitative than quantitative. However the variation of thermodynamic properties with the temperature and the modality is consistent with the variation calculated according to the scaled particle theory. (author)

  15. Comparison of Photochemical Reactions of m-Cresol in Aqueous Solution and in Ice

    Institute of Scientific and Technical Information of China (English)

    PENG Fei; XUE Hong-hai; TANG Xiao-jian; KANG Chun-li; LI Lin-lin; LI Zhe

    2012-01-01

    We compared the photochemical reaction of m-cresol containing OH precursors such as H2O2,NO2- and NO3- in aqueous solution with those in ice.The results show that the conversion rate of m-cresol in aqueous solution was higher than that in ice,H2O2,NO2- and NO3- all accelerated the photoconversion of m-cresol in both aqueous solution and ice.The photochemical reactions of m-cresol obeys the first order kinetics equation.According to the photoproducts identified by GC-MS,we proposed that hydroxylation and nitration reactions occurred in both aqueous solution and ice.Coupling reaction was common in ice,however,in aqueous solution it was found only in UV system.Our results suggest that the photochemical reactions of m-cresol were different in aqueous solution and in ice.

  16. Adsorption of Anthraquinone Dyes from Aqueous Solutions by Penicillium Terrestre

    Institute of Scientific and Technical Information of China (English)

    XIN Bao-ping; LIU Xiao-mei

    2006-01-01

    Penicillium terrestre was used for removing four anthraquinone dyes from aqueous solution. The experiments were performed in Erlenmeyer flasks and spore suspension was used for inoculation. The results show that the mechanism of dye removal by penicillium terrestre is biosorption and the growing pellets exhibit higher adsorptive capacity than the resting or dead ones. The maximum removals of disperse blue 2BLN, reactive brilliant blue KN-R, acid anthraquinone blue and bromamine acid at the concentration of 120 mg/L by biosorption of growing pellets are 100 %, 100 %, 96 % and 91%, respectively. The 100.0 % and 91.4 % KN-R removals are achieved respectively at the much higher concentration of 250 and 400 mg/L. 2.5 g/L glucose is sufficient for 100% KN-R removal by growing pellets. Salinity (NaC1) increase from 0 to 2% (W/V) moderately accelerates both mycelium growth and KN-R removal.

  17. Sweet aqueous solution for electrochemical synthesis of polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Bazzaoui, M. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal) and Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: bazzaoui@fe.up.pt; Martins, J.I. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal) and Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)]. E-mail: jipm@fe.up.pt; Costa, S.C. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Bazzaoui, E.A. [Faculte des Sciences, Departement de Chimie, Universite Mohammed Ier, 60 000 Oujda (Morocco); Reis, T.C. [Faculdade de Engenharia, Departamento de Engenharia Quimica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Martins, L. [Faculdade de Engenharia, Departamento de Electrotecnica, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)

    2006-02-25

    The electrosynthesis of polypyrrole (PPy) has been achieved on aluminum electrode in aqueous medium of 0.1 M saccharin sodium salt and 0.5 M pyrrole. Scanning electron microscopy shows that the PPy coating obtained in galvanostatic and potentiostatic modes starts with small islands at weak applied potentials or current densities. Moreover, energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) reveal a good homogeneity of the film achieved in cyclic voltammetry during 10 cycles. The electrochemical impedance spectroscopy (EIS) results show that the coating decreases the polarization resistance of the aluminum electrode. The open circuit potential (OCP) and dc polarization measurements achieved in HCl and NaCl solutions displayed a large positive displacement of corrosion potential and a reduction of corrosion current in the case of PPy coating electrode in comparison with electrode bare.

  18. Degradation of chlorophenols in aqueous solution by {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun [INET, Tsinghua University, Beijing 100084 (China)]. E-mail: hujun@mail.tsinghua.edu.cn; Wang Jianlong [INET, Tsinghua University, Beijing 100084 (China)

    2007-08-15

    Degradation of chlorophenols (CPs) in aqueous solutions by {gamma}-radiation was studied. The effect of absorbed dose on degradation, dechlorination and mineralization of CPs were investigated. The results indicated that the degradation of CPs, Cl{sup -} release and mineralization increased with increase in absorbed dose. When the initial concentration was 100 mg L{sup -1} and the dosage was 6 kGy, the removal efficiencies of CPs were 44.54% for 2-CP, 91.46% for 3-CP, 82.72% for 4-CP and 93.25% for 2,4-DCP, respectively. The combination of irradiation and H{sub 2}O{sub 2} leads to a synergistic effect, which remarkably increased the degradation efficiency of CPs and TOC removal. The kinetics of CPs during irradiation are also mentioned.

  19. Degradation of chlorophenols in aqueous solution by γ-radiation

    Science.gov (United States)

    Hu, Jun; Wang, Jianlong

    2007-08-01

    Degradation of chlorophenols (CPs) in aqueous solutions by γ-radiation was studied. The effect of absorbed dose on degradation, dechlorination and mineralization of CPs were investigated. The results indicated that the degradation of CPs, Cl - release and mineralization increased with increase in absorbed dose. When the initial concentration was 100 mg L -1 and the dosage was 6 kGy, the removal efficiencies of CPs were 44.54% for 2-CP, 91.46% for 3-CP, 82.72% for 4-CP and 93.25% for 2,4-DCP, respectively. The combination of irradiation and H 2O 2 leads to a synergistic effect, which remarkably increased the degradation efficiency of CPs and TOC removal. The kinetics of CPs during irradiation are also mentioned.

  20. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    International Nuclear Information System (INIS)

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented

  1. Photo-degradation behaviour of roseoflavin in some aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany)

    2010-03-24

    An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris-HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF - singlet RoF excitation transfer with subsequent triplet-state RoF degradation.

  2. Gamma-irradiation of malic acid in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Negron-Mendoza, A.; Graff, R.L.; Ponnamperuma, C.

    1980-12-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  3. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-01-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01–90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b–effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b–effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater. PMID:26887357

  4. Theoretical analysis of XANES for aqueous aluminum salt solutions

    Science.gov (United States)

    Matsuo, Shuji; Shirozu, Kaori; Tateishi, Yuichi; Wakita, Hisanobu; Yokoyama, Takushi

    In order to understand the coordination behavior of Al(III) ions in hydrosphere, discrete variational X[alpha] molecular orbital calculations were performed to analyze Al K-edge XANES spectra for the aqueous solutions of Al(NO3)3·9H2O and Al-EDTA (EDTA = ethylenediaminetetraacetate) complex. As to Al(NO3)3·9H2O, the hydrate structure was presumed to be rather an asymmetric hexahydrated structure than an high-symmetric structure. As to Al-EDTA, the 5-fold coordinated Al-EDTA was concluded to be the coexistence of the pyramidal and trigonal bipyramidal structures in proportion of 4 to 6.

  5. Radiolysis of Aqueous Benzene Solutions at higher temperatures

    International Nuclear Information System (INIS)

    Aqueous solutions of benzene have been irradiated with Co γ-rays with doses of up to 2.3 Mrad in the temperature region 100 - 200 C. At 100 C a linear relationship between the phenol concentration and the absorbed dose was obtained, but at 150 C and at higher temperatures the rate of the phenol formation increased significantly after an initial constant period. With higher doses the rate decreased again, falling almost to zero at 200 C after a dose of 2.2 Mrad. The G value of phenol in the initial linear period increased from 2.8 at 100 C to 8.0 at 200 C. The reaction mechanism is discussed and reactions constituting a chain reaction are suggested. The result of the addition of iron ions and of a few inorganic oxides to the system is presented and briefly discussed

  6. Angular correlation of annihilation photons in frozen aqueous solutions

    DEFF Research Database (Denmark)

    Milosevic-Kvajic, M.; Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard

    1972-01-01

    Linear‐slit angular correlation curves were obtained at about −140°C for frozen aqueous solutions of HF, HCl, HBr, HI, NH3, FeCl2, FeCl3, NaI, H2SO4, NHO3, MnSO4, KMnO4, K2Cr2O7, NaOH, and LiOH. We found no appreciable influence of a 4% concentration of the last seven impurities. Only halide......‐containing impurities strongly changed the form of the curves; ppm concentrations of HCl and HF could be seen. The main change was a broadening of the part of the curve where the narrow and broad components meet. This fact is interpreted as being caused by trapping of para‐positronium in holes in the structure created...

  7. Protein thermal stabilization in aqueous solutions of osmolytes.

    Science.gov (United States)

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes. PMID:26495438

  8. Degradation of aqueous solutions of camphor by heterogeneous photocatalysis.

    Science.gov (United States)

    Sirtori, Carla; Altvater, Priscila K; de Freitas, Adriane M; Peralta-Zamora, Patricio G

    2006-02-28

    In this study the photocatalytic degradation of aqueous solutions of camphor was investigated by using TiO2 and ZnO photocatalysts. In the presence of artificial UV-light the highly photosensitive camphor was almost totally degraded after reaction times of 60 min. However, under these conditions the mineralization degree was lower than 25%. In the presence of semiconductors the degradation was complete after a treatment time of about 30 min. Moreover, the mineralization was considerably greater, mainly with the use of TiO2 (> 80% at reaction time of 60 min). Heterogeneous photocatalytic processes applied in the presence of solar radiation show a promising degradation capability. TiO2-based processes afforded mineralization degrees of about 90% after a reaction time of 120 min, when the system was assisted by aeration. PMID:16221528

  9. Experimental study on thermophoresis of colloids in aqueous surfactant solutions

    Science.gov (United States)

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-01

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  10. Micellar effects on positronium lifetime in aqueous SDS solutions

    International Nuclear Information System (INIS)

    Positron lifetime measurements have been performed in aqueous SDS (Sodium Dodecyl Sulphate) solutions. The lifetime distributions measured by fast-slow coincidence technique have been found to be influenced by surfactant concentration, which varied in the range of 1.25x10-3 - 3.2x10-1 mol/dm3 (i.e. 2.27x10-5 - 5.82x10-3 mole fractions). The lifetime of the long living component connected to positronium formation and decay increases with increasing surfactant concentration. Lifetime data suggest that a direct positronium-micelle electron-exchange reaction leading to pick-off annihilation is contraindicated. (author)

  11. Adsorption of basic dye from aqueous solution onto fly ash

    Energy Technology Data Exchange (ETDEWEB)

    J.X. Lin; S.L. Zhan; M.H. Fang; X.Q. Qian; H. Yang [Zhejiang University, Hangzhou (China). College of Civil Engineering and Architecture

    2008-04-15

    The fly ash treated by H{sub 2}SO{sub 4} was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy ({Delta}H{sup 0}) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.

  12. Dual fluorescence of naphthylamines in alkaline aqueous solution

    Science.gov (United States)

    Ma, Li-Hua; Wen, Zhen-Chang; Lin, Li-Rong; Jiang, Yun-Bao

    2001-10-01

    Dual fluorescence was observed with N-(1-naphthyl)aminoacetate (1-NAA) in aqueous solution of pH 13.0 in the presence of cationic surfactants, cetyltrimethylammonium bromide (CTAB) and chloride (CTAC), below and after the critical micelle concentration (CMC). Similar dual fluorescence was also found with 1- and 2-naphthylamine (1-NA, 2-NA), N-(2-naphthyl)aminoacetate (2-NAA) and (1-naphthyl)ethylenediamine (1-NEDA), in the presence and absence of the cationic surfactants, but not with N, N-disubstituted 1- and 2-NAs. We concluded that the dual fluorescence was due to the excited-state deprotonation of the amino group in these NAs. The p Ka*s of the dual fluorescent NAs were estimated to be around 14 from the dual fluorescence pH titrations. No clear correlation was found for p Ka* with the amino substitution and the presence of cationic micelle.

  13. Aqueous dispersions of silver nanoparticles in polyelectrolyte solutions

    Indian Academy of Sciences (India)

    Dan Donescu; Raluca Somoghi; Marius Ghiurea; Raluca Ianchis; Cristian Petcu; Stefania Gavriliu; Magdalena Lungu; Claudia Groza; Carmen R Ionescu; Carmen Panzaru

    2013-03-01

    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spectrophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to study how the reagents and their concentrations influence particle size. SEM images show the nanostructure of the hybrid films and indicate a strong interaction between the polyelectrolyte and the silver NPs. Moreover, the silver NPs could be stored for one year without observation of aggregates or sedimentation. The final solid products obtained after evaporating to dryness can be used to produce stable dispersions upon mixing with water. Few of the final products were found to exhibit a high antibacterial and antifungal activity.

  14. The radiolysis of aqueous solutions containing dithiothreitol and oxidized dithiothreitol

    Science.gov (United States)

    John Elliot, A.; Sopchyshyn, Frederick C.

    The radiation chemistry of aqueous solutions (pH 1-9) of dithiothreitol (DTT) has been investigated by pulsed and steady-state techniques. From G( H2S) in N 2- and N 2O-saturated solutions it was concluded for pH 5-9 that the majority of the solvated electrons and 25-40% of the hydroxyl radicals reacted with DTT to form H 2S. Oxidized dithiothreitol (DTT- ox) was the other major product observed for pH 5-9. However, DTT- ox was not formed when DTT solutions were irradiated at pH 1 and 2. When nitrate ions were added as an electron scavenger over the pH range 5-9, G( DTT- ox) was not affected; at pH 9.0 G( H2S) decreased slightly but at pH 5-6, G( H2S) was reduced to that arising from the reaction of the hydroxyl radical. The reaction of CO 2- with DTT- ox was studied at pH 4.6 and pH 9.0. At pH 9.0 the G( DTT)=3.3-0.2 indicated a simple two electron reduction of DTT- ox while at pH 4.6 the G( DTT) >25 implied a chain reaction had occurred.

  15. The radiolysis of aqueous solutions containing dithiothreitol and oxidized dithiothreitol

    International Nuclear Information System (INIS)

    The radiation chemistry of aqueous solutions (pH 1 to 9) of dithiothreitol (DTT) has been investigated by pulsed and steady-state techniques. From G(H2S) in N2- and N2O-saturated solutions it was concluded for pH 5 to 9 that the majority of the solvated electrons and 25 to 40% of the hydroxyl radicals reacted with DTT to form H2S. Oxidized dithiothreitol (DDT-ox) was the other major product observed for pH 5 to 9. However, DTT-ox was not formed when DTT solutions were irradiated at pH 1 and 2. When nitrate ions were added as an electron scavenger over the pH range 5 to 9, G(DTT-ox) was not affected; at pH 9.0 G(H2S) decreased slightly but at pH 5 to 6, G(H2S) was reduced to that arising from the reaction of the hydroxyl radical. The reaction of CO2- with DTT-ox was studied at pH 4.6 and pH 9.0. At pH 9.0 the G(DTT) = 3.3 +- 0.2 indicated a simple two electron reduction of DTT-ox while at pH 4.6 the G(DTT) > 25 implied a chain reaction had occurred. (author)

  16. Electron beam induced degradation of clopyralid in aqueous solutions

    International Nuclear Information System (INIS)

    The degradation characteristics of clopyralid irradiated by electron beam (EB) was studied in aqueous solutions. The effects of factors, such as initial clopyralid concentrations, addition of radicals scavenger, initial solution pH and addition of H2O2, were investigated on clopyralid degradation efficiency and mechanism. It was found that the EB-radiolysis was an effective way to degrade clopyralid and its degradation rate decreased with the increasing of substrate concentration. In the investigated initial concentrations range of 100-400 mg L-1, the radiolytic degradation of clopyralid followed a pseudo-first kinetic order. The results from addition of radicals scavenger indicated that both ·OH and eaq- played significant roles in the degradation of clopyralid. Furthermore, the alkaline condition and addition of H2O2 (<10 mM) in the solution also slightly enhanced the efficiency of clopyralid degradation. The ion chromatography analysis showed that some organic acids (formic acid, acetic acid and oxalic acid) were formed, while the completely dechlorination of the substrate was achieved and organic nitrogen was recovered in the form of ammonium and nitrate ions during the irradiation process. (author)

  17. Extraction of certain radionuclides from aqueous schungite solutions

    International Nuclear Information System (INIS)

    The sorption of 90Sr, 106Ru, 137Cs, and 238Pu from aqueous solutions over a wide pH range was studied. Swelled schungite chips (Nigozero, Kondopozhsk region) (1) and schungite (Onezhsk lake) (2) were tested as sorbents. The minerals were used both untreated and after oxidation (HNO3, 1:1, contact time 1 day). The oxidation, judging from the literature, facilitates the formation of carboxylic and phenolic functional groups on the surface of the carbon-containing sorbents. The presence of such groups is responsible for the high selectivity of the sorbents for multicharged cations. Futhermore, the hydrophobicity of the schungites enormously decreases after the oxidation. The studied sorbents had an average particle size of 0.08-0.1 mm. The schungite was contacted with the solution under static conditions with periodic stirring in order to establish equilibrium. The concentration of the radionuclides was 2-4 MBq/liter. The solution volumes were 10 ml. The sorbent content was 0.01 g. The required pH was set by adding HCl or NaOH

  18. Radiation-induced reduction of ditetrazolium salt in aqueous solutions

    International Nuclear Information System (INIS)

    Color formation in aqueous solutions of the ditetrazolium salt blue tetrazolium (BT2+) in the absence or presence of oxygen is a complex radiation chemical reaction. The final stable product is the poorly soluble diformazan violet to blue pigment having a broad spectral absorption band (λmax=552 nm). The reaction of BT2+ with the hydrated electron proceeds by rapid reduction of BT2+ followed by protonation at the nitrogen closest to the unsubstituted phenyl group, via the two intermediate tetrazolinyl radicals shared by the ditetrazole ring nitrogens. The effect of solution pH, N2O saturation, and the presence of the reducing agent dextrose are examined. The system serves as a radiochromic sensor and a dosimeter of ionizing radiations. Solutions of 5 mmol l-1 BT2+ at pH 7.3 serve as dosimeters over an absorbed-dose range of approximately 0.2-6 kGy (dearated, with a range of 1-8 mmol l-1 dextrose) and of about 1-15 kGy (aerated, with 0.1 mol l-1 sodium formate and 5 mmol l-1 dextrose)

  19. Aqueous solution of basic fuchsin as food irradiation dosimeter

    Institute of Scientific and Technical Information of China (English)

    Hasan M. KHAN; Shagufta NAZ

    2007-01-01

    Dosimetric characterization of aqueous solution of basic fuchsin was studied spectrophotometrically for possible application in the low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined and the decrease in absorbance with the dose was noted down. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorption λmax (540nm) as well as 510nm and 460 nm. At all these wavelengths, the decrease in absorbance of the dosimeter was linear with respect to the absorbed dose from 50 Gy to 600 Gy. The stability of dosimetric solution during post-irradiation storage in the dark at room temperature showed that after initial bleaching during first ten to twenty days, the response was almost stable for about 34 days. The study on the effect of different light and temperature conditions also showed that the response gradually decreased during the storage period of 34 days, which shows that basic fuchsin dye is photosensitive as well as thermally sensitive.

  20. Experimental tests for 36cl removal from aqueous solution

    International Nuclear Information System (INIS)

    This paper presents the experimental tests of a chlorine separation and purification method from aqueous samples with knowing content of Co, Cs, Eu, Ni and Sr stable elements. The method is based on the property of chloride ions to form a silver chloride white precipitate, followed by the use of the extraction chromatography on the strong anionic resin (Bio-Rad AG® 1-X4) to purify chlorine. The concentrations of Co, Cs, Eu, Ni and Sr (separated from Cl by using precipitation method) were measured by ICP-OES. The silver chloride precipitate was dissolved in 25 % NH3 solution and loaded onto the anionic resin. The chloride ions were strongly retained on the resin and eluted with a proper solution. The final solution, containing chloride ions, was converted to a form compatible with the spectrophotometric and Mohr titration techniques, which were used to determine chloride concentration. The separation yields of Co, Cs, Eu, Ni and Sr from Cl are very good. More than 98 % from the initial concentration of chlorine was recovered. (authors)

  1. Cr(VI) reduction in aqueous solutions by siderite.

    Science.gov (United States)

    Erdem, Mehmet; Gür, Faruk; Tümen, Fikret

    2004-09-10

    Hexavalent chromium is a common and toxic pollutant in soils and wastewaters. Reduction of the mobile Cr(VI) to less mobile and less toxic Cr(III) is a solution for decontamination of industrial effluents. In this study, the reduction of hexavalent chromium in aqueous solutions by siderite was investigated. The influences of amount of acid, contact time, siderite dosage, initial Cr(VI) concentration, temperature and particle size of siderite have been tested in batch runs. The process was found to be acid, temperature and concentration dependent. The amount of acid is the most effective parameter affecting the Cr(VI) reduction since carbonaceous gangue minerals consume acid by side reactions. The highest Cr(VI) reduction efficiency (100%) occurred in the 50 mg/l Cr(VI) solution containing two times acid with respect to stoichiometric amount of Cr(VI) and at the conditions of siderite dosage 20 g/l, contact time 120 min and temperature 25 degrees C. Reduction efficiency increased with increase in temperature and decrease in particle size. The reduction capacity of siderite was found to be 17 mg-Cr(VI)/g. PMID:15363534

  2. The autoreduction of pertechnetate in aqueous, alkaline solutions

    International Nuclear Information System (INIS)

    The autoreduction of pertechnetate (99TcO4-) to Tc(IV/V) alkoxide complexes in aqueous, alkaline, solutions is described. Solutions of sodium pertechnetate (0.01M) reacted with nitrogen and oxygen donor ligands (1.0M) in 2M sodium hydroxide. Solutions containing nitrogen donor ligands (e.g., EDTA) showed the initial formation of lightly colored complexes followed by rapid decomposition in air. In contrast, stable, reduced complexes were formed within minutes of mixing pertechnetate with mono- and disaccharides in strong base, as indicated by a persistent color change. Chemical yields of these reactions were determined by thin layer chromatography or paper chromatography and radiochemically assayed with a Bioscan imaging scanner. Analysis by UV-vis spectroscopy suggested that Tc(IV) or Tc(V) complexes were produced, with the oxidation state dependent on the reducing ligand. These experiments may help explain the reduction of pertechnetate to the soluble complexes that have been found in the Hanford nuclear waste tanks. (author)

  3. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    Directory of Open Access Journals (Sweden)

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  4. Effect of gamma irradiation on viscosity of aqueous solutions of some natural polymers

    International Nuclear Information System (INIS)

    Effect of gamma irradiation on viscosity of aqueous solution of alginate and carbon xylmethyl cellulose (CMC) irradiated in solid state has been carried out. the viscosity of aqueous solution of alginate and CMC decreased remarkably with increasing dose and the viscosity of 2% solution of above polymers irradiated at 50 kGy was about 100 times lower than the original one. (author)

  5. Catalytic destruction of hazardous organics in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Baker, E.G.; Sealock, L.J. Jr.

    1988-04-01

    Pacific Northwest Laboratory (PNL) is developing a process for destroying hazardous organics and chlorinated organics in aqueous solutions. The process is targeted at liquid waste streams that are difficult and costly to treat with conventional or developing technologies. Examples of these waste streams include contaminated groundwater and surface water and industrial wastewater. Aqueous solutions are treated with a transition metal catalyst at 300/degree/C to 460/degree/C and 2000 to 5000 psig pressure to convert the wastes to innocuous gases. During proof-of-principle tests conducted in a 1-L batch reactor, destruction of over 99/percent/ (in most cases approaching 99.9/percent/) of the organic material was achieved. Hexone (methyl is isobutyl ketone, MIBK), p-cresol, hexane, benzene, and naphthalene were used as model waste materials. The only major product with all of the organic compounds was a gas containing 50/percent/ to 75/percent/ methane, 25/percent/ to 45/percent/ carbon dioxide, and 0/percent) to 5/percent/ hydrogen. Reduced nickel was the only effective catalyst and that the optimal operating conditions for destroying nonchlorinated organics were 350/degree/C to 400/degree/C, 2000 to 4000 psig, and 30/endash/ to 60/endash/min residence time. These tests also indicated that catalyst deactivation or fouling would not be a problem at these conditions. Chlorobenzene and trichloroethylene (TEC), were also tested. Destruction of both compounds was 99/percent/ or greater, but the products were different from those obtained from hydrocarbons. With TCE, the major product was carbon dioxide; with chlorobenzene the major product identified was benzene. In the tests with the chlorinated hydrocarbons, the chlorine was converted to HC1 and the reduced nickel was converted to nickel hydroxide, which may be detrimental to long-term catalyst activity. (15 refs., 8 figs., 6 tabs).

  6. Adsorption of U(VI) from aqueous solutions onto dolomite

    International Nuclear Information System (INIS)

    Full text of publication follows: The release of radioactive substances into aqueous media is a very important subject in the context of high-level nuclear waste geologic repositories. Adsorption onto mineral surfaces is a very important process leading to the reduction of radionuclide concentrations in solution. Uranium is one of the well known radioactive substance whose adsorption behaviour may strongly vary depending on the environmental conditions such as adsorbent type and pH. Dolomite is a major and cheap source of magnesium and calcium. It is generally used in food and pharmaceutical industries, glass and building materials. In some conditions, dolomite can be used as an appropriate adsorbent for removal of some metal ions. Metal removal occurs because of the dual effect of electrostatic and chemical forces between mineral surfaces and ions. Adsorption of U(VI) onto dolomite is investigated by varying parameters such as solid to liquid ratio, contact time, pH and concentration of U(VI). 238U as uranyl nitrate is used for the experiments. The optimum solid to liquid ratio and contact time are found as 0.04 and 1 h, respectively. Formation of insoluble aqueous complexes of the U(VI) at higher pH values (pH>5), may change the mechanism of the adsorption phenomena on dolomite. Precipitation may occur at high pH values at studied uranium concentration (1.10-3 moL-1). The maximum adsorption is observed near pH 3. At this pH value UO22+ is dominant species in the solution. The data obtained from adsorption experiments are fitted to Frumkin, Langmuir and Dubinin-Radushkevich isotherms. The results calculated from adsorption isotherms evaluate the type of the adsorption. The adsorption dependence of uranium on temperature is investigated and thermodynamic parameters ΔHo, ΔSo and ΔGo are calculated. (authors)

  7. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  8. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water. PMID:22661261

  9. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    International Nuclear Information System (INIS)

    Research highlights: → The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. → Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. → Viscometric studies revealed studied ionic liquids as water-structure makers. → Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density ρ, speed of sound u, and viscosity η of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [Cnmim] having [BF4]-, [Cl]-, [C1OSO3]-, and [C8OSO3]- as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume φV, isentropic compressibility βs, and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (Vint) molar electrostriction volume (Velec), molar disordered (Vdis), and cage volume (Vcage). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  10. Influence aqueous solutions on the mechanical behavior of argillaceous rocks

    International Nuclear Information System (INIS)

    The hydration of the shale with an aqueous solution induces a swelling deformation which plays an important role in the behaviour of the structures excavated in this type of grounds. This deformation is marked by a three-dimensional and anisotropic character and involves several mechanisms like adsorption, osmosis or capillarity. Several researches were dedicated to swelling and were often much debated due to the complexity of the implied phenomena. The goal of this thesis is therefore to contribute to a better understanding of shale swelling when the rock is confined and hydrated with an aqueous solution. The main part of the work accomplished was related to the Lorraine shale and to the Tournemire shale. To characterize swelling and to identify the main governing parameters, it was necessary to start the issue with an experimental approach. Many apparatus were then developed to carry out tests under various conditions of swelling. In order to facilitate the interpretation of the tests and thereafter the modelling of the behaviour, the experimental procedure adopted consisted of studying first the mechanical aspect and then the chemical aspect of swelling. In the mechanical part, swelling was studied by imposing on the sample a mechanical loading while maintaining during the tests the same aqueous solution. The principal parameters which were studied are the effect of the lateral conditions on axial swelling (impeded strain or constant stress) as well as the influence of the axial stress on radial swelling. The anisotropy of swelling was studied by carrying out, for different orientations of the sample, tests of free swelling, impeded swelling and uniaxial swelling. These various mechanical tests allowed to study the three-dimensional anisotropic swelling in all the conditions and to select the most appropriate test to be used in the second phase of the research. The precise analysis performed to explain the mechanisms behind the swelling of an argillaceous rock

  11. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    The Extended UNIQUAC model has previously been used to describe the excess Gibbs energy for aqueous electrolyte mixtures. It is an electrolyte model formed by combining the original UNIQUAC model, the Debye-Huckel law and the Soave-Redlich-Kwong equation of state. In this work the model is extended...... the phase behaviour of methanol-water-three salts systems is illustrated. (C) 2000 Elsevier Science Ltd. All rights reserved....

  12. Electron beam irradiation induced degradation of polyvinyl alcohol in aqueous solution

    International Nuclear Information System (INIS)

    Background: Polyvinyl alcohol (PVA) has been widely used in the industry of textile, however, its aqueous solution was difficult to be biodegraded under natural conditions. Purpose: In this study, the PVA in aqueous solution was degraded by electron beam irradiation. Methods: Radioactive ray from electron accelerator was used for degradation of PVA aqueous solution. The effects of different radiation dose and pH on the CODCr and BOD5 values of PVA aqueous solution were investigated. The precipitation generated from acidic irradiated PVA aqueous solution was used for infrared spectroscopy analysis. Results: CODCr values of neutral and alkaline PVA aqueous solution were not significantly changed in the radiation dose range of 0-30 kGy. Acidic PVA aqueous solution after 20-30 kGy dose irradiation produced precipitation obviously. The CODCr values were significantly reduced by 97%-98%. Infrared spectrum analysis showed that precipitation was cross-linked PVA. With radiation dose increasing, BOD5 values of different pH of PVA aqueous solution was gradually reduced, the acidic BOD5 values were minimal under the same radiation dose. The B/C values of neutral and alkaline PVA aqueous solution irradiated by the dose range of 0-30 kGy was no significantly changed. However, the B/C values of acidic PVA aqueous solution increased obviously after 20-30 kGy irradiation, and it increased 14-16 times. Conclusions: This study indicated that under the acidic circumstance, the CODCr values of PVA aqueous solution decreased significantly, PVA in aqueous solution was removed efficiently by electron beam irradiation, and the potential of biodegradation was also improved. (authors)

  13. The Removal of Dye from Aqueous Solution by Adsorption on Low Cost Adsorbents

    OpenAIRE

    J. J. Chamargore; Bharad, J. V.; Madje, B. R.; Ubale, M. B.

    2010-01-01

    Removal of color from aqueous solution by using low cost easily available adsorbent was conducted by batch experiment. The potential of the low cost adsorbent (Marble powder-treated and untreated) to remove methylene red from aqueous solution were assessed at room temperature. Laboratory investigation of the potential of marble powder and sulphuric acid treated marble powder to remove dye color from aqueous solution has been studied. Parameters studied included pH, adsorbent dose, initial dye...

  14. Ternary diffusion of carbon dioxide in alkaline solutions of aqueous sodium hydroxide and aqueous sodium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Leaist, D.G.

    1985-07-01

    Carbon dioxide dissolved in alkaline solutions diffuses as bicarbonate and carbonate ions produced by the reactions CO/sub 2/+OH/sup -/=HCO/sub 3//sup -/ and CO/sub 2/+2OH/sup -/=CO/sub 3//sup 2 -/+H/sub 2/O. Ternary diffusion coefficients of the systems NaHCO/sub 3/+Na/sub 2/CO/sub 3/+H/sub 2/O and Na/sub 2/CO/sub 3/+NaOH+H/sub 2/O have been measured by a conductimetric technique at 298.15 K. The mixed electrolyte data are transformed by use of the solution equilibria to ternary diffusion coefficients of the systems CO/sub 2/+Na/sub 2/CO/sub 3/+H/sub 2/O and CO/sub 2/+NaOH+H/sub 2/O. Unlike the binary diffusivity of CO/sub 2/ in water (1.9 . 10/sup -9/ m/sup 2/ s/sup -1/), the ternary diffusivity of CO/sub 2/ in alkaline solutions is sensitive to concentration and varies from 0.9 . 10/sup -9/ to 3.5 . 10/sup -9/ m/sup 2/ s/sup -1/ at 298.15 K. Expressions are derived to estimate the transport coefficients of the components from the concentrations and diffusion coefficients of the constituent ions. At high pH values hydroxide-coupled transport leads to rapid diffusion of CO/sub 2/ as CO/sub 3//sup 2 -/. The results are consistent with the Onsager reciprocal relation for isothermal ternary diffusion.

  15. Measurement and correlation of physical properties of aqueous solutions of tetrabutylammonium hydroxide, piperazine and their aqueous blends

    Institute of Scientific and Technical Information of China (English)

    Rizwan Safdar; Abdul Aziz Omar; Lukman B Ismail; Arhama Bari; Bhajan Lal

    2015-01-01

    The density, viscosity and refractive index of aqueous solutions of tetrabutylammonium hydroxide (TBAOH), pi-perazine (PZ) and their aqueous blends are determined at several temperatures (303.15 to 333.15 K). All these measured physicochemical properties decreases with an increase in temperature. The density data is used to cal-culate the coefficient of thermal expansion and excess molar volume of al aqueous binary and ternary solutions. The coefficient of thermal expansion increases with increase in temperatures and concentrations. The negativity of excess molar volume for al the aqueous solution decreased with increase in temperature. Each physical prop-erty is correlated with temperature by least square method and the corresponding coefficients for each property are presented. The prediction values from correlations for the physical properties are in good agreement with the experimental values.

  16. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    Science.gov (United States)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  17. Electrochemical treatment of aqueous radioactive solutions containing 137Cs and 260Co radionuclides

    International Nuclear Information System (INIS)

    Electrochemical treatment of simulated aqueous radioactive solutions containing 137Cs /or 60Co radionuclides had been investigated. In this study, the used electrolytic cell was made from plexiglas of outer and inner dimensions 12.5x5.8x6.5 cm, and 11.2x4.8x5.7 cm, respectively. In the cell, the employed anodes were of the shape of metal plates fabricated from industrial wastes of Al, Fe, and Cu with effective dimensions of 4.0x2.8x0.1 cm (surface area = 11.2 cm2). The used cathode was made from a platinum sheet of dimensions 4.0x0.5x0.05 cm(surface area = 2.0 m2). the distance between the electrodes was kept constant at 10 cm. Direct electric current was supplied from a digital DC-power supply of maximum applied voltage 30V and electric current 3A. In this work, the investigated factors were: applied voltage and the type of the used anode, treatment duraton, hydrogen ion concentration, salt content of the aqueous solution, and the effect of the presence of different concentrations from the non-active cesium and cobalt salts. It was observed that the highest percent of removal (Pr) for 137Cs after a treatment duration of 20 minutes was 79%, 69% and 60% using AI, Fe, and Cu anodes, respectively. Also, the highest Pr values for 60Co after 15 minutes were 98%, 95% and 93%, reached using Al, Fe, and Cu anodes, respectively

  18. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology. PMID:27488137

  19. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  20. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    International Nuclear Information System (INIS)

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO4) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-ΔGr) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO4 concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-ΔGr), the former in ethanol and ACN increases only linearly with the increase in driving force (-ΔGr). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.