WorldWideScience

Sample records for aqueous electrolyte solutions

  1. Glasslike behavior in aqueous electrolyte solutions.

    Science.gov (United States)

    Turton, David A; Hunger, Johannes; Hefter, Glenn; Buchner, Richard; Wynne, Klaas

    2008-04-28

    When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  2. Glasslike Behavior in Aqueous Electrolyte Solutions

    CERN Document Server

    Turton, David A; Hefter, Glenn; Buchner, Richard; Wynne, Klaas; 10.1063/1.2906132

    2009-01-01

    When salts are added to water, the viscosity generally increases suggesting the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules implying no enhance-ment or breakdown of the hydrogen-bond network. Here we report optical Kerr-effect and dielectric relaxa-tion spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  3. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    CERN Document Server

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  4. A lithium ion battery using an aqueous electrolyte solution

    OpenAIRE

    Zheng Chang; Chunyang Li; Yanfang Wang; Bingwei Chen; Lijun Fu; Yusong Zhu; Lixin Zhang; Yuping Wu; Wei Huang

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge vo...

  5. A lithium ion battery using an aqueous electrolyte solution

    Science.gov (United States)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  6. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    Science.gov (United States)

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  7. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    徐铜文; 杨伟华; 何柄林

    2001-01-01

    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with monovalence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to hulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated with in chosen parameters. It is revealed that ion partition is not related solely withthe respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoreticalcal culations were compared with the experimental data and a good agreement was observed.

  8. Partition Equilibrium Between Charged Membrane and Single Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ionic partition equilibrium in charged membrane immersed in solution of single electrolyte with mono valence or multi-valence is systematically investigated and several expressions are established for determination of partition coefficients. On this basis, the effects of the ratio of membrane charge density to bulk electrolyte solution concentration, the charge sign and valence of electrolyte ions and the type of membrane on the partition equilibrium were analyzed and simulated within chosen parameters. It is revealed that ion partition is not related solely with the respective concentrations but also definitely with the concentration ratio of fixed group to bulk solution in addition to the charge sign and the valence. For a counterion, the partition coefficient increases with this ratio and the valence; while for a coion, the partition coefficient decreases with this ratio and the valence. The theoretical calculations were compared with the experimental data and a good agreement was observed.

  9. Thermodynamic Modeling of Surface Tension of Aqueous Electrolyte Solution by Competitive Adsorption Model

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Kamali

    2015-01-01

    Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.

  10. Simulations of mean ionic activity coefficients and solubilities in aqueous electrolyte solutions

    Science.gov (United States)

    Panagiotopoulos, Athanassios

    Aqueous electrolyte solutions play an important role in industrial, geochemical and biological applications. The mean ionic activity coefficients quantify the deviation of salt chemical potential from ideal solution behavior; experimental measurements are available for many salts over broad ranges of concentration and temperature, but there have been practically no prior simulation results, because if sampling difficulties for explicit-solvent electrolyte solutions. We have developed a new approach for determination of activity coefficients of aqueous electrolytes. Common fixed-point-charge models for water and ions are unable to reproduce simultaneously activity coefficients and solubilities. Polarizable models perform better, but still predict an incorrect temperature dependence of these properties. Work supported by the U.S. Department of Energy, Office of Basic Energy Science.

  11. Structure of aqueous electrolyte solutions near a hydrophobic surface

    Directory of Open Access Journals (Sweden)

    M.Kinoshita

    2007-09-01

    Full Text Available The structure of aqueous solutions of 1:1 salts (KCl, NaCl, KF,and CsI near a hydrophobic surface is analysed using the angle-dependent integral equation theory. Water molecules are taken to be hard spheres imbedded with multipolar moments including terms up to octupole order, and hard spherical ions are immersed in this model water. The many-body interactions associated with molecular polarizability are treated at the self-consistent mean field level. The effects of cationic and anionic sizes and salt concentration in the bulk are discussed in detail. As the salt concentration increases, the layer of water molecules next to the surface becomes denser but its orientational order remains almost unchanged. The concentration of each ion at the surface can be drastically different from that in the bulk. Asa striking example, at sufficiently low salt concentrations, the concentration of I- is about 500 times higher than that of F- at the surface.

  12. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Oskari [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 (Finland); Håkansson, Markus [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Sakari, E-mail: sakari.kulmala@aalto.fi [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland)

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F{sup +}-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes. - Highlights: • Hot electrons injected into aqueous electrolyte solution. • Generation of hydrated electrons. • Hole injection into aqueous electrolyte solution. • Generation of hydroxyl radicals.

  13. Effect of salt identity on the phase diagram for a globularprotein in aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Bostrom, Mathias; Tavares, Frederico W.; Ninham, Barry W.; Prausnitz, John M.

    2006-02-22

    Monte Carlo simulations are used to establish the potential of mean force between two globular proteins in an aqueous electrolyte solution. This potential includes nonelectrostatic contributions arising from dispersion forces first, between the globular proteins, and second, between ions in solution and between each ion and the globular protein. These latter contributions are missing from standard models. The potential of mean force, obtained from simulation, is fitted to an analytic equation. Using our analytic potential of mean force and Barker-Henderson perturbation theory, we obtain phase diagrams for lysozyme solutions that include stable and metastable fluid-fluid and solid-fluid phases when the electrolyte is 0.2 M NaSCN or NaI or NaCl. The nature of the electrolyte has a significant effect on the phase diagram.

  14. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...... predicted the gas hydrate formation conditions in aqueous solutions of single and mixed electrolytes. The agreement between experimental data and predictions was found to be excellent....

  15. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    Science.gov (United States)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  16. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution

    Science.gov (United States)

    Stepniak, Izabela; Ciszewski, Aleksander

    Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution.

  17. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

  18. Partition Equilibrium on the Interface Between a Charged Membrane and a Mixed Electrolyte Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Ionic partition equilibrium on a charged membrane immersed in a mixed electrolyte solution was systematically investigated and several models were established for the determination of partition coefficients. On the basis of theoretical models, the effects of the concentration ratio λ of the fixed group(charged density) to reference electrolyte, the concentration ratio η between the two electrolytes existing in the solution and the valence of the electrolyte ions on the partition equilibrium in a positively charged membrane were analyzed and simulated within the chosen parameters in detail. The obtainable results can also be applicable to a sytem of mixed electrolytes contacting with a negatively charged membrane. The theoretical calculations were confirmed with the experimental data of model mixed electrolytes, NaCl+HCl and CaCl2+NaCl partitioned in the system of self-made negatively charged membrane-sulphonated poly(phenylene oxide)(SPPO) with different charge densities.

  19. Vapor-Liquid-Solid Equilibria of Sulfur Dioxide in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Pereda, Selva; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    The Extended UNIQUAC model for electrolyte systems, combined with the Soave-Redlich-Kwong equation of state is used to describe the complex vapor-liquid-solid equilibria of sulfur dioxide in electrolyte solutions. Model parameters based on 1500 experimental data points are presented. The paramete...

  20. Dynamic contact angles on PTFE surface by aqueous surfactant solution in the absence and presence of electrolytes.

    Science.gov (United States)

    Chaudhuri, Rajib Ghosh; Paria, Santanu

    2009-09-15

    This study presents the experimental results on dynamic contact angles of pure surfactants and surfactants with electrolyte solutions on PTFE (Teflon) surface. Dynamic advancing (theta(A)) and receding (theta(R)) contact angles measurements by the Wilhelmy plate technique were carried out for aqueous solution of three different surfactants Triton X-100 (TX-100), sodium dodecylbenzene sulfonate (SDBS), and cetyltrimethylammonium bromide (CTAB). The same measurements in the presence of different electrolytes NaCl, Na(2)SO(4), and CaCl(2) for ionic surfactants (SDBS and CTAB) were also carried out to see the change in contact angle and wetting behavior. The presence of electrolytes changes the advancing contact angle as well as wetting properties of hydrophobic solid surface significantly even at very low surfactant concentration. Counter ion valency of the electrolyte is more important in reducing advancing contact angle on hydrophobic PTFE surface at very low concentration of ionic surfactants from CMC. Pure surfactants and ionic surfactants in the presence of electrolytes show a linear relationship between the adhesional tension and surface tension at air-water interface with different slope and intercept.

  1. Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory

    DEFF Research Database (Denmark)

    Cameretti, Luca F.; Sadowski, Gabriele; Mollerup, Jørgen

    2005-01-01

    The vapor pressures and liquid densities of single-salt electrolyte solutions containing NaCl, LiCl, KCl, NaBr, LiBr, KBr, NaI, LiI, KI, Li2SO4, Na2SO4, and K2SO4 were modeled with an equation of state based on perturbed-chain statistical associated fluid theory (PC-SAFT). The PC-SAFT model...

  2. Tetrahydrofuran-promoted clathrate hydrate phase equilibria of CO{sub 2} in aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, K.M.; Roman, V.R. [Delft Univ. of Technology, Delft (Netherlands). Physical Chemistry and Molecular Thermodynamics; Witkamp, G.J.; Peters, C.J. [Delft Univ. of Technology, Delft, (Netherlands). Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering

    2008-07-01

    The phase behavior of a system consisting of carbon dioxide (CO{sub 2}) hydrates is of significant importance for many industrial and natural processes. Carbon dioxide and water are part of natural gas streams and they are also found in oil reservoirs during enhanced oil recovery. Formation of hydrate in these cases may cause problems during production and processing. Alternatively, carbon dioxide hydrate formation may be desirable since it can facilitate separation processes, freezing and refrigeration processes and sequestration of CO{sub 2}. The need for phase equilibrium data of systems, particularly electrolyte solutions containing CO{sub 2} are therefore needed. This paper presented a study that attempted to measure the hydrate equilibrium condition for quaternary system consisting of CO{sub 2}, tetrahydrofuran (THF), an electrolyte and water. The purpose of the study was to examine the competing effect of tetrahydrofuran and an electrolyte on the phase behavior of CO{sub 2} hydrates when both were simultaneously present in a system at hydrate forming condition and to compare the effect of different salts inhibition on tetrahydrofuran-promoted CO{sub 2} hydrate. Six different electrolytes were utilized, including sodium chloride, calcium chloride, magnesium chloride, potassium bromide, sodium fluoride and sodium bromide. It was concluded that the inhibiting effect among the cations increased with increasing charge of the cation and its radius. It was also found that the inhibiting effect of the anions decreased with a decrease on their ion radius. 12 refs., 4 figs.

  3. A Concise Equation of State for Aqueous Solutions of Electrolytes Incorporating Thermodynamic Laws and Entropy

    Directory of Open Access Journals (Sweden)

    Raji Heyrovská

    2004-03-01

    Full Text Available Abstract: Recently, the author suggested a simple and composite equation of state by incorporating fundamental thermodynamic properties like heat capacities into her earlier concise equation of state for gases based on free volume and molecular association / dissociation. This work brings new results for aqueous solutions, based on the analogy of the equation of state for gases and solutions over wide ranges of pressures (for gases and concentrations (for solutions. The definitions of entropy and heat energy through the equation of state for gases, also holds for solutions.

  4. Electrolytic reduction of Nantong coal and model compounds with oxygenic functional groups in an aqueous NaCl solution

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei; YAO Li-ping; LIN Juan; ZONG Zhi-min

    2008-01-01

    Electrolytic reductions of oxygenic functional groups (OFGs) on coal surface and coal model compounds with OFGs in an aqueous NaCl solution are studied by electrochemical methods combined with GC/MS, GC and FTIR analyses. Different elec-trode reactions, their corresponding potentials and dynamic equations during the processes are investigated. The results show that benzoic acid, benzaldehyde, benzalcohol and hypnone are reduced to benzaldehyde and benzalcohol, methoxybenzene and benzal-cohol, toluene and styrene, respectively, at the cathode. The corresponding electrode potentials and dynamic equations are deter-mined. The electrolytic reduction also leads to an increase in the contents of hydroxyl groups and aliphatic moieties and a corre-sponding decrease in those of carboxyl and carbonyl groups in Nantong coal, a high-sulfur coal, an enhancement in the flotation desulfurization of the coal. ER also reduces organic sulfur and FeS2 in the coal.

  5. Study of Interfacial Tension between an Organic Solvent and Aqueous Electrolyte Solutions Using Electrostatic Dissipative Particle Dynamics Simulations

    CERN Document Server

    Mayoral, E; 10.1063/1.4766456

    2012-01-01

    The study of the modification of interfacial properties between an organic solvent and aqueous electrolyte solutions is presented by using electrostatic Dissipative Particle Dynamics (DPD) simulations. In this article the parametrization for the DPD repulsive parameters aij for the electrolyte components is calculated considering the dependence of the Flory-Huggins \\c{hi} parameter on the concentration and the kind of electrolyte added, by means of the activity coefficients. In turn, experimental data was used to obtain the activity coefficients of the electrolytes as a function of their concentration in order to estimate the \\c{hi} parameters and then the aij coefficients. We validate this parametrization through the study of the interfacial tension in a mixture of n-dodecane and water, varying the concentration of different inorganic salts (NaCl, KBr, Na2SO4 and UO2Cl2). The case of HCl in the mixture n-dodecane/water was also analyzed and the results presented. Our simulations reproduce the experimental da...

  6. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  7. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions.

    Science.gov (United States)

    Wu, Yan; Misra, Sambit; Karacor, M Basar; Prakash, Shaurya; Shannon, Mark A

    2010-11-16

    The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.

  8. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    Science.gov (United States)

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  9. Anomalous pH dependent stability behavior of surfactant-free nonpolar oil drops in aqueous electrolyte solutions.

    Science.gov (United States)

    Clasohm, Lucy Y; Vakarelski, Ivan U; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2007-08-28

    Recent advances in atomic force microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical interpretation of the interaction between a liquid droplet and a solid surface or between two liquid droplets. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface in the absence of stabilizers. It was found that even at a relatively elevated electrolyte concentration of 0.1 M NaNO3, depending on the solution pH, interactions between two identical droplets or a droplet and a mica surface could be repulsive. A simple theoretical analysis of the magnitude and range of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force behavior is discussed in the context of ion adsorption, and the arising charging effects, at the bare oil-water interface.

  10. Theoretical study of phase behaviour of DLVO model for lysozyme and γ-crystalline aqueous electrolyte solutions

    Directory of Open Access Journals (Sweden)

    R. Melnyk

    2015-03-01

    Full Text Available Mean spherical approximation (MSA, second-order Barker-Henderson (BH perturbation theory and thermodynamic perturbation theory (TPT for associating fluids in combination with BH perturbation theory are applied to the study of the structural properties and phase behaviour of the Derjaguin-Landau-Verwey-Overbeek (DLVO model of lysozyme and γ-cristalline aqueous electrolyte solutions. Predictions of the MSA for the structure factors are in good agreement with the corresponding computer simulation predictions. The agreement between theoretical results for the liquid-gas phase diagram and the corresponding results of the experiment and computer simulation is less satisfactory, with predictions of the combined BH-TPT approach being the most accurate.

  11. Molecular dynamics simulation of the electrokinetic flow of an aqueous electrolyte solution in nanochannels

    CERN Document Server

    Yoshida, Hiroaki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-01-01

    Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics (MD) simulations. The four transport coefficients that characterise the response to weak electric and pressure fields, namely the coefficients for the electrical current in response to the electric field ($M^{jj}$) and the pressure field ($M^{jm}$), and those for the mass flow in response to the same fields ($M^{mj}$ and $M^{mm}$), are obtained in the linear regime using a Green-Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsager's reciprocal relation ($M^{jm} = M^{mj}$) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the trans- port coefficients are found to be smaller for larger surface charge density, be...

  12. 非线性光学研究水及电解质水溶液界面——空气/电解质水溶液界面特定阴阳离子效应%Nonlinear Optical Spectroscopy Studies on Water and Aqueous Solution Interfaces Specific Ion Effect Electrolyte Aqueous Solution Interfaces Electrolyte at Air/Electrolyte Aqueous Solution Interfaces

    Institute of Scientific and Technical Information of China (English)

    邓罡华; 王鸿飞; 郭源

    2012-01-01

    Water and electrolyte aqueous solution interfaces play crucial roles in many processes of physics, chemistry, environment, and biology. People have attempted to understand the structure and dynamics of water and electrolyte aqueous solution interfaces for decades. Recently, both experimental and theoretical studies have proved that larger and more polarizable anions attend to accumulate at the interface and affect the interfaeial water hydrogen bonding structure. In this review, we present recent progress of nonlinear optical spectroscopy studies on water and electrolyte aqueous solution interfaces with nonresonant second harmonic generation (SHG) and sum frequency generation vibrational spectroscopy (SFG-VS). First, we addressed the signal source of the nonresonant second harmonic generation of the air/water interface. Analysis of the experimental results showed that the SHG signal of the air/water interface can be treated fully only with dipolar contribution, which lay the foundation of nonresonant second harmonic generation in studying water and electrolyte aqueous solution interfaces. We then utilized the polarization and molecular symmetry analyses to assign the SFG-VS spectra peaks to different interfacial species at the air/water interface. These results provide detailed informations on the orientation, structure, and dynamics of water molecules at the air/water interface. Subsequently, we studied several kinds of electrolyte aqueous solution interfaces by nonresonant SHG and SFG-VS. These results showed that not only the larger and more polarizable Branion, but also the smaller and less polarizable Cl-, F- anions are enriched at the air/water interface and increased the interfacial thickness. Furthermore, we also observed the specific Na^+, K^+ cation effect on the interfacial thickness and interfacial water hydrogen bonging structure.%水及电解质溶液界面在物理、化学、环境及生物等各种过程中扮演着至关重要的角色。百年

  13. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  14. Electrolytic treatment of methyl orange in aqueous solution using three-dimensional electrode reactor coupling ultrasonics.

    Science.gov (United States)

    He, Pingting; Wang, Ling; Xue, Jianjun; Cao, Zhibin

    2010-04-01

    The treatment of wastewater containing methyl orange was investigated experimentally using a three-dimensional electrode reactor coupling ultrasonics and the effect of ultrasonics on the degradation was studied. The effects of cell voltage, original concentration of methyl orange, pH value and the concentration of electrolyte on the removal efficiency were considered. The experimental results indicated that the removal rate of methyl orange exceeded 99% and the removal of chemical oxygen demand (COD(Cr)) approached 84% under the optimum conditions. Using ultraviolet-visible spectrum analysis, a general degradation pathway for methyl orange was proposed based on the analysis of intermediate compounds. According to the ultraviolet-visible spectral changes during degradation of methyl orange, it can be presumed that the removal of COD(Cr) lags behind the removal of methyl orange because the structure of the benzene ring was more difficult to destroy compared with the azo double bonds.

  15. Densities and solubilities of Glycylglycine and Glycyl-L-Alanine in Aqueous Electrolyte Solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen; Rudolph, E. Susanne J.

    2004-01-01

    is 1.74 and 4.78 mol/kg of water, respectively. The solubility of glycylglycine in salt solutions of NaCl, Na2SO4, and (NH4)(2)SO4 show a moderate salting-in effect. The solubility of glycyl-L-alanine show a minor or no salting-in effect at low salt concentrations and a moderate salting-out effect...

  16. Theoretical analysis of aqueous solutions of mixed strong electrolytes by a smaller-ion shell electrostatic model.

    Science.gov (United States)

    Fraenkel, Dan

    2014-02-07

    In spite of the great importance of mixed electrolytes in science and technology, no compelling theoretical explanation has been offered yet for the thermodynamic behavior of such systems, such as their deviation from ideality and the variation of their excess functions with ionic composition and concentration. Using the newly introduced Smaller-ion Shell treatment - an extension of the Debye-Hückel theory to ions of dissimilar size (hence DH-SiS) - simple analytic mathematical expressions can be derived for the mean and single-ion activity coefficients of binary electrolyte components of ternary ionic systems. Such expressions are based on modifying the parallel DH-SiS equations for pure binary ionic systems, by adding to the three ion-size parameters - a (of counterions), b+ (of positive coions), and b- (of negative coions) - a fourth parameter. For the (+ + -) system, this is "b++," the contact distance between non-coion cations. b++ is derived from fits with experiment and, like the other b's, is constant at varying ion concentration and combination. Four case studies are presented: (1) HCl-NaCl-H2O, (2) HCl-NH4Cl-H2O, (3) (0.01 M HX)-MX-H2O with X = Cl, Br, and with M = Li, Na, K, Cs, and (4) HCl-MCln-H2O with n = 2, M = Sr, Ba; and n = 3, M = Al, Ce. In all cases, theory is fully consistent with experiment when using a of the measured binary electrolyte as the sole fitting parameter. DH-SiS is thus shown to explain known "mysteries" in the behavior of ternary electrolytes, including Harned rule, and to adequately predict the pH of acid solutions in which ionized salts are present at different concentrations.

  17. Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism - The PhreeSCALE code

    Science.gov (United States)

    Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre

    2016-07-01

    The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.

  18. High performing solution-coated electrolyte-gated organic field-effect transistors for aqueous media operation

    Science.gov (United States)

    Zhang, Qiaoming; Leonardi, Francesca; Casalini, Stefano; Temiño, Inés; Mas-Torrent, Marta

    2016-12-01

    Since the first demonstration, the electrolyte-gated organic field-effect transistors (EGOFETs) have immediately gained much attention for the development of cutting-edge technology and they are expected to have a strong impact in the field of (bio-)sensors. However EGOFETs directly expose their active material towards the aqueous media, hence a limited library of organic semiconductors is actually suitable. By using two mostly unexplored strategies in EGOFETs such as blended materials together with a printing technique, we have successfully widened this library. Our benchmarks were 6,13-bis(triisopropylsilylethynyl)pentacene and 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT), which have been firstly blended with polystyrene and secondly deposited by means of the bar-assisted meniscus shearing (BAMS) technique. Our approach yielded thin films (i.e. no thicker than 30 nm) suitable for organic electronics and stable in liquid environment. Up to date, these EGOFETs show unprecedented performances. Furthermore, an extremely harsh environment, like NaCl 1M, has been used in order to test the limit of operability of these electronic devices. Albeit an electrical worsening is observed, our devices can operate under different electrical stresses within the time frame of hours up to a week. In conclusion, our approach turns out to be a powerful tool for the EGOFET manufacturing.

  19. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  20. Charge neutrality breakdown in confined aqueous electrolytes: Theory and simulation.

    Science.gov (United States)

    Colla, Thiago; Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-09-01

    We study, using Density Functional theory (DFT) and Monte Carlo simulations, aqueous electrolyte solutions between charged infinite planar surfaces, in contact with a bulk salt reservoir. In agreement with recent experimental observations [Z. Luo et al., Nat. Commun. 6, 6358 (2015)], we find that the confined electrolyte lacks local charge neutrality. We show that a DFT based on a bulk-HNC expansion properly accounts for strong electrostatic correlations and allows us to accurately calculate the ionic density profiles between the charged surfaces, even for electrolytes containing trivalent counterions. The DFT allows us to explore the degree of local charge neutrality violation, as a function of plate separation and bulk electrolyte concentration, and to accurately calculate the interaction force between the charged surfaces.

  1. CALCULATING ACTIVITY COEFFICIENTS OF ELECTROLYTE AQUEOUS SOLUTION WITH PERTURBATION THEORY-BASED EQUATION OF STATE%用微扰理论状态方程计算电解质水溶液的活度系数

    Institute of Scientific and Technical Information of China (English)

    李春喜; 宋红燕; 李以圭; 陆九芳

    2001-01-01

    An equation of state for electrolyte aqueous solution is developed by treating the ion-ion electrostatic and ion-solvent molecule interactions with primitive MSA and perturbation theory, respectively. The effect of the dielectric constant on the ionic chemical potential and the calculation accuracy of ionic mean activity coefficients for 2∶1 and 1∶1 type halide aqueous solution are discussed.By taking ionic Pauling diameter as ionic hard sphere diameter for anions and treating the cation hard sphere diameter as ionic strength dependent, the equation can be used to calculate ionic activity coefficients in the moderate concentration range with good accuracy.

  2. Measurement and Modeling of Mean Activity Coefficients of NaCl in an Aqueous Mixed Electrolyte Solution Containing Glycine

    Science.gov (United States)

    Sheikholeslami, Paniz; Dehghani, M. R.; Safahieh, Tina

    2016-08-01

    An electrochemical cell with two ion-selective electrodes (Na+ glass) and (Cl- solid state) was used to measure the mean ionic activity coefficient of NaCl in an aqueous mixture containing NaCl, glycine, and NaNO3 at 308.15 K. The experiments were conducted at fixed molality of NaNO3 (0.1 m) and various molalities of glycine (0-1 m) and NaCl (up to 0.8 m). The experimental data were modeled using a modified version of the Pitzer equation. Finally the activity coefficient ratio of glycine was determined based on the Maxwell equation.

  3. Universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong electrolyte aqueous solution and its application in the NaCl-KCI-H2O system

    Institute of Scientific and Technical Information of China (English)

    Weijie Zhao; Hanjie Guo; Xuemin Yang; higang Dan

    2008-01-01

    A universal thermodynamic model of calculating the mass action concentrations of components in a ternary strong elec-trolyte aqueous solution has been developed based on the ion and molecule coexistence theory, and verified in the NaCl-KCl-H2Oternary system at 298.15 K, To compare the difference of the thermodynamic model in binary and ternary strong electrolyte aqueous solutions, the mass action concentrations of components in the NaCI-H20 binary strong electrolyte aqueous solution were also com-puted at 298.15K. A transformation coefficient was required to compare the calculated mass action concentration and reported activ-ity because they were obtained at different standard states and concentration units. The results show that the transformation coeffi-cients between calculated mass action concentrations and reported activities of the same components change in a very narrow range.The calculated mass action concentrations of components in the NaCl-H2O and NaCl-KCl-H2O systems are in good agreement with the reported activities. This indicates that the developed thermodynamic model can reflect the structural characteristics of solutions,and the mass action concentration also strictly follows the mass action law.

  4. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2015-12-01

    Agglomeration and disagglomeration processes are expected to play a key role on the fate of engineered nanoparticles in natural aquatic systems. These processes are investigated here in detail by studying first the stability of TiO2 nanoparticles in the presence of monovalent and divalent electrolytes at different pHs (below and above the point of zero charge of TiO2) and discussing the importance of specific divalent cation adsorption with the help of the DLVO theory as well as the importance of the nature of the counterions. Then the impact of one polysaccharide (alginate) on the stability of agglomerates formed under pH and water hardness representative of Lake Geneva environmental conditions is investigated. In these conditions the large TiO2 agglomerates (diameter>1μm) are positively charged due to Ca(2+) and Mg(2+) specific adsorption and alginate, which is negatively charged, adsorbs onto the agglomerate surface. Our results indicate that the presence of alginate at typical natural organic matter concentration (1-10 mg L(-1)) strongly modifies the TiO2 agglomerate (50 mg L(-1)) stability by inducing their partial and rapid disagglomeration. The importance of disagglomeration is found dependent on the alginate concentration with maximum of disagglomeration obtained for alginate concentration ≥8 mg L(-1) and leading to 400 nm fragments. From an environmental point of view partial restabilization of TiO2 agglomerates in the presence of alginate constitutes an important outcome. Disagglomeration will enhance their transport and residence time in aquatic systems which is an important step in the current knowledge on risk assessment associated to engineered nanoparticles.

  5. Treatment of Aqueous Solutions

    NARCIS (Netherlands)

    Van Spronsen, J.; Witkamp, G.J.

    2013-01-01

    The invention is directed to a process for the recovery or removal of one or more crystallizable compounds from an aqueous solution containing, apart from the said crystallizable compounds, one or more organic or inorganic scale- forming or scale-inducing materials having a lower solubility in water

  6. Micellization behavior of mixtures of amphiphilic promazine hydrochloride and cationic aniline hydrochloride in aqueous and electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rub, Malik Abdul; Azum, Naved; Asiri, Abdullah M. [King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Farah [Aligarh Muslim University, Aligarh (India); Al-Sehemi, Abdullah G. [Research Center for Advanced Materials Science, King Khalid University, Abha (Saudi Arabia)

    2015-10-15

    We studied the influence of cationic hydrotrope aniline hydrochloride on the micellization behavior of cationic amphiphilic phenothiazine drug promazine hydrochloride in the presence and absence of 50mmol kg{sup -1} NaCl. The experimental critical micelle concentration (CMC) values came out to be lower than ideal CMC (CMCid) values, signifying attractive interactions between the two components in mixed micelles. NaCl further decreases the CMC of pure PMZ and aniline hydrochloride as well as their mixture due to screening of the electrostatic repulsion among the polar head groups. The bulk properties of solution were examined by using different theoretical models for justification and comparison of results. The micellar mole fraction of aniline hydrochloride (X{sup Rub}{sub ,} X{sup M}{sub 1}, X{sup Rod}{sub 1} and X{sup id}{sub 1}) was evaluated by different proposed models, showing greater contribution of hydrotrope in mixed micelle. The negative values of interaction parameter (β) indicate synergistic interactions and negative values of β further decrease by the addition of salt in mixed systems. From the CMC values as a function of temperature, various thermodynamic properties have been evaluated and discussed in detail.

  7. Electrolytic preparation of iron from aqueous solution using solar energy%利用太阳能在水溶液中电解制铁

    Institute of Scientific and Technical Information of China (English)

    董洪波; 侯明山; 刘超; 刘润藻; 李士琦

    2012-01-01

    以太阳能电池板光伏转换所得电能为电源,采用正交试验对电解氯化亚铁溶液制取纯铁的工艺进行优化,得到最佳电解参数为:FeCl2·4H2O375g/L,pH=2.0,电流密度3 A/dm2,温度50℃.在最佳工艺下,电流效率和电沉积速率分别达到88.9%和0.45 g/h,所得铁表面光滑,呈银白色金属光泽.利用太阳能电解制铁对以后的清洁能源制铁具有一定的借鉴作用.%With the electric energy obtained by photovoltaic technology using solar-cell panels as the power supply, the process parameters for preparation of pure iron from aqueous ferrous chloride solution by electrolysis were optimized by orthogonal test as follows: FeCl2-4H2O 375 g/L, pH 2.0, current density 3 A/dm2, and temperature 50 °C. Under the optimal parameters, the current efficiency and deposition rate are up to 88.95% and 0.45 g/L respectively and the surface of the obtained iron is smooth with silvery white color and metallic luster. The electrolytic preparation of iron using solar energy gives reference to the future preparation of iron with clean energy.

  8. Investigation of the State of Radionuclides in Ultramicroconcentrations by the Method of a Horizontal Zone Electrophoresis in a Free Electrolyte. Ions of In(III) in Aqueous Solutions

    CERN Document Server

    Bontchev, G D; Priemyshev, A N; Bozhikov, G A; Filossofov, D V; Ivanov, P I; Maslov, O D; Milanov, M V; Dmitriev, S N

    2000-01-01

    Using the electromigration method in a free electrolyte the behaviour of In(III) in some water solutions has been investigated. Data on electrophoretic mobility of In(III) as well as its complexes with DTPA and EDTA in a wide range of pH and temperature have been collected. On the basis of experimental results the diffusion coefficient of In(III) and concentration stability constant of a complex [InDTPA]^2- have been estimated.

  9. A Type of Lithium-ion Battery Based on Aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    G.J.Wang; N.H.Zhao; L.J.Fu; B.Wang; Y.P.Wu

    2007-01-01

    1 Introduction A new type of rechargeable lithium ion battery with an aqueous electrolyte was announced by W. Li et al. in 1994[1].This type of battery uses the lithium intercalation compounds LiMn2O4 and VO2 as electrode materials and an alkaline aqueous electrolytic solution. By this combination, the disadvantages of the non-aqueous Li-ion battery type, i.e. high cost and safety problems could be faded away[2]. So this type of aqueous Li-ion battery was regarded as the promising power for electric veh...

  10. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    Science.gov (United States)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate liquids can be used for SC electrolytes operated at high temperature.

  11. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengcheng; Dong, Jian; Amine, Khalil

    2016-06-14

    An electrolyte electrochemical device includes an anodic material and an electrolyte, the electrolyte including an organosilicon solvent, a salt, and a hybrid additiving having a first and a second compound, the hybrid additive configured to form a solid electrolyte interphase film on the anodic material upon application of a potential to the electrochemical device.

  12. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    Science.gov (United States)

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  13. Terahertz characteristics of electrolytes in aqueous Luria-Bertani media

    Science.gov (United States)

    Oh, Seung Jae; Son, Joo-Hiuk; Yoo, Ocki; Lee, Dong-Hee

    2007-10-01

    We measured the optical constants of aqueous biomaterial mixtures with various electrolyte concentrations using terahertz time-domain spectroscopy. The mixtures were divided into water and other electrolyte parts in mass fractions for analysis. The optical constants of the electrolyte, excluding water, were obtained by applying the ideal mixture equation, and the power absorption of the electrolyte was observed to be larger than that of water above 1THz. Data from the measurement were fitted with the modified double Debye model, and the reorientation and hydrogen-bond formation decomposition times were found to decrease as the electrolyte concentration increased.

  14. 由二元亚系的数据预测混合电解质水溶液的活度系数%Prediction of Activity Coefficients for Mixed Aqueous Electrolyte Solutions from the Data of Their Binary Solutions

    Institute of Scientific and Technical Information of China (English)

    刘植昌; 刘艳升; 胡玉峰; 曾鹏; 樊栓狮; 梁德青

    2006-01-01

    The simple equation relating the activity coefficient of each solute in mixed electrolyte solution to its value in binary solutions under isopiestic equilibrium was tested by comparison with the experimental data for the 18 electrolyte solutions consisting of 1:1, 1:2, and 1:3 electrolytes. The isopiestic measurements were made on the quaternary system BaCl2-NH4Br-NaI-H2O and its ternary subsystems NaI-NH4Br-H2O, NaI-BaCl2-H2O, and NH4Br-BaCl2-H2O at 298.15K. The results were used to test the applicability of the Zdanovskii's rule to the mixed electrolyte solutions which contain no common ions, and the agreement is excellent. The activity coefficients of the solutes in the above quaternary and ternary systems calculated from the above-mentioned simple equation are in good agreement with the Pitzer's equation.

  15. Aggregation Kinetics and Self-Assembly Mechanisms of Graphene Quantum Dots in Aqueous Solutions: Cooperative Effects of pH and Electrolytes.

    Science.gov (United States)

    Li, Qingqing; Chen, Baoliang; Xing, Baoshan

    2017-02-07

    The cooperative effects of pH and electrolytes on the aggregation of GQDs and the aggregate morphologies are characterized. Because GQDs have an average size of 9 nm with abundant O-functionalized edges, their suspension was very stable even in a high electrolyte concentration and low pH solution. Divalent cations (Mg(2+) and Ca(2+)) excelled at aggregating the GQD nanoplates, while monovalent cations (Na(+) and K(+)) did not disturb the stability. For Na(+) and K(+), positive linear correlations were observed between the critical coagulation concentration (CCC) and pH levels. For Mg(2+) and Ca(2+), negative, but nonlinear, correlations between CCC and pH values could not be explained and predicted by the traditional DLVO theory. Three-step mechanisms are proposed for the first time to elucidate the complex aggregation of GQDs. The first step is the protonation/deprotonation of GQDs under different pH values and the self-assembly of GQDs into GQD-water-GQD. The second step is the self-assembly of small GQD pieces into large plates (graphene oxide-like) induced by the coexisting Ca(2+) and then conversion into 3D structures via π-π stacking. The third step is the aggregation of the 3D-assembled GQDs into precipitates via the suppression of the electric double layer. The self-assembly of GQDs prior to aggregation was supported by SEM and HRTEM imaging. Understanding of the colloidal behavior of ultrasmall nanoparticles like GQDs is significantly important for the precise prediction of their environmental fate and risk.

  16. Non-aqueous electrolyte for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Zhang, Lu; Zhang, Zhengcheng

    2016-01-26

    A substantially non-aqueous electrolyte solution includes an alkali metal salt, a polar aprotic solvent, and an organophosphorus compound of Formula IA, IB, or IC: ##STR00001## where R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each independently hydrogen, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, alkenoxy, alkynoxy, cycloalkoxy, aryloxy, heterocyclyloxy, heteroaryloxy, siloxyl, silyl, or organophosphatyl; R.sup.5 and R.sup.6 are each independently alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; R.sup.7 is ##STR00002## and R.sup.8, R.sup.9 and R.sup.10 are each independently alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; provided that if the organophosphorus compound is of Formula IB, then at least one of R.sup.5, and R.sup.6 are other than hydrogen, alkyl, or alkenyl; and if the organophosphorus compound is of Formula IC, then the electrolyte solution does not include 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one.

  17. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  18. Electrochemical Characterisation of an Os (II) Conjugated Polymer in Aqueous Electrolytes

    OpenAIRE

    McCormac, Timothy; Cassidy, John F; Crowley, Karl; Trouillet, Lise; Lafolet, Frédéric; Guillerez, Stephane

    2006-01-01

    The electrochemical behaviour of an Os (II) complex of the structurally well-defined conjugated polymer alternating regioregularly alkylated thiophene and 2,2’-bipyridine units (P4Os) has been elucidated in aqueous solution. In typical aqueous electrolyte systems the cyclic voltammogram of the resulting P4Os film exhibits a one electron reversible process corresponding to the Os3+/2+ redox system. However the observance of this reversible couple did depend upon the concentration of the sup...

  19. Electrochemical characterisation of an Os (II) conjugated polymer in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    McCormac, Timothy [CREATE ' Centre for Research in Electroanalytical Technology' , Department of Applied Science, Institute of Technology Tallaght, Tallaght, Dublin 24 (Ireland)]. E-mail: tim.mccormac@it_tallaght.ie; Cassidy, John F. [School of Chemistry, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Crowley, Karl [School of Chemistry, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Trouillet, Lise [Laboratoire d' Electrochimie Moleculaire et Structures des Interfaces, UMR 5819 CEA-CNRS-University Grenoble 1, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Lafolet, Frederic [Laboratoire d' Electrochimie Moleculaire et Structures des Interfaces, UMR 5819 CEA-CNRS-University Grenoble 1, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Guillerez, Stephane [Laboratoire d' Electrochimie Moleculaire et Structures des Interfaces, UMR 5819 CEA-CNRS-University Grenoble 1, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)

    2006-04-25

    The electrochemical behaviour of an Os (II) complex of the structurally well-defined conjugated polymer alternating regioregularly alkylated thiophene and 2,2'-bipyridine units (P4Os) has been elucidated in aqueous solution. In typical aqueous electrolyte systems, the cyclic voltammogram of the resulting P4Os film exhibits a one-electron reversible process corresponding to the Os{sup 3+/2+} redox system. However, the observance of this reversible couple did depend upon the concentration of the supporting electrolyte. It was found that the Os{sup 3+} form did form ion-pairs with an anion from the electrolyte solution. Preliminary investigations into the homogeneous charge transport dynamics associated with this redox couple have been undertaken. The technique of cyclic voltammetry, and hence the Randles-Sevick expression, in conjunction with platinum microelectrodes have been employed to determine the D{sub CT}C value.

  20. Ionic enhancement of silica surface nanowear in electrolyte solutions.

    Science.gov (United States)

    Vakarelski, Ivan U; Teramoto, Naofumi; McNamee, Cathy E; Marston, Jeremy O; Higashitani, Ko

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs(+) and Ca(2+), was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs(+) showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl(2) solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO(3))(2) did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed.

  1. Ionic enhancement of silica surface nanowear in electrolyte solutions

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-11-20

    The nanoscale wear and friction of silica and silicon nitride surfaces in aqueous electrolyte solutions were investigated by using sharp atomic force microscope (AFM) cantilever tips coated with silicon nitride. Measurements were carried out in aqueous solutions of varying pH and in monovalent and divalent cation chloride and nitrate solutions. The silica surface was shown to wear strongly in solutions of high pH (≈11.0), as expected, but the presence of simple cations, such as Cs+ and Ca2+, was shown to dramatically effect the wear depth and friction force for the silica surface. In the case of monovalent cations, their hydration enthalpies correlated well with the wear and friction. The weakest hydrated cation of Cs+ showed the most significant enhancement of wear and friction. In the case of divalent cations, a complex dependence on the type of cation was found, where the type of anion was also seen to play an important role. The CaCl2 solution showed the anomalous enhancement of wear depth and friction force, although the solution of Ca(NO3)2 did not. The present results obtained with an AFM tip were also compared with previous nanotribology studies of silica surfaces in electrolyte solutions, and possible molecular mechanisms as to why cations enhance the wear and friction were also discussed. © 2012 American Chemical Society.

  2. Classical thermodynamics of non-electrolyte solutions

    CERN Document Server

    Van Ness, H C

    1964-01-01

    Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for

  3. Investigations of the Electrochemical Stability of Aqueous Electrolytes for Lithium Battery Applications

    KAUST Repository

    Wessells, Colin

    2010-01-01

    The electrolytic stability windows of several aqueous electrolytes were investigated by a constant current method. The electrode potential range depended upon the value of the imposed current. The magnitude of this behavior varied with the salt solution, its concentration, and pH of the electrolyte. At a leakage current density of 50 μA/cm2, a 5 M solution of LiNO3 had an electrolytic window of 2.3 V, spanning from -0.55 to 1.75 V with respect to the standard hydrogen electrode. These results demonstrate the feasibility of operating lithium batteries at voltages appreciably above the theoretical decomposition voltage of water. © 2010 The Electrochemical Society.

  4. Asymmetric Supercapacitors with Dominant Pseudocapacitance in Neutral Aqueous Electrolyte

    Science.gov (United States)

    Mao, Yuanbing; Li, Qiang

    2015-03-01

    Electrochemical capacitors (ECs) are promising power sources for portable electronics and hybrid electric vehicles. To solve the poor ionic conductivity, intrinsic inflammability and toxicity issues of current ECs incorporating organic electrolytes, aqueous electrolyte-based asymmetric supercapacitors (ASCs) have been attracting intensive attention recently. In this presentation, prototype MnO2-NFs//KCl//CNTs supercapacitor cells in neutral aqueous electrolyte allow rapid charge/discharge kinetics, fast ionic response, and evident pseudocapacitive dominance due to the unique MnO2-NF architecture and novel ASC design. For the first time, the respective contributions of the pseudocapacitance and EDL capacitance to the overall electrochemical performance of ASCs were differentiated with a proof of pseudocapacitive dominance (qpseudo/qdl = 2.5). To sum, this study provides a brilliant proof-of-concept design of novel supercapacitors with pseudocapacitive dominance to achieve ultimate energy storage applications with both high energy and power density.

  5. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  6. Structure of water and the thermodynamics of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nemethy, G.

    1970-10-26

    This report represents the summary of a series of lectures held at the Istituto Superiore di Sanita, Laboratori di Fisica, from 18 September to 26 October 1970. The topics discussed were: Intermolecular forces, the individual water molecule and the hydrogen bond, the structures of the solid phases of water, experimental information on the strucuture of liquid water, theoretical models of water structure, experimental properties and theoretical models of aqueous solutions of nonpolar solutes, polar solutes, and electrolytes, the conformational stability of biological macromolecules.

  7. Control Of Screening Of A Charged Particle In Electrolytic Aqueous Paul Trap

    Science.gov (United States)

    Park, Jae Hyun; Krsti, Predrag S.

    2011-01-01

    Individual charged particles could be trapped and confined by the combined radio-frequency and DC quadrupole electric field of an aqueous Paul trap. Viscosity of water improves confinement and extends the range of the trap parameters which characterize the stability of the trap. Electrolyte, if present in aqueous solution, may screen the charged particle and thus partially or fully suppress electrophoretic interaction with the applied filed, possibly reducing it to a generally much weaker dielectrophoretic interaction with an induced dipole. Applying molecular dynamics simulation we show that the quadrupole field has a different effect at the electrolyte ions and at much heavier charged particle, effectively eliminating the screening by electrolyte ions and reinstating the electrophoretic confinement. PMID:24839332

  8. Non-aqueous electrolytes for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian; Zhang, Zhengcheng; Amine, Khalil

    2016-07-12

    A electrolyte for a lithium battery includes a silane/siloxane compound represented by SiR.sub.4-x-yR'.sub.xR''.sub.y, by Formula II, or Formula III: ##STR00001## where each R is individually an alkenyl, alkynyl, alk(poly)enyl, alk(poly)ynyl, aryl; each R' is represented by; ##STR00002## each R'' is represented by Formula I-B; ##STR00003## R.sup.1 is an organic spacer; R.sup.2 is a bond or an organic spacer; R.sup.3 is alkyl or aryl; k is 1-15; m is 1-15; n is 1 or 2; p is 1-3; x' is 1-2; and y' is 0-2.

  9. Polyethylene glycol-electrolyte solution (PEG-ES)

    Science.gov (United States)

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a colonoscopy ( ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by mouth. ...

  10. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  11. Thermal Decomposition of Dimethoxymethane Electrolyte Solution.

    Science.gov (United States)

    1982-06-01

    DIMETHOXYMETHANE ELECTROLYTE SOLUTION by J. S. Foos and V. Meltz Prepared for Publication in the Journal of the Electrochemical Society EIC...Journal of the Electrochemical Society . III. KEY WORDS (Conitiue onl reverse side It neci’eay and Identify by block nsinibor) Lithium Battery, Organic...Batteries, B. B. Owens and N. Margalit, eds., Vol. 80-4, The Electrochemical Society , Pennington, NJ, 384 (1980). .2. K. M. Abraham, J. L. Goldman and D. L

  12. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  13. PREDICTING WATER ACTIVITY IN ELECTROLYTE SOLUTIONS WITH THE CISTERNAS-LAM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    REYNOLDS JG; GREER DA; DISSELKAMP RL

    2011-03-01

    Water activity is an important parameter needed to predict the solubility of hydrated salts in Hanford nuclear waste supernatants. A number of models available in the scientific literature predict water activity from electrolyte solution composition. The Cisternas-Lam model is one of those models and has several advantages for nuclear waste application. One advantage is that it has a single electrolyte specific parameter that is temperature independent. Thus, this parameter can be determined from very limited data and extrapolated widely. The Cisternas-Lam model has five coefficients that are used for all aqueous electrolytes. The present study aims to determine if there is a substantial improvement in making all six coefficients electrolyte specific. The Cisternas-Lam model was fit to data for six major electrolytes in Hanford nuclear waste supernatants. The model was first fit to all data to determine the five global coefficients, when they were held constant for all electrolytes it yielded a substantially better fit. Subsequently, the model was fit to each electrolyte dataset separately, where all six coefficients were allowed to be electrolyte specific. Treating all six coefficients as electrolyte specific did not make sufficient difference, given the complexity of applying the electrolyte specific parameters to multi-solute systems. Revised water specific parameters, optimized to the electrolytes relevant to Hanford waste, are also reported.

  14. [Extraction of alpha-cypermethrin from aqueous methanol solutions].

    Science.gov (United States)

    Shormanov, V K; Chigareva, E N; Belousova, O V

    2010-01-01

    Alpha cypermethrin was extracted from aqueous methanol solutions using hydrophobic organic solvents. The efficiency of extraction was shown to depend on the chemical nature of the solvent, the water to methanol ratio, and saturation of the aqueous methanol layer with an electrolyte. Optimal extraction of alpha-cypermethrin was achieved using toluene as the solvent under desalinization conditions. The extraction factor for the removal of the sought amount of alpha-cypermethrin from the water-methanol solution (4:1) using various solvents was calculated.

  15. Sequential electrolytic oxidation and reduction of aqueous phase energetic compounds.

    Science.gov (United States)

    Gilbert, David M; Sale, Tom C

    2005-12-01

    Contamination of soils and groundwater with energetic compounds has been documented at many former ammunition manufacturing plants and ranges. Recent research at Colorado State University (CSU) has demonstrated the potential utility of electrolytic degradation of organic compounds using an electrolytic permeable reactive barrier (e-barrier). In principle, an electrolytic approach to degrade aqueous energetic compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or 2,4,6-trinitrotoluene (TNT) can overcome limitations of management strategies that involve solely oxidation or reduction, through sequential oxidation-reduction or reduction-oxidation. The objective of this proof-of-concept research was to evaluate transformation of aqueous phase RDX and TNT in flow-through electrolytic reactors. Laboratory experiments were conducted using six identical column reactors containing porous media and expanded titanium-mixed-metal-oxide electrodes. Three columns tested TNT transformation and three tested RDXtransformation. Electrode sequence was varied between columns and one column for each contaminant acted as a no-voltage control. Over 97% of TNT and 93% of RDX was transformed in the reactors under sequential oxidation-reduction. Significant accumulation of known degradation intermediates was not observed under sequential oxidation-reduction. Removal of approximately 90% of TNT and 40% of RDX was observed under sequential reduction-oxidation. Power requirements on the order of 3 W/m2 were measured during the experiment. This suggests that an in-situ electrolytic approach may be cost-practical for managing groundwater contaminated with explosive compounds.

  16. Self-diffusion in electrolyte solutions a critical examination of data compiled from the literature

    CERN Document Server

    Mills, R

    1989-01-01

    This compilation - the first of its kind - fills a real gap in the field of electrolyte data. Virtually all self-diffusion data in electrolyte solutions as reported in the literature have been examined and the book contains over 400 tables covering diffusion in binary and ternary aqueous solutions, in mixed solvents, and of non-electrolytes in various solvents.An important feature of the compilation is that all data have been critically examined and their accuracy assessed. Other features are an introductory chapter in which the methods of measurement are reviewed; appendices containing tables

  17. Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery

    Science.gov (United States)

    Sanz, Laura; Lloyd, David; Magdalena, Eva; Palma, Jesús; Anderson, Marc; Kontturi, Kyösti

    2015-03-01

    In recent studies, the employment of the aqueous solution system comprised of Cu(II)-Cu(I)-Cl system was addressed for massive energy storage in Redox Flow Batteries (RFBs) [5,6], providing important practical advantages compared to the widespread all-vanadium or Zn/Br systems [5]. The substitution of vanadium electrolytes by copper-chloride electrolytes allows the simplification of the process and notably reduces the cost, allowing for a better commercialization of RFBs. Here, a complete physico-chemical characterization of positive copper electrolytes and their electrochemical performance using different supporting electrolytes, HCl and CaCl2, is presented. Once the physical properties and the electrochemical performance of each one of the supporting electrolytes were determined, the final composition of supporting electrolyte for this Cu(II)/Cu(I) redox couple could be optimized by mixing different sources of chloride, regarding its practical application in the all-copper RFB.

  18. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  19. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, M. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saminathan, K., E-mail: ksaminath@gmail.com [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Siva, P. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saha, P. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, India-769008 (India); Rajendran, V. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India)

    2016-04-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na{sub 2}SO{sub 4}. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  20. Removal of arsenic from aqueous solution using electrocoagulation.

    Science.gov (United States)

    Balasubramanian, N; Kojima, Toshinori; Basha, C Ahmed; Srinivasakannan, C

    2009-08-15

    Removal of arsenic from aqueous solution was carried out using electrocoagulation. Experiments were conducted using mild steel sacrificial anode covering wide range in operating conditions to assess the removal efficiency. The maximum arsenic removal efficiency was recorded as 94% under optimum condition. The electrocoagulation mechanism of arsenic removal has been developed to understand the effect of applied charge and electrolyte pH on arsenic removal efficiency. Further the experimental data were tested with different adsorption isotherm model to describe the electrocoagulation process.

  1. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  2. Room temperature magnesium electrorefining by using non-aqueous electrolyte

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Dilasari, Bonita; Ku, Heesuk; Kim, Hansu; Kwon, Kyungjung; Lee, Churl Kyoung

    2016-09-01

    The increasing usage of magnesium inevitably leads to a fast increase in magnesium scrap, and magnesium recycling appears extremely beneficial for cost reduction, preservation of natural resources and protection of the environment. Magnesium refining for the recovery of high purity magnesium from metal scrap alloy (AZ31B composed of magnesium, aluminum, zinc, manganese and copper) at room temperature is investigated with a non-aqueous electrolyte (tetrahydrofuran with ethyl magnesium bromide). A high purity (99.999%) of electrorefined magneisum with a smooth and dense surface is obtained after potentiostatic electrolysis with an applied voltage of 2 V. The selective dissolution of magnesium from magnesium alloy is possible by applying an adequate potential considering the tolerable impurity level in electrorefined magnesium and processing time. The purity estimation method suggested in this study can be useful in evaluating the maximum content of impurity elements.

  3. Aqueous Solution Thermal Conductivity of Beryllium-Subgroup Metal Chlorides

    Directory of Open Access Journals (Sweden)

    K. Abdullayev

    2013-01-01

    Full Text Available The paper presents experimental data on thermal conductivity of BeCl2 and SrCl2 salt aqueous solutions in the temperature range from 20 to 300 °С  and at various electrolyte concentrations  in mass percent. For the first time thermal conductivity of the system Н2О + BeCl2 has been investigated at high temperatures.The experimental results are described with the help of an empirical equation in the form of: λs = λo (1+ Am + Bm3/2 + Cm2,where λs  and λo – thermal conductivity coefficients of solution and water; A, B and C – coefficients depending on electrolyte nature; m – molality in units mol/kg.The formula error is less than  ±1 %.

  4. Electrochemical behavior of nanostructured MnO2/C (Vulcan® composite in aqueous electrolyte LiNO3

    Directory of Open Access Journals (Sweden)

    Vujković Milica

    2011-01-01

    Full Text Available The electrolytic solutions of contemporary Li-ion batteries are made exclusively with the organic solvents since anodic materials of these batteries have potentials with greater negativity than the potential of the water reduction, thus the organic electrolytes can withstand the voltages of 3-5 V that are characteristic for these batteries. Ever since it was discovered that some materials can electrochemically intercalate and deintercalate Li+ ions in aqueous solutions, numerous studies have been conducted with the aim of extending operational time of the aqueous Li-ion batteries. Manganese oxide has been studied as the electrode material in rechargeable lithium-ion batteries with organic electrolytes. In this paper its electrochemical behavior as an anode material in aqueous electrolyte solutions was examined. MnO2 as a component of nanodispersed MnO2/C (Vulcan® composite was successfully synthesized hydrothermally. Electrochemical properties of this material were investigated in aqueous saturated LiNO3 solution by both cyclic voltammetry and galvanostatic charging/discharging (LiMn2O4 as cathode material techniques. The obtained composite shows a relatively good initial discharge capacity of 96.5 mAh/g which, after 50th charging/discharging cycles, drops to the value of 57mAh/g. MnO2/C (Vulcan® composite, in combination with LiMn2O4 as a cathode material, shows better discharge capacity compared to other anodic materials used in aqueous Li-ion batteries according to certain studies that have been conducted. Its good reversibility and cyclability, and the fact that hydrothermal method is simple and effective, makes MnO2/C(Vulcan® composite a promising anodic material for aqueous Li-ion batteries.

  5. Calorimetric studies of macromolecular aqueous solutions

    NARCIS (Netherlands)

    Blandamer, M.J; Cullis, P.M.; Engberts, J.B.F.N.

    1996-01-01

    Both titration and differential scanning microcalorimetric techniques are shown to yield important information concerning the properties of macromolecules in aqueous solution. Application of titration calorimetry is examined in me context of deaggregation of canonic micelles (e.g. hexadecyltrimethyl

  6. Studies on MgNi-Based Metal Hydride Electrode with Aqueous Electrolytes Composed of Various Hydroxides

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-08-01

    Full Text Available Compositions of MgNi-based amorphous-monocrystalline thin films produced by radio frequency (RF sputtering with a varying composition target have been optimized. The composition Mg52Ni39Co3Mn6 is identified to possess the highest initial discharge capacity of 640 mAh·g−1 with a 50 mA·g−1 discharge current density. Reproduction in bulk form of Mg52Ni39Co3Mn6 alloy composition was prepared through a combination of melt spinning (MS and mechanical alloying (MA, shows a sponge-like microstructure with >95% amorphous content, and is chosen as the metal hydride (MH alloy for a sequence of electrolyte experiments with various hydroxides including LiOH, NaOH, KOH, RbOH, CsOH, and (C2H54N(OH. The electrolyte conductivity is found to be closely related to cation size in the hydroxide compound used as 1 M additive to the 4 M KOH aqueous solution. The degradation performance of Mg52Ni39Co3Mn6 alloy through cycling demonstrates a strong correlation with the redox potential of the cation in the alkali hydroxide compound used as 1 M additive to the 5 M KOH aqueous solution. NaOH, CsOH, and (C2H54N(OH additions are found to achieve a good balance between corrosion and conductivity performances.

  7. Electrolyte Solutions and Specific Ion Effects on Interfaces

    Science.gov (United States)

    Friedman, Ran

    2013-01-01

    Introductory general and physical chemistry courses often deal with colligative properties of solutions and do not discuss nonideal solutions in detail. Yet, a growing body of evidence reveals that even at physiological concentrations electrolyte solutions cannot be treated as ideal when a charged or partially charged solute (such as a protein) is…

  8. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li

  9. Modeling Electrolyte Solutions with the extended universal quasichemical (UNIQUAC) Model

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2005-01-01

    The extended universal quasichemical (UNIQUAC) model is a thermodynamic model for solutions containing electrolytes and non-electrolytes. The model is a gibbs excess function consisting of a Debye-Hückel term and a standard UNIQUAC term. The model only requires binary, ion specific interaction...... parameters. A unique choice of standard states makes the model able to reproduce solid-liquid, vapor-liquid, and liquid-liquid phase equilibria as well as thermal properties of electrolyte solutions using one set of parameters....

  10. Atomistic simulations of electrolyte solutions and hydrogels with explicit solvent models

    CERN Document Server

    Walter, Jonathan; Reiser, Steffen; Horsch, Martin; Vrabec, Jadran; Hasse, Hans

    2011-01-01

    Two of the most challenging tasks in molecular simulation consist in capturing the properties of systems with long-range interactions (e.g. electrolyte solutions) as well as systems containing large molecules such as hydrogels. For the development and optimization of molecular force fields and models, a large number of simulation runs have to be evaluated to obtain the sensitivity of the target properties with respect to the model parameters. The present work discusses force field development for electrolytes regarding thermodynamic properties of their aqueous solutions. Furthermore, simulations are conducted for the volume transition of hydrogels in the presence of electrolytes. It is shown that the properties of these complex systems can be captured by molecular simulation.

  11. Development and calibration of an electrolytic cell for ion determination in a soil solution

    Directory of Open Access Journals (Sweden)

    Omar Cleo Neves Pereira

    2015-05-01

    Full Text Available An electrolytic cell was developed to monitor soil modifications after crop fertigation with wastewaters from agroindustrial plants. The device was first calibrated with different levels of potassium chloride dissolved in aqueous solutions at various temperatures. Nernst´s model was used to fit the voltage indicated from the electrolytic cell versus the ionic activity of the potassium from the aqueous solutions of electrical conductivity and known ionic concentrations and the diluted wastewater samples. The equipment accurately indicated the tensions after appropriated correction of the electrical current and the temperature. The device estimated with accuracy the ionic coefficient of activity, the concentration of the potassium chloride and the concentration of the ion K dissolved in the agro-industrial wastewater.

  12. Precipitation of neptunium dioxide from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  13. Hydrogen bond breaking in aqueous solutions near the critical point

    Science.gov (United States)

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  14. Hydrophobic Solvation: Aqueous Methane Solutions

    Science.gov (United States)

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  15. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  16. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  17. Capacitance of graphene in aqueous electrolytes: The effects of dielectric saturation of water and finite size of ions

    Science.gov (United States)

    Sharma, P.; Mišković, Z. L.

    2014-09-01

    We present a theoretical model for electrolytically top-gated graphene, in which we analyze the effects of dielectric saturation of water due to possibly strong electric fields near the surface of a highly charged graphene, as well as the steric effects due to the finite size of salt ions in an aqueous electrolyte. By combining two well-established analytical models for those two effects, we show that the total capacitance of the solution-gated graphene is dominated by its quantum capacitance for gating potentials ≲1V, which is the range of primary interest for most sensor applications of graphene. On the other hand, at the potentials ≳1V the total capacitance is dominated by a universal capacitance of the electric double layer in the electrolyte, which exhibits a dramatic decrease of capacitance with increasing gating potential due to the interplay of a fully saturated dielectric constant of water and ion crowding near graphene.

  18. Aqueous Solution Chemistry on Mars

    Science.gov (United States)

    Quinn, R.; Hecht, M.; Kounaves, S.; Young, S.; West, S.; Fisher, A.; Grunthaner, P.

    2007-12-01

    Currently en route to Mars, the Phoenix mission carries four wet chemistry cells designed to perform basic solution chemistry on martian soil. The measurement objectives are typical of those that would be performed on an unknown sample on Earth, including detection of common anions and cations, total conductivity, pH, redox potential, cyclic voltammetry (CV), etc. Both the challenge and the novelty arise from the necessity to perform these measurements with severely constrained resources in a harsh and (literally) alien environment. Sensors for all measurements are integrated into a common "beaker," with the ability to perform a two-point calibration of some sensors using a pair of low-concentration solutions. Sulfate measurement is performed with a crude titration. While most measurements use ion selective electrodes, halide interferences are resolved by independent chronopotentiometry (CP) measurements. No preconditioning of the soil-water mixture is possible, nor is any physical characterization of the introduced soil sample beyond coarse visual inspection. Among the idiosyncrasies of the measurement is the low external pressure, which requires that the analysis be performed close to the boiling point of water under an atmosphere consisting almost entirely of water vapor. Despite these liabilities, however, extensive laboratory characterization has validated the basic approach, and protocols for both CV and CP have been developed and tested. Enhancing the value of the measurement is the suite of coordinated observations, such as microscopy and evolved gas analysis, to be performed by other Phoenix instruments.

  19. The solubility of hydrogen sulfide in aqueous N-methyldiethanolamine solutions

    NARCIS (Netherlands)

    Huttenhuis, P.J.G.; Agrawal, N.J.; Versteeg, G.F.

    2008-01-01

    In this work the electrolyte equation of state as developed previously for the system MDEA-H2O-CO2-CH4 was further developed for the system MDEA-H2O-H2S-CH4. With this thermodynamic equilibrium model the total solubility of hydrogen sulfide and the speciation in aqueous solutions of N-methyldiethano

  20. Solubility of Carbon Dioxide and Hydrogen Sulfide in Aqueous N-Methyldiethanolamine Solutions

    NARCIS (Netherlands)

    Huttenhuis, P. J. G.; Agrawal, N. J.; Versteeg, G. F.

    2009-01-01

    In this work, 72 new experimental solubility data points for H(2)S and CO(2) mixtures in aqueous N-methyldiethanol amine (MDEA) solutions at different methane partial pressures (up to 69 bara) are presented. They are correlated using an electrolyte equation of state (E-EOS) thermodynamic model. This

  1. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.

    1979-01-01

    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  2. Water & Aqueous Solutions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-08-09

    The Gordon Research Conference (GRC) on Water & Aqueous Solutions was held at Holderness School, New Hampshire, 8/4/02 thru 8/9/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Photoelectron Spectra of Aqueous Solutions from First Principles

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, Alex P.; Govoni, Marco; Seidel, Robert; Skone, Jonathan H.; Winter, Bernd; Galli, Giulia

    2016-06-08

    We present a combined computational and experimental study of the photoelectron spectrum of a simple aqueous solution of NaCl. Measurements were conducted on microjets, and first-principles calculations were performed using hybrid functionals and many-body perturbation theory at the G0W0 level, starting with wave functions computed in ab initio molecular dynamics simulations. We show excellent agreement between theory and experiments for the positions of both the solute and solvent excitation energies on an absolute energy scale and for peak intensities. The best comparison was obtained using wave functions obtained with dielectric-dependent self-consistent and range-separated hybrid functionals. Our computational protocol opens the way to accurate, predictive calculations of the electronic properties of electrolytes, of interest to a variety of energy problems.

  4. Electrolytes supramolecular interactions and non-equilibrium phenomena in concentrated solutions

    CERN Document Server

    Aseyev, Georgii Georgievich

    2014-01-01

    Electrolyte solutions play a key role in traditional chemical industry processes as well as other sciences such as hydrometallurgy, geochemistry, and crystal chemistry. Knowledge of electrolyte solutions is also key in oil and gas exploration and production, as well as many other environmental engineering endeavors. Until recently, a gap existed between the electrolyte solution theory dedicated to diluted solutions, and the theory, practice, and technology involving concentrated solutions.Electrolytes: Supramolecular Interactions and Non-Equilibrium Phenomena in Concentrated Solutions addresse

  5. Zeolites as alcohol adsorbents from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  6. Optimization of non-aqueous electrolytes for Primary lithium/air batteries operated in Ambient Enviroment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Xiao, Jie; Zhang, Jian; Wang, Deyu; Zhang, Jiguang

    2009-07-07

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte has reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.

  7. Aqueous solution dispersement of carbon nanotubes

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  8. The synthesis of Li(Cosbnd Mnsbnd Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions

    Science.gov (United States)

    Senćanski, Jelena; Bajuk-Bogdanović, Danica; Majstorović, Divna; Tchernychova, Elena; Papan, Jelena; Vujković, Milica

    2017-02-01

    Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each battery's component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 °C or 850 °C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g-1, was measured galvanostatically at a relatively high current of ∼100 mA g-1. Initial lithium intercalation capacity of ∼64 mAh g-1, was determined potentiodynamically at very high scan rate of 20 mV s-1 (∼40 C). Somewhat lower initial capacity of ∼30 mAh g-1, but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes.

  9. Solubility of Carbon Dioxide and Hydrogen Sulfide in Aqueous N-Methyldiethanolamine Solutions

    OpenAIRE

    Huttenhuis, P. J. G.; Agrawal, N.J.; Versteeg, G. F.

    2009-01-01

    In this work, 72 new experimental solubility data points for H(2)S and CO(2) mixtures in aqueous N-methyldiethanol amine (MDEA) solutions at different methane partial pressures (up to 69 bara) are presented. They are correlated using an electrolyte equation of state (E-EOS) thermodynamic model. This model has already been used to estimate the CO(2) solubility in aqueous MDEA (Huttenhuis et al. Fluid Phase Equilib. 2008, 264, 99-112) and the H(2)S solubility in aqueous MDEA (Huttenhuis et al. ...

  10. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    Science.gov (United States)

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  11. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  12. Influence of aqueous electrolytes on the wetting behavior of hydrophobic solid polymers-low-rate dynamic liquid/fluid contact angle measurements using axisymmetric drop shape analysis.

    Science.gov (United States)

    Welzel, Petra B; Rauwolf, Cordula; Yudin, Olexandr; Grundke, Karina

    2002-07-01

    The interaction of inorganic ions with low-energy hydrophobic surfaces was examined using model systems of solid polymers without ionizable functional surface groups in aqueous electrolyte solutions. Low-rate dynamic contact angle measurements with captive bubbles in conjunction with axisymmetric drop shape analysis (ADSA) were performed to study the influence of electrolyte ions (in the aqueous test solutions) on the wettability of the polymers. When various types of ions were used, no significant change in advancing and receding contact angles was observed. The contact angle hysteresis was small. The zeta potential of the model polymers in aqueous electrolyte solutions was determined from streaming potential measurements. The variation of the zeta potential at different pH levels indicates preferential adsorption of hydroxyl ions at this interface. However, the presence of electrolytes at the interface between water and the different model polymers did not influence the macroscopic contact angle. The results may suggest the absence of any specific interaction between the ions and the solid polymer, as this should result in changes of hydrophobicity. Similar to the air/water interface, the composition and the potential of the polymer/water interface are obviously determined predominantly by the aqueous phase with only slight influence from the solid phase.

  13. Density of aqueous solutions of CO2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  14. Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells.

    Science.gov (United States)

    Kumar, Surender; Selvaraj, C; Scanlon, L G; Munichandraiah, N

    2014-11-07

    Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag(+) ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O2 cells, these cells are assembled and characterized. Li-O2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O2 cells.

  15. Modeling Zinc-Air Batteries with Aqueous Electrolytes

    OpenAIRE

    Clark, Simon; Stamm, Johannes; Horstmann, Birger; Latz, Arnulf

    2016-01-01

    Emerging markets such as electric mobility and renewable power generation are driving a demand for high-performance electrochemical energy storage. Zinc-air batteries are a promising technology due to their high theoretical specific energy, use of cheap materials, and superior operational safety. But they suffer from effects such as poor cycling stability and self-discharge due to carbonate formation in the alkaline electrolyte. The EU Horizon 2020 project Zinc Air Secondary (ZAS!) aims to o...

  16. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon...

  17. Aqueous Solution Vessel Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  18. Silica surfaces lubrication by hydrated cations adsorption from electrolyte solutions.

    Science.gov (United States)

    Donose, Bogdan C; Vakarelski, Ivan U; Higashitani, Ko

    2005-03-01

    Adsorption of hydrated cations on hydrophilic surfaces has been related to a variety of phenomena associated with the short-range interaction forces and mechanisms of the adhesive contact between the surfaces. Here we have investigated the effect of the adsorption of cations on the lateral interaction. Using lateral force microscopy (LFM), we have measured the friction force between a silica particle and silica wafer in pure water and in electrolyte solutions of LiCl, NaCl, and CsCl salts. A significant lubrication effect was demonstrated for solutions of high electrolyte concentrations. It was found that the adsorbed layers of smaller and more hydrated cations have a higher lubrication capacity than the layers of larger and less hydrated cations. Additionally, we have demonstrated a characteristic dependence of the friction force on the sliding velocity of surfaces. A mechanism for the observed phenomena based on the microstructures of the adsorbed layers is proposed.

  19. Liquid / liquid biphasic electrochemistry in ultra-turrax dispersed acetonitrile / aqueous electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D. [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom); Amemiya, Fumihiro; Atobe, Mahito [Tokyo Institute of Technology, Department of Electronic Chemistry, Yokohama, Kanagawa 2268502 (Japan); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank, E-mail: F.Marken@bath.ac.u [Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY (United Kingdom)

    2010-12-01

    Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid / liquid aqueous-organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid / liquid-electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase. A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile / aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH{sub 3}){sub 6}{sup 3+} in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.

  20. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Aaron T.; Szalay, Tamas [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Lu, Bo [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Xie, Ping [Oxford Nanopore Technologies, One Kendall Square, Cambridge, Massachusetts 02139 (United States); Golovchenko, Jene A., E-mail: golovchenko@physics.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  1. Lightly Fluorinated Graphene as a Protective Layer for n-Type Si(111) Photoanodes in Aqueous Electrolytes.

    Science.gov (United States)

    Nielander, Adam C; Thompson, Annelise C; Roske, Christopher W; Maslyn, Jacqueline A; Hao, Yufeng; Plymale, Noah T; Hone, James; Lewis, Nathan S

    2016-07-13

    The behavior of n-Si(111) photoanodes covered by monolayer sheets of fluorinated graphene (F-Gr) was investigated under a range of chemical and electrochemical conditions. The electrochemical behavior of n-Si/F-Gr and np(+)-Si/F-Gr photoanodes was compared to hydride-terminated n-Si (n-Si-H) and np(+)-Si-H electrodes in contact with aqueous Fe(CN)6(3-/4-) and Br2/HBr electrolytes as well as in contact with a series of outer-sphere, one-electron redox couples in nonaqueous electrolytes. Illuminated n-Si/F-Gr and np(+)-Si/F-Gr electrodes in contact with an aqueous K3(Fe(CN)6/K4(Fe(CN)6 solutions exhibited stable short-circuit photocurrent densities of ∼10 mA cm(-2) for 100,000 s (>24 h), in comparison to bare Si electrodes, which yielded nearly a complete photocurrent decay over ∼100 s. X-ray photoelectron spectra collected before and after exposure to aqueous anodic conditions showed that oxide formation at the Si surface was significantly inhibited for Si electrodes coated with F-Gr relative to bare Si electrodes exposed to the same conditions. The variation of the open-circuit potential for n-Si/F-Gr in contact with a series of nonaqueous electrolytes of varying reduction potential indicated that the n-Si/F-Gr did not form a buried junction with respect to the solution contact. Further, illuminated n-Si/F-Gr electrodes in contact with Br2/HBr(aq) were significantly more electrochemically stable than n-Si-H electrodes, and n-Si/F-Gr electrodes coupled to a Pt catalyst exhibited ideal regenerative cell efficiencies of up to 5% for the oxidation of Br(-) to Br2.

  2. Speciation in aqueous solutions of nitric acid.

    Science.gov (United States)

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  3. Colloidal Stability of Graphene Oxide Nanosheets in Aqueous Solutions

    Science.gov (United States)

    Guikema, Janice; Wang, Yung-Li; Chen, Kai

    2013-03-01

    Carbon-based nanomaterials are increasingly used in commercial products as well as in research and industrial applications. Due to its extraordinary properties, graphene has attracted intense research interest and has been demonstrated in many potential applications including solar cells, conductive ink, and transistors. Graphene oxide has also been studied extensively and has been used to produce biocompatible antibacterial paper. Chemical reduction of graphene oxide is commonly used to produce inexpensive graphene in large quantities. With the increasing use of graphene and graphene oxide in consumer products, these nanomaterials may inevitably be released to aqueous systems, resulting in potential risk to environmental ecosystems and human health. The fate and mobility of graphene and its oxides in aquatic systems is dependent on their colloidal stability. We will discuss our study of the early-stage aggregation kinetics of graphene oxide in aqueous solutions. We prepared a suspension of single-layer graphene oxide nanosheets in water and used time-resolved dynamic light scattering to study the influence of electrolytes and pH on the aggregation kinetics of the nanosheets. Atomic force microscopy was employed to further examine the graphene oxide nanosheets.

  4. Multistep nucleation of nanocrystals in aqueous solution

    Science.gov (United States)

    Loh, N. Duane; Sen, Soumyo; Bosman, Michel; Tan, Shu Fen; Zhong, Jun; Nijhuis, Christian A.; Král, Petr; Matsudaira, Paul; Mirsaidov, Utkur

    2017-01-01

    The nucleation and growth of solids from solutions impacts many natural processes and is fundamental to applications in materials engineering and medicine. For a crystalline solid, the nucleus is a nanoscale cluster of ordered atoms that forms through mechanisms still poorly understood. In particular, it is unclear whether a nucleus forms spontaneously from solution via a single- or multiple-step process. Here, using in situ electron microscopy, we show how gold and silver nanocrystals nucleate from supersaturated aqueous solutions in three distinct steps: spinodal decomposition into solute-rich and solute-poor liquid phases, nucleation of amorphous nanoclusters within the metal-rich liquid phase, followed by crystallization of these amorphous clusters. Our ab initio calculations on gold nucleation suggest that these steps might be associated with strong gold-gold atom coupling and water-mediated metastable gold complexes. The understanding of intermediate steps in nuclei formation has important implications for the formation and growth of both crystalline and amorphous materials.

  5. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    Science.gov (United States)

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  6. Terahertz absorption of dilute aqueous solutions.

    Science.gov (United States)

    Heyden, Matthias; Tobias, Douglas J; Matyushov, Dmitry V

    2012-12-21

    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  7. Electrical conductivity of aqueous solutions of aluminum salts

    Science.gov (United States)

    Vila, J.; Rilo, E.; Segade, L.; Cabeza, O.; Varela, L. M.

    2005-03-01

    We present experimental measurements of the specific electrical conductivity (σ) in aqueous solutions of aluminum salts at different temperatures, covering all salt concentrations from saturation to infinite dilution. The salts employed were AlCl3 , AlBr3 , AlI3 , and Al(NO3)3 , which present a 1:3 relationship between the electrical charges of anion and cation. In addition, we have measured the density in all ranges of concentrations of the four aqueous electrolyte solutions at 298.15K . The measured densities show an almost linear behavior with concentration, and we have fitted it to a second order polynomial with very high degree of approximation. The measurement of the specific conductivity at constant temperature reveals the existence of maxima in the conductivity vs concentration curves at molar concentrations around 1.5M for the three halide solutions studied, and at approximately 2M for the nitrate. We present a theoretical foundation for the existence of these maxima, based on the classical Debye-Hückel-Onsager hydrodynamic mean-field framework for electrical transport and its high concentration extensions, and also a brief consideration of ionic frictional coefficients using mode-coupling theory. We also found that the calculated values of the equivalent conductance vary in an approximately linear way with the square root of the concentration at concentrations as high as those where the maximum of σ appears. Finally, and for completeness, we have measured the temperature dependence of the electrical conductivity at selected concentrations from 283to353K , and performed a fit to an exponential equation of the Vogel-Fulcher-Tamman type. The values of the calculated temperatures of null mobility of the four salts are reported.

  8. Heterogeneous nucleation of aspartame from aqueous solutions

    Science.gov (United States)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  9. Measurement of high carrier mobility in graphene in an aqueous electrolyte environment

    Science.gov (United States)

    Brown, Morgan A.; Crosser, Michael S.; Leyden, Matthew R.; Qi, Yabing; Minot, Ethan D.

    2016-08-01

    Graphene is a promising material for applications in aqueous electrolyte environments. To explore the impact of such environments on graphene's electrical properties, we performed Hall bar measurements on electrolyte-gated graphene. Assuming a Drude model, we find that the room temperature carrier mobility in water-gated, SiO2-supported graphene reaches 7000 cm2/Vs, comparable to the best dry SiO2-supported graphene devices. Our results show that the electrical performance of graphene is robust, even in the presence of dissolved ions that introduce an additional mechanism for Coulomb scattering.

  10. Comparative investigation of underpotential deposition of Ag from aqueous and ionic electrolytes: An electrochemical and in situ STM study.

    Science.gov (United States)

    Borissov, D; Aravinda, C L; Freyland, W

    2005-06-16

    Underpotential deposition (UPD) of Ag on Au(111) has been studied with two different electrolytes: aqueous 0.1 M H2SO4 solution in comparison with the ionic liquid 1-butyl-3-methylimidazolium chloride BMICl + AlCl3. Of particular interest is the distinct behavior of 2D phase formation at both interfaces, which has been investigated by cyclic and linear sweep voltammetry in combination with in situ electrochemical scanning tunneling microscopy (STM). It is found that one monolayer (ML) of Ag is formed in the UPD region in both electrolytes. In aqueous solution, atomically resolved STM images at 500 mV versus Ag/Ag+ show a (3 x 3) adlayer of Ag, whereas after sweeping the potential just before the commencement of the bulk Ag deposition, a transition from expanded (3 x 3) to pseudomorphic ML of Ag on Au(111) occurs. In BMICl-AlCl3, the first UPD process of Ag exhibits two peaks at 410 and 230 mV indicating that two distinct processes on the surface take place. For the first time, STM images with atomic resolution reveal a transition from an inhomogeneous to an ordered phase with a (square root of 3 x square root of 3)R30 degrees structure and an adsorption of AlCl4- anions having a superlattice of (1.65 x square root of 3)R30 degrees preceding the deposition of Ag.

  11. Functionalized polymers for binding to solutes in aqueous solutions

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  12. The solubility of hydrogen sulfide in aqueous N-methyldiethanolamine solutions

    OpenAIRE

    Huttenhuis, P. J. G.; Agrawal, N.J.; Versteeg, G. F.

    2008-01-01

    In this work the electrolyte equation of state as developed previously for the system MDEA-H2O-CO2-CH4 was further developed for the system MDEA-H2O-H2S-CH4. With this thermodynamic equilibrium model the total solubility of hydrogen sulfide and the speciation in aqueous solutions of N-methyldiethanolamine can be described quantitatively. The model results were compared to experimental H2S solubility data in aqueous MDEA in absence and presence of methane respectively. The application of equat...

  13. Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids.

    Science.gov (United States)

    Byers, Joshua C; Paulose Nadappuram, Binoy; Perry, David; McKelvey, Kim; Colburn, Alex W; Unwin, Patrick R

    2015-10-20

    Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

  14. Mechanism of chitosan adsorption on silica from aqueous solutions.

    Science.gov (United States)

    Tiraferri, Alberto; Maroni, Plinio; Rodríguez, Diana Caro; Borkovec, Michal

    2014-05-06

    We present a study of the adsorption of chitosan on silica. The adsorption behavior and the resulting layer properties are investigated by combining optical reflectometry and the quartz crystal microbalance. Exactly the same surfaces are used to measure the amount of adsorbed chitosan with both techniques, allowing the systematic combination of the respective experimental results. This experimental protocol makes it possible to accurately determine the thickness of the layers and their water content for chitosan adsorbed on silica from aqueous solutions of varying composition. In particular, we study the effect of pH in 10 mM NaCl, and we focus on the influence of electrolyte type and concentration for two representative pH conditions. Adsorbed layers are stable, and their properties are directly dependent on the behavior of chitosan in solution. In mildly acidic solutions, chitosan behaves like a weakly charged polyelectrolyte, whereby electrostatic attraction is the main driving force for adsorption. Under these conditions, chitosan forms rigid and thin adsorption monolayers with an average thickness of approximately 0.5 nm and a water content of roughly 60%. In neutral solutions, on the other hand, chitosan forms large aggregates, and thus adsorption layers are significantly thicker (∼10 nm) as well as dissipative, resulting in a large maximum of adsorbed mass around the pK of chitosan. These films are also characterized by a substantial amount of water, up to 95% of their total mass. Our results imply the possibility to produce adsorption layers with tailored properties simply by adjusting the solution chemistry during adsorption.

  15. Excited state intramolecular charge transfer reaction in non-aqueous reverse micelles: Effects of solvent confinement and electrolyte concentration

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Harun Al Rasid Gazi; Biswajit Guchhait; Ranjit Biswas

    2012-03-01

    Steady state and time resolved fluorescence emission spectroscopy have been employed to investigate the effects of solvent confinement and electrolyte concentration on excited state intramolecular charge transfer (ICT) reaction in 4-(1-pyrrolidinyl) benzonitrile (P5C), 4-(1-piperidinyl) benzonitrile (P6C), and 4-(1-morpholenyl) benzonitrile (M6C) in AOT/n-heptane/acetonitrile and AOT/n-heptane/methanol reverse micelles. Dramatic confinement effects have been revealed via a huge reduction (factor ranging between 100 and 20) over bulk values of both equilibrium and reaction rate constants. A strong dependence on the size of the confinement () of these quantities has also been observed. dependent average static dielectric constant, viscosity and solvation time-scale have been determined. Estimated dielectric constants for confined methanol and acetonitrile show a decrease from the respective bulk values by a factor of 3-5 and viscosities increased by a factor of 2 at the highest considered. Addition of electrolyte at = 5 for acetonitrile is found to produce a linear increase of confined solvent viscosity but leads to a non-monotonic electrolyte concentration dependence of average solvation time. Reaction rate constant is found to decrease linearly with electrolyte concentration for P5C and P6C but non-monotonically for M6C, the highest decrease for all the molecules being ∼ 20% over the value in the absence of added electrolyte in the solvent pool. The observed huge reduction in reaction rate constant is attributed to the effects of decreased solution polarity, enhanced viscosity and slowed-down solvent reorganization of the solvent under confinement in these non-aqueous reverse micelles.

  16. "Switchable water": aqueous solutions of switchable ionic strength.

    Science.gov (United States)

    Mercer, Sean M; Jessop, Philip G

    2010-04-26

    "Salting out" is a standard method for separating water-soluble organic compounds from water. In this method, adding a large amount of salt to the aqueous solution forces the organic compound out of the aqueous phase. However, the method can not be considered sustainable because it creates highly salty water. A greener alternative would be a method that allows reversible salting out. Herein, we describe aqueous solutions of switchable ionic strength. Aqueous solutions of a diamine in water have essentially zero ionic strength but are converted by CO(2) into solutions of high ionic strength. The change is reversible. Application to the reversible salting out of THF from water is described.

  17. A Comparative Study of Anodized Titania Nanotube Architectures in Aqueous and Nonaqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R [ORNL; Lai, Peng [ORNL; Hu, Michael Z. [ORNL

    2011-01-01

    The unique and highly utilized properties of TiO2 nanotubes are a direct result of nanotube architecture. In order to create different engineered architectures, the effects of electrolyte solution, time, and temperature on the anodization of titanium foil were studied along with the resultant anodized titanium oxide (ATO) nanotube architectures encompassing nanotube length, pore diameter, wall thickness, smoothness, and ordered array structure. Titanium foil was anodized in three different electrolyte solutions: one aqueous (consisting of NH4F and (NH4)2SO4)) and two nonaqueous (glycerin or ethylene glycol, both containing NH4F) at varying temperatures and anodization times. Variation in anodization applied voltage, initial current, and effect of F- ion concentration on ATO nanotube architecture were also studied. Anodization in the aqueous electrolyte produced short, rough nanotube arrays, whereas anodization in organic electrolytes produced long, smooth nanotube arrays greater than 10 m in length. Anodization in glycerin at elevated temperatures for several hours presents the possibility of producing freely dispersed individual nanotubes.

  18. Formation of hydroxyapatite in various aqueous solutions

    Science.gov (United States)

    Sturgeon, Jacqueline Lee

    Hydroxyapatite (HAp), Ca10(PO4)6(OH) 2, is important in the field of biomaterials as it is the mineral component of bones and teeth. Biological apatites do not maintain an exact composition and are usually calcium-deficient, represented as Ca(10- x)(HPO 4)x(PO4)(6-x)(OH)(2-x), where x ranges from 0 to 1, with various ion substitutions. Formation of calcium-deficient hydroxyapatites (CDHAp) from solid calcium phosphate precursor materials was performed at physiologic temperature (37°C) in a variety of aqueous solutions. Two cement systems were utilized in these experiments: tetralcium phosphate (TetCP) with dicalcium phosphate anhydrous (DCPA) and beta-tricalcium phosphate (beta-TCP). The kinetics, solution chemistry, phase evolution, and microstructure of the developed apatites were analyzed as appropriate. Reaction of beta-TCP in ammonium fluoride solutions formed HAp substituted with fluoride and calculated to be deficient in calcium. A new ratio of TetCP to DCPA was used with solutions of sodium bicarbonate to form a calcium-deficient carbonate hydroxyapatite. The capacity for sodium dihydrogen phosphate to buffer pH increases and enhance reaction kinetics in this system was also explored. Formation of a highly crystalline CDHAp was achieved by hydrolyzing beta-TCP in water for extended time periods. Lattice parameters were among the features characterized for this apatite. The hydrolysis of beta-TCP in phosphate buffered saline (PBS) and simulated body fluids (SBF) was also investigated; use of SBF was found to completely inhibit formation of HAp in this system while reaction in PBS was slow in comparison to water. The effects of filler materials on the mechanical properties of a calcium phosphate cement were examined using the TetCP/DCPA system. Dense aggregates were not found to decrease compressive strength in comparison to the cement alone. The use of aggregates was found to improve the compressive strength of cement formed using NaHCO3 solution as a

  19. The decisive role of free water in determining homogenous ice nucleation behavior of aqueous solutions.

    Science.gov (United States)

    Wang, Qiang; Zhao, Lishan; Li, Chenxi; Cao, Zexian

    2016-05-26

    It is a challenging issue to quantitatively characterize how the solute and pressure affect the homogeneous ice nucleation in a supercooled solution. By measuring the glass transition behavior of solutions, a universal feature of water-content dependence of glass transition temperature is recognized, which can be used to quantify hydration water in solutions. The amount of free water can then be determined for water-rich solutions, whose mass fraction, Xf, is found to serve as a universal relevant parameter for characterizing the homogeneous ice nucleation temperature, the meting temperature of primary ice, and even the water activity of solutions of electrolytes and smaller organic molecules. Moreover, the effects of hydrated solute and pressure on ice nucleation is comparable, and the pressure, when properly scaled, can be incorporated into the universal parameter Xf. These results help establish the decisive role of free water in determining ice nucleation and other relevant properties of aqueous solutions.

  20. Electrolytic Recovery of Nickel from Spent Electroless Nickel Bath Solution

    Directory of Open Access Journals (Sweden)

    R. Idhayachander

    2010-01-01

    Full Text Available Plating industry is one of the largest polluting small scale industries and nickel plating is among the important surface finishing process in this industry. The waste generated during this operation contains toxic nickel. Nickel removal and recovery is of great interest from spent bath for environmental and economic reasons. Spent electroless nickel solution from a reed relay switch manufacturing industry situated in Chennai was taken for electrolytic recovery of nickel. Electrolytic experiment was carried out with mild steel and gold coated mild steel as cathode and the different parameters such as current density, time, mixing and pH of the solution were varied and recovery and current efficiency was studied. It was noticed that there was an increase in current efficiency up to 5 A/dm2 and after that it declines. There is no significant improvement with mixing but with modified cathode there was some improvement. Removal of nickel from the spent electroless nickel bath was 81.81% at 5 A/dm2 and pH 4.23. Under this condition, the content of nickel was reduced to 0.94 g/L from 5.16 g/L. with 62.97% current efficiency.

  1. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Saksono, Nelson; Febiyanti, Irine Ayu, E-mail: irine.ayu41@ui.ac.id; Utami, Nissa; Ibrahim [Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia Phone: +62217863516, Fax: +62217863515 (Indonesia)

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  2. 21 CFR 524.1200b - Kanamycin ophthalmic aqueous solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Kanamycin ophthalmic aqueous solution. 524.1200b Section 524.1200b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 524.1200b Kanamycin ophthalmic aqueous solution. (a) Specifications. The drug, which is in an...

  3. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  4. Structure of aqueous sodium perchlorate solutions.

    Science.gov (United States)

    General, Ignacio J; Asciutto, Eliana K; Madura, Jeffry D

    2008-12-01

    Salt solutions have been the object of study of many scientists through history, but one of the most important findings came along when the Hofmeister series were discovered. Their importance arises from the fact that they influence the relative solubility of proteins, and solubility is directly related to one of today's holy grails: protein folding. In this work we characterize one of the more-destabilizing salts in the series, sodium perchlorate, by studying it as an aqueous solution at various concentrations ranging from 0.08 to 1.60 mol/L. Molecular dynamics simulations at room temperature permitted a detailed study of the organization of solvent and cosolvent, in terms of its radial distribution functions, along with the study of the structure of hydrogen bonds in the ions' solvation shells. We found that the distribution functions have some variations in their shape as concentration changes, but the position of their peaks is mostly unaffected. Regarding water, the most salient fact is the noticeable (although small) change in the second hydration shell and even beyond, especially for g(O(w)***O(w)), showing that the locality of salt effects should not be restricted to considerations of only the first solvation shell. The perturbation of the second shell also appears in the study of the HB network, where the difference between the number of HBs around a water molecule and around the Na(+) cation gets much smaller as one goes from the first to the second solvation shell, yet the difference is not negligible. Nevertheless, the effect of the ions past their first hydration shell is not enough to make a noticeable change in the global HB network. The Kirkwood-Buff theory of liquids was applied to our system, in order to calculate the activity derivative of the cosolvent. This coefficient, along with a previously calculated preferential binding, allowed us to establish that if a folded AP peptide is immersed in the studied solution, becoming the solute, then

  5. Fluoride Adsorption by Pumice from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2012-01-01

    Full Text Available Drinking water provides many vital elements for the human body, but the presence of some dissolved elements more than permissible concentration can endanger human health. Among the dissolved elements in drinking water, fluoride is noticeable, because both the very low or very high concentrations have adverse health impacts such as dental caries. Therefore, fluoride concentration should be kept in acceptable levels. In this study Pumice was used for fluoride removal. It was found that Fluoride sorption kinetic was fitted by pseudo-second-order model. The maximum sorption capacity of Pumice was found to be 13.51 mg/g at laboratory temperature (24°C. Maximum sorption study occurred at pH= 3. Results of Isotherm showed the fluoride sorption has been well fitted with Freundlich isotherm model. This study has demonstrated that Pumice can be used as effective adsorbents for fluoride removal from aqueous solutions. The adsorbent prepared in this study was cheap and efficient in removal of fluoride than other adsorbents.

  6. A Hybrid Metal Oxide Supercapacitor in Aqueous KOH Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANG,Xiao-Feng; YOU,Zheng; RUAN,Dian-Bo

    2006-01-01

    A novel type of composite electrode based on sheet like cobalt oxide particles has been used in supercapacitors.Cobalt oxide cathodically deposited from Co(NO3)2 solution with carbon nanotubes as matrix exhibited large pseudo-capacitance of 322 F·g-1 in 6 mol·L-1 KOH. A sol-gel process for the preparation of ultrafine RuO2 particles was developed to design electrodes with large surface area. The composite electrodes were developed by the deposition of RuO2 on the surface of carbon nanotubes. A specific capacitance of 785 F·g-1 can be achieved with the 20% carbon nanotubes loaded. To characterize the metal oxide nanocomposite electrode, a cyclic voltammetry and AC impedance test are executed. This study also reports a hybrid capacitor, which consists of cobalt oxide composite as a cathode and ruthenium oxide composite as an anode. The electrochemical performance of the hybrid capacitor is characterized by a dc charge/discharge test and cyclic voltammograms. The hybrid capacitor shows capacitor behavior with an extended operating voltage of 1.4 V. The maximum energy density and specific power density of the cell reach the value of 23.7 and 8.1 kW·g-1 respectively. The hybrid capacitor exhibits high-energy density and stable power characteristics.

  7. Poisson-Fermi model of single ion activities in aqueous solutions

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-09-01

    A Poisson-Fermi model is proposed for calculating activity coefficients of single ions in strong electrolyte solutions based on the experimental Born radii and hydration shells of ions in aqueous solutions. The steric effect of water molecules and interstitial voids in the first and second hydration shells play an important role in our model. The screening and polarization effects of water are also included in the model that can thus describe spatial variations of dielectric permittivity, water density, void volume, and ionic concentration. The activity coefficients obtained by the Poisson-Fermi model with only one adjustable parameter are shown to agree with experimental data, which vary nonmonotonically with salt concentrations.

  8. An AFM study of calcite dissolution in concentrated electrolyte solutions

    Science.gov (United States)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  9. Water rotational jump driven large amplitude molecular motions of nitrate ions in aqueous potassium nitrate solution

    CERN Document Server

    Banerjee, Puja; Bagchi, Biman

    2016-01-01

    Molecular dynamics simulations of aqueous potassium nitrate solution reveal a highly complex rotational dynamics of nitrate ions where, superimposed on the expected continuous Brownian motion, are large amplitude angular jumps that are coupled to and at least partly driven by similar large amplitude jump motions in water molecules which are associated with change in the hydrogen bonded water molecule. These jumps contribute significantly to rotational and translational motions of these ions. We explore the detailed mechanism of these correlated (or, coupled) jumps and introduce a new time correlation function to decompose the coupled orientational- jump dynamics of solvent and solute in the aqueous electrolytic solution. Time correlation function provides for the unequivocal determination of the time constant involved in orientational dynamics originating from making and breaking of hydrogen bonds. We discover two distinct mechanisms-both are coupled to density fluctuation but are of different types.

  10. Ozone photolysis of paracetamol in aqueous solution.

    Science.gov (United States)

    Neamţu, Mariana; Bobu, Maria; Kettrup, Antonius; Siminiceanu, Ilie

    2013-01-01

    The degradation of a paracetamol (N-acetil-para-aminofenol) aqueous solution (C (0) P = 5 mmol L(-1)) is studied in a bench-scale setup by means of simple ozonation (O3) and ozonation catalyzed with UV light (O3/UV) in order to quantify the influence of UV light on the degradation process. The results have shown that under the adopted experimental conditions (25°C, applied ozone dose = 9.8 mg L(-1) and gas flow rate of 20 L h(-1)) both oxidative systems are capable of removing the substrate with mineralization degrees up to 51% for ozonation and 53% for O3/UV. HPICE chromatography allowed the detection of nitrate ions and maleic and oxalic acids as ultimate carboxylic acids. The experimental data have been interpreted through 5 indicators: the conversion of paracetamol (XP ), the conversion degree of TOC (XTOC ), the apparent rate constant (kap ), the Hatta number (Ha) and the enhancement factor (E). The main advantage of photo-ozonation compared to simple ozonation was a more advanced conversion (79% vs. 92% after 90 min). The paracetamol decay follows a pseudo-first-order reaction with a superior rate constant (higher by 54%) for the UV catalyzed system in comparison with direct ozonation. Mineralization is slightly accelerated (+4%) in the O3/UV system, due to the additional production of hydroxyl radicals induced by the UV light and a higher Hatta number (+24%). Nevertheless, the process was still in the slow reaction kinetic regime (Ha < 0.3), and the enhancement factor was not significantly increased. The results are useful for the design and scale-up of the gas-liquid processes.

  11. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    DEFF Research Database (Denmark)

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies...... of aqueous periodate solutions and with kinetic studies using stopped-flow technique. In strongly alkaline solution the photodecomposition of periodate proceeds via formation of O– and IVI. At pH

  12. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    OpenAIRE

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  13. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dhondge, Sudhakar S., E-mail: s_dhondge@hotmail.co [P.G. Department of Chemistry, S.K. Porwal College, Kamptee, Nagpur 441 002 (India); Zodape, Sangesh P.; Parwate, Dilip V. [Department of Chemistry, R.T.M. Nagpur University, Nagpur 440 033 (India)

    2011-01-15

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg{sup -1} at three different temperatures. The derived parameters, such as apparent molar volume of solute ({phi}{sub V})), limiting apparent molar volume of solute ({phi}{sub V}{sup 0}), limiting apparent molar expansivity ({phi}{sub E}{sup 0}), thermal expansion coefficient ({alpha}*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT)). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  14. Specific Features of Motion of Cations and Anions in Electrolyte Solutions

    CERN Document Server

    Bulavin, L A; Malomuzh, M P; Pankratov, K M

    2012-01-01

    The nature of mobility of ions and water molecules in dilute aqueous solutions of electrolytes (at most fifteen water molecules per ion) is investigated. It is shown that the behavior of the mobility coefficients of water molecules and ions, as well as the self-diffusion coefficients of water molecules, are determined by the radii of their hard shells rather than by the effect of the hydrogen bond network. It is established that the influence of hydration effects on the density of the system and the self-diffusion coefficients of water molecules does not exceed several per cent. Based on microscopic concepts, it is shown that the different behaviors of a $\\rm K^{+}$ cation and an $\\rm F^{-}$ anion with equal rigid radii are in good agreement with specific features of the intermolecular interaction described by the generalized Stillinger--David potential.

  15. Investigation of low frequency electrolytic solution behavior with an accurate electrical impedance method

    Science.gov (United States)

    Ho, Kung-Chu; Su, Vin-Cent; Huang, Da-Yo; Lee, Ming-Lun; Chou, Nai-Kuan; Kuan, Chieh-Hsiung

    2017-01-01

    This paper reports the investigation of strong electrolytic solutions operated in low frequency regime through an accurate electrical impedance method realized with a specific microfluidic device and high resolution instruments. Experimental results show the better repeatability and accuracy of the proposed impedance method. Moreover, all electrolytic solutions appear the so-called relaxation frequency at each peak value of dielectric loss due to relaxing total polarization inside the device. The relaxation frequency of concentrated electrolytes becomes higher owing to the stronger total polarization behavior coming from the higher conductivity as well as the lower resistance in the electrolytic solutions.

  16. Critical properties of aqueous solutions. Part 1: Experimental data

    Science.gov (United States)

    Abdulagatov, A. I.; Stepanov, G. V.; Abdulagatov, I. M.

    2008-08-01

    All data available in the literature on the critical properties of binary aqueous solutions like H2O + common salt, H2O + hydrocarbon, H2O + alcohol, H2O + gas, and others are gathered. Methods for determining them are presented together with errors and concentration measurement intervals for each source of data. The format in which the data are presented will allow the readers to quickly find the necessary information on the critical properties of aqueous solutions from the original sources and use them for solving scientific and engineering tasks. Certain general features of the critical lines and phase diagrams of aqueous solutions with volatile and nonvolatile components are discussed.

  17. Obtaining nano-sized silver particles in aqueous solution under the influence of the contact nonequilibrium low-temperature plasma

    OpenAIRE

    Сергеева, Ольга Вячеславовна; Пивоваров, Александр Андреевич

    2015-01-01

    The influence of plasma-treating aqueous solution containing silver ions for formation of the nanoparticles of silver, their size and their variation over a predetermined time interval. As a processing tool to use contact nonequilibrium low-temperature plasma is formed between the electrode (anode), located in the gas phase and the liquid surface and recessed electrode in there. The electrolytic solution AgNO3 in the distilled water used as cathode. Studied the characteristics of the obtained...

  18. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  19. Instability of aqueous solutions of polyacrylamide in a hydrodynamic field

    Science.gov (United States)

    Makogon, B. P.; Bykova, E. N.; Bezrukova, M. A.; Klenin, S. I.; Ivanyuta, Yu. F.; Povkh, I. L.; Toryanik, A. I.

    1985-09-01

    This article discusses findings obtained regarding the effect of a hydrodynamic field on the reduced viscosity, effect of turbulent friction reduction, light scattering, double refraction, and optical density of aqueous solutions of hydrolyzed polyacrylamide.

  20. Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte

    KAUST Repository

    Ruffo, Riccardo

    2011-06-01

    The development of lithium ion aqueous batteries is getting renewed interest due to their safety and low cost. We have demonstrated that the layer-structure LiCoO2 phase, the most commonly used electrode material in organic systems, can be successful delithiated and lithiated again in a water-based electrolyte at currents up to 2.70 A/g. The capacity is about 100 mAh/g at 0.135 A/g and can be tuned by cycling the electrode in different potential ranges. In fact, increasing the high cut-off voltage leads to higher specific capacity (up to 135 mAh/g) but the Coulomb efficiency is reduced (from 99.9% to 98.5%). The very good electrode kinetic is probably due to the high conductivity of the electrolyte solution (0.17 Scm- 1 at 25 °C) but this behavior is affected by the electrode load. © 2010 Elsevier B.V. All rights reserved.

  1. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials

    Science.gov (United States)

    Blomquist, Nicklas; Wells, Thomas; Andres, Britta; Bäckström, Joakim; Forsberg, Sven; Olin, Håkan

    2017-01-01

    Electric double-layer capacitors (EDLCs) or supercapacitors (SCs) are fast energy storage devices with high pulse efficiency and superior cyclability, which makes them useful in various applications including electronics, vehicles and grids. Aqueous SCs are considered to be more environmentally friendly than those based on organic electrolytes. Because of the corrosive nature of the aqueous environment, however, expensive electrochemically stable materials are needed for the current collectors and electrodes in aqueous SCs. This results in high costs for a given energy-storage capacity. To address this, we developed a novel low-cost aqueous SC using graphite foil as the current collector and a mix of graphene, nanographite, simple water-purification carbons and nanocellulose as electrodes. The electrodes were coated directly onto the graphite foil by using casting frames and the SCs were assembled in a pouch cell design. With this approach, we achieved a material cost reduction of greater than 90% while maintaining approximately one-half of the specific capacitance of a commercial unit, thus demonstrating that the proposed SC can be an environmentally friendly, low-cost alternative to conventional SCs. PMID:28054560

  2. Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials

    Science.gov (United States)

    Blomquist, Nicklas; Wells, Thomas; Andres, Britta; Bäckström, Joakim; Forsberg, Sven; Olin, Håkan

    2017-01-01

    Electric double-layer capacitors (EDLCs) or supercapacitors (SCs) are fast energy storage devices with high pulse efficiency and superior cyclability, which makes them useful in various applications including electronics, vehicles and grids. Aqueous SCs are considered to be more environmentally friendly than those based on organic electrolytes. Because of the corrosive nature of the aqueous environment, however, expensive electrochemically stable materials are needed for the current collectors and electrodes in aqueous SCs. This results in high costs for a given energy-storage capacity. To address this, we developed a novel low-cost aqueous SC using graphite foil as the current collector and a mix of graphene, nanographite, simple water-purification carbons and nanocellulose as electrodes. The electrodes were coated directly onto the graphite foil by using casting frames and the SCs were assembled in a pouch cell design. With this approach, we achieved a material cost reduction of greater than 90% while maintaining approximately one-half of the specific capacitance of a commercial unit, thus demonstrating that the proposed SC can be an environmentally friendly, low-cost alternative to conventional SCs.

  3. Successful stabilization of graphene oxide in electrolyte solutions: enhancement of biofunctionalization and cellular uptake.

    Science.gov (United States)

    Hong, Bong Jin; Compton, Owen C; An, Zhi; Eryazici, Ibrahim; Nguyen, SonBinh T

    2012-01-24

    Aqueous dispersions of graphene oxide are inherently unstable in the presence of electrolytes, which screen the electrostatic surface charge on these nanosheets and induce irreversible aggregation. Two complementary strategies, utilizing either electrostatic or steric stabilization, have been developed to enhance the stability of graphene oxide in electrolyte solutions, allowing it to stay dispersed in cell culture media and serum. The electrostatic stabilization approach entails further oxidation of graphene oxide to low C/O ratio (~1.1) and increases ionic tolerance of these nanosheets. The steric stabilization technique employs an amphiphilic block copolymer that serves as a noncovalently bound surfactant to minimize the aggregate-inducing nanosheet-nanosheet interactions. Both strategies can stabilize graphene oxide nanosheets with large dimensions (>300 nm) in biological media, allowing for an enhancement of >250% in the bioconjugation efficiency of streptavidin in comparison to untreated nanosheets. Notably, both strategies allow the stabilized nanosheets to be readily taken up by cells, demonstrating their excellent performance as potential drug-delivery vehicles.

  4. Wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems and the effect of added electrolytes.

    Science.gov (United States)

    Shrestha, Rekha Goswami; Rodriguez-Abreu, Carlos; Aramaki, Kenji

    2009-01-01

    The formation of viscoelastic wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems in the presence of different counterions and salts is reported, and the effects of the different electrolytes on the rheological behavior are discussed. N-dodecanoylglutamic acid (LAD) is neutralized with biologically relevant L-lysine and L-arginine to obtain anionic surfactants (LAD-Lys2, LAD-Arg2) which form aqueous micellar solutions at 25 degrees C. Addition of a nonionic surfactant, tri-ethyleneglycol mono n-tetradecyl ether (C14EO3), to the aqueous solutions of both LAD-Lys2 and LAD-Arg2 causes the zero-shear viscosity (eta(0)) to increase with C14EO3 concentration gradually at first, and then sharply, indicating one-dimensional growth of the aggregates and eventual formation of entangled wormlike micelles. Further addition of C14EO3 ultimately leads to phase separation of liquid crystals. Such a phase separation, which limits the maximum attainable viscosity, takes place at lower C14EO3 concentrations for LAD-Lys2 compared to LAD-Arg2 systems. It was found that the rheological behavior of micellar solutions is significantly affected by the addition of Na+X(-) salts (X = Cl(-), Br(-), I(-), NO3(-)). The maximum viscosities obtained for the systems with added salt are all higher than that of the salt-free system, and the onset of wormlike micelle formation shift towards lower nonionic surfactant concentrations upon addition of electrolyte. The maximum attainable thickening effect of anions increases in the order NO3(-)>I(-)>Br(-)>Cl(-). The effect of temperature was also investigated. Phase separation takes place at certain temperature, which depends on the type of anion in the added salt, and decreases in the order I(-)>NO3(-)>Br(-) approximately equal Cl(-), in agreement with Hofmeister's series in terms of amphiphile solubility. The thermoresponsive rheological behavior was also found to be highly dependent on the type of anion, and anomalous

  5. Ionic Liquid-Based Non-Aqueous Electrolytes for Nickel/Metal Hydride Batteries

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-02-01

    Full Text Available The voltage of an alkaline electrolyte-based battery is often limited by the narrow electrochemical stability window of water (1.23 V. As an alternative to water, ionic liquid (IL-based electrolyte has been shown to exhibit excellent proton conducting properties and a wide electrochemical stability window, and can be used in proton conducting batteries. In this study, we used IL/acid mixtures to replace the 30 wt % KOH aqueous electrolyte in nickel/metal hydride (Ni/MH batteries, and verified the proton conducting character of these mixtures through electrochemical charge/discharge experiments. Dilution of ILs with acetic acid was found to effectively increase proton conductivity. By using 2 M acetic acid in 1-ethyl-3-methylimidazolium acetate, stable charge/discharge characteristics were obtained, including low charge/discharge overpotentials, a discharge voltage plateau at ~1.2 V, a specific capacity of 161.9 mAh·g−1, and a stable cycling performance for an AB5 metal hydride anode with a (Ni,Co,Zn(OH2 cathode.

  6. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Science.gov (United States)

    Nemla, Fatima; Cherrad, Djellal

    2016-07-01

    Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98-2.9 μm) and of moderate surface roughness RMS (∼47-58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  7. Polyvinylpyrrolidone/polyvinyl butyral composite as a stable binder for castable supercapacitor electrodes in aqueous electrolytes

    Science.gov (United States)

    Aslan, M.; Weingarth, D.; Herbeck-Engel, P.; Grobelsek, I.; Presser, V.

    2015-04-01

    Mixtures of polyvinylpyrrolidone/polyvinyl butyral (PVP/PVB) are attractive binders for the preparation of carbon electrodes for aqueous electrolyte supercapacitors. The use of PVP/PVB offers several key advantages: They are soluble in ethanol and can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector. Infrared spectroscopy and contact angle measurements show that the PVP-to-PVB ratio determines the degree of binder hydrophilicity. Within our study, the most favorable performance was obtained for AC electrodes with a composition of AC + 1.5 mass% PVP + 6.0 mass% PVB; such electrodes were mechanically stabile and water resistant with a PVP release of less than 5% of total PVP while PVB itself is water insoluble. Compared to when using PVDF, the specific surface area (SSA) of the assembled electrodes was 10% higher, indicating a reduced pore blocking tendency. A good electrochemical performance was observed in different aqueous electrolytes for composite electrodes with the optimized binder composition: 160 F g-1 at 1 A g-1 for 1 M H2SO4 and 6 M KOH and 120 F g-1 for 1 M NaCl. The capacitance was slightly reduced by 2.5% after cycling to 1.2 V with 1.28 A g-1 in 1 M NaCl for 10,000 times.

  8. Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors

    OpenAIRE

    Latoszyńska, Anna A.; Zukowska, Grażyna Zofia; Rutkowska, Iwona A.; Taberna, Pierre-Louis; Simon, Patrice; Kulesza, Pawel J.; Wieczorek, Władysław

    2015-01-01

    International audience; A mechanically-stable non-aqueous proton-conducting gel polymer electrolyte that is based on methacrylate monomers, is considered here for application in solid-state type supercapacitors. An electrochemical cell using activated carbon as active materials and the new gel polymer electrolyte has been characterized at room temperature using cyclic voltammetry, galvanostatic charge–discharge cycle tests as well as impedance spectroscopy. The use of phosphoric acid ester (i...

  9. Vapour pressure and enthalpy of aqueous lithium bromide solutions. [Used in absorption heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.; Patwardhan, V.S. (National Chemical Lab., Poona (India))

    1992-07-01

    In this paper we present new equations for accurate calculations of the vapour pressure and enthalpy of aqueous lithium bromide solutions which are commonly used in absorption heat pumps and absorption heat transformers. The number of empirical parameters involved in these equations is much smaller than those in earlier equations. Moreover, the present equations for both vapour pressure and enthalpy involve the same constants as both these equations are derived from a single free energy equation using standard thermodynamic concepts. The present methodology can be used with any other electrolyte for which enthalpy-concentration diagrams may not be readily available. (Author).

  10. The effect of aqueous solution in Raman spectroscopy

    Science.gov (United States)

    Kang, Jian; Yuan, Xiaojuan; Dong, Xiao; Gu, Huaimin

    2009-08-01

    In Raman detection, the most popular solution for the samples is tri-distilled water. But the effect of aqueous solution is barely studied in Raman spectroscopy. In fact Raman spectroscopy of solid-state and liquid-state are obvious different. In addition, FWHM of Raman spectral peaks also change evidently. In this paper, several samples were selected for the experiment; including sodium nitrate, sodium nitrite, glucose and caffeine. By comparing the Raman spectroscopy of samples at different concentrations, it is found that the concentration of the sample can affect the strength of Raman spectroscopy, but it can hardly impact FWHM of Raman spectral peaks. By comparing the Raman spectroscopy of liquid-state with the Raman spectroscopy of solid-state, it is observed that the FWHM of some Raman spectral peaks varied obviously; that may be because when the sample was dissolved into the water, the crystal lattice structure was broken, and for some samples atom form became ion form in aqueous solution. Those structural variations caused the variation of the FWHM. The Raman spectroscopy of caffeine aqueous solution at very low concentration was also detected and analyzed. Compared with the Raman spectra of solid-state samples, it is found that some Raman spectral peaks disappeared when the sample was dissolved in water. It is possible that the low concentration of the sample result in the weakening of Raman signals and the disappearing of some weak Raman spectral peaks. Then Ag nanoparticles were added into the caffeine aqueous solution, the results suggest that surface enhanced Raman spectroscopy (SERS) not only can enhance the Raman spectral signal, but also can reduce the effect of aqueous solution. It is concluded that the concentration of sample only affects the strength of Raman spectroscopy; the aqueous solution can affect the FWHM of Raman spectral peaks; and SERS can reduce the effect of aqueous solution.

  11. Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

    Directory of Open Access Journals (Sweden)

    Masanobu Chiku

    2011-09-01

    Full Text Available Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate and 6 M KOH solution. The organic-inorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm−1 at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinforcement with hydrotalcite.

  12. Mixing of two different electrolyte solutions in electromagnetic rectangular mixers

    Institute of Scientific and Technical Information of China (English)

    Meimei WEN; Chang Nyung KIM; Yue YAN

    2016-01-01

    This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists of a conduit with electrodes equipped on its top and bottom walls. The difference in the electric potentials applied to the sets of electrodes induces the current. The combi- nation of the induced current and magnetic field yields Lorentz force, resulting in the fluid motion for pumping and mixing of the two different fluids. The numerical simulation is carried out with the use of commercial software CFX. The present numerical model is validated by an existing numerical work. The effect of different variables on mixing efficiency is investigated in many different cases with two different heights of the duct and various input voltages of the electrodes. The current simulation results indicate that the mixing performance can be enhanced by using multiple sets of electrodes and applying higher input voltages (absolute values) to the electrodes.

  13. Conductivity Prediction of Sodium and Potassium Hydrogen Tartrates in Aqueous Solution at Low Concentration

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@1 INTRODUCTION Acid salt is one kind of important compound, and studies on its solution conductivity behavior are very necessary in chemical analysis and medicine, biology and food industry. However, in aqueous solution, theconductivity behavior of the acid salt is quite compli-cated due to the existence of dissociation and asso-ciationequilibria among the species, which makes itdiffcult to predict or correlate the molar conductivityof acid salt solution. Now though conductivity equa-tion such as Pitts[1,2], Onsager-Fuoss-Chen (1978)[3],Fuoss(1978)[4], Lee Wheaton[5], and Quint-Viallard[6]equations are able to predict the conductivity of elec-trolyte solution, the reliability and accuracy of predic-tio are difficult to ensure.

  14. Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2010-05-15

    The study was to investigate the performance of electrocoagulation (EC) for the efficient removal of polyvinyl alcohol (PVA) from aqueous solutions. Several parameters were evaluated to characterize the PVA removal efficiency, such as various electrode pairs, current densities, supporting electrolytes, temperatures, and initial electrolyte concentrations. The effects of the current density, supporting electrolyte, and temperature on the electrical energy consumption were also investigated. The experimental results indicate that a Fe/Al electrode pair is the optimum choice out of four different electrode pair combinations. The optimum current density, supporting electrolyte concentration, and temperature were found to be 5 mA cm{sup -2}, 0.008N NaCl, and 298 K, respectively. The PVA removal efficiency decreased with increasing in the initial concentrations. The kinetic studies indicated that the EC process was best described using pseudo-second-order kinetics. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of PVA was best fitted by the Langmuir adsorption isotherm model. Thermodynamic parameters such as the Gibbs free energy, enthalpy, and entropy indicated that the adsorption of PVA on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  15. Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation.

    Science.gov (United States)

    Chou, Wei-Lung

    2010-05-15

    The study was to investigate the performance of electrocoagulation (EC) for the efficient removal of polyvinyl alcohol (PVA) from aqueous solutions. Several parameters were evaluated to characterize the PVA removal efficiency, such as various electrode pairs, current densities, supporting electrolytes, temperatures, and initial electrolyte concentrations. The effects of the current density, supporting electrolyte, and temperature on the electrical energy consumption were also investigated. The experimental results indicate that a Fe/Al electrode pair is the optimum choice out of four different electrode pair combinations. The optimum current density, supporting electrolyte concentration, and temperature were found to be 5 mA cm(-2), 0.008 N NaCl, and 298 K, respectively. The PVA removal efficiency decreased with increasing in the initial concentrations. The kinetic studies indicated that the EC process was best described using pseudo-second-order kinetics. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of PVA was best fitted by the Langmuir adsorption isotherm model. Thermodynamic parameters such as the Gibbs free energy, enthalpy, and entropy indicated that the adsorption of PVA on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  16. Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations.

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2013-04-21

    Thirteen of the most common aqueous NaCl solution force fields based on the SPC/E water solvent are examined with respect to their prediction at ambient conditions of the concentration dependence of the total electrolyte chemical potential and the solution density. We also calculate the salt solubility and the chemical potential and density of the NaCl crystalline solid. We obtain the solution chemical potential in a computationally efficient manner using our recently developed Osmotic Ensemble Monte Carlo method [F. Moučka, M. Lísal, and W. R. Smith, J. Phys. Chem. B 116, 5468 (2012)]. We find that the results of the force fields considered are scattered over a wide range of values, and none is capable of producing quantitatively accurate results over the entire concentration range, with only two of them deemed to be acceptable. Our results indicate that several force fields exhibit precipitation at concentrations below the experimental solubility limit, thus limiting their usefulness. This has important implications, both in general and for their use in biomolecular simulations carried out in the presence of counter-ions. We conclude that either different parameter fitting techniques taking high-concentration properties into account must be used when determining force field model parameters, or that the class of models considered here is intrinsically incapable of the task and more sophisticated mathematical forms must be used.

  17. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    OpenAIRE

    Lixia Bian; Yanyan Fang; Xiaolin Wang

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which c...

  18. Comparison of two electrolyte models for the carbon capture with aqueous ammonia

    DEFF Research Database (Denmark)

    Darde, Victor; Thomsen, Kaj; van Well, Willy J.M.

    2012-01-01

    Post-combustion carbon capture is attracting much attention due to the fact that it can be retrofitted on existing coal power plants. Among the most interesting technologies is the one that employs aqueous ammonia solutions to absorb the generated carbon dioxide. The evaluation of such process...

  19. Aqueous solutions at the interface with phospholipid bilayers.

    Science.gov (United States)

    Berkowitz, Max L; Vácha, Robert

    2012-01-17

    In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its

  20. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Science.gov (United States)

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  1. Synthesis and Aqueous Solution Viscosity of Hydrophobically Modified Xanthan Gum

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-lin; WU Wen-hui; YU Pei-zhi; WANG Jian-quan

    2007-01-01

    Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investigated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.

  2. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Lixia Bian

    2014-06-01

    Full Text Available The transmembrane electrical potential (TMEP in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2, concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  3. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    Science.gov (United States)

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-06-19

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations.

  4. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  5. Molecular simulation of aqueous electrolyte solubility. 2. Osmotic ensemble Monte Carlo methodology for free energy and solubility calculations and application to NaCl.

    Science.gov (United States)

    Moučka, Filip; Lísal, Martin; Škvor, Jiří; Jirsák, Jan; Nezbeda, Ivo; Smith, William R

    2011-06-23

    We present a new and computationally efficient methodology using osmotic ensemble Monte Carlo (OEMC) simulation to calculate chemical potential-concentration curves and the solubility of aqueous electrolytes. The method avoids calculations for the solid phase, incorporating readily available data from thermochemical tables that are based on well-defined reference states. It performs simulations of the aqueous solution at a fixed number of water molecules, pressure, temperature, and specified overall electrolyte chemical potential. Insertion/deletion of ions to/from the system is implemented using fractional ions, which are coupled to the system via a coupling parameter λ that varies between 0 (no interaction between the fractional ions and the other particles in the system) and 1 (full interaction between the fractional ions and the other particles of the system). Transitions between λ-states are accepted with a probability following from the osmotic ensemble partition function. Biasing weights associated with the λ-states are used in order to efficiently realize transitions between them; these are determined by means of the Wang-Landau method. We also propose a novel scaling procedure for λ, which can be used for both nonpolarizable and polarizable models of aqueous electrolyte systems. The approach is readily extended to involve other solvents, multiple electrolytes, and species complexation reactions. The method is illustrated for NaCl, using SPC/E water and several force field models for NaCl from the literature, and the results are compared with experiment at ambient conditions. Good agreement is obtained for the chemical potential-concentration curve and the solubility prediction is reasonable. Future improvements to the predictions will require improved force field models.

  6. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    Directory of Open Access Journals (Sweden)

    Feng-Hua Sun

    2015-05-01

    Full Text Available The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05. The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min than during the PL trial (91.6 ± 5.9 min (p < 0.05. At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05. The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation.

  7. Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting

    Science.gov (United States)

    Akbari-Fakhrabadi, A.; Mangalaraja, R. V.; Sanhueza, Felipe A.; Avila, Ricardo E.; Ananthakumar, S.; Chan, S. H.

    2012-11-01

    Gadolinia-doped ceria (Ce0.9Gd0.1O1.95, GDC) electrolyte was fabricated by aqueous-based tape casting method for solid oxide fuel cells (SOFCs). The ceramic powder prepared by combustion synthesis was used with poly acrylic acid (PAA), poly vinyl alcohol (PVA), poly ethylene glycol (PEG), Octanol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate and double distilled water as dispersant, binder, plasticizer, defoamer, surfactant and solvent respectively, to prepare stable GDC slurry. The conditions for preparing stable GDC slurries were studied and optimized by sedimentation, zeta potential and viscosity measurements. Green tapes with smooth surface, flexibility, thickness in the range of 0.35-0.4 mm and 45% relative green density were prepared. Conventional and flash sintering techniques were used and compared for densification which demonstrated the possibility of surpassing sintering at high temperatures and retarding related grain growth.

  8. Conductivity of Oxalic Acid in Aqueous Solution at Low Concentration

    Institute of Scientific and Technical Information of China (English)

    倪良; 韩世钧

    2005-01-01

    Oxalic acid is a weak and unsymmetrical bi-basic acid. There exist dissociation and association equilibria among the species in aqueous solution. The molar conductivity of the solution is the sum of the ionic contributions.Based on this idea, a new prediction equation of ionic conductivity was proposed at low concentration. The molar conductivities of the solution and its relevant ions were calculated respectively. The results obtained were in good agreement with those from experiments and the Quint-Viallard equation.

  9. Metallic amorphous electrodeposited molybdenum coating from aqueous electrolyte: Structural, electrical and morphological properties under current density

    Energy Technology Data Exchange (ETDEWEB)

    Nemla, Fatima [LEPCM, Department of Physics, University of Batna (Algeria); Cherrad, Djellal, E-mail: cherradphisic@yahoo.fr [Laboratory for Developing New Materials and Their Characterizations, University of Setif (Algeria)

    2016-07-01

    Graphical abstract: - Highlights: • Although difficulties related to electrodeposition of Mo films, we have successfully coated onto a cooper substrate. • A good formation of bcc Mo phase and lattice parameter was very accurate. • It seems that electrical properties of our samples are good and suitable as back contact for thin film solar cells. • It seems that grain size, microstrain and dislocation density are all managed and correlated to retain the resistivity to a considerable minimum value. - Abstract: Molybdenum coatings are extensively utilized as back contact for CIGS-based solar cells. However, their electrodeposition from aqueous electrolyte still sophisticates, since long time, owing to the high reactivity with oxygen. In this study, we present a successful 30 min electrodeposition experiment of somewhat thick (∼0.98–2.9 μm) and of moderate surface roughness RMS (∼47–58 nm), metallic bright Mo coating from aqueous electrolyte containing molybdate ions. XRD analysis and Hall Effect measurements have been used to confirm the presence of Mo. The crystal structure of deposits was slightly amorphous in nature to body centred cubic structure (bcc) Mo (110), (211) and (220) face. Lattice parameters exhibit some weak fluctuated tensile stress when compared to the reference lattice parameter. Additionally, our calculated lattice parameters are in good agreement with some previous works from literature. Discussions on the grain growth prove that they are constrained by grain boundary energy not the thickness effect. Further discussions were made on the electrical resistivity and surface morphology. Resonance scattering of Fermi electrons are expected to contribute towards the variation in the film resistivity through the carrier mobility limitation. However, studied samples might be qualified as candidates for solar cell application.

  10. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes

    Science.gov (United States)

    Bo, Zheng; Yang, Huachao; Zhang, Shuo; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2015-10-01

    Vertically-oriented graphenes (VGs) are promising active materials for electric double layer capacitors (EDLCs) due to their unique morphological and structural features. This study, for the first time, reports the molecular dynamics (MD) simulations on aqueous NaCl electrolytes confined within VG channels with different surface charge densities and channel widths. Simulation results show that the accessibility of ions and the structure of EDLCs are determined by the ion type/size, surface charging, and VG channel width. For relatively narrow VG channels with the same width, the threshold charge density (to compensate the energy penalty for shedding hydration shell) and the dehydration rate of Cl- ions are larger than those of Na+ ions. To achieve the highest ion concentration coefficient, the effective VG channel width should be between the crystal and hydration diameters of the ions. The results are further quantified and elucidated by calculating the electrolyte density profiles. The molecular insights obtained in the current work are useful in guiding the design and fabrication of VGs for advancing their EDLC applications.

  11. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D.; Koetz, R.; Haas, O.; Siegenthaler, H.

    1999-11-23

    In the context of ion transfer batteries, highly oriented pyrolytic graphite (HOPG) was studied as a model in aqueous electrolytes to elucidate the mechanism of electrochemical intercalation into graphite. The local time-dependent dimensional changes of the host material occurring during the electrochemical intercalation processes were investigated on the nanometer scale. Atomic force microscopy (AFM), combined with cyclic voltammetry, was used as an in situ analytical tool during the intercalation of perchlorate and hydrogen sulfate ions into and their expulsion from the HOPG electrodes. For the first time, a reproducible, quantitative estimate of the interlayer spacing in HOPG with intercalated perchlorate and hydrogen sulfate ions could be obtained by in situ AFM measurements. The experimental values are in agreement with theoretical expectations, only for relatively low stacks of graphene layers. After formation of stage IV, HOPG expansion upon intercalation typically amounts to 32% when tens of layers are involved but to only 14% when thousands of layers are involved. Blister formation and more dramatic changes in morphology were observed, depending on the kind of electrolyte used, at higher levels of anion intercalation.

  12. Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy.

    Science.gov (United States)

    Bandarenka, Aliaksandr S

    2013-10-01

    Electrochemical impedance spectroscopy (EIS) is one of the oldest electroanalytical techniques. With respect to the investigation of the electrode-electrolyte interfaces, it has gained wide popularity as a non-destructive, sensitive and highly informative method. A particularly attractive advantage is that it provides a unique opportunity to distinguish contributions from different processes which take place simultaneously at the electrode surface. During the past decade, considerable progress has been made in the field of impedance spectroscopy to advance data acquisition, modelling and spectra analysis. EIS has evolved from slow data acquisition procedures with semi-quantitative interpretation to innovative methodologies which allow simple operation and accurate analysis using hundreds or even thousands of spectra; these spectra can often be recorded as a result of a single experiment. Impedance spectroscopy is nowadays widely combined with other techniques, with successful application in areas ranging from analytical and physical chemistry to localized impedance microscopies. The focus of this review is on recent experimental and theoretical achievements in the characterisation of the interfaces between metal electrodes and aqueous electrolytes using EIS. Some key challenges to further increase the informative power of electrochemical impedance spectroscopy are also outlined.

  13. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery.

    Science.gov (United States)

    Li, Bin; Nie, Zimin; Vijayakumar, M; Li, Guosheng; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-02-24

    Redox flow batteries are receiving wide attention for electrochemical energy storage due to their unique architecture and advantages, but progress has so far been limited by their low energy density (~25 Wh l(-1)). Here we report a high-energy density aqueous zinc-polyiodide flow battery. Using the highly soluble iodide/triiodide redox couple, a discharge energy density of 167 Wh l(-1) is demonstrated with a near-neutral 5.0 M ZnI2 electrolyte. Nuclear magnetic resonance study and density functional theory-based simulation along with flow test data indicate that the addition of an alcohol (ethanol) induces ligand formation between oxygen on the hydroxyl group and the zinc ions, which expands the stable electrolyte temperature window to from -20 to 50 °C, while ameliorating the zinc dendrite. With the high-energy density and its benign nature free from strong acids and corrosive components, zinc-polyiodide flow battery is a promising candidate for various energy storage applications.

  14. Transformation of modified brushite to hydroxyapatite in aqueous solution: effects of potassium substitution.

    Science.gov (United States)

    Kumar, M; Xie, J; Chittur, K; Riley, C

    1999-08-01

    Brushite (dicalcium phosphate dihydrate, DCPD, CaHPO4 x 2H2O) was deposited electrolytically from calcium dihydrogen phosphate solution with and without potassium chloride (KCl) as a supporting electrolyte. The kinetics of brushite transformation to hydroxyapatite (HA, Ca5(PO4)3OH) in the presence of calcium and protein free, aqueous body fluid (Hank's balanced salt solution, HBSS) was investigated. We present evidence that the deposition of brushite in a KCl-supported electrochemical bath yields a modified brushite where some of the calcium is substituted by potassium. Transformation of both normal (i.e. potassium free) and modified brushite to hydroxyapatite upon exposure to calcium and protein-free aqueous fluid (HBSS) was followed by reflectance Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. Changes in the morphology of the coatings were studied using scanning electron microscopy (SEM). Results indicate that modified brushite undergoes faster transformation to hydroxyapatite in HBSS in comparison to normal brushite. Our results show that the presence of potassium ions in the brushite not only favors the formation of different intermediate phases but also alters transformation rates to HA.

  15. Electrochemical oxidation of pyrrhotute in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    QIN Wen-qing; LI Quan; QIU Guan-zhou; XU Ben-jun

    2005-01-01

    The anodic surface oxidation of natural pyrrhotite in 0.3 mol/L KCl and HCl solution (pH 4. 0) and 0.1 mol/L Na2 B4O7 solution (pH 9.18) respectively was investigated by using cyclic voltammetry, Tafel plot, and chronoamperometry. In 0.3 mol/L KCl and HCl solution (pH 4.0), at potential less than 0.5 V(vs SHE), the production of anodic oxidation on pyrrhotite surface can not maintain a stable phase to form a passive film. In 0. 1 mol/L Na2B4 O7 solution (pH 9.18), when the electrode potential increases to more than 0.5 V (vs SHE), part of S is oxidized to sulfate, making the passive film somewhat porous, but elemental S and metal oxidates Fe(OH)3 still remain on the electrode surface, and the passive film can not be broken down totally. According to PARCalc Tafel analysis,the corresponding corrosion current density (J0) is 5.34 μA/cm2 , which is also the exchange current density of the oxidation reaction on pyrrhotite electrode surface in 0. 1 mol/L Na2B4O7 solution (pH 9.18). The electrochemical dynamics equation of the oxidation was determined.

  16. Molecular Weight and Aggregation of Erwinia Gum in Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Erwinia(E) gum is composed of glucose, fucose, galactose and glucuronic acid. The weight-average molecular weights Mw, number-average molecular weights Mn and intrinsic viscosities[η] of the four fractions and the unfractionated E gum in aqueous solutions at desired temperatures were studied by light scattering, membrane osmometry, size exclusion chromatography(SEC) and viscometry. The experimental results prove that E gum formed aggregates in the aqueous solution at 25 ℃ and the aggregates were broken gradually with increasing temperature. The dissociation of the aggregates of E gum in the aqueous solution started at 36 ℃, and was completed at around 90 ℃. The [η] values of E gum and its fractions are much higher than those of the conventional polymers with the similar molecular weights, and decrease with increasing NaCl concentration.

  17. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    . The calculations are based on an extensive database consisting of salt solubility data in pure and mixed solvents, VLE data for solvent mixtures and mixed solvent-electrolyte systems and thermal properties for mixed solvent solutions. Application of the model to the methanol-water system in the presence of several...... to aqueous salt systems containing non-electrolytes in order to demonstrate its ability in representing solid-liquid-vapour (SLV) equilibrium and thermal property data for these strongly non-ideal systems. The model requires only pure component and binary temperature-dependent interaction parameters...... behaviour of methanol-water-three salts systems is illustrated. (C) 2000 Elsevier Science Ltd. All rights reserved....

  18. Dependence of the dielectric constant of electrolyte solutions on ionic concentration

    CERN Document Server

    Gavish, Nir

    2012-01-01

    We study the dependence of the static dielectric constant of aqueous electrolyte solutions upon the concentration of salt in the solution and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, the ionic response to an applied field, and the effect of thermal fluctuations. The analysis suggests that the formation of ion pairs by a small fraction of disassociated ions can have a significant effect on the static dielectric constant. The model predicts the dielectric has the functional dependence $\\varepsilon(c)=\\varepsilon_w-\\beta L(3\\alpha c/\\beta)$ where $L$ is the Langevin function, $c$ is the salt concentration, $\\varepsilon_w$ is the dielectric of the pure water, $\\alpha$ is the total excess polarization of the ions and $\\beta$ is the relative difference between the water dipole moment and the effective dipole moment of ion pairs as weighted by the density of ion pairs and their structural rigidity. The functional form gives an extreme...

  19. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  20. Oxidation of Hydrazine in Aqueous Solutions

    Science.gov (United States)

    1978-03-01

    mechanism is different in the two different temperature regions [ Levenspiel (Reference 21)]. Lurker (Reference 7) also observed that at 6°C a kinetic...and Bielski, B., Kinetic Systems: Mathematical Descriptions of Chemical Kinetics in Solution, Wiley Interscience, New York (1972). 21. Levenspiel , 0

  1. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  2. Ionisation constants of inorganic acids and bases in aqueous solution

    CERN Document Server

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  3. Removal of Phosphate from Aqueous Solution with Modified Bentonite

    Institute of Scientific and Technical Information of China (English)

    唐艳葵; 童张法; 魏光涛; 李仲民; 梁达文

    2006-01-01

    Bentonite combined with sawdust and other metallic compounds was used to remove phosphate from aqueous solutions in this study. The adsorption characteristics of phosphate on the modified bentonite were investigated, including the effects of temperature, adsorbent dosage, initial concentration of phosphate and pH on removal of phosphate by conducting a series of batch adsorption experiments. The results showed that 98% of phosphate removal rate was obtained since sawdust and bentonite used in this investigation were abundantly and locally available. It is concluded that modified bentonite is a relatively efficient, low cost and easily available adsorbent for the removal of phosphate from aqueous solutions.

  4. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    Science.gov (United States)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  5. LIGHT SCATTERING OF POLYSACCHARIDE FROM LACQUER IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; DU Yumin; KUMANOTANI JU

    1989-01-01

    The polysaccharide having weight-average molecular weight Mw= 1. 09 × 105 , isolated from the sap of lac trees ( Vietnam ), was separated into 12 fractions by aqueous-phase preparative gel permeation chromatography. The molecular weights and molecular weight distributions of the fractions were measured in aqueous 0.08M KCl/0.01 M NaAc and 0.4M KCl/0.05M NaAc at pH = 7.6 by light scattering, viscometry and gel permeation chromatography. The Mark-Houwink equation in aqueous 0.08M KCl/0.01M NaAc at30 ℃ was found to be [ η] = 2.28 ×10-2 M0.52w ( cm3/g ), which indicated the polysaccharide chain in the aqueous solution to be a spherical random coil.

  6. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  7. Photocatalytic degradation of molinate in aqueous solutions.

    Science.gov (United States)

    Bizani, E; Lambropoulou, D; Fytianos, K; Poulios, I

    2014-11-01

    In this study, the degradation of molinate through heterogeneous photocatalysis, using two different types of the semiconductor TiO2 as photocatalyst, as well as through homogeneous treatment, applying the photo-Fenton reaction, has been investigated. As far as heterogeneous photocatalysis is concerned, the degradation of the pesticide follows apparent first-order kinetics, while the type of the catalyst and the pH value of the solution affect the degradation rate. The effect of the addition of electron scavengers (H2O2 and K2S2O8) was also studied. In the case of photo-Fenton-assisted system, the degradation also follows pseudo-first-order kinetics. Parameters such as iron's and electron scavenger's concentration and inorganic ions strongly affect the degradation rate. The extent of pesticide mineralization was investigated using dissolved organic carbon (DOC) measurements. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fischeri. The detoxification and mineralization efficiency was found to be dependent on the system studied, and although it did not follow the rate of pesticide disappearance, it took place in considerable extent. The study of the photodegradation treatment was completed by the determination of the intermediate by-products formed during the process, which was carried out using LC-MS/MS technique and led to similar compounds with both processes.

  8. Permeability in a state of partial solidification of aqueous solution

    Science.gov (United States)

    Okada, Masashi; Kang, Chaedong; Okiyama, Haruhiko

    A mushy region was formed by solidifying NaCl aqueous solution in a circular tube or a rectangular tube. The measurements of permeability were performed by changing volume fraction of liquid region in the mushy region. The dendritic ice in the solidification process was observed with a CCD microscope. The following results were obtained. The permeability increases with the volume fraction of liquid phase, and decreases with increasing the super-cooling degree of the solution or increasing the initial concentration of the solution, and is constant after the mushy region was formed. The arm space of dendrite becomes narrower as the super-cooling degree of the solution increases.

  9. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  10. Marangoni effect of cracked liquid film of an aqueous electrolyte flowing over a vertical heated plate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An experimental investigation was performed on Marangoni effect of cracked liquid film of aqueous Na2SO4 flowing over a vertical heated plate by using a sensitive infrared imaging technique. The results show that the thermal and solutal Marangoni effects, which result from the non-uniform distributions of surface temperature and concentration of the film, respectively, occur in the streamwise and transverse directions of the film, generating different influences on the film heat transfer. Taking account of the Marangoni number (Ma) and the solution concentration (c0), a correlation of the Nusselt number (Nu) for the cracked liquid film is proposed.

  11. Radiolysis of paracetamol in dilute aqueous solution

    Science.gov (United States)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  12. Thermodynamics of the formation of complexes of copper(II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data

    Science.gov (United States)

    Kochergina, L. A.; Emel'yanov, A. V.

    2015-04-01

    Heat effects of the interaction between glycylglycine and copper(II) nitrate solutions are measured by direct calorimetry at a [metal] : [ligand] ratio of 1 : 5 and at different pH values of the solution. The measurements are made at a temperature of 298.15 K and ionic strengths of 0.25, 0.50, and 0.75. KNO3 is used as a background electrolyte. The thermodynamic characteristics of complex formation by the peptide and copper(II) ions in aqueous solutions are determined. Standard enthalpies of the formation of complex particles in aqueous solutions are calculated.

  13. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

    Science.gov (United States)

    Gao, Xiangwen; Chen, Yuhui; Johnson, Lee; Bruce, Peter G.

    2016-08-01

    On discharge, the Li-O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal-2 for cathodes with capacities of >4 mAh cmareal-2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

  14. Solubility of carbon dioxide and hydrogen sulfide in aqueous N-methyldiethanolamine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Huttenhuis, P.J.G.; Agrawal, N.J.; Versteeg, G.F. [Procede Group BV, Enschede (Netherlands)

    2009-04-15

    In this work, 72 new experimental solubility data points for H{sub 2}S and CO{sub 2} mixtures in aqueous N-methyldiethanol amine (MDEA) solutions at different methane partial pressures (up to 69 bara) are presented. They are correlated using an electrolyte equation of state (E-EOS) thermodynamic model. This model has already been used to estimate the CO{sub 2} solubility in aqueous MDEA (Huttenhuis et al. Fluid Phase Equilib. 2008, 264, 99-112) and the H{sub 2}S solubility in aqueous MDEA (Huttenhuis et al. Int. J. Oil, Gas Coal Technol. 2008, 1, 399-424). Here, the model is further extended to predict the behavior of CO{sub 2} and H{sub 2}S when they are present simultaneously in aqueous MDEA. The application of an equation of state is a new development for this type of system, i.e., of acid-gas-amine systems. The molecular interactions are described by Schwarzentruber et al.'s modification of the Redlich-Kwong-Soave equation of state, with terms added to account for ionic interactions in the liquid phase. The model is used to describe acid-gas solubility data for the CO{sub 2}-H{sub 2}S-MDEA-H{sub 2}O system reported in the open literature and experimental data reported here for the CO{sub 2}-H{sub 2}S-MDEA-H{sub 2}O-CH{sub 4} system.

  15. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  16. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    NARCIS (Netherlands)

    Kuzmanovic, Boris; Kuipers, Norbert J.M.; Haan, de André B.; Kwant, Gerard

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aque

  17. Solubility of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Dijkstra, H. B. S.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    In the present work, new experimental data are presented on the solubility of carbon dioxide in aqueous piperazine solutions, for concentrations of 0.2 and 0.6 molar piperazine and temperatures of 25, 40, and 70°C respectively. The present data, and other data available in the literature, were corr

  18. Rheological properties of silica suspensions in aqueous cellulose derivatives solutions

    Science.gov (United States)

    Ryo, Y.; Kawaguchi, M.

    1992-05-01

    The rheological properties of the silica suspensions in aqueous solutions of hydroxypropylmethylcellulose (HPMC) were investigated in terms of the shear stress and storage and loss moduli (G' and G`) as a function of silica content, HPMC concentration, and HPMC molecular weight by using a coaxial cylinder rheometer.

  19. Oscillometric and conductometric analysis of aqueous and organic dosimeter solutions

    DEFF Research Database (Denmark)

    Kovacs, A.; Slezsak, I.; McLaughlin, W.L.;

    1995-01-01

    ''conductometric'' electrodes and the study of the effect of frequency on the sensitivity of the method. On the basis of these investigations an oscillometric reader has been designed and tested. The same evaluation methods have been tested on the irradiated aqueous alanine solutions, aiming also at the study...

  20. Adsorptive removal of antibiotics from aqueous solution using carbon materials.

    Science.gov (United States)

    Yu, Fei; Li, Yong; Han, Sheng; Ma, Jie

    2016-06-01

    Antibiotics, an important type of environmental contamination, have attracted many researchers to the study of their removal from aqueous solutions. Adsorption technology is a fast, efficient, and economical physicochemical method that is extensively used in wastewater treatment. From original activated carbon and carbon nanotubes to the latest graphene-based materials, carbon-based materials have been widely used as highly effective adsorbents for contaminant removal from aqueous solution because of their large specific surface area, high porosity, and high reaction activity. In this article, adsorption removal methods for four major types of antibiotic (tetracyclines, sulfonamides, macrolides, and quinolones) are reviewed. We also provide an overview of the application development of carbon materials as adsorbents for antibiotic removal from aqueous solution. The most promising works are discussed, and the main challenges in preparing high-performance adsorbents and the development tendency of adsorbents are also analyzed. This work provides theoretical guidance for subsequent research in the design and modification of carbon materials for applications in the adsorption removal of antibiotics from aqueous solution.

  1. CATALYSIS BY SURFACTANT AGGREGATES IN AQUEOUS-SOLUTIONS

    NARCIS (Netherlands)

    ENGBERTS, JBFN

    1992-01-01

    Catalysis of organic reactions by unfunctionalized surfactant aggregates (micelles, vesicles) in aqueous solution is largely determined by medium effects induced at the micellar binding sites and by entropy effects due to compartimentalization. The efficiency of these catalytic effects responds to c

  2. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W. J.; Kleingeld, T.; van Aken, C.; Hogendoorn, J. A.; Versteeg, G. F.

    2006-01-01

    In the present work the absorption of carbon dioxide into aqueous piperazine (PZ) solutions has been studied in a stirred cell, at low to moderate temperatures, piperazine concentrations ranging from 0.6 to 1.5 kmol m- 3, and carbon dioxide pressures up to 500 mbar, respectively. The obtained experi

  3. DETERMINATION OF CHLORHEXIDINE IN SALIVA AND IN AQUEOUS-SOLUTIONS

    NARCIS (Netherlands)

    de Vries, J.; Ruben, J; Arends, J.

    1991-01-01

    A new method is presented for the determination of chlorhexidine in centrifuged saliva and in aqueous solutions by means of fluorescence spectroscopy. The method relies on complex formation between chlorhexidine and eosin. The fluorescence value of the chlorhexidine-eosin system decreases with incre

  4. Colorimetric and fluorescent detection of biological thiols in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Yin-Hui Li; Jin-Feng Yang; Chang-Hui Liu; Ji-Shan Li; Rong-Hua Yang

    2013-01-01

    A new colorimetric and fluorescent probe,2-(2,4-dinitrostyryl)-1,3,3-trimethyl-3H-indolium iodide (DTI),for selective and sensitive detection of biological thiols is reported.In aqueous solution at physiological pH 7.4,biological thiols react with DTI via Michael addition to give the brownish red adduct concomitant with fluorescence emission decrease.

  5. Adsorption of lead ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto; Krstev, Aleksandar

    2014-01-01

    The adsorption of lead ions from synthetic aqueous solutions was performed by using natural zeolite (clinoptilolite). In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial concentration of lead ions, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90...

  6. Removal of azo dye from aqueous solutions using chitosan

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar

    2014-06-01

    Full Text Available Adsorption of Congo Red (CR from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Results indicated that chitosan could be used as a biosorbent to remove the azo dyes from contaminated water. Synthesize of chitosan involved three main stages as preconditioning, demineralization, deproteinization and deacetylation. Chitosan was characterized using Fourier Transform Infrared Spectroscopy (FTIR and solubility in 1% acetic acid.

  7. Lightly Fluorinated Graphene as a Protective Layer for n-Type Si(111) Photoanodes in Aqueous Electrolytes

    OpenAIRE

    Nielander, Adam C.; Thompson, Annelise C.; Roske, Christopher W.; Maslyn, Jacqueline A.; Hao, Yufeng; Plymale, Noah T.; Hone, James; Lewis, Nathan S.

    2016-01-01

    The behavior of n-Si(111) photoanodes covered by monolayer sheets of fluorinated graphene (F–Gr) was investigated under a range of chemical and electrochemical conditions. The electrochemical behavior of n-Si/F–Gr and np^+-Si/F–Gr photoanodes was compared to hydride-terminated n-Si (n-Si−H) and np+-Si−H electrodes in contact with aqueous Fe(CN)_6^(3-/4-) and Br_2/HBr electrolytes as well as in contact with a series of outer-sphere, one-electron redox couples in nonaqueous electrolytes. Illumi...

  8. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  9. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  10. The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye-Hückel Theory.

    Science.gov (United States)

    Shilov, Ignat Yu; Lyashchenko, Andrey K

    2015-08-01

    The Debye-Hückel theory has been extended to allow for arbitrary concentration dependence of the electrolyte solution static permittivity. The theory follows the lines advanced by Erich Hückel ( Hückel, E. Phys. Z. 1925, 26, 93) but gives rise to more general and lucid results. New theoretical expressions have been obtained for the excess free energy of solution, activity coefficient of water and mean ionic activity coefficient. The thermodynamic functions contain two terms representing interionic interactions and ion-water (solvation) interactions. The theory has been applied to calculate the activity coefficients of components in the aqueous solutions of alkali metal chlorides from LiCl to CsCl at ambient conditions making use of permittivities taken from experimental dielectric relaxation studies. Calculations without parameter adjustment have demonstrated a semiquantitative agreement with experimental data, reproducing both the nonmonotonic concentration dependence of the activity coefficients and the ordering of activity coefficients for the salts with different cations. A good agreement with experimental data is obtained for the aqueous solutions of LiCl in the concentration range up to 10 mol/kg. The nonmonotonic concentration dependence of activity coefficients is explained as a result of a balance between the effect of interionic interactions and the solvation contribution which appears quite naturally in the framework of the Debye-Hückel approach after incorporation of variable permittivity of solution.

  11. Assembly of DNA Architectures in a Non-Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thomas J. Proctor

    2012-08-01

    Full Text Available In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD spectroscopy and on the surface (using atomic force microscopy (AFM. Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  12. Understanding Aqueous Electrolyte Stability through Combined Computational and Magnetic Resonance Spectroscopy: A Case Study on Vanadium Redox Flow Battery Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.; Hu, Jian Z.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-02-01

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytes is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.

  13. Critical droplet theory explains the glass formability of aqueous solutions.

    Science.gov (United States)

    Warkentin, Matthew; Sethna, James P; Thorne, Robert E

    2013-01-04

    When pure water is cooled at ~10(6) K / s, it forms an amorphous solid (glass) instead of the more familiar crystalline phase. The presence of solutes can reduce this required (or "critical") cooling rate by orders of magnitude. Here, we present critical cooling rates for a variety of solutes as a function of concentration and a theoretical framework for understanding these rates. For all solutes tested, the critical cooling rate is an exponential function of concentration. The exponential's characteristic concentration for each solute correlates with the solute's Stokes radius. A modification of critical droplet theory relates the characteristic concentration to the solute radius and the critical nucleation radius of ice in pure water. This simple theory of ice nucleation and glass formability in aqueous solutions has consequences for general glass-forming systems, and in cryobiology, cloud physics, and climate modeling.

  14. Recovery of nickel from aqueous solutions by complexation-ultrafiltration process with sodium polyacrylate and polyethylenimine.

    Science.gov (United States)

    Shao, Jiahui; Qin, Shu; Davidson, Joshua; Li, Wenxi; He, Yiliang; Zhou, H Susan

    2013-01-15

    The recovery of nickel from aqueous dilute solutions by complexation-ultrafiltration process with sodium polyacrylate (PAAS) and polyethylenimine (PEI) was studied. Experiments were performed as a function of aqueous pH, polymer/Ni(2+) ratio and background electrolyte concentration. At optimum experimental conditions, the nickel removal rate reaches 99.5% using PAAS and 93.0% using PEI as the complexation agent. The nickel removal rate was found to decrease as the adding salt NaCl concentration increases for both complexation agents. A series of experiments implied that the mechanism could be the compressing electric double layer other than the competitive complexation. Diafiltration technique was further performed to regenerate complexation agents and recover nickel. The nickel removal rates were found to be close to those obtained with the original PEI and PAAS. Finally, Langmuir-type binding isotherm equation was employed to evaluate the extent of nickel bound to PAAS and PEI. The overall results from the two-step process of complexation-UF and decomplexation-UF separation showed that it could be a promising method for nickel removal and recovery from aqueous solutions.

  15. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery

    Science.gov (United States)

    Zhang, Sheng S.; Read, Jeffrey

    2011-03-01

    In this work we study methyl nonafluorobutyl ether (MFE) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li-air battery. Results show that in certain solvent ratios, both solvents are able to increase the specific capacity of carbon in Li/O2 and Li/air cells. More interestingly, the improvement in discharge performance of the Li/air cells increases with discharge current density. These results cannot be explained by the ionic conductivity and viscosity data of the electrolytes since the participation of fluorinated co-solvents hardly changes viscosity of the solvent blends while reversely reduces ionic conductivity of the electrolyte. In particular, we find that a 30 wt.% (vs. solvent) addition of TTFP into a 0.2 m (molality) LiSO3CF3 PC electrolyte can significantly improve the discharge performance of Li/air cells, and that the resultant electrolyte is able to support long-term operation of Li/air cells in dry ambient environments due to its low volatility. We believe that the observed performance improvement is associated with the increased dissolution kinetics and solubility of oxygen in fluorinated solvent containing electrolyte.

  16. The nature of aqueous solutions: insights into multiple facets of chemistry and biochemistry from freezing-point depressions.

    Science.gov (United States)

    Zavitsas, Andreas A

    2010-05-25

    Contrary to current widely held beliefs, many concentrated aqueous solutions of electrolytes and nonelectrolytes behave ideally. For both, the same simple equation yields mole fractions of water that are equal to the theoretical activities of water. No empirical activity coefficients or ad hoc parameters are needed. Thermodynamic hydration numbers and the number of particles produced per mole of solute are found by searching freezing-point depression measurements, as if asking the water, "How much available water solvent is left and how many solute particles are there?" The results answer questions currently under debate: Do solutes alter the nature of water outside their immediate surroundings? What is the number of ion pairs formed by various electrolytes and what affects extents of their formation? What are some factors that cause precipitation of proteins, latexes, and so forth from aqueous solutions upon addition of other solutes (Hofmeister series)? Which nonelectrolytes form aggregates in water and what are the implications? Why do different solutes affect viscosity differently? How do ion-selective channels in cell membranes function at the molecular level?

  17. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells

    Science.gov (United States)

    Merrill, Matthew D.; Logan, Bruce E.

    Protonated weak acids commonly used in microbial electrolysis cell (MEC) solutions can affect the hydrogen evolution reaction (HER) through weak acid catalysis, and by lowering solution resistance between the anode and the cathode. Weak acid catalysis of the HER with protonated phosphate, acetate, and carbonate electrolyte species improved MEC performance by lowering the cathode's overpotential by up to 0.30 V at pH 5, compared to sodium chloride electrolytes. Deprotonation of weak acids into charged species at higher pHs improved MEC performance primarily by increasing the electrolyte's conductivity and therefore decreasing the solution resistance between electrodes. The potential contributions from weak acid catalysis and solution resistance were compared to determine whether a reactor would operate more efficiently at lower pH because of the HER, or at higher pH because of solution resistance. Phosphate and acetate electrolytes allowed the MEC to operate more efficiently under more acidic conditions (pH 5). Carbonate electrolytes increased performance from pH 5 to 9 due to a relatively large increases in conductivity. These results demonstrate that specific buffers can substantially contribute to MEC performance through both reduction in cathode overpotential and solution resistance.

  18. Raman spectra of amino acids and their aqueous solutions

    Science.gov (United States)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  19. Solid-like mechanical behaviors of ovalbumin aqueous solutions.

    Science.gov (United States)

    Ikeda, S; Nishinari, K

    2001-04-12

    Flow and dynamic mechanical properties of ovalbumin (OVA) aqueous solutions were investigated. OVA solutions exhibited relatively large zero-shear viscosity values under steady shear flow and solid-like mechanical responses against oscillating small shear strains, that is, the storage modulus was always larger than the loss modulus in the examined frequency range (0.1--100 rad s(-1)). These results suggest that dispersed OVA molecules arranged into a colloidal crystal like array stabilized by large interparticle repulsive forces. However, marked solid-like mechanical behaviors were detected even when electrostatic repulsive forces among protein molecules were virtually absent, which could not be explained solely on the basis of conventional Derjaguin--Landau--Verwey--Overbeek (DLVO) theory. Large non-DLVO repulsive forces seem to stabilize native OVA aqueous solutions.

  20. Adsorption of EDTA on activated carbon from aqueous solutions.

    Science.gov (United States)

    Zhu, Hai-song; Yang, Xiao-juan; Mao, Yan-peng; Chen, Yu; Long, Xiang-li; Yuan, Wei-kang

    2011-01-30

    In this study, the adsorption of EDTA on activated carbon from aqueous solutions has been investigated in a batch stirred cell. Experiments have been carried out to investigate the effects of temperature, EDTA concentration, pH, activated carbon mass and particle size on EDTA adsorption. The experimental results manifest that the EDTA adsorption rate increases with its concentration in the aqueous solutions. EDTA adsorption also increases with temperature. The EDTA removal from the solution increases as activated carbon mass increases. The Langmuir and Freundlich equilibrium isotherm models are found to provide a good fitting of the adsorption data, with R(2) = 0.9920 and 0.9982, respectively. The kinetic study shows that EDTA adsorption on the activated carbon is in good compliance with the pseudo-second-order kinetic model. The thermodynamic parameters (E(a), ΔG(0), ΔH(0), ΔS(0)) obtained indicate the endothermic nature of EDTA adsorption on activated carbon.

  1. Molecular mechanism of the viscosity of aqueous glucose solutions

    Science.gov (United States)

    Bulavin, L. A.; Zabashta, Yu. F.; Khlopov, A. M.; Khorol'skii, A. V.

    2017-01-01

    Experimental relations are obtained for the viscosity of aqueous glucose solutions in the temperature range of 10-80°C and concentration range 0.01-2.5%. It is found that the concentration dependence of fluidity is linear when the concentration is higher than a certain value and varies at different temperatures. The existence of such a dependence indicates that the mobilities of solvent and solute molecules are independent of the concentration of solutions. This assumption is used to construct a theoretical model, in which the structure of an aqueous glucose solution is presented as a combination of two weakly interacting networks formed by hydrogen bonds between water molecules and between glucose molecules. Theoretical relations are obtained using this model of network solution structure for the concentration and temperature dependence of solution viscosity. Experimental data are used to calculate the activation energies for water ( U w = 3.0 × 10-20 J) and glucose molecules ( U g = 2.8 × 10-20 J). It is shown that the viscosity of a solution in such a network structure is governed by the Brownian motion of solitons along the chains of hydrogen bonds. The weak interaction between networks results in the contributions to solution fluidity made by the motion of solitons in both of them being almost independent.

  2. Electrical-breakdown and electronic current of tantalum-tantalum oxide-aqueous electrolyte systems. [Ta sub 2 O sub 5

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, K.C.; Katyal, P. (Dept. of Chemistry, Maharshi Dayanand Univ., Rohtak (India))

    1991-06-30

    Breakdown voltage and electronic current data for barrier anodic tantalum oxide films in contact with aqueous electrolytes of various concentrations and compositions at 298 K have been obtained. The influence of electrolyte concentration on breakdown characteristics can be broadly explained in terms of the Ikonopisov electron avalanche breakdown model. Albella and coworkers' theory explains the effect of electrolyte concentration for our results more explicitly. Various parameters of the Albella theory have been evaluated, and their dependence on electrolyte concentration has been studied. The dependence of breakdown voltage on electrolyte concentration has also been discussed in the light of the theory of Di Quarto and coworkers. (orig.).

  3. Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions

    Science.gov (United States)

    Smith, Karen E.; House, Christopher H.; Dworkin, Jason P.; Callahan, Michael P.

    2017-03-01

    On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.

  4. Effect of alpha-cyclodextrin on drug distribution studied by electrochemistry at interfaces between immiscible electrolyte solutions.

    Science.gov (United States)

    Deryabina, Maria A; Hansen, Steen H; Østergaard, Jesper; Jensen, Henrik

    2009-05-21

    The description and understanding of noncovalent interactions and distribution of potential new drug compounds in an organism is of paramount importance for the successful development of new drugs. In this work, a new procedure based on electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) for addressing and discriminating between drug compound/ligand interactions in aqueous solution and nonspecific ligand effects on oil-water distribution behavior has been developed. The procedure is demonstrated using five drug compounds with different physical chemical parameters and alpha-cyclodextrin as the aqueous phase ligand. Alpha-cyclodextrin was chosen as an aqueous phase ligand, as it is frequently used in drug formulations to enhance solubility and bioavailability of drug compounds. Supplementary capillary electrophoresis experiments provided more detailed information on alpha-cyclodextrin drug complexation and, in combination with the electrochemical studies, provided information on solvation effects affecting the oil-water distribution of the drug compounds. The use of ligand shift ion partition diagrams for data presentation is a convenient format for the visualization of ligand effects on distribution behavior of related drug compounds.

  5. A Novel Application of Lithium Heteropoly Blue as Non-aqueous Electrolyte in Polyacenic Semiconductor-Li Secondary Batteries

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lithium heteropoly blue(Li5PWⅥ10WⅤ2O40) was used as a non-aqueous electrolyte in the polyacenic semiconductor (PAS)-Li secondary battery instead of LiClO4. The properties of the PAS-Li secondary battery, especially the effect of Li5PWⅥ10WⅤ2O40 on the capacity, the cycle property and the self-discharging of the battery have been investigated. The results indicate that not only Li5PWⅥ10WⅤ2O40 can overcome the disadvantages of LiClO4, which is apt to explode when heated or rammed, but also the PAS-Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self-discharging than that assembled with LiClO4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.

  6. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Science.gov (United States)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  7. Low-Frequency Dielectric Dispersion of Highly Concentrated Spherical Particles in an Electrolyte Solution

    Institute of Scientific and Technical Information of China (English)

    倪福生; 顾国庆; 陈康民

    2002-01-01

    We deal with the problem of calculating the effective dielectric dispersion and electrical conductivity of colloidaldispersions. A comparison of the theoretical calculation of first principles with the experimental data of Schwanshows that our technique proposed here is no longer restricted to dilute solutions and is very effective for studyingthe dielectric properties of colloids with highly concentrated charged spherical particles in an electrolyte solution.

  8. Rheological properties of novel thermo-responsive polycarbonates aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    王月霞; 谭业邦; 黄晓玲

    2008-01-01

    Thermo-responsive multiblock polycarbonates were facilely synthesized by covalently binding poly(ethylene glycol)(PEG) and poly(propylene glycol)(PPG) blocks,using triphosgene as coupling agent and pyridine as catalyst.The aqueous solutions of thermo-responsive polycarbonates were investigated by rheological measurements.Steady-state shear measurements reveal that the polycarbonate solutions exhibit shear-thinning behavior and the hydrophilic content has a pronounced effect on the flow behavior of the polycarbonates aqueous solutions.The shear viscosity decreases with increasing poly(ethylene oxide)(PEO) composition.The increase of viscosity with increasing concentration is probably attributed to the formation of stronger network owing to interchain entanglement of PEO block at higher concentration.When the flow curves are fitted to the power law model,flow index is obtained to be less than 1,as exhibiting typical pesudoplastic fluid.The viscoelastic properties of the system also show close dependence on the composition of polycarbonates.Temperature sweep confirms that the multiblock polycarbonates exhibit thermo-responsive properties.For 7% aqueous solution of polycarbonate with composition ratio of EO to PO of 1/1,the sol-gel transition occurs at 37 ℃,which makes the system suitable as an injectable drug delivery system.

  9. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte

    Science.gov (United States)

    Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K.

    2014-02-01

    A non-aqueous zinc-polyaniline secondary battery was fabricated with polyaniline Emeraldine base as cathode and zinc metal as anode in an electrolyte consisting of 0.3 M zinc-bis(trifluoromethyl-sulfonyl)imide Zn(TFSI)2 dissolved in propylene carbonate. We observed that the formation of the battery required a prerequisite condition to stabilize the interfaces in order to maintain a stable capacity. The battery suffered from Zn dissolution which induces a competition between concurrent Zn dissolution and plating when the battery is in charge mode, and thus inefficient cycles are obtained. The capacity and coulombic efficiency of the battery depends on the charge-discharge rates. We propose cycling protocols at different rates to determine the steady-state rates of competing reactions. When the cell is cycled at ≥1 C rate, the coulombic efficiency improves. The maximum capacity and energy densities of the battery are 148 mAhg-1 and 127 mWhg-1, respectively for discharge at C/2. The battery was successively charged/discharged at constant current densities (1C rate), and high cycling stability was obtained for more than 1700 cycles at 99.8% efficiency. Zinc dissolution and self discharge of the battery were investigated after 24 h of standby. The investigation showed that the battery experiences a severe self-discharge of 48% per day.

  10. Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution.

    Science.gov (United States)

    Inoue, Tohru; Ebina, Hayato; Dong, Bin; Zheng, Liqiang

    2007-10-01

    Electrical conductivity was measured for aqueous solutions of long-chain imidazolium ionic liquids (IL), 1-alkyl-3-methylimidazolium bromides with C(12)-C(16) alkyl chains. The break points appeared in specific conductivity (kappa) vs concentration (c) plot indicates that the molecular aggregates, i.e., micelles, are formed in aqueous solutions of these IL species. The critical micelle concentration (cmc) determined from the kappa vs c plot is somewhat lower than those for typical cationic surfactants, alkyltrimethylammonium bromides with the same hydrocarbon chain length. The electrical conductivity data were analyzed according to the mixed electrolyte model of micellar solution, and the aggregation number, n, and the degree of counter ion binding, beta, were estimated. The n values of the present ILs are somewhat smaller than those reported for alkyltrimethylammonium bromides, which may be attributed to bulkiness of the cationic head group of the IL species. The thermodynamic parameters for micelle formation of the present ILs were estimated using the values of cmc and beta as a function of temperature. The contribution of entropy term to the micelle formation is superior to that of enthalpy term below about 30 degrees C, and it becomes opposite at higher temperature. This coincides with the picture drawn for the micelle formation of conventional ionic surfactants.

  11. Correspondence between Experiment and Theory of Bulk Electrocrystallisation at Solid Electrodes in Aqueous Electrolyte

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2009-01-01

    A model of electrodeposition and electrodissolution at electrode surfaces in aqueous solution is presented. The description is based on the assumption that redox reaction of water is the more important process controlling the electrode kinetics. Chronoamperometric measurements and experiments...... of cyclic voltammetry indicate that the current fundamentally is proportional to inverse time. It was proposed that redox-active species different from water never touch the surface but they predominantly interact with surface-active hydrogen or oxygen formed at the surface by redox processes of water...

  12. Adsorption Kinetics of Methylene Blue from Aqueous Solutions onto Palygorskite

    Institute of Scientific and Technical Information of China (English)

    PENG Shuchuan; WANG Shisheng; CHEN Tianhu; JIANG Shaotong; HUANG Chuanhui

    2006-01-01

    The adsorption kinetics of methylene blue from aqueous solutions on purified palygorskite was investigated. The kinetics data related to the adsorption of methylene blue from aqueous solutions are in good agreement with the pseudo-second order equation in ranges of initial concentration of 120-210 mg/L, oscillation speed of 100-200 r/min and temperature of 298-328K. The experimental results show that methylene blue is only adsorbed onto the external surface of purified palygorskite,and the apparent adsorption activation energy is 13.92 k J/mol. The relatively low apparent adsorption activation energy suggests that the adsorption of methylene blue involves in not only a chemical, but also a physical adsorption process, and it is controlled by the combination of chemical adsorption and liquid-film diffusion.

  13. Photodegradation of Norfloxacin in aqueous solution containing algae

    Institute of Scientific and Technical Information of China (English)

    Junwei Zhang; Dafang Fu; Jilong Wu

    2012-01-01

    Photodegradation of Norfloxacin in aqueous solution containing algae under a medium pressure mercury lamp (15 W,λmax =365 nm) was investigated.Results indicated that the photodegradation of Norfloxacin could be induced by the algae in the heterogeneous algaewater systems.The photodegradation rate of Norfloxacin increased with increasing algae concentration,and was greatly influenced by the temperature and pH of solution.Meanwhile,the cooperation action of algae and Fe(Ⅲ),and the ultrasound were beneficial to photodegradation of Norfloxaciu.The degradation kinetics of Norfloxacin was found to follow the pseudo zero-order reaction in the suspension of algae.In addition,we discussed the photodegradation mechanism of Norfloxacin in the suspension of algae.This work will be helpful for understanding the photochemical degradation of antibiotics in aqueous environment in the presence of algae,for providing a new method to deal with antibiotics pollution.

  14. Predicting accurate absolute binding energies in aqueous solution

    DEFF Research Database (Denmark)

    Jensen, Jan Halborg

    2015-01-01

    Recent predictions of absolute binding free energies of host-guest complexes in aqueous solution using electronic structure theory have been encouraging for some systems, while other systems remain problematic. In this paper I summarize some of the many factors that could easily contribute 1-3 kcal...... mol(-1) errors at 298 K: three-body dispersion effects, molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational sampling, wrong or changing ionization states, errors in the solvation free energy of ions, and explicit solvent (and ion) effects that are not well......-represented by continuum models. While I focus on binding free energies in aqueous solution the approach also applies (with minor adjustments) to any free energy difference such as conformational or reaction free energy differences or activation free energies in any solvent....

  15. Adsorption of cadmium from aqueous solutions by perlite.

    Science.gov (United States)

    Mathialagan, T; Viraraghavan, T

    2002-10-14

    The present study examined the use of perlite for the removal of cadmium from aqueous solutions. The effects of pH and contact time on the adsorption process were examined. The optimum pH for adsorption was found to be 6.0. Residual cadmium concentration reached equilibrium in 6h and the rate of cadmium adsorption by perlite was rapid in the first hour of the reaction time. Ho's pseudo-second-order model best described the kinetics of the reaction. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. The maximum removal of cadmium obtained from batch studies was 55%. Thomas model was used to describe the adsorption data from column studies. The results generally showed that perlite could be considered as a potential adsorbent for cadmium removal from aqueous solutions.

  16. Removal of methyl violet from aqueous solution by perlite.

    Science.gov (United States)

    Doğan, Mehmet; Alkan, Mahir

    2003-11-01

    The use of perlite for the removal of methyl violet from aqueous solutions at different concentration, pH, and temperature has been investigated. Adsorption equilibrium is reached within 1 h. The capacity of perlite samples for the adsorption of methyl violet was found to increase with increasing pH and temperature and decrease with expansion and increasing acid-activation. The adsorption isotherms are described by means of the Langmuir and Freundlich isotherms. The adsorption isotherm was measured experimentally at different conditions and the experimental data were correlated reasonably well by the adsorption isotherm of Langmuir. The order of heat of adsorption corresponds to a physical reaction. It is concluded that the methyl violet is physically adsorbed onto the perlite. The removal efficiency (P) and dimensionless separation factor (R) have shown that perlite can be used for removal of methyl violet from aqueous solutions, but unexpanded perlite is more effective.

  17. SWELLING EQUILIBRIUM OF NONIONIC POLYACRYLAMIDE HYDROGEL IN AQUEOUS SALT SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of nonionic polyacrylamide hydrogels, using acrylamide as monomer and N,N’-methylene diacrylamide as crosslinking agent, were prepared by the free radical polymerization in aqueous solution. Swelling equilibria for the gels were carried out in aqueous solutions of NaCl, KCl, CaCl2, Na2HPO4 and K2HPO4 with concentration ranging from 10-3 to 5mol/kgH2O at 25℃. Experimental results revealed that the chlorides and phosphates cause a different behavior at higher salt concentration. The swelling ratio increases with increasing concentration of chlorides salts, while decreases with the increased phosphates salt concentration. The phenomena seem to be related to the different interactions of chloride and hydrogen phosphate ions with the network groups. Furthermore, the effects of different concentration of crosslinking agent and total monomers on gel swelling performance were also investigated.

  18. Diketopiperazine-mediated peptide formation in aqueous solution

    Science.gov (United States)

    Nagayama, M.; Takaoka, O.; Inomata, K.; Yamagata, Y.

    1990-05-01

    Though diketopiperazines (DKP) are formed in most experiments concerning the prebiotic peptide formation, the molecules have not been paid attention in the studies of chemical evolution. We have found that triglycine, tetraglycine or pentaglycine are formed in aqueous solution of glycine anhydride (DKP) and glycine, diglycine or triglycine, respectively. A reaction of alanine with DKP resulted in the formation of glycylglycylalanine under the same conditions. These results indicate that the formation of the peptide bonds proceeds through the nucleophilic attack of an amino group of the amino acids or the oligoglycines on the DKP accompanied by the ring-opening. The formation of glycine anhydride, di-, tri- and tetraglycine was also observed in a mixed aqueous solution of urea and glycine in an open system to allow the evaporation of ammonia. A probable pathway is proposed for prebiotic peptide formation through diketopiperazine on the primitive Earth.

  19. Zinc chloride aqueous solution as a solvent for starch.

    Science.gov (United States)

    Lin, Meiying; Shang, Xiaoqin; Liu, Peng; Xie, Fengwei; Chen, Xiaodong; Sun, Yongyi; Wan, Junyan

    2016-01-20

    It is important to obtain starch-based homogeneous systems for starch modification. Regarding this, an important key point is to find cheap, low-cost and low-toxicity solvents to allow complete dissolution of starch and its easy regeneration. This study reveals that a ZnCl2 aqueous solution is a good non-derivatizing solvent for starch at 50 °C, and can completely dissolve starch granules. The possible formation of a "zinc-starch complex" might account for the dissolution; and the degradation of starch, which was caused by the H(+) inZnCl2 aqueous solution, could not contribute to full dissolution. From polarized light microscopic observation combined with the solution turbidity results, it was found that the lowest ZnCl2 concentration for full dissolution was 29.6 wt.% at 50 °C, with the dissolving time being 4h. Using Fourier-transform infrared (FTIR), solid state (13)C nuclear magnetic resonance (NMR), and X-ray diffraction (XRD), it was revealed that ZnCl2 solution had no chemical reaction with starch glucosides, but only weakened starch hydrogen bonding and converted the crystalline regions to amorphous regions. In addition, as shown by intrinsic viscosity and thermogravimetric analysis (TGA), ZnCl2 solution caused degradation of starch macromolecules, which was more serious with a higher concentration of ZnCl2 solution.

  20. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    DEFF Research Database (Denmark)

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  1. EXAFS studies of actinide ions in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Karim, D P; Georgopoulos, P; Knapp, G S

    1979-01-01

    The applicability of the EXAFS technique in the study of actinide systems is discussed. Uranium L/sub III/-edge spectra obtained on an in-lab rotating anode EXAFS facility are presented and analyzed for crystalline UO/sub 2/F/sub 2/ and aqueous solutions containing hexavalent uranium ions. Methods for the extension of the technique to more dilute systems are discussed.

  2. Degradation of α-Naphthol by Plasma in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Degradation of α-naphthol induced by plasma in aqueous solution was investigatedin different initial concentration with contact glow discharge electrolysis(CGDE). The resultsshowed that the degradation of α-naphthol obeyed the first-rate law. Some of predominant products were analyzed by a high performance liquid chromatography (HPLC). A path of α-naphtholdisappearance caused by plasma was proposed according to the detected intermediate products.

  3. Plasma Induced Degradation of Benzidine in Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    高锦章; 盖克; 杨武; 董彦杰

    2003-01-01

    The degradation of benzidine in aqueous solution by the low temperature plasmawas examined. The results showed that the concentration of medium and the value of pH have anappreciable effect on the degradation of benzidine. What is more important is that iron ions actingas a catalyst play an important role in this reaction. For exploring the degradation mechanismof benzidine, some of the intermediate products were recorded by HPLC(high performance liquidchromatography).

  4. Angular correlation of annihilation photons in frozen aqueous solutions

    DEFF Research Database (Denmark)

    Milosevic-Kvajic, M.; Mogensen, O. E.; Kvajic, G.

    1972-01-01

    Linear‐slit angular correlation curves were obtained at about −140°C for frozen aqueous solutions of HF, HCl, HBr, HI, NH3, FeCl2, FeCl3, NaI, H2SO4, NHO3, MnSO4, KMnO4, K2Cr2O7, NaOH, and LiOH. We found no appreciable influence of a 4% concentration of the last seven impurities. Only halide‐cont...

  5. Micellization of Zonyl FSN-100 Fluorosurfactant in Aqueous Solutions

    OpenAIRE

    Skvarla, Juraj; Uchman, M.; Procházka, K.; Tošner, Z.; Garamus, V. M.; Pispas, S.; Štěpánek, M.

    2014-01-01

    We report on micellization of nonionic fluorosurfactant Zonyl FSN-100 in aqueous solutions studied by means of NMR spectroscopy, light and small-angle X-ray scattering, surface tension measurements, isothermal titration calorimetry and fluorescence spectroscopy. The results allow for determination of basic parameters of Zonyl FSN-100 association like critical micellar concentration, size and association number of Zonyl FSN-100 micelles which have a core–shell structure with the core of fluoro...

  6. Adsorption of Copper from Aqueous Solution Using Mango Seed Powder

    OpenAIRE

    Samiksha V. Ashtikar; Amruta D. Parkhi

    2014-01-01

    The objective of the study was the removal of copper metal ions from aqueous solution using mango seed powder as low cost adsorbent. The influences of contact time, adsorbent doses & temperature were studied in batch experiments at room temperature. The results showed that with increase in the contact time percent removal of copper increases. The adsorption was rapid during first 45 minutes & equilibrium was reached in 90 minutes. The results also showed that with increase in ...

  7. Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous electrolyte systems

    Science.gov (United States)

    Icaza, Juan C.; Guduru, Ramesh K.

    2016-12-01

    Carbon based electrochemical double layer capacitors (EDLCs) are known for high power density, but their energy density is limited due to surface characteristics of the electrode materials as well as the size and charge of the ions used in the electrolyte. Therefore, considering the current demand for enhanced energy density devices, we investigated the use of multivalent electrolytes to increase the capacitance of activated carbon (AC) based EDLCs. As part of these studies, we examined the effect of the charge of the multivalent ions on the capacitive behavior of microporous AC electrodes and compared with the univalent Li+ system. We performed impedance and cyclic voltammetry measurements on AC electrodes in a symmetric two electrode configuration to determine the impedance and capacitance with respect to varying charge and concentration of the ions in the aqueous nitrate electrolytes. These studies clearly demonstrated an increased capacitance with Mg2+ and Al3+ implying the possible effects of ion mobility and electrolyte conductivity in addition to the multivalent charge. These preliminary observations clearly point to the importance of selection of electrolyte ions with more charge, conductivity, and suitable size with respect to the pore size of the electrodes in order to increase the capacitance of EDLCs.

  8. Removal of fluoride ions from aqueous solution by waste mud

    Energy Technology Data Exchange (ETDEWEB)

    Kemer, Baris; Ozdes, Duygu; Gundogdu, Ali; Bulut, Volkan N.; Duran, Celal [Karadeniz Technical University, Faculty of Arts and Sciences, Department of Chemistry, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Chemistry, 38039 Kayseri (Turkey)

    2009-09-15

    The present study was carried out to assess the ability of original waste mud (o-WM) and different types of activated waste mud which are acid-activated (a-WM) and precipitated waste mud (p-WM), in order to remove excess of fluoride from aqueous solution by using batch technique. The p-WM exhibited greater performance than the others. Adsorption studies were conducted as a function of pH, contact time, initial fluoride concentration, adsorbent concentration, temperature, etc. Studies were also performed to understand the effect of some co-existing ions present in aqueous solutions. Adsorption process was found to be almost independent of pH for all types of waste mud. Among the kinetic models tested for p-WM, pseudo-second-order model fitted the kinetic data well with a perfect correlation coefficient value of 1.00. It was found that the adequate time for the adsorption equilibrium of fluoride was only 1 h. Thermodynamic parameters including the Gibbs free energy ({Delta}G{sup o}), enthalpy ({Delta}H{sup o}), and entropy ({Delta}S{sup o}) revealed that adsorption of fluoride ions on the p-WM was feasible, spontaneous and endothermic in the temperature range of 0-40 deg. C. Experimental data showed a good fit with the Langmuir and Freundlich adsorption isotherm models. Results of this study demonstrated the effectiveness and feasibility of WM for removal of fluoride ions from aqueous solution.

  9. Dermal absorption of a dilute aqueous solution of malathion

    Directory of Open Access Journals (Sweden)

    Scharf John

    2008-01-01

    Full Text Available Malathion is an organophosphate pesticide commonly used on field crops, fruit trees, livestock, agriculture, and for mosquito and medfly control. Aerial applications can result in solubilized malathion in swimming pools and other recreational waters that may come into contact with human skin. To evaluate the human skin absorption of malathion for the assessment of risk associated with human exposures to aqueous solutions, human volunteers were selected and exposed to aqueous solutions of malathion. Participants submerged their arms and hands in twenty liters of dilute malathion solution in either a stagnant or stirred state. The "disappearance method" was applied by measuring malathion concentrations in the water before and after human exposure for various periods of time. No measurable skin absorption was detected in 42% of the participants; the remaining 58% of participants measured minimal absorbed doses of malathion. Analyzing these results through the Hazard Index model for recreational swimmer and bather exposure levels typically measured in contaminated swimming pools and surface waters after bait application indicated that these exposures are an order of magnitude less than a minimal dose known to result in a measurable change in acetylcholinesterase activity. It is concluded that exposure to aqueous malathion in recreational waters following aerial bait applications is not appreciably absorbed, does not result in an effective dose, and therefore is not a public health hazard.

  10. Catalytic oxidation of calcium sulfite in solution/aqueous slurry

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao; WANG Da-hui

    2004-01-01

    Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10-4 mol/L, and oxygen is of 0.2-0.4 atm.

  11. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    Science.gov (United States)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a

  12. Direct photolysis of nitroaromatic compounds in aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    CHEN Bing; YANG Chun; GOH Ngoh Khang

    2005-01-01

    The direct photolysis of nitrobenzene and nitrophenols in aqueous solutions irradiated by polychromatic light were investigated.Several aromatic intermediates were identified as three nitrophenol isomers, nitrohydroquinone, nitrosobenzene, nitrocatechol, catechol and phenol. Nitrite and nitrate ions were also detected in the irradiated solution indicating direct photolysis of nitrobenzene or nitrophenols.The degradation of nitrobenzene and nitrophenols and the formation of three nitrophenol isomers were observed to follow zero-order kinetics. The quantum yields for nitrobenzene and nitrophenols removal are about 10-3 and 10-3-10-4 respectively. The mechanism for nitrobenzene degradation was suggested to follow mainly nitro-nitrite intramolecular arrangement.

  13. Radiolysis of berberine or palmatine in aqueous solution

    Science.gov (United States)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  14. Mechanism of degradation of electrolyte solutions for dye-sensitized solar cells under ultraviolet light irradiation

    Science.gov (United States)

    Nakajima, Shohei; Katoh, Ryuzi

    2015-01-01

    We studied the mechanism of the degradation of I-/I3--containing electrolyte solutions for dye-sensitized solar cells under UV light irradiation. The yellow electrolyte solutions underwent achromatization during irradiation, indicating the reduction of I3-. We propose a mechanism involving the production of holes in TiO2, reaction of the holes with solvent molecules, and subsequent reduction of I3- by electrons remaining in the TiO2. Although the quantum yield of the photodegradation reaction is estimated to be low (3 × 10-3), this reaction can nevertheless be expected to affect the long-term stability of dye-sensitized solar cell devices.

  15. Radiolytic degradation of atrazine aqueous solution containing humic substances.

    Science.gov (United States)

    Basfar, A A; Mohamed, K A; Al-Abduly, A J; Al-Shahrani, A A

    2009-03-01

    Degradation of atrazine herbicide in humic substances (HS) aqueous solutions and distilled water solutions was investigated on a laboratory scale upon gamma-irradiation from a (60)Co source. In addition, the effect of ionizing radiation on the atrazine residues removal efficiency was investigated in relation to degradation of by-products. gamma-Irradiation experiments were carried out for three targeted concentrations (i.e. 0.464, 2.318 and 4.636 microM) with doses over the range 0.1-60 kGy. The initial concentration of herbicide, scavengers and irradiation doses play a significant role in the degradation efficiency as shown by decay constants of atrazine residues. gamma-Radiolysis showed that atrazine exhibited high degradation percentages at low absorbed doses in HS aqueous solutions compared to distilled water solutions. Absorbed doses from 0.6 to 21 kGy and from 6 to 72 kGy at a dose rate of 14.52 kGyh(-1) achieved 90% degradation for atrazine with initial concentrations over the range 0.464-4.636 microM in humic and distilled water solutions, respectively. The radiolytic degradation by-products and their mass balances were qualitatively determined with good confidence using gas chromatography/quadruple mass spectrometry (GC/MS) with electron impact ionization (EI(+)) mode.

  16. The Hydrodynamic Solution for Flow Profiles in a Binary Strong Electrolyte Solution Under an External Electric Field

    CERN Document Server

    Eu, Byung Chan

    2010-01-01

    In this paper, we follow the general idea of the Onsager--Wilson theory of strong binary electrolyte solutions and completely calculate the velocity profile of ionic flow by first formally solving the hydrodynamic (Stokes) equation for the ionic solutions subjected to an external electric field by a Fourier transform method and then explicitly evaluating the formal Fourier transform solutions as functions of spatial positions and field strength. Thus the axial and transversal components of the velocity and the accompanying nonequilibrium pressure are explicitly obtained. They are rare examples for solutions of a hydrodynamic equation for flow in an external electric field. The present results make it possible to investigate ways to overcome the mathematical difficulty (divergence) inherent to the method of evaluating the formal solutions that Wilson used in his dissertation on the conductance theory (namely, the Onsager--Wilson theory) for strong binary electrolytes. Some examples for the velocity profiles ar...

  17. Photodegradation in Micellar Aqueous Solutions of Erythrosin Esters Derivatives.

    Science.gov (United States)

    Herculano, Leandro Silva; Lukasievicz, Gustavo Vinicius Bassi; Sehn, Elizandra; Caetano, Wilker; Pellosi, Diogo Silva; Hioka, Noboru; Astrath, Nelson Guilherme Castelli; Malacarne, Luis Carlos

    2015-07-01

    Strong light absorption and high levels of singlet oxygen production indicate erythrosin B as a viable candidate as a photosensitizer in photodynamic therapy or photodynamic inactivation of microorganisms. Under light irradiation, erythrosin B undergoes a photobleaching process that can decrease the production of singlet oxygen. In this paper, we use thermal lens spectroscopy to investigate photobleaching in micellar solutions of erythrosin ester derivatives: methyl, butyl, and decyl esters in low concentrations of non-ionic micellar aqueous solutions. Using a previously developed thermal lens model, it was possible to determine the photobleaching rate and fluorescence quantum efficiency for dye-micelle solutions. The results suggest that photobleaching is related to the intensity of the dye-micelle interaction and demonstrate that the thermal lens technique can be used as a sensitive tool for quantitative measurement of photochemical properties in very diluted solutions.

  18. Corrosion behavior of bulk metallic glasses in different aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The corrosion behavior of as-cast fully amorphous, structural relaxed amorphous and crystallized Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk metallic glasses (BMGs) in NaCl, HCl and NaOH solutions was investigated by electrochemical polarization and immersion methods. X-ray photoelectron spectroscopy measurements was used to analyze the changes of the elements on the alloy surface before and after immersion in various solutions. The corrosion resistance of the Fe65.5Cr4Mo4Ga4P12C5B5.5 BMG was better than its structural relaxation/crystallization counterparts and common alloys (such as stainless steel, carbonized steel, and steel) in the selected aqueous solutions. The high corrosion resistance of this alloy in corrosive solutions leads to the formation of Fe-, Cr- and Mo-enriched protective thin surface films.

  19. Structure of concentrated aqueous solutions of scandium chloride

    Science.gov (United States)

    Smirnov, P. R.; Grechin, O. V.

    2017-03-01

    It is shown via X-ray diffraction that aqueous solutions of scandium chloride form ionic associates in a wide range of concentrations. It is established that the Sc3+ ion coordination number increases upon dilution to 8.2 at an unchanged Sc3+-OH2 distance of 0.215 nm. The second coordination sphere of the cation forms at an average distance of 0.420 nm. The number of solvent molecules in the sphere logically increases during dilution. It is concluded that the anion does not form its own sphere in highly concentrated solutions. This coordination sphere begins to form only in solutions with moderate concentrations at a distance of 0.315 nm, and it contains six water molecules in diluted solutions.

  20. On the structure of an aqueous propylene glycol solution

    Science.gov (United States)

    Rhys, Natasha H.; Gillams, Richard J.; Collins, Louise E.; Callear, Samantha K.; Lawrence, M. Jayne; McLain, Sylvia E.

    2016-12-01

    Using a combination of neutron diffraction and empirical potential structure refinement computational modelling, the interactions in a 30 mol. % aqueous solution of propylene glycol (PG), which govern both the hydration and association of this molecule in solution, have been assessed. From this work it appears that PG is readily hydrated, where the most prevalent hydration interactions were found to be through both the PG hydroxyl groups but also alkyl groups typically considered hydrophobic. Hydration interactions of PG dominate the solution over PG self-self interactions and there is no evidence of more extensive association. This hydration behavior for PG in solutions suggests that the preference of PG to be hydrated rather than to be self-associated may translate into a preference for PG to bind to lipids rather than itself, providing a potential explanation for how PG is able to enhance the apparent solubility of drug molecules in vivo.

  1. Adsorption of nicotine on different zeolite types, from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stošić Dušan K.

    2007-01-01

    Full Text Available The plant alkaloid, nicotine, is a strongly toxic heterocyclic compound: the lethal dose for an adult human being (40-60 mg is importantly lower in comparison with the other known poisons such as arsenic or strychni­ne. Cigarettes represent "the most toxic and addictive form of nicotine". Besides the negative effects of nicotine on public health produced by self-administration, recently another potentially very dangerous effect has been recognized: because of its miscibility with water, nicotine can be found in industrial wastewaters, and consequently, in groundwater. Therefore, the problem of nicotine removal from aqueous solutions has became an interesting topic. In this work, the removal of nicotine has been probed by adsorption on solid materials. Adsorption of nicotine on different zeolites (clinoptilolite, ZSM-5 and β zeolite and on activated carbon was investigated from aqueous solutions, at 298 K. The obtained results are presented as adsorption isotherms: the amount of adsorbed nicotine as a function of equilibrium concentration. These data were obtained from the residual amount of nicotine in the aqueous phase, by the use of UV spectroscopy. The highest amounts of adsorbed nicotine was found for activated carbon and p zeolite (~ mmol·g-1. The attempt to modify the adsorption properties of ZSM-5 zeolite has been also done: ZSM-5 was modified by ion-exchange with VIII group metal (Cu2+ and Fe3+. In addition, the adsorption of nicotine on ZSM-5 zeolite with different Si/Al ratios has been done. It has been noticed that ion-exchange did not improve the adsorption possibilities, while the adsorption was importantly lower in the case of higher silicon content in ZMS-5 structure. 13C NMR spectra were collected for suspensions formed of solid adsorbent and aqueous solution of nicotine; in this way, the part of nicotine molecule which is most probably connected with the adsorbent was recognized.

  2. The Gibbs-free-energy landscape for the solute association in nanoconfined aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    赵亮; 王春雷; 方海平; 涂育松

    2015-01-01

    The theoretical model and the numerical analyses on the Gibbs-free-energy of the association states of am-phiphilic molecules in nanoconfined aqueous solutions are presented in detail. We exhibit the continuous change of the Gibbs-free-energy trend, which plays a critical role in the association states of the system transforming from the dispersion state, through the “reversible state”, and finally to the aggregation state in amphiphilic molecule solutions. Furthermore, for the“reversible state”, we present the difference in the free-energy bar-rier heights of the dispersion state and aggregation state, resulting from the competition between the entropy, which makes the solute molecules evenly disperse in the solution and the energy contribution driving the am-phiphilic molecules to aggregate into a larger cluster. These findings provide a comprehensive understanding of confinement effects on the solute association processes in aqueous solutions and may further improve the techniques of material fabrication.

  3. Simulation study on structure of water in aqueous solutions confined between graphene electrodes under very high applied electric field

    Science.gov (United States)

    Leuty, Gary; Tsige, Mesfin; Talapatra, Saikat

    2011-03-01

    Arising from questions regarding electric double-layer capacitors utilizing graphene electrodes and aqueous electrolyte (KOH solution), atomistic MD simulations of electrolyte confined between graphene electrodes were performed to understand the behavior of electrolyte as a function of electric field strength and solution concentration, from pure water to 6M KOH. It was noted that the strength of the electric field had a demonstrable effect on the structure of pure water between the electrodes (as has previously been seen in highly confined multilayer water systems), creating regularly spaced channels and densely packed sheets of highly ordered molecules. We also saw a clear effect due to the presence of electrolyte ions and their separation from the water due to the action of the field; different field strengths appear to greatly alter the distribution of ions, which in turn affects the structure and ordering of the water. Time dependence in the strength of the electric field was also studied to determine what effect, if any, it has on induced structure. Authors gratefully acknowledge support from the ACS Petroleum Research Fund and the National Science Foundation.

  4. Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range

    Science.gov (United States)

    Schreckenberg, Jens M. A.; Dufal, Simon; Haslam, Andrew J.; Adjiman, Claire S.; Jackson, George; Galindo, Amparo

    2014-09-01

    An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion-ion and solvent-ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour-liquid and liquid-liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.

  5. RHEOLOGICAL BEHAVIOR OF ERWINIA GUM IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Li-na Zhang; Mei Zhang; Jing-hua Chen; Hideki Iijima; Hiromichi Tsuchiya

    1999-01-01

    Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose and glucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and a rotational viscometer. Its weight-average molecular weight Mw and intrinsic viscosity [η] in 0.2 mol/L NaCl aqueous solution were measured by light scattering method at 35℃ and viscometry at 25℃ and found to be 1.06 × 106 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gel permeation chromatography (GPC). These results indicated that E gum in water has exceedingly high viscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreased with increasing temperature, and the turning point appeared at 38℃ for dilute solution and 80℃ for concentrated solution suggesting that the aggregates of E gum in water started to disaggregate under these temperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimental results indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.

  6. Recent Advances in the Use of Statistical Mechanics to Establish Molecular Thermodynamic Models for Electrolyte Solutions

    Institute of Scientific and Technical Information of China (English)

    李以圭

    2004-01-01

    Based on statistical mechanics,a review of recent theoretical studies of real electrolyte solutions is presented from three aspects,namely,molecular simulation,mean spherical approximation (MSA),and perturbation theory.Recent advances in studies of three kinds of electrostatic potentials of mean force,three kinds of internal energies (ion-ion,ion-dipole,and dipole-dipole interactions),and three kinds of electrolyte models (primitive,non-primitive,and solvent primitive models) are introduced.The advantages and disadvantages between primitive and non-primitive models,and between MSA and perturbation theory are discussed.Some new equations of state (EOSs) based on MSA and perturbation theory for real electrolyte solutions are introduced.The one-Yukawa EOS and the two-Yukawa EOS for charged colloid systems are presented.

  7. Monte Carlo Simulation of Aqueous Dilute Solutions of Polyhydric Alcohols

    Science.gov (United States)

    Lilly, Arnys Clifton, Jr.

    In order to investigate the details of hydrogen bonding and solution molecular conformation of complex alcohols in water, isobaric-isothermal Monte Carlo simulations were carried out on several systems. The solutes investigated were ethanol, ethylene glycol, 1,2-propylene glycol, 1,3 -propylene glycol and glycerol. In addition, propane, which does not hydrogen bond but does form water hydrates, was simulated in aqueous solution. The complex alcohol-water systems are very nonideal in their behavior as a function of solute concentration down to very dilute solutions. The water model employed was TIP4P water^1 and the intermolecular potentials employed are of the Jorgensen type^2 in which the interactions between the molecules are represented by interaction sites usually located on nuclei. The interactions are represented by a sum of Coulomb and Lennard-Jones terms between all intermolecular pairs of sites. Intramolecular rotations in the solute are modeled by torsional potential energy functions taken from ethanol, 1-propanol and 2-propanol for C-O and C-C bond rotations. Quasi-component pair correlation functions were used to analyze the hydrogen bonding. Hydrogen bonds were classified as proton acceptor and proton donor bonds by analyzing the nearest neighbor pair correlation function between hydroxyl oxygen and hydrogen and between solvent-water hydrogen and oxygen. The results obtained for partial molar heats of solution are more negative than experimental values by 3.0 to 14 kcal/mol. In solution, all solutes reached a contracted molecular geometry with the OH groups generally on one side of the molecule. There is a tendency for the solute OH groups to hydrogen bond with water, with more proton acceptor bonds than proton donor bonds. The water -solute binding energies correlate with experimental measurements of the water-binding properties of the solute. ftn ^1Jorgensen, W. L. et al, J. Chem. Phys., 79, 926 (1983). ^2Jorgensen, W. L., J. Phys Chem., 87, 5304

  8. Prediction of the Conductance of Strong Electrolytes and the Calculation of the Ionization Constant of Weak Electrolytes in a Dilute Solution by a New Equation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to predict the conductance for dilute 1-1 valent electrolyte solutions,a new conductance equation was proposed based on the Onsager and Onsagar-Fuoss-Chen conductance equation.It has only one parameter A,which can be obtained directly from the data of ionic limiting molar conductivity Λ∞m,and its expression is very simple.The new equation has been verified by the experimental molar conductivities of some single strong electrolyte and mixed electrolyte solutions at 298.15 K reported in literatures.The results are in good agreement with the experimental data.Meanwhile the ionization constants of some weak electrolyte solutions were calculated by a modified equation of this new equation,and it was also found that the calculation results are in good agreement with the data in the literature.

  9. Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution.

    Science.gov (United States)

    Schmidt, Michael; Bauer, Andreas; Schmidbaur, Hubert

    1997-05-07

    Maleic and phthalic acids are found to react with Be(OH)(2), generated in situ from BeSO(4)(aq) and Ba(OH)(2)(aq), in aqueous solution at pH 3.0 or 4.4, respectively (25 degrees C), to give solutions containing the complexes (H(2)O)(2)Be[(OOCCH)(2)] (1) and (H(2)O)(2)Be[(OOC)(2)C(6)H(4)] (3). The products can be isolated in high yield and identified by microanalytical data. With 2 equiv of the dicarboxylic acids and the pH adjusted to 5.5 and 5.9, respectively, by addition of ammonia, the bis-chelate complexes [(NH(4))(+)](2){[Be[(OOCCH)(2)](2)}(2)(-) (2) and [(NH(4))(+)](2){Be[(OOC)(2)C(6)H(4)](2)}(2)(-) (4) are obtained, which can also be isolated. The compounds show distinct (9)Be, (1)H, and (13)C resonances in their NMR spectra in aqueous solutions. Layering of an aqueous solution of compound 4 with acetone at ambient temperature leads to the precipitation of single crystals suitable for an X-ray structure determination. This salt (5) was found to contain the bis-chelated dianion {Be[(OOC)(2)C(6)H(4)](2)}(2)(-) with the beryllium atom in the spiro center of two seven-membered rings and an overall geometry approaching closely C(2) symmetry. These anions are associated with two crystallographically independent but structurally similar counterions [MeC(O)CH(2)CMe(2)NH(3)](+), which are the product of a condensation reaction of the ammonium cation with the acetone solvent. In the crystal the ammonium hydrogen atoms of the cations form N-H.O hydrogen bonds with the oxo functions of the dianion.

  10. Nano particles@Calix arenas via aqueous solution

    Directory of Open Access Journals (Sweden)

    Sahar Dehghani

    2016-05-01

    Full Text Available The electronic structure and magnetic properties of Al2O3, GaN and Fe3O4@ Calix (8 COOH have been studied using ONIOM and DFT methods. The studies focus on how to improve the adsorption of some nano particles solution aqueous for achieving good magnetic and functionalized potential performances. The results revealed that the Fe3O4@ Calix (8 COOH and some of its derivations exhibited better thermodynamic stability. Furthermore, the particle size and magnetic property of the GaN@ Calix (8 COOH nano particles can be controlled by the aqueous. The electrical properties such as NMR Shielding, electron densities, energy densities, potential energy densities, ELF, LOL, ellipticity of electron density, eta index and ECP for nano particles@ Calix (8COOH have been calculated.

  11. Thermodynamics of Binary and Ternary Solutions of Multivalent Electrolytes with Formation of 1: 1 and 1: 2 Complexes, within the Mean Spherical Approximation

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Arenas, J.; Simonin, J. P.; Bernard, O. [Univ Paris 06, PECSA, CNRS, UMR 7195, F-75252 Paris (France); Torres-Arenas, J. [Univ Guanajuato, Div Ciencias and Ingn, Guanajuato 37150 (Mexico); Ruas, A.; Moisy, Ph. [CEA Marcoule, DEN DRCP, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    The mean activity ({gamma}{+-}) and osmotic ({Phi}) coefficients for binary and ternary aqueous solutions of trivalent electrolytes (mainly made up of lanthanide salts) are described in the framework of the primitive model of ionic solutions, using the binding mean spherical approximation (BiMSA). This model, based on the Wertheim formalism, accounts for (chemical or electrostatic) association of ions. In this work, the multivalent cation and the anion are allowed to form 1: 1 (pairs) and 1: 2 (trimers) complexes. Expressions for {gamma}{+-}) and {Phi} are given which satisfy the Gibbs-Duhem relation. The model involves concentration-dependent cation size and effective relative permittivity, variations that can be interpreted in terms of solvent effects. The theory is applied to aqueous solutions of binary and ternary mixtures at 25 C with common anion. (authors)

  12. Vanadium Flow Battery Electrolyte Synthesis via Chemical Reduction of V2O5 in Aqueous HCl and H2SO4.

    Energy Technology Data Exchange (ETDEWEB)

    Small, Leo J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pratt, Harry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Staiger, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Rachel Irene [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chalamala, Babu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soundappan, Thiagarajan [Univ. of Washington, Seattle, WA (United States); Tiwari, Monika [Univ. of Washington, Seattle, WA (United States); Subarmanian, Venkat R. [Univ. of Washington, Seattle, WA (United States)

    2017-01-01

    We report a simple method to synthesize V 4+ (VO 2+ ) electrolytes as feedstock for all- vanadium redox flow batteries (RFB). By dissolving V 2 O 5 in aqueous HCl and H 2 SO 4 , subsequently adding glycerol as a reducing agent, we have demonstrated an inexpensive route for electrolyte synthesis to concentrations >2.5 M V 4+ (VO 2+ ). Electrochemical analysis and testing of laboratory scale RFB demonstrate improved thermal stability across a wider temperature range (-10-65 degC) for V 4+ (VO 2+ ) electrolytes in HCl compared to in H 2 SO 4 electrolytes.

  13. Salt dependent stability of stearic acid Langmuir-Blodgett films exposed to aqueous electrolytes.

    Science.gov (United States)

    Kumar, Naveen; Wang, Lei; Siretanu, Igor; Duits, Michel; Mugele, Frieder

    2013-04-30

    We use contact angle goniometry, imaging ellipsometry, and atomic force microscopy to study the stability and wettability of Langmuir-Blodgett (LB) monolayers of stearic acid on silica substrates, upon drying and exposure to aqueous solutions of varying salinity. The influences of Ca(2+) and Na(+) ions are compared by varying their concentrations, both in the subphase before the LB transfer, and in the droplets to which the dried LB layers are exposed. Ca(2+) ions in the subphase are found to enhance the stability, leading to contact angles up to 100°, as compared to less than 5° for Na(+). Consistent with the macroscopic wettability, AFM images show almost intact films with few holes exposing bare substrate when prepared in the presence of Ca(2+), while subphases containing Na(+) result in large areas of bare substrate after exposure to aqueous drops. The observations on varying the composition of the droplets corroborate the stabilizing effect of Ca(2+). We attribute these findings to the cation-bridging ability of Ca(2+) ions, which can bind the negatively charged stearate groups to the negatively charged substrates. We discuss the relevance of our findings in the context of enhanced oil recovery.

  14. Rapid structural analysis of nanomaterials in aqueous solutions

    Science.gov (United States)

    Ryuzaki, Sou; Tsutsui, Makusu; He, Yuhui; Yokota, Kazumichi; Arima, Akihide; Morikawa, Takanori; Taniguchi, Masateru; Kawai, Tomoji

    2017-04-01

    Rapid structural analysis of nanoscale matter in a liquid environment represents innovative technologies that reveal the identities and functions of biologically important molecules. However, there is currently no method with high spatio-temporal resolution that can scan individual particles in solutions to gain structural information. Here we report the development of a nanopore platform realizing quantitative structural analysis for suspended nanomaterials in solutions with a high z-axis and xy-plane spatial resolution of 35.8 ± 1.1 and 12 nm, respectively. We used a low thickness-to-diameter aspect ratio pore architecture for achieving cross sectional areas of analyte (i.e. tomograms). Combining this with multiphysics simulation methods to translate ionic current data into tomograms, we demonstrated rapid structural analysis of single polystyrene (Pst) beads and single dumbbell-like Pst beads in aqueous solutions.

  15. Separation characteristics of alcohol from aqueous solution by ultrasonic atomization.

    Science.gov (United States)

    Yasuda, Keiji; Mochida, Kyosuke; Asakura, Yoshiyuki; Koda, Shinobu

    2014-11-01

    The generation rate of ultrasonically atomized droplets and the alcohol concentration in droplets were estimated by measuring the flow rate and the alcohol concentration of vapors from a bulk solution with a fountain. The effect of the alcohol concentration in the bulk solution on the generation rate of droplets and the alcohol concentration in droplets were investigated. The ultrasonic frequency was 2.4MHz, and ethanol and methanol aqueous solutions were used as samples. The generation rate of droplets for ethanol was smaller than that for methanol at the same alcohol molar fraction in the bulk solution. For both solutions, at low alcohol concentration in the bulk solution, the alcohol concentration in droplets was lower than that in vapors and the atomized droplets were visible. On the other side, at high concentration, the concentration in droplets exceeded that in vapors and the atomized droplets became invisible. These results could be explained that the alcohol-rich clusters in the bulk solution were preferentially atomized by ultrasonic irradiation. The concentration in droplets for ethanol was higher than that for methanol at low alcohol concentration because the amount of alcohol-rich clusters was larger. When the alcohol molar fraction was greater than 0.6, the atomized droplets almost consisted of pure alcohol.

  16. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    Science.gov (United States)

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

  17. Chlorobenzene degradation by electro-heterogeneous catalysis in aqueous solution: intermediates and reaction mechanism

    Institute of Scientific and Technical Information of China (English)

    WANG Jiade; MEI Yu; LIU Chenliang; CHEN Jianmeng

    2008-01-01

    This study was performed to investigate the variables that influence chlorobenzene (CB) degradation in aqueous solution by electro-heterogeneous catalysis. The effects of current density, pH, and electrolyte concentration on CB degradation were determined. The degradation efficiency of CB was almost 100% with an initial CB concentration of 50 mg/L, current density 15 mA/cm2, initial pH 10, electrolyte concentration 0.1 mol/L, and temperature 25℃ after 90 min of reaction. Under the same conditions, the degradation efficiency of CB was only 51% by electrochemical (EC) process, which showed that electro-heterogeneous catalysis was more efficient than EC alone. The analysis results of Purge-and-Trap chromatography-mass spectrometry (P&T/GC/MS) and ion chromatography the release of Cl-. Further oxidation of phenol and biphenyl produced p-Vinylbenzoic acid and hydroquinol. Finally, the compounds were oxidized to butenedioic acid and other small-molecule acids.

  18. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  19. Modeling of CO2 solubility in single and mixed electrolyte solutions using statistical associating fluid theory

    Science.gov (United States)

    Jiang, Hao; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.

    2016-03-01

    Statistical associating fluid theory (SAFT) is used to model CO2 solubilities in single and mixed electrolyte solutions. The proposed SAFT model implements an improved mean spherical approximation in the primitive model to represent the electrostatic interactions between ions, using a parameter K to correct the excess energies ("KMSA" for short). With the KMSA formalism, the proposed model is able to describe accurately mean ionic activity coefficients and liquid densities of electrolyte solutions including Na+, K+, Ca2+, Mg2+, Cl-, Br- and SO42- from 298.15 K to 473.15 K using mostly temperature independent parameters, with sole exception being the volume of anions. CO2 is modeled as a non-associating molecule, and temperature-dependent CO2-H2O and CO2-ion cross interactions are used to obtain CO2 solubilities in H2O and in single ion electrolyte solutions. Without any additional fitting parameters, CO2 solubilities in mixed electrolyte solutions and synthetic brines are predicted, in good agreement with experimental measurements.

  20. Application of the zero separation theorem to the restricted primitive model of electrolyte solutions

    DEFF Research Database (Denmark)

    Sloth, Peter

    1988-01-01

    Calculations of activity coefficients by application of the zero separation theorem is discussed for the restricted primitive model of electrolyte solutions. Numerical results within the framework of the hypernetted chain approximation are given. These indicate that the bridge functions—at zero s...

  1. The McMillan-Mayer framework and the theory of electrolyte solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen

    2006-01-01

    in the context of the classical thermodynamics and the use of it is examplified by the Debye-Huckel theory. The so-called McMillan-Mayer framework is superfluous when the thermodynamics of the electrolyte solutions is described by the Helmholtz energy functions. (c) 2006 Elsevier B.V. All rights reserved....

  2. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  3. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  4. Statistical mechanics of sum frequency generation spectroscopy for the liquid-vapor interface of dilute aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Noah-Vanhoucke, Joyce; Smith, Jared D.; Geissler, Phillip L.

    2009-01-02

    We demonstrate a theoretical description of vibrational sum frequency generation (SFG) at the boundary of aqueous electrolyte solutions. This approach identifies and exploits a simple relationship between SFG lineshapes and the statistics of molecular orientation and electric field. Our computer simulations indicate that orientational averages governing SFG susceptibility do not manifest ion-specific shifts in local electric field, but instead, ion-induced polarization of subsurface layers. Counterbalancing effects are obtained for monovalent anions and cations at the same depth. Ions held at different depths induce an imbalanced polarization, suggesting that ion-specific effects can arise from weak, long ranged influence on solvent organization.

  5. Lubrication, adsorption, and rheology of aqueous polysaccharide solutions.

    Science.gov (United States)

    Stokes, Jason R; Macakova, Lubica; Chojnicka-Paszun, Agnieszka; de Kruif, Cornelis G; de Jongh, Harmen H J

    2011-04-05

    Aqueous lubrication is currently at the forefront of tribological research due to the desire to learn and potentially mimic how nature lubricates biotribological contacts. We focus here on understanding the lubrication properties of naturally occurring polysaccharides in aqueous solution using a combination of tribology, adsorption, and rheology. The polysaccharides include pectin, xanthan gum, gellan, and locus bean gum that are all widely used in food and nonfood applications. They form rheologically complex fluids in aqueous solution that are both shear thinning and elastic, and their normal stress differences at high shear rates are found to be characteristic of semiflexible/rigid molecules. Lubrication is studied using a ball-on-disk tribometer with hydrophobic elastomer surfaces, mimicking biotribological contacts, and the friction coefficient is measured as a function of speed across the boundary, mixed, and hydrodynamic lubrication regimes. The hydrodynamic regime, where the friction coefficient increases with increasing lubricant entrainment speed, is found to depend on the viscosity of the polysaccharide solutions at shear rates of around 10(4) s(-1). The boundary regime, which occurs at the lowest entrainment speeds, depends on the adsorption of polymer to the substrate. In this regime, the friction coefficient for a rough substrate (400 nm rms roughness) is dependent on the dry mass of polymer adsorbed to the surface (obtained from surface plasmon resonance), while for a smooth substrate (10 nm rms roughness) the friction coefficient is strongly dependent on the hydrated wet mass of adsorbed polymer (obtained from quartz crystal microbalance, QCM-D). The mixed regime is dependent on both the adsorbed film properties and lubricant's viscosity at high shear rates. In addition, the entrainment speed where the friction coefficient is a minimum, which corresponds to the transition between the hydrodynamic and mixed regime, correlates linearly with the ratio

  6. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions

    Science.gov (United States)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2 ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0 ± 1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼104 s-1 at pH 7.4 and 37 °C, the activation energy, 50.2 kJ/mol and its pH dependence at 1.1 °C was fitted to: k (s-1) = 520 + 6.5 × 107[H+] + 3.0 × 109[OH-].

  7. Characterization of aqueous silver nitrate solutions for leakage tests

    Directory of Open Access Journals (Sweden)

    José Ferreira Costa

    2011-06-01

    Full Text Available OBJECTIVE: To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. MATERIAL AND METHODS: A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled and three brands of silver nitrate salt (Merck, Synth or Cennabras at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h and concentrations (1, 5, 25, 50% of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%. RESULTS: The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9. Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm. In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000. CONCLUSIONS: Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were

  8. Characterization of aqueous silver nitrate solutions for leakage tests

    Science.gov (United States)

    COSTA, José Ferreira; SIQUEIRA, Walter Luiz; LOGUERCIO, Alessandro Dourado; REIS, Alessandra; de OLIVEIRA, Elizabeth; ALVES, Cláudia Maria Coelho; BAUER, José Roberto de Oliveira; GRANDE, Rosa Helena Miranda

    2011-01-01

    Objectives To determine the pH over a period of 168 h and the ionic silver content in various concentrations and post-preparation times of aqueous silver nitrate solutions. Also, the possible effects of these factors on microleakage test in adhesive/resin restorations in primary and permanent teeth were evaluated. Material and Methods A digital pHmeter was used for measuring the pH of the solutions prepared with three types of water (purified, deionized or distilled) and three brands of silver nitrate salt (Merck, Synth or Cennabras) at 0, 1, 2, 24, 48, 72, 96 and 168 h after preparation, and storage in transparent or dark bottles. Ionic silver was assayed according to the post-preparation times (2, 24, 48, 72, 96, 168 h) and concentrations (1, 5, 25, 50%) of solutions by atomic emission spectrometry. For each sample of each condition, three readings were obtained for calculating the mean value. Class V cavities were prepared with enamel margins on primary and permanent teeth and restored with the adhesive systems OptiBond FL or OptiBond SOLO Plus SE and the composite resin Filtek Z-250. After nail polish coverage, the permanent teeth were immersed in 25% or 50% AgNO3 solution and the primary teeth in 5% or 50% AgNO3 solutions for microleakage evaluation. ANOVA and the Tukey's test were used for data analyses (α=5%). Results The mean pH of the solutions ranged from neutral to alkaline (7.9±2.2 to 11.8±0.9). Mean ionic silver content differed depending on the concentration of the solution (4.75±0.5 to 293±15.3 ppm). In the microleakage test, significant difference was only observed for the adhesive system factor (p=0.000). Conclusions Under the tested experimental conditions and based on the obtained results, it may be concluded that the aqueous AgNO3 solutions: have neutral/alkaline pH and service life of up to 168 h; the level of ionic silver is proportional to the concentration of the solution; even at 5% concentration, the solutions were capable of

  9. ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ON ATTAPULGITE

    Institute of Scientific and Technical Information of China (English)

    WANG Deping; LV Pengfei; YAN Yongsheng; LIU Hui; WANG Guanjun

    2007-01-01

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) from aqueous solution using attapulgite as adsorbent. The effects of various parameters such as temperature, contact time, the pH value, and attapulgite dosage on the adsorption performance were investigated. The standard curve and regression equation were established by spectrophotometry. The adsorption experimental results showed that the adsorption equilibrium data were well in accord with Langmuir adsorptive model. The optimal result was acquired under the experimental condition of attapulgite dosage 0.18g, MB concentration 50.0mg/L, pH 10, and adsorption time 20min at room temperature.

  10. Kinetics of gibbsite leaching in sodium hydroxide aqueous solution

    Directory of Open Access Journals (Sweden)

    Pavlović Ljubica J.

    2002-01-01

    Full Text Available In order to study the kinetics and mechanism of the reaction, laboratory leaching was carried out with industrially produced gibbsite γ-Al(OH3 in aqueous solutions containing an excess of sodium hydroxide. The results obtained reaction temperature, duration and base concentration varied. The basic kinetic parameters were determined from: the reaction rate constant k=8.72·107 exp (-74990/RT and the process activation energy in the range Ea=72.5-96.81 kJ/mol.

  11. Pulse radiolysis of pyridine and methylpyridines in aqueous solutions

    DEFF Research Database (Denmark)

    Solar, S.; Getoff, N.; Sehested, K.

    1993-01-01

    The radicals formed from pyridine, 3-methylpyridine, 3,5-dimethylpyridine, 2,6-dimethylpyridine and 2,4,6-trimethylpyridine by attack of H, e(aq)-, OH and O.- in aqueous solutions were investigated by pulse radiolysis in the pH-range 1-13.8. The UV-vis. absorption spectra as well as the formation...... and decay kinetics for the protonated and unprotonated forms of the methylpyridine radicals studied are presented. The pK(a)-values for the OH-adducts were determined....

  12. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  13. Fluorescence of aqueous solutions of commercial humic products

    Science.gov (United States)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  14. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.; Lymar, Sergei V.; Merenyi, Gabor; Neta, Pedatsur; Ruscic, Branko; Stanbury, David M.; Steenken, Steen; Wardman, Peter

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pKa’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  15. Adsorption of Copper from Aqueous Solution Using Mango Seed Powder

    Directory of Open Access Journals (Sweden)

    Samiksha V. Ashtikar

    2014-04-01

    Full Text Available The objective of the study was the removal of copper metal ions from aqueous solution using mango seed powder as low cost adsorbent. The influences of contact time, adsorbent doses & temperature were studied in batch experiments at room temperature. The results showed that with increase in the contact time percent removal of copper increases. The adsorption was rapid during first 45 minutes & equilibrium was reached in 90 minutes. The results also showed that with increase in the adsorbent doses & temperature percent removal of copper increases. Thus mango seeds have the potential to be applied as alternative low-cost biosorbent in the remediation of heavy metal contamination in waste water.

  16. Hydrogen Evolution by Plasma Electrolysis in Aqueous Solution

    Science.gov (United States)

    Mizuno, Tadahiko; Akimoto, Tadashi; Azumi, Kazuhisa; Ohmori, Tadayoshi; Aoki, Yoshiaki; Takahashi, Akito

    2005-01-01

    Hydrogen has recently attracted attention as a possible solution to environmental and energy problems. If hydrogen should be considered an energy storage medium rather than a natural resource. However, free hydrogen does not exist on earth. Many techniques for obtaining hydrogen have been proposed. It can be reformulated from conventional hydrocarbon fuels, or obtained directly from water by electrolysis or high-temperature pyrolysis with a heat source such as a nuclear reactor. However, the efficiencies of these methods are low. The direct heating of water to sufficiently high temperatures for sustaining pyrolysis is very difficult. Pyrolysis occurs when the temperature exceeds 4000°C. Thus plasma electrolysis may be a better alternative, it is not only easier to achieve than direct heating, but also appears to produce more hydrogen than ordinary electrolysis, as predicted by Faraday’s laws, which is indirect evidence that it produces very high temperatures. We also observed large amounts of free oxygen generated at the cathode, which is further evidence of direct decomposition, rather than electrolytic decomposition. To achieve the continuous generation of hydrogen with efficiencies exceeding Faraday efficiency, it is necessary to control the surface conditions of the electrode, plasma electrolysis temperature, current density and input voltage. The minimum input voltage required induce the plasma state depends on the density and temperature of the solution, it was estimated as 120 V in this study. The lowest electrolyte temperature at which plasma forms is ˜75°C. We have observed as much as 80 times more hydrogen generated by plasma electrolysis than by conventional electrolysis at 300 V.

  17. Electrolyte and Haemogram changes post large volume liposuction comparing two different tumescent solutions

    Directory of Open Access Journals (Sweden)

    Kumar Vivek

    2014-01-01

    Full Text Available Background: The most common definitions of large volume liposuction refer to total 5 l volume aspiration during a single procedure (fat plus wetting solution. Profound haemodynamic and metabolic alterations can accompany large volume liposuction. Due to paucity of literature on the effect of different tumescent solutions on the electrolyte balance and haematological changes during large volume liposuction, we carried out this study using two different wetting solutions to study the same. Materials and Methods: Total 30 patients presenting with varying degrees of localized lipodystrophy in different body regions were enrolled for the study. Prospective randomized controlled trial was conducted by Department of Plastic and Cosmetic Surgery, Sir Ganga Ram Hospital, New Delhi from January 2011 to June 2012. Patients were randomized into two groups of 15 patients each by using computer generated random numbers. Tumescent formula used for Group A (normal saline [NS] was our modification of Klein′s Formula and Tumescent formula used for Group B (ringer lactate [RL] was our modification of Hunstadt′s formula. Serum electrolytes and hematocrit levels were done at preinduction, immediate postoperative period and postoperative day 1. Result: Statistical analysis was performed using SPSS software version 15.0. Which showed statistically significant electrolytes and hematocrit changes occur during large volume liposuction. Conclusion: Statistically significant electrolytes and hematocrit changes occur during large volume liposuction and patients should be kept under observation of anaesthesist for at least 24 h. Patients require strict monitoring of vital parameters and usually Intensive Care Unit is not required. There was no statistical difference in the electrolyte changes using NS or RL as tumescent solution and both solutions were found safe for large volume liposuction.

  18. Removal of phenols from aqueous solutions by emulsion liquid membranes.

    Science.gov (United States)

    Reis, M Teresa A; Freitas, Ondina M F; Agarwal, Shiva; Ferreira, Licínio M; Ismael, M Rosinda C; Machado, Remígio; Carvalho, Jorge M R

    2011-09-15

    The present study deals with the extraction of phenols from aqueous solutions by using the emulsion liquid membranes technique. Besides phenol, two derivatives of phenol, i.e., tyrosol (2-(4-hydroxyphenyl)ethanol) and p-coumaric acid (4-hydroxycinnamic acid), which are typical components of the effluents produced in olive oil plants, were selected as the target solutes. The effect of the composition of the organic phase on the removal of solutes was examined. The influence of pH of feed phase on the extraction of tyrosol and p-coumaric was tested for the membrane with Cyanex 923 as an extractant. The use of 2% Cyanex 923 allowed obtaining a very high extraction of phenols (97-99%) in 5-6 min of contact time for either single solute solutions or for their mixtures. The removal efficiency of phenol and p-coumaric acid attained equivalent values by using the system with 2% isodecanol, but the removal rate of tyrosol was found greatly reduced. The extraction of tyrosol and p-coumaric acid from their binary mixture was also analysed for different operating conditions like the volume ratio of feed phase to stripping phase (sodium hydroxide), the temperature and the initial concentration of solute in the feed phase.

  19. Thermodynamics of multisolute adsorption from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jossens, L. (Univ. Calif. Berkeley); Fritz, W.; Myers, A.L.; Prausnitz, J.M.; Schluender, E.U.

    1978-01-01

    Equilibrium adsorption data were obtained at 20/sup 0/C on activated carbon for six ternary aqueous systems simulating organic chemical wastewaters (phenol/p-nitrophenol, p-chlorophenol/p-nitrophenol, p-nitrophenol/benzoic acid, p-chlorophenol/phenyl acetic acid, o-phenylphenol/p-nitrophenol, and 2,4-dichlorophenol/dodecyl benzol sulfonic acid). The three-parameter Toth adsorption isotherm represented well the component single-solute data adsorption. With the thermodynamic ideal-adsorbed-solution method, total adsorptions were calculated from single-solute data predicted by the Toth equation and compared with experimental data. Prediction for total adsorption was within approx. 2-10Vertical Bar3<; for adsorption of individual components, within approx. 3-20Vertical Bar3<. A new three-parameter adsorption isotherm was derived, which also represented well the single-solute data. For bi-solute systems where dissociation is negligible, calculated individual adsorptions agreed with experiment within 2Vertical Bar3<. Systematic deviations between calculation and observed results may be due to the acidities of the solutes.

  20. Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes

    Directory of Open Access Journals (Sweden)

    Nasser Abu Ghalwa

    2016-09-01

    Full Text Available Two modified electrodes (Pb/PbO2 and C/PbO2 were prepared by electrodeposition and used as anodes for electrochemical degradation of linuron (phenylurea pesticide in aqueous solution. Different operating conditions and factors affecting the treatment process including current density, temperature, initial concentration of linuron, pH, conductive electrolyte and time of electrolysis were studied and optimized. The best degradation occurred in the presence of NaCl (1 gL−1 as conductive electrolyte. After 30 min, nearly complete degradation of linuron was achieved (92% and 84% using C/PbO2 and Pb/PO2 electrodes at pH 7 and 1.5, respectively. Higher degradation efficiency was obtained at low temperature (5–10 °C. The optimum current density for the degradation of linuron on both electrodes was (150 mAcm−2.

  1. Effect of Protonation on the Solution and Phase Behavior of Aqueous Sodium Myristate.

    Science.gov (United States)

    Wen; Franses

    2000-11-01

    Aqueous sodium myristate solutions have been shown to have unusually low dynamic tensions (1-10 mN/m) under pulsating area conditions. These solutions have no sharp solubility limit, evidently because they are protonated (or "hydrolyzed") to form the much less soluble myristic acid and acid soaps. With no added electrolytes, the protonation fraction is 1% or less. The apparent protonation equilibrium "constant" increases with increasing concentration, indicating strong solution nonidealities, in addition to micellization. This protonation seems to affect the solution and phase behavior of aqueous sodium myristate strongly, as evidenced by the effect of added NaOH. Ion-selective electrodes (for Na(+) and H(+)) and conductimetry indicate that at 25 degrees C dissolved surfactant concentrations keep increasing well after dispersed particles are observed (2 mM). A cmc of about 4.5 mM, micelles of aggregation number n=70 and counterion binding parameter beta=0.7 are inferred from these techniques. The cmc of sodium myristate increases slightly with temperature from 25 to 45 degrees C. FTIR analysis of the filtered particles indicates that the dispersed particles are mainly acid soaps for concentrations less than 6 mM. With 10 mM NaOH, the particles observed above 2 mM consist mostly of sodium myristate. From both conductivity and IR data, the solubility of sodium myristate in water at 25 degrees C is estimated to be about 6 mM, and as expected, it increases with increasing temperature and decreases with increasing sodium ion concentration. Copyright 2000 Academic Press.

  2. Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution.

    Science.gov (United States)

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-Yoon; Lee, Eil-Hee; Song, Kyusuk; Song, Kee-Chan

    2009-11-15

    This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO(2) gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH(-) concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution.

  3. Adsorption of thorium from aqueous solutions by perlite.

    Science.gov (United States)

    Talip, Z; Eral, M; Hiçsönmez, U

    2009-02-01

    The use of expanded perlite for the adsorption of thorium from aqueous solution by batch technique is presented. The effects of particle size, pH of the solution, initial thorium concentration, shaking time, V/m ratio and temperature were determined. It was found that the adsorption capacity increases by the increase in the pH of the suspensions. The rate of thorium adsorption on expanded perlite was observed to be fast in the first hour of the reaction time. Adsorption isotherms were expressed by Langmuir and Freundlich adsorption models and the adsorption experiments conducted at 30 +/- 1 degrees C showed that the adsorption isotherms correlated well with the Langmuir model. From the adsorption data, thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) were calculated as a function of temperature.

  4. Radiolysis of pentachlorophenol (PCP) in aqueous solution by gamma radiation

    Institute of Scientific and Technical Information of China (English)

    XUE Jun; WANG Jianlong

    2008-01-01

    Steady-state radiolysis experiments were performed to investigate the y-irradiation treatment of pentachlorophenol (PCP) in aqueoussolution. The effect of initial concentration on the PCP degradation was also investigated. The experimental results showed that γ-irradiation was able to degrade PCP in aqueous solution successfully, and the radiolytical degradation process of PCP could be describedby the first-order kinetic model. When the initial concentration of PCP was 25 and 50 mg/L and the radiation dose was 4 and 6 kGy,respectively, the degradation efficiency was 100%. A luminescence bacterial test was used for evaluating the toxicity of the radiolyticintermediate products. Total detoxification of a 75 mg/L PCP solution could be achieved by carrying out the irradiation procedure at the dose of 15 kGy.

  5. Rheological properties of aqueous solutions of biopolymeric hyaluronan

    Science.gov (United States)

    Szwajczak, Elzbieta

    2004-09-01

    Aqueous solutions of hyaluronic acid (hyaluronan, HA) were studied. The HA compound is a natural polysaccharide, bipolymer. It plays an important role in numerous biological processes as a component of the extracellular matrix, connective tissues and, especially, human and animal synovial joints. Natural and artificial solutions of the HA have demonstrated the viscoelastic nature. These properties are shown to be related to the microstructure parameters (bulk concentration, molecular weight) and external parameters (temperature, stress, shear rate). We emphasize the role of the flow properties of polymeric systems. It is found a liquid crystalline "order" can be "induced" during the material flow. The dynamic properties, such as the elastic shear modulus and viscous shear modulus, are given. These results are discussed in relation to the postulated function of hyaluronic acid in synovial joint and with respect to possibilities o their application in medicine and pharmacology.

  6. The crystal growth of barium flouride in aqueous solution

    Science.gov (United States)

    Barone, J. P.; Svrjcek, D.; Nancollas, G. H.

    1983-06-01

    The kinetics of growth of barium flouride seed crystals were investigated in aqueous solution at 25°C using a constant composition method, in which the supersaturation and ionic strength were maintained constant by the addition of titrants consisting of barium nitrate and potassium flouride solutions. The rates of reaction, studied over a range of supersaturation (σ ≈ 0.4 to 1.0), were interpreted in terms of crystal growth models. A spiral growth mechanism best describes the data, and scanning electron microscopy indicates a three-dimensional growth. In the presence of inorganic additives such as phosphate, however, induction periods precede a morphological two-dimensional crystallization. Coulter Counter results show little crystal agglomeration.

  7. Removal of phosphate from aqueous solution with blast furnace slag.

    Science.gov (United States)

    Oguz, Ensar

    2004-10-18

    Blast furnace slag was used to remove phosphate from aqueous solutions. The influence of pH, temperature, agitation rate, and blast furnace slag dosage on phosphate removal was investigated by conducting a series of batch adsorption experiments. In addition, the yield and mechanisms of phosphate removal were explained on the basis of the results of X-ray spectroscopy, measurements of zeta potential of particles, specific surface area, and images of scanning electron microscopy (SEM) of the particles before and after adsorption. The specific surface area of the blast furnace slag was 0.4m(2)g(-1). The removal of phosphate predominantly has taken place by a precipitation mechanism and weak physical interactions between the surface of adsorbent and the metallic salts of phosphate. In this study, phosphate removal in excess of 99% was obtained, and it was concluded that blast furnace slag is an efficient adsorbent for the removal of phosphate from solution.

  8. INTERACTION OF POLYVINYLPYRROLIDONE WITH METAL CHLORIDE AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Mohammad Saleem Khan; Khaista Gul; Najeeb Ur Rehman

    2004-01-01

    Interactions of polyvinylpyrrolidone (PVP) with metal chlorides (MgCl2, CaCl2, KC1 and BaC12) have been investigated by viscometric and spectrophotometric techniques in aqueous solutions. Intrinsic viscosity [η] of (PVP) has shown a discontinuity with varying concentration of metal chlorides. The decreasing order of effectiveness of cation is K1+>Ca2+> Mg2+> Ba2+ for poly(vinylpyrrolidone) solution. Changes in the absorption spectra of the cosolutes were observed in the presence of PVP in the lower limit of the UV-visible region i.e. 200-210 nm. These changes were attributed to interaction of PVP molecules with the cosolute molecules. As the concentration of the cosolute increased, a red shift in the peaks was observed, indicating an increase in interaction between PVP and cosolutes.

  9. Removal of methylene blue from aqueous solution by graphene oxide.

    Science.gov (United States)

    Yang, Sheng-Tao; Chen, Sheng; Chang, Yanli; Cao, Aoneng; Liu, Yuanfang; Wang, Haifang

    2011-07-01

    Graphene oxide (GO) is a highly effective absorbent of methylene blue (MB) and can be used to remove MB from aqueous solution. A huge absorption capacity of 714 mg/g is observed. At initial MB concentrations lower than 250 mg/L, the removal efficiency is higher than 99% and the solution can be decolorized to nearly colorless. The removal process is fast and more efficient at lower temperatures and higher pH values. The increase of ionic strength and the presence of dissolved organic matter would further enhance the removal process when MB concentration is high. The results indicate that GO can be applied in treating industrial effluent and contaminated natural water. The implications to graphene-based environmental technologies are discussed.

  10. Radiolysis of berberine or palmatine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Marszalek, Milena [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland); Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.p [Institute of Applied Radiation Chemistry, Technical University of Lodz, Wroblewskiego 15, 93-590 Lodz (Poland)

    2011-01-15

    The reactions of hydrated electron (e{sub aq}{sup -}), hydrogen atom (H{sup {center_dot}}) (reducing species) and Cl{sub 2}{sup {center_dot}}{sup -},Br{sub 2}{sup {center_dot}}{sup -},{sup {center_dot}}N{sub 3},{sup {center_dot}}OH radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of e{sub aq}{sup -} and {sup {center_dot}}OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with e{sub aq}{sup -} and radicals generated during radiolysis are unstable and undergo further reactions.

  11. Influence of coal properties on mercury uptake from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  12. Modeling of sodium acetate recovery from aqueous solutions by electrodialysis.

    Science.gov (United States)

    Fidaleo, Marcello; Moresi, Mauro

    2005-09-05

    The main engineering parameters (i.e., ion transport numbers in solution and electro-membranes; effective solute and water transport numbers; effective membrane surface area, membrane surface resistances, and limiting current intensity) affecting the recovery of sodium acetate from model solutions by electrodialysis (ED) were determined in accordance with a sequential experimental procedure. Such parameters allowed a satisfactory simulation of a few validation tests carried out under constant or step-wisely variable current intensity. The performance of this ED process was characterized in terms of a current efficiency (omega) of about 93% in the constant-current region, a water transport number (t(W)) of about 15, and a specific energy consumption (epsilon) increasing from 0.14 to 0.31 kWh/kg for a solute recovery yield of 95% as the current density (j) was increased from 112 to 337 A/m2. The specific resistance of the anion- or cation-exchange membranes were found to be three or two times greater than those measured in aqueous NaCl solutions and are to be used to design and/or optimize ED stacks involved in the downstream processing of acetic acid fermentation broths.

  13. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    Science.gov (United States)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  14. Removal of heavy metals from aqueous solution by sawdust adsorption

    Institute of Scientific and Technical Information of China (English)

    BULUT Yasemin; TEZ Zeki

    2007-01-01

    The adsorption of lead, cadmium and nicel from aqueous solution by sawdust of walnut was investigated. The effect of contact time,initial metal ion concentration and temperature on metal ions removal has been studied. The equilibrium time was found to be of the order of 60 min. Kinetics fit pseudo first-order, second-order and intraparticle diffusion models, hence adsorption rate constants were calculated. The adsorption data of metal ions at temperatures of 25, 45 and 60C have been described by the Freundlich and Langmuir isotherm models. The thermodynamic parameters such as energy, entropy and enthalpy changes for the adsorption of heavy metal ions have also been computed and discussed. Ion exchange is probably one of the major adsorption mechanisms for binding divalent metal ions to the walnut sawdust. The selectivity order of the adsorbent is Pb(Ⅱ)≈Cd(Ⅱ)>Ni(Ⅱ). From these results, it can be concluded that the sawdust of walnut could be a good adsorbent for the metal ions from aqueous solutions.

  15. New terahertz dielectric spectroscopy for the study of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    George, Deepu K.; Charkhesht, Ali; Vinh, N. Q., E-mail: Vinh@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-12-15

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17–37.36 cm{sup −1} or 0.268–60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10{sup 12} and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  16. Gamma radiolytic degradation of naphthalene in aqueous solution

    Science.gov (United States)

    Chu, Libing; Yu, Shaoqing; Wang, Jianlong

    2016-06-01

    The decomposition of naphthalene in aqueous solution was studied using gamma irradiation combined with both H2O2 and TiO2 nanoparticles. Gamma irradiation led to a complete degradation of naphthalene and a partial mineralization. With initial concentration of 5-32 mg/L, more than 98% of naphthalene was removed and TOC reduction reached 28-31% at an absorbed dose of 3.0 kGy. The degradation of naphthalene was faster at neutral pH and the initial degradation rate increased with increasing the initial concentration of naphthalene. Addition of H2O2 and TiO2 nanoparticles all enhanced the degradation and mineralization of naphthalene. TOC removal efficiency increased from 28% (irradiation alone) to 35% with addition of H2O2 (40 mg/L), and to 48% with addition of TiO2 (0.8 g/L). The degradation of naphthalene in aqueous solution by gamma irradiation was mainly through the oxidation by ·OH radicals. The intermediate naphthol and carboxylic acids such as formic acid and oxalic acid were identified by LC-MS and IC.

  17. QENS study on thermal gelation in aqueous solution of methylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Onoda-Yamamuro, N. [Department of Natural Sciences, College of Science and Engineering, Tokyo Denki University, Hiki-gun, Saitama 350-0394 (Japan)]. E-mail: yamamuro@u.dendai.ac.jp; Yamamuro, O. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Inamura, Y. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Nomura, H. [Department of Natural Sciences, College of Science and Engineering, Tokyo Denki University, Hiki-gun, Saitama 350-0394 (Japan)

    2007-04-30

    Dynamics of water and methylcellulose (MC) molecules in MC aqueous solution has been studied by means of quasi-elastic neutron-scattering (QENS) measurements. The dynamic structure factor S(Q,E) of the MC aqueous solution was fitted well to the sum of Lorentzian and delta functions. The former is attributed to diffusive motion of water molecules and the latter to local vibrational motion of MC molecules. The self-diffusion coefficient of water molecules was obtained from the Q dependence of the half-width at half-maximum (HWHM) of the Lorentzian function, while the mean-square displacement of MC molecules from the Q dependence of the intensity of the delta term. Both the diffusion coefficient and the mean-square displacement gradually increased on heating and abruptly decreased around the thermal gelation temperature (around 320 K). The present results revealed that the microscopic motions of both water and MC molecules give rise to dynamic slowing down on thermal gelation.

  18. Radiation crosslinking of methylcellulose and hydroxyethylcellulose in concentrated aqueous solutions

    Science.gov (United States)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    The effects of ionizing radiation on aqueous solutions of cellulose ethers, methylcellulose (MC) and hydroxyethylcellulose (HEC) were investigated. The well-established knowledge states that cellulose and its derivatives belong to degrading type of polymers. However, in our study intermolecular crosslinking initiated by gamma rays or electron beam leaded to the formation of insoluble gel. This is an opposite effect of irradiation to the degradation. Paste-like form of the initial specimen, i.e. concentration 20-30%, when water plasticizes the bulk of polymer; and a high dose rate were favorable for hydrogel formation. Gel fraction up to 60% and 70% was obtained from solutions of HEC and MC, respectively. Produced hydrogels swell markedly in aqueous media by imbibing and holding the solvent. Radiation parameters of irradiation, such as yields of degradation and crosslinking and the gelation dose, were evaluated by sol-gel analysis on the basis of Charlesby-Rosiak equation. Despite of the crosslinked structure, obtained hydrogels can be included into the group of biodegradable materials. They undergo decomposition by the action of cellulase enzyme or microorganisms from compost.

  19. Pulse-Radiolysis of Aqueous KBrO4 Solutions

    DEFF Research Database (Denmark)

    Olsen, K. J.; Sehested, Knud; Appelman, L.H.

    1973-01-01

    Pulse-radiolysis of aqueous KBrO4 solutions show that BrO−4 reacts with e−aq by the reaction BrO−4 + e−aq → BrO−3 + O−. keaq + BrO−4 = (7.0 ± 0.7) × 109 M−1 sec−1. The reactions between BrO−4 and H, OH and O− are slow. The rate constants for these reactions are less than 107 M−1 sec−1.......Pulse-radiolysis of aqueous KBrO4 solutions show that BrO−4 reacts with e−aq by the reaction BrO−4 + e−aq → BrO−3 + O−. keaq + BrO−4 = (7.0 ± 0.7) × 109 M−1 sec−1. The reactions between BrO−4 and H, OH and O− are slow. The rate constants for these reactions are less than 107 M−1 sec−1....

  20. New terahertz dielectric spectroscopy for the study aqueous solutions

    CERN Document Server

    George, Deepu K; Vinh, N Q

    2015-01-01

    We present a development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As a first application we report on the measurement of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17 to 37.36 cm-1 or 0.268 to 60 mm). The system provides a coherent radiation source with a power up to 20 mW in the gigahertz-to-terahertz region. The power signal-to-noise ratio of our instrument reaches 1015 and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with an error bars of 0.02 oC from above 0 oC to 90 oC. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  1. Examination of rheological properties of aqueous solutions of sodium caseinate

    Directory of Open Access Journals (Sweden)

    Jolanta Gawałek

    2012-12-01

    Full Text Available Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The material for investigations was typical commercial sodium caseinate in the form of dry powder manufactured in Poland from acid casein using the method of extrusion. The objective of the undertaken empirical studies was the assessment of the impact of the concentration on rheological properties of sodium caseinate concentrates. Investigations were carried out for five concentrates manufactured in a mixer equipped in a mechanical agitator at concentrations ranging X (% Î (2.5¸12.5 and changing mass proportions of sodium caseinate in the aqueous solution as follows: GS/G (kgS·kg-1 = 0.025. On the basis of the obtained research results, classical flow curves were plotted for individual concentrates. The determined values of viscosity and density of the examined solutions were correlated in the form of h = f(GS/G and r = f(GS/G dependencies which were used during the determination of classical characteristics of mixing forces essential for the assessment of energetic expenditures required to manufacture concentrates in a mixer equipped in a mechanical agitator. The density of the examined concentrates increased in a way directly proportional, while the dynamic viscosity coefficient increased exponentially together with the increase of sodium caseinate concentration. Sodium caseinate concentrates exhibited Newtonian character in the examined range of concentrations.

  2. Chemical Potentials, Activity Coefficients, and Solubility in Aqueous NaCl Solutions: Prediction by Polarizable Force Fields.

    Science.gov (United States)

    Moučka, Filip; Nezbeda, Ivo; Smith, William R

    2015-04-14

    We describe a computationally efficient molecular simulation methodology for calculating the concentration dependence of the chemical potentials of both solute and solvent in aqueous electrolyte solutions, based on simulations of the salt chemical potential alone. We use our approach to study the predictions for aqueous NaCl solutions at ambient conditions of these properties by the recently developed polarizable force fields (FFs) AH/BK3 of Kiss and Baranyai (J. Chem. Phys. 2013, 138, 204507) and AH/SWM4-DP of Lamoureux and Roux (J. Phys. Chem. B 2006, 110, 3308 - 3322) and by the nonpolarizable JC FF of Joung and Cheatham tailored to SPC/E water (J. Phys. Chem. B 2008, 112, 9020 - 9041). We also consider their predictions of the concentration dependence of the electrolyte activity coefficient, the crystalline solid chemical potential, the electrolyte solubility, and the solution specific volume. We first highlight the disagreement in the literature concerning calculations of solubility by means of molecular simulation in the case of the JC FF and provide strong evidence of the correctness of our methodology based on recent independently obtained results for this important test case. We then compare the predictions of the three FFs with each other and with experiment and draw conclusions concerning their relative merits, with particular emphasis on the salt chemical potential and activity coefficient vs concentration curves and their derivatives. The latter curves have only previously been available from Kirkwood-Buff integrals, which require approximate numerical integrations over system pair correlation functions at each concentration. Unlike the case of the other FFs, the AH/BK3 curves are nearly parallel to the corresponding experimental curves at moderate and higher concentrations. This leads to an excellent prediction of the water chemical potential via the Gibbs-Duhem equation and enables the activity coefficient curve to be brought into excellent agreement

  3. High energy density capacitor using coal tar pitch derived nanoporous carbon/MnO{sub 2} electrodes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Tomko, Timothy [Energy and Mineral Engineering, University Park, PA 16802 (United States); Rajagopalan, Ramakrishnan; Lanagan, Michael [Materials Research Institute, University Park, PA 16802 (United States); Foley, Henry C. [Department of Chemical Engineering, University Park, PA 16802 (United States)

    2011-02-15

    Asymmetric aqueous electrochemical capacitors with energy densities as high as 22 Wh kg{sup -1}, power densities of 11 kW kg{sup -1} and a cell voltage of 2 V were fabricated using cost effective, high surface carbon derived from coal tar pitch and manganese dioxide. The narrow pore size distribution of the activated carbon (mean pore size {proportional_to}0.8 nm) resulted in strong electroadsorption of protons making them suitable for use as negative electrodes. Amorphous manganese dioxide anodes were synthesized by chemical precipitation method with high specific capacitance (300 F g{sup -1}) in aqueous electrolytes containing bivalent cations. The fabricated capacitors demonstrated excellent cyclability with no signs of capacitance fading even after 1000 cycles. (author)

  4. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Hosseini, Rahim [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2009-02-15

    The alkyl chain length of 1-alkyl-3-methylimidazolium bromide ([Rmim][Br], R = propyl (C{sub 3}), hexyl (C{sub 6}), heptyl (C{sub 7}), and octyl (C{sub 8})) was varied to prepare a series of room-temperature ionic liquids (RTILs), and experimental measurements of density and speed of sound at different temperatures ranging from (288.15 to 308.15) K for their aqueous and methanolic solutions in the dilute concentration region (0.01 to 0.30) mol . kg{sup -1} were taken. The values of the compressibilities, expansivity and apparent molar properties for [C{sub n}mim][Br] in aqueous and methanolic solutions were determined at the investigated temperatures. The obtained apparent molar volumes and apparent molar isentropic compressibilities were fitted to the Redlich-Mayer and the Pitzer's equations from which the corresponding infinite dilution molar properties were obtained. The values of the infinite dilution molar properties were used to obtain some information about solute-solvent and solute-solute interactions. The thermodynamic properties of investigated ionic liquids in aqueous solutions have been compared with those in methanolic solutions. Also, the comparison between thermodynamic properties of investigated solutions and those of electrolyte solutions, polymer solutions, cationic surfactant solutions and tetraalkylammonium salt solutions have been made.

  5. Population and size distribution of solute-rich mesospecies within mesostructured aqueous amino acid solutions.

    Science.gov (United States)

    Jawor-Baczynska, Anna; Moore, Barry D; Lee, Han Seung; McCormick, Alon V; Sefcik, Jan

    2013-01-01

    Aqueous solutions of highly soluble substances such as small amino acids are usually assumed to be essentially homogenous systems with some degree of short range local structuring due to specific interactions on the sub-nanometre scale (e.g. molecular clusters, hydration shells), usually not exceeding several solute molecules. However, recent theoretical and experimental studies have indicated the presence of much larger supramolecular assemblies or mesospecies in solutions of small organic and inorganic molecules as well as proteins. We investigated both supersaturated and undersaturated aqueous solutions of two simple amino acids (glycine and DL-alanine) using Dynamic Light Scattering (DLS), Brownian Microscopy/Nanoparticles Tracking Analysis (NTA) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). Colloidal scale mesospecies (nanodroplets) were previously reported in supersaturated solutions of these amino acids and were implicated as intermediate species on non-classical crystallization pathways. Surprisingly, we have found that the mesospecies are also present in significant numbers in undersaturated solutions even when the solute concentration is well below the solid-liquid equilibrium concentration (saturation limit). Thus, mesopecies can be observed with mean diameters ranging from 100 to 300 nm and a size distribution that broadens towards larger size with increasing solute concentration. We note that the mesospecies are not a separate phase and the system is better described as a thermodynamically stable mesostructured liquid containing solute-rich domains dispersed within bulk solute solution. At a given temperature, solute molecules in such a mesostructured liquid phase are subject to equilibrium distribution between solute-rich mesospecies and the surrounding bulk solution.

  6. Lithium batteries using poly(ethylene oxide)-based non-aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zonghai; Amine, Khalil

    2015-09-08

    Lithium-air cells employing poly(ethyleneoxide) phosphate-based electrolytes may be prepared and exhibit improved charge carrying capacity. Such PEO phosphates generally have the formulas IIa, IIb, IIc, where: ##STR00001##

  7. Influence of aqueous electrolytes on electrochemical performance of vertical graphene nanosheets supercapacitor electrode

    OpenAIRE

    Ghosh, Subrata; Gupta, Bhavana; Mathews, Tom; A. Das; Kamruddin, M.

    2016-01-01

    Vertical graphene nanosheets (VGN) grown as controlled porous network are studied and demonstrated as a promising electrode material for supercapacitors. The VGN synthesized by microwave plasma enhanced chemical vapor deposition using CH4/Ar gas mixture as precursor are considered for electrochemical performance in Na2SO4, KOH, and H2SO4 to delineate the electrolyte effect. Among the electrolytes, H2SO4 exhibited excellent specific areal capacitance (188 microfarad/cm2) and good capacitance r...

  8. Relationship between solution structure and phase behavior: a neutron scattering study of concentrated aqueous hexamethylenetetramine solutions.

    Science.gov (United States)

    Burton, R C; Ferrari, E S; Davey, R J; Finney, J L; Bowron, D T

    2009-04-30

    The water-hexamethylenetetramine system displays features of significant interest in the context of phase equilibria in molecular materials. First, it is possible to crystallize two solid phases depending on temperature, both hexahydrate and anhydrous forms. Second, saturated aqueous solutions in equilibrium with these forms exhibit a negative dependence of solubility (retrograde) on temperature. In this contribution, neutron scattering experiments (with isotopic substitution) of concentrated aqueous hexamethylenetetramine solutions combined with empirical potential structure refinement (EPSR) were used to investigate the time-averaged atomistic details of this system. Through the derivation of radial distribution functions, quantitative details emerge of the solution coordination, its relationship to the nature of the solid phases, and of the underlying cause of the solubility behavior of this molecule.

  9. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  10. Efficient electroreduction of CO2 on bulk silver electrode in aqueous solution via the inhibition of hydrogen evolution

    Science.gov (United States)

    Quan, Fengjiao; Xiong, Mubing; Jia, Falong; Zhang, Lizhi

    2017-03-01

    Electrochemical CO2 reduction provides a desirable pathway to convert greenhouse gas into useful chemicals. It is a great challenge to reduce CO2 efficiently in aqueous solution, especially on commercial bulk metal electrodes. Here, we report substantial improvement in CO2 reduction on bulk silver electrode through the introduction of ionic surfactant in aqueous electrolyte. The hydrogen evolution on the electrode surface is greatly suppressed by the surfactant, while the catalytic ability of silver towards CO2 reduction is maintained. The Faradaic efficiency for CO is greatly enhanced from 50% to 95% after the addition of this low-cost surfactant. This study may provide new pathways towards efficient CO2 reduction through the inhibition of proton reduction.

  11. Development of an Experimental Data Base and Theories for Prediction of Thermodynamic Properties of Aqueous Electrolytes and Nonelectrolytes of Geochemical Significance at Supercritical Temperatures and Pressures.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Robert H.

    2005-10-11

    The objective of this research was to combine new experimental measurements on heat capacities, volumes, and association constants of key compounds with theoretical equations of state and with first principles quantum mechanical calculations to generate predictions of thermodynamic data. The resulting thermodynamic data allow quantitative models of geochemical processes at high temperatures and pressures. Research funded by a DOE grant to Prof. Robert Wood at the University of Delaware involved the development of new theoretical equations of state for aqueous solutions of electrolytes and non-electrolytes, methods to estimate thermodynamic data not available from experiments, collection of data on model compounds through experiments and predictions of properties using ab initio quantum mechanics. During the last three and a half years, with support from our DOE grant, 16 papers have been accepted or published, and 3 more are in preparation. Results of this research have been reported in numerous invited and contributed presentations at national and international meetings. For this report, we will briefly comment on the highlights of the last 3 and a half years and give a complete list of papers published, accepted, or submitted during these years.

  12. Thermal and electrochemical properties of nonflammable electrolyte solutions containing fluorinated alkylphosphates for lithium-ion batteries

    Science.gov (United States)

    Todorov, Yanko Marinov; Aoki, Masahiro; Mimura, Hideyuki; Fujii, Kenta; Yoshimoto, Nobuko; Morita, Masayuki

    2016-11-01

    Nonflammable organic electrolyte solutions containing fluorinated alkylphosphates (FAP) have been examined as safer electrolytes for lithium-ion batteries (LIB). Although the ionic conductivity of LiPF6 in neat tris(2,2,2-trifluoroethyl)phosphate (TFEP) solvent is very low, it increases upon the addition of alkyl carbonates such as ethylene carbonate (EC) and fluoroethylene carbonate (4-fluoro-2-oxo-1,3-dioxolane, FEC). A specific conductivity of 1 mS cm-1 or higher was obtained at room temperature for the system containing proper amounts of the carbonates and 0.5 M (mol dm-3) LiPF6. A conventional mixed alkylcarbonate-based solution containing LiPF6 showed a sign of considerable exothermic reactions on the differential scanning calorimetry (DSC) response below 300 °C. However, the LiPF6/TFEP solution showed no significant exothermic response up to 400 °C, even in the presence of charged LiCoO2 (LCO) positive electrode. The addition of an alkylcarbonate to the LiPF6/TFEP solution produced an exothermic response as a result of the thermal decomposition of the carbonate over the charged LCO. However, the temperature at which the exothermic reaction starts was significantly higher in the system containing FEC than that containing EC. The thermal analysis results suggested that the LiPF6/FEC + TFEP combination could work as a safer electrolyte system in LIB under severe conditions.

  13. Ion conduction mechanism in non-aqueous polymer electrolytes based on oxalic acid: Effect of plasticizer and polymer

    Energy Technology Data Exchange (ETDEWEB)

    Missan, Harinder Pal Singh; Chu, P.P. [Department of Chemistry, National Central University, Chungli 32001 (Taiwan); Sekhon, S.S. [Department of Applied Physics, Guru Nanak Dev University, Amritsar, Punjab 143005 (India)

    2006-08-25

    Non-aqueous proton-conducting polymer electrolytes in the film form are synthesized through the complexation of oxalic acid (OA) and polyvinylidenefluoride-co-hexafluoro propylene (PVdF-HFP). Interestingly, the addition of a small amount of the basic component dimethylacetamide (DMA) gives rise to a three-order increase in conductivity. The value is found to depend on the concentrations of the weak acid and DMA in the electrolytes. A maximum conductivity of 0.12x10{sup -3}Scm{sup -1} has been achieved at ambient temperature for electrolytes containing 40wt.% OA with DMA. The observed increase in conductivity is considered to be due to interactions taking place between the high dielectric polymer media, the acid and the basic plasticizer. These interactions are confirmed from fourier transform infra red (FTIR) studies and supported by differential scanning calorimetry (DSC) measurements. Apart from providing acid-base interaction, the base DMA also improves the surface morphology and reduces the pore volume, both of which help to retain the acid-base complex within the membrane. (author)

  14. Precipitation of sodium acid urate from electrolyte solutions

    Science.gov (United States)

    Füredi-Milhofer, Helga; Babić-Ivaniĉić, Vesna; Milat, Ognjen; Brown, Walter E.; Gregory, Thomas M.

    1987-07-01

    The precipitation of soduim urate from solutions containing uric acid, soduim hydroxide, hydrochloric acid, sodium chloride and water was investigated at constant pH (7.5±0.1) and temperature (308 K). Precipitates were observed by lights and electron microscopy and characterized by electron and X-ray diffraction. The results are presented in the form of "precipitation" and "chemical potential" diagrams, the latter giving the soduim-to-urate molar ratios of the precipitates. Two types of precipitation boundaries were observed, both of which had indicated soduim-to-urate moral ratios of 1:1. The ion activity product, (Na +)(HU -), associated with boundary I was AP I=(4.8±1.1)×10 -5 and with boundary II was with boundary II was AP II=(6.5±0.4)×10 -4. The supersaturation, S, at boundary II was S=AP II/ Ksp=12.3, in which Ksp is the solubility product of soduim acid urate monohydrate. The latter precipitated as well-formed crystals at supersaturations of 12.3 and above. The ion activity product associated with boundary I is approximately equal to the solubility product of soduim acid urate monohydrate. Small amounts of several morphologically different sodium urate crystals formed in the range of supersaturations (1≤ S≤12.3). Crystals formed in this range may include the monohydrate of sodium acid urate and possibly a higher hydrate. The findings have relevance to pathological renal stone formation and gouty arthritis.

  15. A theoretical study on the frequency-dependent electric conductivity of electrolyte solutions. II. Effect of hydrodynamic interaction.

    Science.gov (United States)

    Yamaguchi, T; Matsuoka, T; Koda, S

    2009-03-07

    The theory on the frequency-dependent electric conductivity of electrolyte solutions proposed previously by Yamaguchi et al. [J. Chem. Phys. 127, 234501 (2007)] is extended to include the hydrodynamic interaction between ions. The theory is applied to the aqueous solution of NaCl and the concentration dependence of the conductivity agrees well with that determined by experiments. The effects of the hydrodynamic and relaxation effects are highly nonadditive in the concentrated solution, because the hydrodynamic interaction between ions affects the time-dependent response of the ionic atmosphere. The decrease in the electric conductivity is divided into the contributions of ion pair distribution at various distances. The long-range ionic atmosphere plays a major role at the concentration as low as 0.01 mol/kg, whereas the contribution of the contact ion pair region is important at 1 mol/kg. The magnitude of the contribution of the contact ion pair region is scarcely dependent on the presence of the hydrodynamic interaction. The transport number of cation is calculated to be a decreasing function of concentration as is observed in experiments.

  16. Arsenic Removal from Aqueous Solutions by Salvadora persica Stem Ash

    Directory of Open Access Journals (Sweden)

    Ferdos Kord Mostafapour

    2013-01-01

    Full Text Available Arsenic is a naturally occurring metalloid, which is widely distributed in nature and is regarded as the largest mass poisoning in history. In the present study, the adsorption potential of Salvadora persica (S. persica stem ash in a batch system for the removal of As(V from aqueous solutions was investigated. Isotherm studies were carried out to evaluate the effect of contact time (20–240 min, pH (2–11, initial arsenic concentration (50–500 μg/L, and adsorbent dose on sorption efficiency. Maximum removal efficiency of 98.33% and 99.32% was obtained at pH 6, adsorbent dosage 3.5 g/L, initial As(V concentration 500 μg/L, and contact time 80 and 60 min for S. persica stem ash at 300 °C and 500 °C, respectively. Also, the adsorption equilibriums were analyzed by the Langmuir and Freundlich isotherm models. Such equilibriums showed that the adsorption data was well fitted with the Freundlich isotherm model for S. persica stem ash at both 300 °C and 500 °C (R2=0.8983 and 0.9274, resp.. According to achieved results, it was defined that S. persica stem ash can be used effectively for As(V removal from the aqueous environment.

  17. Comparison of Photochemical Reactions of m-Cresol in Aqueous Solution and in Ice

    Institute of Scientific and Technical Information of China (English)

    PENG Fei; XUE Hong-hai; TANG Xiao-jian; KANG Chun-li; LI Lin-lin; LI Zhe

    2012-01-01

    We compared the photochemical reaction of m-cresol containing OH precursors such as H2O2,NO2- and NO3- in aqueous solution with those in ice.The results show that the conversion rate of m-cresol in aqueous solution was higher than that in ice,H2O2,NO2- and NO3- all accelerated the photoconversion of m-cresol in both aqueous solution and ice.The photochemical reactions of m-cresol obeys the first order kinetics equation.According to the photoproducts identified by GC-MS,we proposed that hydroxylation and nitration reactions occurred in both aqueous solution and ice.Coupling reaction was common in ice,however,in aqueous solution it was found only in UV system.Our results suggest that the photochemical reactions of m-cresol were different in aqueous solution and in ice.

  18. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

    Science.gov (United States)

    Liu, Ming; He, Yan-Bing; Lv, Wei; Zhang, Chen; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2014-12-01

    It has been indicated that anatase TiO2 is a promising anode material for lithium ion power battery from many previous researches. Whereas, in this work, we find that the anatase TiO2, when used as an anode for lithium ion battery, has high catalytic activity to initiate the decarboxylation reaction of electrolyte solution, resulting in the large generation of sole gaseous component, CO2. The ROLi species and the new phase of flake-like Li2TiF6 material are the main reaction products between anatase TiO2 and LiPF6 based electrolyte solution. This work provides important and urgent information that the surface chemistry of anatase TiO2 used as the anode material of lithium ion battery must be modified to suppress its catalytic activity for the decomposition of solvents.

  19. Study of the nanobubble phase of aqueous NaCl solutions by dynamic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, N F; Shkirin, A V [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Burkhanov, I S; Chaikov, L L [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Lomkova, A K [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2014-11-30

    Aqueous NaCl solutions with different concentrations have been investigated by dynamic scattering of laser radiation. It is experimentally shown that these solutions contain scattering particles with a wide size distribution in a range of ∼10 – 100 nm. The experimental results indirectly confirm the existence of quasi-stable gas nanobubbles in the bulk of aqueous ionic solutions. (light scattering)

  20. Adsorption of catechol from aqueous solution by aminated hypercrosslinked polymers

    Institute of Scientific and Technical Information of China (English)

    SUN Yue; LI Xiao-tao; XU Chao; CHEN Jin-long; LI Ai-min; ZHANG Quan-xing

    2005-01-01

    Adsorption of catechol from aqueous solution with the hypercrosslinked polymeric adsorbent NDA-100 and its derivatives AH-1,AH-2 and AH-3 aminated by dimethylamine, the commercial resin Amberlite XAD-4 and weakly basic anion exchanger resin D301 was compared. It was found that the aminated hypercrosslinked resins had the highest adsorption capacities among the tested polymers. The empirical Freundlich equation was successfully employed to describe the adsorption process. Specific surface area and micropore structure of the adsorbent, in company with tertiary amino groups on matrix affected the adsorption performance towards catechol. In addition,thermodynamic study was carried out to interpret the adsorption mechanism. Kinetic study testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate and increase the adsorption apparent activation energy.

  1. Adsorption of Anthraquinone Dyes from Aqueous Solutions by Penicillium Terrestre

    Institute of Scientific and Technical Information of China (English)

    XIN Bao-ping; LIU Xiao-mei

    2006-01-01

    Penicillium terrestre was used for removing four anthraquinone dyes from aqueous solution. The experiments were performed in Erlenmeyer flasks and spore suspension was used for inoculation. The results show that the mechanism of dye removal by penicillium terrestre is biosorption and the growing pellets exhibit higher adsorptive capacity than the resting or dead ones. The maximum removals of disperse blue 2BLN, reactive brilliant blue KN-R, acid anthraquinone blue and bromamine acid at the concentration of 120 mg/L by biosorption of growing pellets are 100 %, 100 %, 96 % and 91%, respectively. The 100.0 % and 91.4 % KN-R removals are achieved respectively at the much higher concentration of 250 and 400 mg/L. 2.5 g/L glucose is sufficient for 100% KN-R removal by growing pellets. Salinity (NaC1) increase from 0 to 2% (W/V) moderately accelerates both mycelium growth and KN-R removal.

  2. Degradation of aqueous solutions of camphor by heterogeneous photocatalysis.

    Science.gov (United States)

    Sirtori, Carla; Altvater, Priscila K; de Freitas, Adriane M; Peralta-Zamora, Patricio G

    2006-02-28

    In this study the photocatalytic degradation of aqueous solutions of camphor was investigated by using TiO2 and ZnO photocatalysts. In the presence of artificial UV-light the highly photosensitive camphor was almost totally degraded after reaction times of 60 min. However, under these conditions the mineralization degree was lower than 25%. In the presence of semiconductors the degradation was complete after a treatment time of about 30 min. Moreover, the mineralization was considerably greater, mainly with the use of TiO2 (> 80% at reaction time of 60 min). Heterogeneous photocatalytic processes applied in the presence of solar radiation show a promising degradation capability. TiO2-based processes afforded mineralization degrees of about 90% after a reaction time of 120 min, when the system was assisted by aeration.

  3. Microfluidic synthesis of monodisperse Cu nanoparticles in aqueous solution.

    Science.gov (United States)

    Ke, Te; Zeng, Xiao-Fei; Wang, Jie-Xin; Le, Yuan; Chu, Guang-Wen; Chen, Jian-Feng; Shao, Lei

    2011-06-01

    The continuous production of Cu nanoparticles with a particle size of 2-5 nm was conducted by sodium borohydride reduction of copper sulfate in aqueous solution in a tube-in-tube microchannel reactor (TMR), which consists of an inner tube and an outer tube with the reaction performed in the annular microchannel between these two tubes. The as-prepared Cu nanoparticles were compared with those obtained by a conventional batch synthesis process by using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis spectroscopy. Due to the highly intensified micromixing effects in the TMR, Cu nanoparticles prepared by this route exhibits a smaller particle size, narrower size distribution and better stability in air. The TMR shows an excellent ability of preparing high-quality Cu nanoparticles in mild conditions. In addition, with the unique microchannel structure, the throughput capability of the TMR for the production of Cu nanoparticles is up to several liters per minute.

  4. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Science.gov (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media.

  5. Application of ultrasound to textiles washing in aqueous solutions.

    Science.gov (United States)

    Gotoh, Keiko; Harayama, Kokoro

    2013-03-01

    The ultrasound was applied to textile washing as a mechanical action for soil removal. The polyester fabric was soiled with carbon black or oleic acid as a model contaminant, and washed with the original fabric in aqueous solutions without and with alkali or surfactant by applying ultrasound, shaking or stirring action. The detergency and soil redeposition were evaluated from the change in the surface reflectance of artificially soiled fabrics and the original fabric due to washing. In comparison with shaking and stirring actions, ultrasound was found to remove the particulate and oily soils efficiently in a short time and at low bath ratio. With increasing ultrasound power, the detergency of both soils increased and exceeded that obtained with Wascator, a horizontal axis drum type washer. Using three standard fabrics for determining mechanical action during washing, it was shown that ultrasound washing caused little mechanical damage to the fabric. However, the soil redeposition was frequently observed for ultrasonic washing, especially at low bath ratio.

  6. Aqueous dispersions of silver nanoparticles in polyelectrolyte solutions

    Indian Academy of Sciences (India)

    Dan Donescu; Raluca Somoghi; Marius Ghiurea; Raluca Ianchis; Cristian Petcu; Stefania Gavriliu; Magdalena Lungu; Claudia Groza; Carmen R Ionescu; Carmen Panzaru

    2013-03-01

    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spectrophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to study how the reagents and their concentrations influence particle size. SEM images show the nanostructure of the hybrid films and indicate a strong interaction between the polyelectrolyte and the silver NPs. Moreover, the silver NPs could be stored for one year without observation of aggregates or sedimentation. The final solid products obtained after evaporating to dryness can be used to produce stable dispersions upon mixing with water. Few of the final products were found to exhibit a high antibacterial and antifungal activity.

  7. Transport Process of Isopropanol Aqueous Solution by Pervaporation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To study the transport process of isopropanol aqueous solution by pervaporation, the transport model of isopropanol and that of water at 323 K in polyvinyl alcohol(PVA) membrane were obtained in this paper. Theoretical predictions agreed well with the experimental results. The interactional parameter between water and PVA membrane is less than that between isopropanol and PVA membrane, which shows that water is preferentially dissolved in PVA membrane. The plasticizing coefficient and diffusion coefficient at infinite dilution of water are larger than those of isopropanol,which shows that the dissolution and permeation in PVA membrane of water are greater than those of isopropanol. Both the interactional parameter between water and isopropanol in the membrane and that in feed rise with the increase of isopropanol content in feed, which shows that the larger isopropanol content is, the higher selectivity of the membrane is and the more remarkable separation effect of pervaporation is.

  8. Adsorption of basic dye from aqueous solution onto fly ash

    Energy Technology Data Exchange (ETDEWEB)

    J.X. Lin; S.L. Zhan; M.H. Fang; X.Q. Qian; H. Yang [Zhejiang University, Hangzhou (China). College of Civil Engineering and Architecture

    2008-04-15

    The fly ash treated by H{sub 2}SO{sub 4} was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy ({Delta}H{sup 0}) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.

  9. Adsorption of CTAB onto perlite samples from aqueous solutions.

    Science.gov (United States)

    Alkan, Mahir; Karadaş, Mecit; Doğan, Mehmet; Demirbaş, Ozkan

    2005-11-15

    In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.

  10. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  11. Formation of wormlike micelles in anionic surfactant AES aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The growth and structure of anionic micelles of sodium dodecyl trioxyethylene sulfate (AES) in the presence 3+of multivalent counterion Al were investigated by means of dynamic rheological methods. It has been obtained by the measurements of shear viscosity, complex viscosity and dynamic moduli, as well as the application of Cox-Merz rule and Cole-Cole plot that wormlike micelle and network structure could be formed in AES/AlCl3 aqueous solutions.The structure was of a character of nonlinear viscoelastic fluid and departure from the simple Maxwell model. The technique of freeze-fracture transmission electron microscopy (FF-TEM) was also used to confirm the formation of this interesting structure.``

  12. Experimental study on thermophoresis of colloids in aqueous surfactant solutions

    Science.gov (United States)

    Dong, Ruo-Yu; Zhou, Yi; Yang, Chun; Cao, Bing-Yang

    2015-12-01

    Thermophoresis refers to the motion of particles under a temperature gradient and it is one of the particle manipulation techniques. Regarding the thermophoresis of particles in liquid media, however, many open questions still remain, especially the role of the interfacial effect. This work reports on a systematic experimental investigation of surfactant effects, especially the induced interfacial effect, on the thermophoresis of colloids in aqueous solutions via a microfluidic approach. Two kinds of commonly used surfactants, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), are selected and the results show that from relatively large concentrations, the two surfactants can greatly enhance the thermophilic mobilities. Specifically, it is found that the colloid-water interfaces modified with more polar end groups can potentially lead to a stronger thermophilic tendency. Due to the complex effects of surfactants, further theoretical model development is needed to quantitatively describe the dependence of thermophoresis on the interface characteristics.

  13. γ-Irradiation of malic acid in aqueous solutions

    Science.gov (United States)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  14. Removal of lead from aqueous solutions by Penicillium biomass

    Energy Technology Data Exchange (ETDEWEB)

    Hui Niu; Xue Shu Xu; Jian Hua Wang (Chengdu Univ. of Science and Technology, Sichuan (China). Dept. of Chemical Engineering); Volesky, B. (McGill Univ., Montreal (Canada). Dept. of Chemical Engineering)

    1993-09-05

    The removal of lead ions from aqueous solutions by adsorption on nonliving Penicillium chrysogenum biomass was studied. Biosorption of the Pb[sup +2] ion was strongly affected by pH. Within a pH range of 4 to 5, the saturated sorption uptake of Pb[sup +2] was 116 mg/g dry biomass, higher than that of activated charcoal and some other microorganisms. At pH 4.5, P. chrysogenum biomass exhibited selectivity for Pb[sup +2] over other metal ions such as Cd[sup +2], Cu[sup +2], Zn [sup +2], and As[sub +3]. Sorption preference for metals decreased in the following order: Pb > Cd > Cu > Zn > As. The sorption uptake of Pb[sup +2] remained unchanged in the presence of Cu[sup +2] and As [sup +3], it decreased in the presence of Zn[sup +2], and increased in the presence of Cd[sup +2].

  15. VISCOSITY BEHAVIOR OF LACQUER POLYSACCHARIDE IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    QIU Xingping; ZHANG Lina; DU Yumin; QIAN Baogong

    1991-01-01

    The dependence of measured viscosity on NaCl concentration (0.1 to 3.0M), pH (range of 2-13) and cadoxen composition Wcad (from 2% to 100% ) for the lacquer polysaccharide in NaCl/cadoxen/H2O mixture containing HCl or without were obtained. All the viscosity exponents γ in the Mark-Houwink equations under three different solvent condition are close to 0.5. The wcad dependence of reduced viscosity ηsp/c confirms the single strand chain of the polysaccharide. As the γ values close to 0.5 and values of unperturbed dimension θ/M and [η] much smaller than those for usual linear polymers, these facts suggest that the polysaccharide chains in the aqueous solutions should be dense random coil owing to the highly branched structure.

  16. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    Directory of Open Access Journals (Sweden)

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  17. Aqueous solution of basic fuchsin as food irradiation dosimeter

    Institute of Scientific and Technical Information of China (English)

    Hasan M. KHAN; Shagufta NAZ

    2007-01-01

    Dosimetric characterization of aqueous solution of basic fuchsin was studied spectrophotometrically for possible application in the low-dose food irradiation dosimetry. Absorption spectra of unirradiated and irradiated solutions were determined and the decrease in absorbance with the dose was noted down. Radiation-induced bleaching of the dye was measured at wavelengths of maximum absorption λmax (540nm) as well as 510nm and 460 nm. At all these wavelengths, the decrease in absorbance of the dosimeter was linear with respect to the absorbed dose from 50 Gy to 600 Gy. The stability of dosimetric solution during post-irradiation storage in the dark at room temperature showed that after initial bleaching during first ten to twenty days, the response was almost stable for about 34 days. The study on the effect of different light and temperature conditions also showed that the response gradually decreased during the storage period of 34 days, which shows that basic fuchsin dye is photosensitive as well as thermally sensitive.

  18. Hydrophobicity and thermodynamic response for aqueous solutions of amphiphiles

    Science.gov (United States)

    Zemánková, Katerina; Troncoso, Jacobo; Cerdeiriña, Claudio A.; Romaní, Luis; Anisimov, Mikhail A.

    2016-06-01

    The anomalous behavior of aqueous solutions of amphiphiles in the water-rich region is analyzed via a phenomenological approach that utilizes the isobaric heat capacity Cp as an experimental probe. We report extensive data for solutions of 14 amphiphiles as a function of temperature at atmospheric pressure. Beyond that, Cp data but also isobaric thermal expansivities and isothermal compressibilities for three solutions of tert-butanol as a function of both temperature and pressure are presented. Results rule out the possibility that the observed phenomenology is associated with the anomalous thermodynamics of pure water. Indeed, our Cp data, quantitatively consistent with recent spectroscopic analyses, suggest that water-mediated interactions between the nonpolar parts of amphiphiles are at the origin of anomalies, with the effects of such "hydrophobic aggregation" being observed at mole fractions as small as 0.01. Physicochemical details like the size, the electronic charge distribution and the geometry of amphiphile molecules as well as third-order derivatives of the Gibbs energy and the associated Koga lines support the above claims while they further contribute to characterizing the role of hydrophobicity in these phenomena. Progress with a view to gain a deeper, more concrete understanding remains.

  19. Carbon dioxide capture capacity of sodium hydroxide aqueous solution.

    Science.gov (United States)

    Yoo, Miran; Han, Sang-Jun; Wee, Jung-Ho

    2013-01-15

    The present paper investigates the various features of NaOH aqueous solution when applied as an absorbent to capture carbon dioxide (CO(2)) emitted with relatively high concentration in the flue gas. The overall CO(2) absorption reaction was carried out according to consecutive reaction steps that are generated in the order of Na(2)CO(3) and NaHCO(3). The reaction rate and capture efficiency were strongly dependent on the NaOH concentration in the Na(2)CO(3) production range, but were constant in the NaHCO(3) production step, irrespective of the NaOH concentration. The amount of CO(2) absorbed in the solution was slightly less than the theoretical value, which was ascribed to the low trona production during the reaction and the consequent decrease in CO(2) absorption in the NaOH solution. The mass ratio of absorbed CO(2) that participated in the Na(2)CO(3), NaHCO(3), and trona production reactions was calculated to be 20:17:1, respectively.

  20. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  1. Biosorption of arsenic from aqueous solution using dye waste.

    Science.gov (United States)

    Nigam, Shubha; Vankar, Padma S; Gopal, Krishna

    2013-02-01

    The purpose of this study is to examine on removal of arsenic from water by biosorption through potential application of herbal dye wastes. Four different flower dye residues (after extraction of natural dye) viz. Hibiscus rosasinensis, Rosa rosa, Tagetes erecta, and Canna indica were utilized successfully for the removal of arsenic from aqueous solution. Batch studies were carried out for various parameters viz. pH, sorbent dose, contact time, initial metal ion concentration, and temperature. Data were utilized for isothermal, kinetic, and thermodynamic studies. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDAX), and Fourier transform infrared (FTIR) analyses of biomass were performed. The results showed that 1 g/100 ml for 5.0-5.5 h contact time at pH 6.0-7.5 with agitation rate 150 rpm provided 98, 96, 92, and 85 % maximum absorption of arsenic by R. rosa, H. rosasinensis, T. erecta, and C. indica, respectively, at initial concentration of 500 ppb. Data followed Langmuir isotherm showing sorption to be monolayer on heterogeneous surface of biosorbent. Negative values of ΔG° indicated spontaneous nature, whereas ΔH° indicates exothermic nature of system followed by pseudo-first-order adsorption kinetics. FTIR results showed apparent changes in functional group regions after metal chelation. SEM and EDAX analyses showed the changes in surface morphology of all test biosorbents. Herbal dye wastes, used as biosorbent, exhibited significant (85-98 %) removal of arsenic from aqueous solution. Hence, these biosorbents are cost-effective, easily available, eco-friendly, and comparatively more effective than other biosorbents already in use. These may be used to remove arsenic and other toxic metals from water.

  2. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  3. Removal of zirconium from aqueous solution by modified clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Faghihian, H., E-mail: h.faghih@sci.ui.ac.ir [Department of Chemistry, University of Isfahan, 81746-73441, Isfahan (Iran, Islamic Republic of); Kabiri-Tadi, M. [Department of Chemistry, University of Isfahan, 81746-73441, Isfahan (Iran, Islamic Republic of)

    2010-06-15

    Adsorptive behavior of natural clinoptilolite was assessed for the removal of zirconium from aqueous solutions. Natural zeolite was characterized by X-ray diffraction, X-ray fluorescence, thermal methods of analysis and FTIR. The zeolite sample composed mainly of clinoptilolite and presented a cation exchange capacity of 1.46 meq g{sup -1}. K, Na and Ca-exchanged forms of zeolite were prepared and their sorption capacities for removal of zirconium from aqueous solutions were determined. The effects of relevant parameters, including initial concentration, contact time, temperature and initial pH on the removal efficiency were investigated in batch studies. The pH strongly influenced zirconium adsorption capacity and maximal capacity was obtained at pH 1.0. The maximum removal efficiency obtained at 40 deg. C and equilibration time of 24 h on the Ca-exchanged form. Kinetics and isotherm of adsorption were also studied. The pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion models were used to describe the kinetic data. The pseudo-second-order kinetic model provided excellent kinetic data fitting (R{sup 2} > 0.998) with rate constant of 1.60 x 10{sup -1}, 1.96 x 10{sup -1}, 2.45 x 10{sup -1} and 2.02 x 10{sup -1} g mmol{sup -1} min{sup -1} respectively for Na, K, Ca-exchanged forms and natural clinoptilolite. The Langmuir and Freundlich models were applied to describe the equilibrium isotherms for zirconium uptake and the Langmuir model agrees very well with experimental data. Thermodynamic parameters were determined and are discussed.

  4. Cations bind only weakly to amides in aqueous solutions.

    Science.gov (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S

    2013-04-01

    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  5. Half-cell potentials of semiconductive simple binary sulphides in aqueous solution

    Science.gov (United States)

    Sato, M.

    1966-01-01

    Theoretical consideration of the charge-transfer mechanism operative in cells with an electrode of a semiconductive binary compound leads to the conclusion that the half-cell potential of such a compound is not only a function of ionic activities in the electrolytic solution, but also a function of the activities of the component elements in the compound phase. The most general form of the electrode equation derived for such a compound with a formula MiXj which dissociates into Mj+ and Xi- ions in aqueous solution is. EMiXj = EMiXj0 + R T 2 ij ln [ (sua Mj+)aqi ?? (suaX)jMiXj/ (suaXi-)aqj ?? (suaM)iMiXj],. where. EMiXj0 = 1 2(EM,Mj+0 + EXi-,X). The equation can be modified to other forms. When applied to semiconductive simple binary sulphides, these equations appear to give better descriptions of the observed electrode potentials of such sulphides than any other proposed equations. ?? 1966.

  6. Surface Complexation at the TiO(2) (anatase)/Aqueous Solution Interface: Chemisorption of Catechol.

    Science.gov (United States)

    Rodríguez; Blesa; Regazzoni

    1996-01-15

    Catechol adsorbs at the TiO(2) (anatase)/aqueous solution interface forming inner-sphere surface complexes. The UV-visible differential reflectance spectrum of surface titanium-catecholate complexes presents a band centered at 420 nm which corresponds to the ligand to metal charge transfer transition within the surface complexes. At pH values below pK(a1), the surface excess of catechol is almost insensitive toward pH and presents a Langmuirian dependence with the concentration of uncomplexed catechol. The ratio Gamma(max):N(S) (N(S) being the measured density of available OH surface groups) indicates a prevailing 1 to 2 ligand exchange adsorption stoichiometry. In the range pH >/= pK(a1), the catechol surface excess decreases markedly with increasing pH. Formation of 1 to 1 surface complexes produces an excess of negative surface charge that is revealed by the shift of the iep to lower pH values. The reported data, which are supplemented with information on the charging behavior of TiO(2) suspended in indifferent electrolyte solutions, are interpreted in terms of the multi-site surface complexation model. In this model, two types of surface OH groups are considered: identical withTiOH(1/3-) and identical withOH(1/3+). Although both surface groups undergo protonation-deprotonation reactions, only identical withTiOH(1/3-) are prone to chemisorption.

  7. An oral electrolyte solution (Pedialyte) in the treatment of acute infantile gastroenteritis.

    Science.gov (United States)

    Sunoto; Pioh, H; Wiharta, A S; Suharyono

    1978-01-01

    During a 3-month period, 35 pediatric patients with infantile acute gastroenteritis were treated with a premixed oral glucose electrolyte solution. The study group consisted of 17 boys and 18 girls with a mean age of 12.4 months (range of 5.5-20 months). 13 patients (37%) had mild dehydration, 16 (46%) had moderate dehydration, and 6 (17%) had normal hydration. 29 (83%( had isotonic dehydration and only 6 (17%) presented with hypotonic dehydration. Almost all of the patients were admitted for a hospital stay of 3 days and on discharge, all were in good condition. None developed severe dehydration or needed intravenous fluid treatment. The mean weight gain during hospitalization was 147 gm with a range of 100-400 gm. Unexpectedly, pathogenic bacteria organisms were discovered in 24 (68.7%) of the total cases, but all the children recovered very well with the oral electrolyte solution only without the need for antibiotics. From clinical, chemical, and other observations, it could be concluded that this ready-to-feed oral electrolyte solution can be used safely and effectively for the treatment of acute infantile gastroenteritis both with or without mild or moderate dehydration. No complications were observed in this study.

  8. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    Science.gov (United States)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  9. Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions

    Science.gov (United States)

    Lalhmunsiama; Lalhriatpuia, C.; Tiwari, Diwakar; Lee, Seung-Mok

    2014-12-01

    The aim of this study is to immobilize nickel hexacyanoferrate onto the large surface of activated carbons (ACs) precursor to rice hulls and areca nut waste materials. These nickel hexacyanoferrate immobilized materials are then assessed in the effective attenuation of radio logically important cesium ions from aqueous solutions. The solid samples are characterized by the XRD analytical method and surface morphology is obtained from the SEM images. The batch reactor experiments show that an increase in sorptive pH (2.0-10.0) apparently not affecting the high percent uptake of Cs(I). Equilibrium modeling studies suggest that the data are reasonably and relatively fitted well to the Langmuir adsorption isotherm. Kinetic studies show that sorption process is fairly rapid and the kinetic data are fitted well to the pseudo-second order rate model. Increasing the background electrolyte concentration from 0.001 to 0.1 mol/L NaCl causes insignificant decrease in Cs(I) removal which infers the higher selectivity of these materials for Cs(I) from aqueous solutions. Further, the column reactor operations enable to obtain the breakthrough data which are then fitted to the Thomas non-linear equation as to obtain the loading capacity of column for Cs(I). The results show that the modified materials show potential applicability in the attenuation of radio toxic cesium from aqueous solution.

  10. Thermo photo-electrochemical effect in n-InP/aqueous solution of orange dye/C cell

    Science.gov (United States)

    Ali, Taimoor; Karimov, Khasan S.; Akhmedov, Khakim M.; Kabutov, K.; Farooq, Amjad

    2015-03-01

    The effect of light and heat is studied on the electrical properties of an electrochemical n-InP/aqueous solution of orange dye/C cell. The cell is investigated under the light and heat of filament bulb. The n-type indium phosphide and carbon plates are used as electrodes. The aqueous solution of organic material orange dye (C17H17N5O2) in distilled water is served as electrolyte at 1, 3 and 5 wt. % concentration. The cell is assembled in sealed organic glass box with dimensions 35 × 13 × 14 mm. The open circuit voltage ( V oc ) and short circuit current ( I sc ) of the cell are observed by illuminating and heating the samples. The temperature is raised up to 60°C from 25°C when light intensity is increased from dark condition to 425 W/m2. It is observed that the relationship between light intensity and temperature is approximately linear for all cases. The V oc and I sc increase 100% and 300% respectively by increasing the light. The reported n-InP/aqueous solution of orange dye/C cell can be considered as small converter of light and heat into electric power. [Figure not available: see fulltext.

  11. Structural rearrangement of mesostructured silica nanoparticles incorporated with ZnO catalyst and its photoactivity: Effect of alkaline aqueous electrolyte concentration

    Energy Technology Data Exchange (ETDEWEB)

    Jusoh, N.W.C. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Jalil, A.A., E-mail: aishah@cheme.utm.my [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Triwahyono, S.; Karim, A.H. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Salleh, N.F. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Annuar, N.H.R.; Jaafar, N.F.; Firmansyah, M.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Mukti, R.R. [Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Science, Institut Teknologi Bandung, Jl Ganesha No 10, Bandung 40132 (Indonesia); Ali, M.W. [Department of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Institute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Hierarchical-like structure of MSN was formed in alkaline aqueous electrolyte. • Desilication generated abundant silanol groups and oxygen vacancies. • Zn{sup 2+} inserted to external –OH groups of the MSN to form Si–O–Zn bonds. • Oxygen vacancies trapped electrons to enhance electron–hole pair separation. • Hydroxyl radical generated from three main sources greatly influenced photoactivity. - Abstract: ZnO-incorporated mesostructured silica nanoparticles (MSN) catalysts (ZM) were prepared by the introduction of Zn ions into the framework of MSN via a simple electrochemical system in the presence of various concentrations of NH{sub 4}OH aqueous solution. The physicochemical properties of the catalysts were studied by XRD, {sup 29}Si MAS NMR, nitrogen adsorption–desorption, FE-SEM, TEM, FTIR, and photoluminescence spectroscopy. Characterization results demonstrated that the alkaline aqueous electrolyte simply generated abundant silanol groups on the surface of the catalysts as a consequence of desilication to form the hierarchical-like structure of the MSN. Subsequent restructuring of the silica network by the creation of oxygen vacancies and formation of Si–O–Zn during the electrolysis, as well as formation of new Si–O–Si bonds during calcination seemed to be the main factors that enhanced the catalytic performance of photodecolorization of methyl orange. A ZM prepared in the presence of 1.0 M NH{sub 4}OH (ZM-1.0) was determined to be the most effective catalyst. The catalyst displays a higher first-order kinetics rate of 3.87 × 10{sup −1} h{sup −1} than unsupported ZnO (1.13 × 10{sup −1} h{sup −1}) that prepared under the same conditions in the absence of MSN. The experiment on effect of scavengers showed that hydroxyl radicals generated from the three main sources; reduced O{sub 2} at the conduction band, decomposed water at the valence band and irradiated H{sub 2}O{sub 2} in the solution

  12. Water and solute absorption from carbohydrate-electrolyte solutions in the human proximal small intestine: a review and statistical analysis.

    Science.gov (United States)

    Shi, Xiaocai; Passe, Dennis H

    2010-10-01

    The purpose of this study is to summarize water, carbohydrate (CHO), and electrolyte absorption from carbohydrate-electrolyte (CHO-E) solutions based on all of the triple-lumen-perfusion studies in humans since the early 1960s. The current statistical analysis included 30 reports from which were obtained information on water absorption, CHO absorption, total solute absorption, CHO concentration, CHO type, osmolality, sodium concentration, and sodium absorption in the different gut segments during exercise and at rest. Mean differences were assessed using independent-samples t tests. Exploratory multiple-regression analyses were conducted to create prediction models for intestinal water absorption. The factors influencing water and solute absorption are carefully evaluated and extensively discussed. The authors suggest that in the human proximal small intestine, water absorption is related to both total solute and CHO absorption; osmolality exerts various impacts on water absorption in the different segments; the multiple types of CHO in the ingested CHO-E solutions play a critical role in stimulating CHO, sodium, total solute, and water absorption; CHO concentration is negatively related to water absorption; and exercise may result in greater water absorption than rest. A potential regression model for predicting water absorption is also proposed for future research and practical application. In conclusion, water absorption in the human small intestine is influenced by osmolality, solute absorption, and the anatomical structures of gut segments. Multiple types of CHO in a CHO-E solution facilitate water absorption by stimulating CHO and solute absorption and lowering osmolality in the intestinal lumen.

  13. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  14. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    DEFF Research Database (Denmark)

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    deposited on gold-coated quartz crystals by electropolymerization and simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance techniques were used. During the first redox cycle, while large water movement is observed along with the counter ions in dilute electrolytes, such water...

  15. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents

    CERN Document Server

    Husch, Tamara

    2015-01-01

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compoun...

  16. Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents.

    Science.gov (United States)

    Husch, Tamara; Korth, Martin

    2015-09-21

    Li-air batteries are very promising candidates for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-air electrolyte solvents. It is shown that the problem of finding better Li-air electrolyte solvents is not only - as previously suggested - about maximizing Li(+) and O2(-) solubilities, but also about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compounds screened and the way they are selected), as well as depth (considering the number and complexity of properties included).

  17. Electrochemical cell studies based on non-aqueous magnesium electrolyte for electric double layer capacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekaran, Ramasamy; Ishikawa, Masashi [Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita 564-8680 (Japan); Koh, Meiten; Yamauchi, Akiyoshi [Chemical Division, Fundamental Research Department, Daikin Industries Ltd., 1-1 Nishihitotsuya, Settsu 565-8585 (Japan)

    2010-01-15

    Performances of electric double layer capacitors (EDLCs) based on an activated carbon electrode with acetonitrile (ACN), propylene carbonate (PC), or a ternary electrolyte, i.e., PC:ethylene carbonate (EC):diethyl carbonate (DEC), at 1 mol dm{sup -3} of magnesium perchlorate [Mg(ClO{sub 4}){sub 2}] salt have been investigated. The electrochemical responses were studied by impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge experiments at 25 C in a three-electrode configuration. For a comparative evaluation, lithium perchlorate (LiClO{sub 4}) salt-based systems were also evaluated. All the observed results showed typical EDLC characteristics within the potential range between 0 and 1 V vs. an Ag/Ag{sup +} reference electrode. The Mg-based systems exhibited similar or rather better performances than the corresponding Li-based electrolytes; in particular, the rate capability of Mg-based ACN and PC electrolytes was much better than the corresponding Li-based electrolytes, indicating the high accessibility and utility of activated carbon pores by solvated Mg ions. (author)

  18. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    Science.gov (United States)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  19. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    Science.gov (United States)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  20. Comparison of Polyethylene Glycol-Electrolyte Solution vs Polyethylene Glycol-3350 for the Treatment of Fecal Impaction in Pediatric Patients

    OpenAIRE

    Boles, Erin E.; Gaines, Cameryn L.; Tillman, Emma M.

    2015-01-01

    OBJECTIVES: The objective of this study was to evaluate the safety and efficacy of polyethylene glycol-electrolyte solution vs polyethylene glycol-3350 for the treatment of fecal impaction in pediatric patients.

  1. Lead removal from aqueous solutions by a Tunisian smectitic clay.

    Science.gov (United States)

    Chaari, Islem; Fakhfakh, Emna; Chakroun, Salima; Bouzid, Jalel; Boujelben, Nesrine; Feki, Mongi; Rocha, Fernando; Jamoussi, Fakher

    2008-08-15

    The adsorption of Pb(2+) ions onto Tunisian smectite-rich clay in aqueous solution was studied in a batch system. Four samples of clay (AYD, AYDh, AYDs, AYDc) were used. The raw AYD clay was sampled in the Coniacian-Early Campanian of Jebel Aïdoudi in El Hamma area (South of Tunisia). AYDh and AYDs corresponds to AYD activated by 2.5 mol/l hydrochloric acid and 2.5 mol/l sulphuric acid, respectively. AYDc corresponds to AYD calcined at different temperatures (100, 200, 300, 400, 500 and 600 degrees C). The raw AYD clay was characterized by X-ray diffraction, chemical analysis, infrared spectroscopy and coupled DTA-TGA. Specific surface area of all the clay samples was determined from nitrogen adsorption isotherms. Preliminary adsorption tests showed that sulphuric acid and hydrochloric acid activation of raw AYD clay enhanced its adsorption capacity for Pb(2+) ions. However, the uptake of Pb(2+) by AYDs was very high compared to that by AYDh. This fact was attributed to the greater solubility of clay minerals in sulphuric acid compared to hydrochloric acid. Thermic activation of AYD clay reduced the Pb(2+) uptake as soon as calcination temperature reaches 200 degrees C. All these preliminary results were well correlated to the variation of the specific surface area of the clay samples. The ability of AYDs sample to remove Pb(2+) from aqueous solutions has been studied at different operating conditions: contact time, adsorbent amount, metal ion concentration and pH. Kinetic experiments showed that the sorption of lead ions on AYDs was very fast and the equilibrium was practically reached after only 20 min. The results revealed also that the adsorption of lead increases with an increase in the solution pH from 1 to 4.5 and then decreases, slightly between pH 4.5 and 6, and rapidly at pH 6.5 due to the precipitation of some Pb(2+) ions. The equilibrium data were analysed using Langmuir isotherm model. The maximum adsorption capacity (Q(0)) increased from 25 to 25

  2. Gamma Radiolysis Studies of Aqueous Solution of Brilliant Green Dye

    Directory of Open Access Journals (Sweden)

    D. V. Parwate

    2011-01-01

    Full Text Available The effect of γ–radiation on colour intensity of aqueous solution of Brilliant Green has been investigated at two different concentrations. The degradation of Brilliant Green (BG has also been investigated in presence of suspended ZnO, by adding different amounts of ZnO. Simultaneously the conductance and pH of each solution system were measured before and after γ-irradiation. All the γ–irradiations were performed at a dose rate of 0.60 kGyhr-1 in GC-900. The maximum dose required for the complete degradation of the dye was found to be 0.39 kGy. G(-dye values were found to decrease with increase in gamma dose and were in the range 4.26 - 12.81. The conductance (7.6 - 25.3 μS and pH values increased marginally with dose for both the concentrations. The rate of decolouration was found to be high at lower doses and the efficiency of dye removal was higher at low concentration of the dye. This may be attributed to the presence of reaction by-products from the destruction of parent compound build up and compete for reaction intermediate species. The rate of reaction and rate constants were calculated and it was found that the degradation reaction follows first order kinetics. It was found that the decolouration percentage was more in dye systems in absence of ZnO.

  3. Removal of Nitrate From Aqueous Solution Using Rice Chaff

    Directory of Open Access Journals (Sweden)

    Dehghani

    2015-09-01

    Full Text Available Background Nitrate is largely dissolved in the surface and ground water, due to its high solubility. Continual uptake of nitrite through drinking water can lead to problems and diseases (such as blue baby for humans, especially children. Objectives The aim of this study was to develop a new and inexpensive method for the removal of nitrate from water. In this regard, the possibility of using chaff for removal of nitrate from aqueous solutions was studied and the optimum operating conditions of nitrate removal was determined. Materials and Methods This is a cross-sectional study conducted in laboratory scale. The UV spectrophotometer at a wavelength of maximum absorbance (220 nm was used to determine the nitrate concentration. The effect of pH, amount of chaff, temperature, and contact time were investigated. Results The result of this study revealed that chaff as an absorbent could remove nitrate from solutions, and the efficiency of adsorption increased as contact time increased from 5 to 30 minutes, amount of chaff increased from 1 to 3 g, temperature increased in a range of 300 - 400°C and the amount of pH decreased from 10 to 3. The maximum adsorption rate was around pH 3 (53.14%. Conclusions It was shown that the removal efficiency of nitrate was directly proportional to the amount of chaff, temperature, and contact time but inversely to the pH. This study showed that nitrate removal by chaff is a promising technique.

  4. Structure and phase behavior of aqueous methylcellulose solutions

    Science.gov (United States)

    McAllister, John; Schmidt, Peter; Lodge, Timothy; Bates, Frank

    2015-03-01

    Cellulose ethers (CE) constitute a multi-billion dollar industry, and have found end uses in a broad array of applications from construction materials, food products, personal care products, and pharmaceuticals for more than 80 years. Methylcellulose (MC, with the trade name METHOCEL™) is a CE in which there is a partial substitution of -OH groups with -OCH3 groups. This results in a polymer that is water-soluble at low temperatures, and aqueous solutions of MC display gelation and phase separation at higher temperatures. The nature of MC gelation has been debated for many years, and this project has made significant advances in the understanding of the solution properties of CEs. We have characterized a fibrillar structure of MC gels by cryogenic transmission electron microscopy (cryo-TEM) and small angle neutron scattering (SANS). Using light scattering, turbidity measurements, and dynamic mechanical spectroscopy (DMS) we report that MC microphase separates by nucleation and growth of fibril aggregates, and is a different process from LCST phase separation.

  5. Drop-on-demand for aqueous solutions of sodium alginate

    Science.gov (United States)

    Herran, C. Leigh; Coutris, Nicole

    2013-06-01

    Inkjet printing is a rapidly growing commercial process for applications that depend on precisely patterning micro-scale droplets. These applications increasingly require complex fluids, introducing viscoelastic properties which play an important role in droplet formation. The objective of this study is to determine how to obtain single, uniform and spherical ("successful") droplets from aqueous solutions of sodium alginate with a piezoelectric drop-on-demand printing method. In order to control the volume and velocities of droplets, the effect on the droplet formation of the characteristics of the waveform such as voltage amplitude and dwell time is studied. The results depend also on the fluid rheology. The viscosity of the chosen fluid is a function of the concentration, as the viscoelastic properties increase at higher concentration. In this paper, the droplet formation process is characterized in terms of both the waveform and the rheological properties of the solution. The characterization of the fluids and waveform will be pursued first and the droplet formation and its control will be studied. Finally, the results will be presented with a map in ranges of the Ohnesorge, Deborah and Weber numbers.

  6. Columnar molecular aggregation in the aqueous solutions of disodium cromoglycate

    Science.gov (United States)

    Agra-Kooijman, Dena M.; Singh, Gautam; Lorenz, Alexander; Collings, Peter J.; Kitzerow, Heinz-S.; Kumar, Satyendra

    2014-06-01

    Stack, chimneylike, and threadlike assemblies have previously been proposed for the structure of disodium cromoglycate (DSCG) aggregates in aqueous solutions. The results of the synchrotron x-ray scattering investigations reported here reveal the formation of simple columnar assemblies with π-π stacking at a separation of 3.4 Å between the DSCG molecules. Lateral separation between the assemblies is concentration and temperature dependent, varying from ˜35 to 42 Å in the orientationally ordered nematic (N) phase and from 27 to 32 Å in the columnar or middle (M) phase having long range lateral positional order. The assemblies' length depends on concentration and consists of ˜23 molecules in the N phase, becoming three to ten times larger in the M phase. The scission energy is concentration dependent in the N phase with values ˜7.19 ± 0.14 kBT (15 wt %), 2.73 ± 0.4 kBT (20 wt %), and 3.05 ± 0.2 kBT (25 wt %). Solutions of all concentrations undergo a spinodal decomposition at temperatures above ˜40 °C, resulting in DSCG-rich regions with the M phase and water-rich regions in the N and isotropic phases.

  7. Corrosion of metastable iron alloys in aqueous solutions

    Science.gov (United States)

    Wolf, Gerhard K.; Ferber, H.

    1983-05-01

    There exist some examples showing that metastable surface alloys can modify the corrision properties of a substrate in the same way as stable alloys do. In the present paper the corrosion behaviour of metastable surface alloys obtained by implanting gold, lead and mercury in iron was studied in aqueous solution of pH = 5.6. Potentiodynamic current density-potential curves were recorded of the implanted samples without further treatment and after isothermal annealing to temperatures up to 800°C. The results were compared with structural information on the alloys obtained by Turos et al. with α-backscattering and channeling experiments. Gold implantation turned out to enhance the active corrosion rate of iron, while lead and mercury had an impeding effect. The annealing experiments showed that the surface alloying facilitated the passivation of iron as long as the substitutional solid solution was "(meta)stable". After the breakdown at higher annealing temperatures leading to surface migration and clustering of the implanted elements a significant increase of the critical current density for passivation took place. This indicates passivation difficulties caused by the heterogeneous distribution of the "alloying" particles. In general the results suggest that substitutional metastable iron alloys cause in a systematic way corrosion inhibition or enhancement. However, their corrosion properties may change completely for non-substitutional distribution of the alloying elements as originating from annealing at higher temperatures.

  8. Cast iron deterioration with time in various aqueous salt solutions

    Indian Academy of Sciences (India)

    Rita Mehra; Aditi Soni

    2002-02-01

    The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts towards corrosion has also been studied, which is found to be different from previous studies. The total immersion test parameters viz. weight loss, corrosion rate as well as potentiostatic parameters, open circuit potential, corr, Tafel slopes, corrosion rate, have been calculated by standard methods. Besides these the relative increase in corrosion rate with time as well as the percentage to which corrosion rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions. For the reliability of results the data has been statistically analysed.

  9. Enrichment of surfactant from its aqueous solution using ultrasonic atomization.

    Science.gov (United States)

    Takaya, Haruko; Nii, Susumu; Kawaizumi, Fumio; Takahashi, Katsuroku

    2005-08-01

    Dilute aqueous solutions of dodecyl-benzenesulfonic acid sodium salt (DBS-Na) and polyoxyethylenenonylphenyl ethers (PONPEs) were ultrasonically atomized. The surfactants were concentrated in collected mist droplets. The enrichment ratio increased with decreasing surfactant concentration. Depending on the surfactant's molecular weight and affinity to water, different enrichment ratio was observed in the range of low feed concentrations. For anionic surfactant, DBS-Na, the enrichment ratio was significantly improved by KCl addition and a peak appeared on the plot of the ratio against KCl concentration. Addition of NaCl or CaCl2 . 2H2O to the surfactant solution also enhanced the enrichment ratio; however, the effect was relatively small. Such behaviors of the ratio were interpreted as enhanced interfacial adsorption of the surfactant and a lack of supply of surfactant monomers from liquid bulk because of slow breaking of surfactant micelles. Time required for collecting an amount of mist was also observed. Among the three salt systems, the time for KCl system was twice as long as others. This fact suggested that the formation of smaller droplets in KCl system.

  10. Metal ion removal from aqueous solution using physic seed hull.

    Science.gov (United States)

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.

  11. Adsorption of itaconic acid from aqueous solutions onto alumina

    Directory of Open Access Journals (Sweden)

    JELENA J. GULICOVSKI

    2008-08-01

    Full Text Available Itaconic acid, IA (C5H6O4, was investigated as a potential flocculant for the aqueous processing of alumina powders. The adsorption of IA, as a function of its concentration and pH value of the solution, onto the alumina surface was studied by the solution depletion method. The stability of the suspensions in the presence of itaconic acid was evaluated in light of the surface charge of the alumina powder used, the degree of dissociation of IA, as well as the sedimentation behavior and rheology of the suspensions. It was found that the adsorption process is extremely pH dependent; the maximum adsorption of IA onto alumina surface occurring at a pH close to the value of the first IA dissociation constant, pKa1. Also, IA does not influence the value of the point of zero charge of alumina. It was shown that IA represents an efficient flocculant for concentrated acidic alumina suspensions.

  12. Decomposition of 2-mercaptothiazoline in aqueous solution by ozonation.

    Science.gov (United States)

    Chen, Y H; Chang, C Y; Chen, C C; Chiu, C Y; Yu, Y H; Chiang, P C; Ku, Y; Chen, J N; Chang, C F

    2004-07-01

    This study investigates the ozonation of 2-mercaptothiazoline (2-MT). The 2-MT is one of the important organic additives for the electroplating solution of the printed wiring board industry and has been widely used as a corrosion inhibitor in many industrial processes. It is of concern for the aquatic pollution control especially in the wastewaters. Semibatch ozonation experiments in the completely stirred tank reactor are performed under various concentrations of input ozone. The concentrations of 2-MT, sulfate, and ammonium are analyzed at specified time intervals to elucidate the decomposition of 2-MT during the ozonation. In addition, the time variation of the dissolved ozone concentration (C(ALb)) is continuously monitored in the course of experiments. Total organic carbon (TOC) is chosen and measured as a mineralization index of the ozonation of 2-MT. The results indicate that the decomposition of 2-MT is efficient, while the mineralization of TOC is limited via the ozonation only. Simultaneously, the yield of sulfate with the maximum value of about 47% is characterized by the increases of TOC removal and ozone consumption. These results can provide some useful information for assessing the feasibility of the treatment of 2-MT in the aqueous solution by the ozonation.

  13. Molecular Modeling and Monte Carlo Simulation of Concentrated Aqueous Alkali Halide Solutions at 25 C.

    Science.gov (United States)

    Llano-Restrepo, Mario Andres

    A study of concentrated aqueous alkali halide solutions is made at the molecular level, through modeling and computer simulation of their structural and thermodynamic properties. It is found that the HNC approximation is the best integral equation theory to predict such properties within the framework of the primitive model (PM). The intrinsic limitations of the PM in describing ionic association and hydration effects are addressed and discussed in order to emphasize the need for explicitly including the water molecules in the treatment of aqueous electrolyte solutions by means of a civilized model (CM). As a step toward developing a CM as simple as possible, it is shown that a modified version of the SPC model of liquid water in which the Lennard-Jones interaction between intermolecular oxygen sites is replaced by a hard core interaction, is still successful enough to predict the degree of hydrogen bonding of real water. A simple civilized model (SCM) (in which the ions are treated as hard spheres interacting through Coulombic potentials and the water molecules are simulated using the simplified SPC model) is introduced in order to study the changes in the structural features of various aqueous alkali halide solutions upon varying both the concentration and the size of the ions. Both cations and anions are found to be solvated by the water molecules at expense of a breakdown in the hydrogen-bonded water network. Hydration numbers are reported for the first time for NaBr and KBr, and the first simulation -based estimates for LiBr, NaI and KI are also obtained. In several cases, values of the hydration numbers based on the SCM are found to be in excellent agreement with available experimental results obtained from x-ray diffraction measurements. Finally, it is shown that a neoprimitive model (NPM) can be developed by incorporating some of the structural features seen in the SCM into the short-range part of the PM interionic potential via a shielded square well whose

  14. Synthesis and studies of boron based anion receptors and their use in non-aqueous electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.; Yang, X.Q.; Lee, H.S.; McBreen, J. [Brookhaven National Lab., Upton, NY (United States); Choi, L.S. [Naval Research Lab., Washington, DC (United States)

    1998-12-31

    A new family of anion receptors based on boron compounds has been synthesized. These compounds can be used as anion receptors in lithium battery electrolytes and can greatly increase solubility and ionic conductivities of various lithium salts, such as LiF, LiCl, CF{sub 3}COOLi and C{sub 2}F{sub 5}COOLi, in DME solutions. Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy studies show that Cl{sup {minus}} anions of LiCl are complexed with these compounds in DME solutions. The electrochemical stability of lithium salts and one of the boron compounds in deferent solvents was studied. For the first time, LiF has been successfully used as conducting salt in a novel electrolyte with this boron compound as an additive in DME. A rechargeable Li/LiMn{sub 2}O{sub 4} cell using this electrolyte was successfully cycled 51 times. However, the capacity fades with cycling due to decomposition of the solvent. The cycling performance of the battery was greatly improved by replacing DME with PC-EC-DMC as the solvent.

  15. Sonochemical degradation of martius yellow dye in aqueous solution.

    Science.gov (United States)

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-01-01

    The sonolytic degradation of the textile dye martius yellow, also known as either naphthol yellow or acid orange 24, was studied at various initial concentrations in water. The degradation of the dye followed first-order kinetics under the conditions examined. Based on gas chromatographic results and sonoluminescence measurements of sonicated aqueous solutions of the dye, it is concluded that pyrolysis does not play a significant role in its degradation. The chromatographic identification of hydroxy added species indicates that an OH radical induced reaction is the main degradation pathway of the dye. Considering the non-volatility and surface activity of the dye, the degradation of the dye most probably takes place at the bubble/solution interface. The quantitative and qualitative formation of the degradation intermediates and final products were monitored using HPLC and ESMS. The analytical results suggest that the sonolytic degradation of the dye proceeds via hydroxylation of the aryl ring and also by C-N bond cleavage of the chromophoric ring, either through OH radical attack or through another unidentified process. The identification of various intermediates and end products also imply that the degradation of martius yellow proceeds through multiple reaction pathways. Total organic carbon (TOC) analyses of the dye solutions at various times following sonication revealed that sonolysis was effective in the initial degradation of the parent dye but very slow in achieving mineralization. The slow rate of mineralization is likely to be due to the inability of many of the intermediate products such as, the carboxylic acids, to accumulate at the bubble (air/water) interface and undergo decomposition due to their high water solubility (low surface activity).

  16. Interaction of gypsum with lead in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Astilleros, J.M., E-mail: jmastill@geo.ucm.es [Dpto. Cristalografia y Mineralogia, Universidad Complutense de Madrid, Jose Antonio Novais, 2, E-28040 Madrid (Spain); Godelitsas, A. [Department of Mineralogy and Petrology, Faculty of Geology and Geoenvironment, University of Athens, Panepistimioupoli Zographou, 15784 Athens (Greece); Rodriguez-Blanco, J.D. [School of Earth and Environments, Faculty of Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Fernandez-Diaz, L. [Dpto. Cristalografia y Mineralogia, Universidad Complutense de Madrid, Jose Antonio Novais, 2, E-28040 Madrid (Spain); Prieto, M. [Dpto. de Geologia, Universidad de Oviedo, E-30005 Oviedo (Spain); Lagoyannis, A.; Harissopulos, S. [Tandem Accelerator Laboratory, Institute of Nuclear Physics, NCSR ' Demokritos' , GR-15310 Attiki (Greece)

    2010-07-15

    Sorption processes on mineral surfaces are a critical factor in controlling the distribution and accumulation of potentially harmful metals in the environment. This work investigates the effectiveness of gypsum (CaSO{sub 4}.2H{sub 2}O) to sequester Pb. The interaction of gypsum fragments with Pb-bearing solutions (10, 100 and 1000 mg/L) was monitored by performing macroscopic batch-type experiments conducted at room temperature. The aqueous phase composition was periodically determined by Atomic Absorption Spectrometry (AAS), Ion Chromatography (IC) and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Regardless of the [Pb{sub aq}]{sub initial}, a [Pb{sub aq}]{sub final} < 4 mg/L was always reached. The uptake process was fast (t < 1 h) for [Pb{sub aq}]{sub initial} {>=} 100 mg/L and significantly slower (t > 1 week) for [Pb{sub aq}]{sub initial} = 10 mg/L. Speciation calculations revealed that after a long time of interaction (1 month), all the solutions reached equilibrium with respect to both gypsum and anglesite. For [Pb{sub aq}]{sub initial} {>=} 100 mg/L, sorption takes place mainly via the rapid dissolution of gypsum and the simultaneous formation of anglesite both on the gypsum surface and in the bulk solution. In the case of [Pb{sub aq}]{sub initial} = 10 mg/L, no anglesite precipitation was observed, but surface spectroscopy (proton Rutherford Backscattering Spectroscopy, p-RBS) confirmed the formation of Pb-bearing surface layers on the (0 1 0) gypsum surface in this case also. This study shows that the surface of gypsum can play an important role in the attenuation of Pb in contaminated waters.

  17. Multi-scale theory in the molecular simulation of electrolyte solutions

    CERN Document Server

    Zhang, W; Pratt, L R

    2013-01-01

    This paper organizes McMillan-Mayer theory, the potential distribution approach, and quasi-chemical theory to provide theory for the thermodynamic effects associated with longer spatial scales involving longer time scales, thus helping to define a role for AIMD simulation directly on the time and space scales typical of those demanding methods. The theory treats composition fluctuations which would be accessed by larger-scale calculations, and also longer-ranged interactions that are of special interest for electrolyte solutions. The quasi-chemical organization breaks-up governing free energies into physically distinct contributions: packing, outer-shell, and chemical contributions. Here we study specifically the outer-shell contributions that express electrolyte screening. For that purpose we adopt a primitive model suggested by observation of ion-pairing in tetra-ethylammonium tetra-fluoroborate dissolved in propylene carbonate. Gaussian statistical models are shown to be effective physical models for outer...

  18. Kinetics of the elementary act of electrochemical reactions at the semiconductor--electrolyte solution interface

    CERN Document Server

    Kovalenko, Sergii

    2013-01-01

    In the framework of the quantum-mechanical theory of elementary act of non-adiabatic electrochemical reactions, it is carried out the calculation of the discharge current of ions at the semiconductor--electrolyte solution interface using the model of isotropic spherically symmetric band. It is shown that our results generalize the well-known formulae for the current density obtained by R.R. Dogonadze, A.M. Kuznetsov, and Yu.A. Chizmadzhev [R.R. Dogonadze, A.M. Kuznetsov, and Yu.A. Chizmadzhev, The kinetics of some heterogeneous reactions at semiconductor--electrolyte interface, Zhur. Fiz. Khim. 38 (1964) 1195--1202]. The average densities of states in the valence band and the conduction band of the semiconductor electrode in the heterogeneous charge transfer are found.

  19. Relationships between Pitzer's ion interaction coefficients and ionic parameters of electrolyte solutions

    Institute of Scientific and Technical Information of China (English)

    李国正; 杨杰; 张良苗; 陆文聪; 陈念贻

    2004-01-01

    Pattern recognition methods were used to treat the experimentally measured data of Pitzer's coefficients of 107 electrolytes, to find the relationships between the ionic structural parameters of these electrolytes and Pitzer's coefficients. It is found that these relationships can be approximately expressed as linear equations of four dimensionless numbers, (R+/R- ), (R+ +R-)/Z+ Z- , (Z+/Z- ) and (Rt/Rl), where R+ and R- are the cationic and anionic radii respectively; Z+ and Z- are the cationic and anionic charge numbers respectively, and (Rt/Rl) denotes the nonsphericity of some non-spherical ions. Besides, it is found that the difference of the nuclear magnetic resonance measured rotational relaxation time of water molecules around cations and anions, |△τ|, has good correlation with Pitzer's coefficients. The relationships can be interpreted by the theory of corresponding states of ionic solutions. Based on the relationships, an example of application to some hydrometallurgical process was discussed.

  20. [Aqueous iodine solutions as disinfectants: composition, stability, comparison with chlorine and bromine solution (author's transl)].

    Science.gov (United States)

    Gottardi, W

    1978-09-01

    The equilibrium concentrations of aqueous iodine solutions in dependence of the total concentration and the pH-value have been calculated with and without regard of the iodate formation. The values obtained by the latter methode enabled by application of the known rate law to calculate the initial rate of the iodate formation and to draw from this conclusions concerning the stability of iodine solutions. On the grounds of these calculations to aqueous iodine solutions in the concentration and pH-range which is relevant for disinfection (greater than 10(-5) M/l, pH 6--9) one can attribute a stability sufficient for the use in practice and - unlike chlorine and bromine solutions - a content of bactericidal "free halogene" which is higher and independent of the pH-value. The disinfecting action of the iodine cation (H2O+J) which is supposed to be very powerful can be neglected because of its low concentration (10(-3)--10(-6%) of the total concentration). Hypoiodic acid which has already been converted into iodate by disproportionation is as good as lost for the disinfection because of the extremely slow reverse reaction.

  1. Improved phenol adsorption from aqueous solution using electrically conducting adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Asghar, Hafiz Muhammad Anwaar; Hussain, Syed Nadir [The University of Manchester, Manchester (United Kingdom); Sattar, Hamed [University of Leeds, Leeds (United Kingdom); Brown, Nigel Willis [Daresbury Innovation Centre, Cheshire (United Kingdom); Roberts, Edward Pelham Lindfield [University of Calgary, Calgary (Canada)

    2014-05-15

    The electrically conducting and partially porous graphite based adsorbent (called Nyex{sup TM} 2000) was tested for its adsorption capacity and electrochemical regeneration ability for the removal of phenol from aqueous solution. Nyex{sup TM} 2000 was tested in comparison with Nyex{sup TM} 1000, which is currently being used for a number of industrial waste water treatment applications. Nyex{sup TM} 1000 exhibited small adsorption capacity of 0.1 mg g{sup -1} for phenol because of having small specific surface area of 1 m{sup 2} g{sup -1}. In contrast, Nyex{sup TM} 2000 with specific surface area of 17 m{sup 2} g{sup -1} delivered an adsorption capacity of 0.8 mg g{sup -1}, which was eight-fold higher than that of Nyex{sup TM} 1000. Nyex{sup TM} 2000 was successfully electrochemically regenerated by passing a current of 0.5 A, charge passed of 31 C g{sup -1} for a treatment time of 45 minutes. These electrochemical parameters were comparable to Nyex{sup TM} 1000 for which a current of 0.5 A, charge passed of 5 C g{sup -1} for a treatment time of 20 minutes were applied for complete oxidation of adsorbed phenol. The comparatively high charge density was found to be required for Nyex{sup TM} 2000, which is justified with its higher adsorption capacity. The FTIR results validated the mineralization of adsorbed phenol into CO{sub 2} and H{sub 2}O except the formation of few by-products, which were in traces when compared with the concentration of phenol removed from aqueous solution. The electrical energy as required for electrochemical oxidation of phenol adsorbed onto Nyex{sup TM} 1000 and 2000 was found to be 214 and 196 J mg{sup -1}, respectively. The comparatively low energy requirement for electrochemical oxidation using Nyex{sup TM} 2000 is consistent with its higher bed electrical conductivity, which is twice that of Nyex{sup TM} 1000.

  2. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes; Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-waessrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Tatjana

    2015-07-01

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac){sub 3}) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac){sub 3}. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac){sub 3} from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac){sub 3}. In galvanostatic charge-discharge tests, single cell V(acac){sub 3} RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac){sub 3} RFB is able to operate at temperatures such as 0 C and -25 C.

  3. Pengaruh Konsentrasi Karbon Terhadap Performa Elektrokimia Katoda Lifepo4 Untuk Aplikasi Baterai Lithium Ion Tipe Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Ade Okta Yurwendra

    2014-09-01

    Full Text Available Baterai lithium ion rechargeable telah dipertimbangkan sebagai sebuah sumber tenaga listrik yang digunakan untuk berbagai aplikasi. LiFePO4 yang digunakan sebagai katoda, dipilih karena memiliki sifat yang ramah lingkungan tetapi memiliki konduktivitas yang lemah. LiFePO4 dilakukan proses konduktif coating menggunakan sukrosa dengan pemanasan 600oC selama 3 jam didalam atmosfer argon untuk membentuk karbon coating LiFePO4 (LiFePO4/C dengan variasi persentase berat karbon 9%, 14.5%, dan 17.8% karbon. Dari analisis cyclic voltammetry penambahan karbon coating dapat meningkatkan stabilitas didalam aqueous electrolyte. Hasil galvanostatic charge/discharge didapatkan hasil terbaik pada LiFePO4/C dengan persentase berat karbon 9% dengan kapasitas discharge 13.3 mAhg-1 dan mengalami penurunan kapasitas sebesar 2.2% setelah cycle ke 100. Penambahan karbon yang berlebihan menurunkan kapasitas LiFePO4

  4. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions

    KAUST Repository

    Li, Yan Vivian

    2014-12-01

    © 2014 Elsevier Inc. Understanding nanoparticle-surface adhesion is necessary to develop inert tracers for subsurface applications. Here we show that nanoparticles with neutral surface charge may make the best subsurface tracers, and that it may be possible to used SiO2 nanoparticle retention to measure the fraction of solid surface that has positive charge. We show that silica nanoparticles dispersed in NaCl electrolyte solutions are increasingly retained in calcium carbonate (calcite) sand-packed columns as the solution ionic strength increases, but are not retained if they are injected in pure water or Na2SO4 electrolyte solutions. The particles retained in the NaCl experiments are released when the column is flushed with pure water or Na2SO4 solution. AFM measurements on calcite immersed in NaCl solutions show the initial repulsion of a silica colloidal probe as the surface is approached is reduced as the solution ionic strength increases, and that at high ionic strengths it disappears entirely and only attraction remains. These AFM measurements and their interpretation with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory shows the calcite surface charge is always negative for Na2SO4 solutions, but changes from negative to positive in a patchy fashion as the ionic strength of the NaCl solution increases. Since mixed-charge (patchy) surfaces may be common in the subsurface, nanoparticles with near-zero charge may make the best tracers.

  5. Onsager’s reciprocal relations in electrolyte solutions. I. Sedimentation and electroacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Gourdin-Bertin, S.; Bernard, O.; Jardat, M. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris (France); Chassagne, C. [Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris (France); Environmental Fluid Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2600 GA Delft (Netherlands)

    2015-08-14

    In the framework of irreversible thermodynamics, we show that the sedimentation current in electrolyte solutions is mathematically equivalent to the low frequency limit of the ionic vibration current, appearing in the presence of an acoustic wave. This non-trivial result is obtained thanks to a careful choice of the reference frame used to express the mass fluxes in the context of electroacoustics. Coupled transport phenomena in electrolyte solutions can also be investigated in a mechanical framework, with a set of Newtonian equations for the dynamics of charged solutes. Both in the context of sedimentation and of electroacoustics, we show that the results obtained in the mechanical framework, in the ideal case (i.e., without interactions between ions), do satisfy the Onsager’s reciprocal relations. We also derive the general relation between corrective forces accounting for ionic interactions which must be fulfilled so that the Onsager’s reciprocal relations are verified. Finally, we show that no additional diffusion term needs to be taken into account in the flux of solutes (far from the walls), even if local concentration gradients exist, contrarily to what was done previously in the literature.

  6. A study on the reaction between CO2 and alkanolamines in aqueous solutions

    NARCIS (Netherlands)

    Blauwhoff, P.M.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1983-01-01

    Literature data on the rates of reaction between CO2 and alkanolamines (MEA, DEA, DIPA, TEA and MDEA) in aqueous solution are discussed. These data induced us to carry out absorption experiments of CO2 into aqueous DEA, DIPA, TEA and MDEA solutions from which the respective rate constants were deriv

  7. A study on the reaction between CO2 and alkanolamines in aqueous solutions

    NARCIS (Netherlands)

    Blauwhoff, P.M.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1984-01-01

    Literature data on the rates of reaction between CO2 and alkanolamines (MEA, DEA, DIPA, TEA and MDEA) in aqueous solution are discussed. These data induced us to carry out absorption experiments of CO2 into aqueous DEA, DIPA, TEA and MDEA solutions from which the respective rate constants were deriv

  8. In Situ Structural Characterization of Ferric Iron Dimers in Aqueous Solutions

    DEFF Research Database (Denmark)

    Zhu, Mengqiang; Puls, Brendan W.; Frandsen, Cathrine

    2013-01-01

    The structure of ferric iron (Fe3+) dimers in aqueous solutions has long been debated. In this work, we have determined the dimer structure in situ in aqueous solutions using extended X-ray absorption fine structure (EXAFS) spectroscopy. An Fe K-edge EXAFS analysis of 0.2 M ferric nitrate solutio...

  9. Density, Viscosity, Solubility, and Diffusivity of N2O in Aqueous Amino Acid Salt Solutions

    NARCIS (Netherlands)

    Kumar, P. Senthil; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2001-01-01

    Solubility and diffusivity of N2O in aqueous solutions of potassium taurate are reported over a wide range of concentration and temperature. Also, the solubility of N2O in aqueous potassium glycinate solution is reported at 295 K. The ion specific constants are reported for taurate and glycinate ani

  10. The photochemical decomposition of Indol in an aqueous solution; Descomposicion fotoquimica de Indol en solucion acuosa

    Energy Technology Data Exchange (ETDEWEB)

    Ibarz, A.; Tejero, J.M.; Panades, R.

    1998-06-01

    The photo decomposition of Indol at different pH has been studied. The Indol photo decomposition rate in aqueous solution a maximum at pH 10. By means of a simple mechanism in three steps, it is possible to explain the kinetics behavior of the Indol photo decomposition in aqueous solution. (Author) 6 refs.

  11. Formation of quasi-free and bubble positronium states in water and aqueous solutions

    CERN Document Server

    Stepanov, Serge V; Byakov, Vsevolod M; Zvezhinskiy, D S; Subrahmanyam, V S

    2013-01-01

    It is shown that in aqueous solutions a positronium atom is first formed in the quasi-free state, and, after 50-100 ps, becomes localized in a nanobubble. Analysis of the annihilation spectra of NaNO3 aqueous solutions shows that the hydrated electron is not involved in the positronium (Ps) formation.

  12. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    Science.gov (United States)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  13. Application of annealed red mud to Mn(2+) ion adsorption from aqueous solution.

    Science.gov (United States)

    Chen, Hongliang; Zheng, Juan; Zhang, Zhongqiong; Long, Qian; Zhang, Qiuyun

    2016-01-01

    Physicochemical characteristics and Mn(2+) adsorption of annealed red mud were investigated in this study. The annealing temperature (105-900 °C) changed the mineralogical components and the point of zero charge of red mud. By comparison, annealed red mud at 700 °C (ARM700) had a better adsorption effect than other annealed samples, associated with the activated components of available Fe2O3, Al2O3, SiO2 and Na5Al3(SiO4)3CO3 (natrodavyne). The removal efficiency of Mn(2+) by ARM700 was dependent on initial pH, contact time, and initial Mn(2+) concentration of aqueous solution and was ∼56.5% with initial Mn(2+) concentration 385 mg/L at initial pH > 5. The kinetics process was predicted better by the pseudo-second-order model. The Langmuir isotherm displayed a better fitting model than the Freundlich isotherm and the Mn(2+) maximum adsorption capacity of ARM700 was 88.3 mg/g. The competing effects of Cu(2+) and Zn(2+) on Mn(2+) removal were most obvious. There was efficient Mn(2+) removal at the application of ARM700 to the leachate of electrolytic manganese residue.

  14. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    Science.gov (United States)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  15. Removal of nitrate and phosphate from aqueous solutions by microalgae

    Directory of Open Access Journals (Sweden)

    M.H. Sayadi

    2016-12-01

    Full Text Available The aim of this study was to evaluate the ability of microalgae Spirulina platensis and Chlorella vulgaris to remove nitrate and phosphate in aqueous solutions. Spirulina platensis and Chlorella vulgar is microalgae was collected in 1000 ml of municipal water and KNO3, K2HPO4 was added as sources of nitrate and phosphate in three different concentrations (0.25, 0.35 and 0.45g/L. During the growth period, the concentration of nitrate and phosphate was recorded at 1, 4, 6 and 8 days. The highest nitrate removal on the 8 day for Chlorella vulgaris was 89.80% at the treatment of 0.25g/L and for Spirulina platensis was 81.49% at the treatment of 0.25g/L. The highest phosphate removal for Spirulina platensis was 81.49% at the treatment of 0.45g/L and for Chlorella vulgaris was 88% at the treatment of 0.45g/L. The statistical results showed that the amount of phosphate and nitrate removal during different time periods by Chlorella vulgaris depicted a significant difference at P

  16. Electrochemical degradation of amaranth aqueous solution on ACF.

    Science.gov (United States)

    Fan, Li; Zhou, Yanwei; Yang, Weishen; Chen, Guohua; Yang, Fenglin

    2006-09-21

    The degradation of Amaranth, a kind of azo dye, has been studied under galvanostatic model with activated carbon fiber (ACF) electrode in aqueous solution with electrochemical method. The ACF was used as anode and cathode, respectively for the decolorization process. The onset oxidation potential and reduction potential for Amaranth on ACF were respectively ascertained at 0.6 and -0.4 V. During the range of -1.1 to 0.50 mA cm(-2), the decolorization was clarified into three processes as electroreduction, adsorption and electrooxidation. There were little contributions to the color and COD removals for the process of adsorption. The color removal can be up to 99% when the current density was 0.50 mA cm(-2). The maximum COD removal was 52% for the process of electrooxidation. Hundred percent color removal was obtained when the current density of -1.0 mA cm(-2) was applied. The maximum COD removal was 62% for the electroreduction. The COD removal results from the adsorption of products for the decolorization process of electrooxidation or electroreduction.

  17. Cadmium Removal from Aqueous Solutions by Ground Pine Cone

    Directory of Open Access Journals (Sweden)

    H Izanloo, S Nasseri

    2005-01-01

    Full Text Available A study on the removal of cadmium ions from aqueous solutions by pine cone was conducted in batch conditions. Kinetic data and equilibrium removal isotherms were obtained. The influence of different experimental parameters such as contact time, initial concentration of cadmium, pine cone mass and particle size, and temperature on the kinetics of cadmium removal was studied. Results showed that the main parameters that played an important role in removal phenomenon were initial cadmium concentration, particle size and pine cone mass. The necessary time to reach equilibrium was between 4 and 7 hours based on the initial concentration of cadmium. The capacity of cadmium adsorption at equilibrium increased with the decrease of pine cone particle size. The capacity of cadmium adsorption at equilibrium by pine cone increased with the quantity of pine cone introduced (1–4 g/L. Temperature in the range of 20-30°C showed a restricted effect on the removal kinetics (13.56 mg/g at 20°C and a low capacity of adsorption about 11.48 mg/g at 30°C. The process followed pseudo second-order kinetics. The cadmium uptake of pine cone was quantitatively evaluated using adsorption isotherms. Results indicated that the Langmuir model gave a better fit to the experimental data in comparison with the Freundlich equation.

  18. Sonochemical degradation of organophosphorus pesticide in dilute aqueous solutions

    Institute of Scientific and Technical Information of China (English)

    Robina Farooq; FENG Kai-lin; S. F. Shaukat; HUANG Jian-jun

    2003-01-01

    Ultrasonic irradiation was found to accelerate the rate of hydrolysis of omethoate in aqueous solution over the pH range of 2-12. Process parameters studied include pH, steady-state temperature, concentration, and the type of gases. Greater than 96% hydrolysis was observed in 30 minutes through this process and the rate of destruction increased with the help of more soluble and low thermal inert gas. So with Krypton, omethoate was found to undergo rapid destruction as compared with Argon. In the presence of ultrasound, the observed first-order rate of hydrolysis of omethoate is found to be independent of pH. The formation of transient supercritical water(SCW) appears to be an important factor in the acceleration of chemical reactions in the presence of ultrasound. A detailed chemical reaction mechanism for omethoate destruction in water was formulated. Experimental results and theoretical kinetic mechanism demonstrated that the most of the omethoate undergo destruction inside the cavitating holes. A very less effect of temperature on the degradation of omethoate within a temperature range of 20-70℃ proves that a small quantity of omethoate undergoes secondary destruction in the bulk liquid.

  19. SORPTION OF Cu2+ FROM AQUEOUS SOLUTIONS BY SLOVAK BENTONITES

    Directory of Open Access Journals (Sweden)

    ANNA BRTÁŇOVÁ

    2012-03-01

    Full Text Available Bentonites are used as barriers in landfills, or in areas of old mining activities to prevent contamination of environment by leachates containing heavy metals. Batch experiments were performed under static conditions to study sorption of Cu2+ from aqueous solutions via adsorption on industrial products made from Slovak bentonites Lieskovec and Jelšový Potok. The samples were characterized by X-ray powder diffraction, infrared spectroscopy and by specific surface area and cation exchange capacities measurements. Effects of pH, concentration of metal cations and contact time were analysed. The adsorption was strongly dependent on pH of the medium, and the uptake of adsorbed metal increased from pH 2.0 to 6.5, while the solubility of Cu at higher pH values decreased. The uptake of Cu2+ was rapid and it increased with increasing metal concentration, while the relative amount of adsorbed Cu2+ decreased. The equilibrium adsorption capacity of the adsorbents used for Cu2+ was extrapolated using the linear Freundlich and Langmuir adsorption isotherms. The Langmuir isotherm was found to fit better the experimental data measured for both bentonites.

  20. Adsorption removal of thiocyanate from aqueous solution by calcined hydrotalcite

    Institute of Scientific and Technical Information of China (English)

    LI Yu-jiang; YANG Min; ZHANG Xiao-jin; WU Tao; CAO Nan; WEI Na; BI Yan-jun; WANG Jing

    2006-01-01

    A hydrotalcite with Mg/Al molar ratio 2 was prepared by co-precipitation method and was characterized by XRD,TG/DTA, Zeta potential and BET surface area. The hydrotalcite was calcined at 500℃, with the dehydration from interlayer, the dehydroxilation from the brucite-like layer and the decomposition of carbonate successively, transformed into the mixed oxide type.The removal of thiocyanate from aqueous solution by using the original hydrotalcite and calcined hydrotalcite (HTC-500) was investigated. The results showed that the thiocyanate adsorption capacity of calcined hydrotalcite was much higher than that of the original form. Calcined hydrotalcite was particularly effective at removing thiocyanate, and that the effective range of pH for the thiocyanate removal are between 5.5-10.0. The experimental data of thiocyanate removal fit nicely with Langmuir isotherm, and the saturated adsorption uptake was 96.2 mg SCN-/g HTC-500. The adsorption ofthiocyanate by calcined hydrotalcite follows first-order kinetics. And the intercalation to the structure recovery for calcined hydrotalcite. But the presence of additional anions could affect the adsorption behavior of thiocyanate.

  1. Adsorption removal of thiocyanate from aqueous solution by calcined hydrotalcite.

    Science.gov (United States)

    Li, Yu-Jiang; Yang, Min; Zhang, Xiao-Jin; Wu, Tao; Cao, Nan; Wei, Na; Bi, Yan-Jun; Wang, Jing

    2006-01-01

    A hydrotalcite with Mg/Al molar ratio 2 was prepared by co-precipitation method and was characterized by XRD, TG/DTA, Zeta potential and BET surface area. The hydrotalcite was calcined at 500 degrees C, with the dehydration from interlayer, the dehydroxilation from the brucite-like layer and the decomposition of carbonate successively, transformed into the mixed oxide type. The removal of thiocyanate from aqueous solution by using the original hydrotalcite and calcined hydrotalcite (HTC-500) was investigated. The results showed that the thiocyanate adsorption capacity of calcined hydrotalcite was much higher than that of the original form. Calcined hydrotalcite was particularly effective at removing thiocyanate, and that the effective range of pH for the thiocyanate removal are between 5.5-10.0. The experimental data of thiocyanate removal fit nicely with Langmuir isotherm, and the saturated adsorption uptake was 96.2 mg SCN-/g HTC-500. The adsorption of thiocyanate by calcined hydrotalcite follows first-order kinetics. And the intercalation to the structure recovery for calcined hydrotalcite. But the presence of additional anions could affect the adsorption behavior of thiocyanate.

  2. Lifetimes of -halo and -azidobenzyl carbocations in aqueous solution

    Indian Academy of Sciences (India)

    R Sanjeev; V Jagannadham

    2002-02-01

    The title cations were produced in aqueous solution by chemical initiation (solvolysis) of benzyl-gem-dihalides and benzyl-gem-diazides. The solvolysis reactions of benzyl-gem-dihalides and benzyl-gem-diazides in water proceed by a stepwise mechanism through -halobenzyl carbocation and -azidobenzyl carbocation intermediates, which are captured by water to give the corresponding carbonyl compounds as the sole detectable products. Rate constant ratio / (M-1) for partitioning of the carbocation between reaction with halide/azide ion and reaction with water is determined by analysis of halide/azide common ion inhibition of the solvolysis reaction. The rate constants (s-1) for the reaction of the cation with solvent water were determined from the experimental values of / and solv, for the solvolysis of the benzyl-gem-dihalides and benzyl-gem-diazides respectively, using = 5 × 109 M-1 s-1 for diffusion-limited reaction of halide/azide ion with -substituted benzyl carbocations. The values of 1/ are thus the lifetimes of the -halobenzyl carbocations and -azidobenzyl carbocations respectively.

  3. The evaporation behavior of sessile droplets from aqueous saline solutions.

    Science.gov (United States)

    Soulié, Virginie; Karpitschka, Stefan; Lequien, Florence; Prené, Philippe; Zemb, Thomas; Moehwald, Helmuth; Riegler, Hans

    2015-09-14

    Quantitative experiments on the evaporation from sessile droplets of aqueous saline (NaCl) solutions show a strong dependence on salt concentration and droplet shape. The experiments were performed with seven decades of initial NaCl concentrations, with various droplet sizes and with different contact angles. The evaporation rate is significantly lower for high salt concentrations and small contact angles than what is expected from the well-accepted diffusion-controlled evaporation scenario for sessile droplets, even if the change of the vapor pressure due to the salt is taken into account. Particle tracking velocimetry reveals that this modification of the evaporation behavior is caused by marangoni flows that are induced by surface tension gradients originating from the local evaporative peripheral salt enrichment. In addition it is found that already very low salt concentrations lead to a pinning of the three phase contact line. Whereas droplets with concentration ≥10(-6) M NaCl are pinned as soon as evaporation starts, droplets with lower salt concentration do evaporate in a constant contact angle mode. Aside from new, fundamental insights the findings are also relevant for a better understanding of the widespread phenomenon of corrosion initiated by sessile droplets.

  4. Photo- and thermal degradation of piroxicam in aqueous solution

    Directory of Open Access Journals (Sweden)

    M Aminuddin

    2011-01-01

    Full Text Available Light and temperature have considerable effect on the degradation of piroxicam in aqueous solutions. The pH and acetate buffer ions also affect the degradation process. The apparent first-order rate constants for the photochemical and thermal degradation of piroxicam have been determined as 2.04-10.01 and 0.86-3.06×10−3 min−1 , respectively. The first-order plots for the degradation of piroxicam showed good linearity within a range of 20-50% loss of piroxicam at pH 2.0-12.0. The rate-pH profile for the photodegradation of piroxicam is a U-shaped curve and for the thermal degradation a bell-shaped curve in the pH range of 2.0-12.0. The thermal degradation of piroxicam was maximum around pH 6.0. It is increased in the presence of acetate ions but was not affected by citrate and phosphate ions.

  5. ADSORPTION FROM AQUEOUS SOLUTION ONTO NATURAL AND ACID ACTIVATED BENTONITE

    Directory of Open Access Journals (Sweden)

    Laila Al-Khatib

    2012-01-01

    Full Text Available Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, paint, cosmetics and food industries. Nowadays, more than 100,000 commercial dyes are available with a total production of 700,000 tones manufactured all over the world annually. About 10-15% of dyes are being disposed off as a waste into the environment after dyeing process. This poses certain hazards and environmental problems. The objective of this study is to investigate the adsorption behavior of Methylene Blue (MB from aqueous solution onto natural and acid activated Jordanian bentonite. Both bentonites are firstly characterized using XRD, FTIR and SEM techniques. Then batch adsorption experiments were conducted to investigate the effect of initial MB concentration, contact time, pH and temperature. It was found that the percentage of dye removal was improved from 75.8% for natural bentonite to reach 99.6% for acid treated bentonite. The rate of MB removal followed the pseudo second order model with a high correlation factor. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir isotherm model was found more representative. The results indicate that bentonite could be employed as a low cost adsorbent in wastewater treatment for the removal of colour and dyes.

  6. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH).

    Science.gov (United States)

    Kumar, Eva; Bhatnagar, Amit; Ji, Minkyu; Jung, Woosik; Lee, Sang-Hun; Kim, Sun-Joon; Lee, Giehyeon; Song, Hocheol; Choi, Jae-Young; Yang, Jung-Seok; Jeon, Byong-Hun

    2009-02-01

    This research was undertaken to evaluate the feasibility of granular ferric hydroxide (GFH) for fluoride removal from aqueous solutions. Batch experiments were performed to study the influence of various experimental parameters such as contact time (1 min-24h), initial fluoride concentration (1-100 mgL(-1)), temperature (10 and 25 degrees C), pH (3-12) and the presence of competing anions on the adsorption of fluoride on GFH. Kinetic data revealed that the uptake rate of fluoride was rapid in the beginning and 95% adsorption was completed within 10 min and equilibrium was achieved within 60 min. The sorption process was well explained with pseudo-first-order and pore diffusion models. The maximum adsorption capacity of GFH for fluoride removal was 7.0 mgg(-1). The adsorption was found to be an endothermic process and data conform to Langmuir model. The optimum fluoride removal was observed between pH ranges of 4-8. The fluoride adsorption was decreased in the presence of phosphate followed by carbonate and sulphate. Results from this study demonstrated potential utility of GFH that could be developed into a viable technology for fluoride removal from drinking water.

  7. Batch liquid-liquid extraction of phenol from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palma, M.S.A.; Shibata, C. [Department of Biochemical Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo-SP (Brazil); Paiva, J.L. [Department of Chemical Engineering, Polytechnical School, University of Sao Paulo, Sao Paulo-SP (Brazil); Zilli, M. [Department of Chemical and Process Engineering, University of Genoa, Genoa (Italy); Converti, A.

    2010-01-15

    The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1 % w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  8. Effect of nanotechnology on heavy metal removal from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    Hoda Kahrizi; Ali Bafkar; Masumeh Farasati

    2016-01-01

    The effect of nanotechnology on cadmium and zinc removal from aqueous solution was investigated. In order to characterize micro and nano phragmites australis adsorbent, we analyzed the data via FTIR, SEM, PSA, and EDX. The effect of various parameters such as pH, contact time, amount of adsorbent and initial concentration, was investigated. The optimum pH for the removal of cadmium for micro and nano phragmites australis adsorbent was 7, and for the removal of zinc by the micro adsorbent was 7 and by nano adsorbent was 6. The equilibrium time of zinc was 90 min and for the adsorption of cadmium by micro and nano adsorbent were 90 and 30 min, respectively. The optimum dose of micro adsorbent for the removal of cadmium was 0.7 g, and the other dose for the removal of zinc and cadmium was 0.5 g. The evaluation of adsorbent’s distribution coefficient showed that the highest rates of distribution coefficient with initial concentration of 5, 10, 30, and 50 mg/L were 394.83, 587.62, 759.39 and 1101.52 L/kg, respectively, which were observed in nano adsorbent. Desorption experiments for the nano adsorbent in three cycles were done. Among kinetics models, our experimental data were more consistent with Hoo kinetic model and for isotherm models, Freundlich isotherm was more consistent. The results show that nanotechnology could increase the performance of adsorbents and enhance the efficiency of the adsorption of cadmium and zinc ions.

  9. Modeling platinum group metal complexes in aqueous solution.

    Science.gov (United States)

    Lienke, A; Klatt, G; Robinson, D J; Koch, K R; Naidoo, K J

    2001-05-07

    We construct force fields suited for the study of three platinum group metals (PGM) as chloranions in aqueous solution from quantum chemical computations and report experimental data. Density functional theory (DFT) using the local density approximation (LDA), as well as extended basis sets that incorporate relativistic corrections for the transition metal atoms, has been used to obtain equilibrium geometries, harmonic vibrational frequencies, and atomic charges for the complexes. We found that DFT calculations of [PtCl(6)](2-).3H(2)O, [PdCl(4)](2-).2H(2)O, and [RhCl(6)](3-).3H(2)O water clusters compared well with molecular mechanics (MM) calculations using the specific force field developed here. The force field performed equally well in condensed phase simulations. A 500 ps molecular dynamics (MD) simulation of [PtCl(6)](2-) in water was used to study the structure of the solvation shell around the anion. The resulting data were compared to an experimental radial distribution function derived from X-ray diffraction experiments. We found the calculated pair correlation functions (PCF) for hexachloroplatinate to be in good agreement with experiment and were able to use the simulation results to identify and resolve two water-anion peaks in the experimental spectrum.

  10. Morphology control of brushite prepared by aqueous solution synthesis

    Directory of Open Access Journals (Sweden)

    T. Toshima

    2014-03-01

    Full Text Available Dicalcium phosphate dihydrate (DCPD, CaHPO4·2H2O, also known as brushite, is one of the important bioceramics due to not only diseases factors such as kidney stone and plaque formation but also purpose as fluoride insolubilization material. It is used medicinally to supply calcium, and is of interest for its unique properties in biological and pathological mineralization. It is important to control the crystal morphology of brushite since its chemical reactivity depends strongly on its surface properties; thus, its morphology is a key issue for its applications as a functional material or precursor for other bioceramics. Here, we report the effects of the initial pH and the Ca and phosphate ion concentrations on the morphology of DCPD particles during aqueous solution synthesis. Crystal morphologies were analyzed by scanning electron microscopy and X-ray diffraction. The morphology phase diagram of DCPD crystallization revealed that increasing the initial pH and/or ion concentration transformed DCPD morphology from petal-like into plate-like structures.

  11. Heavy metal removal from aqueous solutions by activated phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Elouear, Z. [Laboratoire Eau Energie et Environnement, Departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038, Sfax (Tunisia)], E-mail: zouheir.elouaer@tunet.tn; Bouzid, J.; Boujelben, N. [Laboratoire Eau Energie et Environnement, Departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038, Sfax (Tunisia); Feki, M. [Unite de chimie industriel I, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia); Jamoussi, F. [Laboratoire de Georessources CERTE BP 95, 2050 Hamam-Lif (Tunisia); Montiel, A. [Societe Anonyme de Gestion des Eaux de Paris, 9 rue Schoelcher, 75675 Paris cedex 14 (France)

    2008-08-15

    The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N{sub 2}); and, (b) qualified and quantified the interaction of Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+} with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1 h for (PR) and 2 h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb{sup 2+} and 4 and 6 for Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+}. The effect of temperature has been carried out at 10, 20 and 40 deg. C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption ({delta}H{sup o}), free energy ({delta}G{sup o}) and change in entropy ({delta}S{sup o}) were calculated. They show that sorption of Pb{sup 2+}, Cd{sup 2+}, Cu{sup 2+} and Zn{sup 2+}on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH.

  12. Spreading of aqueous SDS solutions over nitrocellulose membranes.

    Science.gov (United States)

    Zhdanov, S A; Starov, V M; Sobolev, V D; Velarde, M G

    2003-08-15

    Experimental investigations were carried out on the spreading of small drops of aqueous SDS solutions over dry thin porous substrates (nitrocellulose membranes) in the case of partial wetting. The time evolution was monitored of the radii of both the drop base and the wetted area inside the porous substrate. The total duration of the spreading process was subdivided into three stages: the first stage: the drop base expands until the maximum value of the drop base is reached, the contact angle rapidly decreases during this stage; the second stage: the radius of the drop base remains constant and the contact angle decreases linearly with time; the third stage: the drop base shrinks and the contact angle remains constant. The wetted area inside the porous substrate expends during the whole spreading process. Appropriate scales were used with a plot of the dimensionless radii of the drop base, of the wetted area inside the porous substrate and the dynamic contact angle on the dimensionless time. Our experimental data show: the overall time of the spreading of drops of SDS solution over dry thin porous substrates decreases with the increase of surfactant concentration; the difference between advancing and hydrodynamic receding contact angles decreases with the surfactant concentration increase; the constancy of the contact angle during the third stage of spreading has nothing to do with the hysteresis of contact angle, but determined by the hydrodynamic reasons. It is shown using independent spreading experiments of the same drops on nonporous nitrocellulose substrate that the static receding contact angle is equal to zero, which supports our conclusion on the hydrodynamic nature of the hydrodynamic receding contact angle on porous substrates.

  13. Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor

    Science.gov (United States)

    Dove, Patricia M.; Crerar, David A.

    1990-04-01

    A hydrothermal mixed flow reactor has been developed to study the reaction kinetics of a wide variety of mineral/solution systems. The reactor is constructed of commercially pure titanium to minimize corrosion and operates at temperatures of 25 to 300°C and pressures up to 124 bars. This system is used to measure the dissolution rates of quartz at near-neutral pH in 0.0 to 0.15 m solutions of NaCl, KCl, LiCl, MgCl 2 over a temperature range of 100 to 300°C. In all cases, small concentrations of electrolytes increase the rate, some by as much as 1.5 orders of magnitude above the values measured for deionized water. The effect is greatest for solutions of NaCl and KCl where reaction rates increase with increasing electrolyte concentrations up to 0.05 molal and become constant at higher molalities. Smaller rate increases are observed for LiCl and MgCl 2 solutions. The first-order rate equation for quartz dissolution in pure water at temperatures of 100 to 300°C is given by r H 4sio 4 = k +(a sio2)(a H 2o ) 2(1 - Q/K) for a standard system of 1 m 2 of surface area and 1 kg of solution. The addition of electrolytes to reacting solutions at near-neutral pH accelerates the rate according to a Langmuir adsorption model and has the form r H 4sio 4 = (k + + k adK me +/1 + k me +)(a sio2)(a H 2o ) 2(1 - Q/K). m me + Analysis of the data indicates that the observed rate increases are controlled by the identity and concentration of the cation where alkali cations coordinate with the surface to increase the reactivity of siloxane groups by disrupting the structure of the mineral-solution interface. The rate-limiting step for the dissolution mechanism is described by (Si - O - Si) + H 2O = (Si - O - Si · OH 2)† → 2(Si - O - H) where the intermediate species is probably the same in deionized water and electrolyte solutions, but the reaction frequency is higher in electrolyte solutions due to increases in the accessibility of water to the mineral surface structures

  14. In situ analysis of the interfacial reactions between MCMB electrode and organic electrolyte solutions

    Science.gov (United States)

    Morigaki, Ken-ichi

    The interfacial phenomena between graphite (mesocarbon-microbeads (MCMB)) electrode and organic electrolyte solution were analyzed by in situ atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. The influence of lithium salts (anion species), LiPF 6, LiBF 4, and LiClO 4, on the interfacial reaction, including lithium intercalation into graphite, was investigated in EC+DMC solutions. In situ AFM observation disclosed that morphological changes are quite different from one another depending on the kind of lithium salt (anion). A large expansion of MCMB particle was observed particularly in LiPF 6/EC+DMC. An expansion of MCMB particle started above 1.0 V versus Li/Li + and this expansion seemed to be caused by the decomposition of ternary graphite intercalation compound (GIC) ( C nLi(sol) y), because the expansion remained after de-intercalation of lithium. IRAS spectra of each electrolyte solution showed different behaviors and different reduction products of solvents. double modulation FTIR (DMFTIR) spectra on graphite electrode, which emphasize the surface species, indicated relatively small changes after cathodic polarization. Therefore, the observed morphological changes were caused mainly by the expansion of graphene layers and not by the precipitation of reduction products.

  15. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    Science.gov (United States)

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  16. Reomoval of Heavy Metals from Aqueous Solutions using Bascteria

    Institute of Scientific and Technical Information of China (English)

    HUANGMin-sheng; PANjing; 等

    2001-01-01

    The accumulation of heavy metals by microbial biomass with high surface area-to-volume ratio holds great potential for heavy metal removal in both soluble and particular forms,especially when the heavy metal concentrations are low(<50mg/L),E.coli and B.Subtilis are effective agents for metal removal.We further investigated the effect of pH,temperature,equilibration time,and pre-treatment reagents on the removal of pH(Ⅱ),Cd(Ⅱ) and Cr(VI) from aqueous solutions by E.Coli and B.subtilis.E.coli and B.subtilis were cultivated for 60 hours,the experimentally determined optimal cultivation time before they were used in metal removal experiments,Under the optimal conditions of pH 6.0,equilibration temperature 30℃ and equilibration time 1 hour,63.39% and 69.90%Cd(Ⅱ) can be removed by E.coli and B.subtilis.Under the optimal conditions of pH5.5,equilibration temperature 30℃ and equliobration time 1 hour,68.51% and 67.36% pB(Ⅱ) can be removed by E.coli and B.subtilis.And under the optimal conditons of pH5.5,equilibration temperature 30℃,and equilibration time 1 hour,60.26% and 54.56% Cr(VI) can be removed by E.coli and B.subtilis.Chemical treatment of cultivated bacteria(0.1mol/L NaOH,0.1mol/L HCl,30% ethanol,and distilled water)affects the efficiency of metal removal by E.coli and B.subtilis,pretreatment of biomass by NaOH enhanced Cd(Ⅱ),Pb(Ⅱ)and Cr(VI) removal,while preteatment by HCl,ethanol and distilled water reduced Ca(Ⅱ) ,Pb(Ⅱ) and Cr(VI) removal,For metal removal from industrial waste discharges,pretreated biomass of E.coli can remove 68.5% of Cd and 58.1% of Cr from solutions,while pretreated biomass of B.subtilis can remove 62.6% of Cd and 57% of Cr from Solutions.

  17. Aqueous Binary Lanthanide(III) Nitrate Ln(NO3)3 Electrolytes Revisited: Extended Pitzer and Bromley Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sayandev; Campbell, Emily L.; Neiner, Doinita; Pence, Natasha; Robinson, Troy; Levitskaia, Tatiana G.

    2015-09-11

    To date, only limited thermodynamic models describing activity coefficients of the aqueous solutions of lanthanide ions are available. This work expands the existing experimental osmotic coefficient data obtained by classical isopiestic technique for the aqueous binary trivalent lanthanide nitrate Ln(NO3)3 solutions using a combination of water activity and vapor pressure osmometry measurements. The combined osmotic coefficient database for each aqueous lanthanide nitrate at 25°C, consisting of literature available data as well as data obtained in this work, was used to test the validity of Pitzer and Bromley thermodynamic models for the accurate prediction of mean molal activity coefficients of the Ln(NO3)3 solutions in wide concentration ranges. The new and improved Pitzer and Bromley parameters were calculated. It was established that the Ln(NO3)3 activity coefficients in the solutions with ionic strength up to 12 mol kg-1 can be estimated by both Pitzer and single-parameter Bromley models, even though the latter provides for more accurate prediction, particularly in the lower ionic strength regime (up to 6 mol kg-1). On the other hand for the concentrated solutions, the extended three-parameter Bromley model can be employed to predict the Ln(NO3)3 activity coefficients with remarkable accuracy. The accuracy of the extended Bromley model in predicting the activity coefficients was greater than ~95% and ~90% for all solutions with the ionic strength up to 12 mol kg-1 and and 20 mol kg-1, respectively. This is the first time that the activity coefficients for concentrated lanthanide solutions have been predicted with such a remarkable accuracy.

  18. Mineralization of paracetamol in aqueous solution with advanced oxidation processes.

    Science.gov (United States)

    Torun, Murat; Gültekin, Özge; Şolpan, Dilek; Güven, Olgun

    2015-01-01

    Paracetamol is a common analgesic drug widely used in all regions of the world more than hundred tonnes per year and it poses a great problem for the aquatic environment. Its phenolic intermediates are classified as persistent organic pollutants and toxic for the environment as well as human beings. In the present study, the irradiation of aqueous solutions of paracetamol with 60Co gamma-rays was examined on a laboratory scale and its degradation path was suggested with detected radiolysis products. The synergic effect of ozone on gamma-irradiation was investigated by preliminary ozonation before irradiation which reduced the irradiation dose from 5 to 3 kGy to completely remove paracetamol and its toxic intermediate hydroquinone from 6 to 4 kGy as well as increasing the radiation chemical yield (Gi values 1.36 and 1.66 in the absence and presence of ozone, respectively). The observed amount of formed hydroquinone was also decreased in the presence of ozone. There is a decrease in pH from 6.4 to 5.2 and dissolved oxygen consumed, which is up to 0.8 mg l(-1), to form some peroxyl radicals used for oxidation. Analytical measurements were carried out with gas chromatography/mass spectrometry and ion chromatography (IC) both qualitatively and quantitatively. Amounts of paracetamol and hydroquinone were measured with gas chromatography after trimethylsilane derivatization. Small aliphatic acids, such as acetic acid, formic acid and oxalic acid, were measured quantitatively with IC as well as inorganic ions (nitrite and nitrate) in which their yields increase with irradiation.

  19. Ultrasound assisted enzymatic depolymerization of aqueous guar gum solution.

    Science.gov (United States)

    Prajapat, Amrutlal L; Subhedar, Preeti B; Gogate, Parag R

    2016-03-01

    The present work investigates the effectiveness of application of low intensity ultrasonic irradiation for the intensification of enzymatic depolymerization of aqueous guar gum solution. The extent of depolymerization of guar gum has been analyzed in terms of intrinsic viscosity reduction. The effect of ultrasonic irradiation on the kinetic and thermodynamic parameters related to the enzyme activity as well as the intrinsic viscosity reduction of guar gum using enzymatic approach has been evaluated. The kinetic rate constant has been found to increase with an increase in the temperature and cellulase loading. It has been observed that application of ultrasound not only enhances the extent of depolymerization but also reduces the time of depolymerization as compared to conventional enzymatic degradation technique. In the presence of cellulase enzyme, the maximum extent of depolymerization of guar gum has been observed at 60 W of ultrasonic rated power and ultrasonic treatment time of 30 min. The effect of ultrasound on the kinetic and thermodynamic parameters as well as the molecular structure of cellulase enzyme was evaluated with the help of the chemical reaction kinetics model and fluorescence spectroscopy. Application of ultrasound resulted in a reduction in the thermodynamic parameters of activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) by 47%, 50%, 65% and 1.97%, respectively. The changes in the chemical structure of guar gum treated using ultrasound assisted enzymatic approach in comparison to the native guar gum were also characterized by FTIR. The results revealed that enzymatic depolymerization of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency index without any change in the core chemical structure which could make it useful for incorporation in food products.

  20. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 136-713 (Korea, Republic of); Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Heejae; Kim, Seongheun [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  1. Effect of electrolyte on the microstructure and yielding of aqueous dispersions of colloidal clay

    OpenAIRE

    Ali, Samim; Bandyopadhyay, Ranjini

    2015-01-01

    Na-montmorillonite is a natural clay mineral and is available in abundance in nature. The aqueous dispersions of charged and anisotropic platelets of this mineral exhibit non-ergodic kinetically arrested states ranging from soft glassy phases dominated by interparticle repulsions to colloidal gels stabilized by salt induced attractive interactions. When the salt concentration in the dispersing medium is varied systematically, viscoelasticity and yield stress of the dispersion show non-monoton...

  2. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  3. Thermodynamics of polyamide separation membrane in contact with aqueous solutions

    Science.gov (United States)

    Zhang, Xijing

    Composite reverse osmosis (RO) membranes, which are typically comprised of a polyamide active-layer that is formed by interfacial polymerization on a porous polysulfone support, are widely used in technologies for desalination and water purification. The water permeation and the rejection of salts or other contaminants are mainly determined by the transport properties of the polyamide active layer. Both the permeabilities of water and salt are described using solution-diffusion model and the mechanism of salt distribution in polyamide is distinguished into ion-exchange and ion partitioning. The ion partition coefficient κ in the active layer is a key thermodynamic parameter that partially controls the ability of the membrane to desalinate water. FT30 membranes are soaked in aqueous solutions of CsCl, KBr, or Na 2WO4, freeze-dried to remove water without disturbing ion distribution, and analyzed by Rutherford backscattering spectrometry. κ is calculated as ˜ 6 from the ion concentration in active layer measured using RBS and porosity in the polysulfone support layer is also derived as 40--50% from RBS data. Stress change induced by salt distribution is investigated with an optical system. Stress goes up to 9 MPa for transferred polyamide active layer from commercial RO membrane FT30 and 8 MPa for lab-synthesized polyamide film. The saturation in stress change is due to the pre-occupation of ions onto all the stress-related sites. The absorption of water in reverse osmosis membranes FT30 and LF10 is investigated by a combination of measurements of water mass uptake and biaxial stress as a function of relative humidity. Water solubility in polyamide active layer is 12 wt% at a relative humidity of 95%. The slope of a water concentration versus humidity curve can be used to calculate inter-diffusivity of water in polyamide active layers. By combining the measurements of water mass uptake and biaxial stress, we estimate the specific volume of water in the active

  4. Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X-.

    Science.gov (United States)

    Kurahashi, Naoya; Karashima, Shutaro; Tang, Ying; Horio, Takuya; Abulimiti, Bumaliya; Suzuki, Yoshi-Ichi; Ogi, Yoshihiro; Oura, Masaki; Suzuki, Toshinori

    2014-05-07

    The streaming potentials of liquid beams of aqueous NaCl, NaBr, and NaI solutions are measured using soft X-ray, He(I), and laser multiphoton ionization photoelectron spectroscopy. Gaseous molecules are ionized in the vicinity of liquid beams and the photoelectron energy shifts are measured as a function of the distance between the ionization point and the liquid beam. The streaming potentials change their polarity with concentration of electrolytes, from which the singular points of concentration eliminating the streaming potentials are determined. The streaming currents measured in air also vanish at these concentrations. The electron binding energies of liquid water and I(-), Br(-), and Cl(-) anions are revisited and determined more accurately than in previous studies.

  5. Conductivity and Viscosity Measurements for Binary Lysozyme Chloride Aqueous Solution and Ternary Lysozyme-Salt-Water Solution

    CERN Document Server

    Buzatu, D; Buzatu, F D

    2004-01-01

    We use the conductimetric method, adequate to electrolytes, to determine the lysozyme charge in lys-water and ternary lys-salt-water systems. We measured also the viscosities for the above binary and ternary systems in the same conditions at pH$=4.5$ and T$=298$ K, measurements that allow us to see any effect of viscosity on cations mobilities and implicitly on the lysozyme charge. The method is illustrated for the lysozyme chloride aqueous solution system at 25$^o$ C, using the data reported here for pH$=4.5$ at 0.15, 0.6, 0.8, 1., 1.5, 2., 2.5, 3., 3.5 mM (mg/mL) lysozyme chloride concentrations. The method was also applied to ternary lys-salt-water systems in the same conditions at pH$=4.5$ and T$=25^o$ C. Ternary conductivities are reported for a mean concentration 0.6 mM of lysozyme chloride in all systems and a mean concentration 0.01, 0.025, 0.05, 0.1, 0.175, 0.2, 0.5, 0.7, 0.9, 1.2, 1.3 and 1.4 M for NaCl; 0.005, 0.01, 0.05, 0.1, 0.175, 0.2, 0.5, 0.7, 0.9, 1.2, 1.3, 1.4 and 1.5 M for KCl; 0.005, 0.01,...

  6. Kinetics of the decomposition and the estimation of the stability of 10% aqueous and non-aqueous hydrogen peroxide solutions

    Directory of Open Access Journals (Sweden)

    Zun Maria

    2014-12-01

    Full Text Available In this study, the stability of 10% hydrogen peroxide aqueous and non-aqueous solutions with the addition of 6% (w/w of urea was evaluated. The solutions were stored at 20°C, 30°C and 40°C, and the decomposition of hydrogen peroxide proceeded according to first-order kinetics. With the addition of the urea in the solutions, the decomposition rate constant increased and the activation energy decreased. The temperature of storage also affected the decomposition of substance, however, 10% hydrogen peroxide solutions prepared in PEG-300, and stabilized with the addition of 6% (w/w of urea had the best constancy.

  7. On the influence of molecular structure on the conductivity of electrolyte solutions - sodium nitrate in water

    Directory of Open Access Journals (Sweden)

    H. Krienke

    2013-01-01

    Full Text Available Theoretical calculations of the conductivity of sodium nitrate in water are presented and compared with experimental measurements. The method of direct correlation force in the framework of the interionic theory is used for the calculation of transport properties in connection with the associative mean spherical approximation (AMSA. The effective interactions between ions in solutions are derived with the help of Monte Carlo and Molecular Dynamics calculations on the Born-Oppenheimer level. This work is based on earlier theoretical and experimental studies of the structure of concentrated aqueous sodium nitrate solutions.

  8. Simulation study of the ferrous ferric electron transfer at a metal--aqueous electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B.B.; Halley, J.W. (School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States))

    1994-12-15

    We report a new simulation study of the rate of ferrous--ferric electron transfer at a metal electrolyte interface. In contrast with earlier work, new features in our study include a detailed account of the effects of the field associated with the charging of the electrode, inclusion of entropic effects in the calculated free energy barriers, and a study of the dependence of the relevant free energy surfaces on the distance of the ion from the electrode. The qualitative picture of the reaction mechanism which emerges is significantly more detailed than that in earlier work. The dominant factors in determining the rate and mechanisms of electron transfer are the distance dependence of the work function of the metal, the redox species concentration profile, and the electronic matrix element. Calculated free energy barriers are consistent with experimentally measured ones. We also estimate the equilibrium potential for this reaction from the model, and find it to be consistent with the experimental equilibrium potential.

  9. Cold-preserved human spermatozoa in electrolyte-free solution retain their penetration capacity

    Institute of Scientific and Technical Information of China (English)

    全松; 周海宽; 山野修司; 中坂尚代; 青野敏博

    2003-01-01

    Objective: To evaluate penetration capacity of human sperm preserved in electrolyte-free (EF) solution at 4 ℃.Methods: The motility, acrosomal status penetration rate and fertility index of human sperm were assessed before and after cold-preservation in EF solution, respectively.Results: The motility of human sperm cold-preserved in EF solution for 1 week was significantly higher than that of human sperm cold-preserved in modified human tubal fluid (mHTF) (43.4%±7.9% vs 9.5%±2.5%, P0.05), the percentage of capacitated and acrosome-reacted sperm in the EF solution significantly increased after reinitiation (capacitated sperm: 16.0%±2.3% vs 7.6±1.8%, acrosome-reacted sperm: 9.4%±2.1% vs 3.0%±1.7%, P0.05).Conclusion: Cold-preservation did not induce capacitation and acrosome reaction of human sperm in the EF solution, but human sperm cold-preserved in the EF solution for 1 week possesses as much penetration capacity as fresh sperm.

  10. Effect of Ringer's Solution on Wear and Friction of Stainless Steel 316L after Plasma Electrolytic Nitrocarburising at Low Voltages

    Institute of Scientific and Technical Information of China (English)

    N. Afsar Kazerooni; M.E. Bahrololoom; M.H. Shariat; F.Mahzoon; T. Jozaghi

    2011-01-01

    A plasma electrolytic nitrocarburising (PEN/C) process was performed on stainless steel 316L to improve the surface properties for using as medical implants. A bath was optimised to reduce the required voltage to 150 volts. Aqueous urea-based solutions with 10% NH4Cl were prepared with slightly different amounts of Na2CO3 to optimise the electrolyte composition. The surface and the cross-section morphologies were studied by scanning electron microscopy. The microstructure and the chemical composition of samples were investigated by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques. The microstructure of the outer layer of the coatings was found to be a complex oxide containing Cr and Fe. The wear properties of the samples were examined by using a pin on disk wear test with Ringer's solution and were compared with their wear properties in the ambient atmosphere. The Ringe(s solution acted as a lubricant, reducing friction coefficient. Hardness and roughness were also studied. The bath with the composition of 10% NH4CI and 3% Na2CO3 exhibited the best tribological properties. The results showed that the tribological properties of treated samples were improved and the wear mechanism was abrasion of the pin.

  11. Laser-induced photoelectrochemistry: scavenging of photoemitted electrons in aqueous and non-aqueous solutions by electroactive organic species

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J.H. (Lawrence Livermore Lab., CA); Kovalenko, L.J.; Deutscher, S.B.; Harrar, J.E.; Perone, S.P.

    1980-01-01

    Photoemission current at a mercury electrode has been characterized electrochemically for aqueous solutions of methyl viologen, the disodium salt of anthraquinone-1,5-disulfonic acid, hydroquinone, p-benzoquinone, and chlorophyllin, and in DMF solutions of N/sub 2/O and anthraquinone. The scavenging species could be determined by comparing photoemission current-voltage curves with polarographic and cyclic voltammetric data. 11 figures.

  12. Complexation and synergistic boundary lubrication of porcine gastric mucin and branched poly(ethyleneimine) in neutral aqueous solution

    DEFF Research Database (Denmark)

    Patil, Navinkumar J.; Sankaranarayanan, Rishikesan; Nikogeorgos, Nikolaos

    2017-01-01

    -freebuffer solution, their mixtures produced a synergistic lubricating effect by reducing friction coefficientsby nearly two orders of magnitude, especially at slow sliding speed in the boundary lubrication regime.An array of spectroscopic studies revealed that small cationic b-PEI molecules were able to stronglybind......Lubrication of soft polydimethylsiloxane (PDMS) elastomer interfaces was studied in aqueous mixtures ofporcine gastric mucin (PGM) and branched polyethyleneimine (b-PEI) at neutral pH and various ionicstrengths (0.1–1.0 M). While neither PGM nor b-PEI improved lubrication compared to polymer...... and penetrate into large anionic PGM molecules, producing an overall contraction of the randomlycoiled PGM conformation. The interaction also affected the structure of the folded PGM proteinterminals, decreased the surface potential and increased light absorbance in PGM:b-PEI mixtures. Addingan electrolyte (Na...

  13. Theory of space-charge polarization for determining ionic constants of electrolytic solutions.

    Science.gov (United States)

    Sawada, Atsushi

    2007-06-14

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA+(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  14. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    Institute of Scientific and Technical Information of China (English)

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai

    2005-01-01

    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  15. Formation and disappearance of superoxide radicals in aqueous solutions. [79 references

    Energy Technology Data Exchange (ETDEWEB)

    Allen, A O; Bielski, B H.J.

    1980-01-01

    A literature review of superoxide radicals in aqueous solutions is presented covering the following: history; methods of formation of aqueous HO/sub 2//HO/sub 2//sup -/ by radiolysis and photolysis, electrolysis, mixing nonaqueous solutions into water, chemical reactions, enzymatic generation of O/sub 2//sup -/, and photosensitization; and properties of HO/sub 2//O/sub 2//sup -/ in aqueous solution, which cover spontaneous dismutation rates, pk and absorption spectra, catalyzed dismutation, thermodynamics and the so-called Haber-Weiss Reaction.

  16. Linear polymer aqueous solutions in soft lubrication:From boundary to mixed lubrication

    Institute of Scientific and Technical Information of China (English)

    LIU; ShuHai; TAN; GuiBin; WANG; DeGuo

    2013-01-01

    In order to better understand linear polymer aqueous solutions in soft lubrication from boundary to mixed lubrication,poly(ethylene glycol) and sodium hyaluronateare used as model polymers were investigated by using UMT-2 tribometer with the ball-on-disk mode. The relationship between the master Stribeck curves of the polymer aqueous solutions and the influence factors were investigated. Experimental results indicated that soft lubrication is determined by lubricant rheological properties and surface-lubricant interactions, e.g., wetting behavior of polymer aqueous solution on tribological surfaces.

  17. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael

    2014-01-01

    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different...... experimental techniques including isochoric pressure search method and a DSC method are used to measure the hydrate dissociation conditions. A comparison is finally made with the literature data. It is expected that this study provides better understanding of hydrate phase equilibria associated with CO2...... capture. © 2014 Elsevier Ltd....

  18. Evaluation of the tapered PMMA fiber sensor response due to the ionic interaction within electrolytic solutions

    Science.gov (United States)

    Batumalay, M.; Rahman, H. A.; Kam, W.; Ong, Y. S.; Ahmad, F.; Zakaria, R.; Harun, S. W.; Ahmad, H.

    2014-01-01

    A tapered plastic multimode fiber (PMMA) optical sensor is proposed and demonstrated for continuous monitoring of solutions based on different concentration of sodium chloride and glucose in deionized water The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 mm and 10 mm, respectively, and was used to investigate the effect of straight, U-shape, and knot shape against concentration for both sodium chloride and glucose. The results show that there is a strong dependence of the electrolytic and non-electrolytic nature of the chemical solutions on the sensor output. It is found that the sensitivity of the sodium chloride concentration sensor with the straight tapered fiber probe was 0.0023 mV/%, which was better than the other probe arrangements of U-shape and knot. Meanwhile, the glucose sensor performs with the highest sensitivity of 0.0026 mV/wt % with the knot-shaped tapered fiber probe. In addition, a tapered PMMA probe which was coated by silver film was fabricated and demonstrated using calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observed increment in the transmission of the sensor that is immersed in solutions of higher concentration. As the concentration varies from 0 ppm to 6 ppm, the output voltage of the sensor increases linearly from 3.61 mV to 4.28 mV with a sensitivity of 0.1154 mV/ppm and a linearity of more than 99.47%. The silver film coating increases the sensitivity of the proposed sensor due to the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber.

  19. Cryo-irradiation as a terminal method for the sterilization of drug aqueous solutions.

    Science.gov (United States)

    Maquille, Aubert; Habib Jiwan, Jean-Louis; Tilquin, Bernard

    2008-05-01

    The aim of this study is to evaluate the specificities of the irradiation of drugs in frozen aqueous solution. The structures of the degradation products were determined to gain insight into the radiolysis mechanisms occurring in frozen aqueous solutions. Metoclopramide hydrochloride and metoprolol tartrate were chosen as models. The frozen solutions were irradiated at dry ice temperature by high energy electrons at various doses. The drug purity (chemical potency) and the radiolysis products were quantified by HPLC-DAD. Characterization of the degradation products was performed by LC-APCI-MS-MS. The structures of the radiolysis products detected in irradiated frozen aqueous solutions were compared to those detected in solid-state and aqueous solutions (previous studies). For both metoclopramide and metoprolol, solute loss upon irradiation of frozen aqueous solutions was negligible. Five radiolysis products present in traces were identified in irradiated metoclopramide frozen solutions. Three of them were previously identified in solid-state irradiated metoclopramide crystals. The two others were formed following reactions with the hydroxyl radical (indirect effect). Only one fragmentation product was observed in irradiated metoprolol frozen solutions. For both drugs, radiosterilization of frozen solutions, even at high doses (25 kGy), was found to be possible.

  20. 1,3-DIPOLAR CYCLOADDITION OF PHENYL AZIDE TO NORBORNENE IN AQUEOUS-SOLUTIONS

    NARCIS (Netherlands)

    Wijnen, J.W; Steiner, R.A.; Engberts, J.B.F.N.

    1995-01-01

    Second-order rate constants for the cycloaddition of phenyl azide to norbornene were determined in aqueous solutions. In organic solvents this reaction shows a very small solvent effect. In highly aqueous media, however, remarkable accelerations are observed. The solvent dependence of the rate const

  1. [Extraction of 2-amino-4-nitrophenol and 4-phenylphenol from aqueous solutions].

    Science.gov (United States)

    Fursova, I A; Shormanov, V K

    2002-01-01

    The authors provide the results of extraction of 2-amino-4-nitrophenol and 4-phenilphenol from aqueous solutions by five organic soluvants. The dependence of the extraction degree on some factors (nature of extragent, pH of aqueous phase medium, extragents saturation with water) was established. Necessary extraction rate for isolation of preset quality of the test substances was calculated.

  2. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    Science.gov (United States)

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  3. Pulse radiolysis of tetrazolium violet in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, A. [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary)], E-mail: akovacs@iki.kfki.hu; Wojnarovits, L.; Palfi, T. [Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest (Hungary); Emi-Reynolds, G. [Radiation Protection Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Fletcher, J. [Department of Physics, University of Cape Coast, Cape Coast (Ghana)

    2008-09-15

    The radiolytic reduction of colourless tetrazolium salts to coloured formazans in liquid and solid state is suggested for dosimetry purposes. In order to clarify the reaction mechanism, a pulse radiolysis study was conducted in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions. Under reducing conditions, fast formation of the electron adduct tetrazolinyl radical was observed: coloured formazan final product formed during the decay of electron adduct. Both the decay of the tetrazolinyl radical and the formation of the formazan were found to be second order. The spectra of the formazan were similar in neutral and alkaline solutions, but with higher absorbance in the latter solutions due to the higher molar absorption coefficient. Under oxidative conditions formazan did not form; hydroxylated products through OH-adducts were observed in the pH range studied.

  4. Pulse radiolysis of tetrazolium violet in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions

    Science.gov (United States)

    Kovács, A.; Wojnárovits, L.; Pálfi, T.; Emi-Reynolds, G.; Fletcher, J.

    2008-09-01

    The radiolytic reduction of colourless tetrazolium salts to coloured formazans in liquid and solid state is suggested for dosimetry purposes. In order to clarify the reaction mechanism, a pulse radiolysis study was conducted in aqueous and aqueous-alcoholic solutions under oxidative and reductive conditions. Under reducing conditions, fast formation of the electron adduct tetrazolinyl radical was observed: coloured formazan final product formed during the decay of electron adduct. Both the decay of the tetrazolinyl radical and the formation of the formazan were found to be second order. The spectra of the formazan were similar in neutral and alkaline solutions, but with higher absorbance in the latter solutions due to the higher molar absorption coefficient. Under oxidative conditions formazan did not form; hydroxylated products through OH-adducts were observed in the pH range studied.

  5. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  6. Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction

    NARCIS (Netherlands)

    Demmink, J.F; vanGils, I.C.F.; Beenackers, A.A C M

    1997-01-01

    The absorption of nitric oxide (NO) into aqueous solutions of ferrous chelates of nitrilotriacetic acid (NTA), ethylene diaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid (HEDTA), and diethylenetriaminepentaacetic acid (DTPA) was studied in a stirred cell reactor. Experimental cond

  7. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    Science.gov (United States)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  8. Modeling Electrolytically Top-Gated Graphene

    Directory of Open Access Journals (Sweden)

    Mišković ZL

    2010-01-01

    Full Text Available Abstract We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomenon is modeled using a modified Poisson–Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene’s doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.

  9. Albendazole Solubilization in Aqueous Solutions of Nicotinamide: Thermodynamics and Solute Solvent Interactions

    Directory of Open Access Journals (Sweden)

    Sushree Tripathy

    2013-12-01

    Full Text Available The present study deals with experiments so as to highlight the solute (drug albendazole – solvent ( water interactions and related thermodynamic modifications in presence of the hydrotropic agent nicotinamide at different temperatures T (= 298.15 to 313.15K. Density and conductivity values of albendazole have been determined in water in (0.2, 0.4, 0.6, 0.8, 1 and 2 mol dm-3 aqueous solutions of nicotinamide at temperatures T(= 298.15, 303.15, 308.15 and 313.15K, where as solubility was studied at 308.15. A concentration dependent solubility enhancement of albendazole was observed. The solubility data was treated to obtain the concentration dependent solubilization efficiency and the Gibbs free energy of transfer (∆G0tr of albendazole from pure water to the solvent systems. From the density values, the limiting partial molar volumes and expansibilities have been calculated. The limiting molar conductance (L0 and Arrhenius activation energy (Es values have been calculated from the generated conductance values. The thermo physical parameters were discussed in terms of solute solvent interactions.

  10. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  11. a Molecular Approach to Electrolyte Solutions: Predicting Phase Behavior and Thermodynamic Properties of Single and Binary-Solvent Systems

    Science.gov (United States)

    Gering, Kevin Leslie

    A molecular formulation based on modern liquid state theory is applied to the properties and phase behavior of electrolyte systems containing volatile species. An electrolyte model based on the exponential modification of the Mean Spherical Approximation (EXP-MSA) is used to describe the cation-cation, cation-anion, and anion-anion distributions of the ionic species. This theory represents an improvement over the nonmodified MSA approach, and goes beyond the usual Debye-Huckel theory and Pitzer correlation for treating concentrated solutions. Electrolyte solutions such as water-salt, ammonia-salt, mixed salts, and mixed -solvent systems are investigated over a wide range of temperatures, pressures, and compositions. The usual salt properties, such as osmotic and mean activity coefficients and other thermodynamic properties (enthalpies), are calculated. The predictions are accurate to saturation limits. In addition, an iterative method is presented that is used to predict vapor-liquid equilibria (VLE) and thermodynamic properties of single-salt multisolvent electrolytes of the form solvent-cosolvent-salt. In this method, a local composition model (LCM) and EXP-MSA theory are combined with traditional phase equilibria relations to estimate the pressures and compositions of a vapor phase in equilibrium with a binary-solvent electrolyte. Also, a pseudo-solvent model is proposed as a means of obtaining a variety of averaged liquid phase electrolyte properties. To predict preferential solvation in mixed solvents, a general framework is developed that is based on predicted solvation numbers of each solvent. Preferential solvation will be shown to influence VLE. Results show that phase equilibria is accurately predicted by the above iterative method. Three mixed-solvent electrolyte systems are investigated: water -ethylene glycol-LiBr, ammonia-water-LiBr, and methanol -water-LiCl. Finally, the above electrolyte model is utilized in predicting design criteria for a single

  12. Removal of Cadmium and Lead Ions from Aqueous Solution by Nanocrystalline Magnetite Through Mechanochemical Activation

    OpenAIRE

    Mohsen Hosseinzadeh; Seyyed Ali Seyyed Ebrahimi; Shahram Raygan; Seyed Morteza Masoudpanah

    2016-01-01

    In this study, the removal of cadmium and lead ions from aqueous solution by nanocrystalline magnetite was investigated. The nanocrystalline magnetite was synthesized by mechanochemical activation of hematite in a high energy planetary mill in argon atmosphere for 45 hours. The ability of the synthesized nanocrystalline magnetite for removal of Cd(II) and Pb(II) from aqueous solutions was studied in a batch reactor under different experimental conditions with different pHs, contact times, ini...

  13. Pervaporation of Aqueous Solution of Acetaldehyde Through ZSM-5 Filled PDMS Composite Membrane

    Institute of Scientific and Technical Information of China (English)

    伍艳辉; 谭惠芬; 李佟茗; 金源

    2012-01-01

    Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane (PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution. The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Their structural morphology and thermal stability were also examined. The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25℃,

  14. Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution

    NARCIS (Netherlands)

    Haas, C; Drenth, J; Wilson, WW

    1999-01-01

    Tn recent publications it was pointed out that there is a correlation between the observed values of the solubility of proteins in aqueous solutions and the second virial coefficient of the solution. In this paper we give a theoretical explanation of this relation. The derived theoretical expression

  15. Dynamics of Magnesite Formation at Low-Temperature and High pCO2 in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Odeta; Dixon, David A.; Rosso, Kevin M.; Schaef, Herbert T.; Bowden, Mark E.; Arey, Bruce W.; Felmy, Andrew R.

    2015-09-17

    Like many metal carbonate minerals, despite conditions of supersaturation, precipitation of magnesite from aqueous solution is kinetically hindered at low temperatures, for reasons that remain poorly understood. The present study examines precipitation products from reaction of Mg(OH)2 in aqueous solutions saturated with supercritical CO2 at high pressures (90 atm and 110 atm) and low temperatures (35 °C and 50 °C). Traditional bulk characterization (X-ray diffraction) of the initial solid formed indicated the presence of hydrated magnesium carbonates (hydromagnesite and nesquehonite), thermodynamically metastable phases that were found to slowly react during ageing to the more stable anhydrous form, magnesite, at temperatures as low as 35 °C (135-140 days) and at a faster rate at 50 °C (56 days). Undetected by bulk measurements, detailed examination of the precipitates by scanning electron microscopy (SEM) showed that magnesite is present as a minor component at relatively early reaction times (7 days) at 50 °C. In addition to magnesite dominating the solid phases over time, we find that mangesite nucleation and growth occurs more quickly with increasing partial pressure of CO2, and in electrolyte solutions with high bicarbonate content. Furthermore, formation of magnesite was found to be enhanced in sulfate-rich solutions, compared to chloride-rich solutions. We speculate that much of this behavior is possibly due to sulfate serving as sink of protons generated during carbonation reactions. These results support the importance of integrating magnesite as an equilibrium phase in reactive transport calculations of the effects of carbon dioxide sequestration on subsurface formations at long time scales.

  16. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  17. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  18. Oxidation of atrazine by photoactivated potassium persulfate in aqueous solutions

    Science.gov (United States)

    Khandarkhaeva, M. S.; Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2016-11-01

    General laws of the photochemical oxidation of atrazine by inorganic peroxo compounds under the impact of solar radiation are studied. It is found that almost complete conversion of atrazine can be achieved via photochemical oxidation with persulfate after 120 min, but no deep mineralization is observed. The effect an aqueous matrix has on the processes of atrazine degradation in combined oxidation systems is considered.

  19. Characterization of trehalose aqueous solutions by neutron spin echo

    CERN Document Server

    Branca, C; Magazù, S; Maisano, G; Mangione, A; Pappas, C; Triolo, A

    2002-01-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)

  20. Characterization of trehalose aqueous solutions by neutron spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Branca, C.; Faraone, A.; Magazu' , S.; Maisano, G.; Mangione, A. [Dipartimento di Fisica and INFM, Universita di Messina, PO Box 55, 98166 Messina (Italy); Pappas, C.; Triolo, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany)

    2002-07-01

    The present work reports neutron spin-echo (NSE) results on aqueous mixtures of trehalose, a naturally occurring disaccharide of glucose, which shows an extraordinary bioprotective effectiveness against dehydration and freezing. The aim of the work is to furnish new results on the dynamics of the trehalose/water system on the nano- and picosecond scales. (orig.)