WorldWideScience

Sample records for aquatic organisms submitted

  1. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  2. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  3. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    Science.gov (United States)

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  4. Chapter 6: Selenium Toxicity to Aquatic Organisms

    Science.gov (United States)

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  5. Methods of dosimetry for aquatic organisms

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1979-01-01

    The importance is emphasized of accurate estimates of radiation doses or dose rates that must be made for experiments to investigate the effects of irradiation on aquatic organisms. Computational methods are described which provide the best estimate of radiation dose or dose rates received by aquatic organisms when living in contaminated water. Also, techniques appropriate to the determination of radiation doses from external sources are briefly discussed. (author)

  6. Acute toxicity of birch tar oil on aquatic organisms

    Directory of Open Access Journals (Sweden)

    M. HAGNER

    2008-12-01

    Full Text Available Birch tar oil (BTO is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50 of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean, Lumbriculus variegatus (oligochaeta worm, Daphnia magna (crustacean, Lymnea sp. (mollusc, Lemna minor (vascular plant, Danio rerio (fish, Scenedesmus gracilis (algae, and Vibrio fischeri (bacterium were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

  7. 40 CFR 161.490 - Wildlife and aquatic organisms data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Wildlife and aquatic organisms data... § 161.490 Wildlife and aquatic organisms data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the wildlife and aquatic organisms data requirements and the...

  8. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  9. Temperature influences on growth of aquatic organisms

    International Nuclear Information System (INIS)

    Coutant, C.C.; Suffern, J.S.

    1977-01-01

    Temperature profoundly affects the growth rates of aquatic organisms, and its control is essential for effective aquaculture. Characteristically, both low and high temperatures produce slow growth rates and inefficient food conversion, while intermediate temperature ranges provide rapid growth and efficient food conversion. Distinct, species-specific optimum temperatures and upper and lower temperatures of zero growth can often be defined. Thermal effects can be greatly modified by amounts and quality of food. These data not only provide the basis for criteria which maintain growth of wild organisms but also for effectively using waste heat to create optimal conditions of temperature and food ration for growing aquatic organisms commercially

  10. Effects of low-level chronic irradiation on aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Etoh, H. (National Inst. of Radiological Sciences, Chiba (Japan))

    1980-10-01

    Effects of continual irradiation for a long term on fishes and aquatic invertebrates were outlined. Effects of low-level chronic irradiation on aquatic organisms were less than acute effects induced when the same dose was irradiated once. The radiosensitivity of the genital organ to continual irradiation was high. There was a difference in radiosensitivity of the genital organ between female and male, and the degree of the difference varied according to kinds of animals. In an experiment on continual irradiation of adult killifishes, ova recovered from radiation damage, but spermatozoa did not recover. Incubation rates of eggs obtained from aquatic organisms which lived in water where radioactive sewage flowed into decreased significantly, and the frequency of reverse position of salivary gland chromosomes which were peculiar to exposed organisms increased in larvae of Chironomus tentans.

  11. Radioactive contamination of aquatic media and organisms

    International Nuclear Information System (INIS)

    Fontaine, Y.

    1960-01-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [fr

  12. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  13. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  14. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    chemicals. However, with fundamentally different chemical and physical properties of ENPs compared to soluble chemicals current TGs could be inadequate and possibly lead to wrong interpretation of results obtained. One of the key issues is the dual action of ENPs consisting both of a chemical identity...... and functionalizations with different aquatic organisms were investigated. Furthermore, multiple microscopy methods were used to assess internationalization in the aquatic organisms. Finally, different exposure routes were used to determine if it could affect localization in the aquatic organisms. The influence......O ENPs (-OH and -Octyl functionalization) it was found that large micron sized aggregates was also available for uptake in D. magna showing high uptake, possibly also associated with the carapace of the test organism. Functionalization with -Octyl increased the uptake compared to pristine ZnO ENPs while...

  15. Patterns of transuranic uptake by aquatic organisms: consequences and implications

    International Nuclear Information System (INIS)

    Eyman, L.D.; Trabalka, J.R.

    1980-01-01

    Literature on the behavior of plutonium and transuranic elements in aquatic organisms is reviewed. The commonality of observed distribution coefficients over a wide array of aquatic environments (both freshwater and marine) and the lack of biomagnification in aquatic food chains from these environments are demonstrated. These findings lead to the conclusion that physical processes dominate in the transfer of transuranic elements from aquatic environments to man. The question of the nature of the association of plutonium with aquatic biota (surface sorption vs biological incorporation) is discussed as well as the importance of short food chains in the transfer of plutonium to man

  16. Effects of ionizing radiation on aquatic organisms and ecosystems

    International Nuclear Information System (INIS)

    1976-01-01

    A panel of experts in November 1971 specifically considered the effects of ionizing radiation on aquatic organisms and ecosystems and formulated detailed suggestions for research in the area. A further panel meeting took place in April 1974. The results of the work are presented in this report which is divided into 3 chapters in the first chapter the concentrations of natural and artificial radionuclides in aquatic environments and the radiation dose rates received by aquatic organisms are discussed. In particular, simple dosimetry models for phytoplankton, zooplankton, mollusca, crustacea and fish are presented which permit the estimation of the dose rates from incorporated radionuclides and from radionuclides in the external environment. In the second chapter the somatic and genetic effects of ionizing radiation on aquatic organisms are reviewed. Somatic effects are discussed separately as effects due to short-term (acute) exposure to near-lethal doses of radiation. Great attention is paid to the effects due to long-term (chronic) exposure at lower doses rates. Consideration is given to behaviour, repair mechanisms and metabolic stimulation after exposure, and also the influence of environmental factors on radiation effects. In the third chapter the potential effects of low-level irradiation on aquatic populations are considered. First, the possible consequences of somatic effects on egg and larval mortality, stock-recruitment, fecundity and ecosystem stability are discussed. Subsequently, the assessment of genetic effects as they relate to population genetics and increased mutation rates are considered

  17. Providing Aquatic Organism Passage in Vertically Unstable Streams

    Directory of Open Access Journals (Sweden)

    JanineM Castro

    2016-04-01

    Full Text Available Aquatic organism passage barriers have been identified as one of the key impediments to recovery of salmonids and other migratory aquatic organisms in the Pacific Northwest of the United States. As such, state and federal agencies invest millions of dollars annually to address passage barriers. Because many barriers function as ad hoc grade control structures, their removal and/or replacement can unwittingly set off a cascade of effects that can negatively impact the very habitat and passage that project proponents seek to improve. The resultant vertical instability can result in a suite of effects that range from floodplain disconnection and loss of backwater and side channel habitat, to increased levels of turbidity. Risk assessment, including an evaluation of both the stage of stream evolution and a longitudinal profile analysis, provides a framework for determining if grade control is warranted, and if so, what type of structure is most geomorphically appropriate. Potential structures include placement of large wood and roughness elements, and constructed riffles, step-pools, and cascades. The use of structure types that mimic natural reach scale geomorphic analogues should result in improved aquatic organism passage, increased structural resilience, and reduced maintenance.

  18. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  19. Preliminary assays for lemongrass essential oil ecotoxicological test in D. similis and C. silvestrii submitted to gamma radiation

    International Nuclear Information System (INIS)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Rogero, Jose R.; Cruz, Aurea S.

    2011-01-01

    Pharmaceutical products are of great interest in ecotoxicological studies due to being found some of these products in the superficial waters and sediments, water and sewage treatment effluents. It was verified an increase of insect repellent chemical products in the aquatic environment because of the increase of diseases transmitted by mosquitoes like dengue. As these compounds show toxicity, the use of essential oils natural products with repellent properties is increasing and the literature about the impact in the aquatic environment is scarce. The hydric frame would suffer natural radiation and radiations from energy generation nuclear plants impacts fall out of tests and nuclear accidents. There is no universal definition of environmental protection and there are few studies on radiation effects in the aquatic environment. In this study was determined the lemon grass essential oil toxicity level as well as the lethal dose of ionizing radiation, LD 50 , in aquatic organisms. Cytotoxicity test was performed by in vitro neutral red uptake method in NCTC clone L929 cell line. In the LD 50 test aquatic organisms were submitted to gamma radiation. The essential oil of lemongrass Cymbopogon flexuosus showed cytotoxicity index IC 50 about 50μg.mL -1 . The LD 50 for Daphnia similis was 242 Gy and Ceriodaphnia silvestrii about 525 Gy. Studies will be continued with acute and chronic ecotoxicological tests of lemongrass essential oil in natural organisms and in organisms submitted to gamma radiation, utilizing the results obtained in this work. (author)

  20. Radiation doses to aquatic organisms from natural radionuclides

    International Nuclear Information System (INIS)

    Brown, J E; Jones, S R; Saxen, R; Thoerring, H; Batlle, J Vives i

    2004-01-01

    A framework for protection of the environment is likely to require a methodology for assessing dose rates arising from naturally occurring radionuclides. This paper addresses this issue for European aquatic environments through a process of (a) data collation, mainly with respect to levels of radioactivity in water sediments and aquatic flora and fauna, (b) the use of suitable distribution coefficients, concentration factors and global data where data gaps are present and (c) the utilisation of a reference organism approach whereby a finite number of suitable geometries are selected to allow dose per unit concentration factors to be derived and subsequent absorbed dose calculations (weighted or unweighted) to be made. The majority of the calculated absorbed dose, for both marine and freshwater organisms, arises from internally incorporated alpha emitters, with 210 Po and 226 Ra being the major contributors. Calculated doses are somewhat higher for freshwater compared to marine organisms, and the range of doses is also much greater. This reflects both the much greater variability of radionuclide concentrations in freshwater as compared to seawater, and also variability or uncertainty in concentration factor values. This work has revealed a number of substantial gaps in published empirical data especially for European aquatic environments

  1. Cytogenetic methods for the detection of radiation-induced chromosome damage in aquatic organisms

    International Nuclear Information System (INIS)

    Kligerman, A.D.

    1979-01-01

    One means of evaluating the genetic effects of radiation on the genomes of aquatic organisms is to screen radiation-exposed cells for chromosome aberrations. A brief literature review of studies dealing with radiation-induced chromosome damage in aquatic organisms is presented, and reasons are given detailing why most previous studies are of little quantitative value. Suggestions are made for obtaining adequate qualitative and quantitative data through the use of modern cytogenetic methods and a model systems approach to the study of cytogenetic radiation damage in aquatic organisms. Detailed procedures for both in vivo and in vitro cytogenetic methods are described, and experimental considerations are discussed. Finally, suggestions for studies that could be of value in establishing protective guidelines for aquatic ecosystems are presented. (author)

  2. Preliminary assays for lemongrass essential oil ecotoxicological test in D. similis and C. silvestrii submitted to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Rogero, Jose R., E-mail: gtgimiliani@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cruz, Aurea S. [Instituto Adolfo Lutz, Sao Paulo, SP (Brazil). Culturas Celulares

    2011-07-01

    Pharmaceutical products are of great interest in ecotoxicological studies due to being found some of these products in the superficial waters and sediments, water and sewage treatment effluents. It was verified an increase of insect repellent chemical products in the aquatic environment because of the increase of diseases transmitted by mosquitoes like dengue. As these compounds show toxicity, the use of essential oils natural products with repellent properties is increasing and the literature about the impact in the aquatic environment is scarce. The hydric frame would suffer natural radiation and radiations from energy generation nuclear plants impacts fall out of tests and nuclear accidents. There is no universal definition of environmental protection and there are few studies on radiation effects in the aquatic environment. In this study was determined the lemon grass essential oil toxicity level as well as the lethal dose of ionizing radiation, LD{sub 50}, in aquatic organisms. Cytotoxicity test was performed by in vitro neutral red uptake method in NCTC clone L929 cell line. In the LD{sub 50} test aquatic organisms were submitted to gamma radiation. The essential oil of lemongrass Cymbopogon flexuosus showed cytotoxicity index IC{sub 50} about 50{mu}g.mL{sup -1}. The LD{sub 50} for Daphnia similis was 242 Gy and Ceriodaphnia silvestrii about 525 Gy. Studies will be continued with acute and chronic ecotoxicological tests of lemongrass essential oil in natural organisms and in organisms submitted to gamma radiation, utilizing the results obtained in this work. (author)

  3. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  4. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  5. Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems

    International Nuclear Information System (INIS)

    Seguí, X.; Pujolasus, E.; Betrò, S.; Àgueda, A.; Casal, J.; Ocampo-Duque, W.; Rudolph, I.; Barra, R.; Páez, M.; Barón, E.; Eljarrat, E.; Barceló, D.; Darbra, R.M.

    2013-01-01

    We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers. -- The risk of POPs for aquatic organisms was assessed at several sites around the world, using a fuzzy-based model to provide useful results for decision-makers

  6. Research of aquatic organism addition influence on the reproduction of yeast cells in the dough

    Directory of Open Access Journals (Sweden)

    Дмитро Павлович Крамаренко

    2016-12-01

    Full Text Available The analysis of the research results of influence of various amounts of aquatic organism additions on the reproduction of yeast cells is given. A positive impact of aquatic organism addition of animal and plant origin in investigated quantities on the reproduction of yeast cells is revealed. The influence of the chemical composition of the aquatic organism additives on the reproduction of yeast cells is proved

  7. Potential applications of SIMS technique for environmental monitoring based on exposure of aquatic organisms

    International Nuclear Information System (INIS)

    Noller, B.N.

    2000-01-01

    Full text: The kinds of environmental monitoring applications for which SIMS may be applicable, particularly with aquatic organisms, fall into 2 main categories: a) Undertaking controlled dose experiments with aquatic organisms where the nature of exposure is known together with water concentration, soft tissue and shell concentrations; and b) Using aquatic organisms from historically or currently impacted sites where other data or information may or may not be available to give some insight into the exposure pattern, generally from existing water monitoring data, sediment concentrations and other data such as water release or flow data. The advantage of experiments undertaken under controlled conditions is that they enable modelling to be developed and be applied. Usually the controlled studies with aquatic organisms are undertaken following cases of historical exposure. The usefulness of historical studies is therefore questionable unless a clear link with the organism exposure can be established. Some examples will be given to show how historical data could be used to bridge the information gap

  8. Thermal effects on aquatic organisms: annotated bibliography of the 1974 literature

    International Nuclear Information System (INIS)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.

    1975-06-01

    The annotated bibliography covers the 1974 literature concerning thermal effects on aquatic organisms. Emphasis is placed on the effects of the release of thermal effluents on aquatic ecosystems. Indexes are provided for: author, keywords, subject category, geographic location, taxon, and title (alphabetical listing of keyword-in-context of the nontrivial words in the title). (CH)

  9. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    Science.gov (United States)

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  11. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  12. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  13. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Frank

    2005-01-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds. - Major developments in the passive sampling of organic contaminants in aquatic environments will support future monitoring, compliance and research

  14. Thermal effects on aquatic organisms. Annotated bibliography of the 1975 literature

    International Nuclear Information System (INIS)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.; Dailey, N.S.

    1976-10-01

    Abstracts are presented of 716 papers published during 1975 concerning thermal effects on aquatic organisms. Indexes are included for author, subject category, geographic location, toxon, title, and keywords

  15. Thermal effects on aquatic organisms. Annotated bibliography of the 1975 literature

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.; Dailey, N.S. (comps.)

    1976-10-01

    Abstracts are presented of 716 papers published during 1975 concerning thermal effects on aquatic organisms. Indexes are included for author, subject category, geographic location, toxon, title, and keywords. (CH)

  16. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  17. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  18. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China.

    Science.gov (United States)

    Gu, Bao G; Wang, Hui M; Chen, William L; Cai, Dao J; Shan, Zheng J

    2007-06-01

    This study was carried out to assess the risk of lambda-cyhalothrin to aquatic organisms used in paddy field, and to provide assistance in the ecological risk management of lambda-cyhalothrin. The acute toxicities of five individual formulations of lambda-cyhalothrin to four aquatic species were investigated in the laboratory, as well as in a simulated paddy field-pond ecosystem, and the results implicated that lambda-cyhalothrin is highly toxic to fish, and to a greater extent to shrimp. There were differences in the toxicities to each aquatic organisms among different formulations. lambda-Cyhalothrin degraded rapidly in the environment, with half-lives of different formulations in paddy field water (0.23-0.53 days), pond water (0.38-0.63 days), and paddy field soil (0.96-7.35 days), respectively. The water overflow from the paddy field following a simulated rainstorm 12h after application of lambda-cyhalothrin did not cause injury to fish, clam or crab, but was severely hazardous to shrimp. Additionally, no injury to shrimp was found when simulated overflow occurred 4 days after application. These results suggest that the environmental risk of lambda-cyhalothrin to aquatic organisms can be reduced by (1) developing a relatively safe formulation such as a suspension concentrate, and/or (2) controlling the drainage time of the paddy field.

  19. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review.

    Science.gov (United States)

    Ribeiro, Cláudia; Ribeiro, Ana Rita; Tiritan, Maria Elizabeth

    Aquatic environments are among the most noteworthy ecosystems regarding chemical pollution due to the anthropogenic pressure. In 2000, the European Commission implemented the Water Framework Directive, with the aim of progressively reducing aquatic chemical pollution of the European Union countries. Therefore, the knowledge about the chemical and ecological status is imperative to determine the overall quality of water bodies. Concerning Portugal, some studies have demonstrated the presence of pollutants in the aquatic environment but an overall report is not available yet. The aim of this paper is to provide a comprehensive review about the occurrence of priority substances included in the Water Framework Directive and some classes of emerging organic pollutants that have been found in Portuguese aquatic environment. The most frequently studied compounds comprise industrial compounds, natural and synthetic estrogens, phytoestrogens, phytosterols, pesticides, pharmaceuticals and personal care products. Concentration of these pollutants ranged from few ng L(-1) to higher values such as 30 μg L(-1) for industrial compounds in surface waters and up to 106 μg L(-1) for the pharmaceutical ibuprofen in wastewaters. Compounds already banned in Europe such as atrazine, alkylphenols and alkylphenol polyethoxylates are still found in surface waters, nevertheless their origin is still poorly understood. Beyond the contamination of the Portuguese aquatic environment by priority substances and emerging organic pollutants, this review also highlights the need of more research on other classes of pollutants and emphasizes the importance of extending this research to other locations in Portugal, which have not been investigated yet.

  20. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  1. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review

    CSIR Research Space (South Africa)

    Mahaye, Ntombikayise

    2017-07-01

    Full Text Available Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key...

  3. Effects of Outreach on the Prevention of Aquatic Invasive Species Spread among Organism-in-Trade Hobbyists.

    Science.gov (United States)

    Seekamp, Erin; Mayer, Jessica E; Charlebois, Patrice; Hitzroth, Greg

    2016-11-01

    Releases of aquatic organisms-in-trade by aquarists, water gardeners, and outdoor pond owners have been identified as aquatic invasive species vectors within the Laurentian Great Lakes region. The trademarked U.S. Fish and Wildlife Service Habitattitude campaign was developed in 2004 to encourage self-regulation by these groups, but little is known about its effects. We surveyed organisms-in-trade hobbyists in the eight Great Lakes states (Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin, USA) to assess their recognition of the Habitattitude campaign and their compliance with the campaign's recommended behaviors for organism purchase and disposal. Awareness of the Habitattitude campaign was low, but hobbyists that identified as both water gardeners and aquarium hobbyists were more aware of the campaign than individuals who participated in one of those hobbies. Engaged hobbyists (high aquatic invasive species awareness, concern, and knowledge) were significantly more likely than passive hobbyists (low aquatic invasive species awareness, concern, and knowledge) to make decisions about disposal of live organisms with the intention of preventing aquatic invasive species spread, were more likely to contact other hobbyists for disposal and handling advice, and were less likely to contact professionals, such as retailers. On the basis of our results, we suggest that compliance with recommended behaviors may be increased by fostering hobbyist networks; creating materials that both explain tangible, negative environmental impacts and list specific prevention behaviors; and disseminating these materials through trusted information sources and venues.

  4. Hepatic glycogen levels in female rats submitted to aquatic therapy after muscle disuse

    Directory of Open Access Journals (Sweden)

    Jefferson Pacheco Amaral Fortes

    2017-12-01

    Full Text Available The aim of the present study was to analyse the changes in liver glycogen content in rats subjected to aquatic therapy post-disuse of the paw. 32 wistar adult female rats were equally divided: Control (C, kept in the cage for two weeks without interventions; Disuse (D had the right paw immobilized with hip extension, knee and plantar flexion for two weeks; Aquatic Therapy (AT underwent aquatic therapy with increments of 3 minutes daily for two weeks, totalizing 36 minutes of training; Disused Aquatic Therapy (DTA was first subjected to immobilization for two weeks and 24 hours after withdrawal of immobilization aquatic therapy was started for two more weeks, in same protocols of D and AT groups. At the end of the experiment, the animals were sacrificed, and tissues were dissected, weighed and stored. The liver tissues were referred analysis of glycogen content. It was observed that the blood glucose levels of the AT group (104 mg/dL were different from the C group (86 mg/dL; p = 0.0213. Regarding hepatic glycogen, the D (2.35mg±0.07 and AT (2.73mg±0.07 groups had hepatic glycogen reduction by 22% and 15%, relative to C (2.51mg±0.03; p <0.0001. The DTA group presented no differences when compared to the control, suggesting the normalization of the finding. Muscle disuse by two weeks promoted changes in glycogen levels, however, two weeks after disuse condition, the aquatic therapy were able to correct the energetic reserve in liver.

  5. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.

    Science.gov (United States)

    Pott, Antonia; Otto, Mathias; Schulz, Ralf

    2018-09-01

    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    International Nuclear Information System (INIS)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R.

    2015-01-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L -1 and for LEO was 3.1 ± 1.4 mg L -1 . In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L -1 and 2.4 ± 0.3 mg L -1 respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  7. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R., E-mail: sorogero@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L{sup -1} and for LEO was 3.1 ± 1.4 mg L{sup -1}. In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L{sup -1} and 2.4 ± 0.3 mg L{sup -1} respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  8. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  9. Modeling time-dependent toxicity to aquatic organisms from pulsed exposure of PAHs in urban road runoff

    International Nuclear Information System (INIS)

    Zhang Wei; Ye Youbin; Tong Yindong; Ou Langbo; Hu Dan; Wang Xuejun

    2011-01-01

    Understanding of the magnitude of urban runoff toxicity to aquatic organisms is important for effective management of runoff quality. In this paper, the aquatic toxicity of polycyclic aromatic hydrocarbons (PAHs) in urban road runoff was evaluated through a damage assessment model. Mortality probability of the organisms representative in aquatic environment was calculated using the monitored PAHs concentration in road runoff. The result showed that the toxicity of runoff in spring was higher than those in summer. Analysis of the time-dependent toxicity of series of runoff water samples illustrated that the toxicity of runoff water in the final phase of a runoff event may be as high as those in the initial phase. Therefore, the storm runoff treatment systems or strategies designed for capture and treatment of the initial portion of runoff may be inappropriate for control of runoff toxicity. - Research highlights: → Toxicity resulting from realistic exposure patterns of urban runoff is evaluated. → Toxicity of runoff water in the final phase is as high as the initial phase. → Treatment of the initial runoff portion is inappropriate to abate runoff toxicity. - Toxicity to aquatic organisms after sequential pulsed exposure to PAHs in urban road runoff is evaluated.

  10. Radioactive contamination of aquatic organisms of the Yenisei river in the area affected by the activity of a Russian plutonium complex

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Sukovaty, A.

    2005-01-01

    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by a Russian facility producing weapons-grade plutonium, which has been in operation for many years. The aim of the study conducted between 1997 and 2003 was to investigate accumulation of artificial radionuclides by aquatic organisms of the Yenisei River and to estimate the exposure dose rates to organisms from various sources. The aquatic plants sampled were of three species: Potamogeton lucens, Fontinalis antipyretica, and Ceratophyllum demersum. The gamma-spectrometric and radiochemical analysis of the samples of aquatic plants for artificial radionuclides has revealed more than 20 long-lived and short-lived radionuclides, including plutonium isotopes. The aquatic animal Phylolimnogammarus viridis and diatoms also contain artificial radionuclides. For most aquatic organisms under study, the dose received from the artificial irradiation is an order of magnitude higher than the dose received from natural irradiation. As Fontinalis antipyretica features the highest capacity to accumulate artificial radionuclides, it accumulates the largest artificial exposure does among the study aquatic organisms (up to 39 μGy/day)

  11. Zebrabase: An intuitive tracking solution for aquatic model organisms

    OpenAIRE

    Oltova, Jana; Bartunek, Petr; Machonova, Olga; Svoboda, Ondrej; Skuta, Ctibor; Jindrich, Jindrich

    2018-01-01

    Small fish species, like zebrafish or medaka, are constantly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. Here, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers and caretakers, in b...

  12. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Science.gov (United States)

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  13. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom)], E-mail: pworsfold@plymouth.ac.uk; Monbet, Philippe [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia); Tappin, Alan D.; Fitzsimons, Mark F.; Stiles, David A. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia)

    2008-08-22

    This review provides a critical assessment of knowledge regarding the determination of organic phosphorus (OP) and organic nitrogen (ON) in aquatic systems, with an emphasis on biogeochemical considerations and analytical challenges. A general background on organic phosphorus and organic nitrogen precedes a discussion of sample collection, extraction, treatment/conditioning and preconcentration of organic phosphorus/nitrogen from sediments, including suspended particulate matter, and waters, including sediment porewaters. This is followed by sections on the determination of organic phosphorus/nitrogen components. Key techniques covered for organic phosphorus components are molecular spectrometry, atomic spectrometry and enzymatic methods. For nitrogen the focus is on the measurement of total organic nitrogen concentrations by carbon hydrogen nitrogen analysis and high temperature combustion, and organic nitrogen components by gas chromatography, high-performance liquid chromatography, gel electrophoresis, mass spectrometry, nuclear magnetic resonance spectrometry, X-ray techniques and enzymatic methods. Finally future trends and needs are discussed and recommendations made.

  15. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment.

    Science.gov (United States)

    Stuer-Lauridsen, Frank

    2005-08-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.

  16. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    Science.gov (United States)

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The toxicity of oxidised DWCNTs to the aquatic organisms, and related causing mechanisms

    CSIR Research Space (South Africa)

    Lukhele, LP

    2013-08-01

    Full Text Available earlier reported for the three aquatic organisms in earlier scientific reports. Finally, the paper discusses the linkage between the toxicity mechanisms and the physicochemical properties of DWCNTs, namely: agglomeration state, surface chemistry...

  18. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Ip, C.C.M.; Li, X.D.; Zhang, G.; Wong, C.S.C.; Zhang, W.L.

    2005-01-01

    The accumulation of trace metals in aquatic organisms may lead to serious health problems through the food chain. The present research project aims to study the accumulation and potential sources of trace metals in aquatic organisms of the Pearl River Estuary (PRE). Four groups of aquatic organisms, including fish, crab, shrimp, and shellfish, were collected in the PRE for trace metal and Pb isotopic analyses. The trace metal concentrations in the aquatic organism samples ranged from 0.01 to 2.10 mg/kg Cd, 0.02 to 4.33 mg/kg Co, 0.08 to 4.27 mg/kg Cr, 0.15 to 77.8 mg/kg Cu, 0.17 to 31.0 mg/kg Ni, 0.04 to 30.7 mg/kg Pb, and 8.78 to 86.3 mg/kg Zn (wet weight). High concentrations of Cd were found in crab, shrimp and shellfish samples, while high concentration of Pb was found in fish. In comparison with the baseline reference values in other parts of the world, fish in the PRE had the highest elevated trace metals. The results of Pb isotopic compositions indicated that the bioaccumulation of Pb in fish come from a wide variety of food sources and/or exposure pathways, particularly the anthropogenic inputs. - Relative high concentrations of Cd were found in crab, shrimp and shellfish samples while high concentration of Pb was found in fish, particularly from the anthropogenic inputs

  19. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms

    NARCIS (Netherlands)

    De Bie, T.; De Meester, L.; Brendonck, L.; Martens, K.; Goddeeris, B.; Ercken, D.; Hampel, H.; Denys, L.; Vanhecke, L.; Van der Gucht, K.; Van Wichelen, J.; Vyverman, W.; Declerck, S.A.J.

    2012-01-01

    Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases

  20. Environmental effects of fenitrothion use in forestry: impacts on insect pollinators, songbirds & aquatic organisms

    National Research Council Canada - National Science Library

    Ernst, W. R; Pearce, P. A; Pollock, T. L

    1989-01-01

    The Team focused on insect pollinators and pollination, forest songbirds, and aquatic organisms because of a judgement that most well documented negative effects of fenitrothion spraying are in those...

  1. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms.

    Science.gov (United States)

    Wagil, Marta; Białk-Bielińska, Anna; Puckowski, Alan; Wychodnik, Katarzyna; Maszkowska, Joanna; Mulkiewicz, Ewa; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2015-02-01

    Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.

  2. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  3. From owned lakes to State assets. Aquatical disputes at Pacaya Samiria National Reserve

    Directory of Open Access Journals (Sweden)

    Mireia Campanera Reig

    2017-11-01

    Full Text Available The ethnographic research undertook between 2008 and 2015 around a fishing conflict in a lake of the Pacaya Samiria National Reserve —RNPS, Peru— revealed the historical, political and cultural vicissitudes of the communal organization of the aquatic spaces of lowland Amazon. The results show that the creation of the protected natural area and its management policies negatively affected the local customs. Although the administration of the natural area discourse promoted collaboration with the inhabitants, it did not take into account local customary norms, Kukama-Kukamiria aquatic cosmology, and notions such as ‘mezquineo,’ which submit to social control the extraction of resources. This paper analyzes the articulations between the implemented institutional management and the customary communal logics that regulated the access and the use of the lake. The research found that both the customary and the state regulations are in dispute over the sovereignty of aquatic spaces, and that co-management has never been fully implemented, given the difficulty of public institutions in sharing power with communities.

  4. Hierarchical responses to organic contaminants in aquatic ecotoxicological bioassays: from microcystins to biodegradation

    OpenAIRE

    Montenegro, Katia

    2008-01-01

    In this thesis I explore the ecotoxicological responses of aquatic organisms at different hierarchical levels to organic contaminants by means of bioassays. The bioassays use novel endpoints or approaches to elucidate the effects of exposure to contaminants and attempt to give mechanistic explanations that could be used to interpret effects at higher hierarchical scales. The sensitivity of population growth rate in the cyanobacteria species Microcystis aeruginosa to the herbicide glyp...

  5. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  6. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    Science.gov (United States)

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-05-01

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics

  7. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    1983-01-01

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  8. Ecological assessments of effluent impacts on communities of indigenous aquatic organisms (symposium), 1979

    International Nuclear Information System (INIS)

    Bates, J.M.; Weber, C.I.

    1981-01-01

    This conference proceedings contains 17 papers, of which 4 are indexed separately. All papers deal with the effects of chemical, radioactive, and thermal effluents on aquatic organisms. The emphasis is on the methods of evaluating the effects of effluents on the standing crop, community structure, and community function

  9. Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon

    CSIR Research Space (South Africa)

    von der Heyden, BP

    2014-08-01

    Full Text Available and freshwater environments. We show that Fe(II)-rich phases are prevalent throughout different aquatic regimes yet exhibit a high degree of chemical heterogeneity. Furthermore, we show that Fe-rich particles show strong associations with organic carbon...

  10. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    Science.gov (United States)

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  12. Assessing off-site impacts of wildfires on aquatic organisms using in-situ assays

    Science.gov (United States)

    Ré, Ana; Saraiva, MariaJoão; Puga, João; Campos, Isabel; Pereira, Joana; Keizer, Jacob; Goncalves, Fernando; Abrantes, Nelson

    2017-04-01

    Wildfires have been recognized as an important source of diffuse pollution to aquatic systems, particularly through the production and transport of pyrolytic substances such as polycyclic aromatic hydrocarbons (PAHs) and metals associated to ash/soil loads. However, the effects of these compounds from recently burnt areas on the aquatic biota have been largely ignored. Hence, the main goal of this study was to assess the ecotoxicological effects of wildfires in aquatic systems through the use of in situ experiments. In this sense, five sites were selected in a catchment partially burnt: two in the main water course - Ceira river (Miranda do Corvo, Portugal), being one located upstream (RUS) and the other downstream (RDS) the burnt area; two in tributary streams within the burnt area (SUS and SDS); and finally one in a stream located in the unburnt part of the catchment (CS). During the first post-fire rainfall events, distinct organisms, including the water flea Daphnia magna, the freshwater shrimp Atyaephyra desmaresti, the freshwater clam Corbicula fluminea and the mosquitofish Gambusia holbrooki were exposed in situ, in all five sites, using dedicated test chambers. After four days of field exposition, the mortality and post-exposure feeding inhibition were evaluated. Feeding depression after exposure time was selected as a sub-lethal endpoint because it is a quick, sensitive and ecologically relevant indicator of toxic stress. The results showed negligible mortality for all the species and sites, thus lethality was not sensitive to discern impacts among the assessed sites. Conversely, the sub-lethal post-exposure feeding inhibition endpoint, revealed a decrease of feeding rate, in streams within the burnt area (SUS and SDS), that seemed to be the most affected places in the study area. Conversely, the sites outside the burnt area, both on river (RUS) and on the stream (CS), showed no adverse effects in this endpoint. Hence, the current results pointed-out that

  13. Review of reproductive and developmental toxicity induced by organotins in aquatic organisms and experimental animals

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, A.; Takagi, A.; Nishimura, T.; Kanno, J.; Ema, M. [National Inst. of Health Sciences, Tokyo (Japan)

    2004-09-15

    Widespread use of organotins has caused increasing amounts to be released into the environment. The most important non-pesticidal route of entry of organotins into the environment is through leaching of organotin-stabilized PVC in water, and the use in antifouling agents, resulting in the introduction of organotin into the aquatic environment. Data are available regarding the detection of butyltins and phenyltins in aquatic marine organisms and marine products. Food chain bioamplification of butyltin in oysters, mud crabs, marine mussels, chinook salmons, dolphins, tunas, and sharks and of phenyltin in carps and horseshoe crabs has been reported. These findings indicate that organotins accumulate in the food chain and are bioconcentrated, and that humans can be exposed to organotins via seafood. The levels of organotin compounds in seafood are not considered to be sufficiently high to affect human health. However, Belfroid et al. (2000) noted that more research on residual TBT levels in seafood was needed before a definitive conclusion on possible health risks could be drawn. Although the toxicity of organotins has been extensively reviewed, the reproductive and developmental toxicity of organotins is not well understood. We summarized the data of the studies on reproductive and developmental toxicity of organotins in aquatic organisms and experimental animals.

  14. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  15. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    Science.gov (United States)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  16. Design and setup of intermittent-flow respirometry system for aquatic organisms

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard; Bushnell, P.G.; Steffensen, John Fleng

    2016-01-01

    Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short...... and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry...

  17. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Science.gov (United States)

    Ekvall, Mikael T; Bianco, Giuseppe; Linse, Sara; Linke, Heiner; Bäckman, Johan; Hansson, Lars-Anders

    2013-01-01

    Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale) organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D) tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  18. Saponins in the aquatic environment

    DEFF Research Database (Denmark)

    Jiang, Xiaogang

    -like structure, saponins have a lot of applications, e.g. as foaming agents in consumer products, as adjuvants in the vaccine, as biosurfactants in soil washing and as biopesticides in crop protection. Hence, they may leach into the aquatic environment due to their low octanol/water partition coefficient......This PhD thesis consists of three parts to illustrate the goal of getting a better understanding of the fate and toxicity of saponins in the aquatic environment. It includes an introduction to the general aspects of saponins, their chemistry and the ecotoxicology concepts, and a second part...... and poor binding to organic matter. They may therefore also pose a risk to the aquatic organisms. Since saponins are efficient against pests, they are most likely also toxic to the non-target organisms. However, their fate and toxicity in the environment are not fully understood. There are two main...

  19. Metabolism and genotoxicity of aromatic amines in aquatic organisms

    International Nuclear Information System (INIS)

    Knezovich, J.P.; Krauter, P.W.; Lawton, M.P.; Harrison, F.L.

    1987-01-01

    Marine mussels (Mytilus edulis) and bullfrog tadpoles (Rana catesbeiana) were used to investigate the comparative metabolism and genotoxicity of aromatic amines in vivo. These organisms were selected because they possess distinctly different metabolic capabilities: mussels lack an active mixed-function-oxidase enzyme system that is present in most other organisms, including amphibians. Using 14 C-labeled chemical probes (o- and p-toluidine, 2-aminofluorene (2-AF), and 2-acetylaminofluorene (2-AAF)), mussels and tadpoles well dosed with individual compounds by direct immersion in aqueous solutions. The identities of metabolites were then determined by HPLC and GC/MS methods. Results indicate that the N-conjugating pathways used by mussels result primarily in the detoxification of aromatic amines by limiting the amount of primary amine available for activation. The tadpoles excreted a number of 2-AAF metabolites but did form DNA and protein adducts in the liver. Induction of micronuclei in the peripheral red blood cells was also demonstrated. The tadpole was shown to be a sensitive biological indicator of pollution in aquatic ecosystems

  20. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  1. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    International Nuclear Information System (INIS)

    Morgaleva, T; Morgalev, Yu; Gosteva, I; Morgalev, S

    2015-01-01

    The effect of nanoparticles with the particle size Δ 50 =5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C 20 is determined for all the organisms used in bioassays. L(E)C 50 is estimated for Paramecium caudatum (L(E)C 50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C 50 = 0.529 mg/l), for Daphnia m. S (L(E)C 50 > 100 mg/l) and for fish Danio rerio (L(E)C 50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances. (paper)

  2. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    Science.gov (United States)

    Morgaleva, T.; Morgalev, Yu; Gosteva, I.; Morgalev, S.

    2015-11-01

    The effect of nanoparticles with the particle size Δ50=5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C20 is determined for all the organisms used in bioassays. L(E)C50 is estimated for Paramecium caudatum (L(E)C50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C50 = 0.529 mg/l), for Daphnia m. S (L(E)C50 > 100 mg/l) and for fish Danio rerio (L(E)C50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances.

  3. The Mode of Action of Isocyanide in Three Aquatic Organisms, Balanus amphitrite, Bugula neritina and Danio rerio

    KAUST Repository

    Zhang, Yi-Fan; Kitano, Yoshikazu; Nogata, Yasuyuki; Zhang, Yu; Qian, Pei-Yuan

    2012-01-01

    Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine

  4. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium.

    Science.gov (United States)

    Fevery, Davina; Houbraken, Michael; Spanoghe, Pieter

    2016-04-15

    Various studies focus on professional pesticide use, whereas pressure of non-professional use on human and the environment is often neglected. In this study, an attempt was made to estimate the pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium based on sales figures and by using three exposure models. A classification in non-professional use was made based on type of pesticide, application method and on intensity of non-professional use. Pressure of non-professional use on operators is highest for intensive operators, caused by the use of insecticides in an aerosol spray can. Pressure of non-professional pesticides on aquatic life is mainly generated by the use of herbicides. The aerosol spray induces the highest pressure whereas the trigger application hardly affects operator and environmental exposure. The ordinary non-professional user generates most pressure on aquatic organisms. Pressure of non-professional pesticides on bees is mainly caused by the use of insecticides, especially the active substance imidacloprid in combination with the aerosol spray can application method applied by an intensive operator. In general, both total usage (kg) and pressure of pesticides decreased for the period 2005 to 2012 due to efforts made by the government and industry. The results of this study suggest to pay special attention to aerosol spray applications and the non-professional use of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Toxicokinetic modeling challenges for aquatic nanotoxicology

    Directory of Open Access Journals (Sweden)

    Wei-Yu eChen

    2016-01-01

    Full Text Available Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs. Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to determine the uptake and elimination rate constants for metal NPs in the metabolically active/ detoxified pool of tissues, a one-compartmental toxicokinetic model can be applied when subcellular partitioning of metal NPs data would be available. The present review is an attempt to describe the nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms with the help of the mechanistic modeling for NP size-dependent physiochemical properties and parameters. Physiologically-based pharmacokinetic (PBPK models can provide an effective tool to estimate the time course of NP accumulation in target organs and is useful in quantitative risk assessments. NP accumulation in fish should take into account different effects of different NP sizes to better understand tissue accumulative capacities and dynamics. The size-dependent NP partition coefficient is a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further research is needed to construct the effective systems-level oriented toxicokinetic model that can provide a useful tool to develop quantitatively the robustly approximate relations that convey a better insight into the impacts of environmental metal NPs on subcellular and tissue/organ responses in aquatic organisms.

  6. Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents.

    Science.gov (United States)

    Queiroz, Rita de Cássia Souza de; Andrade, Rodrigo Santos; Dantas, Isadora Rosário; Ribeiro, Vinícius de Souza; Neto, Luciano Brito Rodrigues; Almeida Neto, José Adolfo de

    2017-08-03

    Considering the diversity and the unexplored potential of regional aquatic flora, this study aimed to identify and analyze the potential of native aquatic macrophytes to reduce the organic matter of dairy wastewater (DW) using experimental constructed wetlands. The dairy wastewater (DW) had an average chemical oxygen demand (COD) of 7414.63 mg/L and then was diluted to 3133.16 mg/L (D1) and to 2506.53 mg/L (D2). Total solids, COD, temperature, and pH analyses were performed, and the biochemical oxygen demand (BOD) was estimated from the COD values. The best performance in the reduction of the organic matter was observed for Polygonum sp. (87.5% COD and 79.6% BOD) and Eichhornia paniculata (90% COD and 83.7% BOD) at dilution D1, on the 8th day of the experiment. However, the highest total solids removal was observed for Polygonum sp. (32.2%), on the 4th day, at dilution D2. The total solid (TS) concentration has also increased starting from the 8th day of the experiment was observed which may have been due to the development of mosquito larvae and their mechanical removal by sieving, thus changing the steady state of the experimental systems. The macrophytes Polygonum sp. and E. paniculata were considered suitable for the reduction of organic matter of DW using constructed wetlands.

  7. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mikael T Ekvall

    Full Text Available Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  8. Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams.

    Science.gov (United States)

    Cornacchia, Loreta; van de Koppel, Johan; van der Wal, Daphne; Wharton, Geraldene; Puijalon, Sara; Bouma, Tjeerd J

    2018-04-01

    Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  9. Dose assessment and radioecological consequences to aquatic organisms in the areas of Russia exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1996-01-01

    A comparative analysis of the radioecological state of aquatic ecosystems in the territory of Russia was performed. The following water bodies were considered: lakes and rivers in the Ural and Chernobyl contaminated areas, the Yenisei River, cooling ponds of nuclear power plants, and the Arctic Seas. It was demonstrated that in all cases under consideration, doses to aquatic organisms were markedly higher than those to humans. Especially high exposure levels to fish and molluscs much in excess of the natural background were observed in a number of water bodies in the Ural and Chernobyl contaminated areas

  10. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Science.gov (United States)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  11. Aquatic toxicology: past, present, and prospects.

    OpenAIRE

    Pritchard, J B

    1993-01-01

    Aquatic organisms have played important roles as early warning and monitoring systems for pollutant burdens in our environment. However, they have significant potential to do even more, just as they have in basic biology where preparations like the squid axon have been essential tools in establishing physiological and biochemical mechanisms. This review provides a brief summary of the history of aquatic toxicology, focusing on the nature of aquatic contaminants, the levels of contamination in...

  12. Method for calculation of upper limit internal alpha dose rates to aquatic organisms with application of plutonium-239 in plankton

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.

    1977-01-01

    A method for the calculation of upper limit internal alpha dose rates to aquatic organisms is presented. The mean alpha energies per disintegration of radionuclides of interest are listed to be used in standard methodologies to calculate dose to aquatic biota. As an application, the upper limits for the alpha dose rates from 239 Pu to the total body of plankton are estimated based on data available in open literature [pt

  13. Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application

    Energy Technology Data Exchange (ETDEWEB)

    Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.; Cowley, Paul D.; Deng, Zhiqun D.; Fisk, Aaron T.; Harcourt, Robert G.; Heupel, Michelle; Hinch, Scott G.; Holland, Kim N.; Hussey, Nigel E.; Iverson, Sara J.; Kessel, Steven T.; Kocik, John F.; Lucas, Martyn C.; Flemming, Joanna Mills; Nguyen, Vivian M.; Stokesbury, Michael J. W.; Vagle, Svein; VanderZwaag, David L.; Whoriskey, Frederick G.; Young, Nathan

    2017-09-13

    Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animal tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.

  14. Aquatic Ecology Section

    International Nuclear Information System (INIS)

    Brocksen, R.W.

    1978-01-01

    Population studies were concerned with predicting long-term consequences of mortality imposed on animal populations by man's activities. These studies consisted of development of a generalized life cycle model and an empirical impingement model for use in impact analysis. Chemical effects studies were conducted on chlorine minimization; fouling by the Asiatic clam; identification of halogenated organics in cooling water; and effects of halogenated organics in cooling systems on aquatic organisms. Ecological transport studies were conducted on availability of sediment-bound 137 Cs and 60 Co to fish; 137 Cs and 60 Co in White Oak Lake fish; and chromium levels in fish from a lake chronically contaminated with chromates from cooling towers. Progress is also reported on the following: effects of irradiation on thermal tolerance of mosquito fish; toxicity of nickel to the developing eggs and larvae of carp; accumulation of selected heavy metals associated with fly ash; and environmental monitoring of aquatic ecosystems

  15. INTERSPECIES CORRELATION ESTIMATION (ICE) FOR ACUTE TOXICITY TO AQUATIC ORGANISMS AND WILDLIFE. II. USER MANUAL AND SOFTWARE

    Science.gov (United States)

    Asfaw, Amha, Mark R. Ellersieck and Foster L. Mayer. 2003. Interspecies Correlation Estimations (ICE) for Acute Toxicity to Aquatic Organisms and Wildlife. II. User Manual and Software. EPA/600/R-03/106. U.S. Environmental Protection Agency, National Health and Environmental Effe...

  16. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarily attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.

  17. The involvement of metallothionein in the development of aquatic invertebrate

    International Nuclear Information System (INIS)

    Mao Huan; Wang Dahui; Yang Wanxi

    2012-01-01

    The many documents on metallothioneins (MTs) in aquatic organisms focus especially on their use as biomarkers in environmental monitoring programs, but there are a few papers that summarize the physiological role of MTs in aquatic organisms especially in their development. The multifaceted role of MTs include involvement in homeostasis, protection against heavy metals and oxidant damage, metabolic regulation, sequestration and/or redox control. MTs could be induced by heavy metals which are able to hinder gametogenesis, suppress embryogenesis, and hamper development. Here we pay more attention on the non-essential metal cadmium, which is the most studied heavy metal regarding MTs, and its effects on the development of aquatic invertebrates. In this paper, we have collected published information on MTs in aquatic organisms – mollusks, crustaceans, etc., and summarize its functions in aquatic invertebrates, especially those related to their development.

  18. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  19. Proceedings of the 36. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Martel, L.; Triffault-Bouchet, G.; Fournier, M.; Campbell, P.G.C.; Pellerin, J.; Lacroix, E.; Burridge, L.E.

    2010-01-01

    This workshop was held to discuss topics related to aquatic and environmental toxicology. Principles, issues, and recent innovations in aquatic toxicology were reviewed. New developments in environmental monitoring were discussed, as well as issues related to environmental regulation. The workshop was attended by a range of stakeholders from governments, universities, and industry. The sessions were entitled: legacy contaminants 1 organics; nanotoxicology; environmental effects monitoring; oil sands; BFR and other emerging contaminants; biomarkers; neuro and endocrine disrupting compounds; remediation of degraded aquatic environments; legacy contaminants 2 hydrocarbons; waterborne and diet-borne metals; water and sediment standards and criteria; pesticides; amphibians and wildlife toxicology; cyanobacteria; amphibians and wildlife toxicology 2; environmental risk assessment; genomics, protemics, and metabolomics; contamination in the Saguenay-St. Lawrence Marine park; legacy contaminants 3 organics and metals; community level indicators; toxicity tests; toxicity mechanisms; areas of concern; general aquatic toxicology; general legacy contaminants; emerging contaminants; cyanobacteria; amphibians and wildlife toxicology 1; omics in aquatic ecotoxicology; organism or population level indicators; and toxicity tests. The workshop featured 250 presentations, of which 24 have been catalogued separately for inclusion in this database. tabs., figs.

  20. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms.

    Science.gov (United States)

    Tišler, Tatjana; Krel, Alja; Gerželj, Urška; Erjavec, Boštjan; Dolenc, Marija Sollner; Pintar, Albin

    2016-05-01

    Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thermal effects on aquatic organisms: an annotated bibliography of the 1976 literature

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (comp.)

    1978-05-01

    This bibliography, containing 784 annotated references on the effects of temperature on aquatic organisms, is part of an assessment of the literature on the effects of thermal power plants on the environment. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title (alphabetical listing of keywords-in-context of nontrivial words in the title).

  2. Thermal effects on aquatic organisms: an annotated bibliography of the 1977 literature

    International Nuclear Information System (INIS)

    Talmage, S.S.

    1978-12-01

    This bibliography, containing 537 references from the 1977 literature, is the seventh in a series of annotated bibliographies on the effects of heat on aquatic organisms. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. References in the bibliography are divided into three subject categories: marine systems, freshwater systems, and estuaries. The references are arranged alphabetically by first author. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title

  3. GULF OF MEXICO AQUATIC MORTALITY NETWORK (GMNET)

    Science.gov (United States)

    Five U.S. states share the northern coast of the Gulf, and each has a program to monitor mortalities of aquatic organisms (fish, shellfish, birds). However, each state has different standards, procedures, and documentation of mortality events. The Gulf of Mexico Aquatic Mortality...

  4. Aquatic conditions

    Science.gov (United States)

    Warren E. Heilman

    1999-01-01

    This publication provides citizens, private and public organizations, scientists, and others with information about the aquatic conditions in or near national forests in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark-St. Francis National Forests in Arkansas. This report includes water quality analyses...

  5. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  6. Effect of physicochemical form on copper availability to aquatic organisms

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1983-11-01

    Copper concentration and speciation were determined in influent and effluent waters collected from eight power stations that used copper alloys in their cooling systems. Quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from an open- to closed-cycle operation. Copper sensitivity of selected ecologically and economically important aquatic organisms was also evaluted. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH were also assessed. The toxic response to copper differed with the species and life stage of the animal and with the chemical form of copper in the water

  7. The role of dissolved organic matters in the aquatic photodegradation of atenolol

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Ji, Yuefei; Zhou, Lei; Zhang, Ya [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The main reactive species in the photosensitization between atenolol and DOMs is {center_dot}OH. Black-Right-Pointing-Pointer Dissolved organic matter (DOM) can quench {center_dot}OH and screen light. Black-Right-Pointing-Pointer High yield of {center_dot}OH was observed with iron ions and DOM coexisting under irradiation. Black-Right-Pointing-Pointer SRFA can promote addition of {center_dot}OH on aromatic ring. - Abstract: Atenolol (ATL) is a photostable and hydrolysis resistant beta-blocker and has been frequently detected in natural water. In this study, mechanism on aquatic photodegradation of ATL was investigated with an emphasis on the role of dissolved organic matters (DOMs) as well as other natural water compositions (nitrate, bicarbonate and ferric ions). Significant acceleration of photodegradtion of ATL was observed in the presence of each DOMs added, namely Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA), Nordic Lake Fulvic Acid (NOFA) and Nordic Lake Humic Acid (NOHA). Hydroxyl radical ({center_dot}OH) was determined as the main reactive species in this process, instead of singlet oxygen or excited triplet of DOM. Addition of these four DOMs all inhibited photodegradation of ATL in nitrate solutions through reducing nitrated-derived {center_dot}OH and screening photons absorbed by nitrate. No loss of ATL was detected in bicarbonate solution with or without DOMs. Bicarbonate exhibited a scavenger of {center_dot}OH derived from DOMs. However, in the presence of iron species, photodegradation of ATL was significantly enhanced by the addition of each DOM, due to the high yield of {center_dot}OH in the photoprocess of Fe(III)-DOM complex. The photoproducts distribution of ATL demonstrated that SRFA promote the hydroxylation on aromatic ring in the presence of nitrate and reduce the ketone moiety to alcohol in the system of ferric ions. Our findings indicate that DOMs should be considered in

  8. Cold shock to aquatic organisms: guidance for power-plant siting, design, and operation

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1977-01-01

    Problems of cold-shock damages to aquatic organisms have arisen at some condenser cooling-water discharges of thermal power stations when the warm-water releases have suddenly terminated. The basis for such damage lies in the exposure of resident organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and often leads to death. Although some spectacular fish kills from cold shock have occurred, the present knowledge of the hydraulic and biological processes involved can provide guidance for the siting, design, and operation of power-plant cooling systems to minimize the likelihood of significant cold-shock effects. Preventing cold-shock damages is one consideration in minimizing overall environmental impacts of power-plant cooling and in balancing plant costs with environmental benefits

  9. Community effects of carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Velzeboer, I.; Kupryianchyk, D.; Peeters, E.T.H.M.; Koelmans, A.A.

    2011-01-01

    Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the

  10. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  11. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  12. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-Current knowledge and suggestions for future research.

    Science.gov (United States)

    Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G

    2017-04-01

    Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO 2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development of fauna, micro flora and aquatic organisms database at the vicinity of Gamma Green House in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nur Humaira Lau Abdullah; Mohd Zaidan Kandar; Phua Choo Kwai Hoe

    2012-01-01

    The biodiversity database of non-human biota which consisted of flora, fauna, aquatic organisms and micro flora at the vicinity of Gamma Greenhouse (GGH) in Malaysian Nuclear Agency is under development. In 2011, a workshop on biodiversity and sampling of flora and fauna by local experts had been conducted in BAB to expose the necessary knowledge to all those involved in this study. Since then, several field surveys had been successfully being carried out covering terrestrial and aquatic ecosystems in order to observe species distribution pattern and to collect the non-human biota samples. The surveys had been conducted according to standard survey procedures and the samples collected were preserved and identified using appropriate techniques. In this paper, the work on fauna, micro flora and aquatic organisms was presented. The fauna and micro flora specimens were kept in Biodiversity Laboratory in Block 44. Based on those field surveys several species of terrestrial vertebrate and invertebrate organisms were spotted. A diverse group of mushroom was found to be present at the study site. The presence of several aquatic zooplankton for example Cyclops, Nauplius; phytoplankton and bacteria for example Klebsiella sp, Enterobacter sp and others in the pond nearby proved that the pond ecosystem is in good condition. Through this study, the preliminary biodiversity list of fauna at the vicinity of the nuclear facility, GGH had been developed and the work will continue for complete baseline data development. Besides that, many principles and methodologies used in ecological survey had been learnt and applied but the skills involved still need to be polished through workshops, collaboration and consultation from local experts. Thus far, several agencies had been approached to gain collaboration and consultation such as Institut Perikanan Malaysia, UKM, UPM and UMT. (author)

  14. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  15. Toxicity of pentachlorophenol to aquatic organisms under naturally varying and controlled environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hedtke, S.F.; West, C.W.; Allen, K.N.; Norberg-King, T.J.; Mount, D.I.

    1986-06-01

    The toxicity of pentachlorophenol (PCP) was determined in the laboratory for 11 aquatic species. Tests were conducted seasonally in ambient Mississippi River water and under controlled conditions in Lake Superior water. Fifty-one acute toxicity tests were conducted, with LC50 values ranging from 85 micrograms/L for the white sucker Catastomus commersoni during the summer to greater than 7770 micrograms/L for the isopod Asellus racovitzai during the winter. The effect of PCP on growth and/or reproduction was determined for seven species. The most sensitive chronically exposed organisms were the cladoceran Ceriodaphnia reticulata and the snail Physa gyrina. The greatest variation in toxicity was due to species sensitivity. Within a given, season there was as much as a 40-fold difference in LC50 values between species. For any one species, the maximum variation in LC50 between seasons was approximately 14-fold. There were also substantial differences in acute-chronic relationships, with acute/chronic ratios ranging from greater than 37 for C. reticulata to 1 for Simocephalus vetulus. It is suggested that the composition of the aquatic community should be the most important consideration in estimating the potential environmental effects of PCP.

  16. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – A review

    International Nuclear Information System (INIS)

    Augusto, Sofia; Máguas, Cristina; Branquinho, Cristina

    2013-01-01

    During the last decades, awareness regarding persistent organic pollutants (POPs), such dioxins and furans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), has become a cutting-edge topic, due to their toxicity, bioaccumulation and persistency in the environment. Monitoring of PCDD/Fs and PAHs in air and water has proven to be insufficient to capture deposition and effects of these compounds in the biota. To overcome this limitation, environmental biomonitoring using lichens and aquatic mosses, have aroused as promising tools. The main aim of this work is to provide a review of: i) factors that influence the interception and accumulation of POPs by lichens; ii) how lichens and aquatic bryophytes can be used to track different pollution sources and; iii) how can these biomonitors contribute to environmental health studies. This review will allow designing a set of guidelines to be followed when using biomonitors to assess environmental POP pollution. -- Highlights: •We've reviewed the use of lichens and mosses as POP biomonitors. •We've discussed the factors that influence accumulation of POPs in lichens. •We've shown how biomonitors have been used to track pollution sources. •We've designed guidelines for the use of biomonitors to assess POP pollution. -- This review fulfils the lack of knowledge regarding the use of lichens and aquatic mosses as biomonitors of POPs, providing a set of guidelines to be followed

  17. Thermal effects on aquatic organisms: an annotated bibliography of the 1977 literature

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (comp.)

    1978-12-01

    This bibliography, containing 537 references from the 1977 literature, is the seventh in a series of annotated bibliographies on the effects of heat on aquatic organisms. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. References in the bibliography are divided into three subject categories: marine systems, freshwater systems, and estuaries. The references are arranged alphabetically by first author. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title (alphabetical listing of keywords-in-context of nontrivial words in the title).

  18. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China

    International Nuclear Information System (INIS)

    Yang Suwen; Yan Zhenguang; Xu Fanfan; Wang Shengrui; Wu Fengchang

    2012-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. It has been detected in the environment and has shown to high toxicity to aquatic organisms. To date no aquatic life criteria for TBBPA have been proposed. This work compiled all literature toxicity data of TBBPA on Chinese aquatic species. Eight resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for TBBPA. Ten genera mean acute values and three genera mean chronic values to freshwater aquatic animals, as well as two genera toxicity values to aquatic plants were collected. A criterion maximum concentration of 0.1475 mg/L and a criterion continuous concentration of 0.0126 mg/L were derived based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in risk assessment of TBBPA in the ambient water environment. - Highlights: ► We collected all the published toxicity data of TBBPA to aquatic organisms. ► We performed acute and chronic toxicity testes with eight Chinese resident aquatic species. ► The acute and chronic water quality criteria of TBBPA were developed and validated. ► This work is valuable to predict the risks posed by TBBPA in ambient water environment. - An acute water quality criterion of 0.1475 mg/L and a chronic water quality criterion of 0.0126 mg/L for TBBPA in China were developed according to USEPA guidelines.

  19. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  20. Species and biogeochemical cycles of organic phosphorus in sediments from a river with different aquatic plants located in Huaihe River Watershed, China.

    Science.gov (United States)

    Yuan, He Zhong; Pan, Wei; Ren, Li Jun; Liu, Eeng Feng; Shen, Ji; Geng, Qi Fang; An, Shu Qing

    2015-01-01

    The results of phosphorus fractionation in the sediments from a contaminated river containing different aquatic plants, analyzed by solution 31P-NMR for Organic Phosphorus, showed that the concentration of Inorganic Phosphorus dominated in all species and Organic Phosphorus accounted for over 20% of Total Phosphorus. In general, orthophosphate was dominant in all the sampling sites. The proportion of Organic Phosphorus accounting for the Total Phosphorus in the sediments with different plant decreased in the following order: Paspalum distichum>Typha orientalis>Hydrilla verticillata. Phosphorus-accumulation ability of Paspalum distichum was obviously stronger than Typha orientalis and Hydrilla verticillata. The Organic Phosphorus was in aquatic plants dominated by humic-associated P (Hu-P), which converted to Inorganic Ohosphorus more significantly in submerged plants than in emerged plants. The sediment dominated by Paspalum distichum abundantly accumulated Organic Phosphorus in the orthophosphate monoester fraction. The degradation and mineralization of orthophosphate monoester was the important source of high Inorganic Phosphorus concentration and net primary productivity in Suoxu River. The Organic Phosphorus derived from Typha orientalis and Hydrilla verticillata was dramatically converted to Inorganic Phosphorus when the environmental factors varied.

  1. Development of aquatic life criteria for nitrobenzene in China

    International Nuclear Information System (INIS)

    Yan Zhenguang; Zhang Zhisheng; Wang Hong; Liang Feng; Li Ji; Liu Hongling; Sun Cheng; Liang Lijun; Liu Zhengtao

    2012-01-01

    Nitrobenzene is a toxic pollutant and was the main compound involved in the Songhuajiang accident in 2007, one of the largest water pollution accidents in China in the last decade. No aquatic life criteria for nitrobenzene have previously been proposed. In this study, published toxicity data of nitrobenzene to Chinese aquatic species were gathered, and six resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for nitrobenzene. Seventeen genuses mean acute values, three genuses mean chronic values to freshwater aquatic animals, and six genus toxicity values to aquatic plants were collected in total. A criterion maximum concentration of 0.018 mg/L and a criterion continuous concentration of 0.001 mg/L were developed based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in the determination of water quality standard of nitrobenzene. - Highlights: ► China is embarking on development of national water quality criteria system. ► Nitrobenzene is a valuable case in development of water quality criteria in China. ► Several Chinese resident aquatic organisms were chosen to be tested. ► The aquatic life criteria for nitrobenzene were developed. - An acute criterion of 0.018 mg/L and a chronic criterion of 0.001 mg/L for nitrobenzene in China were developed according to the U.S. Environmental Protection Agency (USEPA) guidelines.

  2. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    Science.gov (United States)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  3. Removal of Chromophoric Dissolved Organic Matter and Heavy Metals in a River-Sea System: Role of Aquatic Microgel Formation

    Science.gov (United States)

    Shiu, R. F.; Lee, C. L.

    2016-12-01

    Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.

  4. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  5. Transfer of 226Ra, 228Ra, 210Pb and 210Po in aquatic organisms and food chain

    International Nuclear Information System (INIS)

    Yang Xiaotong; Weng Detong; Chen Wenyin; Chen Xiuyun; Chen Jixi; Zhao Shimin

    1998-01-01

    Objective: To find out the transfer regularities of 226 Ra, 228 Ra, 210 Pb and 210 Po, which are natural radionuclides in the aquatic organisms and food chain. Methods: Large amount of breed of representative aquatic products and their living waters and sediments were collected and treated according to routine experimental procedures. The contents of 226 Ra, 228 Ra, 210 Pb and 210 Po were detected in each sample. Measured data were analyzed statistically and pairwise comparisons were made to determine the differences between groups. Results: 226 Ra, 228 Ra and 210 Pb were mainly deposited in the bones (or shells), their concentration factors (CF) ranged from 10 2 to 10 3 ; the CF ranged only from 10 0 to 10 2 in the flesh. 210 Po was mainly deposited in the soft tissues, CF ranged from 10 2 to 10 4 ; especially in the stomachs and intestines of fishes, the value reached 10 4 . The cooking process did not impinge significantly on the transfer of 226 Ra, 228 Ra and 210 Pb in the food chain (P>0.05), but did significantly influence the transfer of 210 Po, especially in the freshwater fishes and shrimps. Paired comparison test of the activities between raw flesh and cooked flesh showed very significant difference (P 226 Ra, 228 Ra, 210 Pb and 210 Po. Even though the bones (or shells) of aquatic organisms contained relatively higher levels of 226 Ra, 228 Ra and 210 Pb, the cooking process does not significantly increase the radioactive contents in the foodstuffs. However, the cooking process does significantly influence the transfer of 210 Po. It does significantly increase the content of 210 Po in foodstuffs

  6. Impact of Boron pollution to Biota Marine aquatic

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto-SBS; Imam Hamzah; Fepriadi

    2003-01-01

    Power plants and industrial facilities can release potentially harmful chemicals, like boron through direct aqueous discharges or cycling of cooling water to aquatic ecosystems environmental at plant surrounding. Boron is an essential trace element for the growth of marine biota, but can be toxic in excessive amount. Therefore will adversely affect of growth, reproduction or survival. Toxicity to aquatic organism, including vertebrates, invertebrates and plants can vary depending on the organism's life stage and environment. It is recommended that the maximum concentration of total boron for the protection of marine aquatic life should not exceed 1,2 mg B/L. Early stages of life cycle are more sensitive to boron than later ones, and the use of reconstituted water shows higher toxicity in lower boron concentrations than natural waters. (author)

  7. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    Science.gov (United States)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  8. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zurita, Jorge L. [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Jos, Angeles [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Peso, Ana del; Salguero, Manuel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Camean, Ana M. [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Lopez-Artiguez, Miguel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Repetto, Guillermo [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain)], E-mail: repetto@us.es

    2007-11-15

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC{sub 50} of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress ({alpha}-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation.

  9. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    International Nuclear Information System (INIS)

    Zurita, Jorge L.; Jos, Angeles; Peso, Ana del; Salguero, Manuel; Camean, Ana M.; Lopez-Artiguez, Miguel; Repetto, Guillermo

    2007-01-01

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC 50 of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress (α-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation

  10. Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Lin, Chia-Jung; Liao, Chung-Min

    2014-01-01

    Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use. -- Highlights: • Environmentally relevant concentrations of anti-influenza drug have ecotoxicologically important effects. • Tamiflu is unlikely to pose a significant chronic environmental risk during seasonal influenza. • Chronic environmental risk posed by Tamiflu during pandemic is alarming. • Tertiary process in sewage treatment plants is crucial in mitigating Tamiflu exposure risk. -- A probabilistic framework can be used for assessing exposure risks posed by environmentally relevant concentrations of anti-influenza drug in aquatic ecosystems

  11. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus

    NARCIS (Netherlands)

    Laarhoven, Bob; Elissen, H.J.H.; Temmink, H.; Buisman, C.J.N.

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water

  12. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez-Bayo

    2016-11-01

    Full Text Available The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognized, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

  13. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels

    International Nuclear Information System (INIS)

    Komatsu, Kenshi; Higuchi, Masataka; Sakka, Masatoshi

    1981-01-01

    Accumulation of tritium in aquatic organisms was estimated through a model food chain such as; tritiated water (THO) → diatoms → brine shrimps → Japanese killifish. Tritium accumulations in each organism as organic bound form are expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (μCi/gH) to that in water (μCi/gH). The maximum R values were 0.5 in diatoms, Chaetoceros gracilis, 0.5 in brine shrimps, Artamia salina, and 0.32 in Japanese killifish, Oryzias latipes under the growing condition where tritium accumulation took place from tritiated water without tritiated diets. Brine shrimps and Japanese killifish, which grew from larvae to adult in tritiated sea water with feeding on tritiated diets (model food chain), had the R value at 0.70 and 0.67 respectively, indicating that more tritium accumulation in consumer populations with tritiated diets than those without tritiated diets. In addition, the R values of each organ of Japanese killifish, of DNA and the nucleotides purified from brine shrimps growing under the condition with or without our model food chain were measured to estimate the tritium distribution in the body or various components of the organism. These results did not indicate the seeking characteristic of tritium to some specific organs of compounds. (author)

  14. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K.; Higuchi, M.; Sakka, M. (Tohoku Univ., Sendai (Japan). School of Medicine)

    1981-06-01

    Accumulation of tritium in aquatic organisms was estimated through a model food chain such as; tritiated water (THO) ..-->.. diatoms ..-->.. brine shrimps ..-->.. Japanese killifish. Tritium accumulations in each organism as organic bound form are expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (..mu..Ci/gH) to that in water (..mu..Ci/gH). The maximum R values were 0.5 in diatoms, Chaetoceros gracilis, 0.5 in brine shrimps, Artamia salina, and 0.32 in Japanese killifish, Oryzias latipes under the growing condition where tritium accumulation took place from tritiated water without tritiated diets. Brine shrimps and Japanese killifish, which grew from larvae to adult in tritiated sea water with feeding on tritiated diets (model food chain), had the R value at 0.70 and 0.67 respectively, indicating that more tritium accumulation in consumer populations with tritiated diets than those without tritiated diets. In addition, the R values of each organ of Japanese killifish, of DNA and the nucleotides purified from brine shrimps growing under the condition with or without our model food chain were measured to estimate the tritium distribution in the body or various components of the organism. These results did not indicate the seeking characteristic of tritium to some specific organs of compounds.

  15. Ecotoxicological Assessment of Aquatic Genotoxicity Using the Comet Assay

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2006-09-01

    Full Text Available Comet assay is a novel biological analysis, which is a sensitive, flexible, simple, rapid, and inexpensive method to assess aquatic genotoxicant. Since Singh and co-workers developed the method in 1988, its use has increased exponentially in various fields. This review discourses on the application of this assay in aquatic ecosystems. Various types of cells from various aquatic organisms have been tested by various genotoxicant both direct- and indirect-acting using the comet assay. The applications of this assay suggest that it is a useful assay to assess aquatic genotoxicants. However, there are some factors, which should be taken into account when using this assay as aquatic ecotoxicological assessment device such as inter-animal and cell variability.

  16. Application of adenylate energy charge to problems of environmental impact assessment in aquatic organisms

    Science.gov (United States)

    Ivanovici, A. M.

    1980-03-01

    Various physiological and biochemical methods have been proposed for assessing the effects of environmental perturbation on aquatic organisms. The success of these methods as diagnostic tools has, however, been limited. This paper proposes that adenylate energy charge overcomes some of these limitations. The adenylate energy charge (AEC) is calculated from concentrations of adenine nucleotides ([ATP+½ADP]/[ATP+ADP+AMP]), and is a reflection of metabolic potential available to an organism. Several features of this method are: correlation of specific values with physiological condition or growth state, a defined range of values, fast response times and high precision. Several examples from laboratory and field experiments are given to demonstrate these features. The test organisms used (mollusc species) were exposed to a variety of environmental perturbations, including salinity reduction, hydrocarbons and low doses of heavy metal. The studies performed indicate that the energy charge may be a useful measure in the assessment of environmental impact. Its use is restricted, however, as several limitations exist which need to be fully evaluated. Further work relating values to population characteristics of multicellular organisms needs to be completed before the method can become a predictive tool for management.

  17. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements

    Directory of Open Access Journals (Sweden)

    Krzyżewska Iwona

    2016-03-01

    Full Text Available The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids, or they can adsorb environmental pollutants (heavy metal ions, organic compounds. Nanosilver (nAg is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

  19. Effect of pesticides on microbial communities in container aquatic habitats

    Science.gov (United States)

    Mosquitoes develop in a variety of aquatic habitats and feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to agricultural chemicals. We used a microcosm approach to examine ...

  20. Effects of radioactive nuclides on the reproduction of aquatic organisms

    International Nuclear Information System (INIS)

    Egami, N.

    1979-01-01

    Among various organisms in aquatic environments, fishes are more radiosensitive and critical creatures in terms of the biological effects of radionuclides on the ecosystem. The hatchability of fish eggs is not very sensitive criterion for radiation injury. The differentiation and development of the germ cells of fish embryos are inhibited by the small dose of radiation, and there is some possibility that they are more sensitive indicators of radiation effects. Chromosome aberration is used as an indicator of the effect of small dose of radiation in both cultured cells and cleaved egg cells of fishes. The late effects of radiation have been seen in fishes one or more years after the exposure to the relatively small dose of radiation. The biological materials for detecting the effect of radiation on the quantitative base in future in vitro and in vivo have been established. Current studies are directed toward finding more sensitive indicators of radiation effects, estimating more quantitatively the late effects of radiation on fishes, and analyzing the mechanism of radiation injuries. (Yamashita, S.)

  1. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  2. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  3. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...... that the free metal ion is an appropriate “general”descriptor of metal toxicity. Results for 128 laboratory tests on Daphnia magna exposed to copper ions (Cu2+) in water show that variation of several orders of magnitude are observed between the toxicity tests. These variations may be a result of the inability...... of magnitude difference occur for the extreme case of barley (Hordeum vulgare). Given the scarcity of terrestrial effect data compared to aquatic data, reliable and transparent, mechanistic-based predictions of terrestrial toxic impacts from aquatic effect data would be an important step ahead in the context...

  4. Aquatic animal telemetry: A panoramic window into the underwater world

    DEFF Research Database (Denmark)

    Hussey, Nigel E.; Kessel, Steven T.; Aarestrup, Kim

    2015-01-01

    The distribution and interactions of aquatic organisms across space and time structure our marine, freshwater, and estuarine ecosystems. Over the past decade, technological advances in telemetry have transformed our ability to observe aquatic animal behavior and movement. These advances are now p...... individuals, populations, and entire ecosystems. The next advance in aquatic telemetry will be the development of a global collaborative effort to facilitate infrastructure and data sharing and management over scales not previously possible....

  5. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France.

    Science.gov (United States)

    St-Pierre, S; Chambers, D B; Lowe, L M; Bontoux, J G

    1999-09-01

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media (water, sediments, and aquatic organisms) of both artificial and natural radionuclides and the consequent absorbed (whole body) dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 microGy h(-1). These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations (about 400 microGy h(-1)), and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations (about 100 microGy h(-1)). As a result, chronic levels of radioactivity, artificial and natural, measured in aquatic media downstream of Marcoule are unlikely to result in adverse health impacts on the categories and species of aquatic organisms studied. Thus, based on the screening level analysis discussed in this paper, a more detailed evaluation of the dose rates does not appear to be warranted.

  6. Aqueous leachate from western red cedar: effects on some aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Peters, G B; Dawson, H J; Hrutfiord, B F; Whitney, R R

    1976-01-01

    Water-soluble extractives from western red cedar heartwood, bark, and foliage were investigated for their toxicity to aquatic organisms. The heartwood lignins and bark extractives were found to be moderately toxic, but the foliage terpenes and heartwood tropolones were more toxic, causing 50% mortality to coho salmon (Oncorhynchus kisutch) fry at 0.33 and 2.7 mg/liter, respectively. Tropolones were significantly less toxic to invertebrates than to free-swimming stages of the fish tested. Fry were found to be the stage of development of coho salmon (O. kisutch) most sensitive to the tropolones, and eyed eggs the least sensitive. Sensitivity of the coho fry to tropolones was moderated by previous sublethal exposure or the presence of a chelatable cation. Results from field studies and a leaching study indicate that directly releasing cedar leachate from landfills or allowing logging debris to enter streams should be avoided. 13 references, 3 figures, 2 tables.

  7. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    Science.gov (United States)

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  8. Tropical dermatology: marine and aquatic dermatology.

    Science.gov (United States)

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  9. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    Science.gov (United States)

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  10. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam.

    Science.gov (United States)

    Chau, H T C; Kadokami, K; Duong, H T; Kong, L; Nguyen, T T; Nguyen, T Q; Ito, Y

    2018-03-01

    The rapid increase in the number and volume of chemical substances being used in modern society has been accompanied by a large number of potentially hazardous chemicals being found in environmental samples. In Vietnam, the monitoring of chemical substances is mainly limited to a small number of known pollutants in spite of rapid economic growth and urbanization, and there is an urgent need to examine a large number of chemicals to prevent impacts from expanding environmental pollution. However, it is difficult to analyze a large number of chemicals using existing methods, because they are time consuming and expensive. In the present study, we determined 1153 substances to grasp a pollution picture of microcontaminants in the aquatic environment. To achieve this objective, we have used two comprehensive analytical methods: (1) solid-phase extraction (SPE) and LC-TOF-MS analysis, and (2) SPE and GC-MS analysis. We collected 42 samples from northern (the Red River and Hanoi), central (Hue and Danang), and southern (Ho Chi Minh City and Saigon-Dongnai River) Vietnam. One hundred and sixty-five compounds were detected at least once. The compounds detected most frequently (>40 % samples) at μg/L concentrations were sterols (cholesterol, beta-sitosterol, stigmasterol, coprostanol), phthalates (bis(2-ethylhexyl) phthalate and di-n-butyl phthalate), and pharmaceutical and personal care products (caffeine, metformin). These contaminants were detected at almost the same detection frequency as in developed countries. The results reveal that surface waters in Vietnam, particularly in the center of large cities, are polluted by a large number of organic micropollutants, with households and business activities as the major sources. In addition, risk quotients (MEC/PNEC values) for nonylphenol, sulfamethoxazole, ampicillin, acetaminophen, erythromycin and clarithromycin were higher than 1, which indicates a possibility of adverse effects on aquatic ecosystems.

  11. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  12. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    Science.gov (United States)

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced

  13. 76 FR 67437 - Draft Aquatic Life Ambient Water Quality Criteria for Carbaryl-2011

    Science.gov (United States)

    2011-11-01

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0787; FRL-9483-8] Draft Aquatic Life Ambient Water... National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (1985), (EPA/R-85... authorized Tribes in adopting water quality standards for protecting aquatic life and human health. These...

  14. Interfaces in aquatic ecosystems: Implications for transport and impact of anthropogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knulst, J.

    1996-11-01

    Mechanisms that govern transport, accumulation and toxicity of persistent pollutants at interfaces in aquatic ecosystems were the foci of this thesis. Specific attention was paid to humic substances, their occurrence, composition, and role in exchange processes across interfaces. It was concluded that: The composition of humic substances in aquatic surface microlayers is different from that of the subsurface water and terrestrial humic matter. Levels of dissolved organic carbon (DOC) in the aquatic surface microlayer reflect the DOC levels in the subsurface water. While the levels and enrichment of DOC in the microlayer generally show small variations, the levels and enrichment of particulate organic carbon (POC) vary to a great extent. Similarities exist between aquatic surface films, artificial semi-permeable and biological membranes regarding their structure and functioning. Acidification and liming of freshwater ecosystems affect DOC:POC ratio and humic composition of the surface film, thus influencing the partitioning of pollutants across aquatic interfaces. Properties of lake catchment areas extensively govern DOC:POC ratio both in the surface film and subsurface water. Increased UV-B irradiation changes the DOC:POC ratio in the surface film and thus affect transfer of matter across the interface. Transport of lipophilic, persistent organic pollutants across semi-permeable membranes is influenced by the solutes organic composition. 106 refs, 11 figs, 1 tab

  15. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.

    Science.gov (United States)

    Juncos, Romina; Arcagni, Marina; Rizzo, Andrea; Campbell, Linda; Arribére, María; Guevara, Sergio Ribeiro

    2016-02-01

    Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of relative accuracy in the determination of organic matter concentrations in aquatic systems

    Science.gov (United States)

    Aiken, G.; Kaplan, L.A.; Weishaar, J.

    2002-01-01

    Accurate determinations of total (TOC), dissolved (DOC) and particulate (POC) organic carbon concentrations are critical for understanding the geochemical, environmental, and ecological roles of aquatic organic matter. Of particular significance for the drinking water industry, TOC measurements are the basis for compliance with US EPA regulations. The results of an interlaboratory comparison designed to identify problems associated with the determination of organic matter concentrations in drinking water supplies are presented. The study involved 31 laboratories and a variety of commercially available analytical instruments. All participating laboratories performed well on samples of potassium hydrogen phthalate (KHP), a compound commonly used as a standard in carbon analysis. However, problems associated with the oxidation of difficult to oxidize compounds, such as dodecylbenzene sulfonic acid and caffeine, were noted. Humic substances posed fewer problems for analysts. Particulate organic matter (POM) in the form of polystyrene beads, freeze-dried bacteria and pulverized leaf material were the most difficult for all analysts, with a wide range of performances reported. The POM results indicate that the methods surveyed in this study are inappropriate for the accurate determination of POC and TOC concentration. Finally, several analysts had difficulty in efficiently separating inorganic carbon from KHP solutions, thereby biasing DOC results.

  17. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  18. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Science.gov (United States)

    Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel

    2018-04-01

    We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  19. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  20. The Identification, Types, Taxonomic Orders, Biodiversity and Importance of Aquatic Insects

    OpenAIRE

    J.F.N. Abowei; B.R. Ukoroije

    2012-01-01

    The identification, types, taxonomic orders, biodiversity and importance of aquatic insects was reviewed to facilitate sustainable culture fisheries management and practice. Aquatic insects contribute significantly to fresh water ecosystems, one of many groups of organisms that, together, must be considered in the study of aquatic ecology. As such their study may be a significant part of understanding the ecological state of a given ecosystem and in gauging how that ecosystem will respond to ...

  1. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Directory of Open Access Journals (Sweden)

    Zhao Guangyu

    2018-01-01

    Full Text Available We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  2. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    Science.gov (United States)

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  3. Isotopes in environmental studies - Aquatic Forum 2004. Proceedings of an international conference. Unedited papers

    International Nuclear Information System (INIS)

    2006-01-01

    A better understanding of key processes in the aquatic environment, responsible for its future development and its protection, were at the forefront of the IAEA's International Conference on Isotopes in Environmental Studies - AQUATIC FORUM 2004 convened in Monaco from 25 to 29 October 2004, which was the most important gathering of the year of isotope environmental scientists. Over 320 experts from 60 IAEA Member States and 6 international organizations delivered 185 oral presentations in 6 plenary and 31 parallel sessions and made 130 poster presentations. The conference reviewed the present state of the art isotopic methods for investigation of the aquatic environment. The main conference subjects considered were: (i) behaviour, transport and distribution of isotopes in the aquatic environment; (ii) climate change studies using isotopic records in the marine environment; (iii) groundwater dynamics, modelling and management of freshwater sources; (iv) important global projects, such as WOCE, WOMARS, SHOTS, GEOTRACES; (v) joint IAEA-UNESCO submarine groundwater investigations in the Mediterranean Sea, the Southwest Atlantic and Pacific Oceans; (vi) new trends in radioecological investigations, concentrating on the protection of marine biota against radioactive contamination; (vii) transfers in analytical technologies from bulk analyses to particle and compound specific analyses of environmental samples; (viii) development of new isotopic techniques, such as AMS and ICPMS, and their successful applications in environmental studies; and many other exciting topics which were presented and discussed during the Conference. Four workshops were held simultaneously: - ATOMS-Med Workshop - development of a project proposal for oceanographic investigations in the Eastern Mediterranean. - El Nino - Research Co-ordination Meeting of the new IAEA Coordinated Research Project investigating climate change using isotopic records in the marine environment. - CELLAR Workshop

  4. APPLICATION OF SALMONIDS (SALMONIDAE N THE BIOMONITORING OF AQUATIC ENVIRONMENT (REVIEW

    Directory of Open Access Journals (Sweden)

    D. Yanovych

    2016-03-01

    Full Text Available Purpose. Due to the pollution of fisheries water bodies by industrial and agricultural waste waters, as well as by xenobiotics coming from other sources, taking into account a pridictable increase in the amounts of such effluents in the short and long terms, the problems related to the study of the effects of the pollutants of different nature and origin on aquatic organisms, especially fish, as well as a prediction of possible adverse consequences on aquatic ecosystems, becomes particularly important. The aim of our work was an analysis and synthesis of existing literature data concerning the indication in the biomonitoring of aquatic environments based on biological markers of salmonids as highly sensitive objects of fish fauna to external factors. Findings. The review summarizes and systematizes the data concerning the use of salmonids in biomonitoring studies. Furthermore, we highlighted and characterized the specificity of bioindication parameters of the aquatic environment state, such as the biochemical, genetic, physiological, morphological, histopathological, behavioral and population markers and noted the effects of hydroecosystem ecotoxication on different levels of biological organization (cell, individual, population, fish community. We also described the possibility of biological monitoring based on saprobic indexes identified for indicator species belonging to salmonids. Originality. In the article describes the structure, pros and cons of the use of specific biomarkers of individual salmonid fish and their populations for assessing the ecological status of aquatic environments. Practical value. The data given in the article can be used to improve the system of the ecological monitoring of aquatic environments by extending the range of indicator indices with organism and population biomarkers of highly sensitive salmonid species.

  5. Application of Bayesian belief net in modelling the origin and effects of terrigenous dissolved organic matter in a boreal aquatic ecosystem

    Science.gov (United States)

    Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena

    2013-04-01

    Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex

  6. Dose estimation and prediction of radiation effects on aquatic biota resulting from radioactive releases from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Witherspoon, J.P.

    1975-01-01

    Aquatic organisms are exposed to radionuclides released to the environment during various steps of the nuclear fuel cycle. Routine releases from these processes are limited in compliance with technical specifications and requirements of federal regulations. These regulations reflect I.C.R.P. recommendations which are designed to provide an environment considered safe for man. It is generally accepted that aquatic organisms will not receive damaging external radiation doses in such environments; however, because of possible bioaccumulation of radionuclides there is concern that aquatic organisms might be adversely affected by internal doses. The objectives of this paper are: to estimate the radiation dose received by aquatic biota from the different processes and determine the major dose-contributing radionuclides, and to assess the impact of estimated doses on aquatic biota. Dose estimates are made by using radionuclide concentration measured in the liquid effluents of representative facilities. This evaluation indicates the potential for the greatest radiation dose to aquatic biota from the nuclear fuel supply facilities (i.e., uranium mining and milling). The effects of chronic low-level radiation on aquatic organisms are discussed from somatic and genetic viewpoints. Based on the body of radiobiological evidence accumulated up to the present time, no significant deleterious effects are predicted for populations of aquatic organisms exposed to the estimated dose rates resulting from routine releases from conversion, enrichment, fabrication, reactors and reprocessing facilities. At the doses estimated for milling and mining operations it would be difficult to detect radiation effects on aquatic populations; however, the significance of such radiation exposures to aquatic populations cannot be fully evaluated without further research on effects of chronic low-level radiation. (U.S.)

  7. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances

    Science.gov (United States)

    Duarte, Regina M. B. O.; Santos, Eduarda B. H.; Pio, Casimiro A.; Duarte, Armando C.

    Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning- 13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40-62% of total NMR peak area), followed by oxygenated alkyls (15-21%) and carboxylic acid (5.4-13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (˜18-19%) than that of samples collected during warmer periods (˜6-10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.

  8. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  9. Does aquatic foraging impact head shape evolution in snakes?

    Science.gov (United States)

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  10. An Assessment of Cs-137, R-226 and Pa-239, 240 doses for aquatic and terrestrial reference organisms in Poland

    International Nuclear Information System (INIS)

    Krajewski, P.; Suplinska, M.; Rosiak, I.

    2004-01-01

    The doses assessment for aquatic and terrestrial reference organisms was performed, based on the methodology elaborated by U.S. Department of Energy. Four organism types and their corresponding dose limits were used, and the principal exposure pathways were considered for aquatic animal, riparian animal, terrestrial plant, and terrestrial animal organism types respectively. Terrestrial rodent (apodemus flavicollis), Baltic Sea fish (cod, sprat, herring, plaice) and crustaceans (Sanduria entomon and Mytilus edulis) were taken in to special consideration. In the first screening approach the annual doses from 137Cs and 239Pu (bomb-tests-fallout and Czarnobyl origin) and 226Ra (natural radionuclide) to biota were calculated at average, minimum and maximum concentrations of these radionuclides observed in soil, water, and sediment using the default bioaccumulation factors as well as lumped parameters values recommended by DOE Standard. The concentrations of 137Cs measured in the most contaminated region in Poland (Stare Olesno 380 Bqxkg-1 d.w.) and the concentrations of 226Ra for Southern regions of Poland with elevated levels of 226Ra in soil (100 B kg-1 d.w.) were taken in the dose assessment for terrestrial animals. The concentrations of 137Cs and 239Pu and 226Ra determined in see water and bottom sediments from two sub-areas (Gdansk Basin and Bornholm Basin) were used in the dose assessment for aquatic biota. In the second ''site specific'' approach the average empirically measured concentrations of radionuclides in animal tissues were used. At the first approach the total maximal annual doses for terrestrial plants were less then one percent of the recommended dose limits ( 3600 mGyxy-1 ) and items for seawater organisms did not exceed a 40% of this limit whereas the total maximal annual doses for terrestrial animal were close to the recommended dose limit (360 mGyxy-1). It prompted to start supplementary site-specific biota dose assessment through site

  11. Brominated flame retardants in aquatic organisms from the North Sea in comparison with biota from the high Arctic marine environment.

    Science.gov (United States)

    Sørmo, Eugen G; Jenssen, Bjørn M; Lie, Elisabeth; Skaare, Janneche U

    2009-10-01

    The extent of trophic transfer of brominated flame retardants (BFRs), including hexabromocyclododecane (HBCD) and seven polybrominated diphenyl ethers (PBDEs), were examined in pelagic and benthic aquatic animals (invertebrates and fish) in a near-shore estuary environment of the southeastern North Sea (Norway; 59 degrees N). Whole-body burdens of HBCD and several of the most abundant PBDEs biomagnified with increasing trophic position in the food web. Biomagnification of HBCD was particularly strong, resulting in whole-body burdens of this compound comparable to those of total PBDEs in the higher-trophic-level species. Body burdens of PBDEs were higher in pelagic than in benthic aquatic organisms. This was particularly evident for the lesser-brominated and volatile PBDE congeners. Atmospheric gas-water-phytoplankton exchange of these volatile compounds over the water surface may account for this observation. The PBDE burdens in pelagic zooplankton from the North Sea were more than 60-fold greater than those in corresponding pelagic zooplankton from the colder high Arctic latitudes (>78 degrees N) of Norway (Svalbard). This great difference may relate to reduced chemical gas-water exchange over open waters at the colder Arctic latitudes. However, previously measured whole-body burdens of BFRs in other aquatic marine organisms from the high Arctic were comparable or even exceeded those in the North Sea samples of the present study. These include sympagic (sea ice-associated) invertebrates and fish accumulating high burdens of particle-associated BFRs. The present study provides new insight regarding the distribution of BFRs in ecologically different compartments of marine ecosystems, essential information for understanding the food-web transfer and geographical dispersal of these compounds.

  12. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: The roles of natural organic matter and light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiaoyan; Shi, Junpeng [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo (China)

    2015-07-15

    Highlights: • In the dark, AgNPs formed chain-like structures through bridging effects with NOM. • NOM decelerated the photoreaction of AgNPs but did not stop the photoconversion. • Under extended irradiation, NOM substituted for citrate as a stabilizer. • In different aquatic systems AgNPs would suffer distinct environmental behavior. - Abstract: With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag{sup +} in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.

  13. From a microcosm to the catchment scale: studying the fate of organic runoff pollutants in aquatic ecosystems

    Science.gov (United States)

    Böttcher, T.; Schroll, R.

    2009-04-01

    Spray-drift, drainage, erosion and runoff events are the major causes responsible for deportation of agrochemicals as micropollutants to aquatic non-target sites. These processes can lead to the contamination of nearby freshwater ecosystems with considerably high concentrations of xenobiotics. Thus, it is important to unravel the fate of these pollutants and to evaluate their ecological effects. A novel approach to address this goal was established by the development of a microcosm with multiple sampling abilities enabling quantitative assessment of organic volatilisation, mineralization, metabolization and distribution within the aquatic ecosystem. This microcosm system was designed to support modelling approaches of the catchment scale and gain insights into the fate of pesticides simulating a large scale water body. The potential of this microcosm was exemplified for Isoproturon (IPU), a phenylurea derived systemic herbicide, which is frequently found as contaminant in water samples and with the free-floating macrophyte Lemna minor as non-target species, that is common to occur in rural water bodies. During 21 days exposure time, only a small amount of 14C labeled IPU was removed from the aquatic medium. The major portion (about 5%) was accumulated by Lemna minor resulting in a BCF of 15.8. IPU-volatilisation was very low with 0.13% of the initially applied herbicide. Only a minor amount of IPU was completely metabolized, presumably by rhizosphere microorganisms and released as 14CO2. The novel experimental system allowed to quantitatively investigate the fate of IPU and showed a high reproducibility with a mean average 14C-recovery rate of 97.1

  14. Aquatic to terrestrial transfer of sediment associated persistent organic pollutants is enhanced by bioamplification processes.

    Science.gov (United States)

    Daley, Jennifer M; Corkum, Lynda D; Drouillard, Ken G

    2011-09-01

    Ephemeral emergent insects, such as mayflies (Hexagenia spp.), are commonly used as biomonitors of persistent organic pollutants (POPs) and provide a vector for aquatic-terrestrial contaminant transfer. Mayflies bioaccumulate sediment-associated contaminants by bioconcentration and biomagnification during the aquatic stage and concentrate POP residues postemergence due to bioamplification, which occurs as a result of weight and lipid loss without contaminant loss. The present study quantified polychlorinated biphenyl (PCB) bioamplification in male and female emergent mayflies at three sites. Male mayflies used 36 to 68% of their lipids during emergence, with the exception of caged males that were prevented from flight. Females did not lose lipid content between pre-emergent nymph and emerged life stages. Mass balance indicated no PCB elimination between life stages. The mean PCB bioamplification factor, expressed as the ratio of lipid-equivalent PCB concentrations across life stages, was 2.05 ± 0.38 for male imagos/nymphs and 1.91 ± 0.18 for male imago/subimago life stages. For females, bioamplification factors were close to unity. Wildlife consumers of imago stages of emergent mayflies can potentially increase their total daily intake of PCBs by 36% depending on the sex-ratio composition of their diet relative to animals that feed predominantly on nymph or subimago stages during mass emergence events. Copyright © 2011 SETAC.

  15. Methodology of comprehensive evaluation of the effectiveness and reliability of production lines of preparation of sea water for the cultivation of aquatic organisms

    Directory of Open Access Journals (Sweden)

    S. D. Ugryumova

    2016-01-01

    Full Text Available The factors affecting the efficiency and reliability of technical systems. Set stages of development and modernization of production lines that correspond to specific stages of evaluating the effectiveness and reliability. Considered several methods of definition of indicators of indicators of efficiency and reliability of the equipment in technological lines of fisheries sector: forecasting methods, structural methods, physical methods, logical-probability method (method by I.A. Ryabinin and topological method. Advantages and disadvantages, allowing you to work out the most suitable method, process lines preparation of sea water for the cultivation of aquatic organisms, connected in series. Modernized technological line of preparation of sea water for the cultivation of aquatic organisms differing from the typical line of seawater in hatcheries (Far East, as the presence of a large number of instrumentation: sensors, salinity and temperature; motomeru that continuously monitor turbidity in the range of 50÷100 EMF (30÷60 mg/1 by kaolin; signaling the flow sensors volume level of the filtrate and the backfill layer; analyzers of chemical composition of sea water; analyzers of suspended mechanical impurities; signaling sensors of acidity and oxygen content and replacement filters coarse, fine cleaning and auxiliary equipment. A program of comprehensive evaluation of the effectiveness and reliability of production lines, revealed that conducted the modernization of production line preparation of sea water for the cultivation of aquatic organisms has improved its efficiency by an average of 1.71% to reduce the amount of manual labor by 15.1%; control the process; provide the most rapid, efficient purification of sea water; reduce the cost of replacement filter media.

  16. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B.

    2012-01-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  17. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  18. Finfish and aquatic invertebrate pathology resources for now and the future✩

    Science.gov (United States)

    Spitsbergen, Jan M.; Blazer, Vicki S.; Bowser, Paul R.; Cheng, Keith C.; Cooper, Keith R.; Cooper, Timothy K.; Frasca, Salvatore; Groman, David B.; Harper, Claudia M.; (Mac) Law, Jerry M.; Marty, Gary D.; Smolowitz, Roxanna M.; Leger, Judy St.; Wolf, Douglas C.; Wolf, Jeffrey C.

    2009-01-01

    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology. PMID:18948226

  19. Biota and biological principles of the aquatic environment

    International Nuclear Information System (INIS)

    Greeson, P.E.

    1982-01-01

    The first of several compilations of briefing papers on water quality prepared by the U.S. Geological Survey is presented. Each briefing paper is prepared in a simple, nontechnical, easy to understand manner. This U.S. Geological Survey Circular contains papers on selected biota and biological principles of the aquatic environment. Briefing papers are included on Why biology in water quality studies , Stream biology, Phytoplankton, Periphyton, Drift organisms in streams, Family Chironomidae (Diptera), Influences of water temperature on aquatic biota, and Stream channelization: Effects on stream fauna

  20. An assessment of pollution in aquatic environment using bioindicators

    African Journals Online (AJOL)

    This review highlights the importance of biological indicators in monitoring presence of pollution in aquatic environment. This assessment involves the use of living organisms (macro or microorganisms and plants or animals) as bioindicators of pollution in water bodies. These organisms are believed to show higher ...

  1. Evidence based practice and techniques in aquatic therapy for ...

    African Journals Online (AJOL)

    Aquatic therapy (AT) is a holistic method of treatment that involves activity or passive activity to produce healthcare outcomes. The push for holistic treatment in rehabilitation is emphasized by the World Health Organization (WHO) (2009). The WHO suggested that healthcare organizations should turn their attention from ...

  2. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  3. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    The effect of green sponges on the abundance of aquatic mycotal species is caused by dissolved organic matter produced during photosynthesis by symbiotic zoochlorellae, a symbionts of green sponges and excreted into the water environment (S. fluviatilis excreted mean 12.8% of carbon fixation). Those excreted organic ...

  4. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    Science.gov (United States)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points

  6. Ozark-Ouachita Highlands Assessment: Aquatic Conditions

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    1999-01-01

    This publication provides citizens, private and public organizations, scientists, and others with information about the aquatic conditions in or near national forests in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark-St. Francis National Forests in Arkansas. This report includes water quality analyses,...

  7. Biochemical markers for the assessment of aquatic environment contamination

    Science.gov (United States)

    Havelková, Marcela; Randák, Tomáš; Blahová, Jana; Slatinská, Iveta; Svobodová, Zdeňka

    2008-01-01

    The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment. PMID:21218108

  8. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    OpenAIRE

    Edia E.O.; Gevrey M.; Ouattara A.; Brosse S.; Gourène G.; Lek S.

    2010-01-01

    Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM), an unsupervised Artificial Neural Networks (ANN) method. This metho...

  9. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    Science.gov (United States)

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  10. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  11. Aquatic Nuisance Species Locator

    Science.gov (United States)

    Data in this map has been collected by the United States Geological Survey's Nonindigenous Aquatic Species program located in Gainesville, Florida (http://nas.er.usgs.gov/default.aspx). This dataset may have some inaccuracies and is only current to June 15, 2012. The species identified in this dataset are not inclusive of all aquatic nuisance species, but rather a subset identified to be at risk for transport by recreational activities such as boating and angling. Additionally, the locations where organisims have been identified are also not inclusive and should be treated as a guide. Organisms are limited to the following: American bullfrog, Asian clam, Asian shore crab, Asian tunicate, Australian spotted jellyfish, Chinese mitten crab, New Zealand mudsnail, Colonial sea squirt, Alewife, Bighead carp, Black carp, Flathead catfish, Grass carp, Green crab, Lionfish, Northern snakehead, Quagga mussel, Round Goby, Ruffe, Rusty crayfish, Sea lamprey, Silver carp, Spiny water flea, Veined rapa whelk, Zebra mussel

  12. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Science.gov (United States)

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  13. Integrative Research on Organic Matter Cycling Across Aquatic Gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Nicholas D.; Bianchi, Thomas S.; Medeiros, Patricia M.; Seidel, Michael; Keil, Richard G.; Robinson, Carol

    2017-07-04

    The goal of this research topic was to motivate innovative research that blurs traditional disciplinary and geographical boundaries. As the scientific community continues to gain momentum and knowledge about how the natural world functions, it is increasingly important that we recognize the interconnected nature of earth systems and embrace the complexities of ecosystem transitions. We are pleased to present this body of work, which embodies the spirit of research spanning across the terrestrial-aquatic continuum, from mountains to the sea.

  14. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  15. Uptake and depuration of pharmaceuticals in aquatic invertebrates

    International Nuclear Information System (INIS)

    Meredith-Williams, Melanie; Carter, Laura J.; Fussell, Richard; Raffaelli, David; Ashauer, Roman; Boxall, Alistair B.A.

    2012-01-01

    The uptake and depuration of a range of pharmaceuticals in the freshwater shrimp (Gammarus pulex) and the water boatman (Notonecta glauca) was studied. For one compound, studies were also done using the freshwater snail Planobarius corneus. In G. pulex, bioconcentration factors (BCFs) ranged from 4.6 to 185,900 and increased in the order moclobemide < 5-fluoruracil < carbamazepine < diazepam < carvedilol < fluoxetine. In N. glauca BCFs ranged from 0.1 to 1.6 and increased in the order 5-fluorouracil < carbamazepine < moclobemide < diazepam < fluoxetine < carvedilol. For P. corneus, the BCF for carvedilol was 57.3. The differences in degree of uptake across the three organisms may be due to differences in mode of respiration, behaviour and the pH of the test system. BCFs of the pharmaceuticals for each organism were correlated to the pH-corrected liposome–water partition coefficient of the pharmaceuticals. - Highlights: ► One of the first studies exploring the uptake of pharmaceuticals into aquatic invertebrates. ► Data presented on uptake, depuration rates and bioconcentration for a range of pharmaceuticals. ► Uptake is correlated with the pH-corrected liposome–water partition coefficient. ► Findings can be used to better predict impacts of pharmaceuticals on the aquatic environment. - The factors affecting the degree of uptake of pharmaceuticals into aquatic invertebrates were studied. The results indicate that species traits such as respiration and behaviour of the organisms and pH-corrected liposome–water partition coefficients are important factors in determining pharmaceutical uptake.

  16. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  17. LADTAP-2, Organ Doses to Man and Other Biota from Aquatic Environment

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.; Whelan, G.

    1989-01-01

    LADTAP2 starts with the water concentration at a specific usage location in the environment. The effluent concentration from the impoundment system is related to the water concentrations at the usage locations by two parameters, a dilution factor and a transit time (for radiological decay in transport through the surface water system). The water concentration at the usage location is applied to specific pathway models to estimate the resulting exposure. The pathways included are: ingestion of aquatic foods, such as fish, invertebrates, and aquatic plants; external exposure to shoreline; external exposure to water through boating or swimming; ingestion of drinking water (freshwater sites only); and ingestion of irrigated terrestrial food crops. 3 - Restrictions on the complexity of the problem - Maxima of: 200 nuclides in the release source term, 19 sport fish harvest locations, 19 commercial fish harvest locations, 19 sport invertebrate harvest locations, 19 commercial invertebrate harvest locations, 8 body organs. The radionuclide library contains data for 169 radionuclides

  18. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  19. Collaborative Governance Models for Managing Aquatic Resources ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Collaborative Governance Models for Managing Aquatic Resources and Fisheries in the Peruvian ... The idea is to consolidate this knowledge in a model for the participatory ... Linking research to urban planning at the ICLEI World Congress 2018 ... In partnership with UNESCO's Organization for Women in Science for the ...

  20. Edible aquatic Coleoptera of the world with an emphasis on Mexico

    Science.gov (United States)

    Ramos-Elorduy, Julieta; Moreno, José Manuel Pino; Camacho, Victor Hugo Martínez

    2009-01-01

    Anthropoentomophagy is an ancient culinary practice wherein terrestrial and aquatic insects are eaten by humans. Of these species of insects, terrestrial insects are far more commonly used in anthropoentomophagy than aquatic insects. In this study we found that there are 22 genera and 78 species of edible aquatic beetles in the world. The family Dytiscidae hosts nine genera, Gyrinidae one, Elmidae two, Histeridae one, Hydrophilidae six, Haliplidae two and Noteridae one. Of the recorded species, 45 correspond to the family Dytiscidae, 19 to Hydrophilidae, three to Gyrinidae, four to Elmidae, two to Histeridae, four to Haliplidae and one to Noteridae. These beetles are the most prized organisms of lentic watersThe family that has the highest number of edible food insect genera and species is Dytiscidae. Here, the global geographic distribution of species in these organisms is shown, and a discussion is presented of its importance as a renewable natural resource widely used for food in various countries. PMID:19379486

  1. Edible aquatic Coleoptera of the world with an emphasis on Mexico

    Directory of Open Access Journals (Sweden)

    Moreno José

    2009-04-01

    Full Text Available Abstract Anthropoentomophagy is an ancient culinary practice wherein terrestrial and aquatic insects are eaten by humans. Of these species of insects, terrestrial insects are far more commonly used in anthropoentomophagy than aquatic insects. In this study we found that there are 22 genera and 78 species of edible aquatic beetles in the world. The family Dytiscidae hosts nine genera, Gyrinidae one, Elmidae two, Histeridae one, Hydrophilidae six, Haliplidae two and Noteridae one. Of the recorded species, 45 correspond to the family Dytiscidae, 19 to Hydrophilidae, three to Gyrinidae, four to Elmidae, two to Histeridae, four to Haliplidae and one to Noteridae. These beetles are the most prized organisms of lentic watersThe family that has the highest number of edible food insect genera and species is Dytiscidae. Here, the global geographic distribution of species in these organisms is shown, and a discussion is presented of its importance as a renewable natural resource widely used for food in various countries.

  2. Release of copper from sintered tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; Santore, Robert C.; McGill, Ian

    2007-01-01

    Sintered tungsten-bronze is a new substitute for lead shot, and is about to be deposited in and around the wetlands of North America. This material contains copper in the alloyed form of bronze. This in vitro study was performed according to U.S. Fish and Wildlife Service criteria to determine the dissolution rate of copper from the shot, and to assess the toxic risk that it may present to aquatic organisms. The dissolution of copper from tungsten-bronze shot, pure copper shot, and glass beads was measured in a buffered, moderately hard, synthetic water of pH 5.5, 6.6, and 7.8 over a 28-day period. The dissolution of copper from both the control copper shot and the tungsten-bronze shot was affected significantly by the pH of the water and the duration of dissolution (all p values < 0.000). The rate of copper release from tungsten bronze shot was 30 to 50 times lower than that from the copper shot, depending on pH (p < 0.0000). The observed expected environmental concentration of copper released from tungsten-bronze shot after 28 days was 0.02 μg/L at pH 7.8, and 0.4 μg/L at pH 5.6, using a loading and exposure scenario specific in a U.S. Fish and Wildlife Service protocol. Ratio Quotient values derived from the highest EEC observed in this study (0.4 μg/L), and the copper toxic effect levels for all aquatic species listed in the U.S. Environmental Protection Agency ambient water quality criteria database, were all far less than the 0.1 criterion value. Given the conditions stipulated by the U.S. Fish and Wildlife Service and the U.S. Environmental Protection Agency, heavy loading from discharged tungsten-bronze shot would not pose a toxic risk to potable water, or to soil. Consequently, it would appear that no toxic risks to aquatic organisms will attend the use of tungsten-bronze shot of the approved composition. Given the likelihood that sintered tungsten-bronze of the same formula will be used for fishing weights, bullets, and wheel balance weights, it is

  3. Colloids as a sink for certain pharmaceuticals in the aquatic environment.

    Science.gov (United States)

    Maskaoui, Khalid; Zhou, John L

    2010-05-01

    The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Existing data tend to focus on the concentrations of pharmaceuticals in the aqueous phase, with limited studies on their concentrations in particulate phase such as sediments. Furthermore, current water quality monitoring does not differentiate between soluble and colloidal phases in water samples, hindering our understanding of the bioavailability and bioaccumulation of pharmaceuticals in aquatic organisms. In this study, an investigation was conducted into the concentrations and phase association (soluble, colloidal, suspended particulate matter or SPM) of selected pharmaceuticals (propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid) in river water, effluents from sewage treatment works (STW), and groundwater in the UK. The occurrence and phase association of selected pharmaceuticals propranolol, sulfamethoxazole, meberverine, thioridazine, carbamazepine, tamoxifen, indomethacine, diclofenac, and meclofenamic acid in contrasting aquatic environments (river, sewage effluent, and groundwater) were studied. Colloids were isolated by cross-flow ultrafiltration (CFUF). Water samples were extracted by solid-phase extraction (SPE), while SPM was extracted by microwave. All sample extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring. Five compounds propranolol, sulfamethoxazole, carbamazepine, indomethacine, and diclofenac were detected in all samples, with carbamazepine showing the highest concentrations in all phases. The highest concentrations of these compounds were detected in STW effluents, confirming STW as a key source of these compounds in the aquatic environments. The calculation of partition coefficients of pharmaceuticals between SPM and

  4. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    Science.gov (United States)

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  5. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  6. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes.

    Science.gov (United States)

    Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja

    2017-05-01

    Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  8. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe_3O_4 and γ-Fe_2O_3 NPs with particle sizes ranging from 20 to 50 nm, and Fe"0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe"0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe"0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  9. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  10. 40 CFR 63.4910 - What notifications must I submit?

    Science.gov (United States)

    2010-07-01

    ..., accuracy, and completeness of the report. Such certifications must also comply with the requirements of 40... need to submit copies of any test reports. (i) Mass fraction of organic HAP for one coating, for one... mass of organic HAP contained in the waste materials for which you are claiming an allowance in...

  11. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  12. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  13. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems.

    Science.gov (United States)

    Rosi-Marshall, E J; Snow, D; Bartelt-Hunt, S L; Paspalof, A; Tank, J L

    2015-01-23

    Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cs-137 in aquatic organisms in the southern Lake Keurusselkae (Finland)[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Klemola, S.; Vartti, V.P.; Mattila, J.; Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The results of a study carried out in Lake Keurusselkae, in the Finnish Lake District, are reported. The aim of the study was to collect biota samples for the INDOFERN Project from an area that was rather highly contaminated (70 kBq m{sup -2} of {sup 137}Cs in 1986) with the Chernobyl fallout in Finland. The samples were taken from a relatively small area surrounding the island of Iso Riihisaari in the southern part of the Keurusselkae water course. In total 15 samples of aquatic plants, 6 samples of aquatic animals, 1 water sample and 2 sediment cores were taken. In August 2003, the activity concentration of {sup 137}Cs in the surface water of the southern Lake Keurusselkae was 49 Bq m{sup -3}, whereas it was 310 Bq m{sup -3} in 1988, two year after the Chernobyl accident. In the relatively shallow area surrounding the island of Iso Riihisaari, the total amount of {sup 137}Cs in sediments was 32-37 kBq m{sup -2} in 2003, but in a deeper basin close to this area the total amount of {sup 137}Cs was 130 kBq m{sup -2} in 1990. The clearly highest activity concentration and concentration factor of {sup 137}Cs was found in one sample of Water horsetail (Equisetum fluviatile), 1 430 Bq kg{sup -1} dry wt; CF 29 200, whereas in another sample of the same species the concentration was only 174 Bq kg{sup -1} dry wt. In addition, the Water lily (Nymphaea candida), Spiked water millfoil (Myriophyllum spicatum), Broad-leaved pondweed (Potamogeton natans) and Yellow water lily (Nuphar lutea) seemed to be good indicators for {sup 137}Cs. The tall freshwater clam (Anodonta sp.) seemed to be a modest accumulator of {sup 137}Cs. Contrary to our results from the coastal areas of the Baltic Sea, many aquatic plants demonstrated in fresh water similar accumulation capacity of {sup 137}Cs as fish (perch and roach), while in the sea the uptake of {sup 137}Cs in fish seemed to be more efficient than in aquatic plants. (LN)

  15. Dynamic model for tritium transfer in an aquatic food chain.

    Science.gov (United States)

    Melintescu, A; Galeriu, D

    2011-08-01

    Tritium ((3)H) is released from some nuclear facilities in relatively large quantities. It is a ubiquitous isotope because it enters straight into organisms, behaving essentially identically to its stable analogue (hydrogen). Tritium is a key radionuclide in the aquatic environment, in some cases, contributing significantly to the doses received by aquatic, non-human biota and by humans. The updated model presented here is based on more standardized, comprehensive assessments than previously used for the aquatic food chain, including the benthic flora and fauna, with an explicit application to the Danube ecosystem, as well as an extension to the special case of dissolved organic tritium (DOT). The model predicts the organically bound tritium (OBT) in the primary producers (the autotrophs, such as phytoplankton and algae) and in the consumers (the heterotrophs) using their bioenergetics, which involves the investigation of energy expenditure, losses, gains and efficiencies of transformations in the body. The model described in the present study intends to be more specific than a screening-level model, by including a metabolic approach and a description of the direct uptake of DOT in marine phytoplankton and invertebrates. For a better control of tritium transfer into the environment, not only tritiated water must be monitored, but also the other chemical forms and most importantly OBT, in the food chain.

  16. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  17. Responses of Aquatic Bacteria to Terrestrial Runoff: Effects on Community Structure and Key Taxonomic Groups

    Science.gov (United States)

    Le, Huong T.; Ho, Cuong T.; Trinh, Quan H.; Trinh, Duc A.; Luu, Minh T. N.; Tran, Hai S.; Orange, Didier; Janeau, Jean L.; Merroune, Asmaa; Rochelle-Newall, Emma; Pommier, Thomas

    2016-01-01

    Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as

  18. Impact of long-term radiation exposure on aquatic biota within the Chernobyl exclusion zone: 30 years after accident

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Pomortseva, N.A.; Shevtsova, N.L.; Dzyubenko, E.V.; Nazarov, A.B.

    2016-01-01

    Self-purification of closed water bodies within the Chernobyl exclusion zone (EZ) is an extremely slow process. Therefore, ecosystems of the majority of lakes, dead channels and crawls possess high levels of radionuclide contamination of all components. Along with natural decontamination processes in aquatic ecosystems such as physical decay of radionuclides and their water transport outside the EZ, there is a change of physical and chemical forms of radioactive substances in soils of catchment areas, their transformation and transition in the mobile and bioavailable state, washout to the closed aquatic ecosystems and accumulation by hydrobionts. This essentially deteriorates the radiation situation in closed aquatic ecosystems, which are some kind of 'storage system' of radioactive substances in the EZ and results in increase of radiation dose to aquatic species and manifests in a variety of radiation effects at different levels of biological systems. We established dose-related effects in hydrobionts of lakes within the EZ which indicates a damage of biological systems at subcellular, cellular, tissue, organ, organism and population levels as a result of chronic exposure to low doses of ionizing radiation. The rate of chromosomal aberrations in cells of aquatic species, many-a-times exceeds the level of spontaneous mutagenesis level to aquatic biota. Increased levels of chromosome damages may be a manifestation of radiation-induced genetic instability, which is one of the main mechanisms for the protection of living organisms from exposure to stressors with subsequent implementation at higher levels of organization of biological systems. (author)

  19. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not

  20. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?

    Science.gov (United States)

    Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan

    2010-07-01

    Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms. (c) 2010 SETAC.

  1. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-01-01

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO 2 and by observing the disappearance of test substance with gas chromatography. Additional BOD 5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  2. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    Science.gov (United States)

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  3. Using AquaticHealth.net to Detect Emerging Trends in Aquatic Animal Health

    Directory of Open Access Journals (Sweden)

    Geoff Grossel

    2013-05-01

    Full Text Available AquaticHealth.net is an open-source aquatic biosecurity intelligence application. By combining automated data collection and human analysis, AquaticHealth.net provides fast and accurate disease outbreak detection and forecasts, accompanied with nuanced explanations. The system has been online and open to the public since 1 January 2010, it has over 200 registered expert users around the world, and it typically publishes about seven daily reports and two weekly disease alerts. We document the major trends in aquatic animal health that the system has detected over these two years, and conclude with some forecasts for the future.

  4. Biomechanical tactics of chiral growth in emergent aquatic macrophytes

    Science.gov (United States)

    Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian

    2015-01-01

    Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724

  5. Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials

    DEFF Research Database (Denmark)

    Rist, Sinja; Hartmann, Nanna B.

    2017-01-01

    The widespread occurrence of microplastics in the aquatic environment is well documented through international surveys and scientific studies. Further degradation and fragmentation, resulting in the formation of nanosized plastic particles – nanoplastics – has been highlighted as a potentially...... important issue. In the environment, both microplastics and nanoplastics may have direct ecotoxicological effects, as well as vector effects through the adsorption of co-contaminants. Plastic additives and monomers may also be released from the polymer matrix and cause adverse effects on aquatic organisms...

  6. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  7. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    Science.gov (United States)

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  8. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  9. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Directory of Open Access Journals (Sweden)

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  10. DNA-based identification of aquatic invertebrates useful in the South African context?

    Directory of Open Access Journals (Sweden)

    Hermoine J. Venter

    2016-05-01

    Full Text Available The concept of using specific regions of DNA to identify organisms processes such as DNA barcoding is not new to South African biologists. The African Centre for DNA Barcoding reports that 12 548 plant species and 1493 animal species had been barcoded in South Africa by July 2013, while the Barcode of Life Database (BOLD contains 62 926 records for South Africa, 11 392 of which had species names (representing 4541 species. In light of this, it is surprising that aquatic macroinvertebrates of South Africa have not received much attention as potential barcoding projects thus fa barcoding of aquatic species has tended to focus on invasive species and fishes. Perusal of the BOLD records for South Africa indicates a noticeable absence of aquatic macroinvertebrates, including families used for biomonitoring strategies such as the South African Scoring System. Meanwhile, the approach of collecting specimens and isolating their DNA individually in order to identify them (as in the case of DNA barcoding, has been shifting towards making use of the DNA which organisms naturally shed into their environments (eDNA. Coupling environmental and bulk sample DNA with high-throughput sequencing technology has given rise to metabarcoding, which has the potential to characterise the whole community of organisms present in an environment. Harnessing barcoding and metabarcoding approaches with environmental DNA (eDNA potentially offers a non-invasive means of measuring the biodiversity in an environment and has great potential for biomonitoring. Aquatic ecosystems are well suited to these approaches but could they be useful in a South African context?

  11. Passive sampling of pharmaceuticals and personal care products in aquatic environments

    Czech Academy of Sciences Publication Activity Database

    Křesinová, Zdena; Petrů, Klára; Lhotský, O.; Rodsand, T.; Cajthaml, Tomáš

    2016-01-01

    Roč. 6, č. 1 (2016), s. 43-46 ISSN 1805-0174 Institutional support: RVO:61388971 Keywords : passive sampling * polar organic chemical integrative samplers * aquatic matrices Subject RIV: EE - Microbiology, Virology

  12. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates.

    Science.gov (United States)

    Foley, Carolyn J; Feiner, Zachary S; Malinich, Timothy D; Höök, Tomas O

    2018-08-01

    Microplastics are present in aquatic ecosystems the world over and may influence the feeding, growth, reproduction, and survival of freshwater and marine biota; however, the extent and magnitude of potential effects of microplastics on aquatic organisms is poorly understood. In the current study, we conducted a meta-analysis of published literature to examine impacts of exposure to microplastics on consumption (and feeding), growth, reproduction, and survival of fish and aquatic invertebrates. While we did observe within-taxa negative effects for all four categories of responses, many of the effects summarized in our study were neutral, indicating that the effects of exposure to microplastics are highly variable across taxa. The most consistent effect was a reduction in consumption of natural prey when microplastics were present. For some taxa, negative effects on growth, reproduction and even survival were also evident. Organisms that serve as prey to larger predators, e.g., zooplankton, may be particularly susceptible to negative impacts of exposure to microplastic pollution, with potential for ramifications throughout the food web. Future work should focus on whether microplastics may be affecting aquatic organisms more subtly, e.g., by influencing exposure to contaminants and pathogens, or by acting at a molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  14. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies.

    Science.gov (United States)

    Epanchin, Peter N; Knapp, Roland A; Lawler, Sharon P

    2010-08-01

    Adjacent food webs may be linked by cross-boundary subsidies: more-productive donor systems can subsidize consumers in less-productive neighboring recipient systems. Introduced species are known to have direct effects on organisms within invaded communities. However, few studies have addressed the indirect effects of nonnative species in donor systems on organisms in recipient systems. We studied the direct role of introduced trout in altering a lake-derived resource subsidy and their indirect effects in altering a passerine bird's response to that subsidy. We compared the abundance of aquatic insects and foraging Gray-crowned Rosy-Finches (Leucosticte tephrocotis dawsoni, "Rosy-Finch") at fish-containing vs. fishless lakes in the Sierra Nevada Mountains of California (USA). Introduced trout outcompeted Rosy-Finches for emerging aquatic insects (i.e., mayflies). Fish-containing lakes had 98% fewer mayflies than did fishless lakes. In lakes without fish, Rosy-Finches showed an aggregative response to emerging aquatic insects with 5.9 times more Rosy-Finches at fishless lakes than at fish-containing lakes. Therefore, the introduction of nonnative fish into the donor system reduced both the magnitude of the resource subsidy and the strength of cross-boundary trophic interactions. Importantly, the timing of the subsidy occurs when Rosy-Finches feed their young. If Rosy-Finches rely on aquatic-insect subsidies to fledge their young, reductions in the subsidy by introduced trout may have decreased Rosy-Finch abundances from historic levels. We recommend that terrestrial recipients of aquatic subsidies be included in conservation and restoration plans for ecosystems with alpine lakes.

  15. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  16. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  17. Size matters: the interplay between sensing and size in aquatic environments

    Science.gov (United States)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  18. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  19. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L.

    2004-01-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  20. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...... cellulose. Physical and chemical soil properties and SOC molecular composition were assessed as potential controls on C turnover. SOC deposition in aquatic environments resulted in upto 3.5 times higher C turnover than deposition on downslope soils. Labile C inputs enlarged total CO2 emissions...

  1. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    International Nuclear Information System (INIS)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-01-01

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  2. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  3. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    organisms using cilia or small appendages for propulsion. Here we summarize results from the literature and from own studies on bio-mechanical activities in response to changing temperature or manipulated viscosity at constant temperature, both having the same change in kinematic viscosity. The survey......A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...

  4. Xylanase and cellulase activities during anaerobic decomposition of three aquatic macrophytes.

    Science.gov (United States)

    Nunes, Maíra F; da Cunha-Santino, Marcela B; Bianchini, Irineu

    2011-01-01

    Enzymatic activity during decomposition is extremely important to hydrolyze molecules that are assimilated by microorganisms. During aquatic macrophytes decomposition, enzymes act mainly in the breakdown of lignocellulolytic matrix fibers (i.e. cellulose, hemicellulose and lignin) that encompass the refractory fraction from organic matter. Considering the importance of enzymatic activities role in decomposition processes, this study aimed to describe the temporal changes of xylanase and cellulose activities during anaerobic decomposition of Ricciocarpus natans (freely-floating), Oxycaryum cubense (emergent) and Cabomba furcata (submersed). The aquatic macrophytes were collected in Óleo Lagoon, Luiz Antonio, São Paulo, Brazil and bioassays were accomplished.  Decomposition chambers from each species (n = 10) were set up with dried macrophyte fragments and filtered Óleo Lagoon water. The chambers were incubated at 22.5°C, in the dark and under anaerobic conditions. Enzymatic activities and remaining organic matter were measured periodically during 90 days. The temporal variation of enzymes showed that C. furcata presented the highest decay and the highest maximum enzyme production. Xylanase production was higher than cellulase production for the decomposition of the three aquatic macrophytes species.

  5. Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Sørensen, Sara Nørgaard; Hartmann, Nanna B.

    2016-01-01

    The number of products on the market containing engineered nanoparticles (ENPs) has increased significantly, and concerns have been raised regarding their ecotoxicological effects. Environmental safety assessments as well as relevant and reliable ecotoxicological data are required for the safe...... to ENPs in aquatic test systems. Filling this gap is not straightforward, because of the broad range of ENPs and the different behavior of ENPs compared to “ordinary” (dissolved) chemicals in the ecotoxicity test systems. The risk of generating false negatives, and false positives, in the currently used...... tests is high, and in most cases difficult to assess. This Review outlines some of the pitfalls in the aquatic toxicity testing of ENPs which may lead to misinterpretation of test results. Response types are also proposed to reveal potential nanoparticle effects in the aquatic test organisms....

  6. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    OpenAIRE

    Ferr?o-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, fe...

  7. Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs.

    Science.gov (United States)

    Becker, Daniel J; Chumchal, Matthew M; Broders, Hugh G; Korstian, Jennifer M; Clare, Elizabeth L; Rainwater, Thomas R; Platt, Steven G; Simmons, Nancy B; Fenton, M Brock

    2018-02-01

    Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    Science.gov (United States)

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  9. Computer modeling of dosimetric pattern in aquatic environment of ...

    African Journals Online (AJOL)

    ... solving the dose rates to aquatic organisms with emphasis on the coastal areas of Nigeria where oil exploration activities involve the use of radioactive materials. Solution of the dose function representing the baseline have been modeled the result of which can be employed in assessing future contamination in the area.

  10. Fluid Mechanics of Aquatic Locomotion at Large Reynolds Numbers

    OpenAIRE

    Govardhan, RN; Arakeri, JH

    2011-01-01

    Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body...

  11. Analysis of aquatic-phase natural organic matter by optimized LDI-MS method

    KAUST Repository

    Wang, Renqi

    2014-01-26

    The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200-1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200-15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility.

    Science.gov (United States)

    Arp, H P H; Brown, T N; Berger, U; Hale, S E

    2017-07-19

    The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log D oc water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log D oc freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.

  13. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  14. Quantifying aquatic insect deposition from lake to land.

    Science.gov (United States)

    Dreyer, Jamin; Townsend, Philip A; Hook, James C; Hoekman, David; Vander Zanden, M Jake; Gratton, Claudio

    2015-02-01

    Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages, which transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. At the naturally productive Lake Mývatn, Iceland, we used two readily measured quantities: total insect emergence from water and relative insect density on land, to demonstrate an approach for estimating aquatic insect deposition (e.g., kg N x m(-2) x yr(-1)) to shore. Estimates from emergence traps between 2008 and 20.11 indicated a range of 0.15-3.7 g x m(-2) x yr(-1), or a whole-lake emergence of 3.1-76 Mg/yr; all masses are given as dry mass. Using aerial infall trap measurements of midge relative abundance over land, we developed a local-maximum decay function model to predict proportional midge deposition with distance from the lake. The dispersal model predicted midge abundance with R2 = 0.89, a pattern consistent among years, with peak midge deposition occurring 20-25 m inland and 70% of midges deposited within 100 m of shore. During a high-midge year (2008), we estimate midge deposition within the first 50 m of shoreline to be 100 kg xha(-1) x yr(-1), corresponding to inputs of 10 kg N x ha(-1) x yr(-1) and 1 kg P x ha(-1) x yr(-1), or about three to five times above background terrestrial N deposition rates. Consistent with elevated N input where midges are most dense, we observed that soil available nitrate in resin bags decreases with increasing distance from the lake. Our approach, generalizable to other systems, shows that aquatic insects can be a major source of nutrients to terrestrial ecosystems and have the capacity to significantly affect ecosystem processes.

  15. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-12-31

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  16. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  17. Bioavailability and distribution and of ceria nanoparticles in simulated aquatic ecosystems, quantification with a radiotracer technique

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Zhang Peng; He Xiao; Ma Yuhui; Lu Kai; Zhao Yuliang

    2014-01-01

    Although the presence of manufactured nanoparticles in the aquatic environment is still largely undocumented, their release could certainly occur in the future, particularly via municipal treatment plant effluents of cities supporting nano-industries. To get an initial estimate of the environmental behavior of nanomaterials, we investigated the distribution and accumulation of ceria nanoparticles in simulated aquatic ecosystems which included aquatic plant, shellfish, fish, water, and sediment using a radiotracer technique. Radioactive ceria ( 141 CeO 2 ) nanoparticles with a diameter of ca. 7 nm were synthesized by a precipitation method and added to the simulated aquatic ecosystems. The results indicate that the concentration of ceria nanoparticles in water decreased to a steady-state value after 3 days; meanwhile, the concentrations of ceria nanoparticles in the aquatic plant and sediment increased to their highest values. The distribution and accumulation characteristics of ceria nanoparticles in various aquatic organisms were different. Ceratophyllum demersum showed a high ability of accumulation of ceria nanoparticles from water. (authors)

  18. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  19. Contaminant bioavailability in soils, sediments, and aquatic environments

    OpenAIRE

    Traina, Samuel J.; Laperche, Valérie

    1999-01-01

    The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxici...

  20. Automated culture of aquatic model organisms: shrimp larvae husbandry for the needs of research and aquaculture.

    Science.gov (United States)

    Mutalipassi, M; Di Natale, M; Mazzella, V; Zupo, V

    2018-01-01

    Modern research makes frequent use of animal models, that is, organisms raised and bred experimentally in order to help the understanding of biological and chemical processes affecting organisms or whole environments. The development of flexible, reprogrammable and modular systems that may help the automatic production of 'not-easy-to-keep' species is important for scientific purposes and for such aquaculture needs as the production of alive foods, the culture of small larvae and the test of new culture procedures. For this reason, we planned and built a programmable experimental system adaptable to the culture of various aquatic organisms, at different developmental stages. The system is based on culture cylinders contained into operational tanks connected to water conditioning tanks. A programmable central processor unit controls the operations, that is, water changes, temperature, light irradiance, the opening and closure of valves for the discharge of unused foods, water circulation and filtration and disinfection systems, according to the information received by various probes. Various devices may be set to modify water circulation and water changes to fulfil the needs of given organisms, to avoid damage of delicate structures, improve feeding performances and reduce the risk of movements over the water surface. The results obtained indicate that the system is effective in the production of shrimp larvae, being able to produce Hippolyte inermis post-larvae with low mortality as compared with the standard operation procedures followed by human operators. Therefore, the patented prototype described in the present study is a possible solution to automate and simplify the rearing of small invertebrates in the laboratory and in production plants.

  1. Sampling and Analysis Plan for Supplemental Environmental Project: Aquatic Life Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Berryhill, Jesse Tobias [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gaukler, Shannon Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    As part of a settlement agreement for nuclear waste incidents in 2014, several supplemental environment projects (SEPs) were initiated at Los Alamos National Laboratory (LANL or the Laboratory) between the U.S. Department of Energy and the state of New Mexico. One SEP from this agreement consists of performing aquatic life surveys and will be used to assess the applicability of using generic ambient water-quality criteria (AWQC) for aquatic life. AWQC are generic criteria developed by the U.S. Environmental Protection Agency (EPA) to cover a broad range of aquatic species and are not unique to a specific region or state. AWQC are established by a composition of toxicity data, called species sensitivity distributions (SSDs), and are determined by LC50 (lethal concentration of 50% of the organisms studied) acute toxicity experiments for chemicals of interest. It is of interest to determine whether aquatic species inhabiting waters on the Pajarito Plateau are adequately protected using the current generic AWQC. The focus of this study will determine which aquatic species are present in ephemeral, intermittent, and perennial waters within LANL boundaries and from reference waters adjacent to LANL. If the species identified from these waters do not generally represent species used in the SSDs, then SSDs may need to be modified and AWQC may need to be updated. This sampling and analysis plan details the sampling methodology, surveillance locations, temporal scheduling, and analytical approaches that will be used to complete aquatic life surveys. A significant portion of this sampling and analysis plan was formalized by referring to Appendix E: SEP Aquatic Life Surveys DQO (Data Quality Objectives).

  2. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  3. Plastic ingestion in aquatic-associated bird species in southern Portugal.

    Science.gov (United States)

    Nicastro, Katy R; Lo Savio, Roberto; McQuaid, Christopher D; Madeira, Pedro; Valbusa, Ugo; Azevedo, Fábia; Casero, Maria; Lourenço, Carla; Zardi, Gerardo I

    2018-01-01

    Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats affecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5% were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS, silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are of crucial importance to evaluate changes through time and among regions and to define management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    Science.gov (United States)

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  5. Impact of PETIT-SAUT hydroelectric dam on aquatic life (French Guyana)

    International Nuclear Information System (INIS)

    Sissakian, C.

    1992-01-01

    The construction of the hydroelectric scheme of PETIT-SAUT in French Guyana creates a reservoir which covers 310 km 2 of tropical rain forest. This hydroelectric scheme has an influence on the various aspects of the environment. One of the most important aspects is the modification of the water quality and of the aquatic life due to the degradation of organic matter. Some studies of the biology of these area fishes are initiated. At the same time, Electricite de France studies some constructive arrangements and reservoir managements to assure, the most rapidly possible, a return to an aquatic normal life. 6 refs

  6. How to submit an ATIP request | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Corporations, businesses, and organizations with a Canadian presence have the right to make an access to Information request. Please note that an applicant may be charged additional search fees and/or preparation fees in regards to a request they have submitted under the Access to Information Act.

  7. Journal of Aquatic Sciences

    African Journals Online (AJOL)

    The Journal of Aquatic Sciences publishes articles on problems and issues in Aquatic Sciences from all ... The journal accepts for publication manuscripts of very high international standard containing reports of original scientific research.

  8. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas...

  9. Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms.

    Science.gov (United States)

    Porter, Clint M; Nairn, Robert W

    2010-10-15

    Elevated concentrations of acidity and metals in acid mine drainage (AMD) may be effectively addressed by active and passive treatment technologies. However, typical evaluations consider only chemical water quality with little if any regard for biological metrics. Robust evaluations including both chemical and biological indicators of water quality improvement are needed. In this study, injection of alkaline fluidized bed ash (FBA) into a flooded underground coal mine was coupled with a five-cell passive treatment system to ameliorate an abandoned AMD discharge in eastern Oklahoma. The passive system included process units promoting both aerobic and anaerobic treatment mechanisms. Resulting water quality changes and biological responses were evaluated. Organisms of two distinct functional groups (the filter-feeding mollusk Corbicula fluminea and the wide-spectrum feeding fish Lepomis macrochirus) were exposed to mine waters in several treatment cells. The combination of treatment technologies was hypothesized to limit potential negative effects on these aquatic organisms. Tissues were harvested and analyzed for concentrations of several metals (Al, Fe, Mn, Mg, Ca, Ni, Cu and Zn) of interest. Organismal responses, such as hepatosomatic index, condition factor, and condition index, did not vary significantly among organisms exposed within different treatment cells when compared to non-AMD impaired waters. Metal tissue accumulation trends, compared to aqueous concentrations, were observed for Fe, Ni and Zn. Exposure experiments with these two organisms indicated that FBA introductions coupled with passive treatment decreased the potential adverse effects of AMD to biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    Science.gov (United States)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  11. [Histopathological analysis of organs submitted by legal medicine experts in Baojii City: 358 forensic identification cases].

    Science.gov (United States)

    Dong, Du-xuan; Shi, Ping-xia; Li, Yun-li; Tian, San-hu; Yang, Jia; Gao, Gang; Zheng, Yun; Jia, Le; Ju, Hong-ya; Sun, Lu-ying; Chen, Ni; Wang, Xiao-bao

    2014-08-01

    To analyze pathological characteristics of organs recovered during forensic autopsy submitted by legal medicine experts. From Baoji city, 358 cases of forensic autopsy specimens from a series of routine exams were collected. And histopathological diagnoses were reviewed. Majority of the 358 cases were young men. The major causes of death were trauma, sudden death and poisoning. The cause of death was determined with histology in 250 cases. No typical histological changes were noted in 101 cases. The tissue autolysis and decomposition were present in 7 cases. The major pathological diagnosis was cardiovascular disease, followed by diseases in respiratory, nervous, and digestive systems. Forensic autopsy with its professional characteristics, is different from regular autopsy. When diagnosing cause of death by histopathological examination, pathologists should collaborate with legal medicine experts to know the details of the cases, circumstances surrounding the death, and specific forensic pathological characteristics.

  12. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events.

    Science.gov (United States)

    Affonso, A G; Queiroz, H L; Novo, E M L M

    2015-11-01

    This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems

  13. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events

    Directory of Open Access Journals (Sweden)

    A. G. Affonso

    Full Text Available Abstract This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012, channels (scroll lakes with high connectivity, sensu Junk et al., 2012 and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples were applied to the variables in order to: 1 quantify differences among aquatic system types; 2 assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system’s types. PERMANOVA showed that the differences between aquatic system’s types and hydrological phases of all variables were highly significant for both main factors (type and phase and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are

  14. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    Science.gov (United States)

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, Pinsects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  15. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    Liu, Wen-Xiu; Wang, Yan; He, Wei

    2016-01-01

    Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs...

  16. An eDNA assay for river otter detection: A tool for surveying a semi-aquatic mammal

    Science.gov (United States)

    Ticha M. Padgett-Stewart; Taylor M. Wilcox; Kellie J. Carim; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz

    2016-01-01

    Environmental DNA (eDNA) is an effective tool for the detection of elusive or low-density aquatic organisms. However, it has infrequently been applied to mammalian species. North American river otters (Lontra canadensis) are both broad ranging and semi-aquatic, making them an ideal candidate for examining the uses of eDNA for detection of mammals. We developed...

  17. Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic Sediments

    Science.gov (United States)

    2016-11-01

    FINAL REPORT Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic...passive multisampling method to measure Dioxins/Furans 5a. CONTRACT NUMBER and other contaminant bioavailability in aquatic sediments...This also indicates the bioavailability or pressure (fugacity) of contaminants on organisms2 and consequently represents the exposure level for

  18. Pilot randomized controlled trial to evaluate the effect of aquatic and land physical therapy on musculoskeletal dysfunction of sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Camila Tatiana Zanoni

    2015-04-01

    Full Text Available Objective: To compare the effect of aquatic and land-based physiotherapy in reducing musculoskeletal hip and lower back pain and increasing overall physical capabilities of sickle cell disease patients. Methods: Informed written consent was obtained from all volunteers who were submitted to evaluations using different functional scales: Lequesne's Algofunctional Questionnaire and Oswestry Disability Index, trunk and hip range of motion, goniometry, trunk and hip muscle strength assessment using load cell, and surface electromyography of the iliocostalis, long dorsal (longissimus, gluteus maximus, gluteus medius and tensor fasciae latae muscles. Ten patients were randomized into two groups: aquatic physiotherapy with a mean age of 42 years (range: 25-67 and conventional physiotherapy with a mean age of 49 years (range: 43-59. Both groups were submitted to a twelve-week program of two sessions weekly. Results: After the intervention, significant improvements were observed regarding the Lequesne index (p-value = 0.0217, Oswestry Disability Index (p-value = 0.0112, range of motion of trunk extension (p-value = 0.0320, trunk flexion muscle strength (p-value = 0.0459, hip extension and abduction muscle strength (p-value = 0.0062 and p-value = 0.0257, respec- tively. Range of motion of trunk and hip flexion, extension, adduction and abduction, trunk extensor muscle strength and all surface electromyography variables showed no significant statistical difference. Conclusion: Physical therapy is efficient to treat musculoskeletal dysfunctions in sickle cell disease patients, irrespective of the technique; however, aquatic therapy showed a trend toward improvement in muscle strength. Further studies with a larger patient sample and longer periods of therapy are necessary to confirm these results.

  19. Occurrence of β-N-methylamino-l-alanine (BMAA and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    Directory of Open Access Journals (Sweden)

    Emilie Lance

    2018-02-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA, a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC. The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB, β-amino-N-methyl-alanine (BAMA and N-(2-aminoethyl glycine (AEG. This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  20. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans.

    Science.gov (United States)

    Lance, Emilie; Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-02-14

    The neurotoxin β- N -methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino- N -methyl-alanine (BAMA) and N -(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  1. Using Stable Isotopes to Detect Land Use Change and Nitrogen Sources in Aquatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, K. M. [National Isotope Center, GNS Science, Lower Hutt (New Zealand)

    2013-05-15

    Changing land use is one of the primary causes of increased sedimentation and nutrient levels in aquatic systems, resulting in contamination and reduction of biodiversity. Detecting and quantifying these inputs is the first step towards remediation, and enabling targeted reductions of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as detection and quantification tools in aquatic environments. Carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotopes of sediments, as well as algae and invertebrates from aquatic systems can be used as proxies to record both short and long term environmental change. Excess nitrogen (or nitrogen-compounds) derived from urbanization, industry, forestry, farming and agriculture, increase the bioavailability of nitrogen to aquatic organisms, changing their natural {delta}15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes {delta}{sup 13}C isotopic compositions and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The combined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools, which are useful indicators of source and transport pathways of terrestrial derived material and anthropogenic pollutants into streams, rivers and estuaries. (author)

  2. Diet and trophic groups of an aquatic insect community in a tropical stream

    Directory of Open Access Journals (Sweden)

    R. L. Motta

    Full Text Available The diet and trophic groups of an assemblage of aquatic insects were studied in a tropical stream. Genera of the orders Ephemeroptera, Odonata, Plecoptera, Lepidoptera, and Hemiptera showed feeding specialization. Others, such as Trichoptera, Coleoptera, and Diptera, showed great diet variation with genera of different trophic groups. Seasonal variation of insect diet, evident only for some genera of the orders Trichoptera, Lepidoptera, Coleoptera, and Diptera, was due to the differences observed in community composition and to generalist habits of these genera. However, the seasonal comparison of trophic groups showed no significant statistical differences. The great importance of organic matter, a non-limited resource, in the diet of Ribeirão do Atalho aquatic insects may be the explanation for the trophic stability in this community organization.

  3. An integrated approach to aquatic health assessment: water quality index and multibiomarker response

    International Nuclear Information System (INIS)

    Sedeno-Diaz, J. E.; Lopez-Lopez, E.; Jimenez-Trujillo, P.; Tejeda-Vera, R.; Espainal Carrion, T.

    2009-01-01

    The pollution of water bodies reduces their quality and is stressful to their biota. In a river, water usually is of the high-est quality in its headwaters reaches, becoming dirtier along its length as it passes through different land uses. Therefore, the aquatic environment should be assessed using physicochemical and biological features in order to provide a full spectrum of aquatic ecosystem health. Water Quality Indexes can be used to aggregate data on water quality parameters and to translate this information into a single value. The use of bio markers as indicators of toxicity delineates the effects of xenobiotics before the appearance of diseases in aquatic organism. The use of a battery bio markers may be useful to evaluate the various response to mixtures of pollutants. (Author)

  4. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  5. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    Science.gov (United States)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  6. Cryptosporidium spp. and Giardia sp. in aquatic mammals in northern and northeastern Brazil.

    Science.gov (United States)

    Borges, João Carlos; Lima, Danielle Dos; da Silva, Edson Moura; Moreira, André Lucas de Oliveira; Marmontel, Miriam; Carvalho, Vitor Luz; Amaral, Rodrigo de; Lazzarini, Stella Maris; Alves, Leucio Câmara

    2017-09-20

    Cryptosporidium and Giardia are protozoans that can infect humans and wild and domestic animals. Due to the growing importance of diseases caused by protozoan parasites in aquatic species, we aimed to evaluate the frequency of infection by Cryptosporidium spp. and Giardia sp. in aquatic and marine mammals in the northern and northeastern regions of Brazil. We collected 553 fecal samples from 15 species of wild-ranging and captive aquatic mammals in northern and northeastern Brazil. All samples were analyzed by the Kinyoun technique for identification of Cryptosporidium spp. oocysts. Giardia sp. cysts were identified by means of the centrifugal-flotation technique in zinc sulfate solution. Subsequently, all samples were submitted for direct immunofluorescence testing. The overall frequency of infection was 15.55% (86/553) for Cryptosporidium spp. and 9.04% (50/553) for Giardia sp. The presence of Cryptosporidium spp. was detected in samples from 5 species: neotropical river otter Lontra longicaudis (15.28%), giant otter Pteronura brasiliensis (41.66%), Guiana dolphin Sotalia guianensis (9.67%), Amazonian manatee Trichechus inunguis (16.03%), and Antillean manatee T. manatus (13.79%). Giardia sp. was identified in L. longicaudis (9.23%), P. brasiliensis (29.16%), pygmy sperm whale Kogia breviceps (100%), dwarf sperm whale K. sima (25%), S. guianensis (9.67%), T. inunguis (3.81%), and T. manatus (10.34%). This is the first report of Cryptosporidium spp. in L. longicaudis, P. brasiliensis, and S. guianensis, while the occurrence of Giardia sp., in addition to the 2 otter species, was also identified in manatees, thus extending the number of hosts susceptible to these parasitic agents.

  7. Acute toxicity assessment of Osthol content in bio-pesticides using two aquatic organisms

    Directory of Open Access Journals (Sweden)

    Eun-Chae Yim

    2014-12-01

    Full Text Available Objectives This study focused on the assessment of acute toxicity caused by Osthol, a major component of environment-friendly biological pesticides, by using two aquatic organisms. Methods The assessment of acute toxicity caused by Osthol was conducted in Daphnia magna and by examining the morphological abnormalities in Danio rerio embryos. Results The median effective concentration value of Osthol in D. magna 48 hours after inoculation was 19.3 μM. The median lethal concentration of D. rerio embryo at 96 hours was 30.6 μM. No observed effect concentration and predicted no effect concentration values of Osthol in D. magna and D. rerio were calculated as 5.4 and 0.19 μM, respectively. There was an increase in the morphological abnormalities in D. rerio embryo due to Osthol over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation were observed in embryos at 24–48 hours. Symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects, and symptoms of collapse were observed in fertilized embryo tissue within 96 hours. Ocular defects and pigmentation were the additional symptoms observed in this study. Conclusions Because Osthol showed considerable toxicity levels continuous toxicity evaluation in agro-ecosystems is necessary when bio-pesticides containing Osthol are used.

  8. Directory of AFRL/HEA Technical Publications Submitted to DTIC from 1969 to 2007

    National Research Council Canada - National Science Library

    Bell, Herbert H; Casey, Elizabeth P

    2007-01-01

    ...) has submitted technical publications to the Defense Technical Information Center (DTIC) documenting the unique research and development efforts conducted by this organization to improve warfighter training...

  9. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  10. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  11. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, H G [Saskatchewan Research Council, Saskatoon, SK (Canada); Nyholm, N [Technical Univ. of Denmark, Lyngby (Denmark). Lab. of Environmental Science and Ecology; Huang, P M [Saskatchewan Univ., Saskatoon (Canada). Saskatchewan Inst. of Pedology

    1996-12-31

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the `Metal mining liquid effluent regulations and guidelines` provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs.

  12. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    International Nuclear Information System (INIS)

    Peterson, H.G.; Nyholm, N.; Huang, P.M.

    1995-01-01

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the 'Metal mining liquid effluent regulations and guidelines' provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs

  13. The behaviour of chromium in aquatic and terrestrial food chains

    International Nuclear Information System (INIS)

    1975-01-01

    Chromium has been considered both as potential radioactive and conventional pollutant. Chromium-51 is produced by the activation of 50 Cr, which may be present either as a component of steel alloys used in reactors, or in Na 2 CrO 4 added as an anticorrosion agent to the cooling water. Only small amounts of 51 Cr are normally found in the liquid waste of nuclear power plants before discharge into rivers. In exceptional situations, however, as a result of the direct release of cooling waters, the aquatic environments may receive relatively large quantities of 51 Cr. Part of this 51 Cr is adsorbed e.g. to the sediments, but a fraction remains in solution in the river water. Somme accumulation of the radionuclide is observed in fresh water and marine organisms. Therefore, although 51 Cr has a relatively short physical half life (27.8d), it is of interest to acquire better information on its accumulation by different species of fresh water organisms and plants, as well as on its behaviour in soils, in order to evaluate the relative importance of this nuclide in the radioactive contamination of the aquatic and terrestrial food chains. As a related and sometimes associated pollutant, stable chromium is also taken into consideration. This element occurs fairly frequently as an environmental pollutant in many countries, either because of its abundance in soils derived from serpentine or because of its release to the environment from industrial wastes. The sequence of presentation of the experiment data is based on the consecutive steps of the contamination process: aquatic environment, soils, plant link of the food chain. Special attention is paid, in the different chapters, to the behaviour of various chemical forms of chromium and to their distribution in different fractions: soluble in water, adsorbed, precipitated on particles or complexed with organic material

  14. The organic tritium in the environment

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1979-01-01

    Sources, organization process, and biological availability of organic tritium released in the environment, transfer of organic tritium in the environment from methane or soil to plants and from food to mammals, transfer of tritium in aquatic ecosystems, and dose to man resulting of the ingestion of tritiated food were reviewed and discussed. Some data about transfer of organic tritium in terrestrial and aquatic ecosystems reported by literatures were summarized and were supplied with recent data on biological accumulation of organic tritium in the food chain. It was stressed that more research must be done in future because data available were still insufficient. Last, some research programs in progress or planned were stated. (Tsunoda, M.)

  15. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    Science.gov (United States)

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  16. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  17. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  18. Opportunities for public aquariums to increase the sustainability of the aquatic animal trade.

    Science.gov (United States)

    Tlusty, Michael F; Rhyne, Andrew L; Kaufman, Les; Hutchins, Michael; Reid, Gordon McGregor; Andrews, Chris; Boyle, Paul; Hemdal, Jay; McGilvray, Frazer; Dowd, Scott

    2013-01-01

    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. © 2012 Wiley Periodicals, Inc.

  19. DIALOG: Fostering Early Career Development Across the Aquatic Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Susan Weiler, PhD

    2004-11-14

    year increasing numbers of graduates take advantage of the opportunity to be part of this international collection, and more scientists, employers and administrators use this resource to identify recent graduates and get an overview of their work. Dissertation abstracts are submitted on line and immediately posted on the ASLO web site in a format that can be searched by year, name, and key words (www.aslo.org/phd.html). In addition to the recognition, program participants receive a compilation of abstracts, a directory, and a demographic profile of their cohort. An electronic distribution list keeps recent grads informed about job opportunities, resources, recent advances across the aquatic sciences, and-other research and professional news. Finally, the interdisciplinary symposium offers a unique opportunity for grads to get to know each other and share common experiences, and address the challenges and opportunities facing new professionals. The DIALOG Program is a long-term investment in human resources and science infrastructure. The most interesting and important questions in aquatic and other sciences are increasingly interdisciplinary and this program brings together scientists from across the full spectrum of biologically relevant aquatic science. The DIALOG database will become increasingly useful as more graduates participate. While the full impact of the program will probably not be realized for many years, there have already been many tangible results. Several interdisciplinary (including some international) research collaborations have been started; an international student exchange program has been set up at two institutions; several workshops and meeting sessions have been organized; and the entire group continues to communicate about research, education, and science policy issues via an electronic distribution list. The goal of the DIALOG symposium is to foster cross-disciplinary and international understanding and interactions at an early career stage

  20. Legacy and emerging organohalogenated contaminants in wild edible aquatic organisms: Implications for bioaccumulation and human exposure.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Li, Qing X; Wang, Tao; Zheng, Xiaobo; Peng, Pingan; Mai, Bixian

    2018-03-01

    Highly industrialized and urbanized watersheds may receive various contaminants from anthropogenic activities. In this study, legacy and emerging organohalogenated contaminants (OHCs) were measured in edible wild aquatic organisms sampled from the Pearl River and Dongjiang River in a representative industrial and urban region in China. High concentrations of target contaminants were observed. The Pearl River exhibited higher concentrations of OHCs than the Dongjiang River due to high industrialization and urbanization. Agrochemical inputs remained an important source of OHCs in industrialized and urbanized watershed in China, but vigilance is needed for recent inputs of polychlorinated biphenyls (PCBs) originated from e-waste recycling activities. Bioaccumulation of dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), PCBs, polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus (DP) was biological species- and compound-specific, which can be largely attributed to metabolic capability for xenobiotics. No health risk was related to the daily intake of DDTs, HCHs, and PBDEs via consumption of wild edible species investigated for local residents. However, the current exposure to PCBs through consuming fish is of potential health concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  2. Aquatic exercise training for fibromyalgia.

    Science.gov (United States)

    Bidonde, Julia; Busch, Angela J; Webber, Sandra C; Schachter, Candice L; Danyliw, Adrienne; Overend, Tom J; Richards, Rachel S; Rader, Tamara

    2014-10-28

    Exercise training is commonly recommended for individuals with fibromyalgia. This review examined the effects of supervised group aquatic training programs (led by an instructor). We defined aquatic training as exercising in a pool while standing at waist, chest, or shoulder depth. This review is part of the update of the 'Exercise for treating fibromyalgia syndrome' review first published in 2002, and previously updated in 2007. The objective of this systematic review was to evaluate the benefits and harms of aquatic exercise training in adults with fibromyalgia. We searched The Cochrane Library 2013, Issue 2 (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, NHS Economic Evaluation Database), MEDLINE, EMBASE, CINAHL, PEDro, Dissertation Abstracts, WHO international Clinical Trials Registry Platform, and AMED, as well as other sources (i.e., reference lists from key journals, identified articles, meta-analyses, and reviews of all types of treatment for fibromyalgia) from inception to October 2013. Using Cochrane methods, we screened citations, abstracts, and full-text articles. Subsequently, we identified aquatic exercise training studies. Selection criteria were: a) full-text publication of a randomized controlled trial (RCT) in adults diagnosed with fibromyalgia based on published criteria, and b) between-group data for an aquatic intervention and a control or other intervention. We excluded studies if exercise in water was less than 50% of the full intervention. We independently assessed risk of bias and extracted data (24 outcomes), of which we designated seven as major outcomes: multidimensional function, self reported physical function, pain, stiffness, muscle strength, submaximal cardiorespiratory function, withdrawal rates and adverse effects. We resolved discordance through discussion. We evaluated interventions using mean differences

  3. Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging.

    Science.gov (United States)

    Marotta, H; Enrich-Prast, A

    2015-11-01

    Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.

  4. The Mode of Action of Isocyanide in Three Aquatic Organisms, Balanus amphitrite, Bugula neritina and Danio rerio

    KAUST Repository

    Zhang, Yi-Fan

    2012-09-18

    Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine fouling invertebrates, and the other organism is the non-target species zebrafish Danio rerio. In the swimming larvae of B. neritina, isocyanide did not affect the total attachment rate (≤50 µg ml^(−1)), but it did change the attachment site by increasing the percentage of attachment on the bottom of the container rather than on the wall or air-water inter-surface. Isocyanide binds several proteins in B. neritina as identified via SDS-PAGE-LC-MS/MS: 1) a 30 kD protein band containing two proteins similar to voltage dependent anion channels (VDAC), which control the direct coupling of the mitochondrial matrix to the energy maintenance of the cytosol and the release of apoptogenic factors from mitochondria of mammalian cells; and 2) an unknown 39 kD protein. In B. amphitrite cyprids, the isocyanide binding protein were 1) a protein similar to NADH-ubiquinone oxidoreductase, which is the “entry enzyme” of oxidative phosphorylation in mitochondria; and 2) cytochrome P450. In Danio rerio embryos, isocyanide caused “wavy” notochords, hydrocephalus, pericardial edema, poor blood circulation, and defects in pigmentation and hematopoiesis, which phenocopied copper deficiency. This is the first report on isocyanide binding proteins in fouling organisms, as well as the first description of its phenotype and potential toxicology in zebrafish.

  5. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    Science.gov (United States)

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  6. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we......Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  7. Illustrated field guide for aquatic insects study: A collection that lets you view life

    Directory of Open Access Journals (Sweden)

    Andrea Castiblanco-Zerda

    2017-01-01

    Full Text Available This work was developed from the aquatic insects collection (CIA of National Pedagogical University of Colombia, Bogotá. A field guide and ID portable key was outlined, which contributed to the study of aquatic insects with alternative collection methods, through the development of methodologies for observation of living organisms (in situ and in vivo for identification until taxonomic level of family during the field practice and its subsequent return to the habitat, taking into account students’ practical work needs in the field and the active use of Biology Department biological resources. It was concluded that the recognition of aquatic insects families allows articulation between collection and field practices, as well as students’ reflection on methods and goals of the collection, and evaluation of other procedural possibilities as those presented in this work.

  8. Prioritizing veterinary pharmaceuticals for aquatic environment in Korea.

    Science.gov (United States)

    Kim, Younghee; Jung, Jinyong; Kim, Myunghyun; Park, Jeongim; Boxall, Alistair B A; Choi, Kyungho

    2008-09-01

    Pharmaceutical residues may have serious impacts on nontarget biological organisms in aquatic ecosystems, and have therefore precipitated numerous investigations worldwide. Many pharmaceutical compounds available on the market need to be prioritized based on their potential ecological and human health risks in order to develop sound management decisions. We prioritized veterinary pharmaceuticals in Korea by their usage, potential to enter the environment, and toxicological hazard. Twenty compounds were identified in the top priority class, most of which were antibiotics. Among these compounds, 8 were identified as deserving more immediate attention: amoxicillin, enramycin, fenbendazole, florfenicol, ivermectin, oxytetracycline, tylosin, and virginiamycin. A limitation of this study is that we initially screened veterinary pharmaceuticals by sales tonnage for veterinary use only. However, this is the first attempt to prioritize veterinary pharmaceuticals in Korea, and it provides important concepts for developing environmental risk management plans for such contaminants in aquatic systems. Copyright © 2008 Elsevier B.V. All rights reserved.

  9. Lipids of aquatic sediments, recent and ancient

    Science.gov (United States)

    Eglinton, G.; Hajibrahim, S. K.; Maxwell, J. R.; Quirke, J. M. E.; Shaw, G. J.; Volkman, J. K.; Wardroper, A. M. K.

    1979-01-01

    Computerized gas chromatography-mass spectrometry (GC-MS) is now an essential tool in the analysis of the complex mixtures of lipids (geolipids) encountered in aquatic sediments, both 'recent' (less than 1 million years old) and ancient. The application of MS, and particularly GC-MS, has been instrumental in the rapid development of organic geochemistry and environmental organic chemistry in recent years. The techniques used have resulted in the identification of numerous compounds of a variety of types in sediments. Most attention has been concentrated on molecules of limited size, mainly below 500 molecular mass, and of limited functionality, for examples, hydrocarbons, fatty acids and alcohols. Examples from recent studies (at Bristol) of contemporary, 'recent' and ancient sediments are presented and discussed.

  10. BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1

    Science.gov (United States)

    BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...

  11. Tire wear particles in the aquatic environment - A review on generation, analysis, occurrence, fate and effects.

    Science.gov (United States)

    Wagner, Stephan; Hüffer, Thorsten; Klöckner, Philipp; Wehrhahn, Maren; Hofmann, Thilo; Reemtsma, Thorsten

    2018-08-01

    Tire wear particles (TWP), generated from tire material during use on roads have gained increasing attention as part of organic particulate contaminants, such as microplastic, in aquatic environments. The available information on properties and generation of TWP, analytical techniques to determine TWP, emissions, occurrence and behavior and ecotoxicological effects of TWP are reviewed with a focus on surface water as a potential receptor. TWP emissions are traffic related and contribute 5-30% to non-exhaust emissions from traffic. The mass of TWP generated is estimated at 1,327,000 t/a for the European Union, 1,120,000 t/a for the United States and 133,000 t/a for Germany. For Germany, this is equivalent to four times the amount of pesticides used. The mass of TWP ultimately entering the aquatic environment strongly depends on the extent of collection and treatment of road runoff, which is highly variable. For the German highways it is estimated that up to 11,000 t/a of TWP reach surface waters. Data on TWP concentrations in the environment, including surface waters are fragmentary, which is also due to the lack of suitable analytical methods for their determination. Information on TWP properties such as density and size distribution are missing; this hampers assessing the fate of TWP in the aquatic environment. Effects in the aquatic environment may stem from TWP itself or from compounds released from TWP. It is concluded that reliable knowledge on transport mechanism to surface waters, concentrations in surface waters and sediments, effects of aging, environmental half-lives of TWP as well as effects on aquatic organisms are missing. These aspects need to be addressed to allow for the assessment of risk of TWP in an aquatic environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Investigating Pathways of Nutrient and Energy Flows Through Aquatic Food Webs Using Stable Isotopes of Carbon and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hadwen, W. L.; Bunn, S. E. [Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan Campus, Brisbane, Queensland (Australia)

    2013-05-15

    Carbon and nitrogen stable isotopes can provide valuable insights into pathways of nutrient and energy flows in aquatic ecosystems. Carbon stable isotopes are principally used to trace pathways of organic matter transfer through aquatic food webs, particularly with regard to identifying the dominant sources of nutrition for aquatic biota. Stable isotopes of carbon have been widely used to answer one of the most pressing questions in aquatic food web ecology - to what degree do in-stream (autochthonous) and riparian (allochthonous) sources of energy fuel riverine food webs? In conjunction with carbon stable isotopes, nitrogen stable isotopes have been used to determine the trophic position of consumers and to identify the number of trophic levels in aquatic food webs. More recently, stable nitrogen isotopes have been recommended as indicators of anthropogenic disturbances. Specifically, agricultural land uses and/or sewage effluent discharge have been shown to significantly increase {delta}{sup 15}N signatures in primary producers and higher order consumers in freshwater, estuarine and marine environments. Together, carbon and nitrogen stable isotopes can be used to examine natural food web functions as well as the degree to which human modifications to catchments and aquatic environments can influence aquatic ecosystem function. (author)

  13. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release...... enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide...... of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna...

  14. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    Science.gov (United States)

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  15. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans

    DEFF Research Database (Denmark)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin

    2017-01-01

    occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM...

  16. Fish Karyome version 2.1: a chromosome database of fishes and other aquatic organisms.

    Science.gov (United States)

    Nagpure, Naresh Sahebrao; Pathak, Ajey Kumar; Pati, Rameshwar; Rashid, Iliyas; Sharma, Jyoti; Singh, Shri Prakash; Singh, Mahender; Sarkar, Uttam Kumar; Kushwaha, Basdeo; Kumar, Ravindra; Murali, S

    2016-01-01

    A voluminous information is available on karyological studies of fishes; however, limited efforts were made for compilation and curation of the available karyological data in a digital form. 'Fish Karyome' database was the preliminary attempt to compile and digitize the available karyological information on finfishes belonging to the Indian subcontinent. But the database had limitations since it covered data only on Indian finfishes with limited search options. Perceiving the feedbacks from the users and its utility in fish cytogenetic studies, the Fish Karyome database was upgraded by applying Linux, Apache, MySQL and PHP (pre hypertext processor) (LAMP) technologies. In the present version, the scope of the system was increased by compiling and curating the available chromosomal information over the globe on fishes and other aquatic organisms, such as echinoderms, molluscs and arthropods, especially of aquaculture importance. Thus, Fish Karyome version 2.1 presently covers 866 chromosomal records for 726 species supported with 253 published articles and the information is being updated regularly. The database provides information on chromosome number and morphology, sex chromosomes, chromosome banding, molecular cytogenetic markers, etc. supported by fish and karyotype images through interactive tools. It also enables the users to browse and view chromosomal information based on habitat, family, conservation status and chromosome number. The system also displays chromosome number in model organisms, protocol for chromosome preparation and allied techniques and glossary of cytogenetic terms. A data submission facility has also been provided through data submission panel. The database can serve as a unique and useful resource for cytogenetic characterization, sex determination, chromosomal mapping, cytotaxonomy, karyo-evolution and systematics of fishes. Database URL: http://mail.nbfgr.res.in/Fish_Karyome. © The Author(s) 2016. Published by Oxford University Press.

  17. African Journal of Aquatic Science

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... The African Journal of Aquatic Science is an international journal devoted to the ... papers and short articles in all the aquatic science fields including limnology, ...

  18. Silver nanoparticles alter learning and memory formation in an aquatic organism, Lymnaea stagnalis.

    Science.gov (United States)

    Young, Austin; Protheroe, Amy; Lukowiak, Ken

    2017-06-01

    We tested the effect of silver nanoparticles (AgNPs) on the ability of the pond snail, Lymnaea stagnalis, to learn and form long-term memory (LTM) following operant conditioning of aerial respiration. We hypothesized that the AgNPs would act as a stressor and prevent learning and LTM formation. We tested snails exposed for either 72 h or only during training and testing for memory (i.e. 0.5 h) and found no difference between those treatments. We found that at a low concentration of AgNPs (5 μg/L) neither learning and nor memory formation were altered. When we increased the concentration of AgNPs (10 μg/L) we found that memory formation was enhanced. Finally, at a higher concentration (50 μg/L) memory formation was blocked. To determine if the disassociation of Ag + from the AgNPs caused the effects on memory we performed similar experiments with AgNO 3 and found similar concentration-dependent results. Finally, we found that snails perceive the AgNPs differently from Ag+ as there was context specific memory. That is, snails trained in AgNPs did not show memory when tested in Ag + and vice-versa. We believe that changes in memory formation may be a more sensitive determination of AgNPs on aquatic organisms than the determination of a LC 50 . Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    Science.gov (United States)

    Fulton, Christopher J.; Johansen, Jacob L.; Steffensen, John F.

    2013-01-01

    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s−1) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed. PMID:23326566

  20. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  1. Optimization of analytical techniques to characterize antibiotics in aquatic systems

    International Nuclear Information System (INIS)

    Al Mokh, S.

    2013-01-01

    Antibiotics are considered as pollutants when they are present in aquatic ecosystems, ultimate receptacles of anthropogenic substances. These compounds are studied as their persistence in the environment or their effects on natural organisms. Numerous efforts have been made worldwide to assess the environmental quality of different water resources for the survival of aquatic species, but also for human consumption and health risk related. Towards goal, the optimization of analytical techniques for these compounds in aquatic systems remains a necessity. Our objective is to develop extraction and detection methods for 12 molecules of aminoglycosides and colistin in sewage treatment plants and hospitals waters. The lack of analytical methods for analysis of these compounds and the deficiency of studies for their detection in water is the reason for their study. Solid Phase Extraction (SPE) in classic mode (offline) or online followed by Liquid Chromatography analysis coupled with Mass Spectrometry (LC/MS/MS) is the most method commonly used for this type of analysis. The parameters are optimized and validated to ensure the best conditions for the environmental analysis. This technique was applied to real samples of wastewater treatment plants in Bordeaux and Lebanon. (author)

  2. Oil Sands Regional Aquatics Monitoring Program (RAMP) 5 year report

    International Nuclear Information System (INIS)

    Fawcett, K.

    2003-05-01

    This 5 year report outlined and examined the activities of the Regional Aquatics Monitoring Program (RAMP) from its introduction in 1997 up to 2001. The RAMP is a multi-stakeholder program comprised of industry and government representatives as well as members of aboriginal groups and environmental organizations. The objectives of RAMP are to monitor aquatic environments in the oil sands region in order to allow for assessment of regional trends and cumulative effects, as well as to provide baseline data against which impact predictions of recent environmental impact assessments can be verified. Scientific programs conducted as part of RAMP during the 5-year period included water quality and sediment quality analyses; fish monitoring; benthic communities monitoring; water quality and aquatic vegetation analyses of wetlands; and hydrology and climate monitoring. RAMP's programs have expanded annually in scope as a result of increased oil sands development in the region. This report provided outlines of RAMP's individual program objectives and organizational structures, as well as details of all studies conducted for each year. Data were collected for all major study areas were presented, and program methodologies for assessing and identifying trends were outlined. refs., tabs., figs

  3. Toxicity of Engineered Nanoparticles to Aquatic Invertebrates

    DEFF Research Database (Denmark)

    Cupi, Denisa; Sørensen, Sara Nørgaard; Skjolding, Lars Michael

    2016-01-01

    This chapter provides a targeted description of some of the most important processes that influence toxicity and uptake of nanoparticles in aquatic invertebrates. It discusses silver nanoparticles (Ag NPs), on how aspects of dissolution and chemical species obtained from this process can influence...... ecotoxicity of aquatic invertebrates. The chapter focuses on how fullerenes affect the toxicity of other pollutants, but also reflect on the fate and behavior of C60 in the aquatic environment, as well as ecotoxicity to aquatic invertebrates. It presents the case of titanium dioxide nanoparticles (TiO2 NPs...... on bioaccumulation focusing on the effect of nanoparticle coating, uptake, and depuration in aquatic invertebrates....

  4. 40 CFR 230.31 - Fish, crustaceans, mollusks, and other aquatic organisms in the food web.

    Science.gov (United States)

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) OCEAN DUMPING SECTION 404(b)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on Biological Characteristics of the Aquatic Ecosystem... human consumption by tainting, by production and accumulation of toxins, or by ingestion and retention...

  5. Toxicity of environmental chemicals and their mixtures to selected aquatic organisms. Behaviour, development and biochemistry; Toxizitaet von Umweltchemikalien und deren Mischungen auf ausgewaehlte aquatische Organismen. Verhalten, Entwicklung und Biochemie

    Energy Technology Data Exchange (ETDEWEB)

    Kienle, Cornelia

    2009-04-28

    In this work, the effects of various single substances (pesticides and metals) as well as binary mixtures of them on zebrafish (Danio rerio) embryos and larvae were assessed on biochemical, developmental, and organism levels. The influence of oxygen depletion on the toxicity of substances was included as an additional interacting factor. To analyse complex interactions, the predator-prey behaviour between zebrafish and chironomid larvae (Chironomus riparius) was investigated. Another aspect of this work were studies on complex mixtures of hydrocarbons such as the water accommodated fraction of crude oil, and their effects on the behaviour of marine amphipods (Corophium volutator), as well as semi-field experiments with freshwater amphipods (Gammarus pulex). My investigations showed that effects of various substances in environmentally relevant concentration ranges are exerted on different levels of biological organisation, both in amphipods and fish. It could be shown that abiotic parameters modify the effects of pollutants. When investigating mixtures of substances with similar or different modes of action, additivity occurred in the majority of cases which usually were consistent for all investigated parameters (enzyme activity, locomotor activity, developmental impairment, mortality). Effects of the neurotoxic insecticide chlorpyrifos on the interactions between fish and chironomids could be detected in environmentally relevant concentration ranges. The effects of the water accommodated fraction of crude oil which represents a great risk for aquatic organisms in costal habitats were displayed by alterations in the behaviour of the marine amphipod Corophium volutator. For a continuous monitoring of water quality in monitoring stations, the resident amphipod Gammarus pulex proved to be a suitable and relevant test organism, as it responds sensitive to complex mixtures of pollutants in surface waters. In summary, behavioural parameters proved to be integrative

  6. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation.

  7. Effects of radioactive by-products along the extraction of rare earth elements on aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Findeiss, Matthias

    2016-01-01

    throughout analysis of thorium fluxes along the process of SEE recovery was carried out, and the effects of disposals and other products involved were measured based on ecotoxicological tests with aquatic and terrestrial organisms. In experiments with thorium exclusively the heavy metal property was regarded since radiation effects with a radioactivity half-life of approximately 14 billion years play a subordinate role in typical ecotoxicological testing periods. Moreover, it should be noted that thorium occurs in nature alongside its decay products. Th(OH) 4 at pH 6.5 to 8 showed no toxic effects in all organisms studied, aquatic (bacteria, algae and daphnia) and terrestrial (springtails, earthworms). Thorium thus does not appear to be a problem in the range of water solubility and in soil concentrations typical found.The effects of process wastewater from various process steps in the production of REE were evaluated based on eudialyte, which was investigated as an example for REE minerals. Figure 1 shows the investigated process steps of eudialyte: after mining, drill, blast and load haul operation, the ore is milled and grinded. In order to enrich it, the wanted mineral is flotated. Afterwards chemicals (acids) are added to dissolve the minerals. Impurities are removed by pH adjustment and precipitation which is also used for REE separation later. Stronger REE separation is achieved by solvent extraction and finally pure REE are obtained by electrolysis. Ground and flotated eudialyte had no or very little ecotoxicological effects. By contrast, leaching residues showed that concentrations which arise during production have a negative impact on all tested organisms (see figure 1). Due to mixture toxicity, it is difficult to estimate which compound is responsible for the total toxicity. It is known that the toxicity of metals differs in various organisms. A general trend shows the following toxicity sequence: Hg> Ag> Cu> Cd> Zn> Ni> Pb> Cr> Sn (Luoma and Rainbow 2011; Merian

  8. Effects of radioactive by-products along the extraction of rare earth elements on aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Findeiss, Matthias

    2016-12-13

    throughout analysis of thorium fluxes along the process of SEE recovery was carried out, and the effects of disposals and other products involved were measured based on ecotoxicological tests with aquatic and terrestrial organisms. In experiments with thorium exclusively the heavy metal property was regarded since radiation effects with a radioactivity half-life of approximately 14 billion years play a subordinate role in typical ecotoxicological testing periods. Moreover, it should be noted that thorium occurs in nature alongside its decay products. Th(OH){sub 4} at pH 6.5 to 8 showed no toxic effects in all organisms studied, aquatic (bacteria, algae and daphnia) and terrestrial (springtails, earthworms). Thorium thus does not appear to be a problem in the range of water solubility and in soil concentrations typical found.The effects of process wastewater from various process steps in the production of REE were evaluated based on eudialyte, which was investigated as an example for REE minerals. Figure 1 shows the investigated process steps of eudialyte: after mining, drill, blast and load haul operation, the ore is milled and grinded. In order to enrich it, the wanted mineral is flotated. Afterwards chemicals (acids) are added to dissolve the minerals. Impurities are removed by pH adjustment and precipitation which is also used for REE separation later. Stronger REE separation is achieved by solvent extraction and finally pure REE are obtained by electrolysis. Ground and flotated eudialyte had no or very little ecotoxicological effects. By contrast, leaching residues showed that concentrations which arise during production have a negative impact on all tested organisms (see figure 1). Due to mixture toxicity, it is difficult to estimate which compound is responsible for the total toxicity. It is known that the toxicity of metals differs in various organisms. A general trend shows the following toxicity sequence: Hg> Ag> Cu> Cd> Zn> Ni> Pb> Cr> Sn (Luoma and Rainbow 2011

  9. Bioaccumulation of 14C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer.

    Science.gov (United States)

    Dong, Shipeng; Xia, Tian; Yang, Yu; Lin, Sijie; Mao, Liang

    2018-01-16

    The growing applications of graphene materials warrant a careful evaluation of their environmental fate in aquatic food webs. Escherichia coli (Bacteria), Tetrahymena thermophila (protozoa), Daphnia magna (zooplankton), and Danio rerio (vertebrate) were used to build aquatic food chains to investigate the waterborne uptake and trophic transfer of 14 C-labeled graphene. Body burden factor (BBF) and trophic transfer factor (TTF) were analyzed for each organism and food chain to assess the bioaccumulation and biomagnification of graphene. The test organisms have high potential of accumulating graphene via direct uptake from culture medium with log-transformed BBF (log BBF) values of 3.66, 5.1, 3.9, and 1.62 for each organism, respectively. In the food chain from E. coli to T. thermophila, the calculated TTFs of 0.2 to 8.6 indicate the high trophic transfer potential in this aquatic food chain. However, the TTFs calculated for the food chain from T. thermophila to D. magna and from D. magna to D. rerio are much lower than 1, indicating that biomagnification was unlikely to occur in these food chains. Body burden measured for dietary uptake by T. thermophila, D. magna, and D. rerio are higher than that via waterborne exposure in a similar nominal concentration, respectively, indicating that trophic transfer is a nonnegligible route for the bioaccumulation of graphene in organisms.

  10. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me......-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex...... interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains...

  11. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Fumikazu, E-mail: f-akamt55@pwri.go.jp [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Toda, Hideshige [Department of Environmental Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2011-05-15

    Stable nitrogen isotopic composition ({delta}{sup 15}N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in {delta}{sup 15}N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider {delta}{sup 15}N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: > {delta}{sup 15}N of aquatic insects increases downstream with anthropogenic nitrogen inputs. > {delta}{sup 15}N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. > The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  12. Aquatic subsidies transport anthropogenic nitrogen to riparian spiders

    International Nuclear Information System (INIS)

    Akamatsu, Fumikazu; Toda, Hideshige

    2011-01-01

    Stable nitrogen isotopic composition (δ 15 N) of aquatic biota increases with anthropogenic N inputs such as sewage and livestock waste downstream. Increase in δ 15 N of riparian spiders downstream may reflect the anthropogenic pollution exposure through predation on aquatic insects. A two-source mixing model based on stable carbon isotopic composition showed the greatest dependence on aquatic insects (84%) by horizontal web-building spiders, followed by intermediate (48%) and low (31%) dependence by cursorial and vertical web-building spiders, respectively. The spider body size was negatively correlated with the dietary proportion of aquatic insects and spider δ 15 N. The aquatic subsidies transported anthropogenic N to smaller riparian spiders downstream. This transport of anthropogenic N was regulated by spider's guild designation and body size. - Highlights: → δ 15 N of aquatic insects increases downstream with anthropogenic nitrogen inputs. → δ 15 N of riparian spiders increases with a high dietary proportion of aquatic insects and smaller spider body size. → The aquatic subsidies transport anthropogenic nitrogen to smaller riparian spiders downstream. - Smaller spiders assimilate anthropogenic nitrogen through the predation on aquatic subsides.

  13. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland.

    Science.gov (United States)

    Wu, Suqing; He, Shengbing; Zhou, Weili; Gu, Jianya; Huang, Jungchen; Gao, Lei; Zhang, Xu

    2017-12-01

    Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH 3 -N and organic nitrogen while those from cattail litter included organic nitrogen and NO 3 - -N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Use of Remote Sensing to Detect and Predict Aquatic Nuisance Vegetation Growth in Coastal Louisiana: Summary of Findings

    Science.gov (United States)

    2018-02-01

    Aquatic plants provide habitat and food to a wide range of wildlife and aquatic organisms. They also increase sedimentation and shoreline stability...intracoastal waterways and navigable channels in the United States (Walls et al. 2009; USACE 2009). Though these resources have historically been...navigation in navigation channels , and 2) had potential to become an impediment to navigation in these channels due to growth in and drift from side

  15. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  16. 77 FR 42314 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Science.gov (United States)

    2012-07-18

    ... characteristics of the work environment, such as the norms, rules, and common understandings that influence employees' perceptions of the importance that the organization places on safety. NIOSH requests OMB approval...] Proposed Data Collections Submitted for Public Comment and Recommendations In compliance with the...

  17. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  18. International conference on isotopes in environmental studies - Aquatic Forum 2004. Book of extended synopses

    International Nuclear Information System (INIS)

    2004-01-01

    The International Conference on Isotopes in Environmental Studies: AQUATIC FORUM 2004, organized by the International Atomic Energy Agency (IAEA) was held in Monte-Carlo, Monaco, 25-29 October 2004. The principal objective of the Conference was to review recent achievements in the use of isotopic techniques to study marine and terrestrial environmental processes, transport of contaminants in the aquatic environment, climate change, computer modelling of environmental processes, present state of the art of isotopic techniques, data validation and syntheses, and the development of geographical information systems. This publication contains the extended synopses of presentations at the Conference

  19. International conference on isotopes in environmental studies - Aquatic Forum 2004. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The International Conference on Isotopes in Environmental Studies: AQUATIC FORUM 2004, organized by the International Atomic Energy Agency (IAEA) was held in Monte-Carlo, Monaco, 25-29 October 2004. The principal objective of the Conference was to review recent achievements in the use of isotopic techniques to study marine and terrestrial environmental processes, transport of contaminants in the aquatic environment, climate change, computer modelling of environmental processes, present state of the art of isotopic techniques, data validation and syntheses, and the development of geographical information systems. This publication contains the extended synopses of presentations at the Conference.

  20. [The criteria of identification of "critical" populations in aquatic radiochemoecology].

    Science.gov (United States)

    Tsytsugina, B G; Polikarpov, G G

    2006-01-01

    Data on chromosome mutagenesis levels in populations of aquatic organisms in the Black and the Aegean Seas, the Danube and the Dnieper Rivers, the 30-km zone of ChNPP are presented. The highest level of mutagenesis was observed in hydrobionts populations in the 10-km zone of the ChNPP. The obvious damaged effects of ionizing radiation were noted only in these populations. The comparison of the adaptation rate of aquatic crustaceans and worms populations with different reproduction modes was made. It is found that the studied species with sexual reproduction have higher rate of adaptation to the pollution in comparison with species with prevalent asexual reproduction. Hypothetic mechanisms of population adaptation are discussed. On the basis of species and populations characteristics, the criteria for the identification of "critical" populations (species) and an algoritm of ecological risk assessment for them are proposed.

  1. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    Science.gov (United States)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2017-06-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  2. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China.

    Science.gov (United States)

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2012-11-01

    This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L(-1)), while quinolones were prominent in sediments (65.5-1166 μg kg(-1)) and aquatic plants (8.37-6532 μg kg(-1)). Quinolones (17.8-167 μg kg(-1)) and macrolides [from below detection limit (BDL) to 182 μg kg(-1)] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. IMPACT OF HEAVY METALS CONTAMINATION ON SPRING ABUNDANCE OF AQUATIC MACRO-INVERTEBRATES INHABITING LAKE TIMSAH, EGYPT

    Directory of Open Access Journals (Sweden)

    Marwa Ibrahim Saad El-Din

    2017-04-01

    Full Text Available Lake Timsah, Egypt receives several kinds of pollutants coming from domestic sewage of unconnected areas adjoining the shore and possibly marine pollution. During the last decades heavy metals have become common contaminants of aquatic and wetland environments throughout the world because of human activity and technological development. Increasing attention has been given during the last decade to the protection of marine and freshwater aquatic environment against pollution, both nationally and internationally. Macro-benthoses are the most commonly organisms used as bio-indicators water quality assessment. All of the aquatic macro-invertebrates that were collected from El-Taween station, Lake Timsah, Egypt fell into three major groups that were fairly easy to identify. They were annelids (Polychaeta and Oligochaeta, molluscs (Bivalvia and Gastropoda and arthropods (Crustacea. The small sized crustacean Sphaeroma. serratum are considered suitable species for aquatic bio-monitoring because they hold an important position in the aquatic food chain responds to many pollutants, easy to culture and has short life cycles. Iron was most important determinant; it appears in high concentrations in both water sample and the tissue of crustacean sample (S. serratum.

  4. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers

    DEFF Research Database (Denmark)

    Peng, Fengjiao; Pan, Chang Gui; Zhang, Min

    2017-01-01

    at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae....

  5. An invasion risk map for non-native aquatic macrophytes of the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Argantonio Rodríguez-Merino

    2017-05-01

    Full Text Available Freshwater systems are particularly susceptible to non-native organisms, owing to their high sensitivity to the impacts that are caused by these organisms. Species distribution models, which are based on both environmental and socio-economic variables, facilitate the identification of the most vulnerable areas for the spread of non-native species. We used MaxEnt to predict the potential distribution of 20 non-native aquatic macrophytes in the Iberian Peninsula. Some selected variables, such as the temperature seasonality and the precipitation in the driest quarter, highlight the importance of the climate on their distribution. Notably, the human influence in the territory appears as a key variable in the distribution of studied species. The model discriminated between favorable and unfavorable areas with high accuracy. We used the model to build an invasion risk map of aquatic macrophytes for the Iberian Peninsula that included results from 20 individual models. It showed that the most vulnerable areas are located near to the sea, the major rivers basins, and the high population density areas. These facts suggest the importance of the human impact on the colonization and distribution of non-native aquatic macrophytes in the Iberian Peninsula, and more precisely agricultural development during the Green Revolution at the end of the 70’s. Our work also emphasizes the utility of species distribution models for the prevention and management of biological invasions.

  6. Fixation and localisation of manganese in some soft water organisms: I - Distribution of 54Mn in an ecologic system in fresh water; II - study by biochemical fractionation of manganese contained by isolated plant cells

    International Nuclear Information System (INIS)

    Magnaval, Robert; Lachet, Bernard; Gagnaire, Janine; Fourcy, Andre; Neuburger, Michel; Fer, Andre

    1968-12-01

    After having recalled that Manganese 54, an irradiation product of 54 Fe, has a sufficiently long radioactive period to be detected in atmospheric fallouts of nuclear explosions, but also in radioactive wastes produced by research centres, and is generally produced by corrosion of any enclosure submitted to neutron irradiation, the authors report the experimental study of a radioactive pollution of fresh water when this radio-element is a component of this pollution. Different containers are considered. They contain either water and sediments, or water and organic compounds and aquatic plants, or water and sediments and aquatic plants. A solution of 54 MnCl 2 of radioactive pollution is introduced in these containers and the authors study the decrease of radioactivity in water with respect to the considered ecosystem, the 54 Mn concentration in aquatic living species, and the distribution of 54 Mn after 43 days. In a second part, they report the study of the distribution of cellular manganese in isolated biochemical fractions by using the Schmidt and Thannhauser method. Due to the low content, the detection of this mineral nutrient requires a highly sensitive method: dosing of natural manganese by radio-activation

  7. The potential of the fresh-water fern Azolla in aquatic farming systems

    Science.gov (United States)

    Bijl, Peter K.; Werf, vd, Adrie; Schluepmann, Henriette; Reichart, Gert-Jan; Brouwer, Paul; Nierop, Klaas G. J.; Hellgardt, Klaus; Brinkhuis, Henk

    2014-05-01

    With aquatic farming systems a new avenue in agriculture is explored, in which the competition with conventional arable land is avoided. The aquatic, ubiquitous, floating fern Azolla is not yet widely explored as potential crop in such farming systems, despite its high potential because it grows in many natural systems under low-light intensities, has an enormous annual yield, and has special biomass qualities for applications in food, feed and specialty chemical industries. But, what makes Azolla particularly interesting as cost-effective crop is its capability to take up atmospheric nitrogen through symbiosis with nitrogen-fixing bacteria Anabaena azollae. This makes Azolla independent of nitrogen fertilization. In order to explore the potential of Azolla as a crop for a suite of applications, we have assembled a team of expertise: AZOFAST, consisting of agricultural engineers, plant physiologists, chemical engineers and organic chemists. Our growth experiments reveal high annual production yields with constant harvest. We are developing a germination and spore collecting/preservation protocol as a first step to domestication. Finally we have explored the biomass quality of different species of extant Azolla. We performed organic chemical analyses on lipid and tannin extracts, and quantified yields of specific compounds within these fractions. In our presentation we will present some of our results to show the potential of Azolla as a new, sustainable aquatic crop serving all kinds of industrial streams from protein feed to platform chemicals.

  8. Environmental enrichment for aquatic animals.

    Science.gov (United States)

    Corcoran, Mike

    2015-05-01

    Aquatic animals are the most popular pets in the United States based on the number of owned pets. They are popular display animals and are increasingly used in research settings. Enrichment of captive animals is an important element of zoo and laboratory medicine. The importance of enrichment for aquatic animals has been slower in implementation. For a long time, there was debate over whether or not fish were able to experience pain or form long-term memories. As that debate has reduced and the consciousness of more aquatic animals is accepted, the need to discuss enrichment for these animals has increased. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Act together - implications of symbioses in aquatic ciliates

    DEFF Research Database (Denmark)

    Dziallas, Claudia; Allgaier, Martin; Monaghan, Michael T.

    2012-01-01

    Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new lifeforms including multitrophic consortia. Microbes are important components...... of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems...

  10. Predicting, Measuring, and Monitoring Aquatic Invertebrate Biodiversity on Dryland Military Bases

    Science.gov (United States)

    2016-12-15

    Fausch et al ., 2002 ). The environmental phenomena that drive any particular DDR can be decomposed into local and...features may include the dendritic structure of stream networks ( Fausch et al ., 2002 ; Benda et al ., 2004), the spatial arrangement of suitable habitat...flow connectivity ( Fausch et al ., 2002 ; Hughes, 2007; Schick & Lindley, 2007). In contrast, aquatic organisms that can disperse overland, such

  11. Silver nanoparticle accumulation by aquatic organisms – neutron activation as a tool for the environmental fate of nanoparticles tracing

    Directory of Open Access Journals (Sweden)

    Asztemborska Monika

    2014-12-01

    Full Text Available Water environments are noted as being some of the most exposed to the influence of toxic nanoparticles (NPs. Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs by freshwater larvae of Chironomus and fish Danio rerio. The influence of exposition time, concentration and the source of nanoparticles on the efficiency of AgNP accumulation were studied. It was found that AgNPs are efficiently accumulated by Chironomid larvae for the first 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fish and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more efficiently accumulated if fish are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms

  12. Use of Unicellular Algae for Evaluation of Potential Aquatic Contaminants

    Science.gov (United States)

    1981-05-01

    well as long term effects on specific water bodies such as lakes and groundwater basins. Both the hydrazine propellants and the alternative jet fuels... freshwater bioassays was S. capricornutum. Initial investigations of marine waters used Dunaliella tertiolecta as the test organism but the differences in...AFAMRL-TR-80-85 USE OF UNICELLUAR ALGAE FOR EVALUATION OF POTENTIAL AQUATIC CONTAMINANTS JAN SCHERFIG PETER S. DIXON CAROL A. JUSTICE ALBERTO ACEVEDO

  13. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-04-01

    Full Text Available Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing, detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specialization and behavioral mechanisms (e.g., way of feeding used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1 provide an overview of the value of using the FFG classification, (2 make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3 provide general guidelines on how to assign organisms to their FFGs. FFGs are intended to reflect the potential effects of organisms in their ecosystems and the way they consume resources. Groups include scrapers that consume resources that grow attached to the substrate by removing them with their mouth parts; shredders that cut or chew pieces of living or dead plant material, including all plant parts like leaves and wood; collectors-gatherers that use modified mouth parts to sieve or collect small particles (<1mm accumulated on the stream bottom; filterers that have special adaptations to remove particles directly from the water column; and predators that consume other organisms using different strategies to capture them. In addition, we provide

  14. Plants in aquatic ecosystems: current trends and future directions

    NARCIS (Netherlands)

    O’Hare, Matthew T.; Aguiar, Francisca C.; Asaeda, Takashi; Bakker, Elisabeth S.; Chambers, Patricia A.; Clayton, John S.; Elger, Arnaud; Ferreira, Teresa M.; Gross, Elisabeth M.; Gunn, Iain D.M.; Gurnell, Angela M.; Hellsten, Seppo; Hofstra, Deborah E.; Li, Wei; Mohr, Silvia; Puijalon, Sara; Szoszkiewicz, Krzysztof; Willby, Nigel J.; Wood, Kevin A.

    2018-01-01

    Aquatic plants fulfil a wide range of ecological roles, and make a substantial contribution to the structure, function and service provision of aquatic ecosystems. Given their well-documented importance in aquatic ecosystems, research into aquatic plants continues to blossom. The 14th International

  15. Novel aquatic modules for bioregenerative life-support systems based on the closed equilibrated biological aquatic system (c.e.b.a.s.)

    Science.gov (United States)

    Bluem, Volker; Paris, Frank

    2002-06-01

    The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.

  16. Bioavailability of Polycyclic Aromatic Hydrocarbons in aquatic ecosystems : influence of natural and anthropic organic matter; Biodisponibilite des hydrocarbures aromatiques polycycliques dans les ecosystemes aquatiques: influence de la matiere organique naturelle et anthropique

    Energy Technology Data Exchange (ETDEWEB)

    Gourlay, C

    2004-11-01

    Aquatic ecosystems receive micro-pollutants. They also contain organic matter (OM) of natural and anthropogenic origins. The contaminant bioavailability in aquatic media is determined by the interactions between contaminants and OM. This work deals with the influence of organic matter from anthropogenic media on the bioavailability of hydrophobic organic pollutants. Polycyclic Aromatic Hydrocarbons (PAHs) have been used as model contaminants, since they are widely spread in urban media. In anthropogenic media, some OM may be bio-degraded. Up to now, most researches focused on the interactions between contaminants and humic OM that are mostly non-degradable, using physico-chemical characterizations of OM. On the contrary, in this work, the biodegradability of OM was deliberately taken into account. Indeed, we assume that the contaminant affinity for OM evolves during OM biodegradation, so that pollutants may be released in a bio-available form and then may be bond again by biodegradation sub-products. In laboratory evaluation, PAH bioavailability was assessed through the measurements of the bioaccumulation in Daphnia magna. The influence of organic matter on the bioavailability of PAHs and the evolution of this influence along OM bacterial mineralization were proved, as well as the strong binding efficiency of degradation by-products. A model of observed phenomena was elaborated. These observations about urban and natural OM effect were compared to in situ PAH bioavailability measurements in the river Seine basin. In this case, the bioavailability was estimated using Semi-Permeable Membrane Device (SPMD) sampling technique. (author)

  17. Expert evaluation and prediction of the radioecological state of the environment in the area of the radiation plume from the Chernobyl' nuclear power station (aquatic ecosystems)

    International Nuclear Information System (INIS)

    1986-01-01

    On the basis of experimental data on radionuclide distribution in the components of the aquatic ecosystems within and outside the 30 km zone around the Chernobyl power plant after the reactor accident the exposure doses for aquatic organisms in the area of the radiation plume have been estimated. In the Kiev reservoir the predicted exposure doses for most aquatic organisms do not exceed 0.1-1.0 mrad/h, in the river Pripyat' the exposure doses for fish are about 50 mrad/h and in the cooling pond of the Chernobyl power station the highest exposure doses, up to 5 rad/h in a number of locations were registered

  18. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  19. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature.

    Science.gov (United States)

    Ramírez, Alonso; Gutiérrez-Fonseca, Pablo E

    2014-04-01

    Aquatic macroinvertebrates are involved in numerous processes within aquatic ecosystems. They often have important effects on ecosystem processes such as primary production (via grazing), detritus breakdown, and nutrient mineralization and downstream spiraling. The functional feeding groups (FFG) classification was developed as a tool to facilitate the incorporation of macroinvertebrates in studies of aquatic ecosystems. This classification has the advantage of combining morphological characteristics (e.g., mouth part specialization) and behavioral mechanisms (e.g., way of feeding) used by macroinvertebrates when consuming resources. Although recent efforts have greatly advanced our ability to identify aquatic macroinvertebrates, there is limited information on FFG assignment. Furthermore, there has been some variation in the use of the FFG classification, in part due to an emphasis on using gut content analysis to assign FFG, which is more appropriate for assigning trophic guilds. Thus, the main goals of this study are to (1) provide an overview of the value of using the FFG classification, (2) make an initial attempt to summarize available information on FFG for aquatic insects in Latin America, and (3) provide general guidelines on how to assign organisms to their FFGs. FFGs are intended to reflect the potential effects of organisms in their ecosystems and the way they consume resources. Groups include scrapers that consume resources that grow attached to the substrate by removing them with their mouth parts; shredders that cut or chew pieces of living or dead plant material, including all plant parts like leaves and wood; collectors-gatherers that use modified mouth parts to sieve or collect small particles (aquatic insects in Latin America, with an initial assignment to FFGs. We recommended caution when assigning FFGs based on gut contents, as it can provide misleading information. Overall, FFG is a very useful tool to understand the role of aquatic

  20. 76 FR 80363 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Science.gov (United States)

    2011-12-23

    ... comments, whether submitted electronically or in paper, will be made available for public viewing at www...) and entrainment (where aquatic organisms, eggs, and larvae are taken into the cooling system, passed... Territories. Frequency of response: Annual, every 5 years. Estimated total average number of responses for...

  1. Accumulation and fluxes of mercury in terrestrial and aquatic food chains with special reference to Finland

    Directory of Open Access Journals (Sweden)

    Martin Lodenius

    2013-03-01

    Full Text Available Mercury is known for its biomagnification especially in aquatic food chains and for its toxic effects on different organisms including man. In Finland mercury has formerly been used in industry and agriculture and in addition many anthropogenic activities may increase the mercury levels in ecosystems. Phenyl mercury was widely used as slimicide in the pulp and paper industry in the 1950s and 1960s. In the chlor-alkali industry metallic mercury was used as catalyst at three plants. The most toxic form of mercury, methyl mercury, may be formed in soils, water, sediments and organisms. Many factors, including microbial activity, temperature, oxygen status etc., affect the methylation rate. In the lake ecosystem bioaccumulation of methyl mercury is very strong. In early 1980s there was a restriction of fishing concerning approximately 4000 km2 of lakes and sea areas because of mercury pollution. In aquatic systems we still find elevated concentrations near former emission sources. Long-range atmospheric transport and mechanical operations like ditching and water regulation may cause increased levels of mercury in the aquatic ecosystems. In the Finnish agriculture organic mercury compounds were used for seed dressing until 1992. Although the amounts used were substantial the concentrations in agricultural soils have remained rather low. In terrestrial food chains bioaccumulation is normally weak with low or moderate concentration at all ecosystem levels. Due to a weak uptake through roots terrestrial, vascular plants normally contain only small amounts of mercury. There is a bidirectional exchange of mercury between vegetation and atmosphere. Contrary to vascular plants, there is a very wide range of concentrations in fungi. Mercury may pose a threat to human health especially when accumulated in aquatic food chains.

  2. Expanding Aquatic Observations through Recreation

    Directory of Open Access Journals (Sweden)

    Robert J. W. Brewin

    2017-11-01

    Full Text Available Accurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environment—including lakes, rivers, wetlands, estuaries, coastal and open oceans—is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to flourish. Yet, this environment is critically undersampled in both time and space. New and cost-effective sampling solutions are urgently needed. Here, we highlight the potential to improve aquatic sampling by tapping into recreation. We draw attention to the vast number of participants that engage in aquatic recreational activities and argue, based on current technological developments and recent research, that the time is right to employ recreational citizens to improve large-scale aquatic sampling efforts. We discuss the challenges that need to be addressed for this strategy to be successful (e.g., sensor integration, data quality, and citizen motivation, the steps needed to realize its potential, and additional societal benefits that arise when engaging citizens in scientific sampling.

  3. Performance evaluation on aquatic product cold-chain logistics

    Directory of Open Access Journals (Sweden)

    Wenbing Wu

    2015-11-01

    Full Text Available Purpose: The requirements for high quality and diversification aquatic products are increasing with the improvement of Chinese living standard. However, the distribution between place of production and place of consumption are uneven, which results in large cold-chain logistics demand for aquatic products. At present, the low-level development of cold chain logistics has a bad impact on the circulation of aquatic products in China. So it is very urgent to develop cold-chain logistics in China. Design/methodology/approach: In order to do this, we apply performance evaluation, a well-known management tool, to study Chinese aquatic product cold-chain logistics. In this paper we first propose SISP(Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model(Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation. Then an ANP-Fuzzy method is proposed to evaluate the operational performance of Shandong Oriental Ocean Sci-Tech Co., Ltd. Furthermore, a system dynamic model is built to simulate the impact of temperature on the profits in aquatic products cold-chain sales section. Findings: We find out within a reasonable temperature range, lower temperature brings higher profit level. Also, performance improvement methods are proposed and the simulation of performance evaluation system is developed. Practical implications: Our findings can help to improve the level of aquatic product cold-chain logistics in China. Originality/value: The paper proposes the SISP (Subjects, Indexes, Standards, and Phases of performance evaluation model and ACSSN model (Aquatic product, Customer, Supply Chain, Society, and Node enterprises of supply chain for aquatic products cold-chain logistics performance evaluation.

  4. Abstracts of the 31. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Burridge, L.E.; Haya, K.; Niimi, A.J.

    2004-01-01

    This conference provided an opportunity for an informal exchange of recent research information and knowledge on aquatic and environmental toxicology. Topics ranged from basic aquatic toxicology to applications in environmental monitoring, setting regulations and developing criteria for sediment and water quality. The workshops were attended by representatives from industry, governments and universities. The current challenges and approaches to deal with aquatic toxicology and their biological effect on aquatic biota were discussed. The sessions were entitled as follows: environmental effects monitoring; pesticides; ecological risk assessment; sediment disposal at sea; oil and gas; pharmaceuticals; artifactual toxicity in municipal waste water; sediment and soil toxicity; contaminants in aquatic systems; biological effects; and discoveries in aquatic sciences. The conference included 4 plenary sessions and 119 platform papers, of which 24 papers have been indexed separately for inclusion in this database. refs., tabs., figs

  5. Occurrence of antibiotics as emerging contaminant substances in aquatic environment.

    Science.gov (United States)

    Milić, Nataša; Milanović, Maja; Letić, Nevena Grujić; Sekulić, Maja Turk; Radonić, Jelena; Mihajlović, Ivana; Miloradov, Mirjana Vojinović

    2013-01-01

    The occurrence of pharmaceutical residues in the environment has become a subject of growing concern. Due to the constant input of the emerging contaminants in the surface water via wastewater which leads to the long-term adverse effects on the aquatic and terrestrial organisms, special attention is being paid to their presence in the aquatic environment. Most of the emerging substances, especially pharmaceuticals, could not be completely removed using the wastewater treatment. Pharmaceuticals are usually water soluble and poorly degradable. They can pass through all natural filtrations and then reach the groundwater and, finally, the drinking water. The trace levels of antibiotics could have a negative impact on the environment and public health because of their inherent bioactivity. This article is an overview of the presence of the antibiotic residual concentrations, methods and levels of detection and possible risks to both health and environment.

  6. Pharmaceutical pollution of aquatic environment: an emerging and enormous challenge

    Directory of Open Access Journals (Sweden)

    Rzymski Piotr

    2017-06-01

    Full Text Available The global use of pharmaceuticals is on the systematic rise and leads to contamination of surface waters with xenobiotic compounds with a wide range of bioactivity. Waters that receive urban and medical effluents are particularly threatened. The presence of pharmaceuticals in these ecosystems can lead to unpredictable ecological impacts and responses, and may also have an impact on human health. At the same time the identification and quantification of these chemicals, to a large extent remains a subject to scientific investigation than part of a thorough monitoring programme. Their biological effects on aquatic organisms are mainly recognized experimentally and often using concentrations far exceeding environmentally relevant levels. This review paper defines the main sources of pharmaceuticals in the aquatic environment, discusses the fate of these compounds and summarizes the current state-of-the-art of pharmaceutical monitoring in Polish surface waters.

  7. DOC removal paradigms in highly humic aquatic ecosystems.

    Science.gov (United States)

    Farjalla, Vinicius F; Amado, André M; Suhett, Albert L; Meirelles-Pereira, Frederico

    2009-07-01

    Dissolved humic substances (HS) usually comprise 50-80% of the dissolved organic carbon (DOC) in aquatic ecosystems. From a trophic and biogeochemical perspective, HS has been considered to be highly refractory and is supposed to accumulate in the water. The upsurge of the microbial loop paradigm and the studies on HS photo-degradation into labile DOC gave rise to the belief that microbial processing of DOC should sustain aquatic food webs in humic waters. However, this has not been extensively supported by the literature, since most HS and their photo-products are often oxidized by microbes through respiration in most nutrient-poor humic waters. Here, we review basic concepts, classical studies, and recent data on bacterial and photo-degradation of DOC, comparing the rates of these processes in highly humic ecosystems and other aquatic ecosystems. We based our review on classical and recent findings from the fields of biogeochemistry and microbial ecology, highlighting some odd results from highly humic Brazilian tropical lagoons, which can reach up to 160 mg C L(-1). Highly humic tropical lagoons showed proportionally lower bacterial production rates and higher bacterial respiration rates (i.e., lower bacterial growth efficiency) than other lakes. Zooplankton showed similar delta(13)C to microalgae but not to humic DOC in these highly humic lagoons. Thus, the data reviewed here do not support the microbial loop as an efficient matter transfer pathway in highly humic ecosystems, where it is supposed to play its major role. In addition, we found that some tropical humic ecosystems presented the highest potential DOC photo-chemical mineralization (PM) rates reported in the literature, exceeding up to threefold the rates reported for temperate humic ecosystems. We propose that these atypically high PM rates are the result of a joint effect of the seasonal dynamics of allochthonous humic DOC input to these ecosystems and the high sunlight incidence throughout the year

  8. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. State of the Science White Paper: Effects of Plastics Pollution on Aquatic Life and Aquatic-Dependent Wildlife

    Science.gov (United States)

    This document is a state-of-the-science review – one that summarizes available scientific information on the effects of chemicals associated with plastic pollution and their potential impacts on aquatic life and aquatic-dependent wildlife.

  10. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  11. Diets and abundances of aquatic and semi-aquatic reptiles in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    Shine, R.

    1986-01-01

    The mining and milling of uranium in the Alligator River Region in the Northern Territory has raised the possibility that heavy metals and radionuclides might escape into the aquatic system and be accumulated by the reptilian fauna. Aquatic and semi-aquatic reptiles are regularly eaten by Aboriginal people of the region, and data on diets and reproduction of these species, as well as on their dispersion and abundance, are essential before the possibility that reptiles might act as pathways for these contaminants to Aboriginals can be assessed. The objectives of this study were to provide quantitative data on the diets of filesnakes, sand goannas and water goannas, to provide information on seasonal changes in their abundance and distribution within the Magela Creek system; and to describe their reproductive cycles

  12. Spatial distribution and functional feeding groups of aquatic insects in a stream of Chakrashila Wildlife Sanctuary, Assam, India

    Directory of Open Access Journals (Sweden)

    Barman B.

    2015-01-01

    Full Text Available Aquatic insects play important role in ecosystem functioning viz. nutrient cycling, primary production, decomposition and material translocation. The functional feeding group (FFG approach is an attempt to classify organisms, especially insects, according to their role in the processing of organic matter. An investigation during 2011–2013 was carried out on aquatic insects in different stretches of a stream of Chakrashila Wildlife Sanctuary located in western Assam, North East India which is designated as Key Biodiversity Area (KBA by IUCN. Physico-chemical properties of water of the stream like water temperature, dissolved oxygen, free-carbondioxide, pH, total alkalinity, electrical conductivity, phosphate and nitrate were estimated to correlate the aquatic insects of specific functional feeding groups with water quality. A total of seventeen species was recorded during the study period. Record of nine species in first year and fourteen species in second year under different functional feeding groups (FFG showed altitudinal variation. Highest percentage of predators was found in upstream. Collectors were recorded in upstream and downstream and shredders were recorded in midstream.

  13. Skin of the Cretaceous mosasaur Plotosaurus: implications for aquatic adaptations in giant marine reptiles.

    Science.gov (United States)

    Lindgren, Johan; Alwmark, Carl; Caldwell, Michael W; Fiorillo, Anthony R

    2009-08-23

    The physical nature of water and the environment it presents to an organism have long been recognized as important constraints on aquatic adaptation and evolution. Little is known about the dermal cover of mosasauroids (a group of secondarily aquatic reptiles that occupied a wide array of predatory niches in the Cretaceous marine ecosystems 92-65 Myr ago), a lack of information that has hindered inferences about the nature and level of their aquatic adaptations. A newly discovered Plotosaurus skeleton with integument preserved in three dimensions represents not only the first documented squamation in a mosasaurine mosasaur but also the first record of skin in an advanced member of the Mosasauroidea. The dermal cover comprises keeled and possibly osteoderm-reinforced scales that presumably contributed to an anterior-posterior channelling of the water flow and a reduction of microturbulent burst activities along the surface of the skin. Thus, hydrodynamic requirements of life in the water might have influenced the evolution of multiple-keeled body scales in advanced mosasauroids.

  14. Organization of vegetation cover of aquatic ecosystems at Borodinskiy opencast coal mine dumps (Kansk forest-steppe, Eastern Siberia

    Directory of Open Access Journals (Sweden)

    D. Yu. Efimov

    2016-04-01

    Full Text Available The paper present the results of study of the floristic composition and importance of species of aquatic ecosystems on different types of technogenic surfaces of the Borodino coal mine and assessment of the impact of local factors on the structure and the dynamics of vegetation. The list of plant taxa containing 91 species of higher plants and 3 cha-rophytes. The largest amount of macrophytes species are Elodea canadensis Michx., Eleocharis palustris (L. Roem. & Schult., Hydrocharis morsus-ranae L., Potamogeton alpinus Balb., P. perfoliatus L., Sparganium emersum Rehm., Spirodela polyrhiza (L. Schleid., Typha latifolia L., Warnstorfia fluitans (Hedw. Loeske, Chara contraria A. Braun ex Kutz., the basis (up to 67.6‒70.9 % of vegetation mosaic of aquatic systems and differentiate its structure post-technogenic landscape. Sorensen index (QS = 0.63‒0.71 and Spearman rank correlation coefficient (rs = 0.29‒0.62, p < 0.01 values showed the greatest similarity between the species composition of the aquatic complexes arising on mineral surfaces planned dumps. The low level of similarity (QS = 0.13‒0.45; rs = 0.25‒0.34, p < 0.05 in spe-cies composition is typical fir ponds and wetlands formed around the perimeter of the heaps along the erosion of slopes. Non-parametric analysis of variance showed a statistically significant (p < 0.001 differentiation of the species composition of the variables values of the analyzed environmental factors: the direction of reclamation, type and age of geomorphic surfaces dumps. Aquatic complexes significantly complement and enrich the mosaic of man-made landscape of the Borodino coal mine, the potential of their diversity should be taken into account when developing plans and strategies for reclamation of disturbed areas.

  15. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Applications of a broad-spectrum tool for conservation and fisheries analysis: aquatic gap analysis

    Science.gov (United States)

    McKenna, James E.; Steen, Paul J.; Lyons, John; Stewart, Jana S.

    2009-01-01

    Natural resources support all of our social and economic activities, as well as our biological existence. Humans have little control over most of the physical, biological, and sociological conditions dictating the status and capacity of natural resources in any particular area. However, the most rapid and threatening influences on natural resources typically are anthropogenic overuse and degradation. In addition, living natural resources (i.e., organisms) do not respect political boundaries, but are aware of their optimal habitat and environmental conditions. Most organisms have wider spatial ranges than the jurisdictional boundaries of environmental agencies that deal with them; even within those jurisdictions, information is patchy and disconnected. Planning and projecting effects of ecological management are difficult, because many organisms, habitat conditions, and interactions are involved. Conservation and responsible resource use involves wise management and manipulation of the aspects of the environment and biological communities that can be effectively changed. Tools and data sets that provide new insights and analysis capabilities can enhance the ability of resource managers to make wise decisions and plan effective, long-term management strategies. Aquatic gap analysis has been developed to provide those benefits. Gap analysis is more than just the assessment of the match or mis-match (i.e., gaps) between habitats of ecological value and areas with an appropriate level of environmental protection (e.g., refuges, parks, preserves), as the name suggests. Rather, a Gap Analysis project is a process which leads to an organized database of georeferenced information and previously available tools to examine conservation and other ecological issues; it provides a geographic analysis platform that serves as a foundation for aquatic ecological studies. This analytical tool box allows one to conduct assessments of all habitat elements within an area of interest

  17. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Edia E.O.

    2010-10-01

    Full Text Available Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM, an unsupervised Artificial Neural Networks (ANN method. This method was applied to pattern the samples based on the richness of five major orders of aquatic insects (Diptera, Ephemeroptera, Coleoptera, Trichoptera and Odonata. This permitted to identify three clusters that were mainly related to the local environmental status of sampling sites. Then, we used the environmental characteristics of the sites to predict, using a multilayer perceptron neural network (MLP, trained by BackPropagation algorithm (BP, a supervised ANN, the richness of the five insect orders. The BP showed high predictability (0.90 for both Diptera and Trichoptera, 0.84 for both Coleoptera and Odonata, 0.69 for Ephemeroptera. The most contributing variables in predicting the five insect order richness were pH, conductivity, total dissolved solids, water temperature, percentage of rock and the canopy. This underlines the crucial influence of both instream characteristics and riparian context.

  18. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    Science.gov (United States)

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    (time since glacial disturbance and habitat stability) and question the generality of these processes for the understanding of species richness gradients in European rivers. Using regional distributions of European mayflies, stoneflies, and caddisflies this chapter demonstrates that differences...... and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  20. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems.

    Science.gov (United States)

    Kraus, Johanna M; Gibson, Polly P; Walters, David M; Mills, Marc A

    2017-05-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI, USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r 2  > 0.78) and had similar mean ΣPCB concentrations when averaged across all years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa less effective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2017;36:1278-1286. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in

  1. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  2. Bone inner structure suggests increasing aquatic adaptations in Desmostylia (Mammalia, Afrotheria.

    Directory of Open Access Journals (Sweden)

    Shoji Hayashi

    Full Text Available The paleoecology of desmostylians has been discussed controversially with a general consensus that desmostylians were aquatic or semi-aquatic to some extent. Bone microanatomy can be used as a powerful tool to infer habitat preference of extinct animals. However, bone microanatomical studies of desmostylians are extremely scarce.We analyzed the histology and microanatomy of several desmostylians using thin-sections and CT scans of ribs, humeri, femora and vertebrae. Comparisons with extant mammals allowed us to better understand the mode of life and evolutionary history of these taxa. Desmostylian ribs and long bones generally lack a medullary cavity. This trait has been interpreted as an aquatic adaptation among amniotes. Behemotops and Paleoparadoxia show osteosclerosis (i.e. increase in bone compactness, and Ashoroa pachyosteosclerosis (i.e. combined increase in bone volume and compactness. Conversely, Desmostylus differs from these desmostylians in displaying an osteoporotic-like pattern.In living taxa, bone mass increase provides hydrostatic buoyancy and body trim control suitable for poorly efficient swimmers, while wholly spongy bones are associated with hydrodynamic buoyancy control in active swimmers. Our study suggests that all desmostylians had achieved an essentially, if not exclusively, aquatic lifestyle. Behemotops, Paleoparadoxia and Ashoroa are interpreted as shallow water swimmers, either hovering slowly at a preferred depth, or walking on the bottom, and Desmostylus as a more active swimmer with a peculiar habitat and feeding strategy within Desmostylia. Therefore, desmostylians are, with cetaceans, the second mammal group showing a shift from bone mass increase to a spongy inner organization of bones in their evolutionary history.

  3. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  4. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to

  5. An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios.

    Science.gov (United States)

    Scholz-Starke, Björn; Ottermanns, Richard; Rings, Ursula; Floehr, Tilman; Hollert, Henner; Hou, Junli; Li, Bo; Wu, Ling Ling; Yuan, Xingzhong; Strauch, Katrin; Wei, Hu; Norra, Stefan; Holbach, Andreas; Westrich, Bernhard; Schäffer, Andreas; Roß-Nickoll, Martina

    2013-10-01

    The impounding of the Three Gorges Reservoir (TGR) at the Yangtze River caused large flooding of urban, industrial, and agricultural areas, and profound land use changes took place. Consequently, substantial amounts of organic and inorganic pollutants were released into the reservoir. Additionally, contaminants and nutrients are entering the reservoir by drift, drainage, and runoff from adjacent agricultural areas as well as from sewage of industry, aquacultures, and households. The main aim of the presented research project is a deeper understanding of the processes that determines the bioaccumulation and biomagnification of organic pollutants, i.e., mainly pesticides, in aquatic food webs under the newly developing conditions of the TGR. The project is part of the Yangtze-Hydro environmental program, financed by the German Ministry of Education and Science. In order to test combinations of environmental factors like nutrients and pollution, we use an integrated modeling approach to study the potential accumulation and biomagnification. We describe the integrative modeling approach and the consecutive adaption of the AQUATOX model, used as modeling framework for ecological risk assessment. As a starting point, pre-calibrated simulations were adapted to Yangtze-specific conditions (regionalization). Two exemplary food webs were developed by a thorough review of the pertinent literature. The first typical for the flowing conditions of the original Yangtze River and the Daning River near the city of Wushan, and the second for the stagnant reservoir characteristics of the aforementioned region that is marked by an intermediate between lake and large river communities of aquatic organisms. In close cooperation with German and Chinese partners of the Yangtze-Hydro Research Association, other site-specific parameters were estimated. The MINIBAT project contributed to the calibration of physicochemical and bathymetric parameters, and the TRANSMIC project delivered

  6. Application of nano-packaging in aquatics

    Directory of Open Access Journals (Sweden)

    D Jafarpour

    2018-03-01

    Conclusion: With regard to aquatics high nutritional value and their important presence in diet one should think of a way to increase it's survivability and maintaining quality. For this, nano technology can help packaging aquatics. Nano can be applied considerably in food health and environment protection.

  7. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter

    DEFF Research Database (Denmark)

    Logue, J.B.; Stedmon, Colin; Kellerman, A.M.

    2016-01-01

    and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover...

  8. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane.

    Science.gov (United States)

    Zhang, Xiaolei; Fan, Linhua; Roddick, Felicity A

    2018-02-01

    The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA), and fulvic acid (FA). The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged), which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS) and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance.

  9. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane

    Directory of Open Access Journals (Sweden)

    Xiaolei Zhang

    2018-02-01

    Full Text Available The influence of the interaction between aquatic humic substances and the algal organic matter (AOM derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA, and fulvic acid (FA. The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged, which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance.

  10. Nitrous oxide emission by aquatic macrofauna

    Science.gov (United States)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter; Brix, Hans; Schramm, Andreas

    2009-01-01

    A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems. PMID:19255427

  11. A community-based framework for aquatic ecosystem models

    DEFF Research Database (Denmark)

    Trolle, Didde; Hamilton, D. P.; Hipsey, M. R.

    2012-01-01

    Here, we communicate a point of departure in the development of aquatic ecosystem models, namely a new community-based framework, which supports an enhanced and transparent union between the collective expertise that exists in the communities of traditional ecologists and model developers. Through...... a literature survey, we document the growing importance of numerical aquatic ecosystem models while also noting the difficulties, up until now, of the aquatic scientific community to make significant advances in these models during the past two decades. Through a common forum for aquatic ecosystem modellers we...... aim to (i) advance collaboration within the aquatic ecosystem modelling community, (ii) enable increased use of models for research, policy and ecosystem-based management, (iii) facilitate a collective framework using common (standardised) code to ensure that model development is incremental, (iv...

  12. Interaction between stress induced by competition, predation, and an insecticide on the response of aquatic invertebrates

    NARCIS (Netherlands)

    Brink, Van den Paul J.; Klein, Sylvan L.; Rico, Andreu

    2017-01-01

    The present study investigated the effects of species interactions like competition and (intraguild) predation on the sensitivity of aquatic organisms to the insecticide chlorpyrifos. In the first experiment, combined effects of chlorpyrifos and different levels of intraspecific and interspecific

  13. Model description of trophodynamic behavior of methylmercury in a marine aquatic system

    International Nuclear Information System (INIS)

    Tong Yindong; Zhang Wei; Hu Xindi; Ou Langbo; Hu Dan; Yang Tianjun; Wei Wen; Wang Xuejun

    2012-01-01

    A marine food web in Bohai Bay, China, was selected to study methylmercury (MeHg) bioaccumulation, and an aquivalence-based mass balance model was established to explore the possibility of predicting the MeHg concentrations and quantifying MeHg bioaccumulation in the food web. Results showed that both total mercury (THg) and MeHg were biomagnified in the food web. The calculated MeHg concentrations in the selected species agreed well with the measured values, which shows the model could be a useful tool in MeHg concentration prediction in food web. Model outputs also showed that metabolism and growth dilution could be the dominant mechanisms for the reduction of MeHg levels in aquatic organisms. With the increase of trophic level, the contribution of food as a MeHg source for organism is increasing, and MeHg from prey was the dominant source. - Highlights: ► We model the bioaccumulation of methylmercury in a marine aquatic food web. ► Aquivalence-based mass balance model could quantify MeHg trophic transfer. ► Metabolism and growth dilution are dominant mechanisms of MeHg reduction in organisms. ► With increase of trophic levels, contribution of food as MeHg source is increasing. - Aquivalence-based mass balance model was established to study methylmercury bioaccumulation in a marine food web.

  14. Tulane/Xavier University Hazardous Materials in Aquatic Environments of the Mississippi River Basin. Quarterly progress report, January 1, 1995--March 31, 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This progress report covers activities for the period January 1 - March 31, 1995 on project concerning 'Hazardous Materials in Aquatic Environments of the Mississippi River Basin.' The following activities are each summarized by bullets denoting significant experiments/findings: biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River Basin; assessment of mechanisms of metal-induced reproductive toxicity in quatic species as a biomarker of exposure; hazardous wastes in aquatic environments: biological uptake and metabolism studies; ecological sentinels of aquatic contamination in the lower Mississippi River system; bioremediation of selected contaminants in aquatic environments of the Mississippi River Basin; a sensitive rapid on-sit immunoassay for heavy metal contamination; pore-level flow, transport, agglomeration and reaction kinetics of microorganism; biomarkers of exposure and ecotoxicity in the Mississippi River Basin; natural and active chemical remediation of toxic metals, organics and radionuclides in the aquatic environment; expert geographical information systems for assessing hazardous wastes in aquatic environments; enhancement of environmental education; and a number of just initiated projects including fate and transport of contaminants in aquatic environments; photocatalytic remediation; radionuclide fate and modeling from Chernobyl

  15. Development of a definitive method for iodine speciation in aquatic systems

    International Nuclear Information System (INIS)

    Reifenhaeuser, C.; Heumann, K.G.

    1990-01-01

    A definitive method of isotope dilution mass spectrometry (IDMS) was developed to determine four different iodine species in aquatic systems (iodide, iodate and two organoiodine compounds: one of the organic species is chromatographically elutable from a column filled with an anion exchanger resin, the other one is not). The iodine species were analysed after the isotope dilution step with an enriched 129 I spike and after their chromatographic separation. The total iodine concentration was measured after decomposition of organic compounds in the aquatic system by UV irradiation. Different types of natural water samples (river water, water of a pond, moorland lake water) were analysed and important water parameters like pH-value, redox potential, oxygen content and dissolved organic carbon were measured for each of these samples. The total iodine concentration in the different samples differed only slightly in the range of 2-7 μg/l. In most of the moorland lake water samples only the two organoiodine species could be detected. In these samples the concentration of iodide and iodate was less than the detection limit of 0.5 μg/l and 0.1 μg/l, respectively. On the other hand, all four iodine species could be determined in most of the river water samples. Positive correlations were found for the oxygen content of the water samples and the iodate concentration as well as for the redox potential and the anionic organoiodine compound. (orig.)

  16. An approach to effectiveness monitoring of floodplain channel aquatic habitat: channel condition assessment.

    Science.gov (United States)

    Richard D. Woodsmith; James R. Noel; Michael L. Dilger

    2005-01-01

    The condition of aquatic habitat and the health of species dependent on that habitat are issues of significant concern to land management agencies, other organizations, and the public at large in southeastern Alaska, as well as along much of the Pacific coastal region of North America. We develop and test a set of effectiveness monitoring procedures for measuring...

  17. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  18. Reviewing the serotonin reuptake inhibitors (SSRIs) footprint in the aquatic biota: Uptake, bioaccumulation and ecotoxicology

    International Nuclear Information System (INIS)

    a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Silva, Liliana J.G.; a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Pereira, André a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >M.P.T.; Meisel, Leonor M.; a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Lino, Celeste M.; a Comba, 3000-548 Coimbra (Portugal))" data-affiliation=" (REQUIMTE, Group of Bromatology, Pharmacognosy and Analytical Sciences, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra (Portugal))" >Pena, Angelina

    2015-01-01

    Selective serotonin re-uptake inhibitors (SSRIs) antidepressants are amongst the most prescribed pharmaceutical active substances throughout the world. Their presence, already described in different environmental compartments such as wastewaters, surface, ground and drinking waters, and sediments, and their remarkable effects on non-target organisms justify the growing concern about these emerging environmental pollutants. A comprehensive review of the literature data with focus on their footprint in the aquatic biota, namely their uptake, bioaccumulation and both acute and chronic ecotoxicology is presented. Long-term multigenerational exposure studies, at environmental relevant concentrations and in mixtures of related compounds, such as oestrogenic endocrine disruptors, continue to be sparse and are imperative to better know their environmental impact. - Highlights: • Current knowledge of uptake and bioaccumulation of SSRIs. • Ecotoxicology and effects of SSRIs in the aquatic biota. • Identification of existing knowledge gaps. - A comprehensive review focussing SSRIs antidepressants footprint in the aquatic biota, namely their uptake, bioaccumulation, and both acute and chronic ecotoxicology is presented

  19. Nutrition and training adaptations in aquatic sports.

    Science.gov (United States)

    Mujika, Iñigo; Stellingwerff, Trent; Tipton, Kevin

    2014-08-01

    The adaptive response to training is determined by the combination of the intensity, volume, and frequency of the training. Various periodized approaches to training are used by aquatic sports athletes to achieve performance peaks. Nutritional support to optimize training adaptations should take periodization into consideration; that is, nutrition should also be periodized to optimally support training and facilitate adaptations. Moreover, other aspects of training (e.g., overload training, tapering and detraining) should be considered when making nutrition recommendations for aquatic athletes. There is evidence, albeit not in aquatic sports, that restricting carbohydrate availability may enhance some training adaptations. More research needs to be performed, particularly in aquatic sports, to determine the optimal strategy for periodizing carbohydrate intake to optimize adaptations. Protein nutrition is an important consideration for optimal training adaptations. Factors other than the total amount of daily protein intake should be considered. For instance, the type of protein, timing and pattern of protein intake and the amount of protein ingested at any one time influence the metabolic response to protein ingestion. Body mass and composition are important for aquatic sport athletes in relation to power-to-mass and for aesthetic reasons. Protein may be particularly important for athletes desiring to maintain muscle while losing body mass. Nutritional supplements, such as b-alanine and sodium bicarbonate, may have particular usefulness for aquatic athletes' training adaptation.

  20. Daphnia as a model organism in limnology and aquatic biology: some aspects of its reproduction and development

    Directory of Open Access Journals (Sweden)

    Adam Petrusek

    2011-08-01

    Full Text Available Invertebrates comprise the overwhelming majority of all animal species - around 95% of described species, not including substantial cryptic variation. As it is an extremely diverse and heterogeneous group, research on various invertebrate taxa often follows parallel trajectories, with little interaction among experts on different groups. To promote sharing of knowledge within as well as across taxa, the International Society of Invertebrate Reproduction and Development (ISIRD was established in 1975 in Calicut, India. Since that time, the ISIRD has organised international conferences at three-year intervals where various aspects of invertebrate biology are presented and discussed, naturally with the focus on reproduction and development. Traditionally, marine invertebrate groups have been well represented at all ISIRD congresses, but freshwater invertebrates have often been relatively overlooked at these meetings. The 12th ISIRD congress took place between August 16 and 20, 2010 in Prague, the Czech Republic. Several different Czech institutions collaborated on the organisation of this meeting. As aquatic invertebrate research has a long tradition in the country, we decided to include a section dedicated to popular model organisms in aquatic ecology and evolutionary biology, the "water fleas", cladocerans of the genus Daphnia. The section entitled "Daphnia and other cladocerans as model organisms" was open to any aspects of cladoceran biology directly or indirectly related to their reproduction or development. Unfortunately, the timing of the Prague congress completely overlapped the triennial congress of the International Society of Theoretical and Applied Limnology (SIL in Cape Town, South Africa. This large meeting in a very attractive setting attracted many cladocerologists from all over the world, including Europe. Therefore, the Daphnia section of the Prague ISIRD meeting remained moderate in size, attracting 13 contributions (eight talks

  1. New tools for aquatic habitat modeling

    Science.gov (United States)

    D. Tonina; J. A. McKean; C. Tang; P. Goodwin

    2011-01-01

    Modeling of aquatic microhabitat in streams has been typically done over short channel reaches using one-dimensional simulations, partly because of a lack of high resolution. subaqueous topographic data to better define model boundary conditions. The Experimental Advanced Airborne Research Lidar (EAARL) is an airborne aquatic-terrestrial sensor that allows simultaneous...

  2. Tritium behavior in an aquatic ecosystem

    International Nuclear Information System (INIS)

    Komatsu, K.

    1982-01-01

    Tritium behavior in aquatic organisms through a model food chain was investigated. In this model food chain, tritium in water reaches bacteria or Japanese killifish via diatoms and brine shrimps. Tritium accumulation in these organisms as organic bound form was expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (μCi/gH) to that in water (μCi/gH). The maximum R values were 0.5 in diatoms: Chaetoceros gracilis, 0.2 in bacteria: Escherichia coli, 0.5 in brine shrimps: Artemia salina, and 0.32 in Japanese killifish: Oryzias latipes under the growing condition in which tritium accumulation was due to tritium in tritiated water and not tritiated foods. Brine shrimps and Japanese killifish were grown from larve to adult in tritiated sea water and were fed on tritiated foods (model food chain). Their R values were 0.70 and 0.67, respectively. Bacteria, which grew in tritiated water by adding the hydrolysate of tritiated brine shrimps, showed a maximum R value at 0.32. The R values of each organ of Japanese killifish and of DNA and the nucleotides purified from brine shrimps growing in tritiated water with or without tritiated food were measured to estimate the tritium distribution in the body or various molecules of the organisms. These results did not indicate concentration of tritium in specific organs or compounds. The changes of specific activity of tritium in these organisms were measured when they were transferred to non-tritiated water. These retention of tritium was not only different among the tissues but also depended on whether or not the organisms were reared with tritiated foods. (author)

  3. Understanding carbon regulation in aquatic systems - Bacteriophages as a model [v1; ref status: indexed, http://f1000r.es/4zd

    Directory of Open Access Journals (Sweden)

    Swapnil Sanmukh

    2015-06-01

    Full Text Available The bacteria and their phages are the most abundant constituents of the aquatic environment, and so represent an ideal model for studying carbon regulation in an aquatic system. The microbe-mediated interconversion of bioavailable organic carbon (OC into dissolved organic carbon (DOC by the microbial carbon pump (MCP has been suggested to have the potential to revolutionize our view of carbon sequestration. It is estimated that DOC is the largest pool of organic matter in the ocean and, though a major component of the global carbon cycle, its source is not yet well understood. A key element of the carbon cycle is the microbial conversion of DOC into inedible forms. The primary aim of this study is to understand the phage conversion from organic to inorganic carbon during phage-host interactions. Time studies of phage-host interactions under controlled conditions reveal their impact on the total carbon content of the samples and their interconversion of organic and inorganic carbon compared to control samples. A total organic carbon (TOC analysis showed an increase in inorganic carbon content by 15-25 percent in samples with bacteria and phage compared to samples with bacteria alone. Compared to control samples, the increase in inorganic carbon content was 60-70-fold in samples with bacteria and phage, and 50-55-fold for samples with bacteria alone. This study indicates the potential impact of phages in regulating the carbon cycle of aquatic systems.

  4. Genotoxic and reprotoxic effects of tritium and external gamma irradiation on aquatic animals.

    Science.gov (United States)

    Adam-Guillermin, Christelle; Pereira, Sandrine; Della-Vedova, Claire; Hinton, Tom; Garnier-Laplace, Jacqueline

    2012-01-01

    Aquatic ecosystems are chronically exposed to natural radioactivity or to artificial radionuclides released by human activities (e.g., nuclear medicine and biology,nuclear industry, military applications). Should the nuclear industry expand in the future, radioactive environmental releases, under normal operating conditions or accidental ones, are expected to increase, which raises public concerns about possible consequences on the environment and human health. Radionuclide exposures may drive macromolecule alterations, and among macromolecules DNA is the major target for ionizing radiations. DNA damage, if not correctly repaired, may induce mutations, teratogenesis, and reproductive effects. As such, damage at the molecular level may have consequences at the population level. In this review, we present an overview of the literature dealing with the effects of radionuclides on DNA, development, and reproduction of aquatic organisms. The review focuses on the main radionuclides that are released by nuclear power plants under normal operating conditions, γ emitters and tritium. Additionally, we fitted nonlinear curves to the dose-response data provided in the reviewed publications and manuscripts, and thus obtained endpoints commonly associated with ecotoxicological studies, such as the EDR(10). These were then used as a common metric for comparing the values and data published in the literature.The effects of tritium on aquatic organisms were reviewed for dose rates that ranged from 29 nGy/day to 29 Gy/day. Although beta emission from tritium decay presents a rather special risk of damage to DNA, genotoxicity-induced by tritium has been scarcely studied. Most of the effects studied have related to reproduction and development. Species sensitivity and the form of tritium present are important factors that drive the ecotoxicity of tritium. We have concluded from this review that invertebrates are more sensitive to the effects of tritium than are vertebrates

  5. Benefits of the maximum tolerated dose (MTD) and maximum tolerated concentration (MTC) concept in aquatic toxicology

    International Nuclear Information System (INIS)

    Hutchinson, Thomas H.; Boegi, Christian; Winter, Matthew J.; Owens, J. Willie

    2009-01-01

    There is increasing recognition of the need to identify specific sublethal effects of chemicals, such as reproductive toxicity, and specific modes of actions of the chemicals, such as interference with the endocrine system. To achieve these aims requires criteria which provide a basis to interpret study findings so as to separate these specific toxicities and modes of action from not only acute lethality per se but also from severe inanition and malaise that non-specifically compromise reproductive capacity and the response of endocrine endpoints. Mammalian toxicologists have recognized that very high dose levels are sometimes required to elicit both specific adverse effects and present the potential of non-specific 'systemic toxicity'. Mammalian toxicologists have developed the concept of a maximum tolerated dose (MTD) beyond which a specific toxicity or action cannot be attributed to a test substance due to the compromised state of the organism. Ecotoxicologists are now confronted by a similar challenge and must develop an analogous concept of a MTD and the respective criteria. As examples of this conundrum, we note recent developments in efforts to validate protocols for fish reproductive toxicity and endocrine screens (e.g. some chemicals originally selected as 'negatives' elicited decreases in fecundity or changes in endpoints intended to be biomarkers for endocrine modes of action). Unless analogous criteria can be developed, the potentially confounding effects of systemic toxicity may then undermine the reliable assessment of specific reproductive effects or biomarkers such as vitellogenin or spiggin. The same issue confronts other areas of aquatic toxicology (e.g., genotoxicity) and the use of aquatic animals for preclinical assessments of drugs (e.g., use of zebrafish for drug safety assessment). We propose that there are benefits to adopting the concept of an MTD for toxicology and pharmacology studies using fish and other aquatic organisms and the

  6. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    Science.gov (United States)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  7. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  8. Development of a test method to access the sludge reduction potential of aquatic organisms in activated sludge

    NARCIS (Netherlands)

    Buijs, B.R.; Klapwijk, A.; Elissen, H.J.H.; Rulkens, W.H.

    2008-01-01

    This article shows the development of a quantitative sludge reduction test method, which uses the sludge consuming aquatic worm Lumbriculus variegatus (Oligochaeta, Lumbriculidae). Essential for the test are sufficient oxygen supply and the presence of a non-stirred layer of sludge for burrowing of

  9. Journal of Aquatic Plant Management. Volume 36

    National Research Council Canada - National Science Library

    1998-01-01

    The U.S. Army Corps of Engineers (CE) Aquatic Plant Control Research Program (APCRP) is the Nation's only federally authorized research program directed to develop technology for the management of non-indigenous aquatic plant species...

  10. Differentiated Brand Marketing Strategy for China’s Conventional Aquatic Products

    Institute of Scientific and Technical Information of China (English)

    Hua; LIANG; Zhongming; SHEN

    2015-01-01

    The volume of production and marketing of China’s conventional aquatic products is increasing. Compared with price of livestock and poultry products,price of conventional aquatic products is relatively low. Differentiated brand marketing for China’s conventional aquatic products is a key approach for increasing market demand for conventional aquatic products and increasing value of conventional aquatic products. The differentiated brand marketing is an inevitable trend of market development and also a powerful arm for market competition. China’s conventional aquatic products can take differentiated brand marketing strategies such as brand orientation,brand concept,brand culture,and place name brand,to better keep market competitive edge and increase economic benefits.

  11. The oldest record of aquatic amniote congenital scoliosis.

    Directory of Open Access Journals (Sweden)

    Tomasz Szczygielski

    Full Text Available We report the first occurrence of congenital scoliosis in an early Permian aquatic parareptile, Stereosternum tumidum from Paraná state, Brazil. The spine malformation is caused by a congenital hemivertebra. These observations give insight into the biomechanical aspects of underwater locomotion in an axial skeleton-compromised aquatic amniote. This is the oldest record of a hemivertebra in an aquatic animal.

  12. The Relative Influence of Aquatic and Terrestrial Processes on Methylmercury Transport in River Basins

    Science.gov (United States)

    Burns, D. A.; Bradley, P. M.; Marvin-DiPasquale, M. C.; Aiken, G.; Brigham, M. E.

    2012-12-01

    Conceptual understanding of the mercury (Hg) cycle in river basins is important for the development of improved Hg models that can inform Hg emissions policies, and, therefore, decrease the health risk that stems from widespread high Hg levels found in fresh water fish throughout the US and globally. Distinguishing the relative roles of aquatic and terrestrial ecosystems in Hg transport and transformation is fundamental to improved Hg risk management. The principal zones where Hg is transformed to its methyl form (MeHg), the transport of that MeHg to aquatic ecosystems, and subsequent bioaccumulation in aquatic food webs have been the focus of our investigations for more than 10 years in several small river basins across the US. Our data indicate that most MeHg in these rivers originates at the interface of the terrestrial and aquatic ecosystem in wetlands and riparian areas where anaerobic conditions and abundant organic matter favor methylation. Key factors in addition to methylation potential are those that influence the hydrologic transport of MeHg to adjacent streams and rivers such as hydraulic conductivity in the shallow subsurface and the depth of the water table in riparian areas. The presence and quality of organic matter in wetland soils and in water that moves through wetland areas also plays a pivotal role in MeHg source and transport. We discuss how these factors affect aquatic MeHg concentrations in light of a recently completed investigation of the Hg cycle in river basins in the Adirondack Mountains of New York and Coastal Plain of South Carolina. At each site, MeHg originates primarily in riparian wetland areas and is transported to the streams via shallow groundwater flow. The presence of open water bodies in these basins favors losses of MeHg by any of several processes, though smaller open water bodies may act as net MeHg sources. Ongoing work is building on this conceptualization of the Hg cycle through development of a model based on the

  13. Book review: Aquatic insect ecology: 1. Biology and habitat

    OpenAIRE

    Arnett, Ross H.

    2010-01-01

    Book Review: A comprehensive treatment of the ecology of aquatic insects in one place is needed for both students and researchers. Professor Ward is doing this in two volumes. The first volume covers the biology and habitats, as indicated in the subtitle, of the 13 insect orders that are either entirely aquatic at some stage, or those with some members aquatic at some stage. The second volume will be devoted entirely to the feeding ecology of these aquatic species.

  14. Early Pleistocene aquatic resource use in the Turkana Basin.

    Science.gov (United States)

    Archer, Will; Braun, David R; Harris, Jack W K; McCoy, Jack T; Richmond, Brian G

    2014-12-01

    Evidence for the acquisition of nutritionally dense food resources by early Pleistocene hominins has implications for both hominin biology and behavior. Aquatic fauna may have comprised a source of highly nutritious resources to hominins in the Turkana Basin at ∼1.95 Ma. Here we employ multiple datasets to examine the issue of aquatic resource use in the early Pleistocene. This study focuses on four components of aquatic faunal assemblages (1) taxonomic diversity, (2) skeletal element proportion, (3) bone fragmentation and (4) bone surface modification. These components are used to identify associations between early Pleistocene aquatic remains and hominin behavior at the site of FwJj20 in the Koobi Fora Fm. (Kenya). We focus on two dominant aquatic species: catfish and turtles. Further we suggest that data on aquatic resource availability as well as ethnographic examples of aquatic resource use complement our observations on the archaeological remains from FwJj20. Aquatic food items provided hominins with a valuable nutritional alternative to an exclusively terrestrial resource base. We argue that specific advantages afforded by an aquatic alternative to terrestrial resources include (1) a probable reduction in required investment of energy relative to economic return in the form of nutritionally dense food items, (2) a decrease in the technological costs of resource acquisition, and (3) a reduced level of inter-specific competition associated with carcass access and an associated reduction of predation risk relative to terrestrial sources of food. The combined evidence from FwJj20 suggests that aquatic resources may have played a substantial role in early Pleistocene diets and these resources may have been overlooked in previous interpretations of hominin behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. 42 CFR 478.24 - Opportunity for a party to obtain and submit information.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Opportunity for a party to obtain and submit information. 478.24 Section 478.24 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS RECONSIDERATIONS AND APPEALS Utilization and Quality Control Quality...

  16. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  17. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    Science.gov (United States)

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments.

  18. Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments.

    Science.gov (United States)

    Hand, L H; Kuet, S F; Lane, M C; Maund, S J; Warinton, J S; Hill, I R

    2001-08-01

    Aquatic exposure assessments for pesticides are generally based on laboratory studies performed in water alone or water sediment systems. Although aquatic macrophytes, which include a variety of bryophytes, macroalgae, and angiosperms, can be a significant component of many aquatic ecosystems, their impact on pesticide fate is generally not included in exposure assessments. To investigate the influence of aquatic plants on the fate and behavior of the pyrethroid insecticide lambda (lambda)-cyhalothrin, two laboratory experiments (to assess adsorption and degradation) and an indoor microcosm study (to assess fate under semirealistic conditions) were conducted. In the laboratory studies, adsorption to macrophytes was extensive and essentially irreversible, and degradation occurred rapidly by cleavage of the ester bond. In the indoor microcosm, which contained water, sediment, and macrophytes from a pond, degradation was also rapid, with DT50 and DT90 values of less than 3 and 19 h, respectively, for dissipation from the water column and of less than 3 and 56 h, respectively, for the whole system. For adsorptive and readily degraded pesticides like lambda-cyhalothrin, we conclude that macrophytes have considerable influence on fate and behavior in surface waters.

  19. Toxicity assessment of pesticide triclosan by aquatic organisms and degradation studies.

    Science.gov (United States)

    Taştan, Burcu Ertit; Tekinay, Turgay; Çelik, Hatice Sena; Özdemir, Caner; Cakir, Dilara Nur

    2017-12-01

    Triclosan is considered as an important contaminant and is widely used in personal care products as an antimicrobial agent. This study demonstrates the biodegradation of triclosan by two freshwater microalgae and the acute toxicity of triclosan and 2,4-dichlorophenol. The effects of culture media and light on biodegradation of triclosan and the changing morphology of microalgae were systematically studied. Geitlerinema sp. and Chlorella sp. degraded 82.10% and 92.83% of 3.99 mg/L of triclosan at 10 days, respectively. The microalgal growth inhibition assay confirmed absence of toxic effects of triclosan on Chlorella sp., even at higher concentration (50 mg/L) after 72 h exposure. HPLC analysis showed that 2,4-dichlorophenol was produced as degradation product of triclosan by Geitlerinema sp. and Chlorella sp. This study proved to be beneficial to understand biodegradation and acute toxicity of triclosan by microalgae in order to provide aquatic environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    Science.gov (United States)

    Remo, Jonathan W. F.; Khanal, Anish; Pinter, Nicholas

    2013-09-01

    -wintering habitat (<0.4 ha). Thus, while chevron construction increased over-wintering habitat, shallow-water habitat, and physical-aquatic-habitat diversity relative to the pre-chevron channel condition, these types of physical-aquatic habitat are different from what was historically found along this reach. Constructing chevrons dikes, or other dike-like structures in the river channel, can change the physical-aquatic habitat patch mosaic and likely contribute to small increases in physical-aquatic-habitat heterogeneity. However, differences in the types, quantity, and diversity of physical-aquatic-habitat patches created by chevron dikes in comparison to the physical-aquatic-habitat patch mosaic of historic channel underscore the need for additional research to determine which physical-aquatic-habitat patches are critical for the recovery of endangered or threatened aquatic organisms.

  1. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  2. Mycobacterium ulcerans ecological dynamics and its association with freshwater ecosystems and aquatic communities : results from a 12-month environmental survey in Cameroon

    OpenAIRE

    Garchitorena, Andres; Roche, Benjamin; Kamgang, R.; Ossomba, J.; Babonneau, J.; Landier, J.; Fontanet, A.; Flahault, A.; Eyangoh, S.; Guégan, Jean-François; Marsollier, L.

    2014-01-01

    International audience; Background: Mycobacterium ulcerans (MU) is the agent responsible for Buruli Ulcer (BU), an emerging skin disease with dramatic socioeconomic and health outcomes, especially in rural settings. BU emergence and distribution is linked to aquatic ecosystems in tropical and subtropical countries, especially to swampy and flooded areas. Aquatic animal organisms are likely to play a role either as host reservoirs or vectors of the bacilli. However, information on MU ecologica...

  3. Biochemical and toxicological impacts of persistent organochlorines on aquatic ecosystem. With particular attention to dioxins and their related compounds; Zanryusei yuki enso kagobutsu no suiken seitaikei eno eikyo. Toku ni dioxin rui ni chakumokushite

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, H. [Hokkaido University, Sapporo (Japan)

    1998-07-10

    PCDDs, PCDFs and coplanar PCBs are organochlorine compounds which induce toxicological impacts on test animals, such as reduced weight, thymic gland dwarf, hepatotoxicity, immunotoxicity, developmental toxicity, carcinogenecity, teratogenicity and endocrine disturbance. They are generally referred to as dioxins. They are difficult to be decomposed in vivo, and tend to be more concentrated in higher organisms, placed at higher positions in the food chain. In aquatic ecosystems, they are observed to accumulate at high concentrations in fishes, fish-eating birds, claspers and whales. Therefore, there are growing concerns over their possible adverse effects on wild animals in aquatic ecosystems. This paper describes the effects of persistent organochlorine compounds on fishes, birds and aquatic mammals; and induction of cytochrome P450 of each organic species, caused by exposure to dioxins, and the induction examples in aquatic ecosystems. It also discusses whether or not the cytochrome P450 induction capacity of each organism species can be used as an index which explains difference between organism species in toxicological impacts of dioxins. 33 refs., 1 fig., 1 tab.

  4. What is bioturbation? The need for a precise definition for fauna in aquatic sciences

    DEFF Research Database (Denmark)

    Kristensen, Erik; Penha-Lopes, Gil; Delefosse, Matthieu

    2012-01-01

    referred to as particle reworking, while water movement (if considered) is re ferred to as bioirrigation in many cases. For consistency, we therefore propose that, for contemporary aquatic scientific disciplines, faunal bioturbation in aquatic environments includes all transport processes carried out...... by animals that directly or indirectly affect sediment matrices. These processes include both particle reworking and burrow ventilation. With this definition, bioturbation acts as an ‘umbrella’ term that covers all transport processes and their physical effects on the substratum. Particle reworking occurs...... through burrow construction and maintenance, as well as ingestion and defecation, and causes biomixing of the substratum. Organic matter and microorganisms are thus displaced vertically and laterally within the sediment matrix. Particle reworking animals can be categorized as biodiffusors, upward...

  5. Behaviour of 134Cs in the aquatic ecosystems

    International Nuclear Information System (INIS)

    Xu Yinliang; Chen Chuanqun

    1992-07-01

    The diminution of 134 Cs in the aquatic phases and the absorption of 134 Cs by aquatic lives observe the exponential expression. i.e. Y Ae be . The relationships between the enrichment factor of 134 Cs(K) and the time(t) in the aquatic lives can be represented by a linear equation, K A + Bt. The value of K in the Alternanthera philoxeroides was about 560. That can be used for monitoring and purifying the water phase contaminated by 134 Cs. Fish can absorb 134 Cs from water phase and store it in liver and kidney. The specific activity of 134 Cs in fish flesh was low but the percentage of radioactivity was high that was about 30% of total radioactivity in the fish. River mud can strongly absorb 134 Cs and reduce the absorption by aquatic lives. It is a good adsorbent and purifying agent with low cost for treatment of 134 Cs. The K + can prevent aquatic lives from absorbing Cs + because of antagonistic function

  6. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Flávia de Andrade e Souza Mazuchi

    2018-03-01

    Full Text Available Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients. To compare the effect of two exercise training protocols (walking in deep water and on a treadmill on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the start of the study, were randomly assigned to one of two groups: 1 pool group submitted to aerobic deep water walking training; and 2 the treadmill group which was submitted to aerobic walk on a treadmill. Measurements: The position sense, absolute error and variable error, of the knee joint was evaluated prior to and after nine weeks of aerobic training. RESULTS The pool group presented smaller absolute (13.9o versus 6.1o; p < 0.05 and variable (9.2o versus 3.9o; p < 0.05 errors after nine-weeks gait training than the treadmill group. CONCLUSIONS Nine-week aerobic exercise intervention in aquatic environment improved precision in the position sense of the knee joint of stroke patients, suggesting a possible application in a rehabilitation program.

  7. Transfer of radionuclides at the uranium and thorium decay chains in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Letourneau, C.

    1987-04-01

    This report examines the transfer of radionuclides from the uranium and thorium decay chains (U-238, Ra-226, Th-232, Th-230, Po-210 and Pb-210) through the aquatic and terrestrial environment. This transfer is characterized by a transfer coefficient; environmental and experimental factors which cause this coefficient to vary are presented and discussed in this report. Furthermore, based on a literature survey, the report indicates the range of coefficients found for the aquatic sector (that is, sediment and freshwater and marine organisms) and for the terrestrial sector (that is, plants and domestic and wild animals). Afterwards, generalisations are formulated on the transfer of the different radionuclides through the multiple environmental compartments. 75 refs

  8. 78 FR 39310 - Voluntary Guidelines to Prevent the Introduction and Spread of Aquatic Invasive Species...

    Science.gov (United States)

    2013-07-01

    ... are intended to be used by agencies and organizations to develop materials that inform the public and... and harm the environment and the economy. The intent of this information is to encourage the public... dedicated to prevent and control the spread of aquatic nuisance species. In 2000, the ANSTF developed...

  9. An Analysis of Terrestrial and Aquatic Environmental Controls of Riverine Dissolved Organic Carbon in the Conterminous United States

    Directory of Open Access Journals (Sweden)

    Qichun Yang

    2017-05-01

    Full Text Available Analyses of environmental controls on riverine carbon fluxes are critical for improved understanding of the mechanisms regulating carbon cycling along the terrestrial-aquatic continuum. Here, we compile and analyze riverine dissolved organic carbon (DOC concentration data from 1402 United States Geological Survey (USGS gauge stations to examine the spatial variability and environmental controls of DOC concentrations in the United States (U.S. surface waters. DOC concentrations exhibit high spatial variability in the U.S., with an average of 6.42 ± 6.47 mg C/L (Mean ± Standard Deviation. High DOC concentrations occur in the Upper Mississippi River basin and the southeastern U.S., while low concentrations are mainly distributed in the western U.S. Soil properties such as soil organic matter, soil water content, and soil sand content mainly show positive correlations with DOC concentrations; forest and shrub land have positive correlations with DOC concentrations, but urban area and cropland demonstrate negative impacts; and total instream phosphorus and dam density correlate positively with DOC concentrations. Notably, the relative importance of these environmental controls varies substantially across major U.S. water resource regions. In addition, DOC concentrations and environmental controls also show significant variability from small streams to large rivers. In sum, our results reveal that general multi-linear regression of twenty environmental factors can partially explain (56% the DOC concentration variability. This study also highlights the complexity of the interactions among these environmental factors in determining DOC concentrations, thus calls for processes-based, non-linear methodologies to constrain uncertainties in riverine DOC cycling.

  10. DNA barcoding commercially important aquatic invertebrates of Turkey.

    Science.gov (United States)

    Keskin, Emre; Atar, Hasan Hüseyin

    2013-08-01

    DNA barcoding was used in order to identify aquatic invertebrates sampled from fisheries bycatch and discards. A total of 440 unique cytochrome c oxidase sub unit I (COI) barcodes were generated for 22 species from three important phyla (Arthropoda, Cnidaria, and Mollusca). All the species were sequenced and submitted to GenBank and Barcode of Life Database (BOLD) databases using 654 bp-long fragment of mitochondrial COI gene. Two of them (Pontastacus leptodactylus and Rapana bezoar) were first records of the species for the BOLD database and six of them (Carcinus aestuarii, Loligo vulgaris, Melicertus kerathurus, Nephrops norvegicus, Scyllarides latus, and Scyllarus arctus) were first standard (>648 bp) COI barcode records for the GenBank database. COI barcodes were analyzed for nucleotide composition, nucleotide pair frequencies, and Kimura's two-parameter genetic distance. Mean genetic distance among species was found increasing at higher taxonomic levels. Neighbor-joining trees generated were congruent with morphometric-based taxonomic classification. Findings of this study clearly demonstrate that DNA barcodes could be used as an efficient molecular tool in identification of not only target species from fisheries but also bycatch and discard species, and so it could provide us leverage for a better understanding in monitoring and management of fisheries and biodiversity.

  11. ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms

    International Nuclear Information System (INIS)

    Bodin, Nathalie; Budzinski, Helene; Le Menach, Karyn; Tapie, Nathalie

    2009-01-01

    Since lipids are depleted in 13 C relative to proteins and carbohydrates, variations in lipid composition among species and within individuals significantly influence δ 13 C and may result in misleading ecological interpretations. Whereas lipid extraction before IRMS analysis constitutes a way of stable isotope result lipid-normalisation, such a procedure was given up because of the un-controlled effects of the methods used (i.e., 'Bligh and Dyer', Soxhlet, etc.) on δ 15 N. The aim of this work was to develop a simple, rapid and efficient lipid extraction method allowing for simultaneous C and N stable isotope analysis in the biological soft tissues of aquatic organisms. The goal was to be free from the lipid influence on δ 13 C values without interfering with δ 15 N values. For that purpose, the modern automated pressurized liquid extraction technique ASE (accelerated solvent extraction) was selected. Eel muscles representative of a broad range of fat contents were extracted via ASE by using different semi-polar solvents (100% dichloromethane and 80% n-hexane/20% acetone) and by operating at different temperature (ambient temperature and 100 deg. C) and pressure (750 and 1900 psi) conditions. The results were discussed in terms of lipid extraction efficiency as well as δ 13 C and δ 15 N variability.

  12. Aquatic insect populations in the MUDA rice agroecosystem

    International Nuclear Information System (INIS)

    Rozilah Ismail; Ahyaudin Ali

    2002-01-01

    Periodic sampling of aquatic insects was carried out in an experimental plot of the Muda rice agroecosystem. The study which was conducted from August to December 1995, investigated the impact of the pesticides Broadox and Trebon on aquatic insect populations during the rice growing period. The results indicated that there was no significant difference in abundance and diversity of aquatic insects between the treated and non-treated area. The four dominant aquatic insects were from the families; Chironomidae, Dysticidae, Corixidae and Belostomatidae. Water temperature and dissolved oxygen showed changes throughout the rice growing season and the values of these parameters decreased gradually towards the end of the rice growing season in January when the rice plants were maturing. (Author)

  13. Production of extracellular nucleic acids by genetically altered bacteria in aquatic-environment microcosms

    International Nuclear Information System (INIS)

    Paul, J.H.; David, A.W.

    1989-01-01

    The factors which affect the production of extracellular DNA by genetically altered strains of Escherichia coli, Pseudomonas aeruginosa, Pseudomonas cepacia, and Bradyrhizobium japonicum in aquatic environments were investigated. Cellular nucleic acids were labeled in vivo by incubation with [ 3 H]thymidine or [ 3 H]adenine, and production of extracellular DNA in marine waters, artificial seawater, or minimal salts media was determined by detecting radiolabeled macromolecules in incubation filtrates. The presence or absence of the ambient microbial community had little effect on the production of extracellular DNA. Three of four organisms produced the greatest amounts of extracellular nucleic acids when incubated in low-salinity media (2% artificial seawater) rather than high-salinity media (10 to 50% artificial seawater). The greatest production of extracellular nucleic acids by P. cepacia occurred at pH 7 and 37 degree C, suggesting that extracellular-DNA production may be a normal physiologic function of the cell. Incubation of labeled P. cepacia cells in water from Bimini Harbor, Bahamas, resulted in labeling of macromolecules of the ambient microbial population. Collectively these results indicate that (i) extracellular-DNA production by genetically altered bacteria released into aquatic environments is more strongly influenced by physicochemical factors than biotic factors, (ii) extracellular-DNA production rates are usually greater for organisms released in freshwater than marine environments, and (iii) ambient microbial populations can readily utilize materials released by these organisms

  14. Short Communication - Aquatic Oil Pollution Impact Indicators ...

    African Journals Online (AJOL)

    Aquatic oil pollution impact indicators such as oil-grease, low dissolved oxygen concentration, increased biochemical oxygen demand, increased water temperature and acidity of the water are associated with aquatic habitat degradation, reduced productivity and or loss of biodiversity. These impact indicators are ...

  15. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN AQUATIC ...

    Science.gov (United States)

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials Due to their high worldwide usage and release, they frequently occur in the aquatic and marine environments. The U.S. EPA (ORD, Las Vegas) developed surface-water monitoring methodology and conducted a one-year monthly monitoring of synthetic musks in water and biota from Lake Mead (Nevada) as well as from combined sewage effluent streams feeding Lake Mead. Presented are the overview of the chemistry, the monitoring methodology, and the significance of synthetic musk compounds in the aquatic environment. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than p

  16. Rubber tire leachates in the aquatic environment.

    Science.gov (United States)

    Evans, J J

    1997-01-01

    Tires have a deleterious effect on the environment. This review discusses the background of scrap tires discarded in the environment, including tire composition, adverse environmental effects, threats to public health and safety, and solid waste management. Despite the widespread use of scrap tires in environmental applications, both land-based and aquatic, data on the indicators of environmental degradation are extremely scarce. Indicators of environmental degradation include analysis of chemicals within the water and sediment, analysis of contaminants within organisms, and analysis of the biological effects of these compounds on plants, animals, microbes, and organelles. Although these indicators are most useful when used in parallel, a review of the available information on chemical characterization of tire leachate from tire storage facilities, manufacturing, usage in recycling applications, and toxicity exposure studies, of vegetation surveys from waste tire areas and reviews of mammalian tire product toxicity, and of toxicity, mutagenicity, and carcinogenicity of tire exposure in experimental aquatic animals, microbes, and organelles is presented. The major characteristics of these studies are discussed in specific sections. The "Discussion and Conclusions" section discusses and summarizes the biological effects and chemical characterization of tire leachates. A global environmental perspective is included to improve our understanding of the deficiency of the current knowledge of tire leachate toxicity from various sources and to encourage interdisciplinary studies to establish the pattern of pollution associated with waste tire management.

  17. Aquatic exercise & balneotherapy in musculoskeletal conditions.

    Science.gov (United States)

    Verhagen, Arianne P; Cardoso, Jefferson R; Bierma-Zeinstra, Sita M A

    2012-06-01

    This is a best-evidence synthesis providing an evidence-based summary on the effectiveness of aquatic exercises and balneotherapy in the treatment of musculoskeletal conditions. The most prevalent musculoskeletal conditions addressed in this review include: low back pain, osteoarthritis, fibromyalgia and rheumatoid arthritis. Over 30 years of research demonstrates that exercises in general, and specifically aquatic exercises, are beneficial for reducing pain and disability in many musculoskeletal conditions demonstrating small to moderate effect sizes ranging between 0.19 and 0.32. Balneotherapy might be beneficial, but the evidence is yet insufficient to make a definitive statement about its use. High-quality trials are needed on balneotherapy and aquatic exercises research especially in specific patient categories that might benefit most. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    Science.gov (United States)

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Highly pathogenic influenza A(H5N1 virus survival in complex artificial aquatic biotopes.

    Directory of Open Access Journals (Sweden)

    Viseth Srey Horm

    Full Text Available BACKGROUND: Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. METHODOLOGY/PRINCIPAL FINDINGS: The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. CONCLUSIONS/SIGNIFICANCE: Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  20. Aquatic pathway 2

    International Nuclear Information System (INIS)

    1977-01-01

    This third part of the investigation discusses the preliminary results of sub-investigations concerning problems of the release of radioactive substances into the environment via the water pathway. On the basis of papers on the emission into the draining ditch and the exchange processes there, investigations of a possible incorporation via different exposure pathways are reported. Special regard is paid to drinking water supply aquatic foodstuffs, the river sediment, the utilisation of the agricultural surfaces and the draining ditch including its pre-pollution. The dynamics of contamination processes is reported on with regard to the problem of accidents. The colloquium will give an outline of the progress made so far and admit participants' suggestions for further work on the sub-investigations. The following colloquia will report further findings, in particular effects on aquatic ecosystems. (orig.) [de

  1. Recommended reporting standards for test accuracy studies of infectious diseases of finfish, amphibians, molluscs and crustaceans: the STRADAS-aquatic checklist

    DEFF Research Database (Denmark)

    Gardner, Ian A.; Whittington, Richard J.; Caraguel, Charles G. B.

    2016-01-01

    Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons...... studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines......-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species....

  2. Science to support aquatic animal health

    Science.gov (United States)

    Purcell, Maureen K.; Harris, M. Camille

    2016-10-18

    Healthy aquatic ecosystems are home to a diversity of plants, invertebrates, fish and wildlife. Aquatic animal populations face unprecedented threats to their health and survival from climate change, water shortages, habitat alteration, invasive species and environmental contaminants. These environmental stressors can directly impact the prevalence and severity of disease in aquatic populations. For example, periodic fish kills in the upper Chesapeake Bay Watershed are associated with many different opportunistic pathogens that proliferate in stressed fish populations. An estimated 80 percent of endangered juvenile Puget Sound steelhead trout die within two weeks of entering the marine environment, and a role for disease in these losses is being investigated. The introduction of viral hemorrhagic septicemia virus (VHSV) into the Great Lakes—a fishery worth an estimated 7 billion dollars annually—resulted in widespread fish die-offs and virus detections in 28 different fish species. Millions of dying sea stars along the west coast of North America have led to investigations into sea star wasting disease. U.S. Geological Survey (USGS) scientists are assisting managers with these issues through ecological investigations of aquatic animal diseases, field surveillance, and research to promote the development of mitigation strategies.

  3. Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge.

    Science.gov (United States)

    Cardoso, Olivier; Porcher, Jean-Marc; Sanchez, Wilfried

    2014-11-01

    Human and veterinary active pharmaceutical ingredients (APIs) are involved in contamination of surface water, ground water, effluents, sediments and biota. Effluents of waste water treatment plants and hospitals are considered as major sources of such contamination. However, recent evidences reveal high concentrations of a large number of APIs in effluents from pharmaceutical factories and in receiving aquatic ecosystems. Moreover, laboratory exposures to these effluents and field experiments reveal various physiological disturbances in exposed aquatic organisms. Also, it seems to be relevant to increase knowledge on this route of contamination but also to develop specific approaches for further environmental monitoring campaigns. The present study summarizes available data related to the impact of pharmaceutical factory discharges on aquatic ecosystem contaminations and presents associated challenges for scientists and environmental managers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Influence of cooling water discharges from Kaiga Nuclear Power Plant on aquatic ecology of the Kadra reservoir

    International Nuclear Information System (INIS)

    Ghosh, T.K.; Zargar, S.; Kulkarni, A.V.

    2007-01-01

    The alterations induced in the ambient temperature can lead to wide manifestations in species distribution and community structure. In general, elevated water temperature causes changes in species composition, species dominance, standing crop and productivity of biota including phytoplankton communities in any aquatic ecosystem. Thus warm water discharges from power plants into the receiving water bodies may adversely affect aquatic ecology. In the absence of exhaustive data on the response of aquatic organisms and ecosystems in the tropics to elevated temperatures, the only option is to draw inferences, from the experiences in the subtropical and temperature areas. Since, sufficient data on similar line are not available in tropical environment, present paper delineates certain aspects of aquatic ecology of the Kadra reservoir where cooling water is discharged. The study suggests the heated effluents from Kaiga Nuclear Power plant caused changes in dissolved oxygen and pH of water, heterotrophic bacterial population, sediment biogeochemical cycles related biochemical processes, species composition, species dominance, standing crop and productivity of biota including phytoplankton communities within 500 m from End of Discharge Canal point of Kadra reservoir when two units are running in full capacity. (author)

  5. Aquatic noise pollution: implications for individuals, populations, and ecosystems.

    Science.gov (United States)

    Kunc, Hansjoerg P; McLaughlin, Kirsty Elizabeth; Schmidt, Rouven

    2016-08-17

    Anthropogenically driven environmental changes affect our planet at an unprecedented scale and are considered to be a key threat to biodiversity. According to the World Health Organization, anthropogenic noise is one of the most hazardous forms of anthropogenically driven environmental change and is recognized as a major global pollutant. However, crucial advances in the rapidly emerging research on noise pollution focus exclusively on single aspects of noise pollution, e.g. on behaviour, physiology, terrestrial ecosystems, or on certain taxa. Given that more than two-thirds of our planet is covered with water, there is a pressing need to get a holistic understanding of the effects of anthropogenic noise in aquatic ecosystems. We found experimental evidence for negative effects of anthropogenic noise on an individual's development, physiology, and/or behaviour in both invertebrates and vertebrates. We also found that species differ in their response to noise, and highlight the potential underlying mechanisms for these differences. Finally, we point out challenges in the study of aquatic noise pollution and provide directions for future research, which will enhance our understanding of this globally present pollutant. © 2016 The Author(s).

  6. Investigation of radioisotopes in different organisms around Paks NPP

    International Nuclear Information System (INIS)

    Janovics, R.; Bihari, A.; Major, Z.; Palcsu, L.; Papp, L.; Veres, M.

    2010-01-01

    Complete text of publication follows. The Paks Nuclear Power Plant is a pressurised water reactor, therefore, it requires a large amount of cooling water. Cooling water is pumped from the Danube, and used water is also discharged back to the river through the warm-water channel. In the study Danube water and various aquatic organisms (a snail, Viviparus Acerosus, a mussel Unio Tumidus, a predatory fish Stizostedion lucioperca and a non-predatory fish Leuciscus idus) were collected upstream and downstream of the inlet of the channel. After freeze-drying both from the interstitial water and the dry matter of the aquatic organisms collected, tritium measurements were performed by the T- 3 He method to gain information about the ratio of the tritium concentration of the organically bound and the not-bound hydrogen, as well. The activity of the organically bound tritium reflects the mean activity of the environment of the organism, while the tritium activity of the interstitial water shows the actual activity of the aquatic environment. The activity of gamma emitters in the dry matter was also measured by gamma spectrometry. In case of the mussel and snail samples gamma spectrometry measurements were performed separately from the calciferous skeleton and the tissues. Besides the aquatic organisms, soil and plant samples (Scots Pine Pinus sylvestris, Common Milkweed Asclepias syriaca L., giant goldenrod Solidago gigantea) were collected in the vicinity of the nuclear power plant and in a background site, as well. These samples were analysed by gamma spectrometry and for tritium concentration, and the results were compared with a background site. On the basis of the gamma spectrometry results significant amount of artificial gamma emitter isotopes do not get to the Danube through the warm-water channel. Only 60 Co occurred in certain mussel, snail and sludge in a measurable activity concentration, however, it is not of power plant origin, as it was present even in the

  7. Deer Island Aquatic Ecosystem Restoration Project

    Science.gov (United States)

    2015-07-01

    across the U.S. Army Corps of Engineers (USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic...USACE) requires that a broad base of EWN understanding and support be built . The Deer Island Aquatic Ecosystem Restoration Project (Deer Island AERP...Mississippi Wetlands Restoration Projects). The project received additional funding through several public laws in response to hurricane damages

  8. Nutrition, Illness, and Injury in Aquatic Sports

    NARCIS (Netherlands)

    Pyne, D.B.; Verhagen, E.A.L.M.; Mountjoy, M.

    2014-01-01

    In this review, we outline key principles for prevention of injury and illness in aquatic sports, detail the epidemiology of injury and illness in aquatic athletes at major international competitions and in training, and examine the relevant scientific evidence on nutrients for reducing the risk of

  9. Seasonal dynamics in the relative density of aquatic flora along some coastal areas of the Red Sea, Tabuk, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abid Ali Ansari

    2016-09-01

    Full Text Available Plants are the producers of all autotrophic ecosystems’ and are the base of the food chain taking energy from the sun and converting it into food for all other organisms through photosynthesis. Plants grow in certain places and seasons when the environmental factors are suitable for their germination, growth and developments that influence their diversity. Environmental factors can include abiotic factors such as temperature, light, moisture, soil nutrients; or biotic factors like competition from other plants or grazing by animals. Anthropogenic perturbations can also influence distribution patterns. Monitoring of ecological habitats and diversity of some aquatic flora along some coastal areas of Red Sea has been done to understand the dynamics of aquatic plants influenced by prevailing environmental and anthropogenic perturbations The results of this research showed that the summer season is the most suitable period for the study of aquatic plant diversity along the coastal sites of Red Sea. The aquatic flora had high relative density and diversity in April, May, June and July and these four months of the summer season are best for collection of aquatic plants from the selected coastal areas of Red Sea for medicinal purposes and ecological studies.

  10. The use of bivalves as rapid, real-time indicators of aquatic pollution

    International Nuclear Information System (INIS)

    Markich, S.J.

    1995-01-01

    The ability of bivalves to filter large volumes of water on a daily basis, combined with the relatively high permeability of their cell membranes, make them valuable organisms to use in the contemporary detection of pollution. Bivalves are well known to respond to chemical contaminants by isolating their soft tissues from the aquatic medium by valve closure. The sensory acuity (via specialized sensory regions including the osphradium) and associated repertoire of this behavioral response can be employed to assess subtle effects exerted by chemical contaminants, such as complex effluents, that may ultimately influence the survival of these organisms. As hazard assessment tools, behavioral studies reflect sublethal toxicity and often yield a highly sensitive estimate of the lowest observable effect concentration (LOEC). Moreover, valve movement behavior has been identified as one of the more sensitive biological early warning measures to a variety of aquatic contaminants, in comparison with those used in other aquatic animal phyla. Therefore, the valve movement behavior of both freshwater (Hyridella depressa, Velesunio angasi and V. ambiguus) and marine (Mytilus edulis) bivalves was continuously monitored, using an on-line computer based data acquisition system, during exposure to either trace metals (e.g. Cu, Cd, Mn and U) or complex effluents (ie treated sewage effluent and acid leachate derived from contaminated Sydney Harbour sediments), in the context of using the valve movement behavior of the bivalve species to indicate the biological significance of exposure to the above-mentioned pollutants. The results indicate that several components of the valve movement behavior of each bivalve provide quantifiable and ecologically interpretable sub-lethal endpoints for the rapid and sensitive evaluation of waters containing either complex effluents or elevated levels of trace metals

  11. 33 CFR Appendix C to Part 273 - Information Requirements for Aquatic Plant Control Program Environmental Impact Statements

    Science.gov (United States)

    2010-07-01

    ... Aquatic Plant Control Program Environmental Impact Statements C Appendix C to Part 273 Navigation and... Environmental Impact Statements 1. Description of the problem. a. Pests. Identify the pest to be controlled by.... Relationship to environmental situation. Non-target organisms and integrated pest management programs. 2...

  12. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o, closed-circuit (SMFC-c, aquatic plants with open-circuit (P-SMFC-o and aquatic plants with closed-circuit (P-SMFC-c. The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the

  13. Aquatic Therapy: A Viable Therapeutic Recreation Intervention.

    Science.gov (United States)

    Broach, Ellen; Dattilo, John

    1996-01-01

    Reviews literature on the effects of aquatic therapy (swimming and exercise) to improve function. Research shows that aquatic therapy has numerous psychological and physical benefits, and it supports the belief that participation can provide a realistic solution to maintaining physical fitness and rehabilitation goals while engaging in enjoyable…

  14. Climate Variability, Dissolved Organic Carbon, UV Exposure, and Amphibian Decline

    Science.gov (United States)

    Brooks, P. D.; O'Reilly, C. M.; Diamond, S.; Corn, S.; Muths, E.; Tonnessen, K.; Campbell, D. H.

    2001-12-01

    Increasing levels of UV radiation represent a potential threat to aquatic organisms in a wide range of environments, yet controls on in situ variability on UV exposure are relatively unknown. The primary control on the penetration of UV radiation in surface water environments is the amount of photoreactive dissolved organic carbon (DOC). Consequently, biogeochemical processes that control the cycling of DOC also affect the exposure of aquatic organisms to UV radiation. Three years of monitoring UV extinction and DOC composition in Rocky Mountain, Glacier, Sequoia/ Kings Canyon, and Olympic National Parks demonstrate that the amount of fulvic acid DOC is much more important than the total DOC pool in controlling UV attenuation. This photoreactive component of DOC originates primarily in soil, and is subject both to biogeochemical controls (e.g. temperature, moisture, vegetation, soil type) on production, and hydrologic controls on transport to surface water and consequently UV exposure to aquatic organisms. Both of these controls are positively related to precipitation with greater production and transport associated with higher precipitation amounts. For example, an approximately 20 percent reduction in precipitation from 1999 to 2000 resulted in a 27% - 59% reduction in the amount of photoreactive DOC at three sites in Rocky Mountain National Park. These differences in the amount of hydrophobic DOC result in an increase in UV exposure in the aquatic environment by a factor of 2 or more. Implications of these findings for observed patterns of amphibian decline will be discussed.

  15. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  16. Minimal levels of ultraviolet light enhance the toxicity of TiO2 nanoparticles to two representative organisms of aquatic systems

    Science.gov (United States)

    Clemente, Z.; Castro, V. L.; Jonsson, C. M.; Fraceto, L. F.

    2014-08-01

    A number of studies have been published concerning the potential ecotoxicological risks of titanium dioxide nanoparticles (nano-TiO2), but the results still remain inconclusive. The characteristics of the diverse types of nano-TiO2 must be considered in order to establish experimental models to study their toxicity. TiO2 has important photocatalytic properties, and its photoactivation occurs in the ultraviolet (UV) range. The aim of this study was to investigate the toxicity of nano-TiO2 to indicators organisms of freshwater and saline aquatic systems, under different illumination conditions (visible light, with or without UV light). Daphnia similis and Artemia salina were co-exposed to a sublethal dose of UV light and different concentrations of nano-TiO2 in the form of anatase (TA) or an anatase/rutile mixture (TM). Both products were considered practically non-toxic under visible light to D. similis and A. salina (EC5048h > 100 mg/L). Exposure to nano-TiO2 under visible and UV light enhanced the toxicity of both products. In the case of D. similis, TM was more toxic than TA, showing values of EC5048h = 60.16 and 750.55 mg/L, respectively. A. salina was more sensitive than D. similis, with EC5048h = 4 mg/L for both products. Measurements were made of the growth rates of exposed organisms, together with biomarkers of oxidative stress and metabolism. The results showed that the effects of nano-TiO2 depended on the organism, exposure time, crystal phase, and illumination conditions, and emphasized the need for a full characterization of nanoparticles and their behavior when studying nanotoxicity.

  17. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?

    Science.gov (United States)

    Costanzo, S.D.; Watkinson, A.J.; Murby, E.J.; Kolpin, D.W.; Sandstrom, M.W.

    2007-01-01

    DEET (N,N-diethyl-m-toluamide) is the active ingredient of most commercial insect repellents. This compound has commonly been detected in aquatic water samples from around the world indicating that DEET is both mobile and persistent, despite earlier assumptions that DEET was unlikely to enter aquatic ecosystems. DEET's registration category does not require an ecological risk assessment, thus information on the ecological toxicity of DEET is sparse. This paper reviews the presence of DEET in aqueous samples from around the world (e.g. drinking water, streams, open seawater, groundwater and treated effluent) with reported DEET concentrations ranging from 40–3000 ng L− 1. In addition, new DEET data collected from 36 sites in coastal waterways from eastern Australia (detections ranging from 8 to 1500 ng L− 1) are examined. A summary of new and existing toxicity data are discussed with an emphasis on preparing a preliminary risk assessment for DEET in the aquatic environment. Collated information on DEET in the aquatic environment suggests risk to aquatic biota at observed environmental concentrations is minimal. However, the information available was not sufficient to conduct a full risk assessment due to data deficiencies in source characterisation, transport mechanisms, fate, and ecotoxicity studies. These risks warrant further investigation due to the high frequency that this organic contaminant is detected in aquatic environments around the world.

  18. Trait modality distribution of aquatic macrofauna communities as explained by pesticides and water chemistry

    OpenAIRE

    Ieromina, O.; Musters, C. J. M.; Bodegom, P. M.; Peijnenburg, W. J. G. M.; Vijver, M. G.

    2016-01-01

    Analyzing functional species? characteristics (species traits) that represent physiological, life history and morphological characteristics of species help understanding the impacts of various stressors on aquatic communities at field conditions. This research aimed to study the combined effects of pesticides and other environmental factors (temperature, dissolved oxygen, dissolved organic carbon, floating macrophytes cover, phosphate, nitrite, and nitrate) on the trait modality distribution ...

  19. Parental effects of endocrine disrupting compounds in aquatic wildlife: Is there evidence of transgenerational inheritance?

    Science.gov (United States)

    Schwindt, Adam R

    2015-08-01

    The effects of endocrine disrupting compounds (EDCs) on aquatic wildlife are increasingly being recognized for their complexity. Investigators have detected alterations at multiple levels of biological organization in offspring exposed to EDCs through the blood or germ line of the parents, suggesting that generational consequences of EDCs are evident. Exposure to EDCs through the parents is concerning because if the resulting phenotype of the offspring is heritable and affects fitness, then evolutionary consequences may be evident. This review summarizes the evidence for transgenerational effects of EDCs in aquatic wildlife and illustrates cases where alterations appear to be transmitted maternally, paternally, or parentally. The literature indicates that EDC exposure to the parents induces developmental, physiological, endocrinological, and behavioral changes as well as increased mortality of offspring raised in clean environments. What is lacking, however, is a clear demonstration of heritable transgenerational effects in aquatic wildlife. Therefore, it is not known if the parental effects are the result of developmental or phenotypic plasticity or if the altered phenotypes are durably passed to subsequent generations. Epigenetic changes to gene regulation are discussed as a possible mechanism responsible for EDC induced parental effects. Additional research is needed to evaluate if heritable effects of EDCs are evident in aquatic wildlife, as has been demonstrated for terrestrial mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effect of seed kernel aqueous extract from Annona squamosa against three mosquito vectors and its impact on non-target aquatic organisms

    Directory of Open Access Journals (Sweden)

    Ravichandran Ramanibai

    2016-09-01

    Full Text Available Objective: To evaluate the toxicity of Annona squamosa (A. squamosa aqueous (physiological saline seed soluble extract and its control of mosquito population. Methods: Ovicidal, larvicidal and pupicidal activity of A. squamosa crude soluble seed kernel extract was determined according to World Health Organization. The mortality of each mosquito stage was recorded after 24 h exposured to plant material. Toxicity assay was used to assess the non-target organisms with different concentrations according to Organisation for Economic Co-operation and Development. Results: The aqueous solubilized extracts of A. squamosa elicit the toxicity against all stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus, and the LC50 values against stages of egg, 1st-4th larvae were (1.45 and 1.26–2.5 mg/mL, (1.12 and 1.19–2.81 mg/ mL and (1.80 and 2.12–3.41 mg/mL respectively. The pupicidal activity also brought forth amended activity against all three mosquitoes species, and the LC50 values were consider to be 3.19, 2.42 and 4.47 mg/mL. Ultimately there was no mortality observed from non-target organism of Chironomus costatus. Conclusions: Based on the findings of the study, it suggests that the use of A. squamosa plant extract can act as an alternate insecticidal agents for controlling target mosquitoes without affecting the non-target aquatic insect. Further investigation to identify the active compounds and their mechanisms of action is recommended.

  1. Use of micronucleus test in the assessment of radiation effects in aquatic environments

    International Nuclear Information System (INIS)

    Araujo, Edvaldo F. de; Silva, Luanna R.S.; Lima, Pedro A. de S.; Amancio, Francisco F.; Melo, Ana Maria M. de A.; Silva, Edvane B. da; Silva, Ronaldo C. da

    2011-01-01

    The study of the effects of radioactive substances on the environment is accomplished by radioecology. This science has played an important role in combating all forms of pollution. The uncontrolled use of physical and chemical agents has been a concern for environmental regulatory agencies, due to the serious damage to ecosystems. Aquatic organisms are exposed to a variety of pollutants harmful to aquatic systems. The mollusks Biomphalaria glabrata has been featured as a bioindicator to possess characteristics such as short reproductive cycle ease of maintenance in the laboratory and low maintenance cost. The micronucleus assay has been shown to be a great test to identify mutagenic effects caused by physical and chemical agents. In this study the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to high doses of 60 Co gamma radiation contributing to a further standardization of this test as an indicator of the presence of radioactive contamination in aquatic environments. The young adult snails of Biomphalaria glabrata were divided into groups and subjected to a dose of 0 (control), 40 and 60 Gy of gamma radiation. The results showed that snails irradiated with 40 Gy showed a smaller number of haemocytes, whereas those exposed to 60 Gy had a greater quantity of these cells compared to control group. It can be concluded that the morphological analysis and the frequency of micronuclei in haemocytes of Biomphalaria glabrata exposed to 60 Co gamma radiation may be used in studies of the action of high doses of radiation in aquatic environments (author)

  2. A floodplain mesocosm study: Distribution, mobility, aging, and functioning of engineered silver nanoparticles at the aquatic-terrestrial interface

    Science.gov (United States)

    Metreveli, George; Kurtz, Sandra; Philippe, Allan; Tayyebi, Narjes; Seitz, Frank; Rosenfeldt, Ricki R.; Grün, Alexandra; Kumahor, Samuel K.; Baumann, Thomas; Bundschuh, Mirco; Lang, Friederike; Klitzke, Sondra; Manz, Werner; Schulz, Ralf; Vogel, Hans-Jörg; Schaumann, Gabriele E.

    2017-04-01

    With increasing use of engineered nanoparticles (ENPs) in different commercial products the risk for their release into the environment is continuously increased. The aging, distribution, mobility, biological availability, and ecotoxicological impact of ENPs in aquatic and terrestrial compartments will be influenced especially by the natural dynamics of meadow areas, which represent a sensible zone between these two compartments. In this study we present a newly developed floodplain stream mesocosm system linking aquatic and terrestrial aging of ENPs in one system. Using this system we investigated the distribution, mobility, and biological effects of silver nanoparticles (Ag NPs) at the aquatic-terrestrial interface. The mesocosm consists of a main channel, floodplain area, and transport columns simulating an aquatic compartment with river bed, aquatic-terrestrial transition zone, and terrestrial area, respectively. The system contained water sampled from the River Rhine, quartz sand as sediment phase and natural repacked soil from a Rhine floodplain. Every 3 weeks floodplain area was flooded for four days by increasing the water level in the main channel. The dispersions of Ag NPs were injected into the main channel as a pulse function with the pulse duration of 3 weeks and interval of 3 weeks between pulses. The biological effects of Ag NPs on the benthic organism Gammarus fossarum were evaluated in the bioassays during and between the Ag NP pulses. The total duration of the experiment was 33 weeks. The results of mesocosm experiments showed a fluctuating but successively increasing concentrations of total silver in the aqueous phase. At the end of the experiment 0.5% of the silver was still available in the aqueous phase mostly as nanoparticles. Although the major part of silver was immobilized in sediment and soil especially in their top layer, the feeding activity of Gammarus fossarum was not consistently affected. It is most likely due to the low

  3. Hazardous materials in aquatic environments of the Mississippi River Basin Project management. Technical quarterly progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    McLachlan, J.; Ide, C.F.; O`Connor, S.

    1996-08-01

    This quarterly report summarizes accomplishments for the Project examining hazardous materials in aquatic environments of the Mississippi River Basin. Among the many research areas summarized are the following: assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure; hazardous wastes in aquatic environment;ecological sentinels of aquatic contamination in the lower Mississippi River System; remediation of selected contaminants; rapid on-site immunassay for heavy metal contamination; molecular mechanisms of developmental toxicity induced by retinoids and retinoid-like molecules; resuseable synthetic membranes for the removal of aromatic and halogenated organic pollutants from waste water; Effects of steroid receptor activation in neurendocrine cell of the mammalian hypothalamus; modeling and assessment of environmental quality of louisiana bayous and swamps; enhancement of environmental education. The report also contains a summary of publications resulting from this project and an appendix with analytical core protocals and target compounds and metals.

  4. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  5. Production of dissolved organic carbon in aquatic sediment suspensions

    NARCIS (Netherlands)

    Koelmans, A.A.; Prevo, L.

    2003-01-01

    In many water quality models production of dissolved organic carbon (DOC) is modelled as mineralisation from particulate organic matter (POM). In this paper it is argued that the DOC production from dessicated sediments by water turbulence may be of similar importance
    In many water quality

  6. Cuticle hydrocarbons in saline aquatic beetles

    Directory of Open Access Journals (Sweden)

    María Botella-Cruz

    2017-07-01

    Full Text Available Hydrocarbons are the principal component of insect cuticle and play an important role in maintaining water balance. Cuticular impermeability could be an adaptative response to salinity and desiccation in aquatic insects; however, cuticular hydrocarbons have been poorly explored in this group and there are no previous data on saline species. We characterized cuticular hydrocarbons of adults and larvae of two saline aquatic beetles, namely Nebrioporus baeticus (Dytiscidae and Enochrus jesusarribasi (Hydrophilidae, using a gas chromatograph coupled to a mass spectrometer. The CHC profile of adults of both species, characterized by a high abundance of branched alkanes and low of unsaturated alkenes, seems to be more similar to that of some terrestrial beetles (e.g., desert Tenebrionidae compared with other aquatic Coleoptera (freshwater Dytiscidae. Adults of E. jesusarribasi had longer chain compounds than N. baeticus, in agreement with their higher resistance to salinity and desiccation. The more permeable cuticle of larvae was characterized by a lower diversity in compounds, shorter carbon chain length and a higher proportion of unsaturated hydrocarbons compared with that of the adults. These results suggest that osmotic stress on aquatic insects could exert a selection pressure on CHC profile similar to aridity in terrestrial species.

  7. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  8. Biogas production from Eichhornia crassipes aquatic plant; Producao de biogas a partir da planta aquatica Eichhornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Silva, Jose Goncalves da; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil)]. E-mail: rbmelo@light.com.br

    2004-07-01

    Virtually all plants and waste plants and animals may in some way be used as an energy source. The anaerobic digestion of these materials is an option, resulting in the biogas. Besides the gas obtained in the process, is produced, inside the biodigester, an excellent fertilizer. The aquatic plant Eichhornia crassipes is found in large quantities in various water bodies, such as reservoirs, lakes and ponds, becoming mostly often a big problem and it is necessary its systematic removal of water. The bench biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced, and a reservoir to monitor the production of biogas. The reactor is located within a receptacle containing water that can be heated by an electrical resistance, with the purpose of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor made in a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity, show a percentage of 50% of methane in the biogas. The process of biodigestion of aquatic plant Eichhornia crassipes shows potential to obtain biogas, with considerable levels of methane in order to make its exploitation. Also, were analyzed the biomass in the biodigester for determination of humid, total organic matter, mineral and organic carbon residue.

  9. Ecotoxicity of silver nanomaterials in the aquatic environment: A review of literature and gaps in nano-toxicological research

    CSIR Research Space (South Africa)

    Walters, Chavon R

    2014-08-01

    Full Text Available in nanotoxicological studies. In this context, an extensive review on published scientific literature on the ecotoxicity of silver NPs(AgNPs) on aquatic organisms was conducted. Some of the most common biomarkers used in ecotoxicological studies are described. Emphasis...

  10. The Potential Impacts of OTEC Intakes on Aquatic Organisms at an OTEC Site under Development on Kauai, HI

    Energy Technology Data Exchange (ETDEWEB)

    Oney, Stephen K. [OTE Corporation; Hogan, Timothy [Alden Research Laboratory; Steinbeck, John [Tenera Environmental

    2013-08-31

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology with the potential to contribute significantly to the baseload power needs of tropical island communities and remote U.S. military installations. As with other renewable energy technologies, however, there are potential challenges to its commercialization: technological, financial, social, and environmental. Given the large volumes of seawater required to drive the electricity-producing cycle, there is potential for the intakes to negatively impact the marine resources of the source waterbody through the impingement and entrainment of marine organisms. The goal of this project was to identify feasible warm water intake designs for a land-based OTEC facility proposed for development in Port Allen, Kauai and to characterize the populations of ichthyoplankton near the proposed warm water intake location that could be at risk of entrainment. The specific objectives of this project were to: • Complete a site-specific assessment of available and feasible warm water intake technologies to determine the best intake designs for minimizing impacts to aquatic organisms at the proposed land-based OTEC site in Port Allen, Kauai. • Complete a field sampling program to collect biological data to characterize the baseline populations of ichthyoplankton near the sites being considered for the warm water intake at the proposed land-based OTEC site in Port Allen, Kauai. Various intake design options are presented with the focus on providing adequate environmental protection to the local ichthyoplankton population while providing an economically viable intake option to the OTEC developer. Further definition by NOAA and other environmental regulators is required to further refine the designs presented to meet all US regulations for future OTEC development.

  11. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters.

    Science.gov (United States)

    Sang, Ziye; Leung, Kelvin Sze-Yin

    2016-10-01

    Organic UV filters, now considered to be emerging contaminants in aquatic ecosystems, are being intensively tracked in environmental waters worldwide. However, their environmental fate and impact of these contaminants on marine organisms remains largely unknown, especially in Asia. This work elucidates the occurrence and the ecological risks of seven UV filters detected in farmed fish, wild mussels and some other wild organisms collected from local mariculture farms in Hong Kong. For all of the organisms, ethylhexyl methoxycinnamate (EHMC) and octyl dimethyl p-aminobenzoic acid (OD-PABA) were the predominant contaminants with the highest concentrations up to 51.3 and 24.1ng/g (dw), respectively; lower levels were found for benzophenone-8 (BP-8), octocrylene (OC) and benzophenone-3 (BP-3) from aquatic environment was carried out. The risk quotient (RQ) values of EHMC and BP-3 were calculated as 3.29 and 2.60, respectively, indicating these two UV filters may pose significant risks to the marine aquatic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Presence of the Neurotoxin BMAA in Aquatic Ecosystems: What Do We Really Know?

    Science.gov (United States)

    Faassen, Elisabeth J.

    2014-01-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA) is suspected to play a role in the neurological diseases amyotrophic lateral sclerosis, Alzheimer’s disease, and Parkinson’s disease. BMAA production by cyanobacteria has been reported and contact with cyanobacteria infested waters or consumption of aquatic organisms are possible pathways to human exposure. However, there is little consensus regarding whether BMAA is present in cyanobacteria or not, and if so, at what concentrations. The aim of this review is to indicate the current state of knowledge on the presence of BMAA in aquatic ecosystems. Some studies have convincingly shown that BMAA can be present in aquatic samples at the µg/g dry weight level, which is around the detection limit of some equally credible studies in which no BMAA was detected. However, for the majority of the reviewed articles, it was unclear whether BMAA was correctly identified, either because inadequate analytical methods were used, or because poor reporting of analyses made it impossible to verify the results. Poor analysis, reporting and prolific errors have shaken the foundations of BMAA research. First steps towards estimation of human BMAA exposure are to develop and use selective, inter-laboratory validated methods and to correctly report the analytical work. PMID:24662480

  13. Bioindication in natural-like aquatic ecosystems: endocrine disruptors in outdoor microcosms. Status-report

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, K.W.; Severin, G.F.

    2002-07-01

    Over the past few decades scientists have shown that the hormone system of a wide range of organisms can be affected by numerous environmental chemicals. Society strongly demands studies about the fate and effects of such endocrine disruptors on the aquatic environment. It has been scientifically accepted that risk assessment studies done in aquatic microcosms can be used to extrapolate the potential impact of the tested compound on natural ecosystems. Realistic exposure situations were simulated and screening methods as well as analytical methods with high accuracy were applied on water and sediment. For the comprehensive risk assessment as many trophic levels as possible have to be investigated. Changes in the population dynamics and the community structure serve as ecotoxicological endpoints. Modelling the concentrations of the chemicals in the different aquatic compartments complements and confirms the analytical diagnostics. A directed design of the analytical procedures according to amount of sample and limits of determination becomes possible. Bridging acute and chronic time scales in effect diagnostics the 'area under the curve' - approach has been followed in combination with multivariate statistics. Haber's rule have been applied to the results about complex effect- and exposure-conditions. In some cases the interpretation of results becomes more easy and clear by this approach. (orig.)

  14. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  15. Linking Resilience of Aquatic Species to Watershed Condition

    Science.gov (United States)

    Flitcroft, R. L.

    2017-12-01

    Watershed condition means different things to different people. From the perspective of aquatic ecology, watershed condition may be interpreted to mean the capacity of a watershed to support life history diversity of native species. Diversity in expression of life history is thought to confer resilience allowing portions of the broader population to survive stressful conditions. Different species have different life history strategies, many of which were developed through adaptation to regional or local environmental conditions and natural disturbance regimes. By reviewing adaptation strategies for species of interest at regional scales, characteristics of watersheds that confer resilience may be determined. Such assessments must be completed at multiple levels of spatial organization (i.e. sub-watershed, watershed, region) allowing assessments to be inferred across broad spatial extents. In a project on the Wenatchee River watershed, we guided models of wildfire effects on bull trout and spring Chinook from a meta-population perspective to determine risks to survival at local and population scales over multiple extents of spatial organization. In other work in the Oregon Coast Range, we found that historic landslides continue to exert habitat-forming pressure at local scales, leading to patchiness in distribution of habitats for different life stages of coho salmon. Further, climate change work in Oregon estuaries identified different vulnerabilities in terms of juvenile rearing habitat depending on the species of interest and the intensity of future changes in climate. All of these studies point to the importance of considering physical conditions in watersheds at multiple spatial extents from the perspective of native aquatic species in order to understand risks to long-term survival. The broader implications of watershed condition, from this perspective, is the determination of physical attributes that confer resilience to native biota. This may require

  16. Revisiting restored river reaches - Assessing change of aquatic and riparian communities after five years.

    Science.gov (United States)

    Lorenz, Armin W; Haase, Peter; Januschke, Kathrin; Sundermann, Andrea; Hering, Daniel

    2018-02-01

    Hydromorphological restructuring of river sections, i.e. river restoration measures, often has little effects on aquatic biota, even in case of strong habitat alterations. It is often supposed that the biotic response is simply delayed as species require additional time to recolonize the newly generated habitats and to establish populations. To identify and specify the supposed lag time between restoration and biotic response, we investigated 19 restored river reaches twice in a five-year interval. The sites were restored one to ten years prior to the first sampling. We sampled three aquatic (fish, benthic invertebrates, macrophytes) and two riparian organism groups (ground beetles and riparian vegetation) and analyzed changes in assemblage composition and biotic metrics. With the exception of ground beetle assemblages, we observed no significant changes in richness and abundance metrics or metrics used for biological assessment. However, indicator taxa for near-natural habitat conditions in the riparian zone (indicators for regular inundation in plants and river bank specialists in beetles) improved significantly in the five-year interval. Contrary to general expectations in river restoration planning, we neither observed a distinct succession of aquatic communities nor a general trend towards "good ecological status" over time. Furthermore, multiple linear regression models revealed that neither the time since restoration nor the morphological status had a significant effect on the biological metrics and the assessment results. Thus, the stability of aquatic assemblages is strong, slowing down restoration effects in the aquatic zone, while riparian assemblages improve more rapidly. When defining restoration targets, the different timelines for ecological recovery after restoration should be taken into account. Furthermore, restoration measures should not solely focus on local habitat conditions but also target stressors acting on larger spatial scales and take

  17. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  18. Diversity and abundance of aquatic macroinvertebrates in a lotic environment in Midwestern São Paulo State, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Lucas Bochini

    2009-04-01

    Full Text Available This study analyzed the diversity and abundance of an aquatic macroinvertebrate community in the Vargem Limpa stream located in Bauru, Midwestern São Paulo State, and characterized the water quality based on biological parameters. The sampling was carried out during the rain season (December, 2004. It was analyzed and identified 3,068 organisms belonging to 9 macroinvertebrate families. The system showed low richness and diversity of organisms in response to water quality.

  19. Aquatic Instructors' Beliefs Toward Inclusion: The Theory of Planned Behavior.

    Science.gov (United States)

    Conatser, Phillip; Block, Martin; Gansneder, Bruce

    2002-04-01

    The purpose was to (a) examine aquatic instructors' beliefs (female, n = 82; male, n = 29) about teaching swimming to individuals with disabilities in inclusive settings and (b) test the theory of planned behavior model (Ajzen, 1985, 1988, 2001). Aquatic instructors from 25 states representing 122 cities across the U.S. participated in this study. The instrument, named Aquatic Instructors' Beliefs Toward Inclusion (AIBTI), was an extended version of the Physical Educators' Attitudes Toward Teaching Individuals with Disabilities- Swim (Conatser, Block, & Lepore, 2000). A correlated t test showed aquatic instructors' beliefs (attitudes toward the behavior, normative beliefs, perceived behavioral control, intention, behavior) were significantly more favorable toward teaching aquatics to individuals with mild disabilities than individuals with severe disabilities. Stepwise multiple regression showed perceived behavioral control and attitude significantly predicted intention, and intention predicted instructors' inclusive behavior for both disability groups. Further, results indicated the theory of planned behavior predicts aquatic instructors' behavior better than the theory of reasoned action.

  20. Energetic tradeoffs control the size distribution of aquatic mammals

    Science.gov (United States)

    Gearty, William; McClain, Craig R.; Payne, Jonathan L.

    2018-04-01

    Four extant lineages of mammals have invaded and diversified in the water: Sirenia, Cetacea, Pinnipedia, and Lutrinae. Most of these aquatic clades are larger bodied, on average, than their closest land-dwelling relatives, but the extent to which potential ecological, biomechanical, and physiological controls contributed to this pattern remains untested quantitatively. Here, we use previously published data on the body masses of 3,859 living and 2,999 fossil mammal species to examine the evolutionary trajectories of body size in aquatic mammals through both comparative phylogenetic analysis and examination of the fossil record. Both methods indicate that the evolution of an aquatic lifestyle is driving three of the four extant aquatic mammal clades toward a size attractor at ˜500 kg. The existence of this body size attractor and the relatively rapid selection toward, and limited deviation from, this attractor rule out most hypothesized drivers of size increase. These three independent body size increases and a shared aquatic optimum size are consistent with control by differences in the scaling of energetic intake and cost functions with body size between the terrestrial and aquatic realms. Under this energetic model, thermoregulatory costs constrain minimum size, whereas limitations on feeding efficiency constrain maximum size. The optimum size occurs at an intermediate value where thermoregulatory costs are low but feeding efficiency remains high. Rather than being released from size pressures, water-dwelling mammals are driven and confined to larger body sizes by the strict energetic demands of the aquatic medium.

  1. Role of selenium toxicity and oxidative stress in aquatic birds

    Science.gov (United States)

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated

  2. Photobiogeochemistry of organic matter. Principles and practices in water environments

    Energy Technology Data Exchange (ETDEWEB)

    Mostofa, Khan M.G. [Chinese Academy of Sciences, Guiyang, Guizhou (China). Inst. of Geochemistry; Yoshioka, Takahito [Kyoto Univ. (Japan). Field Science Education; Mottaleb, M. Abdul [Northwest Missouri State Univ., MO (United States). Dept. of Chemistry and Physics; Vione, Davide (eds.) [Turin Univ. (Italy). Dipt. di Chimica Analitica

    2013-03-01

    Gives a comprehensive account of photo and biological processes of key biogeochemical functions and their interrelations in the aquatic environment. Discusses essential issues refering to the aquatic environment. Designed as a study text for students. Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO x; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results''.

  3. Aquatic pollution increases use of terrestrial prey subsidies by stream fish

    Science.gov (United States)

    Kraus, Johanna M.; Pomeranz, Justin F.; Todd, Andrew S.; Walters, David M.; Schmidt, Travis S.; Wanty, Richard B.

    2016-01-01

    Stream food webs are connected with their riparian zones through cross-ecosystem movements of energy and nutrients. The use and impact of terrestrial subsidies on aquatic consumers is determined in part by in situ biomass of aquatic prey. Thus, stressors such as aquatic pollutants that greatly reduce aquatic secondary production could increase the need for and reliance of stream consumers on terrestrial resource subsidies.

  4. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  5. Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.

    Science.gov (United States)

    Brinkman, Stephen F; Johnston, Walter D

    2012-02-01

    National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.

  6. Direct and indirect effects of a potential aquatic contaminant on grazer-algae interactions.

    Science.gov (United States)

    Evans-White, Michelle A; Lamberti, Gary A

    2009-02-01

    Contaminants have direct, harmful effects across multiple ecological scales, including the individual, the community, and the ecosystem levels. Less, however, is known about how indirect effects of contaminants on consumer physiology or behavior might alter community interactions or ecosystem processes. We examined whether a potential aquatic contaminant, an ionic liquid, can indirectly alter benthic algal biomass and primary production through direct effects on herbivorous snails. Ionic liquids are nonvolatile organic salts being considered as an environmentally friendly potential replacement for volatile organic compounds in industry. In two greenhouse experiments, we factorially crossed four concentrations of 1-N-butyl-3-methylimidazolium bromide (bmimBr; experiment 1: 0 or 10 mg/L; experiment 2: 0, 1, or 100 mg/L) with the presence or absence of the snail Physa acuta in aquatic mesocosms. Experimental results were weighted by their respective control (no bmimBr or P. acuta) and combined for statistical analysis. When both bmimBr and snails were present, chlorophyll a abundance and algal biovolume were higher than would be expected if both factors acted additively. In addition, snail growth rates, relative to those of controls, declined by 41 to 101% at 10 and 100 mg/L of bmimBr. Taken together, these two results suggest that snails were less efficient grazers in the presence of bmimBr, resulting in release of algae from the grazer control. Snails stimulated periphyton primary production in the absence, but not in the presence, of bmimBr, suggesting that bmimBr also can indirectly alter ecosystem function. These findings suggest that sublethal contaminant levels can negatively impact communities and ecosystem processes via complex interactions, and they provide baseline information regarding the potential effects of an emergent industrial chemical on aquatic systems.

  7. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    Science.gov (United States)

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants. © 2014 SETAC.

  8. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  9. HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    John A. McLachlan

    2003-12-01

    In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial

  10. Pond and Stream Safari: A Guide to the Ecology of Aquatic Invertebrates.

    Science.gov (United States)

    Edelstein, Karen

    This packet includes a leader's guide, a quick reference guide to aquatic invertebrates, a checklist of common aquatic invertebrates, and activity sheets. The leader's guide includes four sections on background information and seven activities. Background sections include: Understanding Aquatic Insects; Growing Up: Aquatic Insect Forms; Adapting…

  11. Mangrove litter production and organic carbon pools in the ...

    African Journals Online (AJOL)

    Mngazana Estuary is an important source of mangrove litter and POC for the adjacent marine environment, possibly sustaining nearshore food webs. Keywords: Dissolved organic carbon, harvesting, litter production, mangroves, particulate organic carbon, Rhizophora mucronata, South Africa African Journal of Aquatic ...

  12. Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa.

    Science.gov (United States)

    Gilbert, Beric Michael; Avenant-Oldewage, Annemariè

    2017-08-01

    The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in

  13. Movement and fate of mercury in an aquatic ecosystem

    International Nuclear Information System (INIS)

    Baez, A.P.; Nulman, R.

    1975-01-01

    Studies have been initiated of the behaviour and distribution of industrial mercury residues in the aquatic ecosystem represented by the Coatzacoalcos river estuary of Mexico. Mercury concentrations were determined in samples of water, river sediments, aquatic animals, aquatic and river-bank vegetation, local food products and in the hair of local inhabitants. Determinations were made by flameless atomic absorption spectrophotometry and concentrations greater than 50 ppm were found in some samples of bottom muds. (author)

  14. Aquatic Life Criterion - Selenium

    Science.gov (United States)

    Documents pertaining to the 2016 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Selenium (Freshwater). These documents include what the safe levels of Selenium are in water for the majority of species.

  15. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  16. Aquatic Life Criteria - Ammonia

    Science.gov (United States)

    Documents related to EPA's final 2013 Aquatic Life Ambient Water Quality Criteria for Ammonia (Freshwater). These documents pertain to the safe levels of Ammonia in water that should protect to the majority of species.

  17. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    Science.gov (United States)

    Kostich, Mitchell S.; Flick, Robert W.; Angela L. Batt,; Mash, Heath E.; Boone, J. Scott; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.

    2017-01-01

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concentration (EC) estimates, including USEPA aquatic life criteria, effective plasma concentrations of pharmaceuticals, published toxicity data summarized in the USEPA ECOTOX database, and chemical structure-based predictions. Potential dietary exposures were estimated using a generic 3-tiered food web accumulation scenario. For many analytes, few or no measured effect data were found, and for some analytes, reporting limits exceeded EC estimates, limiting the scope of conclusions. Results suggest occasional occurrence above ECs for copper, aluminum, strontium, lead, uranium, and nitrate. Sparse effect data for manganese, antimony, and vanadium suggest that these analytes may occur above ECs, but additional effect data would be desirable to corroborate EC estimates. These conclusions were not affected by bioaccumulation estimates. No organic analyte concentrations were found to exceed EC estimates, but ten analytes had concentrations in excess of 1/10th of their respective EC: triclocarban, norverapamil, progesterone, atrazine, metolachlor, triclosan, para-nonylphenol, ibuprofen, venlafaxine, and amitriptyline, suggesting more detailed characterization of these analytes.

  18. DNA barcodes for assessment of the biological integrity of aquatic ecosystems

    Science.gov (United States)

    Water quality regulations and aquatic ecosystem monitoring increasingly rely on direct assessments of biological integrity. Because these aquatic “bioassessments” evaluate the incidence and abundance of sensitive aquatic species, they are able to measure cumulative ecosystem eff...

  19. How to Submit a Risk Management Plan (RMP) to EPA

    Science.gov (United States)

    RMP*eSubmit software is the only way to submit RMPs. After you have prepared your plan using RMP*eSubmit, you may also re-submit, correct, or withdraw an RMP. Another electronic tool, RMP*Comp, performs the required off-site consequence analysis.

  20. Late cretaceous aquatic plant world in Patagonia, Argentina.

    Directory of Open Access Journals (Sweden)

    N Rubén Cúneo

    Full Text Available In this contribution, we describe latest Cretaceous aquatic plant communities from the La Colonia Formation, Patagonia, Argentina, based on their taxonomic components and paleoecological attributes. The La Colonia Formation is a geological unit deposited during a Maastrichtian-Danian transgressive episode of the South Atlantic Ocean. This event resulted in the deposition of a series of fine-grained sediments associated with lagoon systems occurring along irregular coastal plains in northern Patagonia. These deposits preserved a diverse biota, including aquatic and terrestrial plants and animals. The aquatic macrophytes can be broadly divided into two groups: free-floating and rooted, the latter with emergent or floating leaves. Free-floating macrophytes include ferns in Salviniaceae (Azolla and Paleoazolla and a monocot (Araceae. Floating microphytes include green algae (Botryoccocus, Pediastrum and Zygnemataceae. Among the rooted components, marsileaceous water ferns (including Regnellidium and an extinct form and the eudicot angiosperm Nelumbo (Nelumbonaceae are the dominant groups. Terrestrial plants occurring in the vegetation surrounding the lagoons include monocots (palms and Typhaceae, ferns with affinities to Dicksoniaceae, conifers, and dicots. A reconstruction of the aquatic plant paleocommuniy is provided based on the distribution of the fossils along a freshwater horizon within the La Colonia Formation. This contribution constitutes the first reconstruction of a Cretaceous aquatic habitat for southern South America.