WorldWideScience

Sample records for aqueous effluent tritium

  1. Separation of tritium from aqueous effluents

    International Nuclear Information System (INIS)

    This report describes the further development of the so-called ELEX process, carried out from 1 July 1980 until 31 December 1982. The ELEX process is the combination of electrolysis with the catalytic tritium exchange between hydrogen and water in order to accumulate the tritium in the liquid phase. The experimental study of the catalytic tritium exchange between hydrogen and liquid water was continued and the overall exchange rate could be substantially increased. An alternative process based on bithermal exchange of tritium has been evaluated. In the 10 mol h-1 mini-pilot bench scale detritiation unit the ELEX process was successfully demonstrated by detritiating up to now more than 1m3 of water containing up to 100 mCi tritium per dm3, which is the feed concentration to be expected for application of the process in a reprocessing plant. A 280 mol h-1 pilot detritiation installation now being constructed is described. This installation will realize a volume reduction factor of 100 and a process decontamination factor of 100. The maximum total tritium inventory will be about 1000 Ci. The plant consists mainly of a 80 kW electrolyser and a 10 cm diameter exchange column and can be considered as the ultimate step before industrial application of the ELEX process

  2. Methods of removal of tritium from aqueous effluent: a review of international research and development

    International Nuclear Information System (INIS)

    Tritium is formed in thermal nuclear reactors both by neutron activation of elements such as deuterium and lithium and by ternary fission in the fuel. It is a weak beta-emitter with a short half-life, 12.3 years, and its radiological significance in reactor discharges is very low. In heavy-water-cooled and -moderated reactors, such as the CANDU stations, the tritium concentration in the moderator is sufficiently high to cause a potential hazard to operators, and so a major research and development programme has been carried out on processes to remove the tritium. Detritiation of light water has also been the subject of major R and D effort world-wide, because reprocessing operations can generate significant quantities of tritium in liquid waste, and high concentrations of tritium may arise in some aqueous streams in fusion reactors. This Report presents a review of the methods that have been proposed, studied and developed for removal of tritium from light and heavy water: the principles of individual methods are discussed, and the current status of their development is reviewed. (author)

  3. Tritium effluent control project at Mound Laboratory

    International Nuclear Information System (INIS)

    Tritium control technology and philosophies that have been developed at the various weapons complex sites can be drawn upon for the design and operation of fusion research facilities and Controlled Thermonuclear Reactor fuel cycle and tritium confinement systems. Historically, tritium control has been based on high volume air flows and dilution of effluent systems. As a consequence of the ''as low as practical'' criterion, control philosophies were reevaluated and control efforts intensified. It is the results of these recent efforts that are most applicable to the CTR program. At Mound Laboratory the tritium control development efforts are centered around an advanced technology project. The philosophy and goals of this project and a nearly completed pilot scale effluent control laboratory are described. (auth)

  4. Tritium liquid effluents from the Krsko NPP

    International Nuclear Information System (INIS)

    In the past, 12-months' fuel cycles in the Krsko NPP had not caused any problems regarding compliance with its Technical Specifications and license limits on liquid tritium releases (20 TBq/year, 8 TBq/three months). The first 18-months' fuel cycle, which was introduced in 2004, required fuel with higher enrichment, higher boron concentration in the primary coolant and more fuel rods with burnable poisons. In 2005, the NPP operated without refueling outage for the whole year and produced the highest amount of energy so far. Due to these facts and a few unplanned shutdowns and power reductions, production of tritium and releases increased strongly in 2005. As a result, the Krsko NPP hardly succeeded to stay within regulatory limits on tritium releases. However, the three-months' limit was exceeded in the first quarter of 2006. On the basis of conclusions acquired from the SNSA's study and practice of other European countries the SNSA considerably increased the annual limit of permitted liquid tritium releases (from 20 TBq to 45 TBq) and abolished the three-months' limit. At the same time, the SNSA reduced the limit of fission and activation products by halves. (author)

  5. Experimental study of the tritium distribution in the effluents resulting from the sodium hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chassery, A. [CEA, DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France); Lorcet, H.; Godlewski, J; Liger, K.; Latge, C. [CEA, DEN, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X. [Universite de Toulouse, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    Within the framework of the dismantling of fast breeder reactors in France several processes are under investigation regarding sodium disposal. One of them, called ELA (radioactive sodium waste treatment process), is based on the implementation of the sodium-water reaction, in a controlled and progressive way, to remove residual sodium. This sodium contains impurities such as sodium hydride, sodium oxide and tritiated sodium hydride. The hydrolysis of these various chemical species leads to the production of a liquid effluent, mainly composed of an aqueous solution of sodium hydroxide, and a gaseous effluent, mainly composed of nitrogen (inert gas), hydrogen and steam. The tritium is distributed between these effluents, and, within the gaseous effluent, according to its forms HT and HTO (tritiated water). HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the phase distribution of tritium is necessary. This paper presents the first experimental results from a parametric study on the tritium distribution between the various effluents generated during hydrolysis operations. A series of experiments have been performed in order to study the influence of water flow rate, argon flow rate, initial mass and specific activity of the hydrolyzed sodium sample. An important influence of the total tritium concentration in the hydrolyzed sample has been highlighted. As for the phenomena suspected to be responsible for the phase change of tritiated water, in the studied range of parameters, vaporization induced by the heat of reactions seems to be dominant over the evaporation induced by the inert gas flow rate.

  6. Handling of tritium contaminated effluents and wastes: Final Report

    International Nuclear Information System (INIS)

    This report deals with the work on: (1) applicability of cotton, woodpulp, sawdust and certian cellulosic derivatives for the removal of tritium from aqueous medium, (2) containment and fixation of tritiated water in nonleachable matrices. The absorption studies on cotton, woodpulp, sawdust, and cellulose acetates were carried out with a view to assess their potentialities as concentration media and also to choose a matrix which can concentrate tritium to the maximum extent possible. The experiments on water hyacinth plants were designed to see the applicability of concentrating tritium and also for providing a via medium for slow release of tritium into the atmosphere. The immobilisation of tritiated water in cement matrices was studied with combinations of portland cement and five filler materials namely sand, silica, vermiculite, portland cement aggregate and accoproof. If cement blocks come in contact with aqueous media as it may happen when the tritium bearing blocks are disposed to the ground, a considerable portion of the contained activity is likely to diffuse and leach out. In order to prevent this, it was proposed to try several coating materials as diffusion barriers over cement blocks. Screening of locally available coating materials was done using a diffusion cell. Shalismatic HD, Anticor and epoxy paint were found to be promising among the screened materials. Tritiated cement blocks with 29% vermiculite loading were coated with the above coating materials, and were subjected to leaching, both in sea water and distilled water. The cumulative leaching data for tritiated cement blocks over a period of 400 days show that Shalimastic HD, when used as a coating material, retards the leaching to the maximum extent. Further leaching studies were started on Shalimastic HD blocks in one ground water formulation, which is continued to this date. (author)

  7. Handling of tritium-contaminated effluents and wastes. Part of a coordinated programme on handling tritium-contaminated effluents and wastes

    International Nuclear Information System (INIS)

    The work was carried out on: (i) Applicability of cotton, woodpulp, sawdust, and certain cellulosic derivatives for the removal of tritium from aqueous medium. (ii) Containment and fixation of tritiated water in non-leachable matrices. The absorption studies on cotton, woodpulp, sawdust, and cellulose acetates were carried out with a view to assessing their potentialities as concentration media and also to choose a matrix which can concentrate tritium to the maximum extent possible. The experiments on water hyacinth plants were designed to see the applicability of concentrating tritium and also for providing a via medium for slow release of tritium into the atmosphere. The immobilisation studies on tritiated water in cement matrices were aimed at maximum retention of tritium

  8. Application of hydrophobic Pt catalysts for tritium removal from liquid and gaseous effluents

    International Nuclear Information System (INIS)

    The platinum hydrophobic catalysts were first prepared and applied in deuterium and tritium separation and later their application was extended to other fields implying chemical reactions in the presence of liquid water or in saturated humidity conditions. The high activity and long stability of these catalysts was demonstrated and tested in processes like for instance: - detritiation of the heavy water used as moderator and coolant in CANDU type reactors; - tritium removal from light water reprocessed in nuclear fuel reprocessing facilities; - removal and recovery of tritium from atmosphere and gaseous effluents as well as from tritium processing. Applications were recently extended to catalytic hydrogen-oxygen recombination at ambient temperature or to removal of stable organic pollutants in waste waters. The hydrophobic catalysts are divided in two classes: metal is first dispersed onto a hydrophilic support (carbon) and then mixed and embedded with a polymer (teflon) to make it hydrophobic; - metal is laid down onto organic polymers (teflon, Sb, polyester)

  9. Continuously tritium monitoring of the pipe of liquid effluents at the Cea Cadarache; Controle en continu du tritium de la conduite des effluents liquides du CEA Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    Pira, Y

    2004-07-01

    This report is oriented toward the radiation protection of environment that is an essential component of radiation protection. It is necessary to detect any solid, liquid or gaseous abnormal release and to find its origin. The present study bears on a detection instrument in continuously to find tritium in liquid effluents of the Cea Cadarache. After having study the functioning principle of this device, an evaluation of its performances has been realised ( back noise, yield, detection limit) and to a checking in real conditions of utilization. (N.C.)

  10. A New Hydrophobic Catalyst for Tritium Separation from Nuclear Effluents

    International Nuclear Information System (INIS)

    The hydrophobic catalysts were originally conceived in Canada for the deuterium enrichment and tritium separation by hydrogen-liquid water isotopic exchange in nuclear field. Unlike the conventional hydrophilic catalysts, which becomes inefficient to direct contact with liquid water, the hydrophobic catalysts kept a high catalytic activity and stability, even under the direct contact with liquid water or in presence of humid gas. Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts, in tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes, (2) to asses and to find a new procedure for preparation of a new improved hydrophobic catalyst. From reviewed references we consider that platinum remains the most active and efficient catalytic metal and the TEFLON is the best wetproofing agent. A new improved hydrophobic Pt-catalyst has been proposed and is now underway. The main steps and experimental conditions of preparation are largely discussed. A new wet-proofing agent and a new binding agents (titanium oxide, cerium oxide, zirconium oxide) with catalytic role are proposed and tested. The physico-structural parameters of new improved catalyst have been determined and are discussed in details. The new proposal is a promising idea to improve the performances of conventional hydrophobic Pt-catalysts

  11. A New hydrophobic catalyst for tritium separation from nuclear effluents

    International Nuclear Information System (INIS)

    Full text: The hydrophobic catalysts were originally conceived in Canada for the deuterium enrichment and tritium separation by hydrogen-liquid water isotopic exchange in nuclear field. Unlike the conventional hydrophilic catalysts, which becomes inefficient to direct contact with liquid water, the hydrophobic catalysts kept a high catalytic activity and stability, even under the direct contact with liquid water or in presence of humid gas. Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents current R and D activities on the preparation methods and applications of the hydrophobic catalysts, in tritium separation. The objectives of the paper are: (1) to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; (2) to find and to asses a new procedure for preparation of a new improved hydrophobic catalyst. Based on reviewed references we concluded that platinum appears to be the most active and efficient catalytic metal while the Teflon is the best wet-proofing agent. A new improved hydrophobic Pt-catalyst has been proposed and its study is now underway. The main steps and experimental conditions of preparation are largely discussed. A new wet-proofing agent and new binding agents (titanium oxide, cerium oxide, zirconium oxide) with catalytic role were proposed and now are tested. The physico-structural parameters of newly improved catalyst have been determined and are discussed in details. The new proposal is a promising idea to improve the performances of conventional hydrophobic Pt-catalysts. (authors)

  12. Solidification of aqueous tritium-containing wastes with calcium oxide and asphalt

    International Nuclear Information System (INIS)

    A simple method is proposed for solidifying aqueous tritium-containing wastes with calcium oxide and asphalt. We incorporated tritiated calcium hydroxide into molten asphalt at 100-210/degree/C and studied the evolution of tritium (T) oxides there from as well as the extent to which calcium and tritium are leached out of the solidified product. Depending on temperature and heating time, the evolution of HTO from a Ca(OH)OT-asphalt mixture was low (between 5.6 x 10/sup /minus/4/ and 5.9 x 10/sup /minus/4/ wt.% of the original amount). Tritium evolution rates and leaching coefficients of tritium and calcium showed the solidified product to have high stability in water. Conclusions were drawn as to the usefulness of the proposed method

  13. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than ∼1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network

  14. Efficient removal of mercury from aqueous solutions and industrial effluent.

    Science.gov (United States)

    Dos Santos, Maria B P; Leal, Katia Z; Oliveira, Fernando J S; Sella, Silvia M; Vieira, Méri D; Marques, Elisa M D; Gomes, Vanessa A C

    2015-01-01

    The objective of this study was to examine the ability of a solid waste produced during beneficiation of ornamental rocks to remove mercury (Hg) from an industrial effluent and aqueous solutions under various conditions. Batch studies have been carried out by observing the effects of pH, concentration of the adsorbate, contact time, and so on. Various sorption isotherm models such as Langmuir, Freundlich, and Tóth have been applied for the adsorbent. Film and intraparticle diffusion were both found to be rate-limiting steps. Adsorption was properly described by the Freundlich model (capacity constant of 0.3090 (mg g(-1))(mg L(-1))(-1/n) and adsorption intensity indicator of 2.2939), which indicated a favorable sorption and encouraged subsequent studies for treatment of Hg-containing industrial effluent. Industrial effluent treatment efficiency reached Hg removals greater than 90% by using ornamental rock solid waste (ORSW). Besides, desorption studies indicated that the maximum recovery of mercury was 100 ± 2% for 1 mol L(-1) HNO3 and 74 ± 8% for 0.1 mol L(-1) HNO3. The ORSW could be reused thrice without significant difference on the Hg removal rate from industrial effluent. These findings place ORSW as a promising efficient and low-cost adsorbent for the removal of Hg from aqueous solutions and industrial effluent. PMID:26301849

  15. Continuous environmental monitoring for aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Jones, G. Jr.

    1980-05-01

    An aquatic environmental monitor has been developed that will continuously monitor aqueous waste streams from coal processing plants. The monitor contains three different instruments: a continuous chemical oxygen demand monitor and two continuous-flow fluorometers with different excitation-emission characteristics. A prototype instrument was fabricated and evaluated for several different applications. The details of the instrument design and results of its evaluation are presented in this report.

  16. Experimental study and phenomenological modeling of the hydrolysis of tritiated sodium: influence of experimental conditions on the tritium distribution in the effluents

    International Nuclear Information System (INIS)

    Within the framework of the decommissioning of fast reactors, several processes are under investigation regarding sodium disposal. One of them rests on the implementation of the sodium-water reaction (SWR), in a controlled and progressive way, to remove residual sodium containing impurities such as sodium hydrides, sodium oxides and tritiated sodium hydrides. Such a hydrolysis releases some amount of energy and produces a liquid effluent, composed of a solution of soda, and a gaseous effluent, composed of hydrogen, steam and an inert gas. The tritium, originally into the sodium as a soluble (T-) or precipitate form (NaT), will be distributed between the liquid and gaseous effluent, and according to two chemical forms, the tritium hydride HT and the tritiated water HTO. HTO being 10,000 times more radio-toxic than HT, a precise knowledge of the mechanisms governing the distribution of tritium is necessary in order to estimate the exhaust gas releases and design the process needed to treat the off-gas before its release into the environment. An experimental study has been carried out in order to determine precisely the phenomena involved in the hydrolysis. The influence of the experimental conditions on the tritium distribution has been tested. The results of this study leaded to a phenomenological description of the tritiated sodium hydrolysis that will help to predict the composition of the effluents, regarding tritium. (author)

  17. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    OpenAIRE

    Carmen Zaharia; Victoria Fedorcea; Adrian Beda; Victor Amarandei; Augustin Muresan

    2014-01-01

    The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes) applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its) were tested for determination of the best performance in effluent decolorat...

  18. Screening of natural adsorbents for removal of radio-contaminants from aqueous effluents

    International Nuclear Information System (INIS)

    The present paper is a summary of studies carried out to examine the uptake potential of some of the bio/natural adsorbents for removal of radiocontaminants from aqueous effluents. Three different bio/natural materials namely coconut coir pith, sugarcane bagasse and saw dust were selected as adsorbents. Preliminary characterisations of the above adsorbents were carried out and percentage of removal of 239Pu and 241Am from aqueous solutions were checked using batch equilibration method. (author)

  19. Tritium determination in aqueous samples by using LSC Quantulus in CDTN - Brazilian Development Center for Nuclear Technology, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Temba, Eliane S.C.; Moreira, Rubens M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Meio Ambiente e Tecnicas Nucleares]. E-mails: esct@cdtn.br; rubens@cdtn.br; Mingote, Raquel M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Quimica e Radioquimica]. E-mail: mingote@cdtn.br

    2007-07-01

    Tritium is the radioisotope of hydrogen which disintegrates by emission of beta particle to {sup 3}He. Its determination is important in several applications such as in oil recovery, where tritiated tracers are added to injection fluids, or in groundwater surveys, to estimate the recharging of aquifers, among others applications. Liquid scintillation spectrometry is an appropriate method for determining low-level contents of tritium in aqueous samples. We used a low background liquid scintillation system detector, Perkin Elmer - Wallac QuantulusTM 1220, recently acquired by Nuclear Technology Development Center (CDTN). The purpose of this work is the optimization of the counting performance for tritium determination in water samples by direct counting. For definition of optimum parameters we compare two cocktails, Instagel Plus{sup TM} and Optiphase Hisafe{sup TM} 3. The ratios of sample/cocktail studied were 8/10, 10/10 and 10/12. The stability of the sample/cocktail mixture was also analysed by the loss of mass and by the luminescence spectrum. The counting conditions were 60 minutes counts for each vial, in the selected counting windows 50-200 and 1-200 channels. The vial used was 20 mL polyethylene. For background estimation we used a very old water (dead water) from Thermas Antonio Carlos, Pocos de Caldas, Brazil. The good results obtained in national and international laboratory intercomparison programs indicate the excellence of the tritium analysis at CDTN. (author)

  20. REMOVAL OF REMAZOL ROSSO RB DYE FROM AQUEOUS EFFLUENTS BY HOMOGENOUS FENTON OXIDATION PROCESSES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The paper presents some data from our laboratory-setup experiments of homogenous oxidative processes with hydrogen peroxide (i.e. advanced Fenton oxidation processes applied for Remazol Rosso RB dye-containing aqueous systems, especially textile effluents. Therefore, some different operating parameters (including pH, concentration of dye, H2O2 and ferrous ions, oxidation time, temperature, stirring regime, among its were tested for determination of the best performance in effluent decoloration and dye removal, meaning the optimal values of each studied parameters for highest decoloration or dye removal.

  1. Tritium Separation from High Volume Dilute Aqueous Streams- Milestone Report for M3FT-15OR0302092

    Energy Technology Data Exchange (ETDEWEB)

    Bhave, Ramesh R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Spencer, Barry B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nair, S. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-02-29

    This report describes the synthesis and evaluation of molecular sieve zeolite membranes to separate and concentrate tritiated water (HTO) from dilute HTO-bearing aqueous streams. Several silico alumino phosphate (SAPO-34) molecular sieve zeolite membranes were synthesized and characterized with gas and vapor permeation measurements. The pervaporation process performance was evaluated for the separation and concentration of tritiated water. Experiments were performed over a range of tritiated water concentration covering the range of concentration anticipated in nuclear fuel processing where potentially both acid and water streams are recycled. The permeate was recovered under vacuum. The tritium concentration ranged from 0.5 to 1 mCi/mL which is about 0.1 mg/L or 0.1 ppm. The HTO concentration was three orders of magnitude lower than experiments performed with simulated feed containing HDO (>100 ppm) using deuterated water where high separation factors (>10) were obtained using SAPO membranes. Separation factor calculated from the measured tritium concentrations ranged from 0.83-0.98. Although the membrane performance characterization results were lower than expected, they can be explained on the basis of low feed volume and three orders of magnitude lower HTO concentration compared to HDO concentration in deuterated water. We have identified several new approaches, such as tuning the diffusion coefficient of HTO, that may help achieve preferential transport of tritium (HTO) resulting in a substantially more concentrated permeate.

  2. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10-4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  3. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Trevorrow, L. E.; Warner, D. L.; Steindler, M. J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10/sup -4/ mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method.

  4. Tritium conference days

    International Nuclear Information System (INIS)

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTOair and OBT/HTOfree (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  5. Safe handling of tritium

    International Nuclear Information System (INIS)

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  6. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  7. Management of high level radioactive aqueous effluents in advanced partitioning processes

    Energy Technology Data Exchange (ETDEWEB)

    Pochon, Patrick; Sans, Daniele; Lartigaud, Cathy; Bisel, Isabelle [Commissariat a l' Energie Atomique, Centre de Marcoule, BP 17171, Bagnols sur Ceze, 30207 (France)

    2009-06-15

    The context of this study is the development of management strategies for the high level radioactive aqueous effluents generated by advanced minor actinides partitioning processes. In the present nuclear reprocessing plants, high level liquid wastes are concentrated via successive evaporations, with or without de-nitration, to reach the inlet specifications of the downstream processing steps. In contrast to the PUREX process, effluents from advanced actinides partitioning processes contain large amounts of organic compounds (complexing agents, buffers or reducing reagents), which could disrupt concentration operations. Thus, in parallel with new partitioning process development, the compatibility of usual concentration operations with the high level liquid waste issued from them are investigated, and, if necessary, additional treatments to eliminate remaining organic compounds are reviewed. The behaviour of each reagent and related identified by-products is studied in laboratory-scale devices representative of industrial operating conditions. Final concentrated solutions (actinide or fission solutions) and the resulting distillates (i.e. decontaminated effluents) are checked in terms of compatibility with the downstream specifications. Process implementation and safety aspects are also evaluated. Kinetic and thermodynamic constants are measured. After the collection of these data, the effectiveness of the overall continuous process of the effluent treatment (combination of elementary operations) is evaluated through semi-empirical models which are also able to optimize the conditions for implementation. First results indicate that nitric acid streams containing complexing agents (oxalic acid, HEDTA, DTPA) will be managed by usual concentration processes, while buffered solutions ( containing glycolic, citric or malonic acid) will require additional treatments to lower organic carbon concentration. Oxidation process by hydrogen peroxide at boiling temperature has

  8. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents

    International Nuclear Information System (INIS)

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) 3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO3 concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague's STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for 134-137Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for 60Co and 106Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. In other respect, complexation-ultrafiltration clearly offers a

  9. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods will be presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. The fluidized-bed biological denitrification process is an environmentally acceptable and economically sound method for the disposal of nonreusable sources of nitrate effluents. A very high denitrification rate can be obtained in a FBR as the result of a high concentration of denitrification bacteria in the bioreactor and the stagewise operation resulting from plug flow in the reactor. The overall denitrification rate in an FBR ranges from 20- to 100-fold greater than that observed for an STR bioreactor. It has been shown that the system can be operated using Ca2+, Na+, or NH4+ cations at nitrate concentrations up to 1 g/liter without inhibition. Biological sorption of uranium and other radionuclides (particularly the actinides) from dilute aqueous waste streams shows considerable promise as a means of recovering these valuable resources and reducing the environmental impact, however, further development efforts are required

  10. Trends in oil discharged with aqueous effluents from oil refineries in Europe. 2010 survey data

    Energy Technology Data Exchange (ETDEWEB)

    Baldoni-Andrey, P.; Girling, A.; Bakker, A.; Muller, A.; Struijk, K.; Fotiadou, I.; Andres Huertas, A.; Negroni, J.; Neal, G.; Den Haan, K.

    2012-10-15

    This report summarises data gathered by CONCAWE in a 2010 survey of effluent water quantity, oil content and treatment processes for refinery installations situated in the EU-27 countries and those in Croatia Norway and Switzerland. Data obtained in previous surveys are included for comparison. Operators of 100 installations completed questionnaires, of which two of these only reported data for water intake and discharge. The number of 100 reporting locations is lower than the 125 locations that reported in 2008. There are several reasons for this. Since the last data gathering exercise several refinery installations have been closed or moth-balled, turning these into fuels depots without any production. Another four sites that are still operating today informed CONCAWE that these would not be in a position to complete the questionnaire for 2010. Finally, the ownership of some installations changed since 2008, leading to CONCAWE being unable to identify an appropriate contact person for timely completion of the questionnaire. The data provided through the completion of the questionnaire have been extracted into an MS-ACCESS Database. This enabled sorting, extraction, analyses and presentation of the information in a range of formats. The information presented in this report relates to a selected range of parameters that have been covered by previous surveys carried out since 1969. Two further reports will cover the results of the complete survey in more detail; one concerning final discharge quality parameters and the other focussing on water use and consumption. The results reported herein show that the volume of process water that was being discharged from EU-27+3 (Norway, Croatia and Switzerland) - located refineries decreased between 2008 and 2010 while the overall volume of aqueous discharges remained about the same or slightly increased over the same period. When expressed relative to refinery capacities and throughputs there is a slight increase in 2010 in

  11. Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor.

    Science.gov (United States)

    Martins, Rosimeire; Britto-Costa, Pedro H; Ruotolo, Luís Augusto M

    2012-06-01

    This work investigates the removal of metal ions from synthetic aqueous effluents using a spouted bed electrochemical reactor whose cathode was composed of 1.0 mm copper particles. Using a Box-Behnken factorial design, the effects of current (I), electrode thickness (L), draught distance (d) and support electrolyte concentration (C(s)) on current efficiency (CE), space-time yield (Y) and energy consumption (EC) were analysed. The results were statistically analysed and the effect of each variable was evaluated using the surface response methodology. The results showed that C(s) is the most important variable to consider in the process optimization. A current of 8.0 A can be applied in order to obtain high Y and CE with an acceptable EC. Electrode thicknesses greater than 1.3 cm are not recommended because the irregular potential distribution leads to a Y drop owing to the low CE observed for this condition. The draught distance does not have statistical significance; therefore, the particle circulation rate is not important in this kind of electrochemical reactor. PMID:22856281

  12. Improving the performances of hydrophobic catalysts used for tritium recovery and enrichment processes In liquid and gaseous effluents

    International Nuclear Information System (INIS)

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based also on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: (1) how to improve the characteristics and performance of platinum hydrophobic catalysts; (2) to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references it results that platinum appears to be the most active and efficient catalytic metal while polytetrafluoroethylene is the best wetproofing agent. A new improved hydrophobic Pt-catalyst has been obtained and tests are now underway. The main steps and experimental conditions of preparation are largely discussed. A new wetproofing agent and new binding agents (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising for improving the performance of conventional hydrophobic Pt-catalysts. (authors)

  13. Public doses estimation based on effluents data and direct measurements of Tritium in environmental samples at Cernavoda

    International Nuclear Information System (INIS)

    The release of any potential radioactive pollutant to the environment during routine operation of a Nuclear Power Plant should be the subject of appropriate controls and assessments. The layout of the Candu reactor and the design of its systems ensure that the radioactive waste quantities are minimized, but small amounts of radioisotopes are continuously discharged at very low concentrations through gaseous and liquid effluents. Radioprotection of the public is based on the principles recommended by ICRP, the protection being mainly achieved by control of the sources of exposure. Source monitoring provide a means of assessing the radiation exposure of population groups, critical groups and individual members of the public. The assessed doses are used to demonstrate the compliance with authorized dose limits - 1 mSv / year in our case - but can also be used for optimization purposes

  14. Desempenho de biomassas na adsorção de hidrocarbonetos leves em efluentes aquosos Performance of biomasses in the adsorption of simple hydrocarbons in aqueous effluents

    Directory of Open Access Journals (Sweden)

    Elba Gomes dos Santos

    2007-04-01

    Full Text Available Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by means of factorial design. The results indicated that, among the materials studied, coconut mesocarp and sugar-cane bagasse can be considered promising biomasses for treating aqueous effluents contaminated by hydrocarbons.

  15. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.; Anderson, A.D.

    1977-12-01

    This is the first annual report issued under a project to evaluate the effects of aqueous effluents from in-situ fossil fuel processing technologies on aquatic biota. Briefly, the goals of the project are to: evaluate the toxicity of process water effluents on aquatic biota; recommend maximum exposure concentrations for process water constituents; and assist DOE in using project data and recommendations to design control technologies and to assess environmental impacts. The project objectives for Year 1 were pursued through the following five tasks: a literature review on process water constituents; toxicity studies on the effect of process waters and six process water constituents on aquatic biota; degradation rate studies on four to six process water constituents; bioaccumulation studies on four to six process water constituents; and recommendations on maximum exposure concentrations for process water constituents based on data from the project and from the literature. Progress toward completion of these goals is presented.

  16. Tritium. Today's and tomorrow's developments

    International Nuclear Information System (INIS)

    Radioactive hydrogen isotope, tritium is one of the radionuclides which is the most released in the environment during the normal operation of nuclear facilities. The increase of nuclear activities and the development of future generations of reactors, like the EPR and ITER, would lead to a significant increase of tritium effluents in the atmosphere and in the natural waters, thus raising many worries and questions. Aware about the importance of this question, the national association of local information commissions (ANCLI) wished to make a status of the existing knowledge concerning tritium and organized in 2008 a colloquium at Orsay (France) with an inquiring approach. The scientific committee of the ANCLI, renowned for its expertise skills, mobilized several nuclear specialists to carry out this thought. This book represents a comprehensive synthesis of today's knowledge about tritium, about its management and about its impact on the environment and on human health. Based on recent scientific data and on precise examples, it treats of the overall questions raised by this radionuclide: 1 - tritium properties and different sources (natural and anthropic), 2 - the problem of tritiated wastes management; 3 - the bio-availability and bio-kinetics of the different tritium species; 4 - the tritium labelling of environments; 5 - tritium measurement and modeling of its environmental circulation; 6 - tritium radio-toxicity and its biological and health impacts; 7 - the different French and/or international regulations concerning tritium. (J.S.)

  17. Desempenho de biomassas na adsorção de hidrocarbonetos leves em efluentes aquosos Performance of biomasses in the adsorption of simple hydrocarbons in aqueous effluents

    OpenAIRE

    Elba Gomes dos Santos; Odelsia Leonor Sanchez de Alsina; Flávio Luiz Honorato da Silva

    2007-01-01

    Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons) in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by...

  18. Management of tritium at nuclear facilities

    International Nuclear Information System (INIS)

    This report presents extending summaries of the works of the participants to an IAEA co-ordinated research programme, ''Handling Tritium - bearing effluents and wastes''. The subjects covered include production of tritium in nuclear power plants (mainly heavy water and light water reactors), as well as at reprocessing plants; removal and enrichment of tritium at nuclear facilities; conditioning methods and characteristics of immobilized tritium of low and high concentration; some potential methods of storage and disposal of tritium. In addition to the conclusions of this three-years work, possible activities in the field are recommended

  19. Trends in oil discharged with aqueous effluents from oil refineries in Western Europe, 1993 survey

    Energy Technology Data Exchange (ETDEWEB)

    Dando, D.A.J.; Martin, D.E.

    1994-09-01

    This report summarizes the information gathered by CONCAWE in a survey of Western European oil refineries` effluent water quantity, oil content and treatment processes in 1993. It compares the 1993 data with the results of previous surveys and shows that the trend in the reduction of oil discharges continued, even though the reported refinery throughputs increased by more than 30% since the low point of 1984. The ratio of oil discharged to the amount of oil processed has continued to fall. Furthermore, when allowance is made for changes in the refineries which reported, it is apparent that there was a modest reduction of total effluent discharged in 1993, reinforcing the long-term trend. These two results indicate that overall management of water use in refineries and the efficiency of effluent purification continue to improve. The report indicates that around 85% of the refineries surveyed now include biological treatment in their waste water treatment facilities.

  20. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  1. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  2. Photocatalytic degradation of dye effluent by titanium dioxide pillar pellets in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    LI Yun-cang; ZOU Lin-da; Eric Hu

    2004-01-01

    Photocatalytic oxidation(PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2(i. e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor(FPR) and UV light source(blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

  3. Development and use of thin film composite based positively charged nanofiltration membranes in separation of aqueous streams and nuclear effluents

    International Nuclear Information System (INIS)

    A new, positively charged, thin film composite (TFC) type nanofiltration membrane has been developed and studied for its use in various aqueous stream separations. The membrane, containing fixed quaternary ammonium moieties, was developed by insitu interfacial polymerization of a functionalized amine (polyethyleneimine) and terephthaloyl chloride on a suitable base membrane. The nature of the charge on the membrane was established by ATR FT IR spectroscopy and was estimated by determination of its ion exchange capacity. The membrane was tested for its performance in single solute feed systems containing salts of various combinations of univalent and bivalent ions (NaCl, Na2SO4, CaCl2 and MgSO4) in test cell as well as in 2512 spiral modules. The membrane gave differential separation profile for these solutes with high rejection for CaCl2 and low rejection for Na2SO4 due to positive charge on the membrane and the type of charge constituting the salts. The membrane was also used for separation of simulated effluent solution containing uranyl nitrate in combination with ammonium nitrate which is a common effluent generated in nuclear industry. Here also the membrane gave differential separation profile for uranyl nitrate and ammonium nitrate in their mixture by concentrating the former salt and passing the later. This helped separation of these two solutes in the mixture into two different streams. (author)

  4. Coir pith of the green coconut in the decontamination of radioactive aqueous effluent

    International Nuclear Information System (INIS)

    Industrial segments as plant of mining, hospitals and university generate considerable volumes of radioactive wastewater containing uranium. The increasing development of the use of the nuclear energy to lead away to an expansion of the sectors of the nuclear fuel cycle, but it leads to security problems and it appears the necessity of control of the removing of uranium and radioactive effluent treatments. Researches evaluate if the technique of the biosorption would promote an alternative process with attractive characteristics of cost-benefit. The residual biomass from agricultural activities has been studied and used as adsorbent of metals and organic composts by low cost, abundance and for being biodegradable. In this work, it is presented the efficiency of the coir pith for the adsorption of ions UO22+. The coir pith is a by-product of the harvest of the coconut, a renewable natural source. The study was accomplished using the batch techniques. The influence from pH 2 to 5, the dose of the coir pith, equilibrium time and the models of kinetic reaction were investigated. It was verified that the adsorption increased with the increase of pH and of the dose. The equilibrium time was of 30 min and the best correspondence with the model of pseudo second-order was observed. The results obtained has been promising, so use as adsorbent of metallic ions represents an economic alternative in relation to the conventional treatment of effluent. (author)

  5. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  6. Performance of two liquids scintillation and optimization of a Wallac 1411 counter in the tritium quantification in aqueous samples; Desempeno de dos centelleadores liquidos y optimizacion de un contador Wallac 1411 en la cuantificacion de tritio en muestras acuosas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras de la Cruz, E. de J.; Lopez del Rio, H.; Davila R, J. I.; Mireles G, F.; Pinedo V, J. L., E-mail: hlopezdelrio@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-10-15

    The optimization of a liquid scintillation counting Wallac 1411 is presented as well as the performance of the liquids scintillation miscible in water OptiPhase Hi Safe 3 and Last Gold Ab, in the tritium quantification in aqueous samples. The luminescence effect, the quenching, the solution ph and the level of pulse amplitude comparator (Pac) were evaluated in the response of both liquids scintillation in the tritium measurement. The quenching and the luminescence modify the scintillators response; in the first of them the counting efficiency decreases and the minimum detectable activity increases; the second interferes in the tritium quantification in the interest window, but the effect disappears after 4 hours of darkness of the samples. The maximum counting efficiency was of 24% for OptiPhase Hi Safe 3 and 31% for Last Gold Ab, diminishing with the quenching until values of 8 and 11%, respectively. For a counting time of 6 hours and lower quenching, the minimum detectable concentration for OptiPhase Hi Safe 3 was of 13.4 ± 0.2 Bq/L and 9.9 ± 0.1 Bq/L for Last Gold Ab. Both scintillators responded appropriately to sour and basic solutions, being only presented chemiluminescence in Last Gold Ab to ph highly basic. The Pac application that varies between 1 and 256 does not have effect in the tritium measurement until values above 90. (Author)

  7. Rapid assessment of the latent hazard posed by dissolved mercaptans within aqueous effluent

    International Nuclear Information System (INIS)

    The presence of mercaptans (RSH) can usually be detected by their inherent noxious odour but there is a need to quantify the concentration within effluent and hence allow an assessment of the latent hazard to be made prior to disposal. The versatility of using naphthoquinone as a rapid derivatising agent through which to trap such species has been evaluated. The quinone moiety provides a label that can be quantified using colorimetric, electrochemical and chromatographic means and offers a significant advantage over conventional thiol labelling agents. The analytical characteristics of each approach have been investigated and the selectivity, sensitivity and applicability of the reaction system critically assessed for a range of model compounds. The naphthoquinone system has a detection limit in the low micromolar range with little interference from other components common to discharge water with 96% recovery of mercaptopropionate. The reaction to sulfide (HS-) has also been assessed and a disparity in response between the detection methods observed and a possible reaction pathway outlined

  8. Recent studies on advanced methods for the decontamination of aqueous effluents

    International Nuclear Information System (INIS)

    The Harwell Laboratory has for many years been engaged in the design and development of processes to reduce the level of radioactivity present in low and intermediate level aqueous radioactive wastes to a very low level. A number of the radionuclides included in this work are those of toxic metals such as chromium, zinc, manganese, cobalt and nickel and therefore the processes that have been developed are also applicable to some of the wastes being generated in the non-nuclear industries. Work in Chemistry Division at Harwell has shown that precipitation processes and the use of inorganic ion-exchange materials in combination with ultrafiltration can achieve very effective decontamination. This paper presents some recent results from studies on decontamination processes and describes how the computer program is being amended to take account of sorption processes

  9. Welsh tritium

    International Nuclear Information System (INIS)

    Of all radioactive isotopes, tritium and carbon-14 have a special status because of the possibility of their intimate involvement in the biosphere. Both are formed naturally in the upper atmosphere but both are also anthropogenic and discharged into the environment. Tritium has engendered considerably greater notoriety as it has been released into the environment in quite large amounts during nuclear weapons testing and subsequently from nuclear plants. The natural tritium inventory of about 1.3 EBq was dwarfed by contributions from weapons testing. In the 1960s this added about 186 EBq to the global inventory which even today remains at about 50 EBq. In contrast the nuclear industry has contributed about 0.43 EBq but the rate of discharge from some plants is far from insignificant - for instance, the Savannah River site in South Carolina (which is responsible for about 90% of the US tritium releases) discharged about 0.02 EBq in 1987. Currently the major sources of anthropogenic tritium in the UK are [4] the BNF plants at Sellafield (2756 TBq/year, 91% as liquid) and Chapelcross (1421 TBq/year, 0.05% as liquid). As described in the paper there have been unexpected levels of tritium in fish caught in the Bristol Channel in the vicinity of the outfall of the discharge from the Cardiff factory. This tritium is 'unexpected' because the levels in sea water in the area have been measured at around 10 Bq/l [4] and a greater part (90%) of the uptake into fish has been shown to be organically bound tritium (OBT) rather than as part of the body water

  10. Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Saucier, Caroline [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Adebayo, Matthew A. [Department of Chemical Sciences, Ajayi Crowther University, Oyo, Oyo State (Nigeria); Lima, Eder C., E-mail: eder.lima@ufrgs.br [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Cataluña, Renato [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Thue, Pascal S. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Department of Applied Chemistry, University of Ngaoundere, P.O. Box 455, Ngaoundere (Cameroon); Prola, Lizie D.T.; Puchana-Rosero, M.J. [Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, P.O. Box 15003, 91501-970 Porto Alegre, RS (Brazil); Machado, Fernando M. [Technology Development Center, Federal University of Pelotas (UFPEL), Pelotas (Brazil); Pavan, Flavio A. [Institute of Chemistry, Federal University of Pampa (UNIPAMPA), Bagé, RS (Brazil); Dotto, G.L. [Chemical Engineering Department, Federal University of Santa Maria (UFSM), Santa Maria, RS (Brazil)

    2015-05-30

    Highlights: • Microwave-assisted cocoa shell activated carbon was prepared and characterized. • The anti-inflammatories, diclofenac and nimesulide, were adsorbed onto MWCS-1.0. • Adsorption maximum values are 63.47 (diclofenac) and 74.81 mg g{sup −1} (nimesulide). • General order kinetic model suitably explained the adsorption process. • MWCS-1.0 was effectively used for treatment of simulated hospital effluents. - Abstract: Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L{sup −1} HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N{sub 2} adsorption/desorption curves, X-ray diffraction, and point of zero charge (pH{sub pzc}). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g{sup −1}, respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.

  11. Tritium contamination and decontamination

    International Nuclear Information System (INIS)

    Establishment of tritium safe handling technology is required with the development of fusion reactor research. Tritium is contained by multiple-barriers containment due to the difficulty in perfect containment of hydrogen isotopes. Tritium contamination of materials and subsequent desorption are one of the critical issues in tritium containment. And the development of tritium decontamination technology is also a critical issue in tritium safe handling. The status of tritium contamination study and tritium decontamination technology are reviewed. (author)

  12. Application of biomass in oil and fat reduction content in aqueous effluent; Aplicacao de biomassa na reducao do teor de oleos e graxas presentes em efluentes aquosos

    Energy Technology Data Exchange (ETDEWEB)

    Boni, Hevelin Tabata; Souza, Antonio Augusto Ulson de; Souza, Selene Maria de Arruda Guelli Ulson de [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2012-07-01

    In this work, we have studied the bagasse from sugarcane as an alternative bioadsorbent in the treatment to oils and greases contaminated waters. The synthetic effluent was simulated by a distilled water and decahydronaphthalene dispersion, with initial concentration of 8900 mg . L {sup -1}. Gas chromatography was the analytical operation chosen to quantify the oil residual after the adsorption. The biomass was characterized by moisture analysis, CHNS and SEM. The experiments were carried out in batch process with agitation of 120 rpm, evaluating the equilibrium time of adsorptive process and the influence of pH of aqueous level. Results showed that the adsorption process achieved equilibrium quickly, in just 5 minutes of contact between the dispersion and biomass. No significant influence was noticed in the removal of hydrocarbon with the change in pH. The adsorption isotherm was developed changing by the mass of bioadsorbent, at 25 deg C, pH 6 and 120 rpm of agitation. The experimental results were fitted by Langmuir and Langmuir- Freundlich models. The best fit was obtained with Langmuir-Freundlich, providing a maximum adsorption capacity of 6,65 g hydrocarbon / g biomass. The experiments showed the great potential of the sugarcane bagasse to be used as bioadsorbent in reducing the oil and grease levels in industrial effluents. This alternative presents itself as a sustainable route due to the abundance of sugar cane bagasse in the sugar and alcohol industry, avoided the impact of aqueous sources contamination coming from oil and petrochemical industry. (author)

  13. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    International Nuclear Information System (INIS)

    Highlights: ► Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. ► The maximum adsorption capacities were found at pH 2 and 298 K. ► The values were 482.2 and 267.2 mg g−1 for SP and AC, respectively. ► Adsorption was exothermic, spontaneous and favorable. ► SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g−1 for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4–99.0% and 93.6–97.7%, respectively, of the dye mixtures containing high saline concentrations.

  14. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Natali F. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Lima, Eder C., E-mail: profederlima@gmail.com [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Royer, Betina; Bach, Marta V. [Institute of Chemistry, Federal University of Rio Grande do Sul, UFRGS, AV. Bento Goncalves 9500, 91501-970, Porto Alegre, RS (Brazil); Dotto, Guilherme L.; Pinto, Luiz A.A. [Unit Operation Laboratory, School of Chemistry and Food, Federal University of Rio Grande, FURG, R. Engenheiro Alfredo Huch 475, 96201-900, Rio Grande, RS (Brazil); Calvete, Tatiana [Universitary Center La Salle (UNILASALLE), Av. Victor Barreto 2288, 92010-000, Canoas, RS (Brazil)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Spirulina platensis (SP) and activated carbon (AC) were used to remove RR-120 dye. Black-Right-Pointing-Pointer The maximum adsorption capacities were found at pH 2 and 298 K. Black-Right-Pointing-Pointer The values were 482.2 and 267.2 mg g{sup -1} for SP and AC, respectively. Black-Right-Pointing-Pointer Adsorption was exothermic, spontaneous and favorable. Black-Right-Pointing-Pointer SP and AC were effective to treat a simulated dye-house effluent. - Abstract: Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g{sup -1} for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.

  15. Degradation of polychlorinated biphenyls in aqueous solutions after UV-peroxide treatment: focus on toxicity of effluent to primary producers.

    Science.gov (United States)

    Yu, Dennis N; Macawile, Maria Cristina A; Abella, Leonila C; Gallardo, Susan M

    2011-09-01

    The combination of UV irradiation and hydrogen peroxide (UV-H(2)O(2)) was shown to be effective in treating water spiked with 2,2',4,4',5,5'-hexachlorobipheny (PCB 153), reducing its concentration by as much as 98%. To test the toxicity of the effluent, bioassays involving three species of primary producers were performed. Results showed the effluent exerting an adverse effect on the algae Scenedesmus bijugatus and the duckweed Lemna paucicostata. On the other hand, exposure of the mungbean Vigna radiata to the effluent revealed mostly no statistically significant adverse effect or growth stimulation. This suggested that on an exposure period of 96 h, higher forms of chlorophyll-bearing species such as plants are relatively unaffected by trace concentrations of PCBs and degradation products, while less differentiated species like algae and duckweeds are vulnerable. PMID:21531462

  16. Tritium handling in vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  17. Occurrence of organically bound tritium in the Mohelno lake system

    International Nuclear Information System (INIS)

    This study was focused on the 3Hactivitylevels in the unique 'tritium valley' around the Mohelno reservoir, which receives outlet cooling waters from the Dukovany nuclear power plant. Tritium activity levels above the background reference value were found in water from the reservoir and from the effluent part of the Jihlava water, in air moisture and in plant tissues tissue free water tritium(TFWT), and nonexchangeable organically bound tritium (NE-OBT). These zones were discernible that had noticeably different TFWT and NE-OBT values: (1) littoral zones, (2) slopes above the reservoir, (3) plateaus above the reservoir/river. (author)

  18. Magmatic tritium

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Aams, A.I. [Los Alamos National Lab., NM (United States); McMurtry, G.M. [Univ. of Hawaii, Honolulu, HI (United States); Shevenell, L. [Univ. of Nevada, Reno, NV (United States); Pettit, D.R. [National Aeronautics and Space Administration (United States); Stimac, J.A. [Union Geothermal Company (United States); Werner, C. [Pennsylvania State Univ., University Park, PA (United States)

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  19. Acidity control of the oxidation reactions induced by non-thermal plasma treatment of aqueous effluents in pollutant abatement processes

    International Nuclear Information System (INIS)

    The acid properties of a non-thermal plasma in humid air (e.g., a gliding arc device) induced in an aqueous solution may deeply affect the efficiency of the matching oxidising properties, especially when the aqueous targets involve organic solutes. Hence, their oxidation rate may be strongly modified. A series of buffers is proposed to control the pH of aqueous target for at least one-hour treatments. The selected acid-base systems were selected for their inertia towards oxidation reaction, to cover a very large range of acidity. The reported results are essential from both fundamental and applied points of view. They first allow the acute controlling of the degradation rate of organic compounds. They also enable estimating the efficiency of the gliding arc treatments in environmental applications. Besides, they allow getting reliable data on the bactericidal effect on the plasma treatments, which are a merging application of the electric discharges. (author)

  20. Release of tritium from fuel and collection for storage

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.; Trevorrow, L.E.

    1976-04-01

    Recent work is reviewed on the technology that has been suggested as applicable to collection and storage of tritium in anticipation of the necessity of that course of action. Collection technology and procedures must be adapted to the tritium-bearing effluent and to the facility from which it emerges. Therefore, this discussion of tritium collection technology includes some information on the processes from which release is expected to occur, the amounts, the nature of the effluent media, and the form in which tritium appears. Recent work on collection and storage concepts has explored, both by experimentation and by feasibility analyses, the operations generally aimed at producing recycle, collection, or storage of tritium from these streams. Storage concepts aimed specifically at tritium involve plans to store volumes ranging from that of the entire effluent stream to only that of a small volume of a concentrate. Decisions between storage of unconcentrated streams and storage of concentrates are expected to be made largely by weighing the cost of storage space against the cost of concentration. The storage of tritium concentrate requires the selection of a form of tritium possessing physical and chemical properties appropriate for the expected storage conditions. This selection of an appropriate storage form has occupied a major portion of recent work concerned with tritium storage concepts. In summary, within the context of present regulations and expected amounts of waste tritium; this waste can be disposed of by dilution and dispersal to the environment. In the future, however, more restrictive regulations might be introduced that could be satisfied only by some collection and storage operations. Technology for this practice is not now available, and the present discussion reviews recent activities devoted to its development.

  1. Field analyses of tritium at environmental levels

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Cable, P.R.; Beals, D.M

    1999-02-11

    An automated, remote system to analyze tritium in aqueous solutions at environmental levels has been tested and has demonstrated laboratory quality tritium analysis capability in near real time. The field deployable tritium analysis system (FDTAS) consists of a novel multi-port autosampler, an on-line water purification system, and a prototype stop-flow liquid scintillation counter (LSC) which can be remotely controlled for unmanned operation. Backgrounds of {approx}1.5 counts/min in the tritium channel are routinely measured with a tritium detection efficiency of {approx}25% for the custom 11 ml cell. A detection limit of <0.3 pCi/ml has been achieved for 100-min counts using a 50 : 50 mixture of sample and cocktail. To assess the long-term performance characteristics of the FDTAS, a composite sampler was installed on the Savannah River, downstream of the Savannah River Site, and collected repetitive 12-hour composite samples over a 14 day period. The samples were analyzed using the FDTAS and in the laboratory using a standard bench-top LSC. The results of the tritium analyses by the FDTAS and by the laboratory LSC were consistent for comparable counting times at the typical river tritium background levels ({approx}1 pCi/ml)

  2. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  3. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  4. The Tritium White Paper

    International Nuclear Information System (INIS)

    This publication proposes a synthesis of the activities of two work-groups between May 2008 and April 2010. It reports the ASN's (the French Agency for Nuclear Safety) point of view, describes its activities and actions, and gives some recommendations. It gives a large and detailed overview of the knowledge status on tritium: tritium source inventory, tritium origin, management processes, capture techniques, reduction, tritium metrology, impact on the environment, impacts on human beings

  5. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the

  6. TRITIUM BARRIER MATERIALS AND SEPARATION SYSTEMS FOR THE NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S; Thad Adams, T

    2008-07-17

    Contamination of downstream hydrogen production plants or other users of high-temperature heat is a concern of the Next Generation Nuclear Plant (NGNP) Project. Due to the high operating temperatures of the NGNP (850-900 C outlet temperature), tritium produced in the nuclear reactor can permeate through heat exchangers to reach the hydrogen production plant, where it can become incorporated into process chemicals or the hydrogen product. The concentration limit for tritium in the hydrogen product has not been established, but it is expected that any future limit on tritium concentration will be no higher than the air and water effluent limits established by the NRC and the EPA. A literature survey of tritium permeation barriers, capture systems, and mitigation measures is presented and technologies are identified that may reduce the movement of tritium to the downstream plant. Among tritium permeation barriers, oxide layers produced in-situ may provide the most suitable barriers, though it may be possible to use aluminized surfaces also. For tritium capture systems, the use of getters is recommended, and high-temperature hydride forming materials such as Ti, Zr, and Y are suggested. Tritium may also be converted to HTO in order to capture it on molecular sieves or getter materials. Counter-flow of hydrogen may reduce the flux of tritium through heat exchangers. Recommendations for research and development work are provided.

  7. Tritium contamination control

    International Nuclear Information System (INIS)

    Over the last years, there has been increased importance of tritium (3H or T), the radioactive isotope of hydrogen, in the nuclear power program and environmental studies. Cosmic ray interaction in the atmosphere, nuclear weapons testing, commercial products and nuclear facilities are the sources for environmental tritium. Several routes are available by which tritium as a gas or as tritiated water can reach the body tissues of man. It becomes necessary to constantly control the tritium concentration in the environment. Analytical methods to determine tritium in matrixes such as urine, water, air, fishes by scintillation counting and proportional counting are described. (Author)

  8. Sources of tritium

    International Nuclear Information System (INIS)

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  9. Operating Experience Review of Tritium-in-Water Monitors

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Bruyere; L. C. Cadwallader

    2011-09-01

    Monitoring tritium facility and fusion experiment effluent streams is an environmental safety requirement. This paper presents data on the operating experience of a solid scintillant monitor for tritium in effluent water. Operating experiences were used to calculate an average monitor failure rate of 4E-05/hour for failure to function. Maintenance experiences were examined to find the active repair time for this type of monitor, which varied from 22 minutes for filter replacement to 11 days of downtime while waiting for spare parts to arrive on site. These data support planning for monitor use; the number of monitors needed, allocating technician time for maintenance, inventories of spare parts, and other issues.

  10. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  11. Visible Light Induced Enhanced Photocatalytic Degradation of Industrial Effluents (Rhodamine B in Aqueous Media Using TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. O. Carneiro

    2016-01-01

    Full Text Available In recent years, new textile materials have been developed through the use of nanotechnology-based tools. The development of textile surfaces with self-cleaning properties has a large combined potential to reduce the environmental impact related to pollution. In this research work, three types of textiles substrates (cotton, Entretela, and polylactic acid (PLA were functionalized with titanium dioxide nanoparticles (TiO2 using chemical and mechanical processes (padding. During the functionalization process, two different methods were used, both of which allowed a good fixation of nanoparticles of TiO2 on textile substrates. The samples were examined for morphology and for photocatalytic properties under visible light irradiation. A study aimed at evaluating the effect of pH of the aqueous solution of TiO2 nanoparticles was performed in order to promote interaction between TiO2 and the dye solution rhodamine B (Rh-B. The TiO2 nanoparticles were characterized by X-ray diffraction (XRD. The measurement of the zeta potential of the TiO2 nanoparticle solution proved to be always positive and have low colloidal stability. Chromatography (HPLC and GC-MS analyses confirm that oxalic acid is the intermediate compound formed during the photodegradation process.

  12. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent

    Directory of Open Access Journals (Sweden)

    Claudia Vargas-Niño

    2011-01-01

    Full Text Available  The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.  

  13. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  14. Tritium in metals

    International Nuclear Information System (INIS)

    In this Chapter a review is given of some of the important features of metal tritides as opposed to hydrides and deuterides. After an introduction to the topics of tritium and tritium in metals information will be presented on a variety of metal-tritium systems. Of main interest here are the differences from the classic hydrogen behavior; the so called isotope effect. A second important topic is that of aging effects produced by the accumulation of 3He in the samples. (orig.)

  15. Removal of tritium and tritium-containing compounds from a gaseous stream

    International Nuclear Information System (INIS)

    Tritiated species, e.g., tritium, tritiated water, and/or tritiated hydrocarbons, are removed from gas streams containing these by reacting the same over a precious metal catalyst with sufficient air or oxygen to insure conversion of all tritiated species to tritiated water and, if hydrocarbons are present in the gaseous feedstock, carbon dioxide. The tritiated water and any other moisture that might be present in the reaction effluent are next adsorbed by a desiccant dryer, preferably to a level of less than one part per million. Most desirably, the desiccant dryer effluent is then diluted with non-radioactive water such that the tritiated water is diluted by a factor of at least about 1,000 to 1; the resulting water mixture can be adsorbed from the diluted effluent by a second desiccant dryer to provide a value in the ultimate effluent gas of less than about one-half parts per billion tritiated water

  16. Improved iodine and tritium control in reprocessing plants

    International Nuclear Information System (INIS)

    During spent fuel processing, iodine and tritium are distributed in many aqueous, organic and gaseous process streams, which complicates their control. Small modifications of conventional purex flow sheets, compatible with processing in the headend and the first extraction cycle are necessary to confine the iodine and the tritium to smaller plant areas. The plant area connected to the dissolver off-gas (DOG) system is suited to confine the iodine and the plant area connected to the first aqueous cycle is suited to confine the tritium. A more clear and convenient iodine and tritium control will be achieved. Relevant process steps have been studied on a lab or a pilot plant scale using I-123 and H-3 tracer

  17. Study of the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 for processing radioactive aqueous effluents in dynamic mode

    International Nuclear Information System (INIS)

    Public and military nuclear industry generates a significant amount of radioactive liquid waste which must be treated before being released into the environment. Decontamination methods alternative to the industrial techniques (evaporation, chemical treatment) are being developed, such as column treatments or coupled filtration/sorption processes. Current researches mainly focus on the development and shaping of specific sorbents. In this context, the objectives of this thesis were first to study the synthesis of TiO2 layers on macroporous ceramic supports in supercritical (SC) CO2 and then to evaluate their potential for radionuclide extraction in these alternative processes. A robust synthesis method has been developed, based on the thermal decomposition of titanium isopropoxide in SC CO2 in the temperature range between 150 C and 350 C. Nano-structured TiO2 films were formed on the macroporous supports (ceramic foams, tubular α-alumina supports) with good adhesion, already at 150 C. The effect of the synthesis temperature on sorbents physico-chemical characteristics and sorption properties has been studied with TiO2 powders prepared under the same conditions as the supported films. The best sorption performance were observed for the powder prepared at 150 C, owing to its higher density of surface sites in comparison with powders prepared at either 250 C or 350 C. Consequently, this synthesis temperature (150 C) was selected for a detailed study of the composite sorbents (TiO2/support), in order to assess their sorption performance in continuous treatment processes. The sorption experiments have shown that a column of alumina macroporous foam (Φpore = 400μm) coated with TiO2 was suitable for processing effluents in dynamic mode with high throughputs. Both macro-pore sizes and column height were revealed as important parameters to be controlled. For the coupled filtration/sorption treatment, TiO2 membranes exhibit good mechanical strength and are able to

  18. Interactions of tritium and materials

    Energy Technology Data Exchange (ETDEWEB)

    Yamawaki, Michio; Yamaguchi, Kenji; Tanaka, Satoru; Ono, Futaba (Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.); Yamamoto, Takuya

    1993-11-01

    In D-T burning fusion reactors, problems related to tritium-material interactions are vitally important. From this point of view, plasma-material interactions, blanket breeder material-tritium interactions, safety aspects of tritium-material interactions and tritium storage materials are reviewed with emphasis on the works going on in the authors' laboratories. (author) 83 refs.

  19. Tritium breeding in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M.A.

    1982-10-01

    Key technological problems that influence tritium breeding in fusion blankets are reviewed. The breeding potential of candidate materials is evaluated and compared to the tritium breeding requirements. The sensitivity of tritium breeding to design and nuclear data parameters is reviewed. A framework for an integrated approach to improve tritium breeding prediction is discussed with emphasis on nuclear data requirements.

  20. Tritium technology. A Canadian overview

    International Nuclear Information System (INIS)

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  1. Tritium technology. A Canadian overview

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, R.L. [Canatom NPM (Canada)

    2002-10-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  2. The Reconcentration of Tritium by Distillation

    International Nuclear Information System (INIS)

    A method of tritium reconcentration by the total reflux distillation of water under reduced pressure using random-packed columns was investigated. For the maximum removal of tritium from a one liter reservoir, operating periods of several weeks were required. For this a fully automatic fractionating system incorporating an apparatus for taking samples automatically under reduced pressure was developed to enable the distillation to proceed with the minimum of manual adjustment. To reduce the possibility of flooding at the base of the column due to gravity settling of the packing over long periods of time, a novel design feature was incorporated at the junction of the column and the reflux meter. The performance of several commercially available column packings was investigated in an aqueous environment. Details of the packing pre-treatment to inhibit maldistribution in a liquid of high surface tension are given and enrichment factors calculated. A low H.E.T.P. (height equivalent to a theoretical plate) of about 0.8 in has been achieved with pre-treated phosphor-bronze gauze rings in an aqueous environment. With a reservoir-to-boiler volume ratio of the order of 7 : 1, a maximum of 98% of the tritium in the reservoir was removed in 28 d continuous distillation with a throughput of 100 ml/h. This indicated a tritium reconcentration factor of 6.3. By increasing the throughput to 140 ml/h, 92% of the tritium was extracted in 11 d. The reproducibility of the reconcentration factor with time was, however, shown to vary, and the reasons for this are discussed in the paper. (author)

  3. Tritium catalyzed deuterium tokamaks

    International Nuclear Information System (INIS)

    A preliminary assessment of the promise of the Tritium Catalyzed Deuterium (TCD) tokamak power reactors relative to that of deuterium-tritium (D-T) and catalyzed deuterium (Cat-D) tokamaks is undertaken. The TCD mode of operation is arrived at by converting the 3He from the D(D,n)3He reaction into tritium, by neutron capture in the blanket; the tritium thus produced is fed into the plasma. There are three main parts to the assessment: blanket study, reactor design and economic analysis and an assessment of the prospects for improvements in the performance of TCD reactors (and in the promise of the TCD mode of operation, in general)

  4. Tritium protective clothing

    International Nuclear Information System (INIS)

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions

  5. Five years of tritium handling experience at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    The Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory is a facility designed to develop and demonstrate, in full scale, technologies necessary for safe and efficient operation of tritium systems required for tokamak fusion reactors. TSTA currently consists of systems for evacuating reactor exhaust gas with compound cryopumps; for removing impurities from plasma exhaust gas and recovering the chemically-combined tritium; for separating the isotopes of hydrogen; for transfer pumping; or storage of hydrogen isotopes; for gas analysis; and for assuring safety by the necessary control, monitoring, and tritium removal from effluent streams. TSTA also has several small scale experiments to develop and test new equipment and processes necessary for fusion reactors. In this paper, data on component reliability, failure types and rates, and waste quantities are presented. TSTA has developed a Quality Assurance program for preparing and controlling the documentation of the procedures required for the design, purchase, and operation of the tritium systems. Operational experience under normal, abnormal, and emergency conditions is presented. One unique aspect of operations at TSTA is that the design personnel for the TSTA systems are also part of the operating personnel. This has allowed for the relatively smooth transition from design to operations. TSTA has been operated initially as a research facility. As the system is better defined, operations are proceeding toward production modes. The DOE requirements for the operation of a tritium facility like TSTA include personnel training, emergency preparedness, radiation protection, safety analysis, and preoperational appraisals. The integration of these requirements into TSTA operations is discussed. 4 refs., 3 figs., 3 tabs

  6. The potentialities of the complexation ultrafiltration technique for the decontamination of fission product contaminated aqueous effluents; Potentialites de la complexation - ultrafiltration a la decontamination d`effluents radioactifs en produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Thibert, V.

    1995-07-01

    Many nuclear researchers and industrial operators lay emphasis on improving the back end of the fuel cycle. A major problem concerns the liquid wastes generated by the reprocessing plant at La Hague, discharged into the sea after treatment in the Effluent Treatment Station (STE) (3), and which have become crucial matter. The activity of these wastes is well below the current legal limits, and is constantly decreasing these last years. To bring it close to zero, and ambitious goal, entails innovative new reprocessing techniques. We accordingly investigated the possibilities of complexation-ultrafiltration, a technique that uses water-soluble macromolecules to complex the target elements to be separated. We first achieved the strontium (II) separation with poly-acrylic and poly-sulfonic acids. The effects of pH and NaNO{sub 3} concentration influence on Sr (II) complexation were studied. The Sr (II) complexation and concentration phases, followed by cation de-complexation to recover the polymer, were also taken into account. This research, combined with a potentiometric study of the polymers, offered a close understanding of the chemical systems involved, and of the operating conditions and limits of complexation-ultrafiltration. The laboratory results were also validated on a tangential ultrafiltration pilot plant. We then used complexation-ultrafiltration to treat a real effluent generated bu La Hague`s STE 3 plant. This experiment demonstrated minimum 90 % decontamination of Sr (II) (with polyacrylate complexing agent), and also for {sup 134-137}Cs (with simple ultrafiltration). The use of two polyamides allowed partial decontamination of the effluent for {sup 60}Co and {sup 106}Ru. This work therefore offers a global approach to complexation-ultrafiltration, from laboratory to pilot scale, on real and simulated effluents. The future of this technique relies chiefly on the ability to solve the problem of polymer recovery. (Abstract Truncated)

  7. Hazards of exposure to tritium and tritium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R.C.; Kornberg, H.A.

    1954-01-01

    Experimental data pertinent to the evaluation of hazards involved in the exposure of personnel to tritium and tritium oxide are reviewed. Conclusions are drawn and recommendations made with regard to the control of these hazards.

  8. RESULTS OF TRITIUM TRACKING AND GROUNDWATER MONITORING AT THE HANFORD SITE 200 AREA STATE APPROVED LAND DISPOSAL SITE FY2008

    Energy Technology Data Exchange (ETDEWEB)

    ERB DB

    2008-11-19

    The Hanford Site's 200 Area Effluent Treatment Facility (ETF) processes contaminated aqueous wastes derived from Hanford Site facilities. The treated wastewater occasionally contains tritium, which cannot be removed by the ETF prior to the wastewater being discharged to the 200 Area State-Approved Land Disposal Site (SALDS). During the first 11 months of fiscal year 2008 (FY08) (September 1, 2007, to July 31, 2008), approximately 75.15 million L (19.85 million gal) of water were discharged to the SALDS. Groundwater monitoring for tritium and other constituents, as well as water-level measurements, is required for the SALDS by State Waste Discharge Permit Number ST-4500 (Ecology 2000). The current monitoring network consists of three proximal (compliance) monitoring wells and nine tritium-tracking wells. Quarterly sampling of the proximal wells occurred in October 2007 and in January/February 2008, April 2008, and August 2008. The nine tritium-tracking wells, including groundwater monitoring wells located upgradient and downgradient of the SALDS, were sampled in January through April 2008. Water-level measurements taken in the three proximal SALDS wells indicate that a small groundwater mound is present beneath the facility, which is a result of operational discharges. The mound increased in FY08 due to increased ETF discharges from treating groundwater from extraction wells at the 200-UP-l Operable Unit and the 241-T Tank Farm. Maximum tritium activities increased by an order of magnitude at well 699-48-77A (to 820,000 pCi/L in April 2008) but remained unchanged in the other two proximal wells. The increase was due to higher quantities of tritium in wastewaters that were treated and discharged in FY07 beginning to appear at the proximal wells. The FY08 tritium activities for the other two proximal wells were 68,000 pCi/L at well 699-48-77C (October 2007) and 120,000 pCi/L at well 699-48-77D (October 2007). To date, no indications of a tritium incursion from

  9. Tritium analysis at TFTR

    International Nuclear Information System (INIS)

    The tritium analytical system at TFRR is used to determine the purity of tritium bearing gas streams in order to provide inventory and accountability measurements. The system includes a quadrupole mass spectrometer and beta scintillator originally configured at Monsanto Mound Research Laboratory in the late 1970's and early 1980's. The system was commissioned and tested between 1991 and 1992 and is used daily for analysis of calibration standards, incoming tritium shipments, gases evolved from uranium storage beds and measurement of gases returned to gas holding tanks. The low resolution mass spectrometer is enhanced by the use of a metal getter pump to aid in resolving the mass 3 and 4 species. The beta scintillator complements the analysis as it detects tritium bearing species that often are not easily detected by mass spectrometry such as condensable species or hydrocarbons containing tritium. The instruments are controlled by a personal computer with customized software written with a graphical programming system designed for data acquisition and control. A discussion of the instrumentation, control systems, system parameters, procedural methods, algorithms, and operational issues will be presented. Measurements of gas holding tanks and tritiated water waste streams using ion chamber instrumentation are discussed elsewhere

  10. Tritium - is it underestimated

    International Nuclear Information System (INIS)

    Practical experience in the use of the Whitlock Tritium Meter in various laboratories and industrial establishments throughout the world has shown that:-a) Measurements by smear/wipe tests can often be in error by three orders of magnitude or more; b) Sub-visual surface scratches (8μ deep) are radiologically important; c) Volatile forms of tritium exist in 20% to 30% of establishments visited. It is concluded that a) the widespread use of smear/wipe techniques for the assessment of 3H surface contamination based on the assumption that 10% of removable activity is collected by the smear/wipe should be re-examined and b) tritium surface contamination assessed as 'fixed' can contain volatile fractions with a hazard potential which may be considerably greater than the hazard from removable activity at present covered by maximum permissible level recommendations. (H.K.)

  11. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  12. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  13. High accuracy tritium measurement for the verification of the tritium production rate calculations with MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Rovni, István, E-mail: rovni@reak.bme.hu [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111. Budapest, Műegyetem rkp 3-9 (Hungary); Szieberth, Máté [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111. Budapest, Műegyetem rkp 3-9 (Hungary); Palcsu, László; Major, Zoltán [Hertelendi Laboratory of Environmental Studies, 4026 Debrecen, Bem tér 18/C (Hungary); Fehér, Sándor [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111. Budapest, Műegyetem rkp 3-9 (Hungary)

    2013-06-21

    This paper presents high accuracy tritium production rate measurement results compared with calculations using the MCNPX Monte Carlo particle transport code. The experimental results are regarded as reference values for a new passive technique based on the secondary charged particle activation method developed for measuring the tritium production rate in the test blanket modules of the ITER Tokamak. The {sup 16}O(t,n){sup 18}F reaction, which is one of the possible tritium monitor reactions, was also extensively investigated, and the experimentally determined reaction rates were compared with simulations. Li{sub 2}CO{sub 3} solution was filled and sealed into quartz ampoules which were irradiated in the Training Reactor of the Budapest University of Technology and Economics. The amount of {sup 18}F was determined using γ-spectroscopy. Then the precise tritium measurements were carried out in the Hertelendi Laboratory of Environmental Studies using the {sup 3}H–{sup 3}He ingrowth method, where the {sup 3}He produced during the storage time is measured by a static noble gas mass spectrometer (VG-5400). The HT/HTO ratio in the irradiated aqueous solutions was found to be 0.1323±0.0034. Based on the comparison of the measurements and the simulations it was pointed out that the model calculations underestimate the reaction rate of both the {sup 6}Li(n,t)α and the {sup 16}O(t,n){sup 18}F reactions by 5–10% and 15%, respectively. -- Highlights: ► Tritium measurements for verifying the {sup 6}Li6(n, t)α reaction rate calculated by MCNPX. ► The HT/HTO ratio was determined in the neutron irradiated aqueous solution of Li{sub 2}CO{sub 3}. ► The reaction rate of {sup 16}O(t,n){sup 18}F was measured in thermal neutron spectrum.

  14. The treatment and disposal of tritiated effluents. Technology and safety

    International Nuclear Information System (INIS)

    The study on the disposal of tritiated effluents has been conducted in coordination with investigations carried out at NUKEM GmbH under the heading ''Compilation of Safety-Related Data for an Industrial Disposal of Tritiated Effluents on the Basis of Large-Scale Invenstigations''. The findings of this study were adopted, in particular with a view to tritium exchange rates ascertained experimentally. After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described in the present study and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m3 of tritiated waste water with a tritium content of 6.5 x 1012 Bq/m3 as well as a residual fission product and actinide content. (orig./RW)

  15. Tritium breeding materials

    International Nuclear Information System (INIS)

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved

  16. Tritium retention in TFTR

    International Nuclear Information System (INIS)

    This report discusses the materials physics related to D-T operation in TFTR. Research activities are described pertaining to basic studies of hydrogenic retention in graphite, hydrogen recycling phenomena, first-wall and limiter conditioning, surface analysis of TFTR first-wall components, and estimates of the tritium inventory

  17. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  18. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  19. Tritium Exchange in Biological Systems

    International Nuclear Information System (INIS)

    Whenever tritium-labelled water is employed as a test solute or tracer in biological systems, an appreciable exchange between tritium and labile hydrogen atoms occurs that frequently affects the nature and interpretation of experimental results. The studies reported here are concerned with the magnitude of the effect that tritium exchange introduces into measurements of total body water and water metabolism in animals and humans. Direct measurements of exchange were made in rats, guinea pigs, pigeons, and rabbits. Tritium-labelled water was administered intravenously or by mouth, and tritium space and turnover determined from the concentration of tritium in blood. The animals were then desiccated to constant weight in vacuo. The specific activity of water collected periodically during desiccation increased by 50% as a result of isotope effects. Water from combustion of dried rabbit tissues contained about 2% of the tritium originally given to the animal. Adipose tissue alone contained little or no exchange tritium. The dried tissues of the other animals were rehydrated with inactive water and the appearance of tritium in the water observed. The specific activity of the water increased in exponential fashion, i.e., 1-exp. (kt), with about 90% of exchange occurring with a half-time of 1 h, and the remaining 10% with a half-time of 10 h. The total tritium extracted accounted for 1.5 to 3.5% of the dose given to the animal, which agrees with the difference between the tritium space and total body water determined by desiccation. An indirect estimate of exchange in humans was derived from concurrent measurements of tritium and antipyrene spaces. The average difference of about 2% in water volume agrees with the direct estimates of exchanges in animals. It is evident that tritium space should be reduced by about 2% to identify it with total body water. The magnitude and relatively slow rate of exchange may also influence the interpretation of metabolic studies with

  20. Universal tritium transmitter

    International Nuclear Information System (INIS)

    At the Savannah River Site and throughout the National Nuclear Security Agency (NNSA) tritium is measured using Ion or Kanne Chambers. Tritium flowing through an Ion Chamber emits beta particles generating current flow proportional to tritium radioactivity. Currents in the 1 x 10-15 A to 1 x 10-6 A are measured. The distance between the Ion Chamber and the electrometer in NNSA facilities can be over 100 feet. Currents greater than a few micro-amperes can be measured with a simple modification. Typical operating voltages of 500 to 1000 Volts and piping designs require that the Ion Chamber be connected to earth ground. This grounding combined with long cable lengths and low currents requires a very specialized preamplifier circuit. In addition, the electrometer must be able to supply 'fail safe' alarm signals which are used to alert personnel of a tritium leak, trigger divert systems preventing tritium releases to the environment and monitor stack emissions as required by the United States federal Government and state governments. Ideally the electrometer would be 'self monitoring'. Self monitoring would reduce the need for constant checks by maintenance personnel. For example at some DOE facilities monthly calibration and alarm checks must be performed to ensure operation. NNSA presently uses commercially available electrometers designed specifically for this critical application. The problems with these commercial units include: ground loops, high background currents, inflexibility and susceptibility to Electromagnetic Interference (EMI) which includes RF and Magnetic fields. Existing commercial electrometers lack the flexibility to accommodate different Ion Chamber designs required by the gas pressure, type of gas and range. Ideally the electrometer could be programmed for any expected gas, range and high voltage output. Commercially available units do not have 'fail safe' self monitoring capability. Electronics used to measure extremely low current must have

  1. Tritium neutrino mass experiments

    International Nuclear Information System (INIS)

    The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods, such as the beta decay of tritium. The situation concerning the electron neutrino mass as measured in tritium beta decay is essentially unchanged from a year ago, although a great deal of experimental work is in progress. The ITEP group continues to find evidence for a nonzero mass, now slightly revised to 26(5) eV. After correcting for recently discovered errors in the energy loss distribution and source thickness, however, the Z/umlt u/rich group still claims and upper limit of 18 eV. There may be evidence for neutrino mass and mixing in the SN1987a data, in the same range suggested by the ITEP experiment. 42 refs., 3 figs

  2. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  3. Chromium uptake from aqueous effluents by immobilized Baker's yeast Utilização de leveduras de panificação na remoção de cromo em meio aquoso

    Directory of Open Access Journals (Sweden)

    Lucia Beckmann C. Menezes

    1998-10-01

    Full Text Available Baker’s yeast immobilized in alginate was used to take up chromium from effluents. Chromium in aqueous solutions were used in different concentrations. To evaluate the viability and efficiency the baker’s yeast for chromium uptake from effluents three experiments done in two differents reactor systems: first in system 1 at 17.5 ml/s and with 10, 20, 25 and 30 mg/l Cr; second in system 2 at 38.7 ml/s with 20 mg/l Cr; third in system 2.1 at 6.65 ml/s and with 20, 30 and 40 mg/l Cr. The efficiency of chromium uptake varied between 86 and 100 %.Leveduras de panificação imobilizadas em alginato, foram utilizadas com o objetivo de promover a remoção de cromo presente em efluentes. Trabalhou-se com soluções de cromo de diferentes concentrações. A fim de avaliar a viabilidade e eficiência do uso de leveduras de panificação na remoção de cromo, três experimentos foram realizados em dois diferentes sistemas de reatores: o primeiro no sistema 1 com 17,5 ml/s e 10, 20, 25 e 30 mg/l Cr; o segundo no sistema 2 com 38,7 ml/s e 20 mg/l Cr; o terceiro no sistema 2.1 com 6,65 ml/s e 20, 30 e 40 mg/l Cr. A média das eficiências de retenção do cromo variaram entre 86 e 100%.

  4. Voltametric study of formic and dihydroxy malonic acids on platinum for the definition of a process for the electrolytic destruction of carboxylic acids in radioactive aqueous effluents; Etude voltamperometrique des acides formiques et dihydroxymalonique sur platine en vue de la definition d`un procede de destruction electrolytique d`acides carboxyliques d`effluents aqueux radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Le Naour, C.

    1994-05-01

    To limit the amount of nuclear glasses generated by the treatment of the degraded solvent from the PUREX process for reprocessing of nuclear fuels, by solutions of sodium carbonate and caustic soda, it is planned to exploit the complexing power of certain carboxylic acids to return the metallic cations to the aqueous phase. The concept of this new treatment of the solvent by `substitution` reagents demands a process for the decomposition of these reagents, especially to CO{sub 2}. The investigation of the electrochemical behaviour, on platinum, of a substance selected as a model for understanding the interfacial mechanisms (HCOOH), and of dihydroxy malonic acid, revealed two distinct electro-poisoning processes: one is due to the adsorption of CO on the surface sites of platinum, and the second to the formation of a passivating layer of P{dagger}O. The application of 20 kHz ultrasonic flux in the neighbourhood of the platinum / aqueous formic acid solution interface also appears to cause a change in the superficial structure of the electrode used, in a direction that favours the decomposition of this compound. To overcome problems of poisoning of the platinum surface, aqueous solutions of formic, dihydroxy malonic and oxalic acids were electrolysed, in a cell without diaphragm, by applying voltage and current ranges, at levels adapted to each of the species. It is necessary to bring the working electrode to a higher potential than the oxidation potential for formic acid, and to a lower potential for dihydroxy malonic and oxalic acids. The frequent modifications of the electrode potentials helped to achieve quantitative destruction of these species, to CO{sub 2} (and to water) with an electrochemical efficiency approaching 100 %. This wet oxidation process also offers the advantage of not raising the energy potential of the effluents to be treated, because it takes place in mild conditions (ambient temperature and pressure). (author). 131 refs., 90 figs., 48 tabs.

  5. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  6. Tritium accountancy in fusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S. [Savannah River National Laboratory, Aiken, SC (United States); Moore, M.L. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  7. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm-2, and at 35 to 900C. Current densities up to 0.3 A cm-2 have been achieved in continuous operation, at 80 to 900C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H2O at 0.2 A cm-2 and 5.0 kwh/kg H2O at 0.5 A cm-2 current density, compared to 6.4 and 8.0 kwh/kg H2O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  8. Tritium-surface interactions

    International Nuclear Information System (INIS)

    The report deals broadly with tritium-surface interactions as they relate to a fusion power reactor enterprise, viz., the vacuum chamber, first wall, peripherals, pumping, fuel recycling, isotope separation, repair and maintenance, decontamination and safety. The main emphasis is on plasma-surface interactions and the selection of materials for fusion chamber duty. A comprehensive review of the international (particularly U.S.) research and development is presented based upon a literature review (about 1 000 reports and papers) and upon visits to key laboratories, Sandia, Albuquerque, Sandia, Livermore and EGβG Idaho. An inventory of Canadian expertise and facilities for RβD on tritium-surface interactions is also presented. A number of proposals are made for the direction of an optimal Canadian RβD program, emphasizing the importance of building on strength in both the technological and fundamental areas. A compendium of specific projects and project areas is presented dealing primarily with plasma-wall interactions and permeation, anti-permeation materials and surfaces and health, safety and environmental considerations. Potential areas of industrial spinoff are identified

  9. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing tritium from treatment of Hanford Site liquid wastes at the 200 Area Effluent Treatment Facility (ETF). Since operation of the SALDS began in December 1995, discharges of tritium have totaled {approx}304 Ci, only half of what was originally predicted for tritium quantity through 1999. Total discharge volumes ({approx}2.7E+8 L) have been commensurate with predicted volumes to date. This document reports the results of all tritium analyses in groundwater as determined from the SALDS tritium-tracking network since the first SALDS wells were installed in 1992 through July 1999, and provides interpretation of these results as they relate to SALDS operation and its effect on groundwater. Hydrologic and geochemical information are synthesized to derive a conceptual model, which is in turn used to arrive at an appropriate approach to continued groundwater monitoring at the facility.

  10. On the conversion of tritium units to mass fractions for hydrologic applications

    Science.gov (United States)

    Stonestrom, David A.; Andraski, Brain J.; Cooper, Clay A.; Mayers, Charles J.; Michel, Robert L.

    2013-01-01

    We develop a general equation for converting laboratory-reported tritium levels, expressed either as concentrations (tritium isotope number fractions) or mass-based specific activities, to mass fractions in aqueous systems. Assuming that all tritium is in the form of monotritiated water simplifies the derivation and is shown to be reasonable for most environmental settings encountered in practice. The general equation is nonlinear. For tritium concentrations c less than 4.5×1012 tritium units (TU) - i.e. specific tritium activities11 Bq kg-1 - the mass fraction w of tritiated water is approximated to within 1 part per million by w ≈ c×2.22293×10-18, i.e. the conversion is linear for all practical purposes. Terrestrial abundances serve as a proxy for non-tritium isotopes in the absence of sample-specific data. Variation in the relative abundances of non-tritium isotopes in the terrestrial hydrosphere produces a minimum range for the mantissa of the conversion factor of [2.22287; 2.22300].

  11. Tritium monitoring at the Sandia Tritium Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases.

  12. Tritium Plasma Experiment Upgrade for Fusion Tritium and Nuclear Sciences

    Science.gov (United States)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.

    2015-11-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. Recently the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of tritium plasma-driven permeation and optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  13. Tritium in fusion reactor components

    International Nuclear Information System (INIS)

    When tritium is used in a fusion energy experiment or reactor, several implications affect and usually restrict the design and operation of the system and involve questions of containment, inventory, and radiation damage. Containment is expected to be particularly important both for high-temperature components and for those components that are prone to require frequent maintenance. Inventory is currently of major significance in cases where safety and environmental considerations limit the experiments to very low levels of tritium. Fewer inventory restrictions are expected as fusion experiments are placed in more-remote locations and as the fusion community gains experience with the use of tritium. However, the advent of power-producing experiments with high-duty cycle will again lead to serious difficulties based principally on tritium availability; cyclic operations with significant regeneration times are the principal problems

  14. Tritium transport around nuclear faciliteis

    International Nuclear Information System (INIS)

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears that the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation. (J.P.N.)

  15. Tritium transport around nuclear facilities

    International Nuclear Information System (INIS)

    The transport and cycling of tritium around nuclear facilities is reviewed with special emphasis on studies at the Savannah River Laboratory, Aiken, South Carolina. These studies have shown that the rate of deposition from the atmosphere, the site of deposition, and the subsequent cycling are strongly influenced by the compound with which the tritium is associated. Tritiated hydrogen is largely deposited in the soil, while tritiated water is deposited in the greatest quantity in the vegetation. Tritiated hydrogen is converted in the soil to tritiated water that leaves the soil slowly, through drainage and transpiration. Tritiated water deposited directly to the vegetation leaves the vegetation more rapidly after exposure. Only a small part of the tritium entering the vegetation becomes bound in organic molecules. However, it appears tht the existence of soil organic compounds with tritium concentrations greater than the equilibrium concentration in the associated water can be explained by direct metabolism of tritiated hydrogen in vegetation

  16. Development and Verification of Tritium Analyses Code for a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-09-01

    . The amount of tritium in the product hydrogen was estimated to be approximately an order less than the gaseous effluent limit for tritium.

  17. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  18. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single- stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. A new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellets. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  19. Phase 1 Final Report for In-Situ Tritium Beta Detector

    Energy Technology Data Exchange (ETDEWEB)

    Berthold, J.W.; Jeffers, L.A.

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye.

  20. Radioactive effluents in Savannah River. Summary report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1993-09-21

    During 1992, the radioactive effluents in the Savannah River were less than those observed in 1991. Vogtle reported no significant releases in 1992, and in earlier years Vogtle improvements in pre-processing their releases had already effected a decreasing trend in release levels. Their effluents continue to be dominated by {sup 58}Co, which had a maximum concentration of only 0.068 pCi/L, which is just 1/3 of the maximum observed in 1991. Many of the other man-made radionuclides observed in earlier years have now decreased to where some are not even detected, and no new radionuclides were detected in the 1992 Vogtle effluents. In addition to {sup 58}Co, low levels of {sup 60}Co were frequently observed, but only traces of {sup 54}Mn and {sup 95}Nb were observed. Contrary to earlier years no {sup 51}Cr, {sup 57}Co, {sup 59}Fe, or {sup 95}Zr were seen in 1992. Tritium and {sup 137}Cs were also monitored, but their levels generally remain consistent with known SRS sources. The maximum tritium observed near Vogtle was 2 pCi,/mL. The maximum downstream tritium was higher (3.8 pCi/mL), primarily due to the tritium release from K-Reactor in December 1991; however, the levels had abated significantly prior to collection of the tritium samples of the present study. In addition to natural sources, the general levels in the Savannah River are due to routine releases from the effluent treatment facility and seepage basin migration into plant streams that flow into the river.

  1. Tritium in the environment. Knowledge synthesis

    International Nuclear Information System (INIS)

    This report first presents the nuclear and physical-chemical properties of tritium and addresses the notions of bioaccumulation, bio-magnification and remanence. It describes and comments the natural and anthropic origins of tritium (natural production, quantities released in the environment in France by nuclear tests, nuclear plants, nuclear fuel processing plants, research centres). It describes how tritium is measured as a free element (sampling, liquid scintillation, proportional counting, enrichment method) or linked to organic matter (combustion, oxidation, helium-3-based measurement). It discusses tritium concentrations noticed in different parts of the environment (soils, continental waters, sea). It describes how tritium is transferred to ecosystems (transfer of atmospheric tritium to ground ecosystems, and to soft water ecosystems). It discusses existing models which describe the behaviour of tritium in ecosystems. It finally describes and comments toxic effects of tritium on living ground and aquatic organisms

  2. Overview of Recent Tritium Experiments in TPE

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Shimada; T. Otsuka; R. J. Pawelko; P. Calderoni; J. P. Sharpe

    2010-10-01

    Tritium retention in plasma-facing components influences the design, operation, and lifetime of fusion devices such as ITER. Most of the retention studies were carried out with the use of either hydrogen or deuterium. Tritium Plasma Experiment is a unique linear plasma device that can handle radioactive fusion fuel of tritium, toxic material of beryllium, and neutron-irradiated material. A tritium depth profiling method up to mm range was developed using a tritium imaging plate and a diamond wire saw. A series of tritium experiments (T2/D2 ratio: 0.2 and 0.5 %) was performed to investigate tritium depth profiling in bulk tungsten, and the results shows that tritium is migrated into bulk tungsten up to mm range.

  3. Crediting Tritium Deposition in Accident Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.

    2001-06-20

    This paper describes the major aspects of tritium dispersion phenomenology, summarizes deposition attributes of the computer models used in the DOE Complex for tritium dispersion, and recommends an approach to account for deposition in accident analysis.

  4. Recommended radiological controls for tritium operations

    International Nuclear Information System (INIS)

    This informal report presents recommendations for an adequate radiological protection program for tritium operations. Topics include hazards analysis, facility design, personnel protection equipment, training, operational procedures, radiation monitoring, to include surface and airborne tritium contamination, and program management

  5. Oxides as barriers to tritium permeation in steam generators and tritium content in CTR coolants

    International Nuclear Information System (INIS)

    The primary release of tritium from a fusion reactor complex into the environment is via the steam generator system. Tritium in the coolant can permeate through the heat exchanger into the steam cycle, and is trapped in the steam as HTO. Subsequent recovery of tritium from the steam is impractical. The amount of tritium that permeates into the steam cycle will depend on the concentration of tritium in the coolant, or more significantly the amount of tritium that can be allowed in the coolant will depend on the rate of tritium permeation that can be tolerated

  6. 40 CFR 435.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... drilling fluids, drill cuttings, and dewatering effluent Free Oil No discharge. 2 Non-aqueous drilling... Free Oil No discharge. 2 Well Treatment, Workover and Completion Fluids Free Oil No discharge. 2... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS OIL AND GAS EXTRACTION POINT SOURCE CATEGORY...

  7. Toxicity and dosimetry of tritium

    International Nuclear Information System (INIS)

    Tritium doses to the general public are very low (currently about 0.2 μSv per year). Radiation doses from tritium to members of the public living in the vicinity of a CANDU power station are higher but rarely exceed 20 μSv per year or 1% of normal exposures to radiation from all natural sources, but doses to some radiation workers can approach ten mSv per year. The relative biological effectiveness (RBE) of tritium beta rays varies appreciably depending upon the biological endpoint. Observed RBE values at low doses and low dose-rates are usually about 2 to 3 when tritium beta rays are compared to 60Co gamma rays but are closer to 1 than to 2 when compared to 200 kVp X-rays. This conclusion is supported by microdosimetric considerations of the quality of tritium beta rays, 60Co gamma rays and X-rays. Since X-rays have traditionally been accepted as reference radiation by the International Commission on Radiological Protection, it seems reasonable that the quality factor (Q) assigned to tritium beta rays should be close to one. Recommended procedures in Canada for estimation of effective dose equivalents from exposures to HTO and HT assume that Q = 1 and that body water represents 67% of the mass of soft tissue; they take into account conversions of HTO to appear to be reasonable for radiation protection purposes when the source of exposure is HTO or HT, but will not be adequate for exposures to other tritiated compounds. (modified author abstract) (137 refs., 11 figs., 12 tabs.)

  8. Tritium oxidation and exchange: preliminary studies

    International Nuclear Information System (INIS)

    The radiological hazard resulting from an exposure to either tritium oxide or tritium gas is discussed and the factors contributing to the hazard are presented. From the discussion it appears that an exposure to tritium oxide vapor is 104 to 105 times more hazardous than exposure to tritium gas. Present and future sources of tritium are briefly considered and indicate that most of the tritium has been and is being released as tritium oxide. The likelihood of gaseous releases, however, is expected to increase in the future, calling to task the present general release assumption that 100% of all tritium released is as oxide. Accurate evaluation of the hazards from a gaseous release will require a knowledge of the conversion rate of tritium gas to tritium oxide. An experiment for determining the conversion rate of tritium gas to tritium oxide is presented along with some preliminary data. The conversion rates obtained for low initial concentrations (10-4 to 10-1 mCi/ml) indicate the conversion may proceed more rapidly than would be expected from an extrapolation of previous data taken at higher concentrations

  9. TRITIUM PERMEATION AND TRANSPORT IN THE GASOLINE PRODUCTION SYSTEM COUPLED WITH HIGH TEMPERATURE GAS-COOLED REACTORS (HTGRS)

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2011-05-01

    This paper describes scoping analyses on tritium behaviors in the HTGR-integrated gasoline production system, which is based on a methanol-to-gasoline (MTG) plant. In this system, the HTGR transfers heat and electricity to the MTG system. This system was analyzed using the TPAC code, which was recently developed by Idaho National Laboratory. The global sensitivity analyses were performed to understand and characterize tritium behaviors in the coupled HTGR/MTG system. This Monte Carlo based random sampling method was used to evaluate maximum 17,408 numbers of samples with different input values. According to the analyses, the average tritium concentration in the product gasoline is about 3.05×10-3 Bq/cm3, and 62 % cases are within the tritium effluent limit (= 3.7x10-3 Bq/cm3[STP]). About 0.19% of released tritium is finally transported from the core to the gasoline product through permeations. This study also identified that the following four parameters are important concerning tritium behaviors in the HTGR/MTG system: (1) tritium source, (2) wall thickness of process heat exchanger, (3) operating temperature, and (4) tritium permeation coefficient of process heat exchanger. These four parameters contribute about 95 % of the total output uncertainties. This study strongly recommends focusing our future research on these four parameters to improve modeling accuracy and to mitigate tritium permeation into the gasol ine product. If the permeation barrier is included in the future study, the tritium concentration will be significantly reduced.

  10. Computer simulation of tritium removal facility design

    International Nuclear Information System (INIS)

    In this study, a computer simulation of tritium diffusion out of molten salt is performed using COMSOL Multiphysics. The purpose of the simulation is to investigate the efficiency of the permeation window type tritium removal facility, which is proposed for tritium control in FHRs. The result of the simulation suggests a large surface area is one of the key issues in the design of the tritium removal facility, and the simple tube bundle concept is insufficient to provide the surface area needed for an efficient tritium removal process. (author)

  11. Tritium hazard via the ingestion pathway

    International Nuclear Information System (INIS)

    The classic methodology for estimating dose to man from environmental tritium ignores the fact that organically bound tritium in foodstuffs may be directly assimilated in the bound compartment of tissues without previous oxidation. We propose a four-compartment model that allows for the ability to input organically bound tritium in foodstuffs directly into the organic compartments of the model. We found that organically bound tritium in foodstuffs can increase the total body dose by a factor of 1.7 to 4.5 times the free body water dose alone, depending on the bound to loose ratio of tritium in the diet. 10 refs., 1 fig., 1 tab

  12. Total tritium measurement in atmosphere

    International Nuclear Information System (INIS)

    Measurement of tritium in the atmosphere is of strong interest wherever this radionuclide is used. Therefore, a method is proposed for the joint measurement of burnable tritium, independently from its physico-chemical form, and of tritiated water. The method consists of transforming the tritiated molecules of the gases present in the air volume into tritiated water by burning them together with a known quantity of hydrogen. The water vapor is condensed and added to a liquid scintillator. The scintillator is also able to dissolve conventional filters so that the tritium attached to particulate and concentrated on these filters can be jointly measured, as will be discussed in a future report. The overall detection limit of the method is approximately 64 Bq m-3 for a combustion period of 10 min (which corresponds to sampling an air volume of 15 L) and a counting period of 10 min. This limit, much lower than the derived air concentrations in the most unfavorable cases, allows the application of the method for safety purposes. Moreover, the method can be integrated into a general procedure for the measurement of tritium in different chemical forms, to be applied in case of necessity

  13. Weapons engineering tritium facility overview

    Energy Technology Data Exchange (ETDEWEB)

    Najera, Larry [Los Alamos National Laboratory

    2011-01-20

    Materials provide an overview of the Weapons Engineering Tritium Facility (WETF) as introductory material for January 2011 visit to SRS. Purpose of the visit is to discuss Safety Basis, Conduct of Engineering, and Conduct of Operations. WETF general description and general GTS program capabilities are presented in an unclassified format.

  14. Fusion fuel cycle: material requirements and potential effluents

    International Nuclear Information System (INIS)

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described

  15. Fusion fuel cycle: material requirements and potential effluents

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Bickford, W.E.; Long, L.W.; Price, B.A.; Mellinger, P.J.; Willingham, C.E.; Young, J.K.

    1980-10-01

    Environmental effluents that may be associated with the fusion fuel cycle are identified. Existing standards for controlling their release are summarized and anticipated regulatory changes are identified. The ability of existing and planned environmental control technology to limit effluent releases to acceptable levels is evaluated. Reference tokamak fusion system concepts are described and the principal materials required of the associated fuel cycle are analyzed. These materials include the fusion fuels deuterium and tritium; helium, which is used as a coolant for both the blanket and superconducting magnets; lithium and beryllium used in the blanket; and niobium used in the magnets. The chemical and physical processes used to prepare these materials are also described.

  16. Tritium inventory assessment for ITER using TRIMO

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ioana-R. [Forschungszentrum Karlsruhe GmbH, Tritiumlabor, Postfach 3640, D-76021 Karlsruhe (Germany)]. E-mail: ioana.cristescu@hvt.fzk.de; Cristescu, I. [Forschungszentrum Karlsruhe GmbH, Tritiumlabor, Postfach 3640, D-76021 Karlsruhe (Germany); Murdoch, D. [EFDA Close Support Unit, Boltzmannstrasse 2, D-85748 Garching bei Muenchen (Germany); Doerr, L. [Forschungszentrum Karlsruhe GmbH, Tritiumlabor, Postfach 3640, D-76021 Karlsruhe (Germany); Glugla, M. [Forschungszentrum Karlsruhe GmbH, Tritiumlabor, Postfach 3640, D-76021 Karlsruhe (Germany)

    2006-02-15

    Currently, the strategy for determination of ITER in-vessel tritium inventory envisages that at predetermined intervals, tritiated gases in all systems of fuel cycle will be transferred to the storage and delivery system (SDS) and tritium quantities measured by in-bed calorimetry. The isotope separation system (ISS) is the system used to separate hydrogen isotopes at the quality required to be stored in SDS, and is one of the systems with highest tritium inventory within the fuel cycle. Therefore, during tritium inventory procedure, ISS has to be 'milked down' of tritium, mainly as DT molecular species. Based on the dynamic modelling code TRIMO of the tritium content in the main sub-systems of ITER Fuel Cycle, the procedure for tritium extraction from ISS is presented and numerical examples given to assess the necessary time of transferring the tritium from ISS to SDS, and the residual amount of tritium in ISS after different milking scenarios. Consequently a fuel handling strategy during tritium inventory assessment in the ISS and SDS is described, with the constraint of mobilizable tritium inventory minimisation.

  17. Extraction of tritium from ceramic breeder material

    International Nuclear Information System (INIS)

    The first generation of fusion reactors will use deuterium and tritium as fuel since this reaction takes place at relatively low temperature. Since tritium is not available in nature, it must be produced in the fusion reactor blanket which surrounds the plasma zone. The lithium bearing compound is available in plenty in earths crust and by absorbing neutron, lithium produces tritium by the reactions 6Li (n, α) T and 7Li (n, n'α) T. Natural lithium consists of 93% 7Li and the remaining 7% as 6Li. Since the inelastic scattering of 7Li with fast neutrons produces one tritium and one neutron, more than one tritium atom can be produced per neutron. Hence by suitably designing the lithium blanket, more than one tritium atom per fusion reaction can be produced. In the absence of thermonuclear reactions, the (D,T) neutrons which are energetic 14-MeV neutrons, are produced in the accelerator based neutron generators. In order to ensure that sufficient amount of tritium would be produced in the future fusion reactor blankets, experiments are carried out to irradiate the lithium assembly using the available neutron source and measurements are done to estimate the tritium breeding. Also, it is required to extract the tritium produced in the lithium blanket. This work consists of tritium breeding measurement technique and a design of tritium extraction system. (author)

  18. Tritium issues in plasma wall interactions

    Science.gov (United States)

    Tanabe, Tetsuo

    2010-05-01

    Since tritium resources are very limited, not only for safety reason but also for tritium economy, tritium inventory in a reactor must be kept as small as possible. In the present tokamaks, however, hydrogen retention rate in their vacuum vessel is significantly large, i.e. more than 20% of fueled hydrogen is continuously piled up, which must not be allowed in a reactor. After the introduction of tritium as a hydrogen radioisotope, the paper summarizes present tritium issues in plasma wall interactions, in particular, fueling, retention and recovering, considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulations and tritium accountancy. Progress in overcoming such problems will be also presented.

  19. Fusion tritium program in the United States

    International Nuclear Information System (INIS)

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Labortory. Objectives of this project are to develop and demonstrate the fuel cycle for processing the reactor exhaust gas (unburned deuterium and tritium plus impurities), and the necessary personnel and environemntal protection systems for the next generation of fusion devices. The TSTA is a full-scale system for an INTOR/ITER sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report is a summary of the results and interactions of the TSTA program since a previous summary was published and an overview of related tritium programs

  20. Tritium Burn-up Depth and Tritium Break-Even Time

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-Yue; DENG Bai-Quan; HUANG Jin-Hua; YAN Jian-Cheng

    2006-01-01

    @@ Similarly to but quite different from the xenon poisoning effects resulting from fission-produced iodine during the restart-up process of a fission reactor, we introduce a completely new concept of the tritium burn-up depth and tritium break-even time in the fusion energy research area. To show what the least required amount of tritium storage is used to start up a fusion reactor and how long a time the fusion reactor needs to be operated for achieving the tritium break-even during the initial start-up phase due to the finite tritium breeding time that is dependent on the tritium breeder, specific structure of breeding zone, layout of coolant flow pipe, tritium recovery scheme, extraction process, the tritium retention of reactor components, unrecoverable tritium fraction in breeder, leakage to the inertial gas container, and the natural decay etc., we describe this new phenomenon and answer this problem by setting up and by solving a set of equations, which express a dynamic subsystem model of the tritium inventory evolution in a fusion experimental breeder (FEB). It is found that the tritium burn-up depth is 317g and the tritium break-even time is approximately 240 full power days for FEB designed detail configuration and it is also found that after one-year operation, the tritium storage reaches 1.18kg that is more than theleast required amount of tritium storage to start up three of FEB-like fusion reactors.

  1. Tritium Movement and Accumulation in the NGNP System Interface and Hydrogen Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hirofumi Ohashi; Steven R. Sherman

    2007-06-01

    Tritium movement and accumulation in a Next Generation Nuclear Plant with a hydrogen plant using a high temperature electrolysis process and a thermochemical water splitting sulfur iodine process are estimated by the numerical code THYTAN as a function of design, operational, and material parameters. Estimated tritium concentrations in the hydrogen product and in process chemicals in the hydrogen plant of the Next Generation Nuclear Plant using the high temperature electrolysis process are slightly higher than the drinking water limit defined by the U.S. Environmental Protection Agency and the limit in the effluent at the boundary of an unrestricted area of a nuclear plant as defined by the U.S. Nuclear Regulatory Commission. However, these concentrations can be reduced to within the limits through use of some designs and modified operations. Tritium concentrations in the Next Generation Nuclear Plant using the Sulfur-Iodine Process are significantly higher as calculated and are affected by parameters with large uncertainties (i.e., tritium permeability of the process heat exchanger, the hydrogen concentration in the heat transfer and process fluids, the equilibrium constant of the isotope exchange reaction between HT and H2SO4). These parameters, including tritium generation and the release rate in the reactor core, should be more accurately estimated in the near future to improve the calculations for the NGNP using the Sulfur-Iodine Process. Decreasing the tritium permeation through the heat exchanger between the primary and secondary circuits may be an an effective measure for decreasing tritium concentrations in the hydrogen product, the hydrogen plant, and the tertiary coolant.

  2. Procurement of tritium for fusion reactor. 2. Transportation of large amounts of tritium for fusion reactors

    International Nuclear Information System (INIS)

    ITER will require kilograms of tritium to be transferred before and after the tritium experiment starts from tritium supplying facilities abroad and/or domestic. Currently, a Zr-Co type transfer container developed in JAERI with a capacity of 25 g tritium is available for international shipping; however, it does not seem enough large for tritium transfer for ITER. This article discusses the technical issues involving in developing a transfer container with a large tritium capacity and regulations governing radio isotope transport containers. (author)

  3. Behaviour of tritium in the environment

    International Nuclear Information System (INIS)

    Full text: There is considerable interest in the behaviour of radionuclides of global character that may be released to the environment through the development of nuclear power. Tritium is of particular interest due to its direct incorporation into water and organic tissue. Although there has been a large decrease (more than ten times) in tritium concentration since the stopping of nuclear weapons tests in the atmosphere, the construction in the near future of many water reactors and in the far future of fusion reactors could increase the present levels. Progress has been made during recent years in the assessment of tritium distribution, in detection methods and in biological studies While several meetings have given scientists an opportunity to present papers on tritium, no specific symposium on this topic has been organized by the IAEA since 1961. Thus the purpose of the meeting was to review recent advances and to report on the practical aspects of tritium utilization and monitoring. The symposium was jointly organized with OECD/NEA, in co-operation with the US Department of Energy and the Lawrence Livermore Laboratory. Papers were presented on distribution of tritium, evaluation of future discharges, measurement of tritium, tritium in the aquatic environment, tritium in the terrestrial environment, tritium in man and monitoring of tritium Very interesting papers were given on distribution of tritium and participants got a good idea of the circulation of this radionuclide Some new data were provided on tritium pollution from luminous compounds and we learnt that the tritium release of the Swiss luminous compounds industry is of the same order of magnitude as the tritium release of Windscale. Projections indicate that, in the USA, the total quantity of tritium contained in discarded digital watches will be equal, approximately ten years in the future, to the release of nuclear power reactors Whereas nuclear reactor discharges are controlled there is no control

  4. Radiological training for tritium facilities

    International Nuclear Information System (INIS)

    This program management guide describes a recommended implementation standard for core training as outlined in the DOE Radiological Control Manual (RCM). The standard is to assist those individuals, both within DOE and Managing and Operating contractors, identified as having responsibility for implementing the core training recommended by the RCM. This training may also be given to radiological workers using tritium to assist in meeting their job specific training requirements of 10 CFR 835

  5. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  6. HiPER Tritium factory elements

    Science.gov (United States)

    Guillaume, Didier

    2011-06-01

    HiPER will include a Tritium target factory. This presentation is an overview. We start from process ideas to go to first sketch passing through safety principles. We will follow the Tritium management process. We need first a gas factory producing the right gas mixture from hydrogen, Deuterium and Tritium storage. Then we could pass through the target factory. It is based on our LMJ single shot experiment and some new development like the injector. Then comes pellet burst and vapour recovery. The Tritium factory has to include the waste recovery, recycling process with gas purification before storage. At least, a nuclear plant is not a classical building. Tritium is also very special... All the design ideas have to be adapted. Many facilities are necessary, some with redundancy. We all have to well known these constraints. Tritium budget will be a major contributor for a material point of view as for a financial one.

  7. Tritium radioluminescent devices, Health and Safety Manual

    International Nuclear Information System (INIS)

    This document consolidates available information on the properties of tritium, including its environmental chemistry, its health physics, and safe practices in using tritium-activated RL lighting. It also summarizes relevant government regulations on RL lighting. Chapters are divided into a single-column part, which provides an overview of the topic for readers simply requiring guidance on the safety of tritium RL lighting, and a dual-column part for readers requiring more technical and detailed information

  8. Tritium radioluminescent devices, Health and Safety Manual

    Energy Technology Data Exchange (ETDEWEB)

    Traub, R.J.; Jensen, G.A.

    1995-06-01

    This document consolidates available information on the properties of tritium, including its environmental chemistry, its health physics, and safe practices in using tritium-activated RL lighting. It also summarizes relevant government regulations on RL lighting. Chapters are divided into a single-column part, which provides an overview of the topic for readers simply requiring guidance on the safety of tritium RL lighting, and a dual-column part for readers requiring more technical and detailed information.

  9. Overview of light sources powered by tritium

    International Nuclear Information System (INIS)

    Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium-based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several shortcomings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. Due to their long lifespan and stable intensity, light sources initiated by tritium instead of electricity or batteries are suitable for low level lighting applications. Therefore, tritium- based radioluminescent (RL) light sources are widely used in both military and civil applications. However, traditional tritium lights with the gas tube structure have several short- comings: (1) the phosphors are opaque; (2) the glass tube is fragile and easily broken; and (3) the beta kinetic energy is attenuated due to the sorption by the gas; etc. As a result, further application of the tritium lights is limited. In this paper, the lighting mechanism and radiation safety of tritium-based RL, light sources are briefly reviewed. Besides, the history and prospects of the development of tritium-based RL light source are discussed. (authors)

  10. Estimation of tritium and helium inventory in the tritium handling system in Korea

    International Nuclear Information System (INIS)

    In Korea, the Wolsong Tritium Removal Facility (WTRF) is under construction to reduce the amount of tritium present in the moderator and coolant of the CANDU type Wolsong nuclear power plants. Recently, a study on the tritium handling system for recovery of the tritium collected from the WTRF was started. Some tritium would enter the steel of the container walls and subsequently decay to helium. This helium can deteriorate the mechanical properties of the material of the tritium handling system. To evaluate the tritium and helium inventory in the stainless steel wall of this system, the time-dependent diffusion equation was developed, solved and the results are presented in this paper. These results were compared to previous work that evaluated the tritium inventory in the stainless steel wall of 50-L tritium containers. Tritium and helium concentration profiles and the corresponding inventories were evaluated with respect to the various parameters such as exposure time, temperature, and partial pressure. After 24 years, the helium inventory in the wall of the tritium handling system exceeds the tritium inventory. (authors)

  11. The trends of global tritium precipitations

    International Nuclear Information System (INIS)

    The trends of global tritium precipitation from 1953 to 1979 were estimated based on the tritium data published in seven volumes of Environmental Isotope Data by the International Atomic Energy Agency (IAEA). Tritium precipitation samples were collected from 342 stations in the world and tritium concentrations were measured by IAEA and 27 laboratories. Due to repeated atomospheric nuclear explosions, tritium precipitations showed maximum peak in 1963. After the agreement of the Partial Test Ban Treaty in 1964, they have gradually decreased until now showing seasonal variations. To obtain clear trends of tritium precipitations, seasonal and irregular factors were eliminated from the original time-series data using a code developed by the Japanese Economic Planning Agency. Results of analyses were as follows; a) Peak concentrations and precipitations of tritium were observed every year around the period of late spring to summer. b) The maximum annual tritium concentration and precipitation were observed in 1963 for northern hemisphere stations. c) A latitude effect was observed in the northern hemisphere. The maximum concentrations and precipitations were seen at the latitude of approximately 50 deg N. d) Continental stations always showed higher tritium concentrations and precipitations than comparable maritime stations. (author)

  12. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  13. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T2. Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  14. Management of Tritium in European Spallation Source

    DEFF Research Database (Denmark)

    Ene, Daniela; Andersson, Kasper Grann; Jensen, Mikael;

    2015-01-01

    The European Spallation Source (ESS) will produce tritium via spallation and activation processes during operational activities. Within the location of ESS facility in Lund, Sweden site it is mandatory to demonstrate that the management strategy of the produced tritium ensures the compliance...... with the country regulation criteria. The aim of this paper is to give an overview of the different aspects of the tritium management in ESS facility. Besides the design parameter study of the helium coolant purification system of the target the consequences of the tritium releasing into the environment were also...

  15. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T2 permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H2 tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations. Dose

  16. Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain); Sedano, L. A. [Asociacion Euratom-Ciematpara Fusion, Av. Complutense 22, 28040 Madrid (Spain); Perlado, J. M. [Instituto de Fusion Nuclear (DENIM), ETSII, Universidad Politecnica Madrid UPM, J. Gutierrez Abascal 2, Madrid 28006 (Spain)

    2008-07-15

    Tritium will be responsible for a large fraction of the environmental impact of the first generation of DT fusion reactors. Today, the efforts of conceptual development of the tritium cycle for DEMO are mainly centred in the so called Inner Breeding Tritium Cycle, conceived as guarantee of reactor fuel self-sufficiency. The EU Fusion Programme develops for the short term of fusion power technology two breeding blanket conceptual designs both helium cooled. One uses Li-ceramic material (HCPB, Helium-Cooled Pebble Bed) and the other a liquid metal eutectic alloy (Pb15.7Li) (HCLL, Helium-Cooled Lithium Lead). Both are Li-6 enriched materials. At a proper scale designs will be tested as Test Blanket Modules in ITER. The tritium cycles linked to both blanket concepts are similar, with some different characteristics. The tritium is recovered from the He purge gas in the case of HCPB, and directly from the breeding alloy through a carrier gas in HCLL. For a 3 GWth self-sufficient fusion reactor the tritium breeding need is few hundred grams of tritium per day. Safety and environmental impact are today the top priority design criteria. Dose impact limits should determine the key margins and parameters in its conception. Today, transfer from the cycle to the environment is conservatively assumed to be operating in a 1-enclosure scheme through the tritium plant power conversion system (intermediate heat exchangers and helium blowers). Tritium loss is caused by HT and T{sub 2} permeation and simultaneous primary coolant leakage through steam generators. Primary coolant chemistry appears to be the most natural way to control tritium permeation from the breeder into primary coolant and from primary coolant through SG by H{sub 2} tritium flux isotopic swamping or steel (EUROFER/INCOLOY) oxidation. A primary coolant chemistry optimization is proposed. Dynamic flow process diagrams of tritium fluxes are developed ad-hoc and coupled with tritiated effluents dose impact evaluations

  17. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  18. Impact of blanket tritium against the tritium plant of fusion reactor

    International Nuclear Information System (INIS)

    The breeder blanket and the blanket tritium recovery system are tested using test blanket modules during ITER campaign. And then, these are integrated with the tritium plant for the first time at a prototype reactor after ITER. In this work, impact to the tritium plant by integration of the solid breeder blanket was discussed. The method of tritium extraction from the blanket and the choice of the process for breeder blanket interface should be discussed not only from the viewpoint of tritium release but also from the viewpoint of the load of processing. (author)

  19. Evaluation of permeable and non-permeable tritium in normal condition in a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marta, V; Manuel, P J [Instituto de Fusion Nuclear (DENIM)/ETSII, Universidad Politecnica Madrid (UPM) (Spain); Sedano Luis, A [Ministerio de Educacion y Ciencia, Ciemat (Spain)], E-mail: marta@denim.upm.es

    2008-05-15

    The tritium cycle, technologies of process and control of the tritium in the plant will constitute a fraction of the environmental impact of the first generation of DT fusion reactors. The efforts of conceptual development of the tritium cycle are centered in the Internal Regenerator Cycle. The tritium could be recovered from a flow of He gas, or directly from solid breeder. The limits of transfers to the atmosphere are assumed {approx} 1 gr-T/a ({approx}20 Ci/a) (without species distinction). In the case of ITER, for example, we have global demands of control of 5 orders of magnitude have been demonstrated at experimental level. The transfer limits determine the key parameters in tritium Cycle (HT, HTO, as dominant, and T2, T2O as marginal). Presently, the transfer from the cycle to the environment is assumed through the exchange system of the power plant (primary to secondary). That transport is due to the permeation through HT, T2, or leakage to the coolant in the primary system. It is key the chemical optimization in the primary system, that needs to be reanalyzed in terms of radiological impact both for permeable, HT, T2, and non-permeable HTO, T2O. It is necessary considered the pathway of tritium from the reactor to the atmosphere, these processes are modelled adequately. Results of the assessments were early and chronic doses which have been evaluated for the Most Exposed Individual at particular distance bands from the release point. The impact evaluations will be performed with the computational tools (NORMTRI), besides national regulatory models, internationally accepted computer these code for dosimetric evaluations of tritiated effluents in operational conditions.

  20. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  1. Application of tritium behavior simulation code (TBEHAVIOR) to an actual-scale tritium handling room

    International Nuclear Information System (INIS)

    It is essential from the viewpoint of fusion safety to confine and remove tritium in a room since tritium handling room is placed as 'final barrier' of fusion plant to prevent the environmental discharge of tritium. At the Tritium Process Laboratory (TPL) of Japan Atomic Energy Agency (JAEA), the application of our original three-dimensional TBEHAVIOR code to the tritium behavior in a room of 3000 m3 was verified. The Renormalization Group Theory (RNG) model was selected as Low-Reynolds model for practical calculation time as well as to reasonable precision in evaluation of velocity from the engineering viewpoint. A series of evaluated results indicated that a flow adjacent to a wall surface plays an important role for tritium transport in a ventilated room. Evaluation of attenuating behavior is further important since the ventilation is normally stopped for the tritium confinement in the case of tritium leakage. We demonstrated that an attenuating behavior can also be evaluated well by the TBEHAVIOR code. Even an attenuating or stagnant flow of less than 10mm/s in a room mixed tritium concentration uniform promptly. The presence of apparatuses in a room did not generally affect tritium behavior. Although the effect of buoyancy was limited to the initial period after the leak, the spread of tritium was promoted by buoyancy. It led to the shortening of elapsed time until the concentration became uniform. (author)

  2. Doses due to tritium releases by NET - data base and relevant parameters on biological tritium behaviour

    International Nuclear Information System (INIS)

    This study gives an overview on the current knowledge about the behaviour of tritium in plants and in food chains in order to evaluate the ingestion pathway modelling of existing computer codes for dose estimations. The tritium uptake and retention by plants standing at the beginning of the food chains is described. The different chemical forms of tritium, which may be released into the atmosphere (HT, HTO and tritiated organics), and incorporation of tritium into organic material of plants are considered. Uptake and metabolism of tritiated compounds in animals and man are reviewed with particular respect to organically bound tritium and its significance for dose estimations. Some basic remarks on tritium toxicity are also included. Furthermore, a choice of computer codes for dose estimations due to chronic or accidental tritium releases has been compared with respect to the ingestion pathway. (orig.)

  3. Synthesis of tritium-labeled fosfomycin

    Energy Technology Data Exchange (ETDEWEB)

    Mertel, H.E.; Meriwether, H.T. (Merck Sharp and Dohme Research Labs., Rahway, NJ (USA))

    1982-03-01

    Tritium gas was used as a labeling agent for the preparation of (1,2-/sup 3/H)fosfomycin. Introduction of tritium into a precursor, the synthesis including resolution of the intermediate racemic 1,2-epoxypropylphosphonic acid, and preparation of both amine and calcium salts of the labeled antibiotic are described.

  4. Environmental tritium monitoring around Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    The environmental tritium monitoring in the sea near Tokai Reprocessing Plant has been performed since 1977, the year of having started the hot test operation of the plant. On the other hand, atmospheric tritium monitoring was started almost at the same time as a research program instead of a routine program. This paper is a review for tritium monitoring in the sea and in the air around the Tokai Reprocessing Plant. The plant is located in Tokai Village, Ibaraki Prefecture, on the Pacific coast. It is based on the Purex process, and the nominal capacity is 210 tons per year. Around the TRP, there are four uranium fabrication facilities, five research reactors, two power reactors and other research facilities. About 173,000 inhabitants are within 10 km range from the plant. The authorized discharge limit of tritium is 200 Ci per day and 51,100 Ci per year in the sea. That in the atmosphere is 50 Ci per day and about 15,000 Ci per year. The tritium from the TRP was discharged mainly into the sea. The sea water samples were distilled, and the tritium concentration was measured by liquid scintillation counting. During three years of the hot operation of TRP, discharged tritium was about 7,000 Ci into the sea and about 140 Ci into the atmosphere. The tritium level has been maintained, and its significant increase was not observed. (Kako, I.)

  5. Tritium waste disposal technology in the US

    International Nuclear Information System (INIS)

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references

  6. DOE handbook: Tritium handling and safe storage

    International Nuclear Information System (INIS)

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance

  7. Tritium/ 3He dating of shallow groundwater

    Science.gov (United States)

    Schlosser, Peter; Stute, Martin; Dörr, Helmut; Sonntag, Christian; Münnich, Karl Otto

    1988-08-01

    Combined tritium/ 3He data from three multi-level sampling wells (DFG 1, DFG 4, DFG 7) located at Liedern/ Bocholt, West Germany, are presented and principles of the tritium/ 3He method in shallow groundwater studies are discussed. The 3He excess produced by radioactive decay of bomb tritium (released mainly between 1952 and 1963) is clearly reflected in the data. The tritiogenic 3He signal can be detected with a good resolution (signal/1σ error: ≈ 350). The confinement of the tritiogenic 3He is estimated to approximately 77-85% at site DFG 4. For the bomb tritium peak the deviation of the tritium/ 3He age from the age determined by identifying the groundwater layer recharged between 1962 and 1965 is about 3 years (15%). The deviation can be explained by diffusive 3He loss across the groundwater table and by flow dispersion.

  8. DOE handbook: Tritium handling and safe storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

  9. A study on the safety evaluation of concentrated tritium storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. J.; Kim, K. K.; Lee, S. Y.; Lee, Y. E.; Hong, D. S.; Jung, H. Y.; Song, M. C.; Hwang, K. H.; Kim, S. I.; Yook, D. S.; Sheen, J. J. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-03-01

    In this study, hazards of hydrogen and the risk due to storage of tritium are reviewed. The safety related factors are suggested in terms of classification of hydrogen hazards and problems related to the tritium storage. The major design parameters of the vessel of foreign countries for the storage and transport of tritium are reviewed. By review of major safety parameters related to the tritium storage, the results of this study can be applied and helpful to the development and design of tritium storage vessel in Korea. Also, the results can be useful at design of the tritium treatment facility. The integrity of tritium storage vessel material was evaluated with considering the embrittlement of metal material in hydrogen environment. The tritium storage is one of the most important problems for the safety of tritium removal facility. The research for tritium storage could be divided into two parts, one is for the metal getter of tritium and the other is for the integrity of tritium storage vessel. Especially, the integrity of tritium storage vessel is up to the tritium embrittlement of vessel materials, for tritium vessel is mostly made of metal material. In this work, the evaluation of the tritium embrittlement for the tritium storage vessel material is performed with the equipment that is made for high temperature and high vacuum. 33 refs., 56 figs., 23 tabs. (Author)

  10. Percutaneous absorption of tritium-gas-contaminated pump oil

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A. [Radiation Biology and Health Physics Branch, Ontario (Canada)

    1995-08-01

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium`s ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. 19 refs., 5 figs., 4 tabs.

  11. Interaction of energetic tritium with silicon carbide

    International Nuclear Information System (INIS)

    In order to investigate the physical and chemical interactions of energetic hydrogen isotope species with silicon carbide, recoil tritium from the 3He(n,p)T reaction has been allowed to react with K-T silicon carbide and silicon carbide powder. The results show that if the silicon carbide has been degassed and annealed at 14000C prior to tritium bombardment, a considerable fraction of the tritium (ca. 40%) is released as HTO from the SiC upon heating to 13500C under vacuum conditions. Most of the remaining tritium is retained in SiC, e.g., the retention of the tritium in the K-T SiC was found to be 62 and 22% upon heating to 600 and 13500C, respectively. This is in direct contrast to graphite samples in which the tritium is not released to any significant extent even when heated to 13500C. Samples which were exposed to H2O and H2 prior to tritium bombardment were heated to 6000C after the irradiation. The results obtained indicate that a total of 38.7 and 2.49% of the tritium is released in the form of HT and CH3T in the case of H2 or H2O exposure, respectively. Treatment of degassed samples after tritium bombardment with H2O and H2 at temperatures up to 10000C leads to the release of up to 44.9% of the tritium as HT and CH3T. 42 references, 2 figures, 2 tables

  12. TRITIUM RESERVOIR STRUCTURAL PERFORMANCE PREDICTION

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.S.; Morgan, M.J

    2005-11-10

    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  13. PDRD (SR13046) TRITIUM PRODUCTION FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.; Sheetz, S.

    2013-09-30

    Utilizing the results of Texas A&M University (TAMU) senior design projects on tritium production in four different small modular reactors (SMR), the Savannah River National Laboratory’s (SRNL) developed an optimization model evaluating tritium production versus uranium utilization under a FY2013 plant directed research development (PDRD) project. The model is a tool that can evaluate varying scenarios and various reactor designs to maximize the production of tritium per unit of unobligated United States (US) origin uranium that is in limited supply. The primary module in the model compares the consumption of uranium for various production reactors against the base case of Watts Bar I running a nominal load of 1,696 tritium producing burnable absorber rods (TPBARs) with an average refueling of 41,000 kg low enriched uranium (LEU) on an 18 month cycle. After inputting an initial year, starting inventory of unobligated uranium and tritium production forecast, the model will compare and contrast the depletion rate of the LEU between the entered alternatives. This is an annual tritium production rate of approximately 0.059 grams of tritium per kilogram of LEU (g-T/kg-LEU). To date, the Nuclear Regulatory Commission (NRC) license has not been amended to accept a full load of TPBARs so the nominal tritium production has not yet been achieved. The alternatives currently loaded into the model include the three light water SMRs evaluated in TAMU senior projects including, mPower, Holtec and NuScale designs. Initial evaluations of tritium production in light water reactor (LWR) based SMRs using optimized loads TPBARs is on the order 0.02-0.06 grams of tritium per kilogram of LEU used. The TAMU students also chose to model tritium production in the GE-Hitachi SPRISM, a pooltype sodium fast reactor (SFR) utilizing a modified TPBAR type target. The team was unable to complete their project so no data is available. In order to include results from a fast reactor, the SRNL

  14. Percutaneous absorption of tritium-gas-contaminated pump oil

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1995-07-01

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium's ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. (author)

  15. Estimated Release of Tritium from 232-F Concrete Rubble

    International Nuclear Information System (INIS)

    This report describes an estimate of the release of tritium from contaminated concrete from the demolition of the old 232-F Tritium Facility at the Savannah River Site. The estimate uses data from the scientific literature and information about tritium migration in concrete developed during studies of tritium in concrete at SRS

  16. Quick management of accidental tritium exposure cases.

    Science.gov (United States)

    Singh, Vishwanath P; Badiger, N M; Managanvi, S S; Bhat, H R

    2012-07-01

    Removal half-life (RHL) of tritium is one of the best means for optimising medical treatment, reduction of committed effective dose (CED) and quick/easy handling of a large group of workers for medical treatment reference. The removal of tritium from the body depends on age, temperature, relative humidity and daily rainfall; so tritium removal rate, its follow-up and proper data analysis and recording are the best techniques for management of accidental acute tritium exposed cases. The decision of referring for medical treatment or medical intervention (MI) would be based on workers' tritium RHL history taken from their bodies at the facilities. The workers with tritium intake up to 1 ALI shall not be considered for medical treatment as it is a derived limit of annual total effective dose. The short-term MI may be considered for tritium intake of 1-10 ALI; however, if the results show intake ≥100 ALI, extended strong medical/therapeutic intervention may be recommended based on the severity of exposure for maximum CED reduction requirements and annual total effective dose limit. The methodology is very useful for pressurized heavy water reactors (PHWRs) which are mainly operated by Canada and India and future fusion reactor technologies. Proper management will optimise the cases for medical treatment and enhance public acceptance of nuclear fission and fusion reactor technologies.

  17. Behavior of tritium in heavy water reactors

    International Nuclear Information System (INIS)

    In the ATR Fugen power station, the radiation control regarding the tritium in heavy water has been carried out since the heavy water was filled in the system of the reactor in November, 1977. At first, the concentration of tritium in heavy water was about 60 μCi/cc, but in November, 1981, it increased to about 1.3 mCi/cc, and the saturation concentration after 30 years is estimated to become about 17 mCi/cc. In this report, on the transfer of tritium to the work environment and general environment, its barrier, recovery, measurement and the protection against it, the experience in the Fugen power station is described. The heavy water system was constructed as the perfectly closed circuit by welding stainless steel, and a canned heavy water circulating pump has been used. The leak of heavy water in the steady operation is negligible, but attention must be paid to the transfer of tritium to the environment when the system is disassembled for the regular inspection. The measurement of tritium for individual exposure control, environment and released radioactivity, the tritium-removing equipment and protective suits, and the release of tritium to general environment are reported. (Kako, I.)

  18. Risks of tritium and their mitigation

    International Nuclear Information System (INIS)

    In this study, the effects of an antibacterial drug, norfloxacin, and an antibiotic, clindamycin, on in vivo oxidation of tritium gas in rats were investigated. Wistar strain male rats were used. They were provided with a standard diet, water ad libitum, and maintained in glass metabolic cages of approximately 20 liters capacity. The air flow and temperature were controlled. To investigate the availability of norfloxacin and clindamycin on the inhibition effects of the oxidation of tritium gas, two types of the experiments were conducted one was that, before the exposure to tritium gas for 2 hours, norfloxacin or clindamycin was administrated to rats three times a day for 4 days, and the other was administration of a drug after tritium gas exposure. After the exposure to tritium gas, blood, the liver, urine and feces samples were collected from rats and the radioactivity of them was determined after combustion using a sample oxidizer. In the case of norfloxacin, tritium concentration in rat body decreased one fifth of that in non-treated rats. On the other hand, administration of clindamycin shortened the biological half-life of tritium in urine to three fifth of that of non-treated rats. (author)

  19. Measurement of the tritium contamination of the biosphere

    International Nuclear Information System (INIS)

    Sources of natural and artificial tritium activities are discussed. Environmental tritium concentrations were determined either by a low background proportional counter after converting tritium to hydrogen, methane or ethane gas or by a liquid scintillation coincidence counter when tritium was found in the form of water. Tritium can be enriched electrolytically. The radioactivity of tritium in the Danube, in ground and rain water was determined before commissioning the Paks Nuclear Power Plant. Based on the analysis of tritium concentrations in wines and in annual rings of trees it is possible to detect local contaminations. (V.N.) 6 refs.; 16 figs

  20. Tritium system design studies of fusion experimental breeder

    International Nuclear Information System (INIS)

    A summary of the tritium system design studies for the engineering outline design of a fusion experimental breeder (FEB-E) is presented. This paper is divided into three sections. In first section, the geometry, loading features and tritium concentrations in liquid lithium of tritium breeding zones of blanket are described. The tritium flow chart corresponding to the tritium fuel cycle system has been constructed, and the inventories in ten subsystems are calculated using SWITRIM code in section 2. Results show that the necessary initial tritium storage to start up FEB-E with fusion power of 143 MW is about 319 g. In final section, the tritium leakage issues under different operation circumstances have been analyzed. It was found that the potential danger of tritium leakage could be resulted from the exhausted gas of the diverter system. It is important to elevate the tritium burnup fraction and reduce the tritium throughput. (authors)

  1. Chemical equilibrium studies of tritium--lithium and tritium--lithium alloy systems

    International Nuclear Information System (INIS)

    In deuterium-tritium fusion reactors currently under design, the production of tritium is accomplished by utilizing a lithium-bearing blanket. Lithium metal is presently the leading candidate for the blanket material, although molten Li2BeF4, solid Li--Al (50-50 at. percent) alloy and other lithium-containing materials are distinct possibilities. This paper summarizes progress of ongoing studies of the thermodynamics of some of these lithium containing systems. The individual solubilities of hydrogen, deuterium, and tritium in lithium as a function of temperature (700 to 10000C) and pressure are presented. Recent work with the solid alloy Li--Al (50-50 at. percent) has shown that the tritium solubility between 400 and 6000C is low. When the tritium pressure was between 0.14 and 0.52 torr, the Li--Al samples contained only 1 to 4 ppm tritium

  2. Electrolytic gettering of tritium from air

    International Nuclear Information System (INIS)

    We have removed 90% of 1 part-per-million tritium gas in air of 25% to 35% humidity by the dc electrical action of the solid proton electrolyte hydrogen uranyl phosphate (HUP). Gettering takes 5 to 24 hours for a 1 cm2 HUP disc at 2 to 4 V in a static, 1200 cc gas volume. Hydrogen gas may be used to flush captured tritium through the HUP. Liquid water leaches out the tritium but water vapor is ineffective. This technique promises an alternative to the conventional catalyst/zeolite method

  3. Environmental monitoring of molecular tritium

    International Nuclear Information System (INIS)

    The oxidation of atmospheric molecular tritium (HT) in vegetation was determined by in vitro experiments for various kinds of woody and herbaceous plant leaves, mosses and lichens taken from a forest and a garden in Ibaraki prefecture and a forest in Gifu prefecture, and comparison of the HT oxidation activity in vegetation was made with those in its neighboring surface soil (0-5cm in depth). The oxidation of HT in woody plant leaves was extremely low, only about 1/10000-1/1000 that in the surface soil as well as herbaceous plant leaves with some exception, whereas HT oxidation in mosses and lichens was 50-500 times that in pine needles. These results suggest the usefulness of mosses and lichens as monitor vegetation for accidental release of HT into the environment. (author)

  4. Transport of tritium in SS316 at moderate temperatures

    International Nuclear Information System (INIS)

    From tritium release experiments with stainless steel 316 carried out at several temperatures and tritium depth profiles of tritium-depleted specimen information on the transport of tritium by two diverse techniques was obtained. The results could be interpreted by a one dimensional diffusion model. The activation energy for the diffusion of tritium through stainless steel was found to be 61.3 kJ/mol. (authors)

  5. Copper and nickel speciation in mine effluents by combination of two independent techniques

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Zhao, J.; Chakrabarti, C.L.

    the speciation of nickel and copper in metal-mining aqueous effluents. Diffusive gradients in thin films (DGT) technique and competing ligand exchange (CLE) method have been applied to determine the speciation of nickel and copper. The results...

  6. Study of the {sup 60}Co speciation in the aqueous radioactive waste of the la Hague nuclear reprocessing plant; environmental behaviour after discharges in the waters of the channel; Etude de la speciation du {sup 60}Co dans les effluents de l'usine de retraitement de combustibles irradies de la Hague; devenir apres rejet dans les eaux de la Manche

    Energy Technology Data Exchange (ETDEWEB)

    Gaudaire, J.M

    1999-07-01

    {sup 60}Co is produced as an activation product and is present in the low-level aqueous radioactive waste released from the La Hague plant. At present, the concentration in the sea (non filtered at 0.45 {mu}m) at the Goury site are close to or even below, the detection limit: 0.2 mBq.l{sup -1}. The {sup 60}Co speciation depends on the type of effluent considered: in the effluent A ('active'), the cobalt is in the form of a stable trivalent complex; in the effluent V (to be checked), the cobalt is in majority (50% of the activity release) in the form of particles (>0.45 {mu}m), and then in the form of two soluble species: ionic divalent (Co{sup 2+}) and some stable complexes. The evolution of the reprocessing techniques used does not affect the speciation. So, since the nuclear reprocessing plant started at the La Hague plant in 1966, the chemical species discharged in the sea shows time variation related to the evolution of the type of effluent discharged. Thus, since 1994, the particles of cobalt are the main species discharged in the Channel (the V effluents represent more than 85% of the total {sup 60}Co activity released). The effect of instantaneous dilution into the marine conditions involving a variation of pH, oxido-reduction, ionic strength, a gradient of salinity, does not interfere with the evolution of the chemical species discharged. Nevertheless, during the discharge of the V effluent, the main constituents of the sea water (Mg{sup 2+} and Ca{sup 2+}) go through a precipitation. This comes with the coprecipitation of the ion Co{sup 2+} and with the particles of cobalt (complexes are not affected), and it can be responsible for an increase in the concentration in the particles. The chemical behaviour of the cobalt in the Channel is different from those of conservative element such as antimony. The ionic cobalt and the particles have a small dispersion in the water (cobalt has a very high particle/dissolved distribution factor, it is a non

  7. The Separation of Hydrogen Tritium and Tritium Hydride by Gas Chromatography

    International Nuclear Information System (INIS)

    Now that successful separation of hydrogen, deuterium and hydrogen deuteride has been achieved by gas chromatography, similar studies are being made dealing with mixtures of hydrogen, tritium and tritium hydride. Since tritium is used in tracer quantities the usual katharometer cannot be employed for its detection. This difficulty has been overcome by providing immediately following the katharometer a vibrating reed electrometer equipped with a high resistance leak which allows continuous monitoring of the activity of any tritium or tritium hydride emerging from the column by means of synchronized recorders. Separation of such mixtures has been tested with columns packed with palladium on silica, silica, alumina, and alumina coated with chromium oxide or ferric oxide. No effective separation was obtained with the palladium on silica column. Good separation was achieved with the plain silica column where hydrogen was employed as the carrier gas, but helium failed to elute the isotopes. Satisfactory results were obtained with the coated, partially deactivated alumina packing when helium or neon was the carrier gas, but the best separation was found with a column packing of uncoated activated alumina. Calibration with helium-tritium mixtures of known activity plus equilibrated hydrogen-tritium mixtures also of known activity allows quantitative estimation of tritium and tritium hydride. (author)

  8. Neutronic Comparison of Tritium-Breeding Performance of Candidate Tritium-Breeding Materials

    Institute of Scientific and Technical Information of China (English)

    郑善良; 吴宜灿

    2003-01-01

    Tritium self-sustainment, which will meet the fuel requirement of fusion reactor, isone of the key issues of fusion power development. The tritium breeding performances of varioustritium-breeding materials are compared based on a series of neutronics calculations using three-dimensional Monte Carlo neutron-photon transport code MCNP/4C with the IAEA FENDL-2data library. The effects of the dimensions of the tritium-breeding zone and the enrichment of 6Lion Tritium Breeding Ratio (TBR) are analyzed. The effects of Be as a neutron multiplier on TBRare also calculated.

  9. Overview of tritium processing development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory has been operating with tritium since June 1984. Presently there are some 50 g of tritium in the main processing loop. This 50 g has been sufficient to do a number of experiments involving the cryogenic distillation isotope separation system and to integrate the fuel cleanup system into the main fuel processing loop. In January 1986 two major experiments were conducted. During these experiments the fuel cleanup system was integrated, through the transfer pumping system, with the isotope separation system, thus permitting testing on the integrated fuel processing loop. This integration of these systems leaves only the main vacuum system to be integrated into the TSTA fuel processing loop. In September 1986 another major tritium experiment was performed in which the integrated loop was operated, the tritium inventory increased to 50 g and additional measurements on the performance of the distillation system were taken. In the period June 1984 through September 1986 the TSTA system has processed well over 108 Ci of tritium. Total tritium emissions to the environment over this period have been less than 15 Ci. Personnel exposures during this period have totaled less than 100 person-mRem. To date, the development of tritium technology at TSTA has proceeded in progressive and orderly steps. In two years of operation with tritium, no major design flows have been uncovered

  10. A study on the safety of tritium storage and treatment

    International Nuclear Information System (INIS)

    For reduction of tritium release to the environment and utilization of tritium at industrial application and fusion technology, it is necessary to separate and store tritium. As a tritium separation and storage system, Tritium Removal Facility (TRF) and tritium storage vessel is under development in Korea. For the construction and operation of the system, it is necessary to estimate the safety of tritium storage system. As an isotope of hydrogen, tritium has similar hazards to hydrogen. In addition to the hydrogen hazards, due to radioactive decay of tritium, it is necessary to consider the risk of hydrogen and radioactive decay for the safe storage. In this study, hazards of hydrogen and the risk due to storage of tritium are reviewed. The safety related factors are suggested in terms of classification of hydrogen hazards and problems related to the tritium storage. The major design parameters of the vessel of foreign countries for the storage and transport of tritium are reviewed. By review of major safety parameters related to the tritium storage, the results of this study can be applied and helpful to the development and design of tritium storage vessel in Korea. Also, the results can be useful at design of the tritium treatment facility

  11. Preliminary test for reprocessing technology development of tritium breeders

    International Nuclear Information System (INIS)

    In order to develop the reprocessing technology of lithium ceramics (Li2TiO3, CaO-doped Li2TiO3, Li4SiO4 and Li2O) as tritium breeder materials for fusion reactors, the dissolution methods of lithium ceramics to recover 6Li resource and the purification method of their lithium solutions to remove irradiated impurities (60Co) were investigated. In the present work, the dissolving rates of lithium from each lithium ceramic powder using chemical aqueous reagents such as HNO3, H2O2 and citric acid (C6H8O7 . H2O) were higher than 90%. Further the decontamination rate of 60Co added into the solutions dissolving lithium ceramics was higher than 97% using the activated carbon impregnated with 8-hydroxyquinolinol as chelate agent.

  12. Tritium in the Savannah River environment addendum to WSRC-RP--90-424-1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Carlton, W.H.

    1992-05-28

    This document is an addendum to Tritium in the Savannah River Site Environment,'' WSRC-RP90-424- 1, released in May of 1991. The purpose of this report is to update the information found in WSRC-RP-90-424-1 for the four year period 1987--1990. Some data has also been included from 1991. The report includes summaries of atmospheric and aqueous monitoring of tritium and estimates of the dose to the population surrounding the Savannah River Site.

  13. Tritium in the Savannah River environment addendum to WSRC-RP--90-424-1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Carlton, W.H.

    1992-05-28

    This document is an addendum to ``Tritium in the Savannah River Site Environment,`` WSRC-RP90-424- 1, released in May of 1991. The purpose of this report is to update the information found in WSRC-RP-90-424-1 for the four year period 1987--1990. Some data has also been included from 1991. The report includes summaries of atmospheric and aqueous monitoring of tritium and estimates of the dose to the population surrounding the Savannah River Site.

  14. The diaplacental transfer and teratogenicity of tritium in organic compounds. Diaplazentare Verteilung und teratogene Wirkung von organisch gebundenem Tritium

    Energy Technology Data Exchange (ETDEWEB)

    Kistner, G.; Wiggenhauser, A.; Krestel, R.

    1987-10-01

    In the introductory section of this report the relevant literature on the environmental prevalence of tritium, its uptake and distribution in the organisms as well as on the calculation of tritium-related exposure risks is reviewed in brief. The literature study as well as recent workshops on tritium (as e.g. in Karlsruhe, 1986) emphasize the role of organically bound tritium in the assessment of tritium-related radiation exposure. (orig./MG).

  15. Synthesis of tritium-labelled natural prostaglandins

    International Nuclear Information System (INIS)

    The most suitable method for the preparation of tritium-labelled prostaglandins is the biosynthetic procedure. Polyunsaturated labelled fatty acids are converted into prostaglandins by a prostaglandin synthetase enzyme system produced from sheep seminal vesicule, and the crude product is purified using thin layer chromatography. Polyunsaturated fatty acids are prepared in a reaction series. Tritium is introduced at the very last step. A very little amount (10-20 mg) of tritium-labelled prostaglandin E2 can be converted into A2, B2 and F2 respectively, conversion and separation being carried out simultaneously on the same silica plate. After the separation on thin layer silica gel the obtained tritium-labelled prostaglandin (PC) was chemically and radiochemically pure, its activity was 3700 GBq/mmol (100 Ci/mmol) and it was suitable for RIA kits. (author)

  16. Methods of tritium recovery from molten lithium

    International Nuclear Information System (INIS)

    It is important to keep the tritium inventory in a blanket of a thermonuclear reactor at a low level both to eliminate possible hydriding of structural components and to reduce inventory cost. Removing the tritium from a lithium blanket by fractional distillation, flash vaporization, and fractional crystallization was investigated. No definitive data are available either on the vapor-liquid equilibrium between lithium and tritium at low T2 concentrations, or on the rate of formation and decomposition of lithium tritide. The final distinction between the recovery systems discussed in this report will depend on such data, but presently distillation appears to be the best alternate to the diffusion scheme proposed by A.P. Fraas. The capital cost of equipment necessary to remove tritium by distillation appears to be greater than 10 million dollars for a 5000 MW system, whereas the capital cost associated with the diffusion process has been estimated to be 4 million dollars

  17. Origin, handling and storage of tritium

    International Nuclear Information System (INIS)

    The origin, handling and intermediate and/or final storage of tritium in the Federal Republic of Germany are described and evaluated. For this the following subjects - use, amounts of waste and emission, waste handling, transport, legal situation and points relevant to safety in respect to tritium handling, general valuation and future development - are completely presented. Presently and in future the waste volume will be determined by the fact that nearly the whole amount of tritium waste activity is contained in a small part of the overall waste volume. The rest is distributed to a relatively big waste volume accordingly showing low activity concentration levels. Future efforts are mainly necessary in respect to the handling of tritium waste. (orig.)

  18. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  19. Tritium glovebox stripper system seismic design evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Grinnell, J. J. [Savannah River Site (SRS), Aiken, SC (United States); Klein, J. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-01

    The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological doses to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.

  20. Technologies for immobilization and disposal of tritium

    International Nuclear Information System (INIS)

    This study was done within a program one of whose objectives was to know the state of the technology development for tritium separation in the moderator circuit at HWR and to define the possible technologies to be applied to the Argentine nuclear power plants. Within this framework the strategies adopted by each country and the available technologies for a safe disposal of tritium, not only in its gaseous state tritium but also as tritiated water were analyzed. It is considered that if the selected separation method is such that the tritium is in its gaseous state, the hydride formation for long periods of immobilization should be studied. whereas if it were triated water immobilization should be studied to choose the technology between cementation and drying agents, in both cases the final disposal site will have to be selected. (author). 8 refs

  1. Biomedical tritium applications with AMS detection

    International Nuclear Information System (INIS)

    There are numerous applications for tritium (3 H) as a tracer isotope in biomedicine commonly combined with liquid scintillation counting method. The use of accelerator mass spectrometry (AMS), a rather new detection method will, enlarge and open new possibilities for tritium applications in biomedicine, especially when sample volumes are small. The tritium in the samples has to be transformed to solid form, which yields a high output of negative hydrogen ion current. The sample preparation is done in two steps: firstly extracting water from the biological sample and secondly, extracting hydrogen/tritium from the water and forming a chemically suitable compound for the AMS ion source. In this paper a chemical for the sample preparation is described. The results of the first measurements of tritiated water with known activity using the AMS detection technique will also be presented.(authors)

  2. Tritium measurements with a tandem accelerator

    Science.gov (United States)

    Middleton, R.; Klein, J.; Fink, D.

    1990-06-01

    Tritium concentrations ( 3H: 2H) of less than 10 -15 are readily measurable with almost any tandem accelerator and with an overall detection efficiency as high as 4.5%. The isobar, 3He, and other potential sources of interference (mainly 6Li, 2H and 1H) can all be removed by an absorber in front of the triton detector, so there is little need for analyzing elements other than the negative-and positive-ion magnets found on most tandems. The technique is particularly well suited for detecting tritium in deuterium absorbed in a metal and testing for cold fusion. We caution that tritium can occur in commercial deuterium and heavy water from sources other than cold fusion; one sample was observed to have a tritium-to-deuterium ratio of 10 -10.

  3. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water is comparable. Marked differences were also evident among the four coatings, the vinyl exhibiting an abnormally high retention of free water because of a highly porous surface structure. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  4. Nuclear Overhauser effects in tritium NMR

    Energy Technology Data Exchange (ETDEWEB)

    Kaspersen, F.M.; Funke, C.W.; Sperling, E.M.G.; Wagenaars, G.N.

    1987-02-01

    The accuracy of the quantification of the tritium distribution in labelled compounds may be reduced by differential nuclear Overhauser effects, especially for compounds in which the different tritiated positions differ in the number of protons surrounding them.

  5. Tritium Depth Profiles in 316 Stainless Steel

    Science.gov (United States)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  6. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  7. Characterisation of redundant tritium light devices

    International Nuclear Information System (INIS)

    Gaseous tritium light devices (GTLDs) are currently used widely as long lasting totally independent sources of illumination. Although tritium is of low radiological significance particularly when in gaseous form, because of their widespread use they could give rise to hazardous situations if action is not taken to provide a sensible recycling and disposal route for redundant devices. As a first step to developing this treatment process a number of GTLDs have been destructively examined to determine the amount and speciation of the remaining tritium. This report covers a further investigation sponsored by HMIP which reviewed the production process for GTLDs to identify a typical GTLD type from which a set of specimens with known ages could be selected. These were then subjected to destructive analysis to measure the total tritium, its speciation and the conditions necessary to effect the release of absorbed tritium. The data provided by the analysis programme has been used in a review of treatment process options for handling redundant GTLDs which ranged from long term storage, tritium recovery and recycle to disposal. In addition the results have been used to assess the possible hazards which could arise from the accidental disposal of typical GTLD packages to an open refuse site. (author)

  8. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  9. Appendix for blanket - University of Wisconsin: tritium issues

    International Nuclear Information System (INIS)

    The selection of the liquid metal alloys, Li17Pb83, as the tritium breeder with helium serving as the heat transfer fluid suggests two alternative techniques for the removal of tritium from the breeder. The low solubility of tritium in this liquid breeder requires only a simple vacuum degassing technique for tritium removal. Because of this high tritium partial pressure, tritium removal in the present design could potentially be achieved by either (a) slow circulation of the liquid LiPb alloy to an external degassing system, or (b) noncirculation of the liquid breeder so that the tritium permeates through the walls of the coolant tubes into the circulating helium for subsequent recovery. Both of these techniques were investigated with special attention given to the resultant tritium inventories in the liquid breeder and the helium system, and the potential for tritium permeation at the steam generator (SG)

  10. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  11. Geochemical and hydrologic characterization of the effluent draining from U12e, U12n, and U12t tunnels, area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C.E.; Gillespie, L.; Gillespie, D.

    1993-05-01

    The objective of the Tunnel Effluent Characterization Project at the Nevada Test Site was to characterize the tunnel effluents in terms of rate of discharge, pH, temperature, specific conductivity, turbidity, and aqueous chemistry. The parameters were monitored for one year to identify hazardous constituents within the effluent and to characterize temporal variations.

  12. Helium irradiation effects on tritium retention and long-term tritium release properties in polycrystalline tungsten

    International Nuclear Information System (INIS)

    DT+ ion irradiation with energy of 0.5 and 1.0 keV was performed on helium pre-irradiated tungsten and the amount of retained tritium and the long-term release of retained tritium in vacuum was investigated using an IP technique and BIXS. Tritium retention and long-term tritium release were significantly influenced by helium pre-irradiation. The amount of retained tritium increased until it reached 1 × 1017 He/cm2, and at 1 × 1018 He/cm2 it became smaller compared to 1 × 1017 He/cm2. The amount of retained tritium in tungsten without helium pre-irradiation largely decreased after several weeks preservation in vacuum, and the long-term release rate during vacuum preservation was retarded by helium pre-irradiation. The results indicate that the long-term tritium release and the helium irradiation effect on it should be taken into account for more precise estimation of tritium retention in the long-term use of tungsten in fusion devices

  13. Recovery of tritium from a liquid lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, J.B.

    1981-01-01

    The sorption of tritium on yttrium from liquid lithium and the subsequent release of tritium from yttrium by thermal regeneration of the metal sorbent were investigated to study such a tritium-recovery process for a fusion reactor blanket of liquid lithium. Recent static sorption experiments have shown the effects of lithium temperature and possible impurities on the sorption of tritium. Diffusivity data, obtained from previous tritium recovery experiments, were evaluated to show the importance of the yttrium surface condition in controlling the release of tritium.

  14. Information for establishing bioassay measurements and evaluations of tritium exposure

    International Nuclear Information System (INIS)

    This report summarizes information and references used in developing regulatory guidance on programs for the bioassay of tritium as well as information useful in planning and conducting tritium bioassay programs and evaluating bioassay data. A review of literature on tritium radiobiology is included to provide a ready source of information useful for estimating internal doses of tritium and risks for the various tritium compounds and forms, including elemental (gaseous) tritium. Simplified and conservative dose conversion factors are derived and tabulated for easy reference in program planning, safety evaluations, and compliance determinations

  15. Mobile Tritium Removal Facility - an affordable option?

    International Nuclear Information System (INIS)

    Tritium removal facilities are only likely to be an issue when CANDU plants have matured and the increasing tritium levels in the water have become intolerable from a personnel health physics perspective. Even then some station owners claim that a Tritium removal facility is unnecessary, because improved health physics performance and practices is all that is required to protect against possible personnel exposure. To support this argument it is also true to say that the tritium accumulation does stabilize, and will reach a stage where the tritium content will no longer increase. However for station owners that support the view that they follow an ALARA principle in which only the lowest level achievable is acceptable, a tritium extraction plant when the plant is new or one built later when the plant is operating and in mid life, both have arguments to support the expense. For a CANDU reactor in mid-life, there are two options for siting the Tritium Removal Facility (TRF): Stationary Option which will require permanent structures for each station; and, Mobile Option which considers a complete TRF that can be moved from station to station. In most existing CANDU-6 stations, no provisions have been made to construct and operate a TRF. This would make the Stationary Option costly because space would have to be provided and newly added infrastructure would have to be installed. With appropriate seismic qualification and following the necessary codes and standards, a Mobile TRF unit could be more cost effective, particularly if there were a possibility to share the unit with other stations in like position. (author)

  16. Application of solid-phase heterogeneous catalytic hydrogenation for preparation of ethanolamine labelled by tritium and ethanolamides of aroachidonic, eicosanepentaenic, docosahexaenic acids labelled by tritium partially

    International Nuclear Information System (INIS)

    Ethanolamine labelled with tritium with 35-40 Ci/mmol molar radioactivity is produced from glycolic acid nitrile by means of solid-phase heterogeneous catalytic hydrogenation on 5% Rh/C. Preparational quantities of labelled ethanolamine are produced with 10-20% yield with the use of 5% of pd?C and 70% of glycolic acid aqueous nitrile, the molar activity of the preparation required is 4-6 Ci/mmol. Ethanolamides of arachidonic, eicosapentaenoic, docosahexaenoic acids are synthesized from the labelled ethanolamine. The compound produced are tested by chromatographic and fermentative methods

  17. Nuclear reactor effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L.; Essig, T.H. [Nuclear Regulatory Commission, Washington, DC (United States)

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  18. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  19. Tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  20. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  1. A compact tritium AMS system

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, M L; Dingley, K H; Hamm, R W; Love, A H; Roberts, M L

    1999-09-23

    Tritium ({sup 3}H) is a radioisotope that is extensively utilized in biological and environmental research. For biological research, {sup 3}H is generally quantified by liquid scintillation counting requiring gram-sized samples and counting times of several hours. For environmental research, {sup 3}H is usually quantified by {sup 3}He in-growth which requires gram-sized samples and in-growth times of several months. In contrast, provisional studies at LLNL's Center for Accelerator Mass Spectrometry have demonstrated that Accelerator Mass Spectrometry (AMS) can be used to quantify {sup 3}H in milligram-sized biological samples with a 100 to 1000-fold improvement in detection limits when compared to scintillation counting. This increased sensitivity is expected to have great impact in the biological and environmental research community. However in order to make the {sup 3}H AMS technique more broadly accessible, smaller, simpler, and less expensive AMS instrumentation must be developed. To meet this need, a compact, relatively low cost prototype {sup 3}H AMS system has been designed and built based on a LLNL ion source/sample changer and an AccSys Technology, Inc. Radio Frequency Quadrupole (RFQ) linac. With the prototype system, {sup 3}/{sup 1}H ratios ranging from 1 x 10{sup -10} to 1 x 10{sup -13} have to be measured from milligram sized samples. With improvements in system operation and sample preparation methodology, the sensitivity limit of the system is expected to increase to approximately 1 x 10{sup -15}.

  2. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  3. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  4. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  5. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to

  6. Advancement Of Tritium Powered Betavoltaic Battery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staack, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gaillard, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hitchcock, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Peters, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coughlin, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Neikirk, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fisher, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-14

    Due to their decades-long service life and reliable power output under extreme conditions, betavoltaic batteries offer distinct advantages over traditional chemical batteries, especially in applications where frequent battery replacement is hazardous, or cost prohibitive. Although many beta emitting isotopes exist, tritium is considered ideal in betavoltaic applications for several reasons: 1) it is a “pure” beta emitter, 2) the beta is not energetic enough to damage the semiconductor, 3) it has a moderately long half-life, and 4) it is readily available. Unfortunately, the widespread application of tritium powered betavoltaics is limited, in part, by their low power output. This research targets improving the power output of betavoltaics by increasing the flux of beta particles to the energy conversion device (the p-n junction) through the use of low Z nanostructured tritium trapping materials.

  7. A review of tritium conversion reactions

    International Nuclear Information System (INIS)

    The chemical processes by which elemental tritium can be converted to tritiated water have been examined by reviewing the available literature on these processes. It would appear that gas phase conversion reactions at room temperature are slow and that they do not contribute significantly to any observed conversion following releases of elemental tritium. The effects of surfaces are not clearly understood. Metals, however, can increase the rate over the gas phase processes, but the magnitude of this increase is not well documented. Further work is necessary to examine the effects of various materials, elevated temperatures, and other parameters on conversion reactions in order to more closely reflect conditions in reactor buildings and other tritium containing facilities

  8. Low-exposure tritium radiotoxicity in mammals

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, R.L.

    1982-02-11

    Studies of tritium radiotoxicity involving chronic /sup 3/H0H exposures in mammals demonstrate in both mice and monkeys that biological effects can be measured following remarkably low levels of exposure - levels in the range of serious practical interest to radiation protection. These studies demonstrate also that deleterious effects of /sup 3/H beta radiation do not differ significantly from those of gamma radiation at high exposures. In contrast, however, at low exposures tritium is significantly more effective than gamma rays, rad for rad, by a factor approaching 3. This is important for hazard evaluation and radiation protection because knowledge concerning biological effects of chronic low-level radiation exposure has come mainly from gamma-ray data; and predictions based on gamma-ray data will underestimate tritium effects - especially at low exposures - unless the RBE is fully taken into account.

  9. Calibration for Radiation Protection Equipment for the Measuring Airborne Tritium

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; SHEN; En-wei; WEI; Ke-xin; WANG; Kong-zhao; LI; Hou-wen; GE; Jian-an; LV; Xiao-xia

    2012-01-01

    <正>Monitoring airborne tritium is an important routine work in heavy water reactor nuclear power stations and the units related with tritium. Nowadays direct measuring instruments like hand carrying tritium monitors are more often used in routine workshop environment check. Need for calibrating such monitors was suggested. A trial work about the calibration for radiation protection equipment for measuring airborne tritium was carried out with a domestic standard EJ/T 1077-1998 equivalent that of IEC 710.

  10. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  11. Global environmental transport models for tritium

    International Nuclear Information System (INIS)

    In this paper we discuss some of the obstacles to the construction of credible models of global tritium transport for use in dose assessments. We illustrate these difficulties by comparing model predictions of environmental tritium levels with measurements. Monitoring of tritium has shown that specific activities in precipitation over land are typically higher by a factor of three to four than those in precipitation over the oceans. Experience with modeling CO2 turnover in the oceans has led to the conclusion that two-box reservoir models of the ocean often give unsatisfactory representations of transient solutions. Failure to consider these factors in global models can lead to distorted estimates of collective dose and create difficulties in validation of the model against real data. We illustrate these problems with a seven-box model recommended by the National Council on Radiation Protection and Measurements in which we forced the atmospheric compartment to reproduce an exogenous function based on historic observations of HTO in precipitation at 500N. The fresh water response underestimates data from the Ottawa River by a factor of about five, and the ocean surface response overestimates tritium data from the surface waters of the Northern Pacific by nearly an order of magnitude. Revision of the model to include (1) separate over-land and over-ocean compartments of the atmosphere and (2) a box-diffusion model of the subsurface ocean brings the discrepant responses into good agreement with the environmental data. In a second exercise, we used a latitudinally disaggregated model and replaced a tropospheric compartment in the northern hemisphere by historic precipitation data. The model's response greatly underestimates the tritium specific activity in the southern hemisphere. These exercises lead us to doubt that a proper global transport model for tritium is available at present for collective dose assessment. 12 refs., 3 figs

  12. Tritium effects on germ cells and fertility

    International Nuclear Information System (INIS)

    Primordial oocytes in juvenile mice show acute gamma-ray LD50 as low as 6 rad. This provides opportunities for determining dose-response relations at low doses and chronic exposure in the intact animal - conditions of particular interest for hazard evaluation. Examined in this way, 3HOH in body water is found to kill murine oocytes exponentially with dose, the LD50 level for chronic exposure being only 2μCi/ml (delivering 0.4 rad/day). At very low doses and dose rates, where comparisons between tritium and other radiations are of special significance for radiological protection, the RBE of tritium compared with 60Co gamma radiation reaches approximately 3. Effects on murine fertility from tritium-induced oocyte loss have been quantified by reproductive capacity measurements. Chronic low-level exposure has been examined also in three primate species - squirrel, rhesus, and bonnet monkeys. In squirrel monkeys the ovarian germ-cell supply is 99% destroyed by the time of birth from prenatal exposure to body-water levels of 3HOH (administered in maternal drinking water) of only 3 μCi/ml, the LD50 level being 0.5 μCi/ml (giving 0.1 rad/day), one fourth that in mice. Though not completely ruled out, similar high sensitivity of female germ cells has not been found in macaques; and it probably does not occur in man. The exquisite radiosensitivity of primordial oocytes in mice is apparently due to vulnerability of the plasma membrane (or something of similar geometry and location), not DNA. Evidence for this comes from tritium data as well as neutron studies. Tritium administered as 3HOH, and therefore generally distributed, is much more effective in killing murine oocytes than is tritium administered as 3H-TdR, localized in the nucleus. This situation in the mouse may have implications for estimating radiation genetic risk in the human female

  13. Tritium in liquid phase in a BWR-5 like Laguna Verde; Tritio en fase liquida en un BWR-5 como Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Tijerina S, F.; Vargas A, A.; Cardenas J, J., E-mail: francisco.tijerina@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Subgerencia de Ingenieria, Carretera Veracruz-Medellin Km 7.5, Veracruz (Mexico)

    2011-11-15

    In boiling water reactors (BWR), the tritium (H{sub 3}) takes place mainly as a result of ternary fissions in the nuclear reactors, of those which 75% are in gaseous form and 25% in liquid form. In the liquid phase, the tritium is transported to the pipes of the primary coolant toward condensed tanks or tanks of drainage excesses of radioactive equipment, located in external areas of a BWR, as well as to the processes of radioactive wastes to be able to be directed to the liquid effluents. For that reason, is necessary to know the possible routes of the transport and processes of the tritium in a BWR to control this radioisotope in the site of the event of leaks in equipment s and buried pipes, avoiding that emigrates toward underground flowing and an impact to the environment and to the people in general. (Author)

  14. Status of R&D on Tritium Permeation Barrier Coatings for Tritium Breeding Blanket of Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper overviewed the recent progress in the application of several typical tritium permeation barrier (TPB) coatings and their corresponding fabrication technologies for tritium breeding blanket of fusion reactor. According to the design requirements of

  15. Tritium Aging Effects in Palladium on Kieselguhr

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, K.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Holder, J.S.; Wermer, J.R.

    1998-10-01

    50 weight % Pd on kieselguhr (Pd/k) is used in hydrogen isotope separation processes at the Savannah River Site. Long term aging studies on this material were undertaken in June, 1992. P-c-T data showing the aging effect of tritium loading for long periods will be presented and discussed covering from June, 1992 to March, 1997. Lowering of plateau pressures and increasing indications of in homogeneities have been observed in both tritium and deuterium absorption isotherms at 0 C, and desorption isotherms at 80 and 120 C.

  16. Tritium Systems Test Assembly operator training program

    International Nuclear Information System (INIS)

    Proper operator training is needed to help ensure the safe operation of fusion facilities by personnel who are qualified to carry out their assigned responsibilities. Operators control and monitor the Tritium Systems Test Assembly (TSTA) during normal, emergency, and maintenance phases. Their performance is critical both to operational safety, assuring no release of tritium to the atmosphere, and to the successful simulation of the fusion reaction progress. Through proper training we are helping assure that TSTA facility operators perform their assignments in a safe and efficient manner and that the operators maintain high levels of operational proficiency through continuing training, retraining, requalification, and recertification

  17. Tritium transport in lithium ceramics porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tam, S.W.; Ambrose, V.

    1991-12-31

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs.

  18. Tritium transport in lithium ceramics porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tam, S.W.; Ambrose, V.

    1991-01-01

    A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs.

  19. Atmospheric tritium. Progress report, July 1, 1975--March 31, 1976

    International Nuclear Information System (INIS)

    Progress is reported in the development of field equipment for sampling tritium in environmental samples. The performance of prototype tritiated hydrocarbon samples is discussed. Data are presented on the content of tritium in samples of rain water collected in Miami, Florida, Western Samoa, and Barbados during 1975, and tritium compounds in atmospheric samples collected at various world locations during 1975

  20. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  1. Integrated management of liquid effluents at the Hanford Site

    International Nuclear Information System (INIS)

    This poster session illustrates the integrated approach that the Hanford Site has taken in managing high-priority liquid effluent streams. These waste waters are produced from a variety of process- and utility-related sources. The Hanford Site approach to management of liquid effluents focusses on eliminating the source, reusing where possible, and treating and disposing of the water that cannot be eliminated or recycled prior to disposal. Thirteen of the high-priority waste water streams have been or will be eliminated by the end of 1995. Some of these streams have been eliminated as the result of shutting down the associated operation. However, the elimination of other streams has been the result of process modifications, equipment substitutions, or recycling. Several of the waste water streams will receive treatment at the individual generating facility before being discharged into a new industrial sewer (the 200 Area Treated Effluent Disposal Facility). The industrial sewer will collect treated streams from various plants in the 200 Areas and dispose of the clean effluent at two uncontaminated new 20,235-square meter (5-acre) ponds permitted by Washington State. Finally, condensate from the 200 Areas tank waste evaporator and waste water from operations in the 300 Area will be treated at two end-of-the-pipe treatment facilities. The 200 Area Effluent Treatment Facility will treat condensate (a Resource Conservation and Recovery Act of 1976 (1)-listed waste) from the tank waste evaporator, thereby allowing the waste to be delisted prior to disposal. The treated effluent will be pumped to a state-approved land disposal site selected to maximize the migration time to the river. This disposal site allows for the decay of tritium, which will be present in the condensate but cannot be removed using current technologies

  2. Experimental setup for the determination of exchangeable hydrogen in environmental samples using deuterium and tritium

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, L.; Siclet, F. [EDF R et D (France); Peron, O.; Gegout, C.; Montavon, G.; Landesman, C. [Laboratoire SUBATECH, IN2P3/CNRS, EMN, Universite de Nantes (France); Fourre, E.; Jean-Baptiste, P. [LSCE, UMR 8112 CEA-CNRS-UVSQ/IPSL (France)

    2014-07-01

    Tritium ({sup 3}H or T) is a radioactive isotope of the element hydrogen with a half-life of 12.32 yrs. It is naturally produced in the upper atmosphere, but also by the nuclear industry. It is used in many fields like medical research and watch making. It is thus released in the environment on gaseous and liquid form by these facilities and is currently the major released radionuclide in liquid effluent from French nuclear power plants (in HTO form). Current studies dealing with the fate and behavior of tritium in the environment focus mainly on its organic form, i.e. the organically bound tritium (OBT). It is indeed more resilient in the environment than the tritiated water (HTO) as it is part of the organic matter cycle. There is nevertheless a distinction to be made between the exchangeable and the non-exchangeable fraction of OBT. When hydrogen is linked to nitrogen, sulfur or oxygen, it is considered to be exchangeable with the H contained in the surrounding solution or in the atmospheric water phase. Thus, its residence time within the molecule will be reduced and closely linked to the surrounding parameters. When hydrogen is linked to carbon, it is assumed that the link is more stable and thus the residence time in the molecule will be enhanced. It is thus important to know the fraction of exchangeable OBT when addressing the residence time of tritium in the environment. The present study aims at assessing this fraction in different environmental matrixes using deuterium and/or tritium. Compared to several others studies on exchangeable hydrogen where experiments were conducted at high temperature and/or high pressure, this study follows a different approach with experiments conducted at ambient temperature and atmospheric pressure (natural conditions) with a controlled hygrometric value within the system. The system itself consists in a glove box modified to fulfill the requirements for an efficient control on the experimental parameters (temperature

  3. Procurement of tritium for fusion reactor. A design study of facility for production of fusion fuel tritium

    International Nuclear Information System (INIS)

    Tritium, a developmental fuel for use in fusion reactors, has been produced in fission research reactors in Japan by extraction from neutron-irradiated 6Li-targets. This paper describes the preliminary design of a large-scale production facility capable of producing 500 g of tritium annually. The present status of tritium production technology in Japan is also discussed. (author)

  4. Development of tritium transport package for ITER SDS supply

    International Nuclear Information System (INIS)

    ITER is the next generation fusion machine with the fuel of deuterium and tritium. The transport of large amounts of tritium is an important issue from viewpoints of fuel supply and safety. For the shipment of tritium to the ITER site, a transport container needs to be developed and licensed as type B(U) package. It is an ITER requirement to transport tritium as metal tritide, which has been considered to be the safest way for tritium transport. There are not many available licensed packages on the market today. Examples are the WSRC Hydride Transport Vessel (HTV), which can be loaded with up to 18 g tritium in uranium tritide powder and JAERI Type B(U) package with capacity up to 25 g tritium in ZrCo tritide material. JAERI (now JAEA) has proposed a 250 g capacity tritium transport package for future fusion reactors. The design would utilize ZrCo to form the metal tritide to store the tritium. This new package would have a volume of only approximately 50% more than that of the 25 g capacity package and would be capable of repeated use. The tritium will be transported from tritium production sites, mainly the CANDU type reactor sites to ITER tritium plant building. According to the tritium supply plan derived from the operation and experiment plan of ITER, it is necessary to develop a large capacity tritium transport package which is licensed for international transportation. In 2009, Korea Atomic Energy Research Institute (KAERI) was commissioned the work of developing the tritium transport package from ITER Organization and the first stage of the development has been just finished. The interfaces of the package with related equipment/facilities were identified and the basic design and preliminary safety analyses were successfully performed. This paper describes the design requirements, basic design and the structural and thermal evaluation results of the developed package under the hypothetical accident conditions

  5. [Mechanism of tritium persistence in porous media like clay minerals].

    Science.gov (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  6. Tritium dynamics in soils and plants at a tritium processing facility in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Mihok, S.; St-Amanat, N.; Kwamena, N.O. [Canadian Nuclear Safety Commission (Canada); Clark, I.; Wilk, M.; Lapp, A. [University of Ottawa (Canada)

    2014-07-01

    The dynamics of tritium released as tritiated water (HTO) have been studied extensively with results incorporated into environmental models such as CSA N288.1 used for regulatory purposes in Canada. The dispersion of tritiated gas (HT) and rates of oxidation to HTO have been studied under controlled conditions, but there are few studies under natural conditions. HT is a major component of the tritium released from a gaseous tritium light manufacturing facility in Canada (CNSC INFO-0798). To support the improvement of models, a garden was set up in one summer near this facility in a spot with tritium in air averaging ∼ 5 Bq/m{sup 3} HTO (passive diffusion monitors). Atmospheric stack releases (575 GBq/week) were recorded weekly. HT releases occur mainly during working hours with an HT:HTO ratio of 2.6 as measured at the stack. Soils and plants (leaves/stems and roots/tubers) were sampled for HTO and organically-bound tritium (OBT) weekly. Active day-night monitoring of air was conducted to interpret tritium dynamics relative to weather and solar radiation. The experimental design included a plot of natural grass/soil, contrasted with grass (sod) and Swiss chard, pole beans and potatoes grown in barrels under different irrigation regimes (in local topsoil at 29 Bq/L HTO, 105 Bq/L OBT). All treatments were exposed to rain (80 Bq/L) and atmospheric releases of tritium (weekdays), and reflux of tritium from soils (initial conditions of 284 Bq/L HTO, 3,644 Bq/L OBT) from 20 years of operations. Three irrigation regimes were used for barrel plants to mimic home garden management: rain only, low tritium tap water (5 Bq/L), and high tritium well water (mean 10,013 Bq/L). This design provided a range of plants and starting conditions with contrasts in initial HTO/OBT activity in soils, and major tritium inputs from air versus water. Controls were two home gardens far from any tritium sources. Active air monitoring indicated that the plume was only occasionally present for

  7. Tritium dynamics in soils and plants at a tritium processing facility in Canada

    International Nuclear Information System (INIS)

    The dynamics of tritium released as tritiated water (HTO) have been studied extensively with results incorporated into environmental models such as CSA N288.1 used for regulatory purposes in Canada. The dispersion of tritiated gas (HT) and rates of oxidation to HTO have been studied under controlled conditions, but there are few studies under natural conditions. HT is a major component of the tritium released from a gaseous tritium light manufacturing facility in Canada (CNSC INFO-0798). To support the improvement of models, a garden was set up in one summer near this facility in a spot with tritium in air averaging ∼ 5 Bq/m3 HTO (passive diffusion monitors). Atmospheric stack releases (575 GBq/week) were recorded weekly. HT releases occur mainly during working hours with an HT:HTO ratio of 2.6 as measured at the stack. Soils and plants (leaves/stems and roots/tubers) were sampled for HTO and organically-bound tritium (OBT) weekly. Active day-night monitoring of air was conducted to interpret tritium dynamics relative to weather and solar radiation. The experimental design included a plot of natural grass/soil, contrasted with grass (sod) and Swiss chard, pole beans and potatoes grown in barrels under different irrigation regimes (in local topsoil at 29 Bq/L HTO, 105 Bq/L OBT). All treatments were exposed to rain (80 Bq/L) and atmospheric releases of tritium (weekdays), and reflux of tritium from soils (initial conditions of 284 Bq/L HTO, 3,644 Bq/L OBT) from 20 years of operations. Three irrigation regimes were used for barrel plants to mimic home garden management: rain only, low tritium tap water (5 Bq/L), and high tritium well water (mean 10,013 Bq/L). This design provided a range of plants and starting conditions with contrasts in initial HTO/OBT activity in soils, and major tritium inputs from air versus water. Controls were two home gardens far from any tritium sources. Active air monitoring indicated that the plume was only occasionally present for

  8. Detritiation of Tritiated Effluent Gas and Water

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Lee, Min Soo; Yim, Sung Paal; Chung Hong Suk

    2007-06-15

    In a demonstration scale equipment for treatment of tritium in off-gas, Pt/SDBC as oxidation catalyst and Zeolite 13X as adsorbent was charged in the beds, respectively. It was confirmed from the performance test that decontamination factor of the equipment showed more than 100 under the flow rate of off-gas of 90 l/hr and at the temperature of 65 {approx} 80 .deg. C. A small scale CECE process has been developed combining LPCE catalytic column with SPE (solid polymer electrolyte) electrolysis. The catalytic column was a trickle-bed type packed with the mixture of 1 wt% Pt/SDBC catalyst and 4 mm Dixon wire-mesh ring. The experimental results of the CECE process proved that the decontamination factor of 13 {approx} 20 under the operating conditions of the water of the 4 l/day and the effluent hydrogen gas of 16.2 mol/h. A design code of CECE process also developed which will be applied the tritium industry. An experimental method for the reduction of tritiated organic waste by using catalytic oxidation was tested in a heated catalytic reactor of 0.5 wt% Pd/Al{sub 2}O{sub 3}. The simulated organic liquid was converted to water over 99%. A gas chromatographic column material was developed for the separation of mixed hydrogen isotopes. 17 wt% Pd-Pt on alumina showed 90% separation efficiency at 77 % yield for the separation of 29.2 % D{sub 2}-H{sub 2} gas mixture.

  9. Elements of thought on the health risk associated to tritium

    International Nuclear Information System (INIS)

    This report addresses and analyses the health problematic set by tritium and assesses the robustness of the radiation protection system with respect to this radionuclide by highlighting the lack of scientific knowledge on biological effects, and researches to be promoted. After a presentation of epidemiologic and dosimetric approaches of the radiological risk assessment, the authors discuss results and knowledge gained by epidemiologic studies on the risk associated to tritium for mankind, and discuss the knowledge on biological effects of tritium and on the relative biological effectiveness of tritium. The report finally discusses the possibility of reconsidering the radiation weighting factor in the case of tritium

  10. Development of nuclear micro-battery with solid tritium source

    International Nuclear Information System (INIS)

    A micro-battery powered by tritium is being developed to utilize tritium produced from the Wolsong Tritium Removal Facility. The 3D p-n junction device has been designed and fabricated for energy conversion. Titanium tritide is adopted to increase tritium density and safety. Sub micron films or nano-powders of titanium tritide is applied on silicon semiconductor device to reduce the self absorption of beta rays. Until now protium has been used instead of tritium for safety. Hydrogen was absorbed up to atomic ratio of ∼1.3 and ∼1.7 in titanium powders and films, respectively.

  11. Comparative study of the tritium distribution in metals

    Energy Technology Data Exchange (ETDEWEB)

    Perevezentsev, A.N. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)], E-mail: alexander.perevezentsev@iter.org; Bell, A.C. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Rivkis, L.A.; Filin, V.M.; Gushin, V.V.; Belyakov, M.I.; Bulkin, V.I.; Kravchenko, I.M.; Ionessian, I.A. [All-Russia Institute of Inorganic Materials, 123060, P.O. Box 369, VNIINM, Moscow (Russian Federation); Torikai, Y.; Matsuyama, M.; Watanabe, K. [Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190, Toyama 930-8555 (Japan); Markin, A.I. [State Scientific Center TRINITI, 142190 Moscow Region (Russian Federation)

    2008-01-31

    Coupons of stainless steel, Inconel, beryllium, copper and aluminium bronze were exposed to tritium in hydrogen gas mixtures over a wide range of parameters: temperature up to 770 K, pressure from 1 x 10{sup -4} MPa to 0.05 MPa, tritium concentration from 1 at.% to 98 at.%. The tritium concentration on the surface and distribution through the metals were measured using radiography, radioluminography, {beta}-ray induced X-ray spectroscopy and acid etching methods. The effect of metal processing, such as forging, polishing and heat treatment on the tritium distribution was studied along with parameters relating to the exposure of the metal to tritium.

  12. Quantitative determination of tritium in metals and oxides

    International Nuclear Information System (INIS)

    Metallic samples are analyzed for tritium by heating the sample at 1225 K in a moist oxygen stream. The volatile products are trapped and the tritium is quantitatively determined by scintillation spectroscopy. The method is used to determine less than 1 ppb of tritium in 100-mg samples of lithium, iron, nickel, cerium, plutonium, and plutonium dioxide. Analysis of 18 cuts of a tritium-zirconium, copper foil standard over a 3-yr period showed a tritium content of 45 ppM and a standard deviation of 6 ppM

  13. Organically bound tritium, OBT: Its true constitution

    International Nuclear Information System (INIS)

    Full text: Tritium, which is analytically determined to be non-exchangeable bound in tissue solids, is assumed to be bound to carbon. Furthermore, it follows that the biochemical passways by photosynthesis or enzymatic transfer reactions are retarded by the kinetic isotope effect leading to discrimination of tritium in biomolecules. In contrast, the logistic growth analysis of plants discloses a larger intrinsic growth rate of OBT than of OBH, resulting in tritium accumulation in biomolecules. Exchange experiments providing fractionation factors of 1.4 and 2 confirm this accumulation. In summary a larger part of the so called OBT is not carbon bound but consists of tritium positioned in hydrogen bridges of biopolymers which have been occupied during formation of the molecules and which became later inaccessible for exchange (so called buried hydrogens). Furthermore, there are experimental results indicating even rapid exchange during the in vivo state but inhibited in the in vitro state, which is commonly given in bio samples prepared for analysis. (author)

  14. Assessment of Tritium in Production Workers

    International Nuclear Information System (INIS)

    The tritium bioassay programme at the Savannah River Plant is geared for rapid urinalysis of large numbers of samples. More than 300 000. urine samples have been analysed in the past ten years. A liquid scintillation counting procedure currently used for analysis of urine samples is described. Untreated samples containing as little as 1μc of tritium per litre can be assayed in one minute. The detection limit for distilled urine is 5 x 10-4 μc of tritium per litre. Automation of equipment, optimum scintillation mixture and sample volumes, selection of reagents and counting containers, and elimination of interfering radionuclides are discussed: Empirical studies of biological half-life are summarized. In 310, cases where the initial-tritium conr centrations in urine ranged from 20 to 118 μc/l the average biological half-life was 9.5 d. The half-life varied inversely fwith ambient temperature and'age of employees. (author)

  15. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 1013Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 1010Bq (0.5 Ci) per day per ton of fuel

  16. Stereo and regioselectivity in ''Activated'' tritium reactions

    International Nuclear Information System (INIS)

    To investigate the stereo and positional selectivity of the microwave discharge activation (MDA) method, the tritium labeling of several amino acids was undertaken. The labeling of L-valine and the diastereomeric pair L-isoleucine and L-alloisoleucine showed less than statistical labeling at the α-amino C-H position mostly with retention of configuration. Labeling predominated at the single β C-H tertiary (methyne) position. The labeling of L-valine and L-proline with and without positive charge on the α-amino group resulted in large increases in specific activity (greater than 10-fold) when positive charge was removed by labeling them as their sodium carboxylate salts. Tritium NMR of L-proline labeled both as its zwitterion and sodium salt showed also large differences in the tritium distribution within the molecule. The distribution preferences in each of the charge states are suggestive of labeling by an electrophilic like tritium species(s). 16 refs., 5 tabs

  17. Small system for tritium accelerator mass spectrometry

    Science.gov (United States)

    Roberts, Mark L.; Davis, Jay C.

    1993-01-01

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and .sup.3 He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  18. Standardization of Tritium Water by TDCR Method

    Institute of Scientific and Technical Information of China (English)

    吴永乐; 梁珺成; 柳加成; 熊文俊; 姚顺和; 郭晓清; 陈细林; 杨元第; 袁大庆

    2012-01-01

    The triple-to-double coincidence ratio (TDCR) method of liquid scintillation count- ing is an absolute measurement method of radioactivity. The formulation of the TDCR method and the established TDCR liquid scintillation counter are presented in this paper. The NIST standard reference material (SRM) of tritium water was measured to verify the performance of the TDCR liquid scintillation counter.

  19. Preliminary dimensioning of the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu; Abou-Sena, Ali; Chen, Yuming; Freund, Jana; Klix, Axel; Kondo, Keitaro; Vladimirov, Pavel

    2013-10-15

    Highlights: • The design of the IFMIF Tritium Release Test Module is explained. • Nuclear responses in the module and specimens are calculated. • Temperature fields during irradiation are calculated by 1D methods. • The tritium budget is calculated by 1D methods. -- Abstract: As part of the ongoing Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF), an experimental device suitable for the irradiation and online tritium release measurements of solid breeder ceramics and beryllium is investigated. This experimental device is called the Tritium Release Test Module (TRTM). In the preliminary design phase, the possible thermal conditions, the tritium diffusion budgets, and the mechanical loads have been studied by analytical calculations and numerical codes. The most important results concern the tritium production and nuclear heating induced in the structures, the temperature distribution in the specimen region and the structure, and the diffusion of tritium through the safety barriers.

  20. Investigation of tritium in groundwater at Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, R.W.

    1985-12-30

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs.

  1. Global cycling of tritium and iodine-129

    International Nuclear Information System (INIS)

    Dynamic linear compartmnt models are used widely to describe global cycling of environmental tritium and 129I. Important tests of these models by comparison of predictions with environmental data from anthropogenic sources are discussed. A tritium model, based on the global hydrologic cycle that reproduces time-series data from atmospheric nuclear weapons testing on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude-dependence of atmosperic tritium in both hemispheres is presented. The model includes: hemispheric stratosphere compartments; disaggregation of the troposphere and ocean surface waters into eight latitude zones; consideration of the different concentrations of water in air over land and the ocean in calculating the specific activity of atmospheric tritium; and use of a box-diffusion model for transport in the ocean. An important prediction of a global model for 129I, which we developed previously from data on cycling of naturally occurring stable iodine, is that the mean residence time in the first 1 m of surface soil is about 4000 y. However, a recent analysis of measured soil profiles of 129I near the Savannah River Plant, based on a linear compartment model for downward transport through soil, suggested that the mean residence time in the first 0.3 m is only about 40 y. A diffusion model is used to describe the measured soil profiles, and the resulting diffusion coefficient is shown to correspond to mean residence times in the first 0.3 m and 1 m of soil of about 80 and 900 y, respectively. The value for the first 1 m can be reconciled with the prediction of the global model

  2. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O(3 H, n) 18 F . In the present work was studied the LiAlO2 and the Li2O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  3. Tritium concentrations in natural waters in Japan before use of a large quantity of tritium on its fusion program

    International Nuclear Information System (INIS)

    To clarify environmental tritium levels in Japan before use of a large quantity of tritium on its fusion program, the authors analyzed the tritium concentrations in various water samples, such as rain, river, lake, coastal sea and deep sea waters in Japan. The tritium concentrations in rain water were high at higher latitude. The definite differences of the tritium concentrations due to the weather conditions or seasons were not observed. The average tritium concentration in river water was 51.5 pCi/l in 1982 and that in lake water was 63.5 pCi/l in 1983. The vertical profiles of the tritium concentrations in the representative lakes were almost homogeneous except surface water. The average tritium concentrations in coastal seawater were about 20 pCi/l in both 1982 and 1983. The tendency of the increased tritium level with latitude as reported in literature was not observed by these experiments. Tritium levels in natural water in small isolated islands were lower than those at other places. In the Japan Sea, it was recognized that tritium was distributed down to around 2000 m in depth. This means that the more active vertical mixing of water masses than that in the Pacific Ocean is taking place. (author)

  4. Integrating effluent management

    OpenAIRE

    1996-01-01

    The paper discusses a closed recycle shrimp farm in Thailand which integrates effluent management. The closed recycle system can reduce risk of heavy metals, pesticides, ammonia, and other toxic particles coming in with water from natural sources by reducing the quantity of water brought to the farm.

  5. Analysis and speciation of the tritium in environmental matrices

    International Nuclear Information System (INIS)

    This study deals with environmental monitoring. The main aims are (i) the optimisation of the analytical procedure for the tritium in organic form determination, and (ii) the identification of the tritium bearing molecules which are responsible for its transfer from the environment to man. The study was divided into three stages. First an analytical method was developed to determine hydrogen content of several samples, which is a key element to calculate accurate organically bound tritium activities. Secondly, the impact of the organically bound tritium fractions separation (labile exchange) for the determination of the representative fraction of the level of environmental tritium activity was then evaluated. For that, the amount of solubilised sample was estimated. Finally, the speciation of tritium in environmental samples was investigated. Several molecules classes and organic compounds dissolved in the labile exchanges solvent were identified. The results show that the distribution of tritium in organisms depends on both properties of the chemical bond in which it is involved and chemical properties of tritium bearing molecules. The identified compounds belong to the molecules classes such as carbohydrates or amino acids, constitutive of living organisms. It would now be of interest to study the tritium distribution in an environmental sample to target molecules of interest and study the impact of tritium from the environment to man. (author)

  6. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 1019 ions/cm2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  7. A study of low-cost adsorbent materials for removing Cr(VI from aqueous waste effluent Estudio de materiales adsorbentes de bajo costo para remover Cr(VI de efluentes acuosos

    Directory of Open Access Journals (Sweden)

    Castillo Serna Elianna

    2011-05-01

    Full Text Available  

    The present paper shows very high potential for two types of solid (a commercial alumina and material obtained by composting, i.e. matured compost on Cr(VI adsorption/elimination in aqueous solution using a concentration range close to those previously detected in waste-water from Colombian industries. Both had important properties for eliminating Cr(VI, the compost being more important as it represents low-cost material. Optimal conditions for chromium adsorption on alumina and compost were established. Initial Cr(VI alumina concentration was 10 mgL-1, with 100 mL/g volume of solution per adsorbent mass, pH=2.0, 1 hour equilibrium time and 150 rpm stirring. For compost, initial Cr(VI concentration was = 3 mg L-1, 50 mL/g volume of solution per adsorbent mass, pH=2.5, 3 hour equilibrium time and 150 rpm stirring. The experiments showed that compost adsorption properties could be enhanced by adding small quantities of alumina. Compost could thus be chosen as a promising material for use in bioremediation chromium-containing waste water in a management programme for using solid waste in for minimising environmental impact.

     

     

    Best practices in management of heavy water and tritium

    International Nuclear Information System (INIS)

    The heavy water inventory of a typical HWR constitutes about 12% of the capital cost of the HWR. The typical tritium production in a single unit HWR is about 2 x 106 Ci/y.1 Heavy water and tritium control are important aspects of HWR operation, and this involves people, procedures, equipment and heavy water and tritium separation systems. Station personnel are trained to understand the importance of heavy water management and the economics and environmental impact of tritiated heavy water losses. The tritium and heavy water losses from a HWR are both airborne and waterborne in nature. Tritium is of particular concern in the HWR industry given the nature of heavy water reactors to build up high levels of tritium over time. Recent increased interest from regulators and the public has led more HWR utilities to pay increasing attention to occupational safety and environmental emissions of tritium at their power stations. As competing reactor technologies improve, a simple and economic means for tritium removal from heavy water in HWRs is essential for the long- term attractiveness of HWR technology. Tritium safety, occupational and environmental issues are of central importance in HWR licensing and operation. Building upon GE's extensive operational experience in tritium management in HWR reactors and its own tritium handling facility, GE2 has developed a large-scale diffusion-based isotope separation process as an alternative to conventional cryogenic distillation. Having a tritium inventory an order of magnitude lower than conventional cryogenic distillation, this process is very attractive for heavy water detritiation, applicable to single and multi-unit HWR and research reactors. Additionally, the new process has significant benefits to an operating HWR utility such as reducing environmental emissions and significantly lowering reactor vault tritium MPC(a) levels to a point where station capacity factors can be improved by shorter outages - representing best

  8. Public impact of released radioactive gaseous and liquid effluents during active test at Rokkasho reprocessing plant (RRP)

    International Nuclear Information System (INIS)

    RRP started its active test with spent fuel on the 31st March 2006. When the spent fuel is reprocessed, radioactive gaseous and liquid effluent such as krypton-85, tritium, etc are released. In order to keep the dose to the public as low as reasonably achievable, RRP removes radioactive materials from radioactive gaseous liquid effluent as much as reasonably achievable by the help of evaporation, scrubbing, filtering, etc, according to their physical and chemical form, and then releases effluent through the main stack and the sea discharge pipeline that allow to make dispersion and dilution very efficient. Also, concerning the radioactive gaseous and liquid effluents to be released into the environment, we control annual release amount not to exceed the target values in our Safety Rule by monitoring the radioactive materials in gaseous and liquid effluents. RRP reprocessed 320 tUpr of spent fuel during April 2006 to February 2008. In this report, we report about; The amount of radioactive gaseous and liquid effluent during April 2006 to March 2008. The performance of removal of radioactive materials in gaseous and liquid effluents at RRP. The impact on the public from radioactive effluents during the active test at RRP. (author)

  9. Tritium uptake kinetics in crayfish (Orconectes immunis)

    International Nuclear Information System (INIS)

    Uptake of tritiated water (HTO) by Orconectes immunis was investigated under laboratory conditions. Tritium uptake in the tissue-free water fraction (TFWT) was described using an exponential model. When steady-state was reached, the ratio of TFWT to HTO was approximately 0.9. Uptake of tritium in the organically-bound fraction (OBT) proceeded slowly, and had not reached steady-state after 117 days of culture. Although steady-state was never reached, the maximum observed ration of OBT to TFWT in whole animals was approximately 0.6. However, this ratio exceeded unity in the exoskeleton. Specific activity ratios of OBT between crayfish and lettuce (food source) were less than or at unity for various test conditions

  10. Tritium labelling of two new analgesic drugs

    International Nuclear Information System (INIS)

    The labelling with tritium of two arylpropionic esters was studied. The synthesis between 3H-Ibuprofen and the two unlabelled alcoholic moieties (Cl-Alkanol and CF3-Alkanol) was performed. Assuming that we got ready the acidic moiety, 3H-Ibuprofen, in our Laboratory, we attempted to label with tritium the alcoholic moiety and then go on to its esterification. Prior to labelling, thermic stability of 2-(4-(3-chlorophenyl)-1-piperazinyl) ethanol (Cl-Alkanol) was studied. As result of this study we had to change the labelling method, so that the Cl-Alkanol was unstable at 700C. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activities of the two labelled compounds were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  11. Tritium system for compact high field devices

    International Nuclear Information System (INIS)

    Some theoretical results and the current status of the work on a prototype plant for the Tritium cycle of compact high-field tokamaks (such as, Ignitor, CIT, etc.), using the SAES Getter St 707 getter material, are described in this report. The schematics and present status of the main subplants of the cycle are reported together with some experimental results demostrating the possibility of utilizing the St 707 material to purify the inert atmosphere of the glove-boxes and the secondary containment of the double-containment metal canalization which is to eventually house the various parts of the plant. Finally, as an example, the FTU machine, under construction at ENEA Frascati, has been taken as a reference, and theoretical evaluations are given for the inventory, permeation and release of the Tritium from the first wall and the thermal shieldes of such a tokamak

  12. Low-exposure tritium radiotoxicity in mammals

    International Nuclear Information System (INIS)

    A special feature of tritium radiation is the very low energy of the beta particles (5.7 keV average, 18 keV maximum). This low energy results in very short particle ranges in tissue, ranges that are less than cell dimensions. Another result of the low energy is that the ionization density along beta-ray tracks (even though the tracks are short) is significantly greater than that associated with secondary electrons from gamma rays. The studies of tritium radiotoxicity reviewed, involving chronic 3HOH exposures in mammals, demonstrate in both mice and monkeys that biological effects can be measured following remarkably low levels of exposure --- levels in the range of serious practical interest to radiation protection. (Namekawa, K.)

  13. Processing of radioactive effluents in Cadarache research centre

    International Nuclear Information System (INIS)

    French Atomic Energy Commission (Commissariat a l'Energie Atomique - CEA) is studying the design of a new plant for processing liquid aqueous radioactive effluents produced on Cadarache Research Centre. Effluents to be processed are low and medium activity effluents, with, for some of them, important concentrations of actinides, and which lead to the production of A and B category solid wastes, according to the French legislation, and suitable for final disposal. The objectives in terms of minimization of discharge's activity level and solid waste production have guided a selection of processes and their arrangement, in order to optimise decontamination and volume concentration factors. Seeded-ultrafiltration and vitrification with cold crucible melter are part of the selected processes for which developments are in progress in CEA for application to the characteristics of the project. (authors)

  14. Atmospheric tritium sampling at the NTS

    International Nuclear Information System (INIS)

    A modification of the method for the simultaneous collection of gaseous tritium and tritiated water vapor in air is under investigation. It is believed that the auxiliary hydrogen stream is unnecessary if a small volume of distilled water is added at the point of collection of water generated by the Pt-H2-O2 reaction. To test this hypothesis, two samplers were set up to sample the same air stream. Results are encouraging

  15. Decommissioning a tritium glove-box facility

    International Nuclear Information System (INIS)

    A large glove-box facility for handling reactive metal tritides was decommissioned. Major sections of the glove box were decontaminated and disassembled for reuse at another tritium facility. To achieve the desired results, decontamnation required repeated washing, first with organic liquids, then with water and detergents. Worker protection was provided by simple ventilation combined with careful monitoring of the work areas and employees. Several innovative techniques are described

  16. Determination of tritium in wine yeast samples

    International Nuclear Information System (INIS)

    Analytical procedures were developed to determine tritium in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractioning distillation for wine samples and azeotropic distillation/fractional distillation for wine yeast samples. Finally, the water samples were normally distilled with K MO4. The established procedures were successfully applied for wine and wine samples from Murfatlar harvests of the years 1995 and 1996. (authors)

  17. Tritium Behaviour in the Fusion Reactor Materials

    OpenAIRE

    Pajuste, Elīna

    2012-01-01

    ABSTRACT Doctoral thesis is devoted to the development of future energy source nuclear fusion. The objective of this research is to evaluate fusion reactor material suitability regarding their behaviour and tritium retention in the fusion reactor relevant conditions. Methods and technique developed in the UL Institute of Chemical Physics Laboratory of Radiation Chemistry of Solid State has been used in this study. Synergetic facilitating effect of accelerated electrons and high magnetic fi...

  18. Decommissioning a tritium glove-box facility

    Energy Technology Data Exchange (ETDEWEB)

    Folkers, C.L.; Homann, S.G.; Nicolosi, A.S.; Hanel, S.L.; King, W.C.

    1979-08-08

    A large glove-box facility for handling reactive metal tritides was decommissioned. Major sections of the glove box were decontaminated and disassembled for reuse at another tritium facility. To achieve the desired results, decontamnation required repeated washing, first with organic liquids, then with water and detergents. Worker protection was provided by simple ventilation combined with careful monitoring of the work areas and employees. Several innovative techniques are described.

  19. Preliminary test for reprocessing technology development of tritium breeders

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi; Tsuchiya, Kunihiko; Hayashi, Kimio [Blanket Irradiation and Analysis Group, Directorates of Fusion Energy Research, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Nakamura, Mutsumi; Terunuma, Hitoshi [KAKEN Co., Ltd., 1044, Hori, Mito-city, Ibaraki 310-0903 (Japan); Tatenuma, Katsuyoshi [KAKEN Co., Ltd., 1044, Hori, Mito-city, Ibaraki 310-0903 (Japan)], E-mail: tatenuma@kakenlabo.co.jp

    2009-04-30

    In order to develop the reprocessing technology of lithium ceramics (Li{sub 2}TiO{sub 3}, CaO-doped Li{sub 2}TiO{sub 3}, Li{sub 4}SiO{sub 4} and Li{sub 2}O) as tritium breeder materials for fusion reactors, the dissolution methods of lithium ceramics to recover {sup 6}Li resource and the purification method of their lithium solutions to remove irradiated impurities ({sup 60}Co) were investigated. In the present work, the dissolving rates of lithium from each lithium ceramic powder using chemical aqueous reagents such as HNO{sub 3}, H{sub 2}O{sub 2} and citric acid (C{sub 6}H{sub 8}O{sub 7} . H{sub 2}O) were higher than 90%. Further the decontamination rate of {sup 60}Co added into the solutions dissolving lithium ceramics was higher than 97% using the activated carbon impregnated with 8-hydroxyquinolinol as chelate agent.

  1. Environmental and Effluent Monitoring at ANSTO Sites, 2002-2003

    International Nuclear Information System (INIS)

    This report presents the results of environmental and effluent monitoring at the Lucas Heights Science and Technology Centre (LHSTC) and the National Medical Cyclotron (NMC) from January 2002 to June 2003. Potential effective dose rates to the general public from airborne discharges from the LHSTC site were less than 0.01 mSv/year, well below the 1 mSv/year dose rate limit for long term exposure that is recommended by the Australian National Occupational Health and Safety Commission. The effective dose rates to hypothetical individuals potentially exposed to radiation in routine liquid effluent discharges from the LHSTC were recently calculated to be less than 0.001 mSv/year. This is much less than dose rates estimated for members of public potentially exposed to airborne emissions. The levels of tritium detected in roundwater and stormwater at the LHSTC were less than the Australian drinking water guidelines. The airborne and liquid effluent emissions from the NMC were below the ARPANSA-approved notification levels and NSW EPA limits, respectively. ANSTO's routine operations at the LHSTC and the NMC make only a very small addition to the natural background radiation dose experienced by members of the Australian public. (authors)

  2. Tritium labeling for bio-med research

    International Nuclear Information System (INIS)

    A very large fraction of what we know about biochemical pathways in the living cell has resulted from the use of radioactively-labeled tracer compounds; the use of tritium-labeled compounds has been particularly important. As research in biochemistry and biology has progressed the need has arisen to label compounds of higher specific activity and of increasing molecular complexity - for example, oligo-nucleotides, polypeptides, hormones, enzymes. Our laboratory has gradually developed special facilities for handling tritium at the kilocurie level. These facilities have already proven extremely valuable in producing labeled compounds that are not available from commercial sources. The principal ways employed for compound labeling are: (1) microwave discharge labeling, (2) catalytic tritio-hydrogenation, (3) catalytic exchange with T2O, and (4) replacement of halogen atoms by T. Studies have also been carried out on tritiation by the replacement of halogen atoms with T atoms. These results indicate that carrier-free tritium-labeled products, including biomacromolecules, can be produced in this way

  3. Investigation of tritium in groundwater at Pickering NGS

    International Nuclear Information System (INIS)

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radio-nuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identify the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  4. Development of tritium analysis system TAS 1.0

    International Nuclear Information System (INIS)

    Tritium is one of the fuels used in fusion reactors. Design and analysis on the tritium system are one of key research for fusion reactor study. Based on the research for the some concepts of Chinese liquid metal LiPb blanket fusion reactor, a Tritium Analysis System (TAS1.0) for fusion reactor had been developed by using Software Engineering method and Object-Oriented technology for tritium self-sustaining analysis, tritium management and tritium safety analysis. In addition, TAS 1.0 can also support the design of blanket and fuel circulation system. A series of tests and applications had shown the maturity and effectiveness of' the system. This paper gives a brief overview of the design of the system, main technical features and the related tests. (authors)

  5. Removal and recovery of tritium from light and heavy water

    International Nuclear Information System (INIS)

    A method and apparatus for removing tritium from light water are described, comprising contacting tritiated feed water in a catalyst column in countercurrent flow with hydrogen gas originating from an electrolysis cell so as to enrich this feed water with tritium from the electrolytic hydrogen gas and passing the tritium enriched water to an electrolysis cell wherein the electrolytic hydrogen gas is generated and then fed upwards through the catalyst column or recovered as product. The tritium content of the hydrogen gas leaving the top of the enricher catalyst column is further reduced in a stripper column containing catalyst which transfers the tritium to a countercurrent flow of liquid water. Anodic oxygen and water vapour from the anode compartment may be fed to a drier and condensed electrolyte recycled with a slip stream or recovered as a further tritium product stream. A similar method involving heavy water is also described. (author)

  6. Early experience with the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    The Tritium Systems Test Assembly (TSTA) project at Los Alamos is charged with developing and demonstrating the tritium technology required to fuel a deuterium-tritium burning fusion reactor and to develop and evaluate the personnel and environmental safety systems associated with the tritium facility. The TSTA project completed the construction phase in late 1982 and is currently in the component checkout and early experimental phase. Tritium introduction is scheduled for mid-summer 1983. Several major systems have been operated and tested with hydrogen and deuterium. These include the vacuum pump, the isotope separation system and the emergency tritium cleanup system. The results of the early experiments are summarized and the experimental programs for other systems are presented

  7. Tritium releases and impact about EDF nuclear power stations

    International Nuclear Information System (INIS)

    After a description of the different ways of formation of tritium in the nuclear power stations (either by fission or by activation), the authors discuss the levels of tritium releases by these power stations, indicate the tritium average activities in liquid and gaseous radioactive releases in 2008. They indicate the choices made by EDF and the actions performed to control these releases. They describe how the presence of tritium in the environment is monitored and how measurements are published. They discuss the interpretation of these measurements (in water streams, water sheets, sediments, along the Channel French coasts), and the impact of the tritium released by the nuclear power stations. They evoke modelling studies and researches supported by EDF on the impact of tritium on mankind

  8. Silage effluent management: a review.

    Science.gov (United States)

    Gebrehanna, M M; Gordon, R J; Madani, A; VanderZaag, A C; Wood, J D

    2014-10-01

    Silage effluent is a potent wastewater that can be produced when ensiling crops that have a high moisture content (MC). Silage effluent can cause fish-kills and eutrophication due to its high biochemical oxygen demand (BOD) and nutrient content, respectively. It has a high acidity (pH ≈ 3.5-5) making it corrosive to steel and damaging to concrete, which makes handling, storage and disposal a challenge. Although being recognized as a concentrated wastewater, most research has focused on preventing its production. Despite noted imprecision in effluent production models-and therefore limited ability to predict when effluent will flow-there has been little research aimed at identifying effective reactive management options, such as containment and natural treatment systems. Increasing climate variability and intensifying livestock agriculture are issues that will place a greater importance on developing comprehensive, multi-layered management strategies that include both preventative and reactive measures. This paper reviews important factors governing the production of effluent, approaches to minimize effluent flows as well as treatment and disposal options. The challenges of managing silage effluent are reviewed in the context of its chemical constituents. A multi-faceted approach should be utilized to minimize environmental risks associated with silage effluent. This includes: (i) managing crop moisture content prior to ensiling to reduce effluent production, (ii) ensuring the integrity of silos and effluent storages, and (iii) establishing infrastructure for effluent treatment and disposal. A more thorough investigation of constructed wetlands and vegetated infiltration areas for treating dilute silage effluent is needed. In particular, there should be efforts to improve natural treatment system design criteria by identifying pre-treatment processes and appropriate effluent loading rates. There is also a need for research aimed at understanding the effects of

  9. Operation of the TSTA (Tritium Systems Test Assembly) with 100 gram tritium

    International Nuclear Information System (INIS)

    In March of 1988 full operation of the 4-column isotope separation system (ISS) was realized in runs that approximated the design load of tritium. Previous operations had been fraught with operating difficulties principally due to external systems. This report will examine the recent highly successful 6-day period of operation. During this time the system was cooled from room temperature, loaded with hydrogen isotopes including 109 grams of tritium, integrated with the transfer pumping, impurity injection, and impurity removal systems, as well as the remote computer control system. At the end of the operation 12 grams of tritium having a measured purity of 99.987% (remainder deuterium) were offloaded from the system. Observed profiles in the columns in general agree with computer models. A Height Equivalent to a Theoretical Plate (HETP) of 5.0 cm is confirmed. 3 refs., 5 figs

  10. Study and Application of Foreign Gaseous Tritium Light Sources

    Institute of Scientific and Technical Information of China (English)

    DENG; Bei; LI; Si-jie; ZHANG; Li-feng; SUN; Yu-hua; HAN; Shi-quan

    2013-01-01

    Light is given out by the phosphor material which is excited by theβrays from tritium,as is the way tritium light sources work.For tritium light sources,there is no need for maintenance and additional power,and it is not affected by temperature,humidity,altitude and use technology,which makes it widely used in some special areas of national economy,just like the sight lighting of varieties of instrument panel,

  11. Recent results on tritium technology in JAEA under BA program

    International Nuclear Information System (INIS)

    Highlights: • The multi-purpose RI facility has been constructed at Rokkasho site in DEMO R and D building until 2011. • The material of the column of the micro gas chromatograph has been studied to develop a real time analysis tool for the hydrogen isotope composition in gas phase. • A set of basic data on the interaction between materials and tritium has been measured by various methods. • As a study for the tritium durability, the endurance of ion exchange membrane has been tested by using high concentration tritium water. -- Abstract: The multi-purpose RI facility has been constructed at Rokkasho site in DEMO R and D building until 2011. The facility is the first and quite unique facility in Japan, where tritium, beta and gamma RI species, and beryllium (Be) can simultaneously be used. The amounts of tritium used and stored are 3.7 TBq per glove box and 7.4 TBq, respectively. Some tritium water samples of 38 GBq has been stored at the equipment on March 2012. The material of the column of the micro gas chromatograph has been studied to develop a real time analysis tool for the hydrogen isotope composition in gas phase. The calorimeter has also been studied as a possible tritium measurement method in solid waste. A set of basic data on the interaction between materials and tritium has been measured by various methods. The behavior of tritium in Fe and W has been studied as a typical subject. As a study for the tritium durability, the endurance of ion exchange membrane has been tested by using high concentration tritium water. The curves of strength vs. dose for the Nafion membranes in tritium water were well consistent with those by gamma rays and electron beams irradiations

  12. The synthesis of tritium-labelled cyclic hydrocarbons by using tritium recoil nuclei

    International Nuclear Information System (INIS)

    The authors discuss the results of investigating the interaction of tritium recoil atoms produced by the reaction Li6 (n, α)T with cyclohexane, cyclohexene, cyclohexadiene, methyl cyclohexane, cyclohexanol, cyclohexylammine and benzene. Mixtures of these compounds with lithium carbonate were neutron-irradiated. From 1 g of lithium, 4 mc/h of tritium was obtained with a 4 x 1012 n/cm2 s neutron flux. The total yield of the products depends on the amount of tritium yielded by the crystals, and, so, on the irradiation conditions. The yield from the separate components is determined by analysis. The irradiation products were analysed by vacuum distillation, using carriers and gas-liquid chromatography. The results obtained show that 20-40% of the tritium yielded by the lithium carbonate crystals is embedded in the parent molecule of the irradiated compound. When, for instance, cyclohexene is irradiated together with 22% of the labelled parent-compound, 16% cyclohexane, 4% methyl cyclopentane and small amounts of other products are obtained. The specific activity of cyclohexane and methyl cyclopentane separated on a chromatographic column may be high, and the only dilution is with products of radiolysis. When other compounds are irradiated, there is a good yield only from the irradiated parent-compound, and a small yield from other products. For purposes of preparation, cyclohexane and methyl cyclopentane are best obtained by irradiating cyclohexane; other cyclic hydrocarbons can be obtained by irradiating the compounds directly with lithium salts. The paper describes a preparation column for separating tritium-labelled cyclohexane, cyclohexene and methyl cyclopentane from irradiated cyclohexene and for separating the products yielded by the reaction of tritium recoil atoms with other cyclic hydrocarbons. (author)

  13. Effect of tritium (tritium water) on prenatal and postnatal development of rats

    Energy Technology Data Exchange (ETDEWEB)

    Bajrakova, A.; Baev, I.; Yagova, A. (Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya)

    1983-01-01

    Female rats were injected intraperitoneally on the first day after their fecundation with 3,7 kBq/g b.w. tritium water - activity which under these conditions does not increase prenatal death rate. The postnatal development of the born alive was traced in respect to the lethality rate and growth rate (mean bodily weight in dynamics up to the 60-th day p.p.) and compared with that of the offsprings from the control group. It was shown that the used activity tritium water during the initial stages of embryonic development does not result in deviations from the norm.

  14. Effect of tritium (tritium water) on prenatal and postnatal development of rats

    International Nuclear Information System (INIS)

    Female rats were injected intraperitoneally on the first day after their fecundation with 3,7 kBq/g b.w. tritium water - activity which under these conditions does not increase prenatal death rate. The postnatal development of the born alive was traced in respect to the lethality rate and growth rate (mean bodily weight in dynamics up to the 60-th day p.p.) and compared with that of the offsprings from the control group. It was shown that the used activity tritium water during the initial stages of embryonic development does not result in deviations from the norm. (authors)

  15. Overview of tritium systems for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    The Compact Ignition Tokamak (CIT) is being designed at several laboratories to produce and study fully ignited plasma discharges. The tritium systems which will be needed for CIT include fueling systems and radiation monitoring and safety systems. Design of the tritium systems is the responsibility of the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Major new tritium systems for CIT include a pellet injector, an air detritiation system and a glovebox atmosphere detritiation system. The pellet injector is being developed at Oak Ridge National Laboratory. 7 refs., 2 figs

  16. Concentration of tritium in precipitation and river water

    International Nuclear Information System (INIS)

    The concentration of tritium in precipitation and river water has been measured sice 1973 in Aichi, Japan. The tritium in water samples was enriched by electrolysis, and measured by liquid scintillation counting. The concentration of tritium in precipitation decreased from 27 TU in 1973 to 17 TU in 1979, and showed seasonal variation. During this period, there was a rise of concentration because of Chinese nuclear detonation. The concentration of tritium in river water gradually decreased from 44 TU in 1973 to 24 TU in 1979, and the seasonal variation was not observed. Based on the observed values, the relation among precipitation, river water and ground water was analyzed. (J.P.N.)

  17. Preliminary analysis of public dose from CFETR gaseous tritium release

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Baojie [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China); Ni, Muyi, E-mail: muyi.ni@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Lian, Chao; Jiang, Jieqiong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-02-15

    Highlights: • Present the amounts and limit dose of tritium release to the environment for CFETR. • Perform a preliminary simulation of radiation dose for gaseous tritium release. • Key parameters about soil types, wind speed, stability class, effective release height and age were sensitivity analyzed. • Tritium release amount is recalculated consistently with dose limit in Chinese regulation for CFETR. - Abstract: To demonstrate tritium self-sufficiency and other engineering issues, the scientific conception of Chinese Fusion Engineering Test Reactor (CFETR) has been proposed in China parallel with ITER and before DEMO reactor. Tritium environmental safety for CFETR is an important issue and must be evaluated because of the huge amounts of tritium cycling in reactor. In this work, different tritium release scenarios of CFETR and dose limit regulations in China are introduced. And the public dose is preliminarily analyzed under normal and accidental events. Furthermore, after finishing the sensitivity analysis of key input parameters, the public dose is reevaluated based on extreme parameters. Finally, tritium release amount is recalculated consistently with the dose limit in Chinese regulation for CFETR, which would provide a reference for tritium system design of CFETR.

  18. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  19. Tritium Formation and Mitigation in High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  20. Elemental tritium deposition and conversion in the terrestrial environment

    International Nuclear Information System (INIS)

    Studies were undertaken to determine the deposition and conversion of atmospheric elemental tritium in soils and vegetation. In the field tritium deposition velocities ranged between 0.007 and 0.07 cm s-1 during the summer and autumn and were less than 0.0005 cm s-1 during the winter. Deposition velocity was found to depend significantly on soil water content, total pore space and organic content in controlled laboratory experiments. In contrast to soils, exposure of vegetation to atmospheric elemental tritium resulted in negligible uptake and conversion in foliage. These studies are of significance to the assessment of behaviour and impact of elemental tritium releases

  1. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  2. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  3. Tritium release from SS316 under vacuum condition

    Energy Technology Data Exchange (ETDEWEB)

    Torikai, Y.; Penzhorn, R.D. [Hydrogen Isotope Research Center, University of Toyama, Toyama (Japan)

    2015-03-15

    The plasma facing surface of the ITER vacuum vessel, partly made of low carbon austenitic stainless steel type 316L, will incorporate tritium during machine operation. In this paper the kinetics of tritium release from stainless steel type 316 into vacuum and into a noble gas stream are compared and modelled. Type 316 stainless steel specimens loaded with tritium either by exposure to 1.2 kPa HT at 573 K or submersion into liquid HTO at 298 K showed characteristic thin surface layers trapping tritium in concentrations far higher than those determined in the bulk. The evolution of the tritium depth profile in the bulk during heating under vacuum was non-discernible from that of tritium liberated into a stream of argon. Only the relative amount of the two released tritium-species, i.e. HT or HTO, was different. Temperature-dependent depth profiles could be predicted with a one-dimensional diffusion model. Diffusion coefficients derived from fitting of the tritium release into an evacuated vessel or a stream of argon were found to be (1.4 ± 1.0)*10{sup -7} and (1.3 ± 0.9)*10{sup -9} cm{sup 2}/s at 573 and 423 K, respectively. Polished surfaces on type SS316 stainless steel inhibit considerably the thermal release rate of tritium.

  4. Analysis of residual tritium in an LP 50 product container

    Energy Technology Data Exchange (ETDEWEB)

    Wermer, J.R.

    1996-06-04

    The analysis was done by sampling coupons cut from the side of the vessel. Tests were performed to analyze the amount of residual tritium in the container wall, as well as the amount of tritium removed through exposure to moist air. Based on this data, the PC contained 62 curies of residual tritium. Air exposure and leaching of the coupons in aqua regia accounted for 27 curies. Recommendations are given for final processing of these containers in order to reduce the final tritium content.

  5. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  6. Treatment of tritiated exhaust gases at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, E.; Besserer, U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Jacqmin, G. [NUKEM GmbH, Industreistr, Alzenau (Germany)

    1995-02-01

    The Tritium Laboratory Karlsruhe (TLK) accomplished commissioning; tritium involving activities will start this year. The laboratory is destined mainly to investigating processing of fusion reactor fuel and to developing analytic devices for determination of tritium and tritiated species in view of control and accountancy requirements. The area for experimental work in the laboratory is about 800 m{sup 2}. The tritium infrastructure including systems for tritium storage, transfer within the laboratory and processing by cleanup and isotope separation methods has been installed on an additional 400 m{sup 2} area. All tritium processing systems (=primary systems), either of the tritium infrastructure or of the experiments, are enclosed in secondary containments which consist of gloveboxes, each of them connected to the central depressurization system, a part integrated in the central detritiation system. The atmosphere of each glovebox is cleaned in a closed cycle by local detritiation units controlled by two tritium monitors. Additionally, the TLK is equipped with a central detritiation system in which all gases discharged from the primary systems and the secondary systems are processed. All detritiation units consist of a catalyst for oxidizing gaseous tritium or tritiated hydrocarbons to water, a heat exchanger for cooling the catalyst reactor exhaust gas to room temperature, and a molecular sieve bed for adsorbing the water. Experiments with tracer amounts of tritium have shown that decontamination factors >3000 can be achieved with the TLK detritiation units. The central detritiation system was carefully tested and adjusted under normal and abnormal operation conditions. Test results and the behavior of the tritium barrier preventing tritiated exhaust gases from escaping into the atmosphere will be reported.

  7. Removal of Pyrethrin from Aqueous Effluents by Adsorptive Micellar Flocculation

    Directory of Open Access Journals (Sweden)

    Pardon K. Kuipa

    2015-01-01

    Full Text Available The equilibrium adsorption of pyrethrin onto aggregates formed by the flocculation of micelles of the surfactant sodium dodecyl sulphate (SDS with aluminium sulphate is reported. The experimental results were analysed using different adsorption isotherms (Langmuir, Freundlich, Redlich-Peterson, Sips, Radke-Prausnitz, Temkin, linear equilibrium, and the Dubin-Radushkevich isotherms. The Freundlich and linear equilibrium isotherms best describe the adsorption of pyrethrin onto SDS micellar flocs, with the Freundlich adsorption constant, KF, and the mass distribution coefficient, KD, of 64.266 ((mg/g(L/mg1/n and 119.65 L/g, respectively. Applicability of the Freundlich adsorption model suggests that heterogeneous surface adsorption affects the adsorption. The mean free energy value estimated using the Dubinin-Radushkevich isotherm was 0.136 kJ/mol indicating that physisorption may be predominant in the adsorption process.

  8. Tritium waste control: July--September 1978

    International Nuclear Information System (INIS)

    The combined Electrolysis Catalytic Exchange system was modified to allow better control of experimental conditions and to prevent the overflow of water into the air detritation system. A program designed to regenerate the activity of the hydrophobic catalyst was also completed. Slight differences in the release rate of high specific activity tritiated liquid wastes from the drums are now beginning to appear. The three drums with the highest fractional permeation rate had the least amount of tritium when packaged. The fractional permeation rate of the two octane drums appears to have leveled off at about the same rate as the oil and water drums. Tests continued on samples of cement and cement-plaster mixtures which were injected with 386 Ci of tritiated water, cured, and then impregnated with catalyzed styrene monomer. After polymerization, the samples were put into uncontaminated water and the tritium concentration was monitored. No significant differences were noted except in two cases when the polyethylene bottle had been removed, which resulted in 35 to 80 times more tritium being released into the surrounding water. Full scale (cold) waste drum No. 5 was polymerized with excellent results. Pressure increase and gas composition were measured over (1) tritiated water without fixation, (2) polymer-impregnated concrete, and (3) nonpolymer concrete. Activities for all samples were 10 Ci/m3. Pressure buildup results are essentially the same for concrete made with tritiated distilled water and tritiated waste water. However, the pressure buildup rate is slightly higher for the polymer impregnated concrete than for the nonpolymer concrete. Mass analysis of the cover gas over tritiated water without fixation and over the polymer and nonpolymer concrete samples made with tritiated waste water show that hydrogen represents about 85% of the gas generated

  9. Synthesis of tritium labelled 24-epibrassinolide

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, A.; Marquardt, V.; Adam, G. (Inst. of Plant Biochemistry Halle, Halle/Saale (Germany))

    1992-10-01

    Deuterium and tritium 5,7,7-tris-labelled 24-epibrassinolide were prepared by base catalyzed exchange reaction using 24-epicastasterone tetraacetate 1 or bis-isopropylidenedioxy-24-epicastasterone 8 and labelled water. Baeyer-Villiger oxidation of the obtained labelled 6-ketones 2 and 3 with CF[sub 3]CO[sub 3]H gave after alkaline deacetylation of the resulting 4 and 5 the desired tris-labelled 24-epibrassinolides 6 and 7, respectively, or starting from 9 under simultaneous oxidation and deprotection in one step the same final products. (author).

  10. Development and Verification of Behavior of Tritium Analytic Code (BOTANIC)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min Young; Kim, Eung Soo [Seoul National University, Seoul (Korea, Republic of)

    2014-10-15

    VHTR, one of the Generation IV reactor concepts, has a relatively high operation temperature and is usually suggested as a heat source for many industrial processes, including hydrogen production process. Thus, it is vital to trace tritium behavior in the VHTR system and the potential permeation rate to the industrial process. In other words, tritium is a crucial issue in terms of safety in the fission reactor system. Therefore, it is necessary to understand the behavior of tritium and the development of the tool to enable this is vital.. In this study, a Behavior of Tritium Analytic Code (BOTANIC) an analytic tool which is capable of analyzing tritium behavior is developed using a chemical process code called gPROMS. BOTANIC was then further verified using the analytic solutions and benchmark codes such as Tritium Permeation Analysis Code (TPAC) and COMSOL. In this study, the Behavior of Tritium Analytic Code, BOTANIC, has been developed using a chemical process code called gPROMS. The code has several distinctive features including non-diluted assumption, flexible applications and adoption of distributed permeation model. Due to these features, BOTANIC has the capability to analyze a wide range of tritium level systems and has a higher accuracy as it has the capacity to solve distributed models. BOTANIC was successfully developed and verified using analytical solution and the benchmark code calculation result. The results showed very good agreement with the analytical solutions and the calculation results of TPAC and COMSOL. Future work will be focused on the total system verification.

  11. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  12. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  13. Study of tritium labeling of complex mixture of polychlorinated biphenyls

    International Nuclear Information System (INIS)

    The method for tritium labeling of technical mixture (commercial mark - SOVOL, USSR) of polychlorinated biphenyls (PCBs) was developed. The influence of procedure of labeling by thermally activated tritium on the nativity of polychlorinated biphenyls (PCBs) was studied. The method of labeling by thermally activated tritium has some factors, which are able to destroy organic compounds - photodegradation, thermo-degradation and degradation caused by reaction of substitution of organic compounds hydrogen atoms by activated tritium atoms. To develop a method of labeling of every organic compound by thermally activated tritium it is necessary to determine and optimize the conditions of labeling. In our case procedure of labeling is complicated because of technical mixture of PCBs consist from more than 20 isomers, chlorinated with different degree. We studied the dependence of appearance of products of degradation PCBs from duration of labeling procedure. It was found that some part of PCBs and product of its degradation were evaporated under vacuum and were collected on the glass flask cooled by liquid nitrogen. It was found that correlation between labeled of PCBs and products of degradation did not changed with increasing time of labeling, and radiochemical yield of tritium labeled of PCBs was stable - about 15-20 %. The optimum regime of labeling was selected. It was found that purification of labeled PCBs by TLC on silica gel with hexane allows obtaining tritium-labeled PCBs purified from by-products. Thus, TLC purification seems inexpensive, fast and suitable for purification of tritium-labeled PCBs

  14. A Gas Target with a Tritium Gas Handling System

    International Nuclear Information System (INIS)

    A detailed description is given of a simple tritium gas target and its tritium gas filling system, and how to put it into operation. By using the T (p,n) He reaction the gas target has been employed for production of monoenergetic fast neutrons of well defined energy and high intensity. The target has been operated successfully for a long time

  15. Tritium Content of Rainwater from the Eastern Mediterranean Area

    International Nuclear Information System (INIS)

    About 50 samples of rainwater collected during the years 1958-1960 in Israel and neighbouring countries were assayed for their tritium content by gas counting following electrolytic enrichment. The samples included single showers collected at two stations in Israel and one in Cyprus, as well as composite samples accumulated during each rainy season at a number of sites in Israel, Cyprus, Turkey and Greece. In addition samples, of cistern water, representative of rain from the 1956/57 and 1957/58 rainy seasons, were also analyzed. From the air circulation pattern and the timing of thermonuclear tests relative to the local rainy season it is inferred that little direct tropospheric transport of tritium from the test sites into the area occurs. The measured tritium levels hence are due to tritium leakage from high altitudes into lower air layers. Mean atmospheric residence times are estimated for stratospheric tritium from different sources. There is evidence that tritium is only slowly mixed throughout the stratosphere. Systematic differences between the tritium levels at various sites are explained in terms of the different rain producing situations. It is shown that the extent of mixing of maritime and continental air masses are of paramount importance for the resulting tritium content of rain and that the dimen- sions of the Mediterranean sea are small compared to the scale of meteorological phenomena involved. (author)

  16. Final programmatic environmental impact statement for tritium supply and recycling

    International Nuclear Information System (INIS)

    Tritium, a radioactive gas used in all of the Nation's nuclear weapons, has a short half-life and must be replaced periodically in order for the weapon to operate as designed. Currently, there is no capability to produce the required amounts of tritium within the Nuclear Weapons Complex. The PEIS for Tritium Supply and Recycling evaluates the alternatives for the siting, construction, and operation of tritium supply and recycling facilities at each of five candidate sites: the Idaho National Engineering Laboratory, the Nevada Test Site, the Oak Ridge Reservation, the Pantex Plant, and the Savannah River Site. Alternatives for new tritium supply and recycling facilities consist of four different tritium supply technologies: Heavy Water Reactor, Modular High Temperature Gas-Cooled Reactor, Advanced Light Water Reactor, and Accelerator Production of Tritium. The PEIS also evaluates the impacts of the DOE purchase of an existing operating or partially completed commercial light water reactor or the DOE purchase of irradiation services contracted from commercial power reactors. Additionally, the PEIS includes an analysis of multipurpose reactors that would produce tritium, dispose of plutonium, and produce electricity. Evaluation of impacts on land resources, site infrastructure, air quality and acoustics, water resources, geology and soils, biotic resources, cultural and paleontological resources, socioeconomics, radiological and hazardous chemical impacts during normal operation and accidents to workers and the public, waste management, and intersite transport are included in the assessment

  17. Tritium measurement technique using ''in-bed'' calorimetry

    International Nuclear Information System (INIS)

    One of the new technologies that has been introduced to the Savannah River Site (SRS) is the production scale use of metal hydride technology to store, pump, and compress hydrogen isotopes. For tritium stored in metal hydride storage beds, a unique relationship does not exist between the amount of tritium in the bed and the pressure-volume-temperature properties of the hydride material. Determining the amount of tritium in a hydride bed after desorbing the contents of the bed to a tank and performing pressure, volume, temperature, and composition (PVTC) measurements is not practical due to long desorption/absorption times and the inability to remove tritium ''heels'' from the metal hydride materials under normal processing conditions. To eliminate the need to remove tritium from hydride storage beds for measurement purposes, and ''in-bed'' tritium calorimetric measurement technique has been developed. The steady-state temperature rise of a gas stream flowing through a jacketed metal hydride storage bed is measured and correlated with power input to electric heaters used to simulate the radiolytic power generated by the decay of tritium to 3He. Temperature rise results for prototype metal hydride storage beds and the effects of using different gases in the bed are shown. Linear regression results shows that for 95% confidence intervals, temperature rise measurements can be obtained in 14 hours and have an accuracy of ±1.6% of a tritium filled hydride storage bed

  18. Risks involved in tritium compounds handling in the laboratory

    International Nuclear Information System (INIS)

    More and more laboratories are using tritium and its compounds of varied activities and in very different conditions. Whatever the importance of handled activity may be, we come up against complex radioprotection problems specific to tritium compounds. This paper is an attempt to give a general idea of the main difficulties encountered and the method used to overcome them

  19. Effectiveness Monitoring Report, MWMF Tritium Phytoremediation Interim Measures.

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, Dan; Blake, John, I.

    2003-02-10

    This report describes and presents the results of monitoring activities during irrigation operations for the calendar year 2001 of the MWMF Interim Measures Tritium Phytoremediation Project. The purpose of this effectiveness monitoring report is to provide the information on instrument performance, analysis of CY2001 measurements, and critical relationships needed to manage irrigation operations, estimate efficiency and validate the water and tritium balance model.

  20. Modeling tritium behavior in Li2ZrO3

    International Nuclear Information System (INIS)

    Lithium metazirconate (Li2ZrO3) is a promising tritium breeder material for fusion reactors because of its excellent tritium release characteristics. In particular, for water-cooled breeding blankets (e.g., ITER), Li2ZrO3 is appealing from a design perspective because of its good tritium release at low operating temperatures. The steady-state and transient tritium release/retention database for Li2ZrO3 is reviewed, along with conventional diffusion and first-order surface resorption models which have been used to match the database. A first-order surface resorption model is recommended in the current work both for best-estimate and conservative (i.e., inventory upper-bound) predictions. Model parameters we determined and validated for both types of predictions, although emphasis is placed on conservative design predictions. The effects on tritium retention of ceramic microstructure, protium partial pressure in the purge gas and purge gas flow rate are discussed, along with other mechanisms for tritium retention which may not be dominant in the experiments, but may be important in blanket design analyses. The proposed tritium retention/release model can be incorporated into a transient thermal performance code to enable whole-blanket predictions of tritium retention/release during cyclic reactor operation. Parameters for the ITER driver breeding blanket are used to generate a numerical set of model predictions for steady-state operation

  1. Modeling tritium behavior in Li2ZrO3

    International Nuclear Information System (INIS)

    Lithium metazirconate (Li2ZrO3) is a promising tritium breeder material for fusion reactors because of its excellent tritium release characteristics. In particular, for water-cooled breeding blankets (e.g., ITER), Li2ZrO3 is appealing from a design perspective because of its good tritium release at low operating temperatures. The steady-state and transient tritium release/retention database for Li2ZrO3 is reviewed, along with conventional diffusion and first-order surface desorption models which have been used to match the database. A first-order surface desorption model is recommended in the current work both for best-estimate and conservative (i.e., inventory upper-bound) predictions. Model parameters are determined and validated for both types of predictions, although emphasis is placed on conservative design predictions. The effects on tritium retention of ceramic microstructure, protium partial pressure in the purge gas and purge gas flow rate are discussed, along with other mechanisms for tritium retention which may not be dominant in the experiments, but may be important in blanket design analyses. The proposed tritium retention/release model can be incorporated into a transient thermal performance code to enable whole-blanket predictions of tritium retention/release during cyclic reactor operation. Parameters for the ITER driver breeding blanket are used to generate a numerical set of model predictions for steady-state operation. (author)

  2. Fast Tritium Separation From the Low Level Radioactive Liquid Waste

    Institute of Scientific and Technical Information of China (English)

    LIANG; Xiao-hu; YANG; Su-liang; YANG; Lei; YANG; Jin-ling

    2012-01-01

    <正>Due to the needed of high efficiency monitoring and controlling of the waste water generated from the spent fuel reprocessing process, analyzing work need to be done quickly. Tritium is an important nuclide in the liquid waste and its content must be determined. But the existing tritium analysis method

  3. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  4. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) has performed initial high-power experiments with the plasma fueled by deuterium and tritium to nominally equal densities. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α-particles

  5. Establishment of tritium dating facility for hydrological studies in PNRI

    International Nuclear Information System (INIS)

    The release of excess tritium (3H) into the atmosphere from nuclear weapons tests conducted between 1952 and 1963 'tagged' rain water, and thereby all surface waters with 3HHO. Measurement of 3H concentrations in rain, surface water and groundwater is useful index of vulnerability and sustainability of the aquifer to pollution and human exploitation. These determinations are currently being used in the characterization of different environments and in pollution studies, in the framework of research projects, international collaborations and services. Liquid scintillation counting (LSC) was the method of choice for the evaluation of the tritium concentrations in precipitation, groundwater and surface water samples. Prior to counting process, the samples are enriched in tritium by an electrolysis procedure to improve the overall detection limit. Low-level hydrological water samples go through an electrolytic enrichment step, in which tritium concentrations are increased to about seventy-fold through volume reduction. The amount of tritium in water is expressed in tritium units (TU). Water samples taken from selected areas of Bulacan province within the period of 2007 and 2008 were analyzed as part of the current hydrological studies being done by our group in PNRI. The typical tritium values for the rain water, surface water, and groundwater were found to be 1.20±0.11 TU, 1.12±0.11 TU, and 0.40±0.07, respectively. Procedures are now available in our laboratory for measurement of tritium in water samples of different water types. (author)

  6. Design and construction of the Tritium Systems Test Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.L.

    1980-01-01

    The objective of TSTA is to develop those aspects of tritium technology related to the fuel cycle for fusion power reactors and to develop the environmental and personnel safety systems required for such a tritium facility. The TSTA schedule calls for construction to be completed and the facility to be operational by the end of FY-1981. The project is now somewhat more than halfway through the design-construction phase and is currently on schedule for the 1981 operational milestone. In this paper the current status of the major subsystems will be discussed. The subsystems to be discussed include the: Vacuum Facility; Fuel Cleanup; Isotope Separation; Transfer Pump; Emergency Tritium Cleanup; Tritium Waste Treatment; Tritium Monitoring; Secondary Containment; and, the Master Data Acquisition and Control System.

  7. Tritium//sup 3/He dating of shallow groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, P.; Stute, M.; Doerr, H.; Sonntag, C.; Muennich, K.O.

    1988-08-01

    Combined tritium//sup 3/He data from three multi-level sampling wells (DFG 1, DFG 4, DFG 7) located at Liedern/Bocholt, West Germany, are presented and principles of the tritium//sup 3/He method in shallow groundwater studies are discussed. The /sup 3/He excess produced by radioactive decay of bomb tritium (released mainly between 1952 and 1963) is clearly reflected in the data. The tritiogenic /sup 3/He signal can be detected with a good resolution (signal/1sigma error: approx. = 350). The confinement of the tritiogenic /sup 3/He is estimated to approximately 77-85% at site DFG 4. For the bomb tritium peak the deviation of the tritium//sup 3/He age from the age determined by identifying the groundwater layer recharged between 1962 and 1965 is about 3 years (15%). The deviation can be explained by diffusive /sup 3/He loss across the groundwater table and by flow dispersion.

  8. The tritium systems test assembly: Overview and recent results

    International Nuclear Information System (INIS)

    The fusion technology development program for tritium in the US is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The TSTA is a full-scale system of reactor exhaust gas reprocessing for an ITER-sized machine. That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the US and all major programs abroad. This report summarizes the current status, results and interactions of the TSTA. Special emphasis is given to operations in May/June using large compound cryopumps that completed the fuel loop integration of all TSTA subsystems for the first time. 6 refs., 2 figs

  9. Estimation of dose to man from environmental tritium

    International Nuclear Information System (INIS)

    Factors important for characterization of tritium in environmental pathways leading to exposure of man are reviewed and quantification of those factors is discussed. Parameters characterizing the behavior of tritium in man are also subjected to review. Factors to be discussed include organic binding, bioaccumulation, quality factor and transmutation. A variety of models are presently in use to estimate dose to man from environmental releases of tritium. Results from four representative models are compared and discussed. Site-specific information is always preferable when parameterizing models to estimate dose to man. There may be significant differences in dose potential among geographic regions due to variable factors. An example of one such factor examined is absolute humidity. It is concluded that adequate methodologies exist for estimation of dose to man from environmental tritium although a number of areas are identified where additional tritium research is desirable

  10. Updating the tritium quality factor: the argument for conservatism

    International Nuclear Information System (INIS)

    Estimated doses resulting from tritium releases to the environment are linearly dependent upon the quality factor (Q) chosen for tritium beta radiation. In 1969 the International Commission on Radiological Protection (ICRP) recommended using 1 as the Q for all low energy beta radiation. Considerable improvements have been made in evaluating exposures to tritium at very low dose rates and in refining physiological and biological endpoints since the 1969 ICRP recommendations. This study summarizes recent experiments to determine the relative biological effectiveness of tritium. Based upon our study of published data related to quality factor, its importance in the calculation of dose, and the currently accepted conservative philosophy in radiation protection, it is concluded that a value of 2 would seem to be more defensible for environmental assessments and that a reevaluation of the tritium quality factor by the ICRP is needed

  11. Tritium analysis of fusion-based hydrogen production reactor FDS-III

    International Nuclear Information System (INIS)

    A dynamic subsystem model of tritium fuel cycle for the FDS-III was developed, and the required minimum tritium supply for reactor startup and the doubling time for tritium breeding were calculated by using the Tritium Analysis Software (TAS). Some factors which would affect the tritium supply and doubling time were considered, such as the tritium fractional burnup in the plasma, tritium breeding ratio (TBR), the residence time of tritium in all subsystems, and tritium decay, etc. The results showed that the minimum tritium supply for startup was sensitive with the tritium fractional burnup in the plasma, but the effect of the TBR could be neglected. The double time for tritium breeding strongly depended on the TBR and the tritium fractional burnup. Based on the model, the analysis results predicted that the required initial minimum tritium supply was ∼9.9 kg for startup. After one year's operation, the total tritium inventory in fuel cycle system was ∼33 kg. And the total tritium release into environment was ∼4 mg, which was much lower than the allow level, i.e. 1 g-T/year. The tritium in fuel storage system would be doubled and could be extracted to supply for the other fusion power reactor's startup after ∼886 days operation.

  12. Tritium analysis of fusion-based hydrogen production reactor FDS-III

    Energy Technology Data Exchange (ETDEWEB)

    Song Yong, E-mail: ysong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Huang Qunying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China); Ni Muyi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2010-12-15

    A dynamic subsystem model of tritium fuel cycle for the FDS-III was developed, and the required minimum tritium supply for reactor startup and the doubling time for tritium breeding were calculated by using the Tritium Analysis Software (TAS). Some factors which would affect the tritium supply and doubling time were considered, such as the tritium fractional burnup in the plasma, tritium breeding ratio (TBR), the residence time of tritium in all subsystems, and tritium decay, etc. The results showed that the minimum tritium supply for startup was sensitive with the tritium fractional burnup in the plasma, but the effect of the TBR could be neglected. The double time for tritium breeding strongly depended on the TBR and the tritium fractional burnup. Based on the model, the analysis results predicted that the required initial minimum tritium supply was {approx}9.9 kg for startup. After one year's operation, the total tritium inventory in fuel cycle system was {approx}33 kg. And the total tritium release into environment was {approx}4 mg, which was much lower than the allow level, i.e. 1 g-T/year. The tritium in fuel storage system would be doubled and could be extracted to supply for the other fusion power reactor's startup after {approx}886 days operation.

  13. Detection of tritium sorption on four soil materials

    International Nuclear Information System (INIS)

    In order to measure groundwater age and design nuclear waste disposal sites, it is important to understand the sorption behavior of tritium on soils. In this study, batch tests were carried out using four soils from China: silty clays from An County and Jiangyou County in Sichuan Province, both of which could be considered candidate sites for Very Low Level Waste disposal; silty sand from Beijing; and loess from Yuci County in Shanxi Province, a typical Chinese loess region. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. The average distribution coefficient from all of these influencing factors was about 0.1-0.2 mL/g for the four types of soil samples. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment. - Research highlights: → In this study, batch sorption tests validate the adsorption of tritium on all of the four tested soil samples collected in China, and the distribution coefficient is found to be non-zero and less than 0.4 mL/g. The experimental results indicated that in these soil media, the distribution coefficient of tritium is slightly influenced by adsorption time, water/solid ratio, initial tritium specific activity, pH, and the content of humic and fulvic acids. This relatively modest sorption of tritium in soils needs to be considered in fate and transport studies of tritium in the environment.

  14. Tritium interactions with steel and construction materials in fusion devices

    International Nuclear Information System (INIS)

    The literature on the interactions of tritium and tritiated water with metals, glasses, ceramics, concrete, paints, polymers and other organic materials is reviewed in this report Some of the processes affecting the amount of tritium found on various materials, such as permeation, sorption and the conversion of tritium found on various materials, such as permeation, sorption and conversion of elemental tritium (T2) to tritiated water (HTO), are also briefly outlined. Tritium permeation in steels is fairly well understood, but effects of surface preparation and coatings on sorption are not yet clear. Permeation of T2 into other metals with cleaned surfaces has been studied thoroughly at high temperature, and the effect of surface oxidation has also been explored. The room-temperature permeation rates of low-permeability metals with cleaned surfaces are much faster than indicated by high-temperature results, because of grain-boundary diffusion. Elastomers have been studied to a certain extent, but some mechanisms of interaction with tritium gas and sorbed tritium are unclear. Ceramics have some of the lowest sorption and permeation rates, but ceramic coatings on stainless steels do not lower permeation or tritium as effectively as coatings obtained by oxidation of the steel, probably because of cracking caused by differences in thermal expansion coefficient. Studies on concrete are in their early stages; they show that sorption of tritiated water on concrete is a major concern in cleanup of releases of elemental tritium into air in tritium handling facilities. Some of the codes for modelling releases and sorption of T2 and HTO contain unproven assumptions about sorption and T2 → HTO conversion. Several experimental programs will be required in order to clear up ambiguities in previous work and to determine parameters for materials which have not yet been investigated. (146 refs., tab.)

  15. Organically bound tritium analysis in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Baglan, N. [CEA/DAM/DIF, Arpajon (France); Kim, S.B. [AECL, Chalk River Laboratories, Chalk River, ON (Canada); Cossonnet, C. [IRSN/PRP-ENV/STEME/LMRE, Orsay (France); Croudace, I.W.; Warwick, P.E. [GAU-Radioanalytical, University of Southampton, Southampton (United Kingdom); Fournier, M. [IRSN/DG/DMQ, Fontenay-aux-Roses (France); Galeriu, D. [IFIN-HH, Horia-Hulubei, Inst. Phys. and Nucl. Eng., Bucharest (Romania); Momoshima, N. [Kyushu University, Radioisotope Ctr., Fukuoka (Japan); Ansoborlo, E. [CEA/DEN/DRCP/CETAMA, Bagnols-sur-Ceze (France)

    2015-03-15

    Organically bound tritium (OBT) has become of increased interest within the last decade, with a focus on its behaviour and also its analysis, which are important to assess tritium distribution in the environment. In contrast, there are no certified reference materials and no standard analytical method through the international organization related to OBT. In order to resolve this issue, an OBT international working group was created in May 2012. Over 20 labs from around the world participated and submitted their results for the first intercomparison exercise results on potato (Sep 2013). The samples, specially-prepared potatoes, were provided in March 2013 to each participant. Technical information and results from this first exercise are discussed here for all the labs which have realised the five replicates necessary to allow a reliable statistical treatment. The results are encouraging as the increased number of participating labs did not degrade the observed dispersion of the results for a similar activity level. Therefore, the results do not seem to depend on the analytical procedure used. From this work an optimised procedure can start to be developed to deal with OBT analysis and will guide subsequent planned OBT trials by the international group.

  16. Derivation of dose conversion factors for tritium

    Energy Technology Data Exchange (ETDEWEB)

    Killough, G. G.

    1982-03-01

    For a given intake mode (ingestion, inhalation, absorption through the skin), a dose conversion factor (DCF) is the committed dose equivalent to a specified organ of an individual per unit intake of a radionuclide. One also may consider the effective dose commitment per unit intake, which is a weighted average of organ-specific DCFs, with weights proportional to risks associated with stochastic radiation-induced fatal health effects, as defined by Publication 26 of the International Commission on Radiological Protection (ICRP). This report derives and tabulates organ-specific dose conversion factors and the effective dose commitment per unit intake of tritium. These factors are based on a steady-state model of hydrogen in the tissues of ICRP's Reference Man (ICRP Publication 23) and equilibrium of specific activities between body water and other tissues. The results differ by 27 to 33% from the estimate on which ICRP Publication 30 recommendations are based. The report also examines a dynamic model of tritium retention in body water, mineral bone, and two compartments representing organically-bound hydrogen. This model is compared with data from human subjects who were observed for extended periods. The manner of combining the dose conversion factors with measured or model-predicted levels of contamination in man's exposure media (air, drinking water, soil moisture) to estimate dose rate to an individual is briefly discussed.

  17. Current status of tritium calorimetry at TLK

    International Nuclear Information System (INIS)

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  18. Preliminary Experimental Results for Tritium Accountancy Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Yeon; Chung, Hong Suk; Chung, Dong You; Koo, Dae Seo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The SDS (storage and delivery system) is one of the major components of ITER fuel cycle. The main function of the SDS is to store the hydrogen isotopes and deliver them to the fuel injection system. The tritium inventory of the bed is determined from the decay heat of the tritium without removing the inventory from bed. The decay heat is measured by the in-bed calorimetry. He through the ZrCo bed and measuring the resultant temperature increase of the He flow. Korea has been various test results for the experimental ZrCo beds. Based on this result, we propose concept of tray type ZrCo bed. ZrCo was reacted with the hydrogen ingressed through SUS filter(120mesh) placed in the tray. The heating coils and the helium loop for the inbed calorimetry are installed bottom of the tray. In this paper, we performed thermo analysis on the in-bed calorimetry performance of the bed. Using the software, LABVIEW, the time-dependent temperature distribution of the bed, the temperature difference ({Delta} T) between the inlet and outlet of the flow through the helium loop

  19. Current status of tritium calorimetry at TLK

    Energy Technology Data Exchange (ETDEWEB)

    Buekki-Deme, A.; Alecu, C.G.; Kloppe, B.; Bornschein, B. [Institute of Technical Physics, Tritium Laboratory Karsruhe - TLK, Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)

    2015-03-15

    Inside a tritium facility, calorimetry is an important analytical method as it is the only reference method for accountancy (it is based on the measurement of the heat generated by the radioactive decay). Presently, at Tritium Laboratory Karlsruhe (TLK), 4 calorimeters are in operation, one of isothermal type and three of inertial guidance control type (IGC). The volume of the calorimeters varies between 0.5 and 20.6 liters. About two years ago we started an extensive work to improve our calorimeters with regard to reliability and precision. We were forced to upgrade 3 of our 4 calorimeters due to the outdated interfaces and software. This work involved creating new LabView programs driving the devices, re-tuning control loops and replacing obsolete hardware components. In this paper we give a review on the current performance of our calorimeters, comparing it to recently available devices from the market and in the literature. We also show some ideas for a next generation calorimeter based on experiences with our IGC calorimeters and other devices reported in the literature. (authors)

  20. Inter-laboratory exercise on steroid estrogens in aqueous samples

    DEFF Research Database (Denmark)

    Heath, E.; Kosjek, T.; Andersen, Henrik Rasmus;

    2010-01-01

    matrices. As the main task three steroid estrogens. 17 alpha-ethinylestradiol, 17 beta-estradiol and estrone were determined in four spiked aqueous matrices' tap water, river water and wastewater treatment plant influent and effluent using GC-MS and LC-MS/MS Results were compared and discussed according...

  1. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  2. Gaseous Tritium Light Sources in armament and watches industries; Tritium-Gas-Lichtquellen in der Ruestungs- und Uhrenindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Amme, Marcus; Siegenthaler, Roger [mb-microtec ag, Niederwangen (Switzerland)

    2015-07-01

    The industrial application of Tritium gas enclosed in glass tubes is a modern way illuminating instruments and items wherever instant and independent readability is prerequisite. The GTLS (Gaseous Tritium Light Sources) technology follows the principle of radiation-induced luminescence and supersedes the luminous radioactive paints and their hazards such as particles erasure or heavy isotope use. Enclosure of tritium in glass is a demanding micro technology process and work needs to be performed in controlled areas due to handling of open sources. The storage and transport of the Tritium is done via licensed B(U)-containers coming from heavy water reactor sites, and disposal of radioactive Tritium wastes has to be compliant with national and international regulations for transport and waste management.

  3. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  4. The tritium monitoring requirements of fusion and the status of research

    International Nuclear Information System (INIS)

    This report is a summary of an investigation into the tritium monitoring requirements of tritium laboratories, D-T burning ignition experiments, and fusion reactors. There is also a summary of the status of research into tritium monitoring and a survey of commercially available tritium monitors

  5. 1997 evaluation of tritium removal and mitigation technologies for Hanford Site wastewaters

    International Nuclear Information System (INIS)

    This report contains results of a biennial assessment of tritium separation technology and tritium nitration techniques for control of tritium bearing wastewaters at the Hanford Site. Tritium in wastewaters at Hanford have resulted from plutonium production, fuel reprocessing, and waste handling operations since 1944. this assessment was conducted in response to the Hanford Federal Facility Agreement and Consent Order

  6. Tritium: An analysis of key environmental and dosimetric questions

    Energy Technology Data Exchange (ETDEWEB)

    Till, J E; Meyer, H R; Etnier, E L; Bomar, E S; Gentry, R D; Killough, G G; Rohwer, P S; Tennery, V J; Travis, C C

    1980-05-01

    This document summarizes new theoretical and experimental data that may affect the assessment of environmental releases of tritium and analyzes the significance of this information in terms of the dose to man. Calculated doses resulting from tritium releases to the environment are linearly dependent upon the quality factor chosen for tritium beta radiation. A reevaluation of the tritium quality factor by the ICRP is needed; a value of 1.7 would seem to be more justifiable than the old 1.0 value. A new exposure model is proposed, based primarily upon the approach recommended by the National Council on Radiation Protection and Measurements. Employing a /open quotes/typical/close quotes/ LMFBR reprocessing facility source term, a /open quotes/base case/close quotes/ dose commitment to total body (for a maximally exposed individual) was calculated to be 4.0 /times/ 10/sup /minus/2/ mSv, with 3.2 /times/ 10/sup /minus// mSv of the dose due to intake of tritium. The study analyzes models which exist for evaluating the buildup of global releases of tritium from man-made sources. Scenarios for the release of man-made tritium to the environment and prediction of collective dose commitment to future generations suggest that the dose from nuclear weapons testing will be less than that from nuclear energy even though the weapons source term is greater than that for any of our energy scenarios.

  7. Tritium Removal by Laser Heating and Its Application to Tokamaks

    International Nuclear Information System (INIS)

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm2, and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed

  8. MODELING ATMOSPHERIC RELEASES OF TRITIUM FROM NUCLEAR INSTALLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Okula, K

    2007-01-17

    Tritium source term analysis and the subsequent dispersion and consequence analyses supporting the safety documentation of Department of Energy nuclear facilities are especially sensitive to the applied software analysis methodology, input data and user assumptions. Three sequential areas in tritium accident analysis are examined in this study to illustrate where the analyst should exercise caution. Included are: (1) the development of a tritium oxide source term; (2) use of a full tritium dispersion model based on site-specific information to determine an appropriate deposition scaling factor for use in more simplified, broader modeling, and (3) derivation of a special tritium compound (STC) dose conversion factor for consequence analysis, consistent with the nature of the originating source material. It is recommended that unless supporting, defensible evidence is available to the contrary, the tritium release analyses should assume tritium oxide as the species released (or chemically transformed under accident's environment). Important exceptions include STC situations and laboratory-scale releases of hydrogen gas. In the modeling of the environmental transport, a full phenomenology model suggests that a deposition velocity of 0.5 cm/s is an appropriate value for environmental features of the Savannah River Site. This value is bounding for certain situations but non-conservative compared to the full model in others. Care should be exercised in choosing other factors such as the exposure time and the resuspension factor.

  9. Tritium removal from inert gases using ST 198 alloy

    International Nuclear Information System (INIS)

    Tritium handling invariably requires multiple containment to ensure personnel safety and to control emissions to the environment. For this measure to be effective, tritiated environments require periodic or continuous tritium removal. Currently, this is primarily achieved by the conventional method of catalytic oxidation of tritium bearing compounds followed by adsorption of tritiated water on molecular sieves. An experimental program was initiated to examine the potential of a metal getter detritiation process. The tritium removal characteristics of a zirconium-iron alloy, Zr2Fe, which is essentially chemically inert in nitrogen at operating temperatures of approximately 300-400 degrees C, were studied. Over 50 tritium removal tests were reproducibly conducted and the following results emerged: the zirconium alloy getter, operating at a mean temperature of 360 degrees C, is found to effectively remove tritium from nitrogen and noble gases to levels of a few μCi/m3 for initial concentrations of approximately 1300 μCi/m3 or less. In the cases of higher initial tritium concentrations, the removal is not complete, probably a consequence of getter history. The performance of the alloy is not highly sensitive to the presence of impurities. The getter effectively absorbs the impurities CO, O2 and NH3, while the impurity methane is not removed noticeably

  10. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  11. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    This paper reports on the TFTR tritium pellet injector (TPI) designed to provide a tritium pellet fueling capability with pellet speeds in the 1-to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector (DPI) is being modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle (TPOP) injector experiments conducted on the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller (PLC)

  12. Tritium: An analysis of key environmental and dosimetric questions

    International Nuclear Information System (INIS)

    This document summarizes new theoretical and experimental data that may affect the assessment of environmental releases of tritium and analyzes the significance of this information in terms of the dose to man. Calculated doses resulting from tritium releases to the environment are linearly dependent upon the quality factor chosen for tritium beta radiation. A reevaluation of the tritium quality factor by the ICRP is needed; a value of 1.7 would seem to be more justifiable than the old 1.0 value. A new exposure model is proposed, based primarily upon the approach recommended by the National Council on Radiation Protection and Measurements. Employing a /open quotes/typical/close quotes/ LMFBR reprocessing facility source term, a /open quotes/base case/close quotes/ dose commitment to total body (for a maximally exposed individual) was calculated to be 4.0 /times/ 10/sup /minus/2/ mSv, with 3.2 /times/ 10/sup /minus// mSv of the dose due to intake of tritium. The study analyzes models which exist for evaluating the buildup of global releases of tritium from man-made sources. Scenarios for the release of man-made tritium to the environment and prediction of collective dose commitment to future generations suggest that the dose from nuclear weapons testing will be less than that from nuclear energy even though the weapons source term is greater than that for any of our energy scenarios

  13. Natural tritium determination in groundwater on Mt. Etna (Sicily, Italy)

    International Nuclear Information System (INIS)

    Tritium is a naturally occurring radionuclide, due to interactions of cosmic-rays with the upper layers of the atmosphere; but its presence in the environment is mainly due to residual fallout from nuclear weapons atmosphere tests, carried out from 1952 till 1980. Tritium reaches the Earth's surface mainly in the form of precipitation, becoming part of the hydrological cycle, then the interest of tritium content analysis in drinking water is both for dosimetry and health-risk and for using tritium as a natural tracer in the groundwater circulation system. This paper presents results from a survey carried out in the Mt. Etna area (east and west flanks) and in the southern side of Nebrodi in Sicily (Italy), in order to determine tritium activity concentrations in water samples by using liquid scintillation counter. The investigated areas show quite low tritium concentrations, much below the Italian limit of 100 Bq L-1 for drinking water and even comparable with the minimum detectable activity value. The effective dose due to tritium for public drinking water consumption was also evaluated. (author)

  14. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  15. Characterization of tritium exposures by measuring tritiated metabolites in urine

    International Nuclear Information System (INIS)

    A high-performance liquid chromatography (HPLC)-based method was developed to look for the presence of characteristic urinary metabolites associated with different tritium-exposure situations. Non-volatile metabolites in urine were isolated by evaporating an aliquot of urine samples, at room temperature under nitrogen, from animals percutaneously exposed to tritiated thymidine, tritiated formaldehyde, tritium-gas-contaminated metal surfaces and tritiated pump oil. A total of 40 fractions were collected at 1 min intervals with a flow rate of 1 ml x min-1, and their tritium activities were measured. The activity profile of tritium showed that the ratios of non-volatile tritiated metabolites in fraction I (0-20 min) to fraction II (20-40 min) were noticeably different among the animals exposed to tritiated thymidine (77.2±4.5), tritiated formaldehyde (40.9±3.3), tritium-gas-contaminated metal surfaces (16.5±2.5), or tritiated pump oil (8.7±0.4) 24 h post-exposure. Our results suggest that, if the nature of a tritium exposure is unknown, comparison of the ratio of fraction I to fraction II in non-volatile tritiated metabolites may be useful in characterizing the source and the nature of tritium exposure. (author)

  16. Apparatus for monitoring tritium in tritium contaminating environments using a modified Kanne chamber

    Science.gov (United States)

    Anderson, David F.

    1984-01-01

    A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.

  17. Apparatus for monitoring tritium in tritium-contaminating environments using a modified Kanne chamber

    Science.gov (United States)

    Anderson, D.F.

    1981-01-27

    A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.

  18. The lichens, tritium and carbon 14 integrators; Les lichens, integrateurs de tritium et de carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Daillant, O

    2007-07-01

    The present report concerns a research for the tritium and for the carbon 14 in lichens in a spirit of bio-indication: the first results appear in Daillant and al (2004 ) and additional results were presented to the congress B.I.O.M.A.P. in Slovenia, organized collectively by the institute Josef Stefan from Ljubljana and the international atomic energy agency from Vienna (Daillant and al 2003). (N.C.)

  19. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  20. Final report of the tritium issues working group. Vol. 1

    International Nuclear Information System (INIS)

    Early in 1985 the proposed sale of the isotope 'tritium' by Ontario Hydro became a public issue. A number of community groups claimed in public forum that tritium recovered from Ontario Hydro's nuclear reactors would be sold or diverted to American thermonuclear (fusion) weapons. Their position was based on the following presumptions: that tritium was a major component in American nuclear weapons, that the United States has a supply problem with or shortage of this material, and that Ontario Hydro would directly or indirectly support the American nuclear weapons program: a) by providing tritium directly to the U.S. Department of Energy for use in nuclear weapons, or b) by supplying tritium to certain buyers - either traditional commercial facilities or the developing fusion research agencies associated with the Department of Energy, thus allowing or making possible the diversion of this isotope to nuclear weapons purposes, or c) by answering the needs of the commercial market, at present supplied from production reactors dedicated to supplying U.S. military requirements, indirectly allowing the U.S. government to concentrate its efforts on the production of tritium for nuclear weapons. When members of what has become known as the 'Tritium Issues Working Group' were first approached by Dr. T.S. Drolet in mid-April 1985, we were asked if we would agree to participate in a study to assess whether Canadian tritium, which is to be produced only for commercial and research purposes, could be inadvertantly utilized, either directly or indirectly, in the American nuclear weapons program. Our discussion of these issues is covered in Volume 1 of this report and is supplemented by appropriate Appendices in Volume 2. We could find absolutely nothing of a factual nature to justify the hypothesis that Canadian tritium would find its way into the American weapons program

  1. Tritium Formation and Mitigation in High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  2. Glovebox stripper system tritium capture efficiency-literature review

    Energy Technology Data Exchange (ETDEWEB)

    James, D. W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poore, A. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-28

    Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.

  3. Accumulation of tritium in beryllium material under neutron irradiation

    International Nuclear Information System (INIS)

    In the present work the programming code is created on the basis of which the accumulation kinetics of tritium and isotope of He4 in the Be9 sample is analyzed depending on the time. The program is written in C++ programming language and for the calculations Monte Carlo method was applied. This program scoped on the calculation of concentration of helium and tritium in beryllium samples depending on the spectrum of the neutron flux in different experimental reactors such as JMTR, JOYO and IPEN/MB. The processes of accumulation of helium and tritium for each neutron energy spectrum of these reactors were analyzed. (author)

  4. Tritium analyses of COBRA-1A2 beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  5. Commercial Light Water Reactor Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    McHood, M D

    2000-10-12

    A geotechnical investigation program has been completed for the Commercial Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing, and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  6. Synthesis of some useful tritium labelled auxins

    Energy Technology Data Exchange (ETDEWEB)

    Buchman, O.; Pri-Bar, I.; Shimoni, M.; Azran, J. (Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev)

    1992-06-01

    The synthesis of six useful auxins labelled with tritium is described. The following compounds were prepared: 3-indoleacetic acid-5-[sup 3]H (28.9 Ci-1.07 TBq/mmol), 3-indolebutyric acid-5-[sup 3]H (7.3 Ci-270 GBq/mmol), 1-naphthylacetic acid-4-[sup 3]H (27.6 Ci-1.02 TBq/mmol), 2,4-dichloropheno-xyacetic acid-5-[sup 3]H (18.5 Ci-685 GBq/mmol), 2(2,4-dichlorophenoxy-5-[sup 3]H) -propionic acid (20.7 Ci-766 GBq/mmol), 2(2,4-dichlorophenoxy)-propionic acid-3-[sup 3]H (0.39 Ci-14.4 GMq/mmol), and 4-chlorophenoxyacetic acid-2-[sup 3]H (13.3 Ci-492 GBq/mmol). (author).

  7. Tritium permeation model for plasma facing components

    International Nuclear Information System (INIS)

    This report documents the development of a simplified one-dimensional tritium permeation and retention model. The model makes use of the same physical mechanisms as more sophisticated, time-transient codes such as implantation, recombination, diffusion, trapping and thermal gradient effects. It takes advantage of a number of simplifications and approximations to solve the steady-state problem and then provides interpolating functions to make estimates of intermediate states based on the steady-state solution. The model is developed for solution using commercial spread-sheet software such as Lotus 123. Comparison calculations are provided with the verified and validated TMAP4 transient code with good agreement. Results of calculations for the ITER CDA diverter are also included

  8. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors)

  9. Tritium-powered radiation sensor network

    Science.gov (United States)

    Litz, Marc S.; Russo, Johnny A.; Katsis, Dimos

    2016-05-01

    Isotope power supplies offer long-lived (100 years using 63Ni), low-power energy sources, enabling sensors or communications nodes for the lifetime of infrastructure. A tritium beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial couples directly to a photovoltaic (PV) to generate a trickle current into an electrical load. An inexpensive design is described using commercial-of-the-shelf (COTS) components that generate 100 μWe for nextgeneration compact electronics/sensors. A matched radiation sensor has been built for long-duration missions utilizing microprocessor-controlled sleep modes, low-power electronic components, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network and isotope power source enables no-maintenance mission lifetimes.

  10. Model of tritium dispersion by ground water

    Science.gov (United States)

    Golubev, A. V.; Mavrin, S. V.; Sten'gach, A. V.

    2000-07-01

    A three-dimensional model of ground-water contamination in the zone of a steady source of tritium is presented. The model is oriented toward long-term modeling of contamination (for up to several decades) on a large area (of up to several hundred square kilometers) where the contaminant arrives through the roof of the aquiferous stratum by infiltration. The three-dimensional equation of convective diffusion is solved numerically by the method of splitting. The convective component is calculated by the method of particles. The dispersion component of the transfer is calculated using the finite-difference method. A transformation of the vertical coordinate is introduced. A solution of the model problem is presented and an interpretation of the results is given.

  11. Concentration of tritium in the atmosphere

    International Nuclear Information System (INIS)

    Concentration of tritium in the atmosphere was measured in Ibaraki, Japan. At first, sampled air was passed through a column of molecular sieve, and all the water vapour was removed. Hydrogen gas obtained by the electrolysis of water was added to the air, and oxidized by a Pd catalyst column, then the oxidized hydrogen was absorbed by a last column of molecular sieves. These columns of molecular sieves were dehydrated by heating at 400 deg C. The concentration range of atmospheric HTO and HT was 1-2 pCi/m3 in Ibaraki for a year. The concentration of atmospheric HTO varied depending on the content of water vapour in air. (J.P.N.)

  12. Flow of Aqueous Humor

    Science.gov (United States)

    ... Facebook Twitter Google Plus Email Print this page Flow of Aqueous Humor Most, but not all, forms ... aqueous humor) produced by the eye's ciliary body flows out freely (follow blue arrow). Aqueous humor flows ...

  13. Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084

    Energy Technology Data Exchange (ETDEWEB)

    Senor, David J.

    2013-10-30

    Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

  14. A neutron poison tritium breeding controller applied to a water cooled fusion reactor model

    International Nuclear Information System (INIS)

    Highlights: • The issue of a potentially producing a large tritium surplus inventory, within a solid breeder, is addressed. • A possible solution to this problem is presented in the form of a neutron poison based tritium production controller. • The tritium surplus inventory has been modelled by the FATI code for a simplified WCCB model and as a function of time. • It has been demonstrated that the tritium surplus inventory can be managed, which may impact on safety considerations. - Abstract: The generation of tritium in sufficient quantities is an absolute requirement for a next step fusion device such as DEMO due to the scarcity of tritium sources. Although the production of sufficient quantities of tritium will be one of the main challenges for DEMO, within an energy economy featuring several fusion power plants the active control of tritium production may be required in order to manage surplus tritium inventories at power plant sites. The primary reason for controlling the tritium inventory in such an economy would therefore be to minimise the risk and storage costs associated with large quantities of surplus tritium. In order to ensure that enough tritium will be produced in a reactor which contains a solid tritium breeder, over the reactor's lifetime, the tritium breeding rate at the beginning of its lifetime is relatively high and reduces over time. This causes a large surplus tritium inventory to build up until approximately halfway through the lifetime of the blanket, when the inventory begins to decrease. This surplus tritium inventory could exceed several tens of kilograms of tritium, impacting on possible safety and licensing conditions that may exist. This paper describes a possible solution to the surplus tritium inventory problem that involves neutron poison injection into the coolant, which is managed with a tritium breeding controller. A simple PID controller and is used to manage the injection of the neutron absorbing compounds into

  15. Dairy shed effluent treatment and recycling: Effluent characteristics and performance.

    Science.gov (United States)

    Fyfe, Julian; Hagare, Dharma; Sivakumar, Muttucumaru

    2016-09-15

    Dairy farm milking operations produce considerable amounts of carbon- and nutrient-rich effluent that can be a vital source of nutrients for pasture and crops. The study aim was to characterise dairy shed effluent from a commercial farm and examine the changes produced by treatment, storage and recycling of the effluent through a two-stage stabilisation pond system. The data and insights from the study are broadly applicable to passive pond systems servicing intensive dairy and other livestock operations. Raw effluent contained mostly poorly biodegradable particulate organic material and organically bound nutrients, as well as a large fraction of fixed solids due to effluent recycling. The anaerobic pond provided effective sedimentation and biological treatment, but hydrolysis of organic material occurred predominantly in the sludge and continually added to effluent soluble COD, nutrients and cations. Sludge digestion also suppressed pH in the pond and increased salt levels through formation of alkalinity. High sludge levels significantly impaired pond treatment performance. In the facultative pond, BOD5 concentrations were halved; however smaller reductions in COD showed the refractory nature of incoming organic material. Reductions in soluble N and P were proportional to reductions in respective particulate forms, suggesting that respective removal mechanisms were not independent. Conditions in the ponds were unlikely to support biological nutrient removal. Recycling caused conservative inert constituents to accumulate within the pond system. Material leaving the system was mostly soluble (86% TS) and inert (65% TS), but salt concentrations remained below thresholds for safe land application. PMID:27213866

  16. Development of Tritium Permeation Analysis Code and Tritium Transport in a High Temperature Gas-Cooled Reactor Coupled with Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Mike Patterson

    2010-06-01

    Abstract – A tritium permeation analyses code (TPAC) was developed by Idaho National Laboratory for the purpose of analyzing tritium distributions in very high temperature reactor (VHTR) systems, including integrated hydrogen production systems. A MATLAB SIMULINK software package was used in developing the code. The TPAC is based on the mass balance equations of tritium-containing species and various forms of hydrogen coupled with a variety of tritium sources, sinks, and permeation models. In the TPAC, ternary fission and neutron reactions with 6Li, 7Li 10B, and 3He were taken into considerations as tritium sources. Purification and leakage models were implemented as main tritium sinks. Permeation of tritium and H2 through pipes, vessels, and heat exchangers were considered as main tritium transport paths. In addition, electroyzer and isotope exchange models were developed for analyzing hydrogen production systems, including high temperature electrolysis and sulfur-iodine processes.

  17. Tritium removal from tritiated water by organic functionalized SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, A.; Kato, Y.; Akai, R.; Torikai, Y.; Matsuyama, M. [Hydrogen Isotope Research Center, University of Toyama, Gofuku, Toyama (Japan)

    2015-03-15

    The recovery of tritium from tritiated water is important for reducing tritium emissions to the environment and for recycling tritium. Meso-porous silicas (SBA-15) were modified by -COOH, -SO{sub 3}H and -NH{sub 2} groups and their tritium adsorption ability from tritiated water under solid-liquid sorption was investigated. The adsorption abilities and separation factor of organic functionalized SBAs were comparable to those of bare SBA. The desorption of water from bare SBA and -COOH functionalized SBA were studied by Fourier transform infra-red spectroscopy using D{sub 2}O as a probe molecule. An interaction was observed for D{sub 2}O with -COOH group where the hydrogen bonds became weaker than D{sub 2}O with bare SBA. (authors)

  18. Modeling unusual tritium release behavior from Li2O

    International Nuclear Information System (INIS)

    This paper presents a diffusion-desorption tritium release model in which the unusual tritium-release behavior observed in the CRITIC experiment is accounted for by an activation energy of desorption that is surface coverage dependent. Desorption and adsorption activation energies which are dependent on the amount of surface coverage have been reported. The current model is capable of reproducing both the unusual and the normal tritium release observed in CRITIC and predicts other regions where the surface-coverage-dependent release behavior may be observed. Results from the CRITIC experiment and our calculations imply that the details of the surface phenomena must be known to accurately predict the tritium inventory and changes in inventory that occur with changes in the breeder-material environment. 29 refs., 4 figs

  19. Determination of tritium and carbon-14 in accelerator waste

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, M.; Weinreich, R. [Lab. of Radio- and Environmental Chemistry, Paul Scherrer Inst., Villigen-PSI (Switzerland)

    2003-07-01

    In dismounted parts of the accelerator facilities of paul scherrer institute, tritium and {sup 14}C were determined by low-level counting after chemical separation. In graphite targets used for the production of {pi}-mesons, tritium amounts from 1.7.10{sup 8} to 6.10{sup 8} Bq/g were found; the corresponding {sup 14}C data were 6 and 9 Ci/g, respectively. In the dismantled copper beam dump of Target E, the tritium content extended up to 2.8.10{sup 6} Bq/g, but no {sup 14}C could be detected. In mechanical parts of the beam dump, consisting of iron and stainless steel, respectively, the tritium amount ranged up to 5.3.10{sup 3} Bq/g, the {sup 14}C amount from 1 to 800 Bq/g. The separation procedures are described in detail. (orig.)

  20. Assessment of tritium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    This report is the first revision to a series of reports on radionuclides inn the SRS environment. Tritium was chosen as the first radionuclide in the series because the calculations used to assess the dose to the offsite population from SRS releases indicate that the dose due to tritium, through of small consequence, is one of the most important the radionuclides. This was recognized early in the site operation, and extensive measurements of tritium in the atmosphere, surface water, and ground water exist due to the effort of the Environmental Monitoring Section. In addition, research into the transport and fate of tritium in the environment has been supported at the SRS by both the local Department of Energy (DOE) Office and DOE's Office of Health and Environmental Research

  1. Uptake of tritium through foliage in capsicum fruitescens, L

    International Nuclear Information System (INIS)

    Tritium uptake and release patterns throuogh foliage in Capsicum fruitescens, L. were investigated using twelve potted plants, under different conditions of exposure and release. The plants studied belonged to two age groups, 3 months and 5 months. The average half residence time for the species was found to be 42.6 min, on the basis of treating the entire group of plants as a single cluster. The individual release rates showed a variation of up to a factor of two, for half residence time values (Tsub(1/2)). The second component was not easily resolvable in most of the cases. Tissue bound tritium showed interesting uptake patterns. The ratios between tissue bound tritium and tissue free water tritium concentrations indicated regular mode of uptake with well defined rate constants in the case of long exposure periods. (author)

  2. Modeling of tritium transport in lithium aluminate fusion solid breeders

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.; Clemmer, R.G.

    1985-02-01

    Lithium aluminate is a candidate tritium-breeding material for fusion reactor blankets. One of the concerns with using LiAlO/sub 2/ is tritium recovery from this material, particularly at low operating temperatures and high fluences. The data from various tritium release experiments with ..gamma..-LiAlO/sub 2/ and related materials are reviewed and analyzed to determine under what conditions bulk diffusion is the rate-limiting mechanism for tritium transport and what the effective bulk diffusion coefficient should be. Steady-state and transient models based on bulk diffusion are developed and used to interpret the data. Design calculations are then performed with the verified models to determine the steady-state inventory and time to reach equilibrium for a full-scale fusion blanket.

  3. [Internal contamination by tritium caused by radioluminescent paints].

    Science.gov (United States)

    Adamiak-Ziemba, J; Doniec, J

    1985-01-01

    The internal contamination investigations covered 23 persons using radioluminescence paints containing tritium, assembling devices painted with those paints, and those having no contact with active paints but working next to the painting room. Determined were concentrations of tritium excreted with urine, air contamination at workplaces, contamination of workplace areas and hand skin. At the time covered by the investigations, the mean annual equivalent doses for those using tritium paints were reduced from 14-20 mSv to about 5 mSv. In those working next to the painting room they were reduced from 5.8-15 to 0.23 mSv. The exposure of those assembling the devices does not exceed 1 mSv. It was demonstrated that the main cause of the tritium exposure level was air contamination in working rooms.

  4. AAEC tritium list no.2 - 1975-1976

    International Nuclear Information System (INIS)

    Details are given of the concentration of the environmental isotope tritium in monthly samples of precipitation taken at 16 stations, situated throughout Australia, during the period 1975-1976. (Author)

  5. Tritium Systems Test Assembly: design for major device fabrication review

    International Nuclear Information System (INIS)

    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M

  6. Water metabolism and modification of tritium excretion in the rat

    International Nuclear Information System (INIS)

    1. The intake and excretion of tritium were studied in rats exposed to tritiated water vapor. The metabolism of tritium was also investigated in rats given single administrations of tritiated water and in rats given daily administrations (per os or i.p.). The results were essentially in accord with those reported previously. 2. Amounts of drinking water consumed and urine excreted by rats drinking water with 0.15% saccharin were 1.5 to 2 times higher than in rats drinking tap water. The tritium activity in various tissues of rats drinking water with 0.15% saccharin decreased to about half of that of rats drinking tap water. A similar tendency was observed also in rats drinking beer. The diuretic agent sodium acetazolamide also enhanced the urinary excretion of tritium. (author)

  7. Study of Traces of Tritium at the World Trade Center

    Energy Technology Data Exchange (ETDEWEB)

    Semkow, T M; Hafner, S R; Parekh, P P; Wozniak, G J; Haines, D K; Husain, L; Rabun, R L; Williams, P G

    2002-10-01

    Traces of tritiated water (HTO) were detected at the World Trade Center (WTC) ground zero after the 9/11/01 terrorist attack. A water sample from the WTC sewer, collected on 9/13/01, contained 0.164 {+-} 0.074 (2 {sigma}) nCi/L of HTO. A split water sample, collected on 9/21/01 from the basement of WTC Building 6, contained 3.53 {+-} 0.17 and 2.83 {+-} 0.15 nCi/L, respectively. These results are well below the levels of concern to human exposure. Several water and vegetation samples were analyzed from sites outside ground zero, located in Manhattan, Brooklyn, Queens, and the Kensico and Croton Reservoirs. No HTO above the background was found in those samples. Tritium radioluminescent (RL) devices were investigated as possible sources of the traces of tritium at ground zero. It was determined that the two Boeing 767 aircraft that hit the Twin Towers contained a combined 34 Ci of tritium at the time of impact in their emergency exit signs. There is also evidence that many weapons from law enforcement were present and destroyed at WTC. Such weaponry contains by design tritium sights. The fate and removal of tritium from ground zero were investigated, taking into consideration tritium chemistry and water flow originating from the fire fighting, rain, as well as leaks from the Hudson River and broken mains. A box model was developed to describe the above scenario. The model is consistent with instantaneous oxidation of the airplane tritium in the jet-fuel explosion, deposition of a small fraction of HTO at ground zero, and water-flow controlled removal of HTO from the debris. The model also suggests that tritium from the weapons would be released and oxidized to HTO at a much slower rate in the lingering fires at ground zero.

  8. Description of tritium release from lithium titanate at constant temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pena, L.; Lagos, S.; Jimenez, J.; Saravia, E. [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1998-03-01

    Lithium Titanate Ceramics have been prepared by the solid-state route, pebbles and pellets were fabricated by extrusion and their microstructure was characterized in our laboratories. The ceramic material was irradiated in the La Reina Reactor, RECH-1. A study of post-irradiation annealing test, was performed measuring Tritium release from the Lithium Titanate at constant temperature. The Bertone`s method modified by R. Verrall is used to determine the parameters of Tritium release from Lithium Titanate. (author)

  9. Distribution of tritium in precipitation and surface water in California

    Science.gov (United States)

    Harms, Patrick A.; Visser, Ate; Moran, Jean E.; Esser, Brad K.

    2016-03-01

    The tritium concentration in the surface hydrosphere throughout California was characterized to examine the reasons for spatial variability and to enhance the applicability of tritium in hydrological investigations. Eighteen precipitation samples were analyzed and 148 samples were collected from surface waters across California in the Summer and Fall of 2013, with repeat samples from some locations collected in Winter and Spring of 2014 to examine seasonal variation. The concentration of tritium in present day precipitation varied from 4.0 pCi/L near the California coast to 17.8 pCi/L in the Sierra Nevada Mountains. Concentrations in precipitation increase in spring due to the 'Spring Leak' phenomenon. The average coastal concentration (6.3 ± 1.2 pCi/L) in precipitation matches estimated pre-nuclear levels. Surface water samples show a trend of increasing tritium with inland distance. Superimposed on that trend, elevated tritium concentrations are found in the San Francisco Bay area compared to other coastal areas, resulting from municipal water imported from inland mountain sources and local anthropogenic sources. Tritium concentrations in most surface waters decreased between Summer/Fall 2013 and Winter/Spring 2014 likely due to an increased groundwater signal as a result of drought conditions in 2014. A relationship between tritium and electrical conductivity in surface water was found to be indicative of water provenance and anthropogenic influences such as agricultural runoff. Despite low initial concentrations in precipitation, tritium continues to be a valuable tracer in a post nuclear bomb pulse world.

  10. Environmental tritium as a tool in groundwater recharge investigations

    International Nuclear Information System (INIS)

    This paper describes the use of environmental tritium to gain quantitative information on the rate of groundwater recharge to two different aquifers. Bomb derived tritium was used to determine actual groundwater recharge rates, first to a homogeneous unconfined aquifer and then to a heterogeneous unconfined aquifer. In the first study the aquifer of Cape Cod, Massachusetts, USA, was used. The aquifer is an unconfined phreatic lens within a homogeneous outwash deposit. In the second study a heterogeneous unconfined aquifer in southwest Michigan, USA, was used. This aquifer consists of poorly sorted outwash materials. In both studies the vertical depth of penetration of bomb derived tritium into the saturated zone at groundwater divides, was used in conjunction with porosity data to calculate the rate of groundwater recharge to the aquifers. The major assumption in this method of recharge rate determination is that the flow of groundwater at groundwater divides is essentially vertical and downward, approaching piston-type flow. Although the validity of this assumption has been questioned various groundwater transport models were applied to the tritium data in the two study areas. It was found that in these investigations hydrodynamic dispersion was not a significant process and that the flow of groundwater at groundwater divides could be considered, for the purposes of these investigations, to be piston-type. In both investigations the rate of groundwater recharge determined by the bomb tritium method was in close agreement with rates previously determined by conventional hydrologic techniques. Environmental tritium has been successfully used in these investigations to determine accurately the rate of groundwater recharge to homogeneous and heterogeneous unconfined aquifers. When employing the method outlined in this paper, it is necessary to identify the groundwater divides within the aquifer being studied and to sample groundwater for tritium analysis only from

  11. Analysis and chromatographic purification of eicosanoids multiply labeled by tritium

    International Nuclear Information System (INIS)

    We show the possibility of analysis and chromatographic purification of eicosanoids triply labeled by tritium. The described methods allow us to isolate chromatographically pure products obtained by selective hydrogenatin, chemical, and enzyme methods, with radiochemical purity at least 95-97%. The following methods are used to analyze the reaction mixtures and to isolate the tritium-labeled eicosanoids: gas-liquid chromatography, high-efficiency liquid chromatography, and thin-layer chromatography on supports impregnated with silver nitrate

  12. Aquatic dispersion modelling of a tritium plume in Lake Ontario

    International Nuclear Information System (INIS)

    Approximately 2900 kg of tritiated water, containing 2.3E+15 Bq of tritium, were released to Lake Ontario via the cooling water discharge when a leak developed in a moderator heat exchanger in Unit 1 at the Pickering Nuclear Generating Station (PNGS) on 1992 August 2. The release provided the opportunity to study the dispersion of a tritium plume in the coastal zone of Lake Ontario. Current direction over the two-week period following the release was predominantly parallel to the shore, and elevated tritium concentrations were observed up to 20 km east and 85 km west of the PNGS. Predictions of the tritium plume movement were made using current velocity measurements taken at 8-m depth, 2.5 km offshore from Darlington and using a empirical relationship where alongshore current speed is assumed to be proportional to the alongshore component of the wind speed. The tritium migration was best described using current velocity measurements. The tritium plume dispersion is modelled using the one-dimensional advection-dispersion equation. Transport parameters are the alongshore current speed and longitudinal dispersion coefficient. Longitudinal dispersion coefficients, estimated by fitting the solution of the advection-dispersion equation to measured concentration distance profiles ranged from 3.75 to 10.57 m2s-1. Simulations using the fitted values of the dispersion coefficient were able to describe maximum tritium concentrations measured at water supply plants located within 25 km of Pickering to within a factor of 3. The dispersion coefficient is a function of spatial and temporal variability in current velocity and the fitted dispersion coefficients estimated here may not be suitable for predicting tritium plume dispersion under different current conditions. The sensitivity of the dispersion coefficient to variability in current conditions should be evaluated in further field experiments. (author). 13 refs., 7 tabs., 12 figs

  13. Tissue free water tritium separation from foodstuffs by azeotropic distillation

    International Nuclear Information System (INIS)

    In this paper the tritium separation from tissue free water in foodstuffs by azeotropic distillation is described. Tritium in tissue water is assayed by liquid scintillation counting using well-established quenched correction method. The mean value of the tritium concentration in tissue water from foodstuffs is about 6-12 Bq/l very similar to the tritium mean concentration measured in the surface waters of the area where the samples have been collected (about 12 Bq/l. Therefore, the tritium content in the water fraction of the food samples can be considered in equilibrium with the local environmental water sources. The azeotropic distillation it is an accessible separation method which does not need a sophisticated and expansive distillation apparatus. It is a fast method of separation tissue free water from foodstuffs being very important in the surveillance activity of the environmental within nuclear electric plant. It is suitable for processing a small quantity of samples and for a production type facility when a large number of samples must be processed because the solvent can be purified and reused. The azeotropic distillation has some limits being used to separate water from samples with high content of water (85-90%) and simple a simple chemical structures as: vegetables, fruits, cereal, soil, vegetation. According to the results obtained, the organic substituents of milk, wine, meat (casein, lactose, milk fat, alcohol, esters) may enhance the chemisorption of tritium on through exchange organic hydrogen as -OH, -SH, -NH, -COOH with tritium. Also, the tissue water separation by azeotropic distillation is not complete and can not guarantee the absence of the vaporization isotope effect of the HTO/H2O system., However, the azeotropic distillation is the preferred method of the water extraction from food samples, which makes it useful for the tritium transfer from soil to foodstuffs. (authors)

  14. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  15. Tritium permeation inhibiting layer for high-temperature materials

    International Nuclear Information System (INIS)

    In order to prevent tritium contaminations, several spinel layers, which are separated by metallic intermediate layers (Fe, Ni) and covered by a metal layer (Ni), are deposited on the reactor components of a HTR which consist, e.g., of a steel with a high nickel content. The spinel layers are between 3 and 2 m thick. With this measure, tritium permeation could be reduced by a factor of 3 x 10 (steam spinellisation). (orig./PW)

  16. A novel portable system for detecting and measuring tritium

    Science.gov (United States)

    Barillari, Domenico

    2007-06-01

    A novel tritium detector configuration is described based on the anthracene scintillation method. Tritium-bearing samples are applied to a plate-bearing finely sublimed anthracene crystals and viewed in a field-able PMT-based reader against a standard plate. A microprocessor-based control and signal analysis system delivers a reading with a sensitivity of better than 5 nCi 3H in approximately 3 min, and 2.3 nCi in 10 min of counting.

  17. Confinement and heating of a deuterium-tritium plasma

    International Nuclear Information System (INIS)

    The Tomamak Fusion Test reactor has performed initial high-power experiments with the plasma fueled with nominally equal densities of deuterium and tritium. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by ∼20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by α particles created by the D-T fusion reactions

  18. Analysis of Tritium Breeding in the Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Hong, SeongHee; Park, YunSeo; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this paper, neutronic analyses are conducted on redesign of TMs which have high tritium breeding performance based on results of previous study. Calculation model is simplified, there is no effect to cover very complex geometry of fusion reactor for this study. As spent fuel disposal problem is issued in nuclear industry, FFHR is one of the most fascinating candidates for solving this problem through waste transmutation. Our research team also was designed a full core FFHR for waste transmutation. However, in this study, Test Module (TM) as test bed of FFHR for various purposes are analyzed. Analysis of tritium breeding on the TM was conducted as a first phase among TMs having various purposes. Because there are no fissionable materials in the TM for tritium breeding, geometry and neutronic reactions of its simpler compared to TM for waste transmutation and power production. Additionally, it is important database for tritium self-sufficiency as basic design condition of TM. In the previous study, neutronic analyses are conducted on these various TMs: Helium cooled solid breeder (HCSB), water cooled solid breeder (WCSB), Helium cooled dual breeder (HCDB) and molten-salt cooled liquid breeder (MSLB) in order to understand design characteristics. Neutronics calculations are performed with MCNPX 2.6.0 with ENDF/B-VII.0 neutron cross section library and activity and time-dependent tritium production calculations are performed with CINDER'90. In this paper, analysis of tritium breeding on WCHESL and WCHELL as TM is conducted. WCHESL is designed for effective tritium breeding performance and it satisfies design conditions. On the other hand WCHELL is designed for tritium breeding as much as possible and it also satisfies design conditions. However, neutron multiplication performance with these TM is not outstanding. WCHESL consist ceramic Li breeder, its period is 4.15E+08 sec.

  19. Tritium extraction from neutron-irradiated lithium aluminate

    International Nuclear Information System (INIS)

    Lithium aluminate is being strongly considered as a breeder material because of its thermophysical, chemical and mechanical stability at high temperatures and its favorable irradiation behavior. Furthermore, it is compatible with other blanket and structural materials. In this work, the effects of calcination temperature during preparation, extraction temperature and sweep gas composition were observed. Lithium aluminate prepared by four different methods, was neutron irradiated for 30 minutes at a flux of 1012 -1013 n/cm2 s in the TRIGA Mark III reactor at Salazar, Mexico; and the tritium extraction rate was measured. Calcination temperature do not affect the tritium extraction rate. However, using high calcination temperature, gamma lithium aluminate was formed. The tritium extraction at 600 Centigrade degrees was lower than at 800 Centigrade degrees and the tritium amount extracted by distillation of the solid sample was higher. The sweep gas composition showed that tritium extraction was less with Ar plus 0.5 % H2 that with Ar plus 0.1 % H2. This result was contrary to expected, where the tritium extraction rate could be higher when hydrogen is added to the sweep gas. Probably this effect could be attributed to the gas purity. (Author)

  20. Modeling of tritium behavior in ceramic breeder materials

    International Nuclear Information System (INIS)

    Computer models are being developed to predict tritium release from candidate ceramic breeder materials for fusion reactors. Early models regarded the complex process of tritium release as being rate limited by a single slow step, usually taken to be tritium diffusion. These models were unable to explain much of the experimental data. We have developed a more comprehensive model which considers diffusion and desorption from the grain surface. In developing this model we found that it was necessary to include the details of the surface phenomena in order to explain the results from recent tritium release experiments. A diffusion-desorption model with a desorption activation energy which is dependent on the surface coverage was developed. This model provided excellent agreement with the results from the CRITIC tritium release experiment. Since evidence suggests that other ceramic breeder materials have desorption activation energies which are dependent on surface coverage, it is important that these variations in activation energy be included in a model for tritium release. 17 refs., 12 figs

  1. Tritium contamination and monitoring at Frascati Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Lucci, F.; Sandri, S.; Ianni, A. [ENEA, Frascati (Italy). Dipartimento Ambiente; Vasselli, R. [ANPA, Roma (Italy); Pillon, M.; Bettinali, L. [ENEA, Frascati (Italy). Dipartimento Energia

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10{sup 1}1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed.

  2. Present status of deuterium and tritium separation technology

    International Nuclear Information System (INIS)

    Recently, the research on the separation of hydrogen isotopes has become to be noticed suddenly in Japan. One of the technologies which must be established in near future is the problem concerning tritium. It is roughly divided into two aspects. The one is the technology of treating tritium as the environmental problem in nuclear facilities, and the other is the technology of handling the tritium of 10 million Ci level accompanying the development of nuclear fusion reactors and the technology of tritium production. These technologies include the process of hydrogen isotope separation. On December 4 and 5, 1980, the symposium concerning the separation of deuterium and tritium was held in the Institute of Physical and Chemical Research, and 27 papers were presented. In this report, only the researches concerning hydrogen isotope separation among them are introduced. As for the hydrogen isotope separation by the isotope exchange method between water and hydrogen, the development of hydrophobic catalysts and the types of the exchange columns are explained. The hydrogen isotope separation by water distillation has been practically used. As for the tritium separation in the fuel system of nuclear fusion reactors, deep cooling distillation system, the permeation method through Pd-alloy membranes and thermal diffusion method are described. Also the separation of hydrogen isotopes by adsorption is reported. (Kako, I.)

  3. Progress in tritium retention and release modeling for ceramic breeders

    International Nuclear Information System (INIS)

    Tritium behavior in ceramic breeder blankets is a key design issue for this class of blanket because of its impact on safety and fuel self-sufficiency. Over the past 10-15 years, substantial theoretical and experimental efforts have been dedicated world-wide to develop a better understanding of tritium transport in ceramic breeders. Models that are available today seem to cover reasonably well all the key physical transport and trapping mechanisms. They have allowed for reasonable interpretation and reproduction of experimental data and have helped in pointing out deficiencies in material property data base, in providing guidance for future experiments, and in analyzing blanket tritium behavior. This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described along with the more recent and sophisticated models developed to help understand them. Recent experimental data are highlighted and model calibration and validation discussed. Finally, example applications to blanket cases are shown as illustration of progress in the prediction of ceramic breeder blanket tritium inventory

  4. Progress in tritium retention and release modeling for ceramic breeders

    International Nuclear Information System (INIS)

    Tritium behavior in ceramic breeder blankets is a key design issue for this class of blanket because of its impact on safety and fuel self-sufficiency. Over the past 10-15 years, substantial theoretical and experimental effort has been dedicated worldwide to the development of a better understanding of tritium transport in ceramic breeders. The models available today seem to cover reasonably well all of the key physical transport and trapping mechanisms. They allow for reasonable interpretation and reproduction of experimental data, help to point out deficiencies in the material property database, provide guidance for future experiments and aid in the analysis of blanket tritium behavior.This paper highlights the progress in tritium modeling over the last decade. Key tritium transport mechanisms are briefly described, together with the more recent, sophisticated models which have been developed to help understand them. Recent experimental data are highlighted and model calibration and validation are discussed. Finally, example applications to blanket cases are shown as an illustration of the progress in the prediction of ceramic breeder blanket tritium inventory. (orig.)

  5. Tritium contamination and monitoring at Frascati Neutron Generator

    International Nuclear Information System (INIS)

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-1011 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed

  6. Tritium and Autoradiography in Cell Biology

    International Nuclear Information System (INIS)

    Because tritium emits low energy beta radiation, it is the most useful isotope for high resolution autoradiography. The relative abundance of hydrogen in most biologically important substances combined with a relatively short half-life allows the labelling of cellular components at specific activities that can often be detected at intracellular dimensions by the use of nuclear emulsions. The cells are attached to glass by various cytological procedures and after fixation a -wet or fluid photographic emulsion is applied directly to the cell surface and allowed to dry. After exposure the emulsion is developed while still in contact with the biological specimen. The preparation, an autoradiogram, when viewed under the light microscope shows the cellular structures and the location of the isotope with a resolution of less than 1 pm. In this way the distribution of tritium-labelled deoxyribonucleic acid (DNA) of individual chromosomes has been traced through two to three cell divisions. These studies were made possible by the preparation of tritiated thymidine which is a highly selective label for DNA and is quickly depleted when the cell is removed from the environment containing the labelled thymidine. The technique has yielded information on the mechanism of DNA replication, structure and reproduction of chromosomes, kinetics of cell division and more recently on the patterns and time sequence in the reproduction of different chromosomes in the same nucleus and the different parts of a single chromosome. All chromosomes studied so far contain two functional sub-units of DNA which are distributed in a semi-conservative fashion during reproduction. The two sub-units are unlike in some structural sense that limits the type of exchanges that may occur among the four sub-units of a reproducing chromosome. Present evidence on sequences leads to the hypothesis that chromosomes reproduce in a genetically controlled sequence. Further evidence on the patterns and mechanism of

  7. Relation between the tritium in continuous atmospheric release and the tritium contents of fruits and tubers.

    Science.gov (United States)

    Korolevych, V Y; Kim, S B

    2013-04-01

    Concentrations of organically bound tritium (OBT) and tissue-free water tritium (TFWT, also referred to as HTO) in fruits and tubers were measured at a garden plot in the vicinity of the source of chronic airborne tritium emissions during the 2008, 2010, and 2011 growing seasons. A continuous record of HTO concentration in the air moisture was reconstructed from the continuous record of Ar-41 ambient gamma radiation, as well as from frequent measurements of air HTO by active samplers at the garden plot and Ar-41 and air HTO monitoring data from the same sector. Performed measurements were used for testing the modified Specific Activity (SA) model based on the assumption that the average air HTO during the pod-filling period provides an appropriate basis for estimating the levels of OBT present in pods, fruits and tubers. It is established that the relationship between the OBT of fruits and tubers and the average air HTO from a 15-20 day wide window centred at the peak of the pod-filling period is consistent throughout the three analysed years, and could be expressed by the fruit or tuber's OBT to air-HTO ratio of 0.93 ± 0.21. For all three years, the concentration of HTO in fruits and tubers was found to be related to levels of HTO in the air, as averaged within a 3-day pre-harvest window. The variability in the ratio of plant HTO to air HTO appears to be three times greater than that for the OBT of the fruits and tubers. It is concluded that the OBT of fruits and tubers adequately follows an empirical relationship based on the average level of air HTO from the pod-filling window, and therefore is clearly in line with the modified SA approach. PMID:23337314

  8. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  9. Problems bound to the tritium in materials for the nuclear - some illustrations; Problematiques liees au tritium dans les materiaux dans le domaine nucleaire - quelques illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Gastaldi, O. [CEA Cadarache (DTN/STPA/LPC), 13 - Saint-Paul-lez-Durance (France)

    2007-07-01

    The tritium control takes more and more importance in the nuclear industry because of the release more and more limited, in the environment. After a presentation on the tritium sources in the environment, the author presents the different ways of its production. Then for each reactor channel, the main problems are presented (fission and fusion). The last part deals with the behavior of the tritium in materials: the tritium inventory control in a fusion system, the tritium management after the reactor exploitation. (A.L.B.)

  10. Study on the Environmental Tritium in Surrounding of Bantar Gebang - Bekasi and Leuwigajah - Bandung Landfill Areas

    International Nuclear Information System (INIS)

    The investigation of environmental tritium distribution in surrounding of Bantar Gebang - Bekasi and Leuwigajah landfill areas has been carried out. The aim of this investigation was to know tritium concentration in surrounding of both landfill areas. Normally, tritium concentration in the nature is around 0-5 TU. The results of this investigation showed that the tritium concentration in both shallow groundwater of both landfill areas were still in the range of its normal limit, whereas tritium concentration in stream along both landfill areas and leached water showed higher value. Tritium concentration in deep groundwater of Bantar Gebang landfill showed about the zero value, it means is the normal condition. (author)

  11. Problems in tritium handling in fusion reactors studies at CEA within the european effort

    International Nuclear Information System (INIS)

    Technological aspects of tritium handling linked with the operation of a fusion reactor are reviewed. Tritium storage is discussed from the point of view of the volumme of a single unit and of the nature of the metal bed. Purification of tritium and recovery from tritiated compounds is studied, including conversion from water to the gaseous form. Interaction of tritium and structural materials is developed from the point of view of corrosion, embrittlement, permeation. A flowsheet displaying a conception of a reference tritium circuit is proposed, and consideration is given to specifications of large components, namely pumps and gatevalves for tritium circuits

  12. Development of an electrolysis system for tritium enrichment in superficial water samples.

    Science.gov (United States)

    Garbarino, G; Magnoni, M; Bertino, S; Losana, M C

    2009-12-01

    Tritium present in the environment gradually decreased in the last decades and nowadays it has reached extremely low activity concentrations. The purpose of the present work is the implementation of a tritium enrichment system in water samples using electrolytic techniques and pure nickel and iron electrodes. In the present work a mean tritium enrichment factor of 13.0 +/- 3.2 was obtained. This result should allow to reach a minimum detectable activity of tritium in water samples of about 1 tritium unit (TU) or less. The present enrichment system necessitates further adjustments and improvements, such as a cooling system in order to reduce the tritium losses due to evaporation. PMID:19864330

  13. Order of the 4 March 2014 on the homologation of the decision nr 2014-DC-4016 of the Nuclear Safety Authority of the 16 January 2014 defining the limits of releases in the environment of liquid and gaseous effluents by the basic nuclear installations nr 124, 125, 126 and 137 exploited by EDF-SA in Cattenom (Moselle district)

    International Nuclear Information System (INIS)

    This order issued by the French Ministry of ecology, sustainable development and energy is based on a decision taken by the ASN. It concerns the management of pollutions and of the impact of a nuclear installation on the environment: applicable limits of gaseous (notably carbon 14, tritium, rare gases, iodines), chemical, and liquid effluent release. Tables indicate the maximum concentrations

  14. Exchange reaction of hydrogen isotopes on proton conductor ceramic of hydrogen pump for blanket tritium recovery system

    International Nuclear Information System (INIS)

    Electrochemical hydrogen pump using ceramic proton conductor has been investigated to discuss its application for the blanket tritium recovery system of the nuclear fusion reactor. As the series of those work, the transportation experiments of H2-D2 mixture via ceramic proton conductor membrane have been carried out. Then, the phenomenon that was caused by the exchange reaction between the deuterium in the ceramic and the hydrogen in the gas phase has been observed. So, the ceramic proton conductor which doped deuterium was exposed to hydrogen under the control of zero current, and the effluent gas was analyzed. It is considered that the hydrogen in the gas phase is taken as proton to the ceramic by isotope exchange reaction, and penetrates to the ceramic by diffusion with replacement of deuteron. (author)

  15. Reducing the tritium inventory in waste produced by fusion devices

    International Nuclear Information System (INIS)

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted

  16. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  17. Development of a Tritium Extruder for ITER Pellet Injection

    Energy Technology Data Exchange (ETDEWEB)

    M.J. Gouge; P.W. Fisher

    1998-09-01

    As part of the International Thermonuclear Experimental Reactor (ITER) plasma fueling development program, Oak Ridge National Laboratory (ORNL) has fabricated a pellet injection system to test the mechanical and thermal properties of extruded tritium. Hydrogenic pellets will be used in ITER to sustain the fusion power in the plasma core and may be crucial in reducing first-wall tritium inventories by a process of "isotopic fueling" in which tritium-rich pellets fuel the burning plasma core and deuterium gas fuels the edge. This repeating single-stage pneumatic pellet injector, called the Tritium-Proof-of-Principle Phase II (TPOP-II) Pellet Injector, has a piston-driven mechanical extruder and is designed to extrude and accelerate hydrogenic pellets sized for the ITER device. The TPOP-II program has the following development goals: evaluate the feasibility of extruding tritium and deuterium-tritium (D-T) mixtures for use in future pellet injection systems; determine the mechanical and thermal properties of tritium and D-T extrusions; integrate, test, and evaluate the extruder in a repeating, single-stage light gas gun that is sized for the ITER application (pellet diameter -7 to 8 mm); evaluate options for recycling propellant and extruder exhaust gas; and evaluate operability and reliability of ITER prototypical fueling systems in an environment of significant tritium inventory that requires secondary and room containment systems. In tests with deuterium feed at ORNL, up to 13 pellets per extrusion have been extruded at rates up to 1 Hz and accelerated to speeds of 1.0 to 1.1 km/s, using hydrogen propellant gas at a supply pressure of 65 bar. Initially, deuterium pellets 7.5 mm in diameter and 11 mm in length were produced-the largest cryogenic pellets produced by the fusion program to date. These pellets represent about a 10% density perturbation to ITER. Subsequently, the extruder nozzle was modified to produce pellets that are almost 7.5-mm right circular

  18. The local hydrological system analysis based on tritium measurements

    International Nuclear Information System (INIS)

    It is well-known that generally, the most important objectives of isotopic studies for hydrological systems are the determination of the specific relations (hydrological or hydrogeological), the residence times of ground waters and estimation of the pollutant transfer. Therefore, for example, the measurement of 3 H and 14 C and its seasonal variations of isotopic ratios provides insight into the age structure of ground water. In this reported study, we were focused mainly onto 3 H measurements, and so an extensive analysis of a given hydrological system has been carried out based on the tritium concentrations determinations. For residence times up to several years, seasonal variations in isotopic ratios in fallout could be used as an alternative input signal, as far as there is evidence suitable output signal in the hydrological system. Further, it is known that the portion of youngest water could be estimated taking into account the single events effect on the isotopic ratio. Considering it, in this report, a compartments model (Myamoto et al, 1995) has been applied for the ground water in the investigated area. The model assumes the ground water system as represented by three layers. The mass balance of tritium as a function of time in one layer can provide some transfer parameters: - x, the turnover rate constant for water in the layer; - a, the fractional water from the top reservoir layer runoff into the surface water; - b the fractional water infiltration into the lower layer; - c, the mixing ratio for each layer of tritium concentration in the surface water. To construct a model structure for a hydrological system in a local area, it is necessary to determine transfer parameters. This is done best by measurement of tritium concentration in ground water in various depths and in surface water, so as to compare the response curve to precipitation. The mean residence times of tritium in the individual layers can be determined from the known turnover rate

  19. Radioactive effluents in Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  20. Tritium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  1. Operational Readiness Review: Savannah River Replacement Tritium Facility

    International Nuclear Information System (INIS)

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members

  2. Problems in radiation safety of personell dealing with tritium

    International Nuclear Information System (INIS)

    The problems of radiation safety of personnel working with tritium in oil-fields, at poultry plants when ionizing air, in watch making and instrument making industries, scientific laboratories are considered. The irradiation levels of the personnel engaged in preparation of tritium compounds and products constitute 0.1-1.2 rem quaterly. The dynamics of forming an internal irradiation dose are close to linear and the levels of tritium content in body are practically constant. When working in oil-fields, especially dangerous are the operations of diluting HTO in tanks and pumping labelled water into oil wells, where the dose amounts to 10-100 mrem per operation. The results of irradiation at poultry plants, evaluations of irradiation levels for personnel and population using the poultry bred in the atmosphere containing tritium are presented. Discussed are also the problems of radiotoxicity relating to tritium luminous compounds of permanent action as well as the results of studying their intake by animals and their distribution in the organism and excretion

  3. Limitation of tritium outgassing from tritiated solid waste drums

    International Nuclear Information System (INIS)

    In the framework of the development of fusion thermonuclear reactors, tritiated solid waste is foreseen and will have to be managed. The management of tritiated waste implies limitations in terms of activity and tritium degassing. The degassing tritium can be under the form of tritiated hydrogen, tritiated water and, in some specific cases, negligible amount of tritiated volatile organic compound. Hence, considering the major forms of degassing tritium, CEA has developed a mixed-compound dedicated to tritium trapping in drums. Based on several experiments, the foreseen mixed compound is composed of MnO2, Ag2O, Pt and molecular sieve, the three first species having the ability to convert tritiated hydrogen into tritiated water and the last one acting as a trap for tritiated water. To assess the performance of the trapping mixture, experimental tests were performed at room temperature on tritiated dust composed of beryllium and carbon. It was shown that the metallic oxides mixture used for tritiated hydrogen conversion is efficient and that tritiated water adsorption was limited due to an inefficient regeneration of the molecular sieve prior to its use. Apart from this point, the tritium release from waste was reduced by a factor of 5.5, which can be improved up to 87 if the adsorption step is efficient

  4. Tritium uptake by SS316 and its decontamination

    Science.gov (United States)

    Torikai, Y.; Penzhorn, R.-D.; Matsuyama, M.; Watanabe, K.

    2004-08-01

    As-received and highly polished SS316 specimens were loaded with HT at 473-573 K. The uptake by polished samples was found to be up to five times that of as-received ones, when loading was performed immediately after polishing. This disparity vanished when polished specimens were subjected to a prolonged exposure to air prior to loading. The tritium loss from tritium-loaded SS316 specimens was examined by chemical etching and by thermal release in a flow system using various carrier gases at several temperatures. While at moderate temperatures the type of carrier has an impact on the tritium release rate, at higher ones this effect disappears. Moisture in the carrier gas has little influence on the loss rate of bulk tritium. Etching depth profiles of specimens previously heat-treated in the presence of air or Ar + H 2 and of untreated specimens are given. Evidence for chronic tritium liberation from SS316 at 298 K is provided.

  5. Limitation of tritium outgassing from tritiated solid waste drums

    Energy Technology Data Exchange (ETDEWEB)

    Liger, K.; Trabuc, P.; Lefebvre, X.; Troulay, M.; Perrais, C. [CEA, Centre de Cadarache, DEN/DTN/STPA/LIPC, Saint-Paul-lez-Durance (France)

    2015-03-15

    In the framework of the development of fusion thermonuclear reactors, tritiated solid waste is foreseen and will have to be managed. The management of tritiated waste implies limitations in terms of activity and tritium degassing. The degassing tritium can be under the form of tritiated hydrogen, tritiated water and, in some specific cases, negligible amount of tritiated volatile organic compound. Hence, considering the major forms of degassing tritium, CEA has developed a mixed-compound dedicated to tritium trapping in drums. Based on several experiments, the foreseen mixed compound is composed of MnO{sub 2}, Ag{sub 2}O, Pt and molecular sieve, the three first species having the ability to convert tritiated hydrogen into tritiated water and the last one acting as a trap for tritiated water. To assess the performance of the trapping mixture, experimental tests were performed at room temperature on tritiated dust composed of beryllium and carbon. It was shown that the metallic oxides mixture used for tritiated hydrogen conversion is efficient and that tritiated water adsorption was limited due to an inefficient regeneration of the molecular sieve prior to its use. Apart from this point, the tritium release from waste was reduced by a factor of 5.5, which can be improved up to 87 if the adsorption step is efficient.

  6. Phytoremediation of the coalmine effluent.

    Science.gov (United States)

    Bharti, Sandhya; Kumar Banerjee, Tarun

    2012-07-01

    Coal mine effluent was subjected to detoxification by phytoremediation using two macrophytes Azolla pinnata and Lemna minor. Both plants were kept separately in the effluents for 7 day. The initial concentration (mg L⁻¹) of eight metals: Fe, Mn, Cu, Zn, Ni, Pb, Cr and Cd investigated in the effluent were 22.91±0.02, 9.61±1.6, 2.04±0.23, 1.03±0.15, 0.86±0.19, 0.69±0.11, 0.18±0.007 and 0.06±0.008 respectively. The initial fresh biomass of each plant was 100g. After one week, metals removed in A. pinnata-phytoremediated effluent were in the order: Mn (98%)>Fe (95.4%)>Zn (95%)>Cu (93%)>Pb (86.9%)>Cd (85%)>Cr (77.7%)>Ni (66.2%) and metal decrease in L. minor-phytoremediated effluent were: Mn (99.5%)>Cu (98.8%)>Zn (96.7%)>Ni (94.5%)>Fe (93.1%)>Cd (86.7%)>Pb (84%)>Cr (76%). Due to metal toxicity the total chlorophyll and protein contents of L. minor decreased by 29.3% and 38.55% respectively. The decrease of these macromolecules in A. pinnata was 27% and 15.56% respectively. Also, the reduction in biomass of L. minor was greater than that for A. pinnata. Based on the finding we could suggest that both the plants are suitable for bioremediation of mine effluent at the contaminated sites. However, attention for quick disposal of these metal loaded plants is urgently required. PMID:22571948

  7. Evaluation of Tritium Content and Release from Pressurized Water Reactor Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Sharon M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chattin, Marc Rhea [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giaquinto, Joseph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jubin, Robert Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    It is expected that tritium pretreatment will be required in future reprocessing plants to prevent the release of tritium to the environment (except for long-cooled fuels). To design and operate future reprocessing plants in a safe and environmentally compliant manner, the amount and form of tritium in the used nuclear fuel (UNF) must be understood and quantified. Tritium in light water reactor (LWR) fuel is dispersed between the fuel matrix and the fuel cladding, and some tritium may be in the plenum, probably as tritium labelled water (THO) or T2O. In a standard processing flowsheet, tritium management would be accomplished by treatment of liquid streams within the plant. Pretreating the fuel prior to dissolution to release the tritium into a single off-gas stream could simplify tritium management, so the removal of tritium in the liquid streams throughout the plant may not be required. The fraction of tritium remaining in the cladding may be reduced as a result of tritium pretreatment. Since Zircaloy® cladding makes up roughly 25% by mass of UNF in the United States, processes are being considered to reduce the volume of reprocessing waste for Zircaloy® clad fuel by recovering the zirconium from the cladding for reuse. These recycle processes could release the tritium in the cladding. For Zircaloy-clad fuels from light water reactors, the tritium produced from ternary fission and other sources is expected to be divided between the fuel, where it is generated, and the cladding. It has been previously documented that a fraction of the tritium produced in uranium oxide fuel from LWRs can migrate and become trapped in the cladding. Estimates of the percentage of tritium in the cladding typically range from 0–96%. There is relatively limited data on how the tritium content of the cladding varies with burnup and fuel history (temperature, power, etc.) and how pretreatment impacts its release. To gain a better understanding of how tritium in cladding

  8. Passive secondary biological treatment systems reduce estrogens in dairy shed effluent.

    Science.gov (United States)

    Gadd, Jennifer B; Northcott, Grant L; Tremblay, Louis A

    2010-10-01

    Steroid estrogens are found at high concentrations in untreated dairy shed effluents. Reduction of estrogenic activity and steroid estrogen concentrations was assessed in two systems used to treat dairy shed effluents: the two-pond system and the advanced pond system. Both include anaerobic and aerobic treatment stages. Samples of effluent were collected from the systems and analyzed for free estrogens, conjugated estrogens and total estrogenic activity using E-Screen assay. Both systems showed increases of up to 8000% in aqueous free estrogens and estrogenic activity after anaerobic treatment, followed by decreases after aerobic treatment (36-83%). The complete systems decreased total steroid estrogen concentrations by 50-100% and estrogen activity by 62-100%, with little difference between systems. Removal rates were lower in winter for both systems. Final effluents from the advanced pond system contained total estrogens at <15-1400 ng/L and estrogenic activity at 3.2-43 ng/L. Final effluent from the two-pond system contained total estrogens at <15-300 ng/L and estrogenic activity at 3.3-25 ng/L. At times the final effluent EEQs exceeded guideline values for protection of freshwater fish and suggest further treatment may be required.

  9. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P., E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2014-10-15

    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  10. The measurement of tritium in Canadian food items

    International Nuclear Information System (INIS)

    Food items locally grown near Perth, Ontario and grocery store produce and locally grown items from the Pickering-Ajax area in the vicinity of the Pickering Nuclear Generating Station (PNGS) have been analyzed for free water tritium (HTO) and organically bound tritium (OBT). The technique of measuring 3He ingrowth in samples by mass spectrometry has been used because of its sensitivity and freedom from opportunity for contamination during processing and measurement. Concentrations observed at each site were of the order expected on the basis of known levels of tritium in the local atmosphere and precipitation. There was considerable variation between different materials and limited correlation between materials of a single type. (author). 10 refs., 8 tabs., 4 figs

  11. Update on the Tritium Systems Test Assembly (TSTA)

    International Nuclear Information System (INIS)

    In January 1977 the Los Alamos Scientific Laboratory started designing the Tritium Systems Test Assembly (TSTA) to support the national fusion energy program. We have now designed all the necessary systems and are proceeding with the fabrication and installation of equipment at the TSTA facility. TSTA will be capable of processing fusion-reactor quantities of DT gas by early 1982. Units which we have already built and installed include the building utilities and ventilation, the Emergency Tritium Cleanup (ETC) and Tritium Waste Treatment (TWT) modules, and the cryogenic Isotope Separation System (ISS). We have contracted for the outside fabrication of a DT Fuel Clean-Up (FCU) package to be installed in 1981. We are now assembling on site the plasma chamber evacuation (VAC) and DT gas Transfer Pumping (TPU) modules and the computer-based Master Data Acquisition and Control (MDAC) system

  12. Experience with intakes of tritium from various processes

    International Nuclear Information System (INIS)

    Empirical data which have been gathered from the literature and from visits to various types of industrial, academic and medical institutions, in order to estimate the overall range of probabilities (or fractions) of intake of tritium in various forms and in various types of processes are presented. This work has been carried out as part of a study of factors involved in the development of tritium bioassay standards, but the empirical findings should be of more general interest in planning and evaluating safety programs. The findings are summarized in tabular form and include an overall estimate of the fraction of tritium entering the plant or facility that finds its way into workers. The need for this type of information for realistic hazard evaluation and design of safe facilities, equipment and procedures is emphasised. (U.K.)

  13. Experiment to measure the electron neutrino mass using frozen tritium

    International Nuclear Information System (INIS)

    The authors are performing an experiment to determine the electron neutrino mass with the precision of a few eV by measuring the tritium beta decay energy distribution near the endpoint. Key features of the experiment are a 2 eV resolution electrostatic spectometer and a high-activity frozen tritium source. It is important that the source have electronic wavefunctions which can be accurately calculated. These calculations have been made for tritium and the HeT+ daughter ion and allow determination of branching fractions to 0.1% and energy of the excited states to 0.1 eV. The authors discuss the excited final molecular state calculations and describe the experimental apparatus

  14. Radioecological studies of tritium movement in a tropical rain forest

    International Nuclear Information System (INIS)

    Several experiments on the movement of tritium in a tropical ecosystem have been conducted in the montane rainforest of Eastern Puerto Rico by the Bio-Medical Division of the Lawrence Radiation Laboratory, Livermore, in cooperation with the Puerto Rico Nuclear Center. Tritiated whaler was used as a tracer for water movement in: a) mature evergreen trees of the climax rainforest; b) soil and substory vegetation and c) rapidly growling successional species. A feasibility study on the Atlantic Pacific Interoceanic Canal is currently being conducted. If thermonuclear explosives were used in constructing the canal, tritium would be deposited as tritiated water and distributed among the several biological compartments of the tropical ecosystem in that area. The main hydrogen compartments are water in the soil and in leaves, limbs and wood of forest trees. Organic tissue hydrogen comprises another compartment. In the tree experiment, tritiated water was injected directly into several species of mature, broad leaved evergreen tropical trees. Transpiration and residence time for tritium was determined from analyses of leaves sampled during a several month period. Transpiration ranged from 4 ml/day/gm dry leaf for an understory Dacryodes excelsa to 10.0 and 13.8 ml/day/gm dry leaf for a mature Sloanea berteriana and D. excelsa, respectively. Mean residence time for the S. berteriana was 3.9 ± 0.2 days and the understory and mature D. excelsa values were 9.5 ± 0.4 and 11.0 ± 0. 6 days, respectively. In another experiment, tritiated water was sprinkled over a 3.68 m2 plot and its movement down into the soil and up into the vegetation growing on the plot was traced. The pattern of water movement in the soil was clearly demonstrated. The mean residence time for tritium in the soil and in trees was found to be 42 ± 2 days and 67 ± 9 days, respectively. The residence time for tritium in the trees in this experiment was considerably longer than for the single injected input

  15. A programmable autosampler for a field deployable tritium analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Cable, P.R.; Beals, D.M.; Jones, J.

    1996-08-01

    Researchers in the Environmental Technology Section of the Savannah River Technology Center, in cooperation with Sampling Systems, Inc. are developing a fully programmable, remotely operated, fixed volume, automatic sampler for use with the field deployable tritium analysis system currently under development at U. of GA`s Center for Applied Isotope Studies. The sampler will collect a limited-volume sample and perform on-line sample purification for tritium analyses from multiple collection sites. Pneumatically operated stainless steel samplers operate satisfactorily upon remote activation. The one-step purification system removes all impurities with interfere with tritium analysis by liquid scintillation. Field testing has confirmed system operation. The autosampler may act as a stand-alone device and is enclosed in a rugged, field-portable case with wheels. The system weighs about 40 lbs.

  16. Status of the Los Alamos tritium beta decay experiment

    International Nuclear Information System (INIS)

    The Los Alamos tritium experiment employs a gaseous tritium source and a magnetic spectrometer to determine the mass of the electron antineutrino from the shape of the tritium beta spectrum. Since publication of the first result from this apparatus (m/sub nu/ < 27 eV at 95% confidence), work has concentrated on improving the data rates. A 96-element Si microstrip array detector has been installed to replace the single proportional counter at the spectrometer focus, resulting in greatly increased efficiency. Measurements of the 1s photoionization spectrum of Kr now obviate the need for reliance on the theoretical shakeup and shakeoff spectrum of Kr in determining the spectrometer resolution. 19 refs., 3 figs

  17. Alternate Tritium Production Methods Using A Liquid Lithium Target

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    For over 60 years, the Savannah River Site’s primary mission has been the production of tritium. From the beginning, the Savannah River National Laboratory (SRNL) has provided the technical foundation to ensure the successful execution of this critical defense mission. SRNL has developed most of the processes used in the tritium mission and provides the research and development necessary to supply this critical component. This project was executed by first developing reactor models that could be used as a neutron source. In parallel to this development calculations were carried out testing the feasibility of accelerator technologies that could also be used for tritium production. Targets were designed with internal moderating material and optimized target was calculated to be capable of 3000 grams using a 1400 MWt sodium fast reactor, 850 grams using a 400 MWt sodium fast reactor, and 100 grams using a 62 MWt reactor, annually.

  18. Tritium: an underestimated health risk- 'ACROnic du nucleaire' nr 85, June 2009

    International Nuclear Information System (INIS)

    After having indicated how tritium released in the environment (under the form of tritiated water or gas) is absorbed by living species, the author describes the different biological effects of ionizing radiations and the risk associated with tritium. He evokes how the radiation protection system is designed with respect to standards, and outlines how the risk related to tritium is underestimated by different existing models and standards. The author discusses the consequences of tritium transmutation and of the isotopic effect

  19. Facility effluent monitoring plan for WESF

    International Nuclear Information System (INIS)

    The FEMP for the Waste Encapsulation and Storage Facility (WESF) provides sufficient information on the WESF effluent characteristics and the efferent monitoring systems so that a compliance assessment against applicable requirements may be performed. Radioactive and hazardous material source terms are related to specific effluent streams that are in turn, related to discharge points and, finally are compared to the effluent monitoring system capability

  20. Direct nanofiltration of wastewater treatment plant effluent

    OpenAIRE

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltration as technique for effluent reclamation.

  1. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950°C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)—three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  2. Tritium and helium retention and release from irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)

  3. Final report of the tritium issues working group. Vol. 2

    International Nuclear Information System (INIS)

    This report consists of a series of appendices relating to the sociological and technical considerations of tritium and its related technology. It is intended as a supplement to Volume 1 of the Final Report of the Tritium Issues Working Group. The work will the cover the following specific areas: A) Development of an ethical framework related to technology, morality, weapons, politics, etc. B) Review the history of nuclear power in Canada, placement of this technology in context with other technologies, waste products and the CANDU reactor system. C) Assessment of tritium as a unique product, as a class of isotopes, waste by-product and physical properties, effects on human life and its place in the natural environment. D) Assessment of tritium and the environment, diffusion through commerical application, European and American experience, waste management and recycling. E) Assessment of commercial applications, including current experience, historical applications for commercial purposes, offshore revenue for Canada value-added component and role of Ontario Hydro. F) Assessment of tritium and weapons, including technology and the military, past and future role of tritium in weapons, proliferation theories, generic conclusions regarding linkages, dependence of Americans on foreign sources of strategic resources. G) Review of regulations in effect now with respect to nuclear and/or other products with potential to military application, and what is needed. H) Review of traditional Canadian postures in the area of technology perception and political culture, the role, mandate and responsibility of Ontario Hydro, growth of international economy, Canada's competitive position in this economy and the challenges and dilemmas that modern decision makers have in a highly interrelated technological world

  4. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  5. Enhancing tritium release from diffusion-limited solid lithium compounds

    International Nuclear Information System (INIS)

    Mathematical modeling and numerical calculations have been performed to examine methods for exploiting recoil effects to increase the release of tritium from solid lithium compounds whose release rates are limited by the diffusion process. The basic concept is to employ the kinetic energy of the tritons from the exothermic 6L(n,4He)T reaction in order to move them out of the low-diffusivity region where they are born and into a thin, high-diffusivity region from which they can more easily migrate for eventual removal by a stream of purge gas. In the recoil-enhanced release approach, the lithium-containing blanket particles would consist of coated spheres. The inner region of the spherical particles would have a small diameter (30 to 40 μm) and would contain the lithium compound for tritium production. The outer region of the spherical particles would consist of a thin, highly diffusive coating whose thickness would be approximately one-half the range of a 2.7-MeV triton in the coating material. Tritium concentration profiles are presented parametrically in terms of dimensionless space and time variables and in terms of the ratio of the tritium diffusion coefficients for the inner and outer materials of a spherical particle. Calculations of tritium diffusion were performed for lithium-compound-to-coating diffusion coefficient ratios of 1.0,0.5,0.1, and 0.05. The results indicate that, at steady state, the tritium inventory is directly proportional to the diffusion coefficient in the coating and the time to reach steady state is reduced as the diffusion coefficient ratio is decreased

  6. Process for measuring the activity of a radioactive aqueous solution containing tritium

    Energy Technology Data Exchange (ETDEWEB)

    Sameh Abdel-Hadi, A.; Leifeld, W.

    1981-04-09

    The tritiated water with or without Mo 99, Ce 144 or Am 241 activity is brought into contact with a sodium solution and a piece of molecular sieve, until an equilibrium condition is achieved. The piece of molecular sieve is then put in water, reduced with US and the beta and gamma activity is measured.

  7. Radiospectroscopic method for determining contents of deuterium and tritium in aqueous solutions

    Science.gov (United States)

    Gerasimov, R. Y.; Fadeev, G. N.; Gerasimov, Y. V.; Kondratova, E. A.

    2016-09-01

    Radio-wave emission spectra in the microwave region are registered for the first time for ordinary water (H2O), heavy water (D2O), and D2O with a low content of T2O. The obtained spectra are analyzed according to a special program using a hardware-software complex. Measurement results show that the proposed method allows us not only to determine differences between substances in terms of composition and concentration, but to determine the presence of heavy and superheavy hydrogen isotopes in ordinary water as well.

  8. Preparation of labelled zt-1 with tritium and deuterium

    International Nuclear Information System (INIS)

    zt-1 is a potential drug for treatment of Alzheimer's disease. For the study of this drug, isotope labeled compounds should be prepared. After reduction of 5-chloro-o-vanillin with sodium boron deuteride and tritide, and condensation, zt-1 labeled with tritium and deuterium are prepared. UV absorption spectrum and Rf of tritium labeled zt-1 are the same as authentic sample. The radiochemical purity of 3H-zt-1 is more than 95%, and the specific radioactivity is 401.3 GBq/g

  9. An atmospheric tritium release database for model comparisons. Revision 1

    International Nuclear Information System (INIS)

    A database of vegetation, soil, and air tritium concentrations at gridded coordinate locations following nine accidental atmospheric releases is described. While none of the releases caused a significant dose to the public, the data collected are valuable for comparison with the results of tritium transport models used for risk assessment. The largest, potential, individual off-site dose from any of the releases was calculated to be 1.6 mrem. The population dose from this same release was 46 person-rem which represents 0.04% of the natural background radiation dose to the population in the path of the release

  10. Foot-printing of Protein Interactions by Tritium Labeling

    International Nuclear Information System (INIS)

    A new foot-printing method for mapping protein interactions has been developed, using tritium as a radioactive label. As residues involved in an interaction are less labeled when the complex is formed, they can be identified via comparison of the tritium incorporation of each residue of the bound protein with that of the unbound one. Application of this foot-printing method to the complex formed by the histone H3 fragment H3122-135 and the protein hAsflA1-156 afforded data in good agreement with NMR results. (authors)

  11. Isotopic enrichment of tritium by using host-guest chemistry

    International Nuclear Information System (INIS)

    The isotopic enrichment of tritium in the liquid-liquid extraction system, butylammonium/crownether was investigated using water solution of butylammonium iodide and chloroform solution of dicyclohexyl-18-crown-6. Tritium was enriched in the ammonium-crown complex which was extracted into the organic phase. Both the enthalpy and entropy changes were positive for the direction of negative free energy change. The value of entropy effect (TΔS) exceeded that of enthalpy change around room temperature. Single stage isotope separation factors obtained were 12 for n-butylammonium and 50 for tert-butylammonium as guest compounds at 550C. (orig./RK)

  12. Tritium system test assembly control system cost estimate

    International Nuclear Information System (INIS)

    The principal objectives of the Tritium Systems Test Assembly (TSTA), which includes the development, demonstration and interfacing of technologies related to the deuterium--tritium fuel cycle for fusion reactor systems, are concisely stated. The various integrated subsystems comprising TSTA and their functions are discussed. Each of the four major subdivisions of TSTA, including the main process system, the environmental and safety systems, supporting systems and the physical plant are briefly discussed. An overview of the Master Data Acquisition and Control System, which will control all functional operation of TSTA, is provided

  13. Health physics manual of good practices for tritium facilities

    International Nuclear Information System (INIS)

    The purpose of this document is to provide written guidance defining the generally accepted good practices in use at Department of Energy (DOE) tritium facilities. A open-quotes good practiceclose quotes is an action, policy, or procedure that enhances the radiation protection program at a DOE site. The information selected for inclusion in this document should help readers achieve an understanding of the key radiation protection issues at tritium facilities and provide guidance as to what characterizes excellence from a radiation protection point of view. The ALARA (As Low as Reasonable Achievable) program at DOE sites should be based, in part, on following the good practices that apply to their operations

  14. An atmospheric tritium release database for model comparisons

    International Nuclear Information System (INIS)

    A database of vegetation, soil, and air tritium concentrations at gridded coordinate locations following nine accidental atmospheric releases is described. While none of the releases caused a significant dose to the public, the data collected is valuable for comparison with the results of tritium transport models used for risk assessment. The largest, potential, individual off-site dose from any of the releases was calculated to be 1.6 mrem. The population dose from this same release was 46 person-rem which represents 0.04% of the natural background radiation dose to the population in the path of the release

  15. 78 FR 41720 - CampCo Petition to Allow Commercial Distribution of Tritium Markers

    Science.gov (United States)

    2013-07-11

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 32 CampCo Petition to Allow Commercial Distribution of Tritium... commercial distribution of tritium markers for use under exemption from licensing requirements. DATES: Submit... allow the commercial distribution of tritium markers for use under exemption from licensing...

  16. Deuterium-tritium experiments on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Bretz, N.L.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Barnes, C.W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Brunkhorst, C.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Cheng, C.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P.C.; Ernst, D.; Evensen, H.; Fisch, N.; Fisher, R.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, R.; Fu, G.; Fujita, T.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Giola, J.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Loughlin, M.J.; Machuzak, J.; Majeski, R.; Mansfield, D.K.; Marmar, E.; Marsala, R.; Martin, A.; Martin, G.; Mauel, M.; Mazzucato, E.; McCarthy, M.P.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Norris, M.; OConnor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Parks, P.; Paul, S.F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A.L.; Raftapoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmunsen, D.A.; Redi, M.H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A.L.; Ruskov, E.; Sabbaugh, S.A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.L.; Scillia, R.; Scott, S.D.; Semenov, I.; Senko, T.

    1995-09-01

    A peak fusion power production of 9.3{plus_minus}0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: {ital T}{sub {ital e}}(0)=11.5 keV, {ital T}{sub {ital i}}(0)=44 keV, {ital n}{sub {ital e}}(0)=8.5{times}10{sup 19} m{sup {minus}3}, and {l_angle}{ital Z}{sub eff}{r_angle}=2.2 giving {tau}{sub {ital E}}=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m{sup 3} similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2{Omega}{sub {ital T}} gave up to 80% of the ICRF energy to ions. {copyright} {ital 1995 American Institute of Physics.}

  17. Deuterium-tritium experiments on TFTR

    International Nuclear Information System (INIS)

    A peak fusion power production of 9.3±0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: Te(0)=11.5 keV, Ti(0)=44 keV, ne(0)=8.5x1019 m-3, and left-angle Zeff right-angle=2.2 giving τE=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D-T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m3 similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is similar to that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D-T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D-T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2ΩT gave up to 80% of the ICRF energy to ions. copyright 1995 American Institute of Physics

  18. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P.; Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Rolli, R. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials - Materials Biomechanics (IAM-WBM); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, Barcelona (Spain)

    2013-07-01

    Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the main concept of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by company NGK, Japan. It is notable that beryllium pebbles of other types are commercially available at the market. Presented work is dedicated to a study of characteristics of microstructure, packaging density and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Company Materion, USA. (orig.).

  19. Study of the physicochemical properties of the interface between titanium dioxide and various aqueous solutions

    International Nuclear Information System (INIS)

    The aim of this work is the study of ion exchange capacity of titanium dioxide in view of high temperature water purification and radioactive effluent processing because of its resistance to heat and radiations. Titanium dioxide is obtained by alkaline hydrolysis of an aqueous solution of Ti (IV) and is characterized by analytical physical chemistry methods. Interface between Ti02 and simple aqueous solutions (electrolytes) is more particularly studied by potentiometry

  20. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    Science.gov (United States)

    Álvarez, M S; Moscoso, F; Rodríguez, A; Sanromán, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached.

  1. Heavy metal induced antioxidant defense system of green microalgae and its effective role in phycoremediation of tannery effluent.

    Science.gov (United States)

    Ajayan, K V; Selvaraju, M

    2012-11-15

    Investigation of tannery effluent toxicology in green microalgae is of great importance from ecological point of view, because heavy metal has become a major contaminant in recent years. The present study determined the effect of various concentrations (0, 10, 25, 50, 75 and 100%) of heavy metals containing tannery effluent on cell growth and antioxidant defense system of two green microalgae. Treatment with effluent induced accumulation of reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Lower tannery effluent concentrations increased algal growth, whereas higher concentration suppressed the growth and photosynthetic content. Both strains of the microalgae had proven effective in removing heavy metals from aqueous solutions with the highest removal efficiency being near 100% and it can be used for phycoremediation of wastewater in large scale. PMID:24261120

  2. Tritium-management requirements for D-T fusion reactors (ETF, INTOR, FED)

    International Nuclear Information System (INIS)

    The successful operation of D-T fusion reactors will depend on the development of safe and reliable tritium-containment and fuel-recycle systems. The tritium handling requirements for D-T reactors were analyzed. The reactor facility was then designed from the viewpoint of tritium management. Recovery scenarios after a tritium release were generated to show the relative importance of various scenarios. A fusion-reactor tritium facility was designed which would be appropriate for all types of plants from the Engineering Test Facility (ETF), the International Tokamak Reactor (INTOR), and the Fusion Engineering Device (FED) to the full-scale power plant epitomized by the STARFIRE design

  3. Environmental control of tritium use at the Tokamak Fusion Test Reactor (TFTR)

    Energy Technology Data Exchange (ETDEWEB)

    Howe, H.J. Jr.; Lind, K.E.

    1978-12-01

    A primary objective of the Tokamak Fusion Test Reactor Project (TFTR) is to demonstrate the production of fusion energy using the deuterium--tritium fusion reaction in a magnetically confined plasma system. This paper will discuss the various tritium control methods employed to minimize the release of tritium to the environment. The methods to be described include the containment and ALAP philosophy, engineered safety features, redundant tritium cleanup systems, redundant instrumentation and control systems, interlocks, monitoring systems, management controls, and waste handling systems. Estimates will be included concerning the impact of routine and accidental tritium releases with these control systems in place.

  4. Environmental control of tritium use at the Tokamak Fusion Test Reactor (TFTR)

    International Nuclear Information System (INIS)

    A primary objective of the Tokamak Fusion Test Reactor Project (TFTR) is to demonstrate the production of fusion energy using the deuterium--tritium fusion reaction in a magnetically confined plasma system. This paper will discuss the various tritium control methods employed to minimize the release of tritium to the environment. The methods to be described include the containment and ALAP philosophy, engineered safety features, redundant tritium cleanup systems, redundant instrumentation and control systems, interlocks, monitoring systems, management controls, and waste handling systems. Estimates will be included concerning the impact of routine and accidental tritium releases with these control systems in place

  5. Comparison of tritium concentration in rainwater and atmosphere around TNPS before and after commercial service

    International Nuclear Information System (INIS)

    Monitoring results of tritium concentration in the rainwater and atmosphere around Tianwan Nuclear Power Station (TNPS) are introduced, and relevant factors influencing tritium concentration are analyzed. Before and after TNPS commercial service, the result shows that tritium concentration in the rainwater and atmosphere around TNPS rises from background level to twice background level or so and there is not obviously change beyond ten kilometers. Relative factors influencing tritium concentration in the rainwater and atmosphere mainly include gas tritium discharge, the distance to discharge point, the direction and frequency of wind, and amount of precipitation. (author)

  6. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, G.

    1999-12-16

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  7. Tritium production assessment for the DCLL EUROfusion DEMO

    Science.gov (United States)

    Palermo, Iole; Rapisarda, David; Fernández-Berceruelo, Iván; Ibarra, Angel

    2016-10-01

    The viability of a fusion reactor is preeminently conditioned by the tritium self-sufficiency. An assessment of different parameters representing the tritium production, as the tritium breeding ratio (TBR), the tritium production rate (TPR) density and their poloidal and radial variations along the PbLi breeder zones has been performed for the last DCLL DEMO designs developed in the frame of the EUROfusion Programme. The final overall value of 1.104 obtained allows accomplishing the fuel self-sufficiency requirement. This TBR value includes not only the contribution of the breeding blanket (BB) modules but also of the back supporting structure (BSS). The BSS design resulted fundamental to reach the 1.1 criterion. Lastly, the influence of the integration in the reactor of the heating and current drive (H&CD) systems that will penetrate the breeder volume has been evaluated. Assuming different configurations for them, the TBR loss has been determined. All the calculations have entailed the use of the particle transport Monte Carlo code MCNP5.

  8. Tritium power source for long-lived sensors

    Science.gov (United States)

    Litz, M. S.; Katsis, D. C.; Russo, J. A.; Carroll, J. J.

    2014-06-01

    A tritium-based indirect converting photovoltaic (PV) power source has been designed and prototyped as a long-lived (~15 years) power source for sensor networks. Tritium is a biologically benign beta emitter and low-cost isotope acquired from commercial vendors for this purpose. The power source combines tritium encapsulated with a radioluminescent phosphor coupled to a commercial PV cell. The tritium, phosphor, and PV components are packaged inside a BA5590-style military-model enclosure. The package has been approved by the nuclear regulatory commission (NRC) for use by DOD. The power source is designed to produce 100μW electrical power for an unattended radiation sensor (scintillator and avalanche photodiode) that can detect a 20 μCi source of 137Cs at three meters. This beta emitting indirect photon conversion design is presented as step towards the development of practical, logistically acceptable, lowcost long-lived compact power sources for unattended sensor applications in battlefield awareness and environmental detection.

  9. The NPL survey on tritium and radon standards

    International Nuclear Information System (INIS)

    The survey was carried out to establish the ranges of activity and levels of uncertainty which would satisfy U.K. customers' needs for Tritium and Radon standards in gas and water. A secondary object was to obtain comments on needs for other standards. (U.K.)

  10. Temporal distribution of tritium in the atmospheric environment of Mumbai

    International Nuclear Information System (INIS)

    Atmospheric Tritium level in the air moisture around Mumbai was estimated at several locations covering a radial distance of 20 km from the discharge point of CIRUS at BARC. Samples were collected by cold finger method from selected locations at 1 meter above ground level from 1.6 km to 20 km radial distance over a period of 3 years 2007-2009; during pre-monsoon, monsoon and post-monsoon seasons. Tritium was estimated in the air moisture by Ultra Low level Liquid Scintillation Spectrometer. The minimum detectable limit for the air moisture samples was 0.02 Eq/m3. Air tritium level was found to be maximum at the nearby locations during monsoon. However, during post-monsoon season the levels were higher at distances >3 km. In general, tritium level in the atmospheric air was in the range of 0.02-2.29 Bq/m3. The dose due to inhalation was observed to be in the range of 8.66E-8 to 9.9E-6 Sv/y which is very much lower than the prescribed limit. (author)

  11. Tritium contamination and decontamination of sealing oil for vacuum pump

    International Nuclear Information System (INIS)

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle

  12. Tritium and plutonium production as a step toward ICF commercialization

    International Nuclear Information System (INIS)

    The feasibility of a combined special nuclear materials (SNM) production plant/engineering test facility (ETF) with reduced pellet and driver performance requirements as a step toward commercialization of inertial confinement fusion (ICF) is examined. Blanket design and tritium production cost studies, the status of R and D programs, and the ETF role are emphasized

  13. Considerations for tritium protection at a fusion reactor

    International Nuclear Information System (INIS)

    The view on the radiological hazard associated with future fusion power stations as presented in this discussion is rarely supported by reasonably certain or reliably accurate prediction. This fact should not be taken as indicating a major programmatic deficiency. In fact, it is expected that large uncertainty would be present in health effect at the current level of technological development. The details of tritium exposure will be clarified, waiting for the operation of the Tritium System Test Assembly. Once the data base for the TSTA is established, future fusion design can be made based on economic cost/radiation exposure risk benefit. The actual execution of this cost/benefit analysis is complex because three populations are of interest: occupational work force, local population and global population. The knowledge of tritium management must be increased if D-T fusion reactors are to become compatible with the needs of utility companies. In order to exploit the differing hazard between HT and HTO, it is necessary to know much more about the mechanism of uncatalyzed conversion over a wide range of concentration and about the change caused by the variety of potential catalytic sequence in potential tritium leak. (Kako, I.)

  14. Test of potential homogeneity in the KATRIN gaseous tritium source

    CERN Document Server

    Rysavy, M

    2005-01-01

    83mKr is supposed to be used to study the properties of the windowless gaseous tritium source of the experiment KATRIN. In this work we deduce the amount of 83mKr which is necessary to determine possible potential inhomogeneities via conversion-electron-line broadening.

  15. Use of Helium-3 and Tritium tracers in oceanography

    International Nuclear Information System (INIS)

    As tritium considered as a transient tracer has become one of the most promising tool for the study of oceanic circulation and of the ocean capacity to absorb anthropogenic carbon, and as the simultaneous use of its radioactive descendant, Helium-3, brings an additional information (together, these tracers build up a clock in the study of water masses), and as all helium-3 and tritium measurements are made by mass spectroscopy, this research thesis addresses the analytical process, the detection limit, and the method reproducibility associated with this use of both tracers. The author reports and discusses helium-3 data obtained during a measurement campaign which allowed the localisation of an active source and the evidence of an intermediate back current, and tritium data obtained during another measurement campaign which allowed the description of the high time variability of convection processes, and an assessment of water renewal delays and of some deep water circulations. He also reports and discusses the simultaneous use of helium-3 data and tritium data to localize areas where convection processes occur. A theoretical approach to this simultaneous use is proposed which uses a mixing model which distinguishes the venting transit time. Measurement campaigns were performed in Red Sea, western Mediterranean Sea, and north-eastern Atlantic Ocean

  16. Time-of-flight spectroscopy of muonic tritium

    International Nuclear Information System (INIS)

    Emission of muonic tritium from a solid hydrogen layer has been studied via imaging of the muon-decay electrons and the time-of-flight distributions have been compared with detailed Monte Carlo calculations. Results are consistent at the 10% level with the theoretical prediction of a Ramsauer-Townsend minimum cross-section energy

  17. Tritium NMR in the analysis of tritiated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kaspersen, F.M.; Funke, C.W.; Vader, Jan; Wagenaars, G.N. (Organon Int. B.V., Oss (Netherlands). Akzo-Pharma Div.)

    1993-05-01

    An overview is given of the possibilities of [sup 3]H NMR in the characterisation of [sup 3]H-labelled compounds. This technique gives information on the identity of the tritiated compounds, the position of the tritium, the distribution of the label and even the radiochemical purity of the labelled products. (author).

  18. A system for tritium analysis in natural water

    International Nuclear Information System (INIS)

    A method for the analysis, by scintillation counting, of tritium in natural water enriched electrolytically, is presented. The characteristics of the proposed system are indicated by experimental parameters, and by the performance obtained in the analysis of rain and under ground waters. An evaluation of the precison and reproducibility of the measurements is also made

  19. In-vessel tritium retention and removal in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G. [ITER JWS Garching Co-Center (Germany); Anderl, R.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Andrew, P. [JET Joint Undertaking, Abingdon (United Kingdom)] [and others

    1998-06-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned to be the next major step in the world`s fusion program from the present generation of tokamaks and is designed to study fusion plasmas with a reactor relevant range of plasma parameters. During normal operation, it is expected that a fraction of the unburned tritium, that is used to routinely fuel the discharge, will be retained together with deuterium on the surfaces and in the bulk of the plasma facing materials (PFMs) surrounding the core and divertor plasma. The understanding of he basic retention mechanisms (physical and chemical) involved and their dependence upon plasma parameters and other relevant operation conditions is necessary for the accurate prediction of the amount of tritium retained at any given time in the ITER torus. Accurate estimates are essential to assess the radiological hazards associated with routine operation and with potential accident scenarios which may lead to mobilization of tritium that is not tenaciously held. Estimates are needed to establish the detritiation requirements for coolant water, to determine the plasma fueling and tritium supply requirements, and to establish the needed frequency and the procedures for tritium recovery and clean-up. The organization of this paper is as follows. Section 2 provides an overview of the design and operating conditions of the main components which define the plasma boundary of ITER. Section 3 reviews the erosion database and the results of recent relevant experiments conducted both in laboratory facilities and in tokamaks. These data provide the experimental basis and serve as an important benchmark for both model development (discussed in Section 4) and calculations (discussed in Section 5) that are required to predict tritium inventory build-up in ITER. Section 6 emphasizes the need to develop and test methods to remove the tritium from the codeposited C-based films and reviews the status and the prospects of the

  20. Safety analysis report for packaging: the ORNL DOT specification 6M - tritium trap package. [Tritium absorbed as solid uranium tritide in depleted uranium trap

    Energy Technology Data Exchange (ETDEWEB)

    DeVore, J.R.

    1984-04-01

    The ORNL DOT Specification 6M--Tritium Trap Package was fabricated at the Oak Ridge National Laboratory (ORNL) for the transport of Type B quantities of tritium as solid uranium tritide. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container, a drop test performed by the ORNL Operations Division, and International Atomic Energy Agency (IAEA) approvals on a similar tritium transport container. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities of tritium. 4 references, 8 figures.

  1. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Science.gov (United States)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-01

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al2O3/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al2O3/FeAl coated container was reduced by 3 orders of magnitude at 500-700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al2O3/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance.

  2. Extraction of metals from liquid effluent using modified inorganic ion exchangers

    International Nuclear Information System (INIS)

    Inorganic ion exchangers such as goethite, titanium (IV) oxide; silica and zeolites have been modified to examine the extraction of ruthenium; technetium and cobalt from liquid effluent. In addition, tin (IV) hydrogenphosphate and antimony hydrogenphosphate have been also examined in the modified and unmodified forms. It has been shown that some of the above reagents are able to remove the required metal ions from aqueous solution at the trace and mg L-1 levels. (author)

  3. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxides with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of monotritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated

  4. Low energy photon mimic of the tritium beta decay energy spectrum

    Science.gov (United States)

    Malabre-O'Sullivan, Neville

    Tritium is a radioactive hydrogen isotope that is typically produced via neutron interaction with heavy water (D2O), producing tritiated water (DTO). As a result of this, tritium accounts for roughly a third of all occupational exposures at a CANDU type nuclear power plant. This identifies a need to study the biological effects associated with tritium (and low energy electrons in general). However, there are complications regarding the dosimetry of tritium, as well as difficulties in handling and using tritium for the purposes of biophysics experiments. To avoid these difficulties, an experiment has been proposed using photons to mimic the beta decay energy spectrum of tritium. This would allow simulation of the radiation properties of tritium, so that a surrogate photon source can be used for biophysics experiments. Through experimental and computational means, this work has explored the use of characteristic x-rays of various materials to modify the output spectrum of an x-ray source, such that it mimics the tritium beta decay spectrum. Additionally, the resultant primary electron spectrum generated in water from an x-ray source was simulated. The results from this research have indicated that the use of characteristic x-rays is not a viable method for simulating a tritium source. Also, the primary electron spectrum generated in water shows some promise for simulating tritium exposure, however further work must be done to investigate the slowing down electron spectrum. Keywords: Tritium, MCNP, low energy electrons, biophysics, characteristic x-rays.

  5. Study about sorption of protium and mixture protium–tritium on sponge titanium

    International Nuclear Information System (INIS)

    The Nuclear Power Plant Cernavoda is equipped with a CANDU reactor and is one of the most powerful tritium sources from Europe. The reactor is moderated and cooled with heavy water that is continuous enriched with tritium. The presence of the tritium decreases the capacity of the heavy water to moderate the nuclear reactions. For this reason, I.C.I.T. Ramnicu Valcea developed a detritiation technology based on catalytic isotopic exchange and cryogenic distillation. At the end of the detritiation process, heavy water is produced with low concentration of tritium (that could be introduced back for the moderation process) and tritium (that have to be stored into a stable form). Tritium is a radioactive material and one of the basic conditions for the operation of the nuclear installations is the security for the operating personnel and for the environment [1]. At I.C.I.T. Ramnicu Valcea were tested materials with high capacity for storage of tritium, like titanium sponge and powder. The first experimental study was made using protium because it was assumed that tritium behaves similar with protium. In addition, it was made experiments of sorption on sponge titanium using a mixture protium–tritium. The result was similar but not identical, titanium sponge absorbing better protium than mixture protium–tritium, resulting different atomic ratios. The paper presents a study about sorption of protium and mixture of protium and tritium on sponge titanium

  6. A field survey of environmental tritium in areas adjacent to ORNL solid-waste storage areas

    International Nuclear Information System (INIS)

    A survey of tritium concentrations in surface water, shallow well water, and atmospheric moisture was made throughout the White Oak Creek Watershed in 1986. Environmental tritium concentrations were elevated south of SWSA-4 and SWSA-5, which seem to be the major contributors of tritium to the watershed. Patterns of tritium in air moisture, surface water, and pine tree cores indicated that there is a major area of tritium migration from SWSA-5 near the middle drainage tributary. Studies at a location south of SWSA-5 showed that tritium concentrations in subsoil water (>10 cm deep) were relatively constant to a depth of 80 cm. Concentrations of tritium in surface soil water (0 to 10 cm) were two to three times less than in the subsoil. Tritium concentrations in air moisture at different heights aboveground were more uniform during summer than during winter. This difference is attributed to the presence of water vapor transpired by tree foliage and the drying of surface soil during the summer months. Tritium concentrations in tree cores from pines south of SWSA-5 indicated that tritium migration in the vicinity of the middle drainage tributary has perhaps increased during the last 10 years. At this time, it is not known to what extent the tree core data are representative of tritium discharges from SWSA-5 as a whole

  7. Tritium processing at the Savannah River Site (SRS): Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortman, M.S.; Heung, L.K.; Nobile, A.; Rabun, R.L. III.

    1989-01-01

    Tritium handling equipment and methods at the Savannah River Site Tritium Facilities have been continually improved since tritium processing operations began in 1955. Several new technologies were introduced into the Tritium Facilities in the 1980's. One of these is the use of fluidless, mechanical pumps (Normetex and Metal Bellows) to replace mercury pumps. A second is the use of metal hydride technology to store, purify, isotopically separate, pump, and compress hydrogen isotopes. Metal hydrides, such as La-Ni-Al alloys and Pd loaded on kieselguhr, offer significant flexibility and size advantages compared with conventional tritium handling technology, such as gas tanks, thermal diffusion columns, and mechanical compressors. Metal hydrides have been used in the Tritium Facilities since 1984 with the most important application of this technology being planned for the Replacement Tritium Facility, a $140 million facility scheduled for completion in 1990 and startup in 1991. 11 refs., 9 figs.

  8. Tritium adsorption and desorption measurement on fusion relevant materials by beta induced spectrometry

    International Nuclear Information System (INIS)

    The use of tritium in future fusion power plants has the potential to make a major contribution to a sustainable and secure energy supply. For economic, licensing and safety reasons, tritium confinement in the fusion fuel system must be absolutely assured. Tritium adsorbed on a surface or diffused into a bulk material can escape from the fuel system and is lost for the process. Therefore, tritium confinement can be optimized by the use of materials with low adsorption and diffusion tendency. The Tritium Adsorption Desorption (TRIADE) Experiment is dedicated to investigate the tritium adsorption/desorption on fusion relevant materials by Beta Induced X-ray Spectrometry (BIXS) and mass spectrometry. The experimental setup and first results of the tritium measurements are presented.

  9. Migration and release behavior of tritium in SS316 at ambient temperature

    Science.gov (United States)

    Torikai, Y.; Murata, D.; Penzhorn, R.-D.; Akaishi, K.; Watanabe, K.; Matsuyama, M.

    2007-06-01

    BIXS measurements indicate that immersion into water or chemical etching of SS316 contaminated with tritium at moderate temperatures causes an immediate reduction of the outermost surface concentration of tritium. The fraction of surface tritium removed by water, i.e. 30-50%, is small in comparison to the total tritium present in the specimen. Allowing a specimen to age whose surface and subsurface had been removed by etching up to a depth where the concentration of tritium is mostly constant revealed that within a few months a re-growth of tritium up to a saturation value higher than half of that originally present on the specimen takes place. Concurrently, a small but steady liberation of tritium at rates increasing from 0.1 to 0.3 kBq/h was noticed.

  10. In-pile test of tritium recovery from lithium oxide

    International Nuclear Information System (INIS)

    In-situ tritium recovery experiment with sintered lithium oxide pellets was performed under a high neutron fluence in the JRR-2. The irradiation hole VT-10 is the vertical one in the fuel rods region of the reactor, and the neutron flux is as follows: the thermal neutron flux with the epithermal neutron; 1.12 x 1014 n/cm2. sec, the fast neutron flux; 1.0 x 1012 n/cm2. sec. Irradiation material is the four pellets of cylindrical Li2O with the size of 11mm-OD, 1.8mm-ID, 10mm-H, and their total weight is 6.67g(the apparent bulk density 86%TD). A sweep gas capsule with a inner heater was constructed for the present study. Irradiation temperatures were regulated in the high temperature range, 470 -- 7600C. Four cycles of irradiation tests were carried out from May to August in 1983, and the effective thermal neutron fluence and the burnup of 6Li were 5.9 x 1019nvt and 0.24% of total lithium(natural abundance of Li), respectively. The amount of generated tritium was calculated to be 31.2Ci by using a value of the depression factor of the thermal neutron flux(0.148) and the effective neutron cross section(543b) for the 6Li(n, α) 3H reaction. Present report describes the tritium release behavior in the in-situ tritium recovery apparatus and discuss the effects of the moisture, the hydrogen spiking, the irradiation temperature, etc.. Problems relative to a real time measurement of a comparatively high tritium concentration(10-1 -- 102μCi/cm3) in the helium gas stream were also investigated. (author)

  11. Simplified method for detecting tritium contamination in plants and soil

    Science.gov (United States)

    Andraski, B.J.; Sandstrom, M.W.; Michel, R.L.; Radyk, J.C.; Stonestrom, D.A.; Johnson, M.J.; Mayers, C.J.

    2003-01-01

    Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphitebased solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sesse?? & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation-SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation-SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.

  12. Effect of surfactant-coated iron oxide nanoparticles on the effluent water quality from a simulated sequencing batch reactor treating domestic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sangchul, E-mail: sangchul.hwang@upr.edu [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Martinez, Diana [Department of Civil Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Perez, Priscilla [Department of Biology, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico); Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, Mayaguez, PR 00681 (Puerto Rico)

    2011-12-15

    This study was conducted to evaluate the effect of commercially available engineered iron oxide nanoparticles coated with a surfactant (ENP{sub Fe-surf}) on effluent water quality from a lab-scale sequencing batch reactor as a model secondary biological wastewater treatment. Results showed that {approx}8.7% of ENP{sub Fe-surf} applied were present in the effluent stream. The stable presence of ENP{sub Fe-surf} was confirmed by analyzing the mean particle diameter and iron concentration in the effluent. Consequently, aqueous ENP{sub Fe-surf} deteriorated the effluent water quality at a statistically significant level (p < 0.05) with respect to soluble chemical oxygen demand, turbidity, and apparent color. This implied that ENP{sub Fe-surf} would be introduced into environmental receptors through the treated effluent and could potentially impact them. - Highlights: > Surfactant-coated engineered iron oxide nanoparticles (ENP{sub Fe-surf}) were assessed. > Effluent quality was analyzed from a sequencing batch reactor with ENP{sub Fe-surf}. > {approx}8.7% of ENP{sub Fe-surf} applied was present in the effluent. > ENP{sub Fe-surf} significantly (p < 0.05) deteriorated the effluent water quality. > Stable fraction of ENP{sub Fe-surf} will be introduced into environmental receptors. - Stable presence of surfactant-coated engineered iron oxides nanoparticles deteriorated the effluent water quality at a statistically significant level (p < 0.05).

  13. Continuous monitoring of gaseous effluents

    International Nuclear Information System (INIS)

    The system allows to continuously determine the radioactive materials discharge (iodine, noble gases and aerosols) to the environment. It consists in compelling, by a pump, a known and fixed fraction of the total flow and preserving the aerosols by a filter. The gas -now free from aerosols- traverses an activated carbon filter which keeps the iodine; after being free from aerosols and iodine, the effluent traverses a measurement chambers for noble gases which has a scintillator. (Author)

  14. Waste monitoring system for effluents

    International Nuclear Information System (INIS)

    The waste monitoring system in use at Los Alamos National Laboratory's Plutonium Facility, TA-55, is a computer-based system that proves real-time information on industrial effluents. Remote computers monitor discharge events and data moves from one system to another via a local area network. This report describes the history, system design, summary, instrumentation list, displays, trending screens, and layout of the waste monitoring system

  15. Tritium Removal System for Airtight Room in High-flux Advanced Neutron Application Reactor (HANARO) - 12110

    International Nuclear Information System (INIS)

    An Airtight room was installed to prevent the diffusion of tritium from the instrument room to other areas in HANARO. It was isolated by a robust structure and the inside was closed tightly. A Tritium removal system located outside the instrument room was connected to the airtight room to lower the tritium concentration when the workers enter the room for maintenance of the instruments. The tritium concentration and the dew point in the airtight room were continuously measured during the operation of the tritium removal system. The data were analyzed by using a model. There was a difference between the measured tritium concentration and the one obtained by the model. It is believed that the difference is due to the change of the generation rate of tritium which would increase as the dew point becomes lower. Based on this assumption, the previous equation was revised to better express the performance of the tritium removal system. It was re-estimated that the change of tritium concentration in an airtight room could be predicted well by using a model and equation proposed in the previous study. It was confirmed that there was a definite difference between the measured tritium concentration and the one obtained by equation from the model. It is believed that the difference is due to the change of the generation rate of tritium which would increase as the dew point becomes lower. Based on this assumption, the generation rate of tritium was controlled to have higher value and the change of tritium concentration in airtight room could be more correctly predicted. By using the revised equation, the tritium removal system would be operated more effectively. (authors)

  16. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada.

    Science.gov (United States)

    Mihok, S; Wilk, M; Lapp, A; St-Amant, N; Kwamena, N-O A; Clark, I D

    2016-03-01

    The dynamics of tritium released from nuclear facilities as tritiated water (HTO) have been studied extensively with results incorporated into regulatory assessment models. These models typically estimate organically bound tritium (OBT) for calculating public dose as OBT itself is rarely measured. Higher than expected OBT/HTO ratios in plants and soils are an emerging issue that is not well understood. To support the improvement of models, an experimental garden was set up in 2012 at a tritium processing facility in Pembroke, Ontario to characterize the circumstances under which high OBT/HTO ratios may arise. Soils and plants were sampled weekly to coincide with detailed air and stack monitoring. The design included a plot of native grass/soil, contrasted with sod and vegetables grown in barrels with commercial topsoil under natural rain and either low or high tritium irrigation water. Air monitoring indicated that the plume was present infrequently at concentrations of up to about 100 Bq/m(3) (the garden was not in a major wind sector). Mean air concentrations during the day on workdays (HTO 10.3 Bq/m(3), HT 5.8 Bq/m(3)) were higher than at other times (0.7-2.6 Bq/m(3)). Mean Tissue Free Water Tritium (TFWT) in plants and soils and OBT/HTO ratios were only very weakly or not at all correlated with releases on a weekly basis. TFWT was equal in soils and plants and in above and below ground parts of vegetables. OBT/HTO ratios in above ground parts of vegetables were above one when the main source of tritium was from high tritium irrigation water (1.5-1.8). Ratios were below one in below ground parts of vegetables when irrigated with high tritium water (0.4-0.6) and above one in vegetables rain-fed or irrigated with low tritium water (1.3-2.8). In contrast, OBT/HTO ratios were very high (9.0-13.5) when the source of tritium was mainly from the atmosphere. TFWT varied considerably through time as a result of SRBT's operations; OBT/HTO ratios showed no clear temporal

  17. Tritium in the Physical and Biological Sciences. Vol. II. Proceedings of the Symposium on the Detection and Use of Tritium in the Physical and Biological Sciences

    International Nuclear Information System (INIS)

    The use of tritium for research in physics, chemistry, biology and hydrology has in recent years become increasingly important. It was for this reason that the first international conference to discuss the progress of new developments was organized by the IAEA in conjunction with the Joint Commission on Applied Radioactivity and held from 3 — 10 May 1961, in Vienna. The first five sessions of the Symposium were devoted to the use of tritium in hydrology, physics and chemistry. Special emphasis was laid on the role of tritium as a tracer in hydrology, especially in the study of water movement. The establishment and improvement of counting and detection techniques to facilitate the application of tritium as a tracer was another aspect discussed in this part of the proceedings. Papers were read on the preparation of tritiated compounds and it was generally agreed that further clarification of the mechanism of various techniques, and of the Wilzbach gas exposure technique in particular, would lead to further developments in the synthesis of a number of tritium compounds important in biology. Other papers were concerned with tritium applications to studies of the mechanism of some chemical reactions together with the effects of tritium isotopes. During the second part of the Symposium the biological applications of tritium and tritiated compounds were discussed. These included general problems connected with the biological uses of tritium and the radiation effects of tritium on living organisms such as viruses, bacteria and cancer cells. The value of tritium in biological studies became apparent because of the ease with which a large number of metabolically active compounds such as hormones, vitamins and other important constituents in the body can be labelled with tritium. Tritium is also a weak beta-emitter and autoradiographs of tissues and single cells containing tritium-labelled compounds allow an excellent localization of the tracer. The Symposium was attended

  18. The Electrolytic Enrichment of Tritium and Deuterium for Natural Tritium Measurements

    International Nuclear Information System (INIS)

    An electrolytic enrichment method is described, in which a 250 ml sample is electrolyzed in one cell to a final volume of 2.5 ml, or even less. In order to keep the electrolyte concentration within the tolerable limits, only a fraction of 50 ml of the sample takes part in the reaction, and by periodic addition in portions, the total sample is gradually introduced into the reaction zone. This method gives apparent enrichment factors for deuterium, aα', and for tritium, β', which vary according to the relationship η' = log β' /log α' = 1.369 ±0.006. If this result is applied to conventional batch electrolysis the result may be written η = log β/log α = 1.337 ± 0.007. The experimental results, when furthermore corrected for vapour loss, are in excellent agreement with the prediction by Bigeleisen on theoretical grounds that log β0/log α0 = 1.40 ± 0.01. (author)

  19. Use of passive sampling for atmospheric tritium monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Ideias, P.; Pierrard, O.; Tournieux, D. [Institut de Radioprotection et de Surete Nucleaire - IRSN (France); Tenailleau, L. [Marine nationale (France)

    2014-07-01

    Tritium is one of the most important radionuclide in environmental radiological monitoring. In French civil and military nuclear facilities, the releases levels are between 100 to 100 000 higher than any other radionuclide (rare gas excluded). Moreover these levels will probably increase in the next decades. With an average energy of 6 keV, the beta particle from tritium radioactive decay is difficult to detect and quantify within the environmental levels. To monitor the tritium in the air, French actors (authorities, operator, and experts) commonly use atmospheric bubblers and water vapour condensers. This type of sampling approach is time-consuming and very costly. To simplify and complete these methods, the Institute for Radiological Protection and Nuclear Safety (IRSN), had developed an atmospheric tritium monitoring device based on passive sampling. The passive sampler developed consists in a small container designed with a patented specific geometry and filled with 13X molecular sieve. This system is based on free diffusion flow principle (Fick's law). The driving force is the partial pressure gradient existing between the environmental atmosphere and the passive sampler. The constancy of the sampling rate for different moisture conditions assures the representativeness of the proposed device. The desorption bench developed specifically allows the recovery of 99% of the water vapour sampled in the molecular sieve. More than 99% of the sampled tritium (HTO) activity is recovered in the range between 0 and 100 Bq.L{sup -1}. Above 100 Bq.L{sup -1} to 25 k Bq.L{sup -1} (max tested activity), it was verified that no more than 3% of the tritium remains in the molecular sieve.. Thus, the use of passive sampler provides: - a representative sampling method, - a good detection limit (0,01 Bq.m{sup -3}), - no electric power supply needs, - a wide range of sampling duration (1 day to 1 month), - a low-cost method for monitoring. Different performance tests were

  20. Evidence for tritium production in the Earth's interior

    Institute of Scientific and Technical Information of China (English)

    JIANG SongSheng; HE Ming

    2008-01-01

    We have made a new investigation on the vertical profiles of tritium and helium isotopes in Lakes Van and Nemrut (Eastern Turkey), using experimental data from the reference by Kipfer et al. for study of long-term vertical mixing and deep water renewal in Lake Van. Lakes Van and Nemrut are crater lakes. Lake Nemrut is at the western border of Lake Van. The 3He and 4He are injected at the bottom of Lakes Van and Nemrut, and the both helium isotopes are confirmed from the mantle source. From 3H (tritium) data in Lakes Van and Nemrut, we have observed "3H anomaly" at the vertical profile of 3H concentrations in Lake Nemrut. The 3H concentration at the lake bottom is 10% higher than at the surface. The difference of 3H concentrations between surface and bottom is about 3.7±1.2 TU. This excess 3H should be injected from the lake bottom. An investigation on the origin of the injected tritium has been made. The results show the conventional origins are excluded, such as residence of precipitation tritium from nuclear testing in the early 1950s-1960s and tritium from known nuclear reactions. Based on the correlation of excess 3H with 3He and heat flow in Lake Nemrut, we infer that the 3He and 3H might be all from the mantle source, and produced by the supposed natural-nuclear-fusion, which might occur in an environment rich in water (H) and (U + Th) at high temperature and high pressure in the deep Earth. Detection of tritium in the Earth's interior is a key evidence for exploration of natural nuclear fusion in the deep Earth. Based on the published data, we have found that the excess 3He and 3H injected at the bottom of Lake Laacher (Germany) were also released from the mantle source. The present work will be helpful to the further study of mechanism of natural nuclear fusion in the Earth's interior.