WorldWideScience

Sample records for aquatic organic fractions

  1. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.

    Science.gov (United States)

    Blinova, Irina; Kanarbik, Liina; Sihtmäe, Mariliis; Kahru, Anne

    2016-02-01

    Estonia is the worldwide leading producer of the fuel oils from the oil shale. We evaluated the ecotoxicity of water accommodated fraction (WAF) of two Estonian shale fuel oils ("VKG D" and "VKG sweet") to aquatic species belonging to different trophic levels (marine bacteria, freshwater crustaceans and aquatic plants). Artificial fresh water and natural lake water were used to prepare WAFs. "VKG sweet" (lower density) proved more toxic to aquatic species than "VKG D" (higher density). Our data indicate that though shale oils were very toxic to crustaceans, the short-term exposure of Daphnia magna to sub-lethal concentrations of shale fuel oils WAFs may increase the reproductive potential of survived organisms. The weak correlation between measured chemical parameters (C10-C40 hydrocarbons and sum of 16 PAHs) and WAF's toxicity to studied species indicates that such integrated chemical parameters are not very informative for prediction of shale fuel oils ecotoxicity.

  2. Tracking transformation processes of organic micropollutants in aquatic environments using multi-element isotope fractionation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Thomas B., E-mail: thomas.hofstetter@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich (Switzerland); Bolotin, Jakov [Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland); Skarpeli-Liati, Marita; Wijker, Reto [Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf (Switzerland)] [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich (Switzerland); Kurt, Zohre; Nishino, Shirley F.; Spain, Jim C. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2011-06-15

    The quantitative description of enzymatic or abiotic transformations of man-made organic micropollutants in rivers, lakes, and groundwaters is one of the major challenges associated with the risk assessment of water resource contamination. Compound-specific isotope analysis enables one to identify (bio)degradation pathways based on changes in the contaminants' stable isotope ratios even if multiple reactive and non-reactive processes cause concentrations to decrease. Here, we investigated how the magnitude and variability of isotope fractionation in some priority pollutants is determined by the kinetics and mechanisms of important enzymatic and abiotic redox reactions. For nitroaromatic compounds and substituted anilines, we illustrate that competing transformation pathways can be assessed via trends of N and C isotope signatures.

  3. ZOONOSIS OF AQUATICAL ORGANISMS

    OpenAIRE

    2001-01-01

    Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and tra...

  4. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  5. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  6. Impact of Organic Contamination on Some Aquatic Organisms

    Science.gov (United States)

    Yasser, El-Nahhal; Shawkat, El-Najjar; Samir, Afifi

    2015-01-01

    Background: Contamination of water systems with organic compounds of agricultural uses pose threats to aquatic organisms. Carbaryl, chlorpyrifos, and diuron were considered as model aquatic pollutants in this study. The main objective of this study was to characterize the toxicity of organic contamination to two different aquatic organisms. Materials and Methods: Low concentrations (0.0–60 µmol/L) of carbaryl, diuron and very low concentration (0.0–0.14 µmol/L) of chlorpyrifos and their mixtures were tested against fish and Daphnia magna. Percentage of death and immobilization were taken as indicators of toxicity. Results: Toxicity results to fish and D. magna showed that chlorpyrifos was the most toxic compound (LC50 to fish and D. magna are 0.08, and 0.001 µmol/L respectively), followed by carbaryl (LC50 to fish and D. magna are 43.19 and 0.031 µmol/L), while diuron was the least toxic one (LC50 values for fish and D. magna are 43.48 and 32.11 µmol/L respectively). Mixture toxicity (binary and tertiary mixtures) showed antagonistic effects. Statistical analysis showed a significant difference among mixture toxicities to fish and D. magma. Conclusion: Fish and D. magam were sensitive to low concentrations. These data suggest potent threats to aquatic organisms from organic contamination. PMID:26862260

  7. Effects of triclosan on various aquatic organisms.

    Science.gov (United States)

    Tatarazako, Norihisa; Ishibashi, Hiroshi; Teshima, Kenji; Kishi, Katsuyuki; Arizono, Koji

    2004-01-01

    Triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) is widely used as an antibacterial agent in various industrial products, such as textile goods, soap, shampoo, liquid toothpaste and cosmetics, and often detected in wastewater effluent. However, there is a paucity of data on the toxicity of triclosan and its effects on aquatic organisms. In this study, the acute toxicity of triclosan to the Microtox bacterium (Vibrio fischeri), a microalga (Selenastrum capricornutum), a crustacean (Ceriodaphnia dubia) and fish (Danio rerio and Oryzias latipes) was examined. As a result, the MicrotoxR bacterium, crustacean and fish had similar sensitivities towards triclosan toxicity (i.e., IC25 from 0.07 to 0.29 mg/L triclosan). In contrast, the microalga was about 30-80-fold (IC25 = 0.0034 mg/L triclosan) more sensitive to triclosan toxicity than the bacterium and fish. Therefore, triclosan is quite highly toxic to aquatic animals, and is particularly highly toxic to the green alga used as a test organism in this study. This result indicates that triclosan exerts a marked influence on algae, which are important organisms being the first-step producers in the ecosystem; therefore, the possible destruction of the balance of the ecosystem is expected if triclosan is discharged into the environment at high levels.

  8. Toxicity of trifluoroacetate to aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Berends, A.G.; Rooij, C.G. de [Solvay S.A., Brussels (Belgium); Boutonnet, J.C. [Elf Atochem, Levallois-Perret (France); Thompson, R.S. [Zeneca Ltd., Devon (United Kingdom). Brixham Environmental Lab.

    1999-05-01

    As a result of the atmospheric degradation of several hydrofluorocarbons and hydrochlorofluorocarbons, trifluoroacetate (TFA) will be formed. Through precipitation, TFA will enter aquatic ecosystems. To evaluate the impact on the aquatic environment, an aquatic toxicity testing program was carried out with sodium trifluoroacetate (NaTFA). During acute toxicity tests, no effects of NaTFA on water fleas (Daphnia magna) and zebra fish (Danio retrio) were found at a concentration of 1,200 mg/L. A 7-d study with duckweed (Lemna gibba Ge) revealed a NOEC of 300 mg/L. On the basis of the results of five toxicity tests with Selenastrum capricornutum, they determined a NOEC of 0.12 mg/L. However, algal toxicity tests with NaTFA and Chlorella vulgaris, Scenedesmus subspicatus, Chlamydomonas reinhardtii, Dunaliella tertiolecta, Eugelan gracilis, Phaeodactylum tricornutum, Navicula pelliculosa, Skeletonema costatum, Anabaena flos-aquae, and Microcystis aeruginosa resulted in EC50 values that were all higher than 100 mg/L. The toxicity of TFA to S. capricornutum could be due to metabolic defluorination to monofluoroacetate (MFA), which is known to inhibit the citric acid cycle. A toxicity test with MFA and S. capricornutum revealed it to be about three orders of magnitude more toxic than TFA. However, a bioactivation study revealed that defluorination of TFA was less than 4%. On the other hand, S. capricornutum exposed to a toxic concentration of NaTFA showed a recovery of growth when citric acid was added, suggesting that TFA (or a metabolite of TFA) interferes with the citric acid cycle. A recovery of the growth of S. capricornutum was also found when TFA was removed from the test solutions. Therefore, TFA should be considered algistatic and not algicidic for S. capricornutum. On the basis of the combined results of the laboratory tests and a previously reported semi-field study, they can consider a TFA concentration of 0.10 mg/L as safe for the aquatic ecosystem.

  9. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  10. Rotation in turbulence of aquatic organisms modeled as particles

    Science.gov (United States)

    Variano, Evan; Byron, Margaret; Bellani, Gabriele

    2012-11-01

    We investigate which length and time scales are relevant for determining the rotation of aquatic organisms and their gametes. We are interested in parameter space beyond the Stokes regime, and also the effect of particle shape on rotation. We report experimental measurements that use custom-manufactured particles to model aquatic organisms, which are designed with the necessary optical properties so that we can measure their rotation, simultaneously with the vorticity statistics of the surrounding fluid. Lagrangian timeseries of particles' angular velocity allows investigation of rotational diffusion.

  11. Synthetic musks in fish and other aquatic organisms

    NARCIS (Netherlands)

    Leonards, P.E.G.; Boer, de J.

    2004-01-01

    Musk compounds are widely spread environmental pollutants. Musk compounds were found in aquatic organisms from the North Sea, in rivers, lakes and estuaries in Canada, Czech Republic, Germany, Italy, Luxembourg, Japan, Norway, Switzerland, Sweden, and The Netherlands. Two nitro musks, musk xylene (M

  12. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    Science.gov (United States)

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of 10 kD) has been found.

  13. Dissolved organic matter enhances transport of PAHs to aquatic organisms.

    NARCIS (Netherlands)

    ter Laak, T.L.; ter Bekke, M.A.; Hermens, J.L.M.

    2009-01-01

    In this study, the uptake of pyrene and benzo[b]fluoranthene by an aquatic worm (Lumbriculus variegatus) and a poly(dimethylsiloxane) coated glass fiber was studied at different humic acid concentrations. The accumulation of pyrene was not affected by the presence of the humic matrix. However, the a

  14. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    Science.gov (United States)

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  15. Influence of Organic Manure on Organic Phosphorus Fraction in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGYONG-SONG; NIWU-ZHONG; 等

    1993-01-01

    The transformation of organic P(Po) from organic manures in two types of soils (ultisol and entisol) and the influences of external addition of organic substance or inorganic P(Pi) on Po under the condition of the 60% maximum water capacity were investigated.The results obtained from Po fractionation experiments indicated that all the Po fractions except for the highly resistant Po fraction decreased during incubation.Application of pig feces and cow feces could largely increase each fraction of Po in the soils.Immediately after application of organic manure into the soils a large part of labile and moderately labile Po from organic manure was transferred into moderately resistant Po,which might be due to the fact that Ca-or Mg-inositol P was precipitated into Fe-inositol P.However,the availability of Po from organic manure in the soils would increase again after incubation because of the transformation of moderately labile and resistant Po fractions into labile Po fractions.Addition of cellulose or Pi into the soils showed a good effect on increasing all the Po fractions except for the highly resistant Po,and this effect was much more pronounced when cellulose was applied in combination with Pi.Therefore,in view of the effect of organic manure on improving P nutrition to plant,attention should be paid to both the Po and the organic substances from organic manure,It is suggested that application of Pi fertilizer combined with organic manure may be referred to as an effective means of protecting Pi from chemical fixation in soil.

  16. Radiation doses to aquatic organisms from natural radionuclides.

    Science.gov (United States)

    Brown, J E; Jones, S R; Saxén, R; Thørring, H; Vives i Batlle, J

    2004-12-01

    A framework for protection of the environment is likely to require a methodology for assessing dose rates arising from naturally occurring radionuclides. This paper addresses this issue for European aquatic environments through a process of (a) data collation, mainly with respect to levels of radioactivity in water sediments and aquatic flora and fauna, (b) the use of suitable distribution coefficients, concentration factors and global data where data gaps are present and (c) the utilisation of a reference organism approach whereby a finite number of suitable geometries are selected to allow dose per unit concentration factors to be derived and subsequent absorbed dose calculations (weighted or unweighted) to be made. The majority of the calculated absorbed dose, for both marine and freshwater organisms, arises from internally incorporated alpha emitters, with 210Po and 226Ra being the major contributors. Calculated doses are somewhat higher for freshwater compared to marine organisms, and the range of doses is also much greater. This reflects both the much greater variability of radionuclide concentrations in freshwater as compared to seawater, and also variability or uncertainty in concentration factor values. This work has revealed a number of substantial gaps in published empirical data especially for European aquatic environments.

  17. Chemodestructive fractionation of soil organic matter

    Science.gov (United States)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  18. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase.

  19. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms.

    Science.gov (United States)

    Wagil, Marta; Białk-Bielińska, Anna; Puckowski, Alan; Wychodnik, Katarzyna; Maszkowska, Joanna; Mulkiewicz, Ewa; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2015-02-01

    Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.

  20. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  1. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals.

    Science.gov (United States)

    Thomas, Paul; Dawick, James; Lampi, Mark; Lemaire, Philippe; Presow, Shaun; van Egmond, Roger; Arnot, Jon A; Mackay, Donald; Mayer, Philipp; Galay Burgos, Malyka

    2015-10-20

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the potential for partitioning and diffusive uptake. In the present study, more than 2000 acute and chronic algal, aquatic invertebrates and fish toxicity data, as well as water solubility and melting point values, were collected from a series of sources. The data were critically reviewed and grouped by mode of action (MoA). We considered 660 toxicity data to be of acceptable quality. The 328 data which applied to the 72 substances identified as MoA 1 were then evaluated within the activity-toxicity framework: EC50 and LC50 values for all three taxa correlated generally well with (subcooled) liquid solubilities. Acute toxicity was typically exerted within the chemical activity range of 0.01-0.1, whereas chronic toxicity was exerted in the range of 0.001-0.01. These results confirm that chemical activity has the potential to contribute to the determination, interpretation and prediction of toxicity to aquatic organisms. It also has the potential to enhance regulation of organic chemicals by linking results from laboratory tests, monitoring and modeling programs. The framework can provide an additional line of evidence for assessing aquatic toxicity, for improving the design of toxicity tests, reducing animal usage and addressing chemical mixtures.

  2. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  3. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D.

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  4. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aster, B. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Burba, P. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Broekaert, J.A.C. [University of Dortmund, D-44227 Dortmund (Germany)

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the ``DFG-Versuchsfeld Bocholt``, VM 5 from ``Venner Moor``, Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III)) to higher values (> 10 kD) has been found. (orig.). With 9 figs., 2 tabs.

  5. Uptake and toxicity of hexafluoroarsenate in aquatic organisms.

    Science.gov (United States)

    Daus, Birgit; Weiss, Holger; Altenburger, Rolf

    2010-01-01

    The arsenic species hexafluoroarsenate has been described as a contaminant of surface waters of anthropogenic origin. Here, we undertake to identify the most sensitive biological receptor among several sentinel aquatic species used in eco-toxicological assessment and to understand toxicity in terms of internal dose. Therefore, a screening of short-term effects using different aquatic organisms (bacterium Vibrio fischeri, fish Danio rerio, crustacean Daphnia magna and green alga Desmodesmus subspicatus and Scenedesmus vacuolatus) was conducted. For most organisms tested, effects were not detectable even at very high hexafluoroarsenate concentrations (up to 9.6mM) and thus the ecotoxic potential was found to be low in comparison to other arsenic compounds. The only organisms showing a clear response were the unicellular green alga, e.g. S. vacuolatus with an EC(50) value of 1.12 mM (84 mg L(-1) As). A linear relationship between ambient and internal concentration was found for this organism with a slope of 1.63 x 10(-3). Therefore, the internal concentration which shows a significant effect, e.g. 20% of inhibition of reproduction, was found to occur at a relatively low internal dose of 0.98 microM. Moreover, no biotransformation products inside the algae could be detected using arsenic speciation analysis with HPLC-ICP-MS, thus biological effects must be attributed to the untransformed compound. We conclude that the very low uptake observed for hexafluoroarsenate may be interpreted as preventive against toxic effects for the organisms.

  6. Research of aquatic organism addition influence on the reproduction of yeast cells in the dough

    Directory of Open Access Journals (Sweden)

    Дмитро Павлович Крамаренко

    2016-12-01

    Full Text Available The analysis of the research results of influence of various amounts of aquatic organism additions on the reproduction of yeast cells is given. A positive impact of aquatic organism addition of animal and plant origin in investigated quantities on the reproduction of yeast cells is revealed. The influence of the chemical composition of the aquatic organism additives on the reproduction of yeast cells is proved

  7. Molecular markers of endocrine disruption in aquatic organisms.

    Science.gov (United States)

    Rotchell, Jeanette M; Ostrander, Gary K

    2003-01-01

    A wide range of organic contaminant compounds prevalent in the aquatic environment has been shown to exhibit hormone-disrupting activity. The actual potency of such compounds are low compared with endogenous hormones, such as 17beta-estradiol, but may still produce detrimental biological effects. Induced hormone levels are routinely measured using commercial testing kits, though these fail to relate to actual effects. Field and laboratory studies on the biological effects of environmental estrogens have, in the past, largely relied on assays of vitellogenin (vtg) induction in male fish, reduced growth in testes formation, and intersex incidence. Here, we critically review the current and potential application of molecular techniques in assessing the adverse biological reproductive effects of endocrine-disrupting chemicals in aquatic organisms. The role of fish (estrogen, androgen, and progestogen) hormone receptors and invertebrate (ecdysone) hormone receptor, egg production (vtg and chorion) proteins, steroid biosynthesis enzymes (aromatase, sulfotransferase, and hydroxysteroid dehydrogenase), DNA damage, apoptosis, and their potential development as biomarkers are discussed in turn. In each case, the sequences characterized are presented and homologies across species are highlighted. Molecular methods of gauging vtg and zona radiata (ZR) expression and protein concentrations have included immunoassay and reverse transcription polymerase chain reaction (RT-PCR). Suggestions for the isolation for key gene expression products (aromatase, ZR, and vtg, for instance), from a wider range of fish species using degenerate primers, are given. Endocrine disruption in invertebrates has received less attention compared with fish, partly because the knowledge regarding invertebrate endocrinology is limited. Here we review and suggest alternate isolation strategies for key players in the imposex induction process: vitellin (Vn), aromatase, and Ala-Pro-Gly-Trp (APGW) amide

  8. Converging hazard assessment of gold nanoparticles to aquatic organisms.

    Science.gov (United States)

    García-Cambero, Jesús Pablo; Núñez García, Mercedes; López, Gema Díaz; Herranz, Ana López; Cuevas, Laureano; Pérez-Pastrana, Esperanza; Cuadal, Judith Sendra; Castelltort, Marc Ramis; Calvo, Argelia Castaño

    2013-10-01

    The gold nanoparticles (Au-NPs) are being increasingly used because of their huge diversity of applications, and consequently, elevated levels in the environment are expected. However, due to their physico-chemical properties and functionalization a high variety of Au-NPs can be found, and complete toxicological information for each type of Au-NPs still lacks, and even, the toxicological information for the same species is sometimes contradictory. Therefore, hazard assessment should be done case by case. Hence, the objective of this study was to obtain ecotoxicological information of the same Au-NPs in aquatic organisms and to find a rationale for Au-NPs toxicity. For such a purpose, bare and hyaluronic acid capped Au-NPs (12.5 nm) along with Au-NPs bulk material were tested on freshwater algae, Daphnia and zebrafish. Results showed that while gold nanoparticles were found to be harmless to the tested organisms, the soluble gold showed to be toxic to algae and Daphnia, with an LC50 between 1 and 2 mg L(-1). Comparing our results with those gathered in the literature, it appears that a common hazard assessment of Au-NPs on the studied organisms can be elucidated.

  9. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.

    Science.gov (United States)

    Aryal, Rupak; Grinham, Alistair; Beecham, Simon

    2016-03-01

    Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.

  10. A method for partitioning cadmium bioaccumulated in small aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardena, S.N.; Rana, K.J.; Baird, D.J. [Univ. of Stirling (United Kingdom). Institute of Aquaculture

    1995-09-01

    A series of laboratory experiments was conducted to evaluate bioaccumulation and surface adsorption of aqueous cadmium (Cd) by sac-fry of the African tilapia Oreochromis niloticus. In the first experiment, the design consisted of two cadmium treatments: 15 {micro}g Cd{center_dot}L{sup {minus}1} in dilution water and a Cd-ethylenediaminetetraacetic acid (Cd-EDTA) complex at 15 {micro}m{center_dot}L{sup {minus}1}, and a water-only control. There were five replicates per treatment and 40 fish per replicate. It was found that EDTA significantly reduced the bioaccumulation of cadmium by tilapia sac-fry by 34%. Based on the results, a second experiment was conducted to evaluate four procedures: a no-rinse control; rinsing in EDTA; rinsing in distilled water; and rinsing in 5% nitric acid, for removing surface-bound Cd from exposed sac-fry. In this experiment, 30 fish in each of five replicates were exposed to 15 {micro}g Cd{center_dot}L{sup {minus}1} for 72 h, processed through the rinse procedures, and analyzed for total Cd. The EDTA rinse treatment significantly reduced (p<0.05) Cd concentrations of the exposed fish relative to those receiving no rinse. It was concluded that the EDTA rinse technique may be useful in studies evaluating the partitioning of surface-bound and accumulated cadmium in small aquatic organisms.

  11. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    Science.gov (United States)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-10-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  12. The Toxicity of Guanidine Nitrate to Freshwater Aquatic Organisms.

    Science.gov (United States)

    1985-06-01

    0.002 - Epoxide Cobalt 0.0065 ɘ.002 Lindane ɘ.01 Copper 0.0035 0.008 Alpha-BHC ɘ.01 Iron 0.1 0.1 Beta-BHC ɘ.02 Lead ɘ.002 - De 1ta- BC (0.02...other fish species, aquatic invertebrates (e.g. benthic invertebrates) and at least one algal or aquatic plant species. Addi- tional studies on the

  13. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Jorien E. Vonk,; Tank, Suzanne E.; Paul J. Mann,; Robert G.M. Spencer,; Treat, Claire C.; Striegl, Robert G.; Benjamin W. Abbott,; Wickland, Kimberly P.

    2015-01-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC.An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  14. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  15. Ecotoxicity of selected nano-materials to aquatic organisms.

    Science.gov (United States)

    Blaise, C; Gagné, F; Férard, J F; Eullaffroy, P

    2008-10-01

    Present knowledge concerning the ecotoxic effects of nano-materials is very limited and merits to be documented more fully. For this purpose, we appraised the toxicity of nine metallic nano-powders (copper zinc iron oxide, nickel zinc iron oxide, yttrium iron oxide, titanium dioxide, strontium ferrite, indium tin oxide, samarium oxide, erbium oxide, and holmium oxide) and of two organic nano- powders (fullerene-C60 and single-walled carbon nanotube or SWCNT). After a simple process where nano-powders (NPs) were prepared in aqueous solution and filtered, they were then bioassayed across several taxonomic groups including decomposers (bacteria), primary producers (micro-algae), as well as primary and secondary consumers (micro-invertebrates and fish). Toxicity data generated on the 11 NPs reflected a wide spectrum of sensitivity that was biological level-, test-, and endpoint-specific. With all acute and chronic tests confounded for these 11 NPs, toxicity responses spanned over three orders of magnitude: >463 mg/L (24 h LC50 of the invertebrate Thamnoplatyurus platyurus for fullerene-C60) / 0.3 mg/L (96 h EC50 of the invertebrate Hydra attenuata for indium tin oxide), that is a ratio of 1543. On the basis of the MARA (Microbial Array for Risk Assessment) assay toxic fingerprint concept, it is intimated that NPs may have different modes of toxic action. When mixed in a 1:1 ratio with a certified reference material (CRM) sediment, two solid phase assays and an elutriate assay, respectively, showed that five NPs (copper zinc iron oxide, samarium oxide, erbium oxide, holmium oxide, and SWCNT) were able to increase both CRM sediment toxicity and its elutriate toxicity. This initial investigation suggests that chemicals emerging from nanotechnology may pose a risk to aquatic life in water column and sediment compartments and that further studies on their adverse effects are to be encouraged.

  16. Stream Segments Captures and Crossings Associated With 2012 Aquatic Organism Passage Study Siuslaw National Forest

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Stream segments, aquatic organism captures, stream surveys, and road-stream crossings described by these metadata accompany a 2012 electrofishing study of the...

  17. Thermal effects on aquatic organisms. Annotated bibliography of the 1975 literature

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.; Dailey, N.S. (comps.)

    1976-10-01

    Abstracts are presented of 716 papers published during 1975 concerning thermal effects on aquatic organisms. Indexes are included for author, subject category, geographic location, toxon, title, and keywords. (CH)

  18. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  19. Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr)oxides: Possible structural control

    Science.gov (United States)

    Pokrovsky, O. S.; Viers, J.; Emnova, E. E.; Kompantseva, E. I.; Freydier, R.

    2008-04-01

    This work is aimed at quantifying the main environmental factors controlling isotope fractionation of Cu during its adsorption from aqueous solutions onto common organic (bacteria, algae) and inorganic (oxy(hydr)oxide) surfaces. Adsorption of Cu on aerobic rhizospheric ( Pseudomonas aureofaciens CNMN PsB-03) and phototrophic aquatic ( Rhodobacter sp. f-7bl, Gloeocapsa sp. f-6gl) bacteria, uptake of Cu by marine ( Skeletonema costatum) and freshwater ( Navicula minima, Achnanthidium minutissimum and Melosira varians) diatoms, and Cu adsorption onto goethite (FeOOH) and gibbsite (AlOOH) were studied using a batch reaction as a function of pH, copper concentration in solution and time of exposure. Stable isotopes of copper in selected filtrates were measured using Neptune multicollector ICP-MS. Irreversible incorporation of Cu in cultured diatom cells at pH 7.5-8.0 did not produce any isotopic shift between the cell and solution (Δ 65/63Cu(solid-solution)) within ±0.2‰. Accordingly, no systematic variation was observed during Cu adsorption on anoxygenic phototrophic bacteria ( Rhodobacter sp.), cyanobacteria ( Gloeocapsa sp.) or soil aerobic exopolysaccharide (EPS)-producing bacteria ( P. aureofaciens) in circumneutral pH (4-6.5) and various exposure times (3 min to 48 h): Δ 65Cu(solid-solution) = 0.0 ± 0.4‰. In contrast, when Cu was adsorbed at pH 1.8-3.5 on the cell surface of soil the bacterium P. aureofacienshaving abundant or poor EPS depending on medium composition, yielded a significant enrichment of the cell surface in the light isotope (Δ 65Cu (solid-solution) = -1.2 ± 0.5‰). Inorganic reactions of Cu adsorption at pH 4-6 produced the opposite isotopic offset: enrichment of the oxy(hydr)oxide surface in the heavy isotope with Δ 65Cu(solid-solution) equals 1.0 ± 0.25‰ and 0.78 ± 0.2‰ for gibbsite and goethite, respectively. The last result corroborates the recent works of Mathur et al. [Mathur R., Ruiz J., Titley S., Liermann L., Buss H. and

  20. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten;

    on the fate of SOC such as amounts and composition of soil organic matter (SOM), distribution of SOC in density fractions and aggregates as well as soil physical and chemical properties. NMR analysis provided an in-depth characterization of SOM quality, showing large similarities in chemical composition among...... of eroded SOC takes place on downslope soils within the catchment and in adjacent inland waters, i.e. substantial amounts of SOC are transferred from terrestrial to aquatic ecosystems. However, the net effect on C exchange between soils, atmosphere and inland waters is unknown. We hypothesize...

  1. Toxicity of Cúspide 480SL® spray mixture formulation of glyphosate to aquatic organisms.

    Science.gov (United States)

    Currie, Zachary; Prosser, Ryan S; Rodriguez-Gil, Jose Luis; Mahon, Kim; Poirier, Dave; Solomon, Keith R

    2015-05-01

    In 2011, an alternative formulation of glyphosate (Cúspide 480SL®) was chosen to replace Roundup-SL®, Fuete-SL®, and Gly-41® for the control of Erythroxylum coca, the source of cocaine, in Colombia. Cúspide 480SL contains the active ingredient glyphosate isopropylamine (IPA) salt, which is the same active ingredient used in previous formulations. However, Cúspide 480SL contains an alkyl polyglycoside surfactant rather than the polyethoxylated tallow amine (POEA) surfactant used in other formulations and known to be more toxic to nonprimary producing aquatic organisms than glyphosate itself. An adjuvant, Cosmo-Flux F411, and water also are added to the spray mixture before application. Aquatic ecosystems adjacent to the target coca fields might be exposed to the spray mix, placing aquatic organisms at risk. Because no toxicity data were available for spray mixture on aquatic organisms, acute toxicity tests were conducted on aquatic plants, invertebrates, and fish, by using the Cúspide 480SL spray mix as described on the label. Based on the median effective concentration (EC50) values for similar organisms, the spray mixture was less toxic to aquatic organisms than formulations previously used for the control of coca (i.e., Roundup-SL, Fuete-SL, and Gly-41). A physical effect induced by Cosmo-Flux F411 was observed in Daphnia magna, Ceriodaphnia dubia, and Hyalella azteca, causing the invertebrates to be trapped in an oily film that was present at the surface of the water. However, a hazard assessment for the Cúspide 480SL spray mix, using estimated worst-case exposure scenario concentrations and EC50 values from the toxicity tests, indicated de minimis hazard for the tested aquatic animals, with hazard quotients all <1.

  2. Plastic as a Carrier of POPs to Aquatic Organisms: A Model Analysis

    NARCIS (Netherlands)

    Koelmans, A.A.; Besseling, E.; Wegner, A.; Foekema, E.M.

    2013-01-01

    It has been hypothesized that persistent organic pollutants (POPs) in microplastic may pose a risk to aquatic organisms. Here we develop and analyze a conceptual model that simulates the effects of plastic on bioaccumulation of POPs. The model accounts for dilution of exposure concentration by sorpt

  3. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata)

    NARCIS (Netherlands)

    Hermens, J.L.M.; Leeuwangh, Peter; Musch, Aalt

    1985-01-01

    In this study acute lethal concentrations (LC50) to the guppy (Poecilia reticulata) were determined for mixtures of 4 groups of aquatic pollutants. The groups were composed of 11 nonreactive, nonionized organic chemicals, 11 chloroanilines, 11 chlorophenols, and 9 reactive organic halides. Earlier s

  4. Partitioning of water soluble organic carbon in three sediment size fractions: Effect of the humic substances

    Institute of Scientific and Technical Information of China (English)

    SUN Liying; SUN Weiling; NI Jinren

    2009-01-01

    Water soluble organic carbon (WSOC) in sediments plays an important role in transference and transformation of aquatic pollutants. This article investigated the inherent mechanisms of how sediemnt grain size affect the partitioning coeffcient (k) of WSOC. Influences of NaOH extracted humic substances were particularly focused on. Sediments were sampled from two cross-sections of the middle Yellow River and sieved into three size fractions (< 63 μm, 63-100 μm, and 100--300 μm). The total concentration of WSOC in sediments (CWSOC) and k were estimated using multiple water-sediment ratio experiments. Results show that CWSOC ranges from 0.012 to 0.022 mg/g, while k ranges from 0.8 to 3.9 L/kg. Correlations between the spectrum characteristics of NaOH extracted humic substances and k were analyzed. Strong positive correlations are determined between k and the aromaticity indicators of NaOH extracted humic substances in different sediment size fractions. Comparing with finer fractions (< 63 μm), k is higher in larger size fractions (63--100 and 100--300 μm) related to higher aromaticity degree of NaOH extracted humic substances mostly. While negative relationship between k and the area ratio of fourier transform infrared spectroscopy (FT-IR) at 3400 and 1430 cm-1 implied that the lowest k was related to the highest concentration of the acidic humic groups in particles < 63 μm. WSOC in finer fractions (< 63 μm) is likely to enter into pore water, which may further accelerate the transportation of aquatic contaminants from sediment to water.

  5. Trihalomethane formation potential of organic fractions in secondary effluent

    Institute of Scientific and Technical Information of China (English)

    XUE Shuang; ZHAO Qingliang; WEI Liangliang; JIA Ting

    2008-01-01

    Organic matter is known to be the precursor of numerous chlorination by-products. Organic matter in the secondary effluent from the Wenchang Wastewater Treatment Plant(Harbin. China)was physically separated into the following fractions: particulate organic carbon(1. 2-0. 45un), colloidal organic carbon(0. 45-0. 1um), fine colloidal organic carbon(0. 1-0. 025um), and dissolved organic carbon(DOC)(<0. 025um). Moreover, <0. 45 um fraction was chemically separated into hydrophobic acid(HPO-A), hydrophobic neutral(HPO-N), transphilic acid(TPI-A), transphilic neutral(TPI-N), and hydrophilic fraction(HPI). The chlorine reactivity of these organic fractions obtained from both size and XAD fractionations were evaluated. The structural and chemical compositions of the HPO-A. HPO-N. TPI-A. and TPI-N isolates were characterized using elemental analysis(C, H, 0, and N), Fourier trailsform infrared spectroscopy(FT-IR), and proton nuclear magnetic resonance spectroscopy(1H-NMR). Results showed that Doe was dominant in terms of total concentration and trihalomethane formation potential(THMFP). and there was no statistical difference in both specific THMFP(STHMFP)and specific ultraviolet light absorbance among the 0. 45, 0. 1, and 0. 025 um filtrates. HPO-A had the highest STHMFP compared to other chemical fractions. HPO-A, HPO-N, TPI-A, and TPI-N contained 3. 02%-3. 52%of nitrogen. The molar Ratio of H/C increased in the order of HPO. Afractions. 1H-NMR analysis of the four fractions indicated that the relative content of aromatic protons in HPO-A was significantly higher than those in the others. The ratio of aliphatic to aromatic protons increased in the order of HPO-Afractions showed that HPO-A had greater aromatic C=C content whereas HPO-N, TPI-A, and TPI-N had greater aliphatic C-H content. TPI-N contained more oxygen

  6. Atmospheric transport of persistent organic pollutants to aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, Cecilia

    1999-04-01

    The load of persistent organic pollutants (POPs) is considered high in the Baltic ecosystem. The Baltic Sea spans over 12 latitudes and the regional differences in climate affect the behavior of POPs. Therefore spatial and temporal variability of the concentrations of POPs in air and precipitation within this area has been investigated at 16 (mostly rural) stations around the Baltic Sea between 1990-1993. In addition, the deposition of gaseous and particulate associated POPs to the Baltic Sea is estimated from empirical data. This atmospheric input of POPs is compared with the input from rivers. Additionally, data from Ross Island, Antarctica and Lake Kariba, Zimbabve, Africa is presented, and all results are discussed and explained using the `global fractionation hypothesis` as a framework. In the Baltic Sea, concentration of individual POPs in air were found to be influenced by their physical-chemical properties, ambient air temperature and location. A latitudinal gradient, with higher levels in the south was found for PCBs and the gradient was more pronounced for the low volatility congeners. As a result, the high volatility congeners in air increased in relative importance with latitude. Generally, PCB concentration increased with temperature, but slopes of the partial pressure in air versus reciprocal temperature were different between congeners and between stations. In general, the low volatility congeners were more temperature dependent than the high volatility PCB congeners. Steep slopes at a sampling location indicate that the concentration in air is largely determined by diffusive exchange with soils. Lack of a temperature dependence may be due to the influence of long-range transported air masses at remote sites and due to the episodic, or random nature of PCB sources at urban sites. The concentrations of individual congeners in precipitation were found to be influenced by atmospheric concentrations of PCBs, ambient temperature, precipitation volume and

  7. Molecular Composition and Photochemical Reactivity of Size-Fractionated Dissolved Organic Matter.

    Science.gov (United States)

    Maizel, Andrew C; Remucal, Christina K

    2017-02-21

    The photochemical production of reactive species, such as triplet dissolved organic matter ((3)DOM) and singlet oxygen ((1)O2), contributes to the degradation of aquatic contaminants and is related to an array of DOM structural characteristics, notably molecular weight. In order to relate DOM molecular weight, optical properties, and reactive species production, Suwannee River (SRFA) and Pony Lake fulvic acid (PLFA) isolates are fractionated by sequential ultrafiltration, and the resultant fractions are evaluated in terms of molecular composition and photochemical reactivity. UV-visible measurements of aromaticity increase with molecular weight in both fulvic acids, while PLFA molecular weight fractions are shown to be structurally similar by Fourier-transform ion cyclotron resonance mass spectrometry. In addition, Bray-Curtis dissimilarity analysis of formulas identified in the isolates and their size fractions reveal that SRFA and PLFA have distinct molecular compositions. Quantum yields of (3)DOM, measured by electron and energy transfer probes, and (1)O2 decreased with molecular weight. Decreasing [(3)DOM]ss with molecular weight is shown to derive from elevated quenching in high molecular weight fractions, rather than increased (3)DOM formation. This work has implications for the photochemistry of waters undergoing natural or engineered treatment processes that alter DOM molecular weight, such as photooxidation and biological degradation.

  8. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    Science.gov (United States)

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions.

  9. Size-fractionated production and bioavailability of dissolved organic matter

    DEFF Research Database (Denmark)

    Knudsen-Leerbeck, Helle; Bronk, Deborah A.; Markager, Stiig

    Production and bioavailability of dissolved organic matter was quantified on a time scale of two days from size fractions ranging from bacteria to zooplankton in the York River, Virginia. The goal was to find the main contributor to DOM. Batch incubation experiments were labeled with N15-ammonium...... was mainly in the phytoplankton size fraction, which on average contributed 62 % of total particulate nitrogen and 61 % of total particulate carbon. Up to 5 ± 0.4 μmol dissolved organic nitrogen L-1 and 33 ± 6.2 μmol dissolved organic carbon L-1 was produced during the incubation. Bioavailability...... of phytoplankton produced dissolved organic carbon was 12 ± 1 % and higher than in the presence of bacteria, microzooplankton, or copepods (7 ± 3 %). The pattern for bioavailability of dissolved organic nitrogen was less clear and ranged from 4 – 7 %. This study revealed that phytoplankton was the main contributor...

  10. How to assess exposure of aquatic organisms to manufactured nanoparticles?

    DEFF Research Database (Denmark)

    Quik, Joris T.K.; Vonk, Jan Arie; Hansen, Steffen Foss;

    2011-01-01

    Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable for estim......Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable...... for estimating exposure concentrations of NMs in the aquatic environment. We have evaluated the adequacy of the current guidance documents for use with NMs and conclude that nano-specific fate processes, such as sedimentation and dissolution need to be incorporated. We have reviewed the literature...... on sedimentation and dissolution of NMs in environmentally relevant systems. We deduce that the overall kinetics of water–sediment transport of NMs should be close to first order. The lack of data on dissolution of NMs under environmentally realistic conditions calls for a pragmatic decision on which rates...

  11. Aquatics task force on environmental assessment of the Atikokn Power Plant: effects on aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R.

    1978-11-01

    Possible impacts of an 800-MW coal-fired power plant to be built near Atikokan, Ontario were evaluated. It is feared that the emissions of SO/sub 2/ will lead to the deposition of sulfuric acid and result in the acidification of freshwaters in nearby parks and wilderness areas. The most obvious biological effects of acidification are damages to populations of fish. Less conspicuous but no less severe damages also occur to other organisms. It appears that all trophic levels are affected: species numbers are reduced, biomasses are altered, and primary production and decomposition are impaired. Field experiments and laboratory experiments indicate that microbial activity is reduced and that the recycling of materials is greatly impeded at low pH. This may interfere with nutrient supplies to plants and decrease the microbial biomass available to higher trophic levels. Phytoplankton densities decrease in acidified lakes and there is a reduction in some species of macrophytes. On the other hand, Sphagnum and benthic filamentous algae greatly increase in acidified conditions. The total primary productivity of lakes and streams may actually increase because of such dense growths on the bottom. Zooplankton and benthic invertebrate communities become less complex as acidity increases. This may in part be due to reduced food supplies, but direct inhibition by H/sub 2/SO/sub 4/ has also been demonstrated. This removal of fish food organisms may exacerbate damage to fisheries, especially in the pH range of 5 to 6. When a lake loses all fish because of low pH, a few species of invertebrates may become very abundant. The salamanders Ambystoma jeffersonium and A. maculatum, sensitive to acidity below pH 7.0 and 5.0 respectively, are being eliminated from small ponds or temporary pools in the region around Ithaca, NY because of the impact of acid precipitation. Species of frogs in some lakes are also being eliminated because of acidification. (ERB)

  12. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2015-10-01

    The biotic ligand model (BLM) approach is used to assess metal toxicity, taking into account the competition of other cations with the free metal ions for binding to the biotic ligand sites of aquatic and soil organisms. The bioavailable fraction of metals, represented by the free metal ion, is a better measure than the total concentration for assessing their potential risk to the environment. Because BLMs are relating toxicity to the fraction of biotic ligands occupied by the metal, they can be useful for investigating factors affecting metal bioaccumulation and toxicity. In the present review, the effects of major cations on the toxicity of metals to soil and aquatic organisms were comprehensively studied by performing a meta-analysis of BLM literature data. Interactions at the binding sites were shown to be species- and metal-specific. The main factors affecting the relationships between toxicity and conditional binding constants for metal binding at the biotic ligand appeared to be Ca(2+) , Mg(2+) , and protons. Other important characteristics of the exposure medium, such as levels of dissolved organic carbon and concentrations of other cations, should also be considered to obtain a proper assessment of metal toxicity to soil and aquatic organisms.

  13. AQUATIC PHOTOLYSIS OF OXY-ORGANIC COMPOUNDS ADSORBED ON GOETHITE.

    Science.gov (United States)

    Goldberg, Marvin C.

    1985-01-01

    Organic materials that will not absorb light at wavelengths longer than 295 nanometers (the solar wavelength cutoff) may nevertheless, undergo electron transfer reactions initiated by light. These reactions occur when the organic materials are adsorbed as ligand complexes to the surface of iron oxy-hydroxide (goethite). The adsorbed materials can be either inner or outer coordination sphere complexes. Goethite was chosen as the iron oxyhydroxide surface because it has the highest thermodynamic stability of any of the oxyhydroxides in water and it can be synthesized easily, with high purity.

  14. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    CERN Document Server

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-01-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young solar system and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan s atmosphere and in the protosolar nebula, respectively. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25 permil relative to the initial N2 gas, whatever the experimental set...

  15. Study on accumulation of 137Cs in aquatic organisms

    Institute of Scientific and Technical Information of China (English)

    FengDing-Hua; CheungT

    1998-01-01

    The organisms were cultivated for 7d in well water contaminated with 137Cs,The experimental results show that the accumulation level of tissues of carassius auratus had the order of gill>viscera>epidermis(including scales)>bone(including head and tail)>flesh.The concentration capability of them had the order of shrimp>carassius auratus>ophiocephalus argus,The concentration factors(CF) of shrimp was 12.6 times of that of ophiocephalus argus.

  16. Effects of magnesium, chromium, iron and zinc from food supplements on selected aquatic organisms.

    Science.gov (United States)

    Bosnir, Jasna; Puntarić, Dinko; Cvetković, Zelimira; Pollak, Lea; Barusić, Lidija; Klarić, Ivana; Miskulin, Maja; Puntarić, Ida; Puntarić, Eda; Milosević, Milan

    2013-09-01

    The aim of this study was to determine the effect of uncontrolled environmental disposal of food supplements containing magnesium (Mg), chromium (Cr), iron (Fe) and zinc (Zn) on selected aquatic organisms including freshwater algae Scenedesmus subspicatus and Raphidocelis subcapitata, water flea Daphnia magna and duckweed Lemna minor. Thirty different food supplements containing Mg, Cr, Fe and Zn were analyzed. Results were expressed as effective concentration 50 (EC50), i.e. growth inhibiting Mg, Cr, Fe and Zn (mg/L) concentration immobilizing 50% of treated organisms. Particular metal EC50 differed significantly (p food supplements containing Mg, Cr, Fe and Zn exerts adverse effects on aquatic organisms. Therefore, legal provisions should regulate both the utilization and disposal of food supplements into the environment.

  17. Methods for estimating doses to organisms from radioactive materials released into the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.A.; Soldat, J.K.

    1992-06-01

    The US Department of Energy recently published an interim dose limit of 1 rad d{sup {minus}1} for controlling the radiation exposure of nature aquatic organisms. A computer program named CRITR, developed previously for calculating radiation doses to aquatic organisms and their predators, has been updated as an activity of the Hanford Site Surface Environmental Surveillance Project to facilitate demonstration of compliance with this limit. This report presents the revised models and the updated computer program, CRITR2, for the assessment of radiological doses to aquatic organisms and their predators; tables of the required input parameters are also provided. Both internal and external doses to fish, crustacea, mollusks, and algae, as well as organisms that subsist on them, such as muskrats, raccoons, and ducks, may be estimated using CRITR2. Concentrations of radionuclides in the water to which the organisms are exposed may be entered directly into the user-input file or may be calculated from a source term and standard dilution models developed for the National Council on Radiation Protection and Measurements.

  18. Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation.

    Science.gov (United States)

    Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B

    2012-04-01

    The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.

  19. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  20. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    that of their bulk forms. With release of ENPs to the environment a need for evaluation of the potential risk of ENPs is necessary. Potential risks are assessed through a chemical safety assessment. Test guidelines (TGs) to evaluate the risk of compounds for the chemical safety assessment were developed for soluble...... and a physical identity. For soluble chemicals the chemical identity has been the parameter controlling ecotoxicological endpoints (e.g. toxicity and bioaccumulation). However, with ENPs consisting of a wide range of particle sizes, coatings and functionalizations influencing the performance and result of test...... of different particle sizes, coatings and functionalizations were investigated using model ENPs (Au ENPs) with two different sizes (10 and 30nm) and coatings (citrate and mercaptoundecanoic acid (MUDA)) and a standardized test setup with a standardized test organism (Daphnia magna). It was found that while...

  1. Francisella infections in farmed and wild aquatic organisms

    Directory of Open Access Journals (Sweden)

    Colquhoun Duncan J

    2011-03-01

    Full Text Available Abstract Over the last 10 years or so, infections caused by bacteria belonging to a particular branch of the genus Francisella have become increasingly recognised in farmed fish and molluscs worldwide. While the increasing incidence of diagnoses may in part be due to the development and widespread availability of molecular detection techniques, the domestication of new organisms has undoubtedly instigated emergence of clinical disease in some species. Francisellosis in fish develops in a similar fashion independent of host species and is commonly characterised by the presence of multi-organ granuloma and high morbidity, with varying associated mortality levels. A number of fish species are affected including Atlantic cod, Gadus morhua; tilapia, Oreochromis sp.; Atlantic salmon, Salmo salar; hybrid striped bass, Morone chrysops × M. saxatilis and three-lined grunt, Parapristipoma trilinineatum. The disease is highly infectious and often prevalent in affected stocks. Most, if not all strains isolated from teleost fish belong to either F. noatunensis subsp. orientalis in warm water fish species or Francisella noatunensis subsp. noatunensis in coldwater fish species. The disease is quite readily diagnosed following histological examination and identification of the aetiological bacterium by culture on cysteine rich media or PCR. The available evidence may indicate a degree of host specificity for the various Francisella strains, although this area requires further study. No effective vaccine is currently available. Investigation of the virulence mechanisms and host response shows similarity to those known from Francisella tularensis infection in mammals. However, no evidence exists for zoonotic potential amongst the fish pathogenic Francisella.

  2. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    Science.gov (United States)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  3. Boron in Pariette Wetland Sediments, Aquatic Vegetation & Benthic Organisms

    Science.gov (United States)

    Vasudeva, P.; Jones, C. P.; Powelson, D.; Jacobson, A. R.

    2015-12-01

    The Pariette Wetlands are comprised of 20 ponds located in Utah's Uintah Basin. Boron concentration in the Pariette Wetlands have been observed to exceed the total maximum daily limit of 750 µg L-1. Considering water flow in and out of the wetlands, boron is accumulating within the wetlands where it is sorbed to sediments and bioconcentrated by wetland plant and macro invertebrates. Since boron is an avian teratogen, an estimate of boron ingestion exposure is warranted. Samples from 3 of the 23 Pariette Wetland ponds with one pond near the inlet, one near the outlet, and one in the middle were collected. Five sampling points were designated along a 100 m transect of each pond. At each sampling point duplicate (or triplicate) samples of water, sediments, benthic organisms and wetland vegetation were collected. The sediments were collected with a KB-corer and divided at depths of 0-2 cm, 2-7 cm, and 7+ cm from the sediment surface. Sample splits were sent to the USU Bug lab for identification of invertebrate species. Whenever this transect was not intercepting vegetation, 2-3 additional sample sites were identified at the pond within stands of representative vegetation where bird nests are located. The plant parts used for boron analyses will include seeds, shoot and roots of vascular plants, as well as algae or duckweeds skimmed from the surface. Samples were processed within 2 days of collection. Water samples filtered through a 0.45 μ membrane filter were analyzed for DOC, pH and ECe. The dried and washed vegetation samples were ground and stored. The benthic organisms and macro invertebrates were netted at the water surface. The dried samples were weighed, ground and stored. Samples were weighed, oven dried and reweighed. For plant and macro-invertebrate samples, a nitric and hydrogen peroxide digestion procedure is used to dissolve environmentally available elements. The Hot Water extraction and DTPA-Sorbitol extraction were compared to estimate wetland plant

  4. HUMIFIED FRACTION OF ORGANIC MATTER DUE TO PLANT MIXTURE CULTIVATION

    Directory of Open Access Journals (Sweden)

    TONY JARBAS FERREIRA CUNHA

    2016-01-01

    Full Text Available The aim of this study was to assess the organic matter changes in quantity and quality, particularly of the humic fraction in the surface layer (0–20 cm, of a Typic Plinthustalf soil under different management of plant mixtures used as green manure for mango (Mangifera indica L. crops. The plant mixtures, which were seeded between rows of mango trees, were formed by two groups of leguminous and non-leguminous plants. Prior to sowing, seeds were combined in different proportions and compositions constituting the following treatments: 100% non-leguminous species (NL; 100% leguminous species (L; 75% L and 25% NL; 50% L and 50% NL; 25% L and 75% NL; and 100% spontaneous vegetation, considered a control. The plant mixtures that grew between rows of mango trees caused changes in the chemical composition of the soil organic matter, especially for the treatments 50% L and 50% NL and 25% L and 75% NL, which increased the content of humic substances in the soil organic matter. However, the treatment 25% L and 75% NL was best at minimising loss of total organic carbon from the soil. The humic acids studied have mostly aliphatic characteristics, showing large amounts of carboxylic and nitrogen groups and indicating that most of the organic carbon was formed by humic substances, with fulvic acid dominating among the alkali soluble fractions.

  5. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R., E-mail: sorogero@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L{sup -1} and for LEO was 3.1 ± 1.4 mg L{sup -1}. In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L{sup -1} and 2.4 ± 0.3 mg L{sup -1} respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  6. Natural and active chemical remediation of toxic metals, organics, and radionuclides in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, G.; Pintauro, P.; O`Connor, S. [and others

    1996-05-02

    This project focuses on the chemical aspects of remediation, with the underlying theme that chemical remediation does occur naturally. Included are studies on the fate of heavy metal and organic contaminants discharged into aquatic environments; accurate assay metal contaminants partitioned into soils, water and tissue; development of novel polymeric membranes and microporous solids for the entrapment of heavy metals; and the development of hybrid chemo-enzymatic oxidative schemes for aromatics decontamination. 49 refs.

  7. Influence of Lipophilicity on the Toxicity of Bisphenol A and Phthalates to Aquatic Organisms.

    Science.gov (United States)

    Mathieu-Denoncourt, Justine; Wallace, Sarah J; de Solla, Shane R; Langlois, Valerie S

    2016-07-01

    Bisphenol A (BPA) and phthalates are among the most popular plasticizers used today and have been reported ubiquitously in surface water, ground water, and sediment. For aquatic organisms, BPA was the most toxic (96 h LC50s) to aquatic invertebrates (0.96-2.70 mg/L) and less toxic to fish (6.8-17.9 mg/L). The toxicity of BPA to amphibians differed among developmental stages, with embryos having an LC50 of 4.6-6.8 mg/L and juveniles 0.50-1.4 mg/L. The toxicity of phthalates is affected by aromatic ring substitution, alkyl chain length, and metabolism. The toxicity (96 h LC50s) of phthalates was similar to aquatic invertebrates (0.46-377 mg/L) and fish (0.48-121 mg/L). In general, the toxicity of phthalates appears to be highest around a log KOW of 6, which corresponds to the highest potential for bioconcentration and bioaccumulation. In conclusion, the lipophilicity of BPA and phthalates influence their toxicity to aquatic species.

  8. Species and biogeochemical cycles of organic phosphorus in sediments from a river with different aquatic plants located in Huaihe River Watershed, China.

    Science.gov (United States)

    Yuan, He Zhong; Pan, Wei; Ren, Li Jun; Liu, Eeng Feng; Shen, Ji; Geng, Qi Fang; An, Shu Qing

    2015-01-01

    The results of phosphorus fractionation in the sediments from a contaminated river containing different aquatic plants, analyzed by solution 31P-NMR for Organic Phosphorus, showed that the concentration of Inorganic Phosphorus dominated in all species and Organic Phosphorus accounted for over 20% of Total Phosphorus. In general, orthophosphate was dominant in all the sampling sites. The proportion of Organic Phosphorus accounting for the Total Phosphorus in the sediments with different plant decreased in the following order: Paspalum distichum>Typha orientalis>Hydrilla verticillata. Phosphorus-accumulation ability of Paspalum distichum was obviously stronger than Typha orientalis and Hydrilla verticillata. The Organic Phosphorus was in aquatic plants dominated by humic-associated P (Hu-P), which converted to Inorganic Ohosphorus more significantly in submerged plants than in emerged plants. The sediment dominated by Paspalum distichum abundantly accumulated Organic Phosphorus in the orthophosphate monoester fraction. The degradation and mineralization of orthophosphate monoester was the important source of high Inorganic Phosphorus concentration and net primary productivity in Suoxu River. The Organic Phosphorus derived from Typha orientalis and Hydrilla verticillata was dramatically converted to Inorganic Phosphorus when the environmental factors varied.

  9. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms.

    Science.gov (United States)

    Tišler, Tatjana; Krel, Alja; Gerželj, Urška; Erjavec, Boštjan; Dolenc, Marija Sollner; Pintar, Albin

    2016-05-01

    Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota.

  10. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  11. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium.

    Science.gov (United States)

    Fevery, Davina; Houbraken, Michael; Spanoghe, Pieter

    2016-04-15

    Various studies focus on professional pesticide use, whereas pressure of non-professional use on human and the environment is often neglected. In this study, an attempt was made to estimate the pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium based on sales figures and by using three exposure models. A classification in non-professional use was made based on type of pesticide, application method and on intensity of non-professional use. Pressure of non-professional use on operators is highest for intensive operators, caused by the use of insecticides in an aerosol spray can. Pressure of non-professional pesticides on aquatic life is mainly generated by the use of herbicides. The aerosol spray induces the highest pressure whereas the trigger application hardly affects operator and environmental exposure. The ordinary non-professional user generates most pressure on aquatic organisms. Pressure of non-professional pesticides on bees is mainly caused by the use of insecticides, especially the active substance imidacloprid in combination with the aerosol spray can application method applied by an intensive operator. In general, both total usage (kg) and pressure of pesticides decreased for the period 2005 to 2012 due to efforts made by the government and industry. The results of this study suggest to pay special attention to aerosol spray applications and the non-professional use of insecticides.

  12. Mosquitocidal essential oils: are they safe against non-target aquatic organisms?

    Science.gov (United States)

    Conti, Barbara; Flamini, Guido; Cioni, Pier Luigi; Ceccarini, Lucia; Macchia, Mario; Benelli, Giovanni

    2014-01-01

    In latest years, the importance of the Melaleuca alternifolia essential oil (EO) has been greatly empathised due to its anti-microbial and anti-inflammatory effects, as well as to its toxic properties towards many arthropods of great medical and veterinary importance. In this research, the EO extracted from aerial parts of M. alternifolia was evaluated for its toxicity against larvae of the most invasive mosquito worldwide, Aedes albopictus (Diptera: Culicidae), and towards adults of the water flea, Daphnia magna (Cladocera: Crustacea), a non-target aquatic organism that share the same ecological niche of A. albopictus. The chemical composition of M. alternifolia EO was investigated by GC-MS analysis. Tea tree EO was mainly composed by oxygenated monoterpenes, with 1,8-cineole as the major constituent. M. alternifolia EO exerted toxic activity against A. albopictus larvae, with a LC50 = 267.130 ppm. However, this EO had a remarkable acute toxicity also towards adults of the non-target arthropod D. magna, with a LC50 = 80.636 ppm. This research provide useful information for the development of newer and safer mosquito control tools, highlighting that the non-target effects against aquatic organisms that share the same ecological niche of A. albopictus larvae are crucial in the development of ecofriendly mosquito control strategies. Further research is needed to investigate the chronic and/or reproductive toxicity of M. alternifolia EO both towards target and non-target aquatic arthropods.

  13. Review of reproductive and developmental toxicity induced by organotins in aquatic organisms and experimental animals

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, A.; Takagi, A.; Nishimura, T.; Kanno, J.; Ema, M. [National Inst. of Health Sciences, Tokyo (Japan)

    2004-09-15

    Widespread use of organotins has caused increasing amounts to be released into the environment. The most important non-pesticidal route of entry of organotins into the environment is through leaching of organotin-stabilized PVC in water, and the use in antifouling agents, resulting in the introduction of organotin into the aquatic environment. Data are available regarding the detection of butyltins and phenyltins in aquatic marine organisms and marine products. Food chain bioamplification of butyltin in oysters, mud crabs, marine mussels, chinook salmons, dolphins, tunas, and sharks and of phenyltin in carps and horseshoe crabs has been reported. These findings indicate that organotins accumulate in the food chain and are bioconcentrated, and that humans can be exposed to organotins via seafood. The levels of organotin compounds in seafood are not considered to be sufficiently high to affect human health. However, Belfroid et al. (2000) noted that more research on residual TBT levels in seafood was needed before a definitive conclusion on possible health risks could be drawn. Although the toxicity of organotins has been extensively reviewed, the reproductive and developmental toxicity of organotins is not well understood. We summarized the data of the studies on reproductive and developmental toxicity of organotins in aquatic organisms and experimental animals.

  14. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    The fate of eroded soil organic carbon (SOC) after deposition is a large uncertainty in assessing the impact of soil erosion on C budgets. Globally, large amounts of SOC are transported by erosion and a substantial part is transferred into adjacent inland waters, linking terrestrial and aquatic C...... cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...

  15. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses--a review.

    Science.gov (United States)

    Augusto, Sofia; Máguas, Cristina; Branquinho, Cristina

    2013-09-01

    During the last decades, awareness regarding persistent organic pollutants (POPs), such dioxins and furans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), has become a cutting-edge topic, due to their toxicity, bioaccumulation and persistency in the environment. Monitoring of PCDD/Fs and PAHs in air and water has proven to be insufficient to capture deposition and effects of these compounds in the biota. To overcome this limitation, environmental biomonitoring using lichens and aquatic mosses, have aroused as promising tools. The main aim of this work is to provide a review of: i) factors that influence the interception and accumulation of POPs by lichens; ii) how lichens and aquatic bryophytes can be used to track different pollution sources and; iii) how can these biomonitors contribute to environmental health studies. This review will allow designing a set of guidelines to be followed when using biomonitors to assess environmental POP pollution.

  16. The mysteriously variable half-life of dissolved organic matter in aquatic ecosystems: artefact or insight?

    Science.gov (United States)

    Evans, Chris; Fovet, Ophelie; Jones, Tim; Jones, Davey; Moldan, Filip; Futter, Martyn

    2016-04-01

    Dissolved organic matter (DOM) fluxes from land to water represent an important loss term in the terrestrial carbon balance, a major pathway in the global carbon cycle, a significant influence on aquatic light, nutrient and energy regimes, and an important concern for drinking water production. Although freshwaters are now recognised as zones of active carbon cycling, rather than passive conduits for carbon transport, evidence regarding the magnitude of, and controls on, DOM cycling in aquatic systems is incomplete and in some cases seemingly contradictory, with DOM 'half-lives' ranging from a few days to many years. Bringing together experimental, isotopic, catchment mass balance and modelling data, we suggest that apparently conflicting results can be reconciled through understanding of differences in: i) the terrestrial sources of DOM within heterogeneous landscapes, and consequent differences in its reactivity and stoichiometry; ii) experimental methodologies (i.e. which reactions are actually being measured), and iii) the extent of prior transformation of DOM upstream of the point of study. We argue that rapid photo-degradation, particularly of peat-derived DOM, is a key process in headwaters, whilst apparently slow DOM turnover in downstream, agriculturally-influenced lakes and rivers can partly be explained by the offsetting effect of in situ DOM production. This production appears to be strongly constrained by nutrient supply, thus linking DOM turnover and composition to the supply of inorganic nutrient inputs from diffuse agricultural pollution, and also providing a possible mechanistic link between aquatic DOM production and terrestrial DOM breakdown via the mineralisation and re-assimilation of organic nutrients. A more complete conceptual understanding of these interlinked processes will provide an improved understanding of the sources and fate of aquatic DOM, its role in the global carbon cycle, and the impact of anthropogenic activities, for example

  17. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment.

    Science.gov (United States)

    González-Pleiter, Miguel; Gonzalo, Soledad; Rodea-Palomares, Ismael; Leganés, Francisco; Rosal, Roberto; Boltes, Karina; Marco, Eduardo; Fernández-Piñas, Francisca

    2013-04-15

    The individual and combined toxicities of amoxicillin, erythromycin, levofloxacin, norfloxacin and tetracycline have been examined in two organisms representative of the aquatic environment, the cyanobacterium Anabaena CPB4337 as a target organism and the green alga Pseudokirchneriella subcapitata as a non-target organism. The cyanobacterium was more sensitive than the green alga to the toxic effect of antibiotics. Erythromycin was highly toxic for both organisms; tetracycline was more toxic to the green algae whereas the quinolones levofloxacin and norfloxacin were more toxic to the cyanobacterium than to the green alga. Amoxicillin also displayed toxicity to the cyanobacterium but showed no toxicity to the green alga. The toxicological interactions of antibiotics in the whole range of effect levels either in binary or multicomponent mixtures were analyzed using the Combination Index (CI) method. In most cases, synergism clearly predominated both for the green alga and the cyanobacterium. The CI method was compared with the classical models of additivity Concentration Addition (CA) and Independent Action (IA) finding that CI could accurately predict deviations from additivity. Risk assessment was performed by calculating the ratio between Measured Environmental Concentration (MEC) and the Predicted No Effect Concentration (PNEC). A MEC/PNEC ratio higher than 1 was found for the binary erythromycin and tetracycline mixture in wastewater effluents, a combination which showed a strong synergism at low effect levels in both organisms. From the tested antibiotic mixtures, it can be concluded that certain specific combinations may pose a potential ecological risk for aquatic ecosystems with the present environmentally measured concentrations.

  18. Fouling of nanofiltration membrane by effluent organic matter: characterization using different organic fractions in wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liqing; WANG Lei; ZHANG Gang; WANG Xudong

    2009-01-01

    The UF membrane with molecular weight cutoff (MWCO) ranging from 2 kDa to 100 kDa and XAD-8 resin were employed to identify the characteristic of molecular weight (MW) distribution of wastewater effluent organic matter (EfOM) in terms of TOC and UV254, as well as the amounts of the hydrophilic/hydrophobic organic fractions in different MW ranges. Then, the nanofiltration (NF) membrane fouling experiments were carried out using the above fractionated water to investigate the effect of MW distribution and hydrophilic/hydrophobic characteristics of EfOM on the membrane flux decline using the fractionated water samples above. The experimental results have shown that 45.61% of the total organics belongs to the low MW one, among which the percentage of the hydrophilic organics with low MW (less than 2 kDa) was up to 28.07%, while that of the hydrophobic organics was 17.54%. In particular, the hydrophilic fraction was found to be the most abundant fraction in the effluents. MW distribution has a significant effect on the membrane fouling. When the MW was less than 30 kDa, the lower the MW, the larger was the specific flux decline, while in the case of MW higher than 30 kDa, the higher the MW, the larger was the specific flux decline, and the decline degree of low MW organics was larger than the high MW one. With the same MW distribution range, specific flux decline of the hydrophilic organic was considerably slower than that of the hydrophobic organic, which indicated that the hydrophobic organic fractions dominantly contribute to the flux decline.

  19. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation.

  20. Ecological risk assessment for aquatic organisms from over-water uses of glyphosate.

    Science.gov (United States)

    Solomon, Keith R; Thompson, Dean G

    2003-01-01

    Although the herbicide glyphosate is most widely used in agriculture, some is used for the control of emergent aquatic weeds in ditches, wetlands, and margins of water bodies, largely as the formulation Rodeo. This article presents an ecological risk assessment (ERA) of glyphosate and some of the recommended surfactants as used in or near aquatic systems. Glyphosate does not bioaccumulate, biomagnify, or persist in a biologically available form in the environment. Its mechanism of action is specific to plants and it is relatively nontoxic to animals. As a commercial product, glyphosate may be formulated with surfactants that increased efficacy but, in some cases, are more toxic to aquatic organisms than the parent material. For this risk assessment, three model exposure scenarios--static or low-flow systems such as ponds, flowing waters such as streams, and systems subjected to tidal flows such as estuaries--were chosen and application rates from 1 to 8 kg glyphosate/ha were modeled. Additional measured exposure data from several field studies were also used. As acute exposures are most likely to occur, acute toxicity data were used as effect measures for the purposes of risk assessment. Toxicity data were obtained from the literature and characterized using probabilistic techniques. Risk assessments based on estimated and measured concentrations of glyphosate that would result from its use for the control of undesirable plants in wetlands and over-water situations showed that the risk to aquatic organisms is negligible or small at application rates less than 4 kg/ha and only slightly greater at application rates of 8 kg/ha. Less is known about the environmental fate and toxicology of the surfactants commonly used in combination with the Rodeo formulation of glyphosate. The surfactants used for this purpose were judged not to be persistent nor bioaccumulative in the environment. Distributional analysis of measured deposition concentrations of LI 700, suggest that

  1. Dissolved Organic Carbon Dynamics Along Terrestrial-aquatic Flowpaths in a Catchment Dominated by Sandy Soils

    Science.gov (United States)

    Wickland, K.; Walker, J. F.; Hood, K.; Butler, K. D.

    2015-12-01

    Aquatic systems receive significant amounts of terrestrially-derived dissolved organic carbon (DOC) from their watersheds. The amount and nature received depends on terrestrial carbon source strength, processing and losses of carbon during transport, and hydrologic connectivity between terrestrial and aquatic systems. While much research has been done on terrestrial DOC dynamics along terrestrial-aquatic flowpaths, there is still considerable uncertainty in many areas including the importance of different carbon sources, microbial metabolism and sorption of DOC, and processing of carbon in groundwater. Here we investigate DOC dynamics in soils, groundwater, and stream waters at the USGS Water, Energy, and Biogeochemical (WEBB) Program research site in northern Wisconsin. This site is well-suited for studying DOC dynamics as soils are sandy and homogenous with small DOC sorption potential, and previous work has characterized the hydrology of the region in detail. We collected water samples over two years from soil pit lysimeters along a series of hillslope transects, from shallow and deep groundwater wells, and from a first-order stream receiving these waters. We measured DOC concentration, DOC optical properties, and biodegradability of DOC. Combined with historical DOC and companion water chemistry data we characterize DOC generation and loss along the following flowpaths: 1) infiltration through the unsaturated zone to the groundwater table, 2) shallow groundwater flow, and 3) long groundwater flowpaths of different origin (lake-derived vs. terrestrial-derived water).

  2. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    Science.gov (United States)

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-02-22

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics

  3. Status of water quality in the Dhaleshwari River and its effect on aquatic organism

    Directory of Open Access Journals (Sweden)

    Sirajul Islam

    2012-09-01

    Full Text Available The study was conducted to know the status of water quality in the Dhaleshwari river and its temporal changes over monsoon, post-monsoon and pre-monsoon seasons due to change of physicochemical parameters during the period from June 2011 to May 2012. The river starts off the Jamuna near the north-western tip of Tangail district with high potential for fisheries production in this area. Over exploitation of fisheries resources, river bank erosion and human activities are gradually hampered the aquatic environment of the river. For existence and conservation of aquatic resources, it is essential to investigate the water quality and surrounding environment of the river. The results of the study showed that the concentrations of EC (Electric conductivity, DO (Dissolved oxygen, BOD (Biological oxygen demand, Hardness, Sodium, Potassium and Copper were within the standard limit as well as suitable for aquatic lives. The water pH was less than the standard i.e. slightly acidic, transparency was incalculable and TDS (Total dissolved solid was increased in both post and pre-monsoon seasons. The content of Total Nitrogen, Phosphorus and Cadmium exceeded the permissible limit in all seasons. The excessive abundance of Total Nitrogen and Phosphorus made the river prone to eutrophication which ultimately resulted into degradation of water quality, phytoplankton blooms and change in fish production. This could be due to excessive agricultural activities near and adjacent to the bank of the river. The comparative study showed that most of the water quality parameters of the Dhaleshwari river were suitable for aquaculture of aquatic organisms as well as fishes.

  4. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms

    Science.gov (United States)

    Munang'andu, Hetron M.; Mugimba, Kizito K.; Byarugaba, Denis K.; Mutoloki, Stephen; Evensen, Øystein

    2017-01-01

    The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.

  5. Teratogenicity and embryotoxicity in aquatic organisms after pesticide exposure and the role of oxidative stress.

    Science.gov (United States)

    Pašková, Veronika; Hilscherová, Klára; Bláha, Luděk

    2011-01-01

    Many pesticides have been documented to induce embryotoxicity and teratogenicity in non-target aquatic biota such a fish, amphibians and invertebrates. Our review of the existing literature shows that a broad range of pesticides, representing several different chemical classes, induce variable toxic effects in aquatic species. The effects observed include diverse morphological malformations as well as physiological and behavioral effects. When development malformations occur, the myoskeletal system is among the most highly sensitive of targets. Myoskeletal effects that have been documented to result from pesticides were also known to interfere with the development of organ systems including the eyes or the heart and are also known to often cause lethal or sublethal edema in exposed organisms. The Physiological, behavioral, and population endpoints affected by pesticides include low or delayed hatching, growth suppression, as well as embryonal or larval mortality. The risks associated with pesticide exposure increase particularly during the spring. This is the period of time in which major pepticide applications take place, and this period unfortunately also coincides with many sensitive reproductive events such as spawning, egg laying, and early development of many aquatic organisms. Only few experimental studies with pesticides have directly linked developmental toxicity with key oxidative stress endpoints, such as lipid peroxidation, oxidative DNA damage, or modulation of antioxidant mechanisms. On the other hand, it has been documented in many reports that pesticide-related oxidative damage occurs in exposed adult fish, amphibians, and invertebrates. Moreover, the contribution of oxidative stress to the toxicity of pesticides has been emphasized in several recent review papers that have treated this topic. In conclusion, the available experimental data, augmented by several indirect lines of evidence, provide support to the concept that oxidative stress is a

  6. Design and setup of intermittent-flow respirometry system for aquatic organisms

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard; Bushnell, P.G.; Steffensen, John Fleng

    2016-01-01

    periods of closed-chamber oxygen consumption measurements with regular flush periods, accurate oxygen uptake rate measurements can be made without the accumulation of waste products, particularly carbon dioxide, which may confound results. Automating the procedure with easily available hardware......Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short...

  7. Acute Toxicity of Double-Walled Carbon Nanotubes to Three Aquatic Organisms

    Directory of Open Access Journals (Sweden)

    Lungile P. Lukhele

    2015-01-01

    Full Text Available This study investigated the toxicity of double walled carbon nanotubes (DWCNTs to three aquatic organisms, namely, Pseudokirchneriella subcapitata, Daphnia pulex, and Poecilia reticulata under the influence of exposure media properties specifically the ionic strength and organic matter represented by humic acid. Results indicated that ionic strength enhanced DWCNTs agglomeration whilst humic acid stabilized the CNTs and in turn inhibited the formation of aggregates. LC50s for D. pulex were higher at 2.81 and 4.45 mg/L for pristine and oxidised DWCNTs, respectively; however, P. reticulata had lower values of 113.64 mg/L and 214.0 mg/L for the same CNTs correspondingly. P. subcapitata had EC50s of 17.95 mg/L and 10.93 mg/L for the pristine and oxidised DWCNTs, respectively. In the presence of humic acid high DWCNTs acute toxicity towards D. pulex and P. reticulata was observed but ionic strength led to opposite effect irrespective of DWCNTs form. Both humic acid and ionic strength shielded the P. subcapitata from toxic effects of DWCNTs. Overall, our findings suggest that the toxicity of DWCNTs in the aquatic systems (i will be dependent on media properties and (ii is likely to proceed at different rates to organisms at different trophic levels.

  8. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  9. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  10. Toxicity of the veterinary sulfonamide antibiotic sulfamonomethoxine to five aquatic organisms.

    Science.gov (United States)

    Huang, Da-Ji; Hou, Jung-Hsin; Kuo, Tzong-Fu; Lai, Hong-Thih

    2014-11-01

    The purpose of this study was to investigate the acute and chronic toxicity of sulfamonomethoxine (SMM) to aquatic organisms to evaluate its impact at different trophic levels in the ecosystem. Regarding the growth inhibition of microalgae, SMM exhibited 72-h median effective concentration (EC50) values of 5.9mgL(-1) for freshwater Chlorella vulgaris and 9.7mgL(-1) for marine Isochrysis galbana. In a study on the cladocerans, SMM exhibited acute toxicity and 48-h median lethal concentrations of 48mgL(-1) for Daphnia magna and 283mgL(-1) for D. similis. An examination of chronic toxicity revealed that SMM inhibited the brook production of the cladocerans and exhibited 21-day EC50 values of 14.9mgL(-1) for D. magna and 41.9mgL(-1) for D. similis. This study investigated the potentially adverse effects of SMM on aquatic organisms and revealed that microalgae exhibited higher sensitivity to SMM than cladocerans did. The residue of SMM in water is recommended to be carefully evaluated to reduce ecological impacts after applied to cultured animals.

  11. 水产动物代谢组学%The metabolomic in aquatic organisms

    Institute of Scientific and Technical Information of China (English)

    胡铭炎; 薛良义

    2011-01-01

    现阶段对水产动物代谢提取物的检测手段很多,包括核磁共振(NMR)技术、质谱(MS)技术、气质联用(GC-MS)技术、气相色谱(GC)、高效液相色谱(HPLC)和高效毛细管电泳(HPCE)等.色谱技术是最常用的技术,而核磁共振技术是新近发展起来的一门新技术.本文重点介绍了核磁共振的基本原理,以及基于核磁共振的水产动物代谢组学在国内外的研究进展.%At present, there are many methods of measuring the metabolic extraction of aquatic organisms, including nuclear magnetic resonance (NMR) technology, mass spectrometry (MS) technology, GC-MS (Gas-chromatography-mass spectrometry) technology, high performance liquid chromatography (HPLC) and high performance capillary electrophoresis (HPCE) and so on. Chromatographic technique is commonly used and nuclear magnetic resonance technology was a new technique. This paper focuses on the basic principles of nuclear magnetic resonance and research progress of NMR-based-metabolomics in aquatic organisms.

  12. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  13. Aquatic organisms in ballasting. New international agreement; Organismos acuaticos perjudiciales en el agua de lastre. Proyecto de nuevo convenio internacional

    Energy Technology Data Exchange (ETDEWEB)

    Villnueva, F. J.

    2002-07-01

    The Committee of Protection of the Marine Environment of the International Marine Organization has been working for several years on the possible regulation on the ballasting and unballasting of ships. Different countries presented documents titled Aquatic Organisms that harm the ballast water. (Author)

  14. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    Science.gov (United States)

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment.

  15. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mikael T Ekvall

    Full Text Available Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  16. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark;

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  17. Effects of Outreach on the Prevention of Aquatic Invasive Species Spread among Organism-in-Trade Hobbyists

    Science.gov (United States)

    Seekamp, Erin; Mayer, Jessica E.; Charlebois, Patrice; Hitzroth, Greg

    2016-11-01

    Releases of aquatic organisms-in-trade by aquarists, water gardeners, and outdoor pond owners have been identified as aquatic invasive species vectors within the Laurentian Great Lakes region. The trademarked U.S. Fish and Wildlife Service Habitattitude campaign was developed in 2004 to encourage self-regulation by these groups, but little is known about its effects. We surveyed organisms-in-trade hobbyists in the eight Great Lakes states (Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin, USA) to assess their recognition of the Habitattitude campaign and their compliance with the campaign's recommended behaviors for organism purchase and disposal. Awareness of the Habitattitude campaign was low, but hobbyists that identified as both water gardeners and aquarium hobbyists were more aware of the campaign than individuals who participated in one of those hobbies. Engaged hobbyists (high aquatic invasive species awareness, concern, and knowledge) were significantly more likely than passive hobbyists (low aquatic invasive species awareness, concern, and knowledge) to make decisions about disposal of live organisms with the intention of preventing aquatic invasive species spread, were more likely to contact other hobbyists for disposal and handling advice, and were less likely to contact professionals, such as retailers. On the basis of our results, we suggest that compliance with recommended behaviors may be increased by fostering hobbyist networks; creating materials that both explain tangible, negative environmental impacts and list specific prevention behaviors; and disseminating these materials through trusted information sources and venues.

  18. Elemental composition and functional groups in soil labile organic matter fractions

    Science.gov (United States)

    Labile organic matter fractions are major components involved in nutrient cycle in soil. In this chapter, we examine three labile organic matter fraction: light fraction (LF), humic acid (HA) and fulvic acid (HA) in Alabama cotton soils (ultisol) amended with chemical fertilizer (NH4NO3) and poult...

  19. Effects of Marine Toxins on the Reproduction and Early Stages Development of Aquatic Organisms

    Directory of Open Access Journals (Sweden)

    Vítor Ramos

    2010-01-01

    Full Text Available Marine organisms, and specially phytoplankton species, are able to produce a diverse array of toxic compounds that are not yet fully understood in terms of their main targets and biological function. Toxins such as saxitoxins, tetrodotoxin, palytoxin, nodularin, okadaic acid, domoic acid, may be produced in large amounts by dinoflagellates, cyanobacteria, bacteria and diatoms and accumulate in vectors that transfer the toxin along food chains. These may affect top predator organisms, including human populations, leading in some cases to death. Nevertheless, these toxins may also affect the reproduction of aquatic organisms that may be in contact with the toxins, either by decreasing the amount or quality of gametes or by affecting embryonic development. Adults of some species may be insensitive to toxins but early stages are more prone to intoxication because they lack effective enzymatic systems to detoxify the toxins and are more exposed to the toxins due to a higher metabolic growth rate. In this paper we review the current knowledge on the effects of some of the most common marine toxins on the reproduction and development of early stages of some organisms.

  20. Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview.

    Science.gov (United States)

    Vale, Gonçalo; Mehennaoui, Kahina; Cambier, Sebastien; Libralato, Giovanni; Jomini, Stéphane; Domingos, Rute F

    2016-01-01

    The enormous investments in nanotechnology have led to an exponential increase of new manufactured nano-enabled materials whose impact in the aquatic systems is still largely unknown. Ecotoxicity and nanosafety studies mostly resulted in contradictory results and generally failed to clearly identify biological patterns that could be related specifically to nanotoxicity. Generation of reactive oxygen species (ROS) is one of the most discussed nanotoxicity mechanism in literature. ROS can induce oxidative stress (OS), resulting in cyto- and genotoxicity. The ROS overproduction can trigger the induction of anti-oxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidases (GPx), which are used as biomarkers of response. A critical overview of the biochemical responses induced by the presence of NPs on freshwater organisms is performed with a strong interest on indicators of ROS and general stress. A special focus will be given to the NPs transformations, including aggregation, and dissolution, in the exposure media and the produced biochemical endpoints.

  1. Thermal effects on aquatic organisms: an annotated bibliography of the 1977 literature

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (comp.)

    1978-12-01

    This bibliography, containing 537 references from the 1977 literature, is the seventh in a series of annotated bibliographies on the effects of heat on aquatic organisms. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. References in the bibliography are divided into three subject categories: marine systems, freshwater systems, and estuaries. The references are arranged alphabetically by first author. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title (alphabetical listing of keywords-in-context of nontrivial words in the title).

  2. Aquatic Global Passive Sampling (AQUA-GAPS) Revisited: First Steps toward a Network of Networks for Monitoring Organic Contaminants in the Aquatic Environment.

    Science.gov (United States)

    Lohmann, Rainer; Muir, Derek; Zeng, Eddy Y; Bao, Lian-Jun; Allan, Ian J; Arinaitwe, Kenneth; Booij, Kees; Helm, Paul; Kaserzon, Sarit; Mueller, Jochen F; Shibata, Yasuyuki; Smedes, Foppe; Tsapakis, Manolis; Wong, Charles S; You, Jing

    2017-02-07

    Organic contaminants, in particular persistent organic pollutants (POPs), adversely affect water quality and aquatic food webs across the globe. As of now, there is no globally consistent information available on concentrations of dissolved POPs in water bodies. The advance of passive sampling techniques has made it possible to establish a global monitoring program for these compounds in the waters of the world, which we call the Aquatic Global Passive Sampling (AQUA-GAPS) network. A recent expert meeting discussed the background, motivations, and strategic approaches of AQUA-GAPS, and its implementation as a network of networks for monitoring organic contaminants (e.g., POPs and others contaminants of concern). Initially, AQUA-GAPS will demonstrate its operating principle via two proof-of-concept studies focused on the detection of legacy and emerging POPs in freshwater and coastal marine sites using both polyethylene and silicone passive samplers. AQUA-GAPS is set up as a decentralized network, which is open to other participants from around the world to participate in deployments and to initiate new studies. In particular, participants are sought to initiate deployments and studies investigating the presence of legacy and emerging POPs in Africa, Central, and South America.

  3. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    Science.gov (United States)

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  4. Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments

    Science.gov (United States)

    Alvarez, D.A.; Petty, J.D.; Huckins, J.N.; Jones-Lepp, T. L.; Getting, D.T.; Goddard, J.P.; Manahan, S.E.

    2004-01-01

    Increasingly it is being realized that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the concentrations of hydrophilic organic contaminants including new generation pesticides, pharmaceuticals, personal care products, and many chemicals associated with household, industrial, and agricultural wastes. To address this issue, we developed a passive in situ sampling device (the polar organic chemical integrative sampler [POCIS]) that integratively concentrates trace levels of complex mixtures of hydrophilic environmental contaminants, enables the determination of their time-weighted average water concentrations, and provides a method of estimating the potential exposure of aquatic organisms to the complex mixture of waterborne contaminants. Using a prototype sampler, linear uptake of selected herbicides and pharmaceuticals with log KowS < 4.0 was observed for up to 56 d. Estimation of the ambient water concentrations of chemicals of interest is achieved by using appropriate uptake models and determination of POCIS sampling rates for appropriate exposure conditions. Use of POCIS in field validation studies targeting the herbicide diuron in the United Kingdom resulted in the detection of the chemical at estimated concentrations of 190 to 600 ng/L. These values are in agreement with reported levels found in traditional grab samples taken concurrently.

  5. sAC from aquatic organisms as a model to study the evolution of acid/base sensing.

    Science.gov (United States)

    Tresguerres, Martin

    2014-12-01

    Soluble adenylyl cyclase (sAC) is poised to play multiple physiological roles as an acid/base (A/B) sensor in aquatic organisms. Many of these roles are probably similar to those in mammals; a striking example is the evolutionary conservation of a mechanism involving sAC, carbonic anhydrase and vacuolar H⁺-ATPase that acts as a sensor system and regulator of extracellular A/B in shark gills and mammalian epididymis and kidney. Additionally, the aquatic environment presents unique A/B and physiological challenges; therefore, sACs from aquatic organisms have likely evolved distinct kinetic properties as well as distinct physiological roles. sACs from aquatic organisms offer an excellent opportunity for studying the evolution of A/B sensing at both the molecular and whole organism levels. Moreover, this information could help understand and predict organismal responses to environmental stress based on mechanistic models.This article is part of a Special Issue entitled "The Role of Soluble Adenylyl Cyclase in Health and Disease," guest edited by J. Buck and L. R. Levin.

  6. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus

    NARCIS (Netherlands)

    Laarhoven, Bob; Elissen, H.J.H.; Temmink, H.; Buisman, C.J.N.

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water qu

  7. The role of dissolved organic matters in the aquatic photodegradation of atenolol

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Ji, Yuefei; Zhou, Lei; Zhang, Ya [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The main reactive species in the photosensitization between atenolol and DOMs is {center_dot}OH. Black-Right-Pointing-Pointer Dissolved organic matter (DOM) can quench {center_dot}OH and screen light. Black-Right-Pointing-Pointer High yield of {center_dot}OH was observed with iron ions and DOM coexisting under irradiation. Black-Right-Pointing-Pointer SRFA can promote addition of {center_dot}OH on aromatic ring. - Abstract: Atenolol (ATL) is a photostable and hydrolysis resistant beta-blocker and has been frequently detected in natural water. In this study, mechanism on aquatic photodegradation of ATL was investigated with an emphasis on the role of dissolved organic matters (DOMs) as well as other natural water compositions (nitrate, bicarbonate and ferric ions). Significant acceleration of photodegradtion of ATL was observed in the presence of each DOMs added, namely Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA), Nordic Lake Fulvic Acid (NOFA) and Nordic Lake Humic Acid (NOHA). Hydroxyl radical ({center_dot}OH) was determined as the main reactive species in this process, instead of singlet oxygen or excited triplet of DOM. Addition of these four DOMs all inhibited photodegradation of ATL in nitrate solutions through reducing nitrated-derived {center_dot}OH and screening photons absorbed by nitrate. No loss of ATL was detected in bicarbonate solution with or without DOMs. Bicarbonate exhibited a scavenger of {center_dot}OH derived from DOMs. However, in the presence of iron species, photodegradation of ATL was significantly enhanced by the addition of each DOM, due to the high yield of {center_dot}OH in the photoprocess of Fe(III)-DOM complex. The photoproducts distribution of ATL demonstrated that SRFA promote the hydroxylation on aromatic ring in the presence of nitrate and reduce the ketone moiety to alcohol in the system of ferric ions. Our findings indicate that DOMs should be considered in

  8. Unexpected toxicity to aquatic organisms of some aqueous bisphenol A samples treated by advanced oxidation processes.

    Science.gov (United States)

    Tišler, Tatjana; Erjavec, Boštjan; Kaplan, Renata; Şenilă, Marin; Pintar, Albin

    2015-01-01

    In this study, photocatalytic and catalytic wet-air oxidation (CWAO) processes were used to examine removal efficiency of bisphenol A from aqueous samples over several titanate nanotube-based catalysts. Unexpected toxicity of bisphenol A (BPA) samples treated by means of the CWAO process to some tested species was determined. In addition, the CWAO effluent was recycled five- or 10-fold in order to increase the number of interactions between the liquid phase and catalyst. Consequently, the inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated higher concentrations of some toxic metals like chromium, nickel, molybdenum, silver, and zinc in the recycled samples in comparison to both the single-pass sample and the photocatalytically treated solution. The highest toxicity of five- and 10-fold recycled solutions in the CWAO process was observed in water fleas, which could be correlated to high concentrations of chromium, nickel, and silver detected in tested samples. The obtained results clearly demonstrated that aqueous samples treated by means of advanced oxidation processes should always be analyzed using (i) chemical analyses to assess removal of BPA and total organic carbon from treated aqueous samples, as well as (ii) a battery of aquatic organisms from different taxonomic groups to determine possible toxicity.

  9. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties.

    Science.gov (United States)

    McNeill, Kristopher; Canonica, Silvio

    2016-11-09

    Excited triplet states of chromophoric dissolved organic matter ((3)CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of (3)CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize (3)CDOM*. Information on (3)CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing (3)CDOM* using transient spectroscopic methods. Singlet molecular oxygen ((1)O2), which is a product of the reaction between (3)CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of (3)CDOM*. There are two major modes of reaction of (3)CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of (3)CDOM* can be achieved.

  10. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms.

    Science.gov (United States)

    Solé, Montserrat; Sanchez-Hernandez, Juan C

    2015-12-01

    Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides.

  11. Plastic as a carrier of POPs to aquatic organisms: a model analysis.

    Science.gov (United States)

    Koelmans, Albert A; Besseling, Ellen; Wegner, Anna; Foekema, Edwin M

    2013-07-16

    It has been hypothesized that persistent organic pollutants (POPs) in microplastic may pose a risk to aquatic organisms. Here we develop and analyze a conceptual model that simulates the effects of plastic on bioaccumulation of POPs. The model accounts for dilution of exposure concentration by sorption of POPs to plastic (POP "dilution"), increased bioaccumulation by ingestion of plastic-containing POPs ("carrier"), and decreased bioaccumulation by ingestion of clean plastic ("cleaning"). The model is parametrized for the lugworm Arenicola marina and evaluated against recently published bioaccumulation data for this species from laboratory bioassays with polystyrene microplastic. Further scenarios include polyethylene microplastic, nanosized plastic, and open marine systems. Model analysis shows that plastic with low affinity for POPs such as polystyrene will have a marginal decreasing effect on bioaccumulation, governed by dilution. For stronger sorbents such as polyethylene, the dilution, carrier, and cleaning mechanism are more substantial. In closed laboratory bioassay systems, dilution and cleaning dominate, leading to decreased bioaccumulation. Also in open marine systems a decrease is predicted due to a cleaning mechanism that counteracts biomagnification. However, the differences are considered too small to be relevant from a risk assessment perspective.

  12. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    Science.gov (United States)

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  13. Carbohydrates in size fractionated dissolved organic matter in a station of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, L.; DeSouza, F.; Bhosle, N.B.

    of the dissolved organic matter (DOM) were collected using Amicon stirred Ultrafiltration Cell, and analysed for dissolved organic carbon (UDOC), total carbohydrates (UTCHO) and neutral sugars (UNS). UDOC concentrations were relatively higher in HMW fraction...

  14. Uptake of water-soluble gasoline fractions and their effect on oxygen consumption in aquatic stages of the mosquito (Ades aegypti (L. ))

    Energy Technology Data Exchange (ETDEWEB)

    Berry, W.O.; Brammer, J.D.; Bee, D.E.

    1978-01-01

    Oxygen consumption in aquatic stages of the mosquito (Aedes aegypti (L)) was measured following a 24-h pretreatment in sublethal doses of water-soluble fractions from whole gasoline or its individual components (benzene, toluene and xylenes). A significant increase in O/sub 2/ consumption occurred in treated-fed larvae following exposure to water-soluble fractions from either 1 ml gasoline/liter water or a mixture of 0.2 ml benzene and 0.2 ml toluene/litre water. No significant differences in respiration were observed in either unfed larvae or fed larvae pretreated with the separate fractions or combinations of xylenes with benzene or toluene. Uptake and discharge of toluene by 4th-instar larvae were measured in solutions containing water-soluble amounts of H/sup 3/ toluene alone and in combination with benzene. These experiments suggest that water-soluble gasoline fractions are taken up by food particles and assimilated by the insects via feeding. The respiratory response of the larvae appears to be due to a synergistic effect of benzene and toluene that may affect cell permeability.

  15. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Science.gov (United States)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  16. Organic contaminants in Great Lakes tributaries: Prevalence and potential aquatic toxicity

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven R.; De Cicco, Laura A.; Lenaker, Peter L.; Lutz, Michelle A; Sullivan, Daniel J.; Richards, Kevin D.

    2016-01-01

    Organic compounds used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewer overflows, among other sources. Concentrations of these organic waste compounds (OWCs) in some Great Lakes tributaries indicate a high potential for adverse impacts on aquatic organisms. During 2010–13, 709 water samples were collected at 57 tributaries, together representing approximately 41% of the total inflow to the lakes. Samples were collected during runoff and low-flow conditions and analyzed for 69 OWCs, including herbicides, insecticides, polycyclic aromatic hydrocarbons, plasticizers, antioxidants, detergent metabolites, fire retardants, non-prescription human drugs, flavors/fragrances, and dyes. Urban-related land cover characteristics were the most important explanatory variables of concentrations of many OWCs. Compared to samples from nonurban watersheds ( 15% urban land cover) had nearly four times the number of detected compounds and four times the total sample concentration, on average. Concentration differences between runoff and low-flow conditions were not observed, but seasonal differences were observed in atrazine, metolachlor, DEET, and HHCB concentrations. Water quality benchmarks for individual OWCs were exceeded at 20 sites, and at 7 sites benchmarks were exceeded by a factor of 10 or more. The compounds with the most frequent water quality benchmark exceedances were the PAHs benzo[a]pyrene, pyrene, fluoranthene, and anthracene, the detergent metabolite 4-nonylphenol, and the herbicide atrazine. Computed estradiol equivalency quotients (EEQs) using only nonsteroidal endocrine-active compounds indicated medium to high risk of estrogenic effects (intersex or vitellogenin induction) at 10 sites. EEQs at 3 sites were comparable to values reported in effluent. This multifaceted study is the largest, most comprehensive assessment of the

  17. Opposing effects of different soil organic matter fractions on crop yields.

    Science.gov (United States)

    Wood, Stephen A; Sokol, Noah; Bell, Colin W; Bradford, Mark A; Naeem, Shahid; Wallenstein, Matthew D; Palm, Cheryl A

    2016-10-01

    Soil organic matter is critical to sustainable agriculture because it provides nutrients to crops as it decomposes and increases nutrient- and water-holding capacity when built up. Fast- and slow-cycling fractions of soil organic matter can have different impacts on crop production because fast-cycling fractions rapidly release nutrients for short-term plant growth and slow-cycling fractions bind nutrients that mineralize slowly and build up water-holding capacity. We explored the controls on these fractions in a tropical agroecosystem and their relationship to crop yields. We performed physical fractionation of soil organic matter from 48 farms and plots in western Kenya. We found that fast-cycling, particulate organic matter was positively related to crop yields, but did not have a strong effect, while slower-cycling, mineral-associated organic matter was negatively related to yields. Our finding that slower-cycling organic matter was negatively related to yield points to a need to revise the view that stabilization of organic matter positively impacts food security. Our results support a new paradigm that different soil organic matter fractions are controlled by different mechanisms, potentially leading to different relationships with management outcomes, like crop yield. Effectively managing soils for sustainable agriculture requires quantifying the effects of specific organic matter fractions on these outcomes.

  18. The role of storm flows in concentration of pesticides associated with particulate and dissolved fractions as a threat to aquatic ecosystems - Case study: the agricultural watershed of Save river (Southwest of France

    Directory of Open Access Journals (Sweden)

    Taghavi L.

    2011-02-01

    Full Text Available Measurement of the fluxes of pesticides was carried out for a year, ending in March 2009, in the Save catchment, in the vicinity of Toulouse. The hydrograph separation technique was used to evaluate the respective contribution of stormflow and baseflow in transport of 12 pesticide molecules. Transport of over 59% of pesticides and their controlling factors such as total suspended matter (TSM, particulate organic carbon (POC and dissolved organic carbon (DOC occurred during storm periods. Hysteresis patterns could be observed in the concentration-discharge relationships only for some molecules between rising and falling periods of the storm hydrograph. Clockwise hysteresis was noticed for low to moderately soluble pesticide molecules and for particulate fractions, which explains the role of surface runoff in pesticide displacement. In contrast, anticlockwise hysteresis was registered for soluble molecules and dissolved fractions, explaining the role of subsurface flows and soil leaching processes. The important role of TSM, POC and DOC in pesticide transport was clearly established. We also came to the conclusion that the role of stormy periods in pesticide movement and their controlling factors worked as a threat to aquatic ecosystems. And there was a positive relation between riverine TSM, POC, DOC and pesticides according to pesticide properties.

  19. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    Science.gov (United States)

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater.

  20. Analysis of aquatic-phase natural organic matter by optimized LDI-MS method

    KAUST Repository

    Wang, Renqi

    2014-01-26

    The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200-1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200-15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms

    Science.gov (United States)

    Laramie, Matthew B.; Pilliod, David S.; Goldberg, Caren S.; Strickler, Katherine M.

    2015-09-29

    Environmental DNA (eDNA) analysis is an effective method of determining the presence of aquatic organisms such as fish, amphibians, and other taxa. This publication is meant to guide researchers and managers in the collection, concentration, and preservation of eDNA samples from lentic and lotic systems. A sampling workflow diagram and three sampling protocols are included as well as a list of suggested supplies. Protocols include filter and pump assembly using: (1) a hand-driven vacuum pump, ideal for sample collection in remote sampling locations where no electricity is available and when equipment weight is a primary concern; (2) a peristaltic pump powered by a rechargeable battery-operated driver/drill, suitable for remote sampling locations when weight consideration is less of a concern; (3) a 120-volt alternating current (AC) powered peristaltic pump suitable for any location where 120-volt AC power is accessible, or for roadside sampling locations. Images and detailed descriptions are provided for each step in the sampling and preservation process.

  2. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  3. Copper and Zinc Enrichment in Different Size Fractions of Organic Matter from Polluted Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming-Kui; KE Zi-Xia

    2004-01-01

    Bioavailability of heavy metals in soil organic matter depends on its components. Characterization of heavy metal distributions in different fractions of soil organic matter is needed for better understanding of the fate of heavy metals. This study investigated the accumulation and partitioning of copper and zinc among different size particulate organic matter (POM) fractions in polluted soils from a former iron ore processing site in western Shaoxing County, Zhejiang Province. Physical fractionations were carried out to separate soil primary particles according to their size and density. Copper and Zn had a heterogeneous distribution among soil particle fractions. Copper and Zn were significantly (p < 0.05) enriched in the POM fractions. > 0.05 mm POM and < 0.05 mm fine soil fractions were mainly responsible for Cu and Zn retention in soils. The POM fraction contained up to 1 322 mg Cu kg-1 and 1 115 mg Zn kg-1 and the fine soil fraction contained up to 422 mg Cu kg-1 and 537 mg Zn kg-1. The total POM fraction was responsible for 15.8%-41.2% and 12.2%-31.7% of the total amount of Cu and Zn, respectively, in the polluted soils. The percentages of Cu and Zn associated with organic matter in < 0.05 mm fine soil fractions for the polluted soils ranged from 14.1% to 24.5%, and 5.4% to 15.8%, respectively. Accumulation of soil organic matter could increase enrichment of Gu (or Zn) in the POM fractions. Also, Cu provided a greater enrichment in the POM fractions than Zn.

  4. Removal of high organic loads from winery wastewater by aquatic plants.

    Science.gov (United States)

    Zimmels, Y; Kirzhner, F; Schreiber, J

    2008-09-01

    Laboratory- and field-scale purification tests of raw and diluted winery wastewater (WWW) were carried out using aquatic plants at high organic loads. The laboratory tests were performed using artificial light at 1800 to 1900 lux. The objective of the current study was to define the potential of floating and emergent aquatic macrophytes and the microorganisms attached to their roots, to reduce high organic loads that characterize WWW, thereby providing, for these effluents, an effective treatment and management system. These microorganisms are believed to have a major role in the treatment process. In this context, the potential of floating and emergent macrophytes to improve the water quality of raw compared with diluted WWW was evaluated. In raw WWW (chemical oxygen demand [COD] 5.6 g/L),growth inhibition of both water hyacinth (Eichhornia crassipes) and water pennywort (Hydrocotyle umbellata) was observed. A 1:1 dilution of WWW with fresh (tap) water facilitated growth of these plants. At this dilution level, growth of pennywort was limited, while that of water hyacinth was robust. In terms of reductions in biochemical oxygen demand, COD, and total suspended solids, both water hyacinth and pennywort performed better in diluted compared with raw WWW. At 1:1 and 1:3 dilution, 95.9 to 97% of the COD was removed after 23 days, in the presence of Hydrocotyle and Eichhornia plants and aeration. The capacity of new emergent plants to remove high organic loads from WWW, at enhanced kinetics, was demonstrated. This unique property was tested and compared with the role of the gravel media that support growth of the high-capacity emergent plants. In the presence of reed and salt marsh plants, 83 to 99% of the COD was removed within a period of 24 to 29 days, at 1.5:1 dilution. The new emergent plants proved to be effective, even at record high levels of COD. At an initial level of 16,460 mg/L, the COD was brought down to 2870 mg/L after 24 days (82.6% removal), while 12

  5. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarily attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.

  6. Characterization and Phenanthrene Sorption of Natural and Pyrogenic Organic Matter Fractions.

    Science.gov (United States)

    Jin, Jie; Sun, Ke; Wang, Ziying; Yang, Yan; Han, Lanfang; Xing, Baoshan

    2017-03-07

    Pyrogenic humic acid (HA) is released into the environment during the large-scale application of biochar. However, the biogeochemistry of pyrogenic organic matter (PyOM) fractions and their sorption of hydrophobic organic compounds (HOCs) are poorly understood in comparison with natural organic matter (NOM) fractions. HA and humin (HM) fractions isolated from soils and the oxidized biochars were characterized. Sorption of phenanthrene (PHE) by these fractions was also examined. The characterization results demonstrate that pyrogenic HAs are different from natural HAs, with the former having lower atomic H/C ratios, more abundant aromatic C, and higher concentrations of surface carboxylic groups. Compared with the fresh biochars, the Koc of PHE on their oxidized biochars, pyrogenic HA, and HM fractions were undiminished, which is encouraging for the use of biochar in soil remediation. The PyOM fractions exhibited stronger nonlinear sorption than the NOM fractions. In addition, the PyOM fractions had higher sorption capacity than the NOM fractions due to their low polar C content and high aryl C content. The results obtained from this work will shed new light on the impact of the addition of biochar on the biogeochemistry of soil organic matter and on the fate of HOCs in biochar-amended soil.

  7. Uptake and toxic effects of surface modified nanomaterials in freshwater aquatic organisms

    Science.gov (United States)

    Seda, Brandon Casey

    Nanomaterials are a class of materials with unique properties due to their size, and the association of these properties with the toxicity of nanomaterials is poorly understood. The present study assessed the toxic effects of stable aqueous colloidal suspensions of three distinctly different classes of nanomaterials in aquatic organisms. The fullerene, C70, was stabilized through non-covalent surface modification with gallic acid. Toxicity of C70-gallic acid was confirmed to exhibit similar toxic effects as C60-fullerene, including changes in antioxidative processes in Daphnia magna. Daphnia magna fecundity was significantly reduced in 21d bioassays at C70-gallic concentrations below quantifiable limits (0.03 mg/L C70). Antioxidant enzyme activities of glutathione peroxidase and superoxide dismutase as well as lipid peroxidation suggested that exposed organisms experienced oxidative stress. Carbon dots are a class of nanomaterials proposed for use as nontoxic alternatives to semiconductor quantum dots for photoluminescent applications, because of the difference in toxicity of their core components: carbon as opposed to heavy metals. In vivo analysis of treated organisms by confocal fluorescence microscopy revealed carbon dots were absorbed and systemically distributed regardless of particle size. The present study did not find any evidence of acute toxicity at concentrations up to 10mg/L carbon dots. These concentrations also failed to produce negative effects in Ceriodaphnia dubia bioassays to predict chronic toxicity. Carbon dots also failed to elicit developmental toxic effects in zebrafish. The toxic effects of semiconductor quantum dots have been partially attributed to the release of heavy metals with their degradation, particularly cadmium. Laser ablation inductively coupled mass spectrometry was used to compare the uptake of cadmium, selenium and zinc in Daphnia magna treated to CdSe/ZnS quantum dots or CdCl2. These quantum dots were observed to accumulate

  8. Development of polar organic integrative samplers for analysis of pharmaceuticals in aquatic systems.

    Science.gov (United States)

    Togola, Anne; Budzinski, Hélène

    2007-09-01

    Integrative passive sampling is a new approach developed for environmental monitoring. Nowadays, the evaluations of pollution level are obtained by important sampling campaigns using spot samplings that give a snapshot of the aquatic system contamination state. An alternative way is to achieve a time weighted average concentration using passive samplers. The use of polar organic chemical integrative sampling (POCIS) has been recently documented for the detection of pharmaceuticals in the environment (Alvarez, D.; Petty, J. D.; Huckins, J. N.; Jones-Lepp, T. L.; Getting, D. T.; Goddard, J. P.; Manahan, S. E. Environ. Toxicol. Chem. 2004, 23, 1640-1648 (ref 1). Jones-Lepp, T. L.; Alvarez, D.; Petty, J. D.; Huckins, J. Arch. Environ. Contam. Toxicol. 2004, 47, 427-739 (ref 2). Petty, J. D.; Huckins, J. N.; Alvarez, D.; Brumbaugh, W. G.; Cranor, W. L.; Gale, R. W.; Rastall, A. C.; Jones-Lepp, T. L.; Leiker, T. J.; Rostad, C. E.; Furlong, E. T. Chemosphere 2004, 54, 695-705 (ref 3)). There is a need for laboratory data to extend the use of this type of tool to new compounds. The aim of this study was to determine the sampling rates (Rs; expressed as effective volumes of water extracted daily) of POCIS devices for 14 pharmaceuticals in several conditions of temperature, salinity, and analyte concentration. These values are influenced by significant changes in water temperature and salinity. Overall, POCIS Rs values were independent from aqueous concentrations. After laboratory experiments, an environmental field study has been performed, implementing POCIS devices in the Seine estuary (North Atlantic coast of France) and testing the qualitative and quantitative application of POCIS devices on the contaminated system. The suitability of the devices for monitoring multiple media under a wide range of environmental conditions has also been discussed. The uniformity or reproducibility of the sampling matrix and, on the other hand, the ability to detect compounds at low

  9. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO

    NARCIS (Netherlands)

    Hoins, M.; Van de Waal, D.B.; Eberlein, T.; Reichart, G.-J.; Rost, B.; Sluijs, A.

    2015-01-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, h

  10. Changes in different organic matter fractions during conventional treatment and advanced treatment

    Institute of Scientific and Technical Information of China (English)

    Chao Chen; Xiaojian Zhang; Lingxia Zhu; Wenjie He; Hongda Han

    2011-01-01

    XAD-8 resin isolation of organic matter in water was used to divide organic matter into the hydrophobic and hydrophilic fractions.A pilot plant was used to investigate the change in both fractions during conventional and advanced treatment processes.The treatment of hydrophobic organics (HPO), rather than hydrophilic organicas (HPI), should carry greater emphasis due to HPO's higher trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP).The removal of hydrophobic matter and its transmission into hydrophilic matter reduced ultimate DBP yield during the disinfection process.The results showed that sand filtration, ozonation, and biological activated carbon (BAC) filtration had distinct influences on the removal of both organic fractions.Additionally, the combination of processes changed the organic fraction proportions present during treatment.The use of ozonation and BAC maximized organic matter removal efficiency, especially for the hydrophobic fraction.In sum, the combination of pre-ozonation,conventional treatment, and O3-BAC removed 48% of dissolved organic carbon (DOC), 60% of HPO, 30% of HPI, 63% of THMFP,and 85% of HAAFP.The use of conventional treatment and O3-BAC without pre-ozonation had a comparable performance, removing 51% of DOC, 56% of HPO, 45% of HPI, 61% of THMFP, and 72% of HAAFP.The effectiveness of this analysis method indicated that resin isolation and fractionation should be standardized as an applicable test to help assess water treatment process efficiency.

  11. Characterization of dissolved organic matter fractions from Lake Hongfeng, Southwestern China Plateau

    Institute of Scientific and Technical Information of China (English)

    WANG Liying; WU Fengchang; ZHANG Runyu; LI Wen; LIAO Haiqing

    2009-01-01

    With XAD-series and ion exchange resins, dissolved organic matter (DOM) from Lake Hongfeng in Southwestern China Plateau was isolated into 6 fractions, i.e., humic acid (HA), fulvic acid (FA), hydrophobic neutrals (HON), hydrophilic acids (HIA), hydrophilic bases (HIB) and hydrophilic neutrals (HIN). Those fractions were characterized by high performance size exclusion chromatography, fluorescence spectroscopy and UV absorbance. Among the 6 fractions, FA was predominant and accounted for 51% of the total DOM. The hydrophobic fractions had larger molecular weight (1688--2355 Da) than hydrophilic fractions (1338--1928 Da). A strong correlation was observed between specific UV absorbance at 280 nm, E2/E3 (absorbance at 250 nm to 365 nm), and the molecular weight for DOM fractions. UV-Vis fulvic-like fluorescence peaks were found in all fractions. Protein-like fluorescence peaks existed in HON may indicate that microbial activity was severely in Lake Hongfeng. There was a significant relationship between fluorescence intensities and specific UV absorbance at 254 nm for those DOM fractions, suggesting their similar luminescence characteristics. The values of fluorescence index (?450/500) indicated that hydrophobic fractions may derive from terrestrial sources, in contrast to the hydrophilic fractions from microbial and terrestrial origins. Those results suggest that there were inter-relationships between molecular weight, fluorescence and absorbance characteristics, and also subtle consistencies between the hydrophilic and hydrophobic properties and sources for the 6 fractions from Lake Hongfeng.

  12. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  13. Effect of size-fractionation dissolved organic matter on the mobility of prometryne in soil.

    Science.gov (United States)

    Chen, Guang; Lin, Chao; Chen, Liang; Yang, Hong

    2010-05-01

    Import of organic materials in the form of compost, sludge or plant residues introduces large amounts of dissolved organic matter (DOM) into soils. DOM as a dynamic soil component affects the behaviors of organic pollutants. Different DOM constituents may affect herbicide action in a different way. However, the process of interaction between the distinct DOM-fractions and herbicides is largely unknown. In this study, DOM was separated by size-fractionation into three molecular size groups: MW14000 Da. Effects of DOM-fractions on prometryne sorption/desorption and mobility were analyzed using approaches of batch experiments, soil column and soil thin-layer chromatography. Application of varied DOM-fractions at 50mg DOCL(-1) to the soil reduced the sorption and increased desorption of prometryne. DOM-fraction with MW>14000 Da appeared most effective in prometryne mobilization in the soil than any other fractions. Finally, DOM-fractions were characterized by chemical analyses, fourier transformed infrared spectroscopy (FT-IR) and excitation-emission matrices (EEMs) fluorescence spectroscopy. Our studies revealed that the high-molecular weight fraction contained more aromatic framework and unsaturated structure that was most likely the dominant factor modulating the behavior of prometryne in soils.

  14. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zurita, Jorge L. [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Jos, Angeles [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Peso, Ana del; Salguero, Manuel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Camean, Ana M. [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Lopez-Artiguez, Miguel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Repetto, Guillermo [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain)], E-mail: repetto@us.es

    2007-11-15

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC{sub 50} of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress ({alpha}-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation.

  15. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line.

    Science.gov (United States)

    Zurita, Jorge L; Jos, Angeles; del Peso, Ana; Salguero, Manuel; Cameán, Ana M; López-Artíguez, Miguel; Repetto, Guillermo

    2007-11-15

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC(50) of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress (alpha-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation.

  16. DISTRIBUTION OF ORGANIC CARBON IN DIFFERENT SOIL FRACTIONS IN ECOSYSTEMS OF CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Jean Dalmo de Oliveira Marques

    2015-02-01

    Full Text Available Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM was fractionated and soil C stocks were estimated in primary forest (PF, pasture (P, secondary succession (SS and an agroforestry system (AFS. Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction, IALF (intra-aggregate light fraction, F-sand (sand fraction, F-clay (clay fraction and F-silt (silt fraction. The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS > (98.4 Mg ha-1 of C - FP > (92.9 Mg ha-1 of C - SS > (64.0 Mg ha-1 of C - P. The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.

  17. Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste.

    Science.gov (United States)

    Pecorini, Isabella; Baldi, Francesco; Carnevale, Ennio Antonio; Corti, Andrea

    2016-10-01

    The aim of this research was to enhance the anaerobic biodegradability and methane production of two synthetic Organic Fractions of Municipal Solid Waste with different lignocellulosic contents by assessing microwave and autoclave pre-treatments. Biochemical Methane Potential assays were performed for 21days. Changes in the soluble fractions of the organic matter (measured by soluble chemical oxygen demand, carbohydrates and proteins), the first order hydrolysis constant kh and the cumulated methane production at 21days were used to evaluate the efficiency of microwaving and autoclaving pretreatments on substrates solubilization and anaerobic digestion. Microwave treatment led to a methane production increase of 8.5% for both the tested organic fractions while autoclave treatment had an increase ranging from 1.0% to 4.4%. Results showed an increase of the soluble fraction after pre-treatments for both the synthetic organic fractions. Soluble chemical oxygen demand observed significant increases for pretreated substrates (up to 219.8%). In this regard, the mediocre results of methane's production led to the conclusion that autoclaving and microwaving resulted in the hydrolysis of a significant fraction of non-biodegradable organic substances recalcitrant to anaerobic digestion.

  18. The Life Cycle of Mercury Within the Clear Lake Aquatic Ecosystem: From Ore to Organism

    Science.gov (United States)

    Suchanek, T. H.; Suchanek, T. H.; Nelson, D. C.; Nelson, D. C.; Zierenberg, R. A.; King, P.; King, P.; McElroy, K.; McElroy, K.

    2001-12-01

    Clear Lake (Lake County) is located in the geologically active Clear Lake volcanics mercury (Hg) bearing Franciscan formation within the Coast Range of California, which includes over 300 abandoned Hg mines and prospects. Intermittent mining at the Sulphur Bank Mercury Mine (from 1872-1957), now a USEPA SuperFund site, has resulted in approximately 100 metric tonnes of Hg being deposited into the aquatic ecosystem of Clear Lake, with sediment concentrations of total-Hg as high as 650 mg/kg (parts per million = ppm) near the mine, making Clear Lake one of the most Hg contaminated lakes in the world. As a result, largemouth bass and other top predatory fish species often exceed both the Federal USFDA recommended maximum recommended concentrations of 1.0 ppm and the State of California level of 0.5 ppm. Acid rock drainage leaches Hg and high concentrations of sulfate from the mine site through wasterock and subsurface conduits through subsediment advection and eventually upward diffusion into lake sediments and water. When mineral-laden pH 3 fluids from the mine mix with Clear Lake water (pH 8), an alumino-silicate precipitate (floc) is produced that promotes the localized production of toxic methyl Hg. Floc "hot spots" in sediments near the mine exhibit low pH, high sulfate, anoxia and high organic loading which create conditions that promote Hg methylation by microbial activity, especially in late summer and fall. Wind-driven currents transport methyl-Hg laden floc particles throughout Clear Lake, where they are consumed by plankton and benthic invertebrates and bioaccumulated throughout the food web. While Clear Lake biota have elevated concentrations of methyl-Hg, they are not as elevated as might be expected based on the total Hg loading into the lake. A science-based management approach, utilizing over 10 years of data collected on Hg cycling within the physical and biological compartments of Clear Lake, is necessary to affect a sensible remediation plan.

  19. Aquatic Organisms and Petroleum Hydrocarbon Degrading Bacteria Associated with Their Digestive System

    Directory of Open Access Journals (Sweden)

    Janina Šyvokienė

    2013-12-01

    Full Text Available Laboratory investigation was carried out on the abundance and composition of bacteria in the digestive system of a total of 35 specimens, including bivalve molluscs, i.e. swan mussel Anodonta cygnea (Linnaeus, 1758 from Lake Spėra (Širvintos district and swollen river mussel Unio tumidus (Philipson, 1788 from the Curonian Lagoon near Juodkrantė, zebra mussel (Dreissena polymorpha from the Curonian Lagoon near Juodkrantė and an anostracan – Chirocephalus josephinae (Grube, 1853 from a pond in Ilčiukai village, Utena district, and in the water of related water bodies. Studies on bivalve molluscs (swan mussel and swollen river mussel, zebra mussel and an anostracan – Chirocephalus josephinae, as well as microbiological investigation of water demonstrated that the number of microorganisms in the digestive system of mollusc and anostracan species fluctuated and varied between different species and water bodies. The greatest percentage of HDB among total heterotrophic bacteria was found in the digestive system of swollen river mussels (21.53% and in zebra mussels (19.99% caught in the Curonian Lagoon and in the water of the lagoon (24%. A considerably smaller percentage of HDB was detected in the digestive system of swan mussels from Lake Spėra (17.6% and in the water of the lake (16.66%. The smallest percentage of HDB was found in the digestive system of Chirocephalus josephinae (6.63% and in the water of the Ilčiukai pond (2.72%. According to the values of abundance of petroleum hydrocarbon-degrading bacteria (HDB and total coliform bacteria (TCFB in the digestive system of aquatic organisms we can state that the water ecosystem of Ilčiukai pond was the least contaminated with petroleum, its products and sewage water, and the Curonian Lagoon water ecosystem was the most contaminated. Abundance of petroleum hydrocarbons degrading bacteria could be used as a bioindicator reflecting the level of ecosystem pollution petroleum and its

  20. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    Science.gov (United States)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  1. β-blockers as endocrine disruptors: the potential effects of human β-blockers on aquatic organisms.

    Science.gov (United States)

    Massarsky, Andrey; Trudeau, Vance L; Moon, Thomas W

    2011-06-01

    β-Adrenergic blockers or β-blockers have been used therapeutically to treat human hypertension since the late 1960s. The global market value and prescription rates of β-blockers keep rising substantially each year, and over the past decade the number of prescriptions has doubled. The widespread use of β-blockers has resulted in their appearance in the aquatic environment originating primarily from sewage effluents. The objective of this review is to analyze the literature as a means to determine the endocrine-disrupting potential of β-blockers in aquatic organisms. The mammalian adrenergic system is compared with the adrenergic system of fish and the homologous octopaminergic system in aquatic invertebrates, in particular mollusks. The structure and functions of these systems are linked to the molecular similarities between adrenoceptors and the octopaminergic/tyraminergic receptors, the various catecholamine molecules (epinephrine, norepinephrine, octopamine, and tyramine), and the processes controlled. Knowledge of these similarities as well as the effects of β-blockers, mainly in humans, is then used to create a broad picture of the endocrine-disrupting potential of β-blockers, particularly during the stress response. The main conclusion is that β-blockers have endocrine-disrupting effects.

  2. Persistent organic pollutants in the Olifants River Basin, South Africa: Bioaccumulation and trophic transfer through a subtropical aquatic food web.

    Science.gov (United States)

    Verhaert, Vera; Newmark, Nadine; D'Hollander, Wendy; Covaci, Adrian; Vlok, Wynand; Wepener, Victor; Addo-Bediako, Abraham; Jooste, Antoinette; Teuchies, Johannes; Blust, Ronny; Bervoets, Lieven

    2017-02-14

    This study investigates the trophic transfer of persistent organic pollutants (POPs: PCBs, PBDEs, OCPs and PFASs) in the subtropical aquatic ecosystem of the Olifants River Basin (South Africa) by means of trophic magnification factors (TMFs). Relative trophic levels were determined by stable isotope analysis. POP levels in surface water, sediment and biota were low. Only ∑DDTs levels in fish muscle (contaminants through the food web. TMFs were >1, indicating biomagnification of all detected POPs. Calculated TMFs for PCBs were comparable to TMF values reported from the tropical Congo River basin and lower than TMFs from temperate and arctic regions. For p,p'-DDT, a higher TMF value was observed for the subtropical Olifants River during the winter low flow season than for the tropical Congo river. TMFs of DDTs from the present study were unexpectedly higher than TMFs from temperate and arctic aquatic food webs. The fish species in the aquatic ecosystem of the Olifants River can be consumed with a low risk for POP contamination.

  3. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: The roles of natural organic matter and light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiaoyan; Shi, Junpeng [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo (China)

    2015-07-15

    Highlights: • In the dark, AgNPs formed chain-like structures through bridging effects with NOM. • NOM decelerated the photoreaction of AgNPs but did not stop the photoconversion. • Under extended irradiation, NOM substituted for citrate as a stabilizer. • In different aquatic systems AgNPs would suffer distinct environmental behavior. - Abstract: With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag{sup +} in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.

  4. Changes in Soil Organic Carbon Fractions in Response to Cover Crops in an Orange Orchard

    Directory of Open Access Journals (Sweden)

    Francisco Éder Rodrigues de Oliveira

    2016-01-01

    Full Text Available ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes – BRAQ, pearl millet (Pennisetum glaucum – MIL, jack bean (Canavalia ensiformis – JB, blend (50 % each of jack bean + millet (JB/MIL, and spontaneous vegetation (SPV. The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC content, light fraction (LF, and the particulate organic C (POC, and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1 in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.

  5. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  6. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2016-09-13

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  7. Hydroecology of Intermittent and Ephemeral Streams: Will Landscape Connectivity Sustain Aquatic Organisms in a Changing Climate?

    Science.gov (United States)

    2015-07-24

    applicability to a broad spectrum of time periods relevant to aquatic biota of choice (i.e. aspects that define functional connectivity) that varies widely...processes (Waples and Gaggiotti 2006). Secondary contact after removal of a historical barrier may manifest as a cryptic genetic signal unrelated to...brachypterous; their wings are small and ineffective for flight, whereas females have larger, functional wings (Jacobi & Cary 1996). The presumed

  8. Toxicity of Military Unique Compounds in Aquatic Organisms: An Annotated Bibliography (Studies Published Through 1996)

    Science.gov (United States)

    1998-04-01

    Biochemistry/Air Pollution/Soil Pollutants/Water. Haley, M. V., Checkai, R. T., Kurnas , C. W., and Wentsel, R. S. Toxicity Determination of Explosive...Membranes/Metals/Operations/Residues/Sites/Soil Surveys/ Toxicity/Water/Hazardous Materials/Contamination/Explosives/ Response. Haley, M. V., and Kurnas ... Kurnas , C. W., Chester, N. A., and Muse, W. T. Aquatic Toxicity of the Decontamination Agent: Multipurpose (DAM) Decontamination Solution. Giveth

  9. Exposures of aquatic organisms to the organophosphorus insecticide, chlorpyrifos resulting from use in the United States.

    Science.gov (United States)

    Williams, W Martin; Giddings, Jeffrey M; Purdy, John; Solomon, Keith R; Giesy, John P

    2014-01-01

    Concentrations of CPY in surface waters are an integral determinant of risk to aquatic organisms. CPY has been measured in surface waters of the U.S. in several environmental monitoring programs and these data were evaluated to characterize concentrations, in relation to major areas of use and changes to the label since 2001, particularly the removal of domestic uses. Frequencies of detection and 95th centile concentrations of CPY decreased more than fivefold between 1992 and 2010. Detections in 1992-2001 ranged from 10.2 to 53%, while 2002-2010 detections ranged from 7 to 11%. The 95th centile concentrations ranged from 0.007 to 0.056 j.lg L -I in 1992-2001 and 0.006-0.008 j.lg L -I in 2002-2010.The greatest frequency of detections occurred in samples from undeveloped and agricultural land-use classes. Samples from urban and mixed land-use classes had the smallest frequency of detections and 95th centile concentrations, consistent with the cessation of most homeowner uses in 2001. The active metabolite of CPY, CPYO, was not detected frequently or in large concentrations. In 10,375 analyses from several sampling programs conducted between 1999 and 2012, only 25 detections (0.24% of samples) of CPYO were reported and estimated concentrations were less than the LOQ.Although the monitoring data on CPY provide relevant insight in quantifying the range of concentrations in surface waters, few monitoring programs have sampled at a frequency sufficient to quantify the time-series pattern of exposure. Therefore,numerical simulations were used to characterize concentrations of CPY in water and sediment for three representative high exposure environments in the U.S. Thefate of CPY in the environment is dependent on a number of dissipation and degradation processes. In terms of surface waters, fate in soils is a major driver of the potential for runoff into surface waters and results from a number of dissipation studies in the laboratory were characterized. Aerobic

  10. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Science.gov (United States)

    Laarhoven, Bob; Elissen, H J H; Temmink, H; Buisman, C J N

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml), 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin). With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  11. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Directory of Open Access Journals (Sweden)

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  12. Calculation of combustible waste fraction (CWF) estimates used in organics safety issue screening

    Energy Technology Data Exchange (ETDEWEB)

    Heasler, P.G.; Gao, F.; Toth, J.J.

    1998-08-01

    This report describes how in-tank measurements of moisture (H{sub 2}O) and total organic carbon (TOC) are used to calculate combustible waste fractions (CWF) for 138 of the 149 Hanford single shell tanks. The combustible waste fraction of a tank is defined as that proportion of waste that is capable of burning when exposed to an ignition source. These CWF estimates are used to screen tanks for the organics complexant safety issue. Tanks with a suitably low fraction of combustible waste are classified as safe. The calculations in this report determine the combustible waste fractions in tanks under two different moisture conditions: under current moisture conditions, and after complete dry out. The first fraction is called the wet combustible waste fraction (wet CWF) and the second is called the dry combustible waste fraction (dry CWF). These two fractions are used to screen tanks into three categories: if the wet CWF is too high (above 5%), the tank is categorized as unsafe; if the wet CWF is low but the dry CWF is too high (again, above 5%), the tank is categorized as conditionally safe; finally, if both the wet and dry CWF are low, the tank is categorized as safe. Section 2 describes the data that was required for these calculations. Sections 3 and 4 describe the statistical model and resulting fit for dry combustible waste fractions. Sections 5 and 6 present the statistical model used to estimate wet CWF and the resulting fit. Section 7 describes two tests that were performed on the dry combustible waste fraction ANOVA model to validate it. Finally, Section 8 presents concluding remarks. Two Appendices present results on a tank-by-tank basis.

  13. Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota.

    Science.gov (United States)

    Al-Reasi, Hassan A; Wood, Chris M; Smith, D Scott

    2011-06-01

    Natural organic matter (NOM), expressed as dissolved organic carbon (DOC in mgCL(-1)), is an ubiquitous complexing agent in natural waters, and is now recognized as an important factor mitigating waterborne metal toxicity. However, the magnitude of the protective effect, judged by toxicity measures (e.g. LC50), varies substantially among different NOM sources even for similar DOC concentrations, implying a potential role of NOM physicochemical properties or quality of NOM. This review summarizes some key quality parameters for NOM samples, obtained by reverse osmosis, and by using correlation analyses, investigates their contribution to ameliorating metal toxicity towards aquatic biota. At comparable and environmentally realistic DOC levels, molecular spectroscopic characteristics (specific absorbance coefficient, SAC, and fluorescence index, FI) as well as concentrations of fluorescent fractions obtained from mathematical mixture resolution techniques (PARAFAC), explain considerable variability in the protective effects. NOM quality clearly influences the toxicity of copper (Cu) and lead (Pb). NOM quality may also influence the toxicity of silver (Ag), cadmium (Cd) and inorganic mercury (Hg), but as yet insufficient data are available to unequivocally support the latter correlations between toxicity reduction and NOM quality predictors. Cu binding capacities, protein-to-carbohydrate ratio, and lipophilicity, show insignificant correlation to the amelioration offered by NOMs, but these conclusions are based on data for Norwegian NOMs with very narrow ranges for the latter two parameters. Certainly, various NOMs alleviate metal toxicity differentially and therefore their quality measures should be considered in addition to their quantity.

  14. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Plant Protection Products and their Residues (PPR

    2013-07-01

    Full Text Available EFSA’s Panel on Plant Protection Products and their Residues (PPR was tasked to revise the Guidance Document (GD on Aquatic Ecotoxicology under Council Directive 91/414/EEC (SANCO/3268/2001 rev.4 (final, 17 October 2002. This Guidance of the PPR Panel is the first of three requested deliverables within this mandate. It has its focus on tiered acute and chronic effect assessment schemes with detailed guidance on tier 1 and higher tier effect assessments for aquatic organisms in edge-of-field surface waters and on proposals regarding how to link effects to exposure estimates. The exposure assessment methodology was not reviewed and it is assumed that the current FOCUS surface water exposure assessment methodology will continue to be used for exposure assessment at EU level. The current GD is intended to be used for authorisation of active substances at EU level as well as for plant protection products at Member State level. The effect assessment schemes in this GD allow for the derivation of regulatory acceptable concentrations (RACs on the basis of two options: (1 the ecological threshold option (ETO, accepting negligible population effects only, and (2 the ecological recovery option (ERO, accepting some population-level effects if ecological recovery takes place within an acceptable time period. In the tiered effect assessment schemes, in principle, all tiers (1, 2 and 3 are able to address the ETO, while the model ecosystem approach (tier 3, under certain conditions, is able to also address the ERO. The GD provides the scientific background for the risk assessment to aquatic organisms in edge-of-field surface waters and is structured to give detailed guidance on all assessment steps. An executive summary joining all parts of the guidance and decision schemes in a concise way is provided and is intended to help applicants and regulatory authorities in day-to-day use.

  15. A simultaneous multiple species acute toxicity test comparing relative sensitivities of six aquatic organisms to HgCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    McCrary, J.E.; Heagler, M.G. [McNeese State Univ., Lake Charles, LA (United States). Dept. of Biological and Environmental Science

    1995-12-31

    In the last few years there has been concern in the scientific community about observed declines in some amphibian species. These population declines could be reflecting a global phenomenon due to a general class sensitivity or may be part of a natural cycle. The suggestion of an overall greater sensitivity of amphibians is not supported. Studies show that amphibians, as a class, are neither more or less susceptible than fish to environmental conditions. Mercury has been found to be one of the most toxic of the heavy metals introduced into amphibian breeding waters. Six aquatic species were simultaneously exposed in a comparative acute toxicity test with mercury chloride: three amphibians, Rana catesbeiana (bullfrog), R. clamitans (green frog), and R. sphenocephala (southern leopard frog, formally classified as R. utricularia); two fish, Gambusia affinis (mosquitofish) and Notemigonus crysoleucas (golden shiner); one aquatic aligochaete, Lumbriculus variegatus (aquatic earthworm). The five test concentrations used were 1.4, 3.9, 12.0, 110.0, and 487.0 {micro}g Hg/L respectively. Ten organisms per species were randomly placed into the six test tanks (control and five concentrations), each species in a separate chamber. The resultant LC50-96hr values produced the following rank order: R. sphenocephala, 6.59 {micro}g Hg/L; R. clamitans, 14.7 {micro}g Hg/L; N. crysoleucas, 16.75 {micro}g Hg/L; L. variegatus, 43.72,ug Hg/L; G. affinis, 52.62 {micro}g Hg/L; R. catesbeiana, 63.36 {micro}g Hg/L. No general organism class sensitivity trend, for amphibians, was developed from this data, contrary to the implicit suggestions of some researchers.

  16. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry.

    Science.gov (United States)

    Dilling, Jörg; Kaiser, Klaus

    2002-12-01

    In this study, we tested a simple and rapid method for the estimation of carbon in the hydrophobic fraction of dissolved organic matter (DOM) of different origin (spruce, pine, and beech litter) in soil water. The method is based on the fact that the hydrophobic fraction of DOM contains almost entirely the aromatic moieties of DOM. Thus, it showed a clearly distinct light absorption at 260 nm compared to the hydrophilic fraction. This light absorption was directly proportional to the concentration of the hydrophobic fraction. Moreover, it was independent of the concentration of the hydrophilic fraction. We compared the concentrations of hydrophobic DOM estimated by the UV method with those of the conventional fractionation using chromatographic columns of XAD-8 macroporous resin and found an excellent agreement between the two methods for both solutions from laboratory sorption experiments and field samples of forest floor leachates and subsoil porewaters. In addition, the absorption at 260 nm of hydrophobic DOM proved to be independent of pH values ranging from 2.0 to 6.5. Compared to the conventional chromatographic fractionation, the method using the UV absorption at 260 nm is less time consuming, needs a much smaller sample volume, and showed a better reproducibility. However, its use is restricted to water samples of low nitrate (< 25 mg L(-1)) and Fe (< 5 mg L(-1)) concentrations and, probably, with the hydrophobic fraction dominated by aromatic compounds deriving from degradation of lignin.

  17. Microbial diversity and organic matter fractions under two arid soils in Algerian Sahara

    Science.gov (United States)

    Karabi, Mokhtar; Hamdi, Aissa Baelhadj; Zenkhri, Salah

    2016-07-01

    The Algerian Sahara is characterized by a heterogeneity of edaphic conditions and climatic dissimilarities; however, information on biological indicators of arid soils is weakly documented in this area. The researchers who have studied the biological activities of the soils of the arid regions have underlined their low organic matter content, particularly their very low rates of organic nitrogen; a low humification because seriously inhibited by a significant mineralization. The objective of the current work is to study the microbial biomass densities and organic matter fractions for different types of soil, under two arid soil in Algerian Sahara. The experiment was conducted in an alluvial soil in traditional palm grove of Guerrara, and in a saline soil in experimental field of university of Ouargla. Composite soil samples (10 subsamples each) were collected aseptically at 0-20 cm depth on two diagonal transects drawn over an area of 12 ha. The following germs densities were determined: Bacteria, Fungi and Actinomycetes. The soil organic matter fractions, the textural fractions, chemical attributes (organic C, total N, total limestone and gypsum) were also determined. The microbial groups count on both soils reveals that the bacterianmicroflora present a numerical superiority followed by the actinomycetes and finally fungi. The micro-organisms densities except fungal density, showed a prevalence of the bacterianmicroflora, and actinomycetes in alluvial soil compared to saline soil. Fractionation of soil organic matter show that all fractions are better represented in alluvial soil except non-extractable organic carbon (NEOC) which are better represented in saline soil. This confirms that alluvial soil has a relatively large biological activity than saline soil and that humification process is relatively pronounced by comparing it with the saline soil, which tends to contain little polycondenseshumic compounds.

  18. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well......-mixed process without additional water supply. A methane yield of 400 and 445 ml/gVS from OFMSW was achieved in batch and reactor experiments, respectively. Reactor performance with 15 days retention time and an organic loading rate of 4.5 gVS/ld was stable with low VFA concentrations and a VS reduction of 70...

  19. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes.

    Science.gov (United States)

    Yamamura, Hiroshi; Okimoto, Kenji; Kimura, Katsuki; Watanabe, Yoshimasa

    2014-05-01

    Although membrane filtration is a promising technology in the field of drinking water treatment, persistent membrane fouling remains a major disadvantage. For more efficient operation, causative agents of membrane fouling need to be identified. Membrane fouling can be classified into physically reversible and irreversible fouling on basis of the removability of the foulants by physical cleaning. Four types of natural organic matter (NOM) in river water used as a source of drinking water were fractionated into hydrophobic and hydrophilic fractions, and their potential to develop irreversible membrane fouling was evaluated by a bench-scale filtration experiment together with spectroscopic and chromatographic analyses. In this study, only dissolved NOM was investigated without consideration of interactions of NOM fractions with particulate matter. Results demonstrated that despite identical total organic carbon (TOC), fouling development trends were significantly different between hydrophilic and hydrophobic fractions. The hydrophobic fractions did not increase membrane resistance, while the hydrophilic fractions caused severe loss of membrane permeability. These results were identical with the case when the calcium was added to hydrophobic and hydrophilic fractions. The largest difference in NOM characteristics between hydrophobic and hydrophilic fractions was the presence or absence of macromolecules; the primary constituent causing irreversible fouling was inferred to be "biopolymers", including carbohydrates and proteins. In addition, the results demonstrated that the extent of irreversible fouling was considerably different depending on the combination of membrane materials and NOM characteristics. Despite identical nominal pore size (0.1 μm), a polyvinylidene fluoride (PVDF) membrane was found to be more rapidly fouled than a PE membrane. This is probably explained by the generation of strong hydrogen bonding between hydroxyl groups of biopolymers and fluorine

  20. Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms.

    Science.gov (United States)

    Bruneau, A; Fortier, M; Gagne, F; Gagnon, C; Turcotte, P; Tayabali, A; Davis, T L; Auffret, M; Fournier, M

    2013-03-01

    The increasing use of products derived from nanotechnology has raised concern about their potential toxicity to aquatic life. This study sought to examine the comparative immunotoxicity of capped cadmium sulphide/cadmium telluride (CdS/CdTe) quantum dots (QDs) and possible impact of particle/aggregate size on two bivalves (Mytilus edulis and Elliptio complanata) and a fish (Oncorhynchus mykiss). The QDs were dispersed in sterile water and fractionated using a series of micro/ultrafiltration membranes of decreasing pore size: 450 nm, 100 nm, 50 nm, 25 nm, 100 kDa (6.8 nm), 30 kDa (4.6 nm), 10 kDa (3.2 nm) and 1 kDa (1.5 nm). The total concentrations of cadmium and tellurium were determined for the filtered material and for that retained on the filters (retentate). The immunotoxicity was determined by measuring cell viability and phagocytosis. Results revealed that nanoparticles retained on the ultrafilters had a higher Cd/Te ratio compared to the permeate fraction (ratio of 5 and 2 respectively) which could indicate that the CdS core was not associated with the permeable fraction of Cd. Our results demonstrate that the toxicity of CdS/CdTe QDs was concentration and size dependent. Large CdS/CdTe QD aggregates (25 nm < size < 100 nm) reduced phagocytosis more than did smaller nanoparticles (<25 nm). Moreover, our results revealed that the different species responded differently to these fractions. Mytilus edulis hemocytes were less sensitive to CdS/CdTe QDs than the Oncorhynchus mykiss macrophage and Elliptio complanata hemocytes.

  1. Parametric Evaluation of Digestability of Organic Fraction of Municipal Solid Waste for Biogas Production

    Directory of Open Access Journals (Sweden)

    Monoj Kumar Mondal

    2015-12-01

    Full Text Available Municipal solid waste was collected from Varanasi’s municipal solid waste dumpsite and sorted for organic fraction present in it. Current work showed the consequences of calcium hydroxide or lime digestion on organic fraction of municipal solid waste of Varanasi, India. The organic fraction of municipal solid waste sample was digested with desired amount of calcium hydroxide. The different concentrations (0.1, 0.2, and 0.5 % of calcium hydroxide was blended separately to substrates (10 % total solid at 30-35 ºC in 3 different beakers denoted by A1, A2 and A3, respectively of 2 L capacity. Experiments of hydrolysis step were conducted on all three samples for evaluation of chemical oxygen demand, pH and volatile fatty acids content in sample. The parameters measured during experiments were chemical oxygen demand, biogas production, total solid, volatile solids, total Kjeldahl nitrogen and total organic carbon. Rate enhancement of anaerobic digestion and biogas production were occurred for calcium hydroxide digested samples. Therefore calcium hydroxide can be used as an effective alkali for the digestion of organic fraction of municipal solid waste.

  2. Scoping assessment of radiological doses to aquatic organisms and wildlife -- N Springs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; Soldat, J.K.

    1992-10-01

    Estimated does rates were determined for endemic biota inhabiting the N Springs area based primarily on spring water data collected from the first 6 months of 1991. Radiological dose estimates were computed from measured values of specific radionuclides and modeled levels of radionuclides using established computer codes. The highest doses were predicted in hypothetical populations of clams, fish-eating ducks, and rabbits. The calculated dose estimates did not exceed 1 rad/d, an administrative dose rate established by the US Department of Energy for the protection of native aquatic biota. An administrative dose rate has not been established for terrestrial wildlife.

  3. Scoping assessment of radiological doses to aquatic organisms and wildlife -- N Springs. [N Springs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; Soldat, J.K.

    1992-10-01

    Estimated does rates were determined for endemic biota inhabiting the N Springs area based primarily on spring water data collected from the first 6 months of 1991. Radiological dose estimates were computed from measured values of specific radionuclides and modeled levels of radionuclides using established computer codes. The highest doses were predicted in hypothetical populations of clams, fish-eating ducks, and rabbits. The calculated dose estimates did not exceed 1 rad/d, an administrative dose rate established by the US Department of Energy for the protection of native aquatic biota. An administrative dose rate has not been established for terrestrial wildlife.

  4. Stable carbon and radiocarbon isotope compositions of particle size fractions to determine origins of sedimentary organic matter in an estuary

    NARCIS (Netherlands)

    Megens, L; van der Plicht, J; de Leeuw, JW; Smedes, F; Altabet, M.

    2002-01-01

    Stable and radioactive carbon isotopic compositions of particle size fractions of a surface sediment from the Ems-Dollard estuary vary considerably with particle size. The organic material in the fine fractions (

  5. Ag nanoparticles: size- and surface-dependent effects on model aquatic organisms and uptake evaluation with NanoSIMS.

    Science.gov (United States)

    Georgantzopoulou, Anastasia; Balachandran, Yekkuni L; Rosenkranz, Philipp; Dusinska, Maria; Lankoff, Anna; Wojewodzka, Maria; Kruszewski, Marcin; Guignard, Cédric; Audinot, Jean-Nicolas; Girija, Shanmugam; Hoffmann, Lucien; Gutleb, Arno C

    2013-11-01

    This study aims to assess the effects of Ag particles synthesised by a chemical (Ag 20, 200 nm) and biological method (Ag 23, 27 nm) in aquatic organisms: the bacterium Vibrio fischeri, the alga Desmodesmus subspicatus and the crustacean Daphnia magna. Ag particles exerted toxic effects in all organisms studied with Ag particles 23 nm being the most potent. Although soluble Ag was released in all media, the differences between the tested Ag particles still cannot be explained solely based on soluble Ag. NanoSIMS analysis performed with D. magna showed that apart from their localisation in the gut lumen, Ag 200 nm and Ag NPs 23 nm seemed to pass through the epithelial barrier as well. Ag NPs 23 nm localised in specific areas seemed to be within the ovaries. This study strengthens the argument that size, method of synthesis as well as surface chemistry may affect the uptake and toxic effects of Ag NPs.

  6. Organic C and N stabilization in a forest soil: evidence from sequential density fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Sollins, P; Swanston, C; Kleber, M; Filley, T; Kramer, M; Crow, S; Caldwell, B; Lajtha, K; Bowden, R

    2005-07-15

    In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of cationic peptidic compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which less polar organics could sorb more readily than onto the highly charged mineral surfaces (''onion'' layering model). To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm{sup -3} and analyzed the six fractions for measures of organic matter and mineral phase properties. All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and {sup 14}C mean residence time (MRT) increased with particle density from ca. 150 y to >980 y in the four organo-mineral fractions. In contrast, C/N, {sup 13}C and {sup 15}N concentration all showed the

  7. The Vinylguaiacol/Indole or VGI ("Veggie") Ratio: A Novel Molecular Parameter to Evaluate the Relative Contributions of Terrestrial and Aquatic Organic Matter to Sediments

    Science.gov (United States)

    Kruge, M. A.; Olsen, K. K.; Slusarczyk, J.; Gomez, E.

    2010-12-01

    The organic matter (OM) fraction of estuarine sediments is often distinctive and thus diagnostically useful in determinations of sedimentary provenance. Among the most fundamental distinctions to be made is that between terrestrial and aquatic OM. To supplement the parameters commonly used for this purpose (e.g., C/N and stable isotope ratios), we proposed the Vinylguaiacol/Indole or VGI ("Veggie") ratio, defined as [vinylguaiacol / (indole + vinylguaiacol)] using data produced by analytical pyrolysis-gas chromatography/mass spectrometry of dried, homogenized sediment samples. The ratio employs the peak areas of these two compounds on the mass chromatograms of their molecular ions (m/z 150 and 117). Major pyrolysis products of terrestrial plant lignin include a variety of methoxyphenols, notably 4-vinylguaiacol. In contrast, aquatic algae and bacteria characteristically produce distinctive organonitrogen compounds upon pyrolysis, particularly indole, derived from the amino acid tryptophan. The end member VGI ratio value of 1.00 is obtained for reference land plant matter, including the marsh plants Phragmites and Spartina, as well as maple and pine wood. The end member value of 0.00 is obtained for cultured microbes, including Escherichia coli and the cyanobacterium Anacystis. Vinylguaiacol and indole are commonly detected in Recent sediment pyrolyzates. We hypothesized that their relative quantities therein should be proportional to the relative contributions of land plant and microbial OM, respectively. Samples taken from Spartina peat marshes at the mouths of major rivers (Housatonic and Connecticut) entering Long Island Sound, wetlands behind the barrier island at Cape May (NJ), and a Phragmites-dominated tidal marsh along the Hackensack River (NJ) have high (> 0.8) VGI ratio values. Sediments collected within the Newark Bay (NJ) estuary from the lower Passaic and Hackensack Rivers and the Arthur Kill show mixed terrestrial and aquatic OM signatures (VGI from 0

  8. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.

    Science.gov (United States)

    Juncos, Romina; Arcagni, Marina; Rizzo, Andrea; Campbell, Linda; Arribére, María; Guevara, Sergio Ribeiro

    2016-02-01

    Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes.

  9. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2010-08-01

    Full Text Available Kraft-AQ pulping lignin was sequentially fractionated by organic solvent extractions and the molecular properties of each fraction were characterized by chemical degradation, GPC, UV, FT-IR, 13C-NMR and thermal analysis. The average molecular weight and polydispersity of each lignin fraction increased with its hydrogen-bonding capacity (Hildebrand solubility parameter. In addition, the ratio of the non-condensed guaiacyl/syringyl units and the content of β-O-4 linkages increased with the increment of the lignin fractions extracted successively with hexane, diethylether, methylene chloride, methanol, and dioxane. Furthermore, the presence of the condensation reaction products was contributed to the higher thermal stability of the larger molecules.

  10. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil.

    Science.gov (United States)

    Bol, Roland; Poirier, Natacha; Balesdent, Jérôme; Gleixner, Gerd

    2009-08-30

    The composition and molecular residence time of soil organic matter (SOM) in four particle-size fractions (POM >200 microm, POM 63-200 microm, silt and clay) were determined using Curie-point pyrolysis/gas chromatography coupled on-line to mass spectrometry. The fractions were isolated from soils, either continuously with a C(3) wheat (soil (13)C value = -26.4 per thousand), or transferred to a C(4) maize (soil (13)C value = -20.2 per thousand) cropping system 23 years ago. Pyrograms contained up to 45 different pyrolysis peaks; 37 (ca. 85%) were identifiable compounds. Lignins and carbohydrates dominated the POM fractions, proteins were abundant, but lignin was (nearly) absent in the silt and clay fractions. The mean turnover time (MRT) for the pyrolysis products in particulate organic matter (POM) was generally <15 years (fast C pool) and 20-300 years (medium or slow C pools) in silt and clay fractions. Methylcyclopentenone (carbohydrate) in the clay fraction and benzene (mixed source) in the silt fraction exhibited the longest MRTs, 297 and 159 years, respectively. Plant-derived organic matter was not stored in soils, but was transformed to microbial remains, mainly in the form of carbohydrates and proteins and held in soil by organo-mineral interactions. Selective preservation of plant-derived OM (i.e. lignin) based on chemical recalcitrance was not observed in these arable soils. Association/presence of C with silt or clays in soils clearly increased MRT values, but in an as yet unresolved manner (i.e. 'truly' stabilized, or potentially still 'labile' but just not accessible C).

  11. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics...

  12. Dry anaerobic digestion of the organic fraction of municipal solid waste.

    NARCIS (Netherlands)

    ten Brummeler, E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so- called BIO

  13. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-06-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  14. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  15. Distribution of organic carbon in physical fractions of soils as affected by agricultural management

    Energy Technology Data Exchange (ETDEWEB)

    Sindhu, Jagadamma [Oak Ridge National Laboratory (ORNL); Lal, Dr. Rattan [Ohio State University, The, Columbus

    2010-08-01

    Soil organic carbon (SOC) is distributed heterogeneously among different-sized primary particles and aggregates. Further, the SOC associated with different physical fractions respond differently to managements. Therefore, this study was conducted with the objective to quantify the SOC associated with all the three structural levels of SOC (particulate organic matter, soil separates and aggregate-size fractions) as influenced by long-term change in management. The study also aims at reevaluating the concept that the SOC sink capacity of individual size-fractions is limited. Long-term tillage and crop rotation effects on distribution of SOC among fractions were compared with soil from adjacent undisturbed area under native vegetation for the mixed, mesic, Typic Fragiudalf of Wooster, OH. Forty five years of no-till (NT) management resulted in more SOC accumulation in soil surface (0 7.5 cm) than in chisel tillage and plow tillage (PT) treatments. However, PT at this site resulted in a redistribution of SOC from surface to deeper soil layers. The soils under continuous corn accumulated significantly more SOC than those under corn soybean rotation at 7.5 45 cm depth. Although soil texture was dominated by the silt-sized particles, most of the SOC pool was associated with the clay fraction. Compared to PT, the NT treatment resulted in (i) significantly higher proportion of large macroaggregates (>2,000 m) and (ii) 1.5 2.8 times higher SOC concentrations in all aggregate-size classes. A comparative evaluation using radar graphs indicated that among the physical fractions, the SOC associated with sand and silt fractions quickly changed with a land use conversion from native vegetation to agricultural crops. A key finding of this study is the assessment of SOC sink capacity of individual fractions, which revealed that the clay fraction of agricultural soils continues to accumulate more SOC, albeit at a slower rate, with progressive increase in total SOC concentration

  16. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  17. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  18. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    Directory of Open Access Journals (Sweden)

    Carlos José Alvarez-Gallego

    2015-02-01

    Full Text Available The organic fraction of municipal solid waste (OFMSW usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC, soluble chemical oxygen demand (sCOD, total volatile fatty acids (TVFA and acidogenic substrate as carbon (ASC. The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  19. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    Science.gov (United States)

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  20. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  1. Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste.

    Science.gov (United States)

    Ballesteros, Mercedes; Sáez, Felicia; Ballesteros, Ignacio; Manzanares, Paloma; Negro, Maria Jose; Martínez, Jose Maria; Castañeda, Rafael; Oliva Dominguez, Jose Miguel

    2010-05-01

    In this work, the use of organic fraction from municipal solid waste (MSW) as substrate for ethanol production based on enzymatic hydrolysis was evaluated. MSW was subjected to a thermal pretreatment (active hygienization) at 160 degrees C from 5 to 50 min. The organic fiber obtained after 30 min was used as substrate in a simultaneous saccharification and fermentation (SSF) and fed-batch SSF process using cellulases and amylases. In a fed-batch mode with 25% (w/w) substrate loading, final ethanol concentration of 30 g/L was achieved (60% of theoretical). In these conditions, more than 160 L of ethanol per ton of dry matter could be produced from the organic fraction of MSW.

  2. Evaluating the Relationship between Equilibrium Passive Sampler Uptake and Aquatic Organism Bioaccumulation,

    Science.gov (United States)

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake...

  3. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  4. Anaerobic digestion of the shredded organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Traverso, P.G.; Cecchi, Franco

    1988-01-01

    Anaerobic digestion of the shredded organic fraction of municipal solid waste has been investigated in a pilot-scale completely mixed digester, under mesophilic conditions. Detailed comparisons of the size distributions of the particles in the feed and in the digester effluent are reported under varying organic loading rates and hydraulic retention times. About 20% of the particulate matter in the organic feed is refractory and resists hydrolysis. Hence the maximum removal of total volatile solids attainable under hydraulic retention times of practical interest is about 70%. The optimum hydraulic retention time is around 14 to 15 days.

  5. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter

    DEFF Research Database (Denmark)

    Logue, J.B.; Stedmon, Colin; Kellerman, A.M.

    2016-01-01

    Bacteria play a central role in the cycling of carbon, yet our understanding of the relationship between the taxonomic composition and the degradation of dissolved organic matter (DOM) is still poor. In this experimental study, we were able to demonstrate a direct link between community composition...... and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover......, uncovered that low-molecular-weight carbon was available to all communities for utilisation, whereas the ability to degrade carbon of greater molecular weight was a trait less widely distributed. Finally, whereas the degradation of either low- or high-molecular-weight carbon was not restricted to a single...

  6. Ecotoxicological evaluation of sodium fluoroacetate on aquatic organisms and investigation of the effects on two fish cell lines.

    Science.gov (United States)

    Zurita, Jorge L; Jos, Angeles; Cameán, Ana M; Salguero, Manuel; López-Artíguez, Miguel; Repetto, Guillermo

    2007-02-01

    Sodium monofluoroacetate (compound 1080) is one of the most potent pesticides. It is also a metabolite of many other fluorinated compounds, including anticancer agents, narcotic analgesics, pesticides or industrial chemicals. Other sources of water contamination are the atmospheric degradation of hydrofluorocarbons and hydrochlorofluorocarbons. However, there is little information available about the adverse effects of sodium fluoroacetate in aquatic organisms. Firstly, the bacterium Vibrio fischeri (decomposer), the alga Chlorella vulgaris (1st producer) and the cladoceran Daphnia magna (1st consumer) were used for the ecotoxicological evaluation of SMFA. The most sensitive models were C. vulgaris and D. magna, with a NOAEL of 0.1 and an EC50 of 0.5 mM at 72 h, respectively. According to the results after the acute exposure and due to its high biodegradation rate and low bioaccumulation potential, sodium fluoroacetate is most unlikely to produce deleterious effects to aquatic organisms. Secondly, two fish cell lines were employed to investigate the effects and mechanisms of toxicity in tissues from 2nd consumers. The hepatoma fish cell line PLHC-1 was more sensitive to SMFA than the fibroblast-like fish cell line RTG-2, being the uptake of neutral red the most sensitive bioindicator. Lysosomal function, succinate dehydrogenase and acetylcholinesterase activities were inhibited, glucose-6-phosphate dehydrogenase activity was particularly stimulated, and metallothionein and ethoxyresorufin-O-deethylase levels were not modified. Intense hydropic degeneration, macrovesicular steatosis and death mainly by necrosis but also by apoptosis were observed. Moreover, sulphydryl groups and oxidative stress could be involved in PLHC-1 cell death induced by SMFA more than changes in calcium homeostasis.

  7. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  8. Specific absorbed fraction of X-ray in tissues from human organs

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Department of Physics, Government College for Women, Karnalaka (India)

    2013-07-01

    Full text: X- rays are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation. Calculations of the energy absorbed in a medium include not only the contribution of the uncollided photons from the source, but must also include the contributions from collided and secondary photons. In practice, this is done by multiplying the contribution of the uncollided photons by the energy absorption buildup factor. An accurate absorbed dose calculation needs specific absorbed fraction of energy. Geometric progression (GP) fitting method has been used to compute energy absorption build-up factor of Human organs such as brain, breast, eye lens, GI track, heart, kidney, liver, lung, lymph, ovary, pancreas, testis and skeleton-femur. The computed absorption build-up factor is used to estimate specific absorbed fraction of energy. The thickness of the medium up to 10mm and with penetration depth up to 40 mean free paths considered. The dependence of specific absorbed fraction of energy on incident photon energy, penetration and the thickness of the medium have also been studied. The specific absorbed fraction of energy increases up to the E{sub pe} and then decreases. Here E{sub pe} is the energy value at which the photo electric interaction coefficients matches with Compton interaction coefficients for a given value of effective atomic number (Z{sub eff}). The variation of specific absorbed fractions with energy is due to dominance of photoelectric absorption in the lower end and dominance of pair production in the higher photon energy region. In the lower energy end photoelectric absorption is dominant photon interaction process; hence specific absorbed fractions values minimum. As the energy of incident photon increases, Compton

  9. Chlorinated organic compounds in aquatic biological resources of the Baltic region

    Directory of Open Access Journals (Sweden)

    Dubova O. L.

    2016-09-01

    Full Text Available The results of studying dependencies of levels of polychlorinated biphenyls (PCBs and chlorinated pesticides in the liver and muscles of the main commercial fish species of the Baltic Sea (sprat, herring, cod, flounder, the Vistula and the Curonian Bay (pike-perch, bream, roach on the fishing area, season and fish species have been considered. Determination of PCBs and pesticides has been carried out in accordance with MVI MN 2352–2005 "Method for simultaneous determination of residual amounts of PCBs and organochlorine pesticides in fish and fish products by gas-liquid chromatography". Separation, identification and quantification have been performed by the gas chromatography Varian 3400 on the DB-1701 column, 30 m  0.25 mm  0.25 m, the column temperature 150–250 °C, the detector one – 300 °C. Identification and quantification have been performed by retention time of individual PCB congeners by the internal standard. The content of PCBs in liver of the Curonian and Vistula Bays fish is much lower than in liver of aquatic biological resources (ABR of the Baltic Sea. Hexachlorocyclohexane (HCH and dichlorodiphenyltrichloroethane (DDT are accumulated more intensively in liver of fish caught in the southern part of the Baltic Sea. β-HCH and γ-HCH prevail in the liver and muscle tissue of ABR samples as individual organochlorine pesticides (OCPs. The all three isomers of HCH are present in cod liver. Accumulation ratio in cod liver compared to that in the muscle tissue content reaches 7-8 units HCH for isomers, and for DDT and metabolites – 10-12 units. It has been proposed that the secondary admission of HCH in the aquatic environment and in ABG (delivery from sediments takes place. Organochlorine pesticides such as hexachlorobenzene, heptachlor and aldrin are present in the Baltic Sea ABR in quantities below the detection limit used in the analysis methods. In spring and summer, there is an increased level of HCH and DDT in

  10. Below a Historic Mercury Mine: Non-linear Patterns of Mercury Bioaccumulation in Aquatic Organisms

    Science.gov (United States)

    Haas, J.; Ichikawa, G.; Ode, P.; Salsbery, D.; Abel, J.

    2001-12-01

    Unlike most heavy metals, mercury is capable of bioaccumulating in aquatic food-chains, primarily because it is methylated by bacteria in sediment to the more toxic methylmercury form. Mercury concentrations in a number of riparian systems in California are highly elevated as a result of historic mining activities. These activities included both the mining of cinnabar in the coastal ranges to recover elemental mercury and the use of elemental mercury in the gold fields of the Sierra Nevada Mountains. The most productive mercury mining area was the New Almaden District, now a county park, located in the Guadalupe River drainage of Santa Clara County, where cinnabar was mined and retorted for over 100 years. As a consequence, riparian systems in several subwatersheds of the Guadalupe River drainage are contaminated with total mercury concentrations that exceed state hazardous waste criteria. Mercury concentrations in fish tissue frequently exceed human health guidelines. However, the potential ecological effects of these elevated mercury concentrations have not been thoroughly evaluated. One difficulty is in extrapolating sediment concentrations to fish tissue concentrations without accounting for physical and biological processes that determine bioaccumulation patterns. Many processes, such as methylation and demethylation of mercury by bacteria, assimilation efficiency in invertebrates, and metabolic rates in fish, are nonlinear, a factor that often confounds attempts to evaluate the effects of mercury contamination on aquatic food webs. Sediment, benthic macroinvertebrate, and fish tissue samples were collected in 1998 from the Guadalupe River drainage in Santa Clara County at 13 sites upstream and downstream from the historic mining district. Sediment and macroinvertebrate samples were analyzed for total mercury and methylmercury. Fish samples were analyzed for total mercury as whole bodies, composited by species and size. While linear correlations of sediment

  11. Relationship between light and heavy fractions of organic matter for several agricultural soils in China

    Institute of Scientific and Technical Information of China (English)

    YIN Yun-feng; CAI Zu-cong; LU Jia-long

    2005-01-01

    Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFOM, respectively) have been made, little information is available in relation to the relationship between LFOM and HFOM, and no attempts have been made to quantify a general relationship between LFOM and HFOM for agricultural soils under field condition. Our hypothesis is there may be an inherent relationship between LFOM and HFOM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFOM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SOM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term.

  12. Co-Digestion of the Organic Fraction of Municipal Waste With Other Waste Types

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    Several characteristics make anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) difficult. By co-digestion of OFMSW with several other waste types it will be possible to optimize the anaerobic process by waste management. The co-digestion concept involves the treatment...... of several waste types in a single treatment facility. By combining many types of waste it will be possible to treat a wider range of organic waste types by the anaerobic digestion process (figure 1). Furthermore, co-digestion enables the treatment of organic waste with a high biogas potential that makes...... the operation of biogas plants more economically feasible (Ahring et al., 1992a). Thus, co-digestion gives a new attitude to the evaluation of waste: since anaerobic digestion of organic waste is both a waste stabilization method and an energy gaining process with production of a fertilizer, organic waste...

  13. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms.

    Science.gov (United States)

    Ebert, Ina; Bachmann, Jean; Kühnen, Ute; Küster, Anette; Kussatz, Carola; Maletzki, Dirk; Schlüter, Christoph

    2011-12-01

    The present study investigated the growth inhibition effect of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin on four photoautotrophic aquatic species: the freshwater microalga Desmodesmus subspicatus, the cyanobacterium Anabaena flos-aquae, the monocotyledonous macrophyte Lemna minor, and the dicotyledonous macrophyte Myriophyllum spicatum. Both antibiotics, which act by inhibiting the bacterial DNA gyrase, demonstrated high toxicity to A. flos-aquae and L. minor and moderate to slight toxicity to D. subspicatus and M. spicatum. The cyanobacterium was the most sensitive species with median effective concentration (EC50) values of 173 and 10.2 µg/L for enrofloxacin and ciprofloxacin, respectively. Lemna minor proved to be similarly sensitive, with EC50 values of 107 and 62.5 µg/L for enrofloxacin and ciprofloxacin, respectively. While enrofloxacin was more toxic to green algae, ciprofloxacin was more toxic to cyanobacteria. Calculated EC50s for D. subspicatus were 5,568 µg/L and >8,042 µg/L for enrofloxacin and ciprofloxacin, respectively. These data, as well as effect data from the literature, were compared with predicted and reported environmental concentrations. For two of the four species, a risk was identified at ciprofloxacin concentrations found in surface waters, sewage treatment plant influents and effluents, as well as in hospital effluents. For ciprofloxacin the results of the present study indicate a risk even at the predicted environmental concentration. In contrast, for enrofloxacin no risk was identified at predicted and measured concentrations.

  14. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III)

    Science.gov (United States)

    Ritter, K.; Aiken, G.R.; Ranville, J.F.; Bauer, M. E.; Macalady, D.L.

    2006-01-01

    Dialysis experiments with arsenate and three different NOM samples amended with Fe(III) showed evidence confirming the formation of aquatic arsenate-Fe(III)-NOM associations. A linear relationship was observed between the amount of complexed arsenate and the Fe(III) content of the NOM. The dialysis results were consistent with complex formation through ferric iron cations acting as bridges between the negatively charged arsenate and NOM functional groups and/or a more colloidal association, in which the arsenate is bound by suspended Fe(III)-NOM colloids. Sequential filtration experiments confirmed that a significant proportion of the iron present at all Fe/C ratios used in the dialysis experiments was colloidal in nature. These colloids may include larger NOM species that are coagulated by the presence of chelated Fe(III) and/or NOM-stabilized ferric (oxy)hydroxide colloids, and thus, the solution-phase arsenate-Fe(III)-NOM associations are at least partially colloidal in nature. ?? 2006 American Chemical Society.

  15. Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide.

    Science.gov (United States)

    Mori, Izumi C; Arias-Barreiro, Carlos R; Koutsaftis, Apostolos; Ogo, Atsushi; Kawano, Tomonori; Yoshizuka, Kazuharu; Inayat-Hussain, Salmaan H; Aoyama, Isao

    2015-02-01

    The aquatic ecotoxicity of chemicals involved in the manufacturing process of thin film transistor liquid crystal displays was assessed with a battery of four selected acute toxicity bioassays. We focused on tetramethylammonium hydroxide (TMAH, CAS No. 75-59-2), a widely utilized etchant. The toxicity of TMAH was low when tested in the 72 h-algal growth inhibition test (Pseudokirchneriellia subcapitata, EC50=360 mg L(-1)) and the Microtox® test (Vibrio fischeri, IC50=6.4 g L(-1)). In contrast, the 24h-microcrustacean immobilization and the 96 h-fish mortality tests showed relatively higher toxicity (Daphnia magna, EC50=32 mg L(-1) and Oryzias latipes, LC50=154 mg L(-1)). Isobologram and mixture toxicity index analyses revealed apparent synergism of the mixture of TMAH and potassium iodide when examined with the D. magna immobilization test. The synergistic action was unique to iodide over other halide salts i.e. fluoride, chloride and bromide. Quaternary ammonium ions with longer alkyl chains such as tetraethylammonium and tetrabutylammonium were more toxic than TMAH in the D. magna immobilization test.

  16. A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Adams, W.J. [ABC Labs. (United States), Inc., Columbia, MO (United States); Biddinger, G.R. [Exxon Biomedical Sciences Inc., Benecia, CA (United States); Robillard, K.A.; Gorsuch, J.W. [Eastman Kodak Co., Rochester, NY (United States)

    1995-09-01

    Acute aquatic toxicity studies were performed with 14 commercial phthalate esters and representative freshwater and marine species. The 14 esters were dimethyl phthalate; diethyl phthalate; di-n-butyl phthalate; butyl benzyl phthalate; dihexyl phthalate; butyl 2-ethylhexyl phthalate; di-(n-hexy, n-octyl, n-decyl) phthalate; di-(2-ethylhexyl) phthalate; diisooctyl phthalate; diisononyl phthalate; di-(heptyl, nonyl, undecyl) phthalate; diisodecyl phthalate; diundecyl phthalate; and ditridecyl phthalate. Phthalate esters with alkyl chain lengths of four carbon atoms or fewer were determined to be actually toxic at concentrations ranging from 0.21 to 377 mg/L depending on the ester and the solubility of the test chemical in water. Three was a general trend for the lower-molecular-weight phthalate esters (C{sub 1} to C{sub 4} alkyl chain lengths: dimethyl phthalate; diethyl phthalate; di-n-butyl phthalate; and butyl benzyl phthalate) to become more toxic with decreasing water solubility for all species tested. There were only minor differences in species sensitivity to each of the phthalate esters. Phthalate esters with alkyl chain lengths of six carbon atoms or more were not acutely toxic at concentrations approaching their respective aqueous solubilities. Insufficient mortality occurred to calculate either LC50 or EC50 values or acute no-observed-effect concentrations for these higher-molecular-weight phthalate esters. The lack of toxicity observed for the higher-molecular-weight phthalate esters resulted from their limited water solubility ({le}1.1 mg/L).

  17. Comparison of different soil organic matter fractionation methodologies: Evidences from ultrasensitive {sup 14}C measurements

    Energy Technology Data Exchange (ETDEWEB)

    Marzaioli, Fabio, E-mail: fabio.marzaioli@unina2.i [CIRCE, Dipartimento di Scienze Ambientali, Seconda Universita degli studi di Napoli and INNOVA, Via Vivaldi, 43, Caserta 81100 (Italy); Lubritto, Carmine; Galdo, Ilaria Del; D' Onofrio, Antonio [CIRCE, Dipartimento di Scienze Ambientali, Seconda Universita degli studi di Napoli and INNOVA, Via Vivaldi, 43, Caserta 81100 (Italy); Cotrufo, M. Francesca [CIRCE, Dipartimento di Scienze Ambientali, Seconda Universita degli studi di Napoli and INNOVA, Via Vivaldi, 43, Caserta 81100 (Italy); Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado (United States); Terrasi, Filippo [CIRCE, Dipartimento di Scienze Ambientali, Seconda Universita degli studi di Napoli and INNOVA, Via Vivaldi, 43, Caserta 81100 (Italy)

    2010-04-15

    Soils are studied with the aim to predict future climatic scenarios and find the best guidelines to manage terrestrial ecosystems for the mitigation of the atmospheric CO{sub 2} rising. Carbon constituting soil organic matter (SOM) behaves as a cohort of different pools, characterized by a specific C turnover time. Both natural and anthropogenic occurring {sup 14}C reach the soil through plant littering, becoming a valid tool to trace SOM dynamics. In this study we present a series of Accelerator Mass Spectrometry (AMS) {sup 14}C measurements on SOM samples obtained by means of different laboratory protocols used for the isolation of soil pools from bulk soil (fractionation protocols). Radiocarbon signature of SOM fractions is used as a keyhole to look at the more effective fractionation procedure and comparison among measured {sup 14}C on SOM fractions revealed important indications for the proposal of a novel fractionation protocol. Our data put in evidence how particle size controls the recalcitrance of ancient SOM carbon pools.

  18. SOIL ORGANIC MATTER FRACTIONS IN PRESERVED AND DISTURBED WETLANDS OF THE CERRADO BIOME

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes de Sousa

    2015-02-01

    Full Text Available Veredas are humid tropical ecosystems, generally associated to hydromorphic soils and a shallow water table. The soils of these ecosystems are affected by the use of the areas around these veredas. The objective of this study was to determine soil organic matter (SOM fractions in veredas adjacent to preserved (native savanna and disturbed environments (agricultural areas and pastures in the Cerrado biome. Soil samples were collected from the 0-10 and 10-20 cm layers along reference lines drawn along the relief following the upper, middle and lower positions of one of the slopes, in the direction of the draining line of the vereda. The soil analysis determined: total soil OC, total nitrogen and C:N ratio; C and N contents and C:N ratio in particulate and mineral-associated fractions (of SOM; fulvic acids, humic acids and humin fractions and ratio between humic and fulvic acids. The agricultural use around the veredas induced changes in the SOM fractions, more pronounced in the lower part of the slope. In the soil surface of this part, the OC levels in the humic substances and the particulate fraction of SOM, as well as total soil OC were reduced in the vereda next to crop fields.

  19. Sorption of organic carbon compounds to the fine fraction of surface and Subsurface Soils

    Energy Technology Data Exchange (ETDEWEB)

    Jagadamma, Sindhu [ORNL; Mayes, Melanie [ORNL; Zinn, Yuri [Federal University of Lavras, Brazil; Gisladottir, Gudrun [University of Iceland; Ann, Russell [Iowa State University

    2014-01-01

    Dissolved organic carbon (DOC) transported from the soil surface is stabilized in deeper soil profiles by physicochemical sorption processes. However, it is unclear how different forms of organic carbon (OC) compounds common in soil organic matter interact with soil minerals in the surface (A) and subsurface (B) horizons. We added four compounds (glucose, starch, cinnamic acid and stearic acid) to the silt- and clay-sized fraction (fine fraction) of A and B horizons of eight soils from varying climates (3 temperate, 3 tropical, 1 arctic and 1 sub-arctic). Equilibriumbatch experiments were conducted using 0 to 100 mg C L 1 of 14C-labeled compounds for 8 h. Sorption parameters (maximum sorption capacity, Qmax and binding coefficient, k) calculated by fitting sorption data to the Langmuir equation showed that Qmax of A and B horizons was very similar for all compounds. Both Qmax and k values were related to sorbate properties, with Qmax being lowest for glucose (20 500 mg kg 1), highest for stearic acid (20,000 200,000 mg kg 1), and intermediate for both cinnamic acid (200 4000 mg kg 1) and starch (400 6000 mg kg 1). Simple linear regression analysis revealed that physicochemical properties of the sorbents influenced the Qmax of cinnamic acid and stearic acid, but not glucose and starch. The sorbent properties did not show predictive ability for binding coefficient k. By using the fine fraction as sorbent, we found that the mineral fractions of A horizons are equally reactive as the B horizons irrespective of soil organic carbon content.

  20. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    Directory of Open Access Journals (Sweden)

    N. Gentsch

    2015-02-01

    Full Text Available In permafrost soils, the temperature regime and the resulting cryogenic processes are decisive for the storage of organic carbon (OC and its small-scale spatial variability. For cryoturbated soils there is a lack in the assessment of pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM fractions such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels across the Siberian Arctic were sampled in five meter wide soil trenches in order to calculate OC and total nitrogen (TN stocks within the active layer and the upper permafrost based on digital profile mapping. Density fractionation of soil samples was performed to distinguish particulate OM (light fraction, LF, −3, mineral associated OM (heavy fraction, HF, >1.6 g cm−3, and a mobilizable dissolved pool (mobilizable fraction, MoF. Mineral-organic associations were characterized by selective extraction of pedogenic Fe and Al oxides and the clay composition was analyzed by X-ray diffraction. Organic matter transformation in bulk soil and density fractions was assessed by the stable carbon isotope ratio (δ13C and element contents (C and N. Across all investigated soil profiles, total OC stocks were calculated to 20.2 ± 8.0 kg m−2 (mean ± SD to 100 cm soil depth. Of this average, 54% of the OC was located in active layer horizons (annual summer thawing layer showing evidence of cryoturbation, and another 35% was present in the permafrost. The HF-OC dominated the overall OC stocks (55% followed by LF-OC (19% in mineral and 13% in organic horizons. During fractionation about 13% of the OC was released as MoF, which likely represents the most bioavailable OM pool. Cryogenic activity combined with an impaired biodegradation in topsoil horizons (O and A horizons were the principle mechanisms to sequester large OC stocks in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons. About 22% of the subsoil

  1. The effect of organic and inorganic aqueous uranium speciation on U(VI) bioavailability to an aquatic invertebrate

    Science.gov (United States)

    Fuller, C.; Croteau, M. N.; Campbell, K. M.; Cain, D.; Aiken, G.

    2015-12-01

    Growing world-wide demand for uranium (U) as an energy source has raised concerns of the human and ecological risks of U extraction and processing in the United States. Because of limited information on the relationship between U speciation and bioavailability, particularly in aquatic animals, we are characterizing U uptake by a model freshwater invertebrate (the snail Lymnaea stagnalis). This species grazes on biofilms and is thus key in the trophic transfer of contaminants through aquatic food webs. We determined the bioavailability of dissolved U(VI) over a range of water hardness, pH (6 to 8), and the presence of dissolved natural organic matter (NOM) as a competing ligand, to test the effect of aqueous speciation on uptake. Bioavailability was assessed using U uptake rate constants (kuw) derived from a kinetic bioaccumulation model. Dissolved U (1 to 1000 nM) was bioavailable over the range of geochemical conditions tested with kuw (L/g/d) decreasing with increasing dissolved Ca and with increasing pH. For example, kuw decreased from 1.6 to 0.3 as dissolved Ca was increased from 0.04 to 1.5 mM, suggesting competition between bioavailable U(VI) species and strong ternary calcium uranyl carbonato complexes. At pH 7.5 in synthetic moderately hard freshwater, kuw decreased from 0.22 in the absence of NOM to 0.07 in the presence of a hydrophobic acid NOM isolate of high aromaticity (SUVA = 5) consistent with strong aqueous complexation of U(VI) by the NOM. The co-variance of U uptake and aqueous U species distribution is being analyzed to determine which U species are bioavailable. U speciation in systems with NOM is calculated using conditional U-NOM binding constants derived by equilibrium dialysis ligand exchange methodology. The bioavailability of dietborne U is being tested since dietary metal uptake prevails for many aquatic species. These experiments include addition of ferrihydrite with U sorbed, both in the presence and absence of NOM, and mixed with diet.

  2. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  3. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; Schäfer, Sabine;

    2016-01-01

    Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment...

  4. Size fractionation characterisation of removed organics in reverse osmosis concentrates by ferric chloride.

    Science.gov (United States)

    Bagastyo, A Y; Keller, J; Batstone, D J

    2011-01-01

    Reverse osmosis membrane separation is the leading method for manufacturing potable purified water. It also produces a concentrate stream, namely reverse osmosis concentrates (ROC), with 10-20% of the water, and almost all other compounds. One method for further treating this stream is by coagulation with ferric chloride. This study evaluates removed organics in ROC treated with ferric chloride. Fractionation with ultrafiltration membranes allows separation of organics based on a nominal molecular weight. A stirred cell system was applied for serial fractionation to classify organic compounds into six groups of 10 kDa. The study found that raw ROC is rich in low molecular weight compounds (organics. These compounds include soluble microbial products (SMPs) and smaller humic and fulvic acids as indicated by fluorescence scanning. Conversely, colour was mostly contributed by medium to large molecules of humic and fulvic acids (> 0.5 kDa). Organics and colour were reduced in all molecular groups at an optimum treatment dose 1.48 mM FeCl3 and a pH of 5. However, ferric seemed to effectively remove colour in all size ranges while residual nitrogen was found mostly in the < 1 kDa sizes. Further, the fluorescence indicated that larger humic and fulvic acids were removed with considerable SMPs remaining in the < 0.5 kDa.

  5. Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment

    Science.gov (United States)

    Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner

    2010-05-01

    The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand < silt < clay by 13C-NMR spectroscopy and GC-MS within soils and fractions before the incubation, resulting in increased lipid to lignin ratios with decreasing particle size. An accumulation of aliphatic C compounds was especially found for the small silt and clay sized particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by

  6. Using operational and defined fractions to assess soil organic matter stabilization and structure

    Science.gov (United States)

    Horwath, W. R.

    2015-12-01

    Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate

  7. Distribution of Soil Organic Carbon Fractions Along the Altitudinal Gradient in Changbai Mountain, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHANG Xiao-Ke; LIANG Wen-Ju; JIANG Yong; DAI Guan-Hua; WANG Xu-Gao; HAN Shi-Jie

    2011-01-01

    Understanding the responses of soil organic carbon (SOC) fractions to altitudinal gradient variation is important for understanding changes in the carbon balance of forest ecosystems.In our study the SOC and its fractions of readily oxidizable carbon (ROC),water-soluble carbon (WSC) and microbial biomass carbon (MBC) in the soil organic and mineral horizons were investigated for four typical forest types,including mixed coniferous broad-leaved forest (MCB),dark coniferous spruce-fir forest (DCSF),dark coniferous spruce forest (DCS),and Ermans birch forest (EB),along an altitudinal gradient in the Changbai Mountain Nature Reserve in Northeast China.The results showed that there was no obvious altitudinal pattern in the SOC.Similar variation trends of SOC with altitude were observed between the organic and mineral horizons.Significant differences in the contents of SOC,WSC,MBC and ROC were found among the four forest types and between horizons.The contents of ROC in the mineral horizon,WSC in the organic horizon and MBC in both horizons in the MCB and EB forests were significantly greater than those in either DCSF or DCS forest.The proportion of soil WSC to SOC was the lowest among the three main fractions.The contents of WSC,MBC and ROC were significantly correlated (P < 0.05) with SOC content.It can be concluded that vegetation types and climate were crucial factors in regulating the distribution of soil organic carbon fractious in Changbai Mountain.

  8. Reactivity of Zerovalent Metals in Aquatic Media: Effects of Organic Surface Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tratnyek, Paul G.; Salter-Blanc, Alexandra; Nurmi, James; Amonette, James E.; Liu, Juan; Wang, Chong M.; Dohnalkova, Alice; Baer, Donald R.

    2011-09-02

    Granular, reactive zerovalent metals (ZVMs)—especially iron (ZVI)—form the basis for model systems that have been used in fundamental and applied studies of a wide variety of environmental processes. This has resulted in notable advances in many areas, including the kinetics and mechanisms of contaminant reduction reactions, theory of filtration and transport of colloids in porous media, and modeling of complex reactive-transport scenarios. Recent emphasis on nano-sized ZVI has created a new opportunity: to advance the understanding of how coatings of organic polyelectrolytes—like natural organic matter (NOM)—influence the reactivity of environmental surfaces. Depending on many factors, organic coatings can be activating or passivating with respect to redox reactions at particle-solution interfaces. In this study, we show the effects of organic coatings on nZVI vary with a number of factors including: (i) time (i.e., “aging” is evident not only in the structure and composition of the nZVI but also in the interactions between nZVI and NOM) and (ii) the type of organic matter (i.e., suspensions of nZVI are stabilized by NOM and the model polyelectrolyte carboxymethylcellulose (CMC), but NOM stimulates redox reactions involving nZVI while CMC inhibits them).

  9. Influence of sediment organic enrichment and water alkalinity on growth of aquatic isoetid and elodeid plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl; Borum, Jens; Jensen, Kaj Sand

    2010-01-01

    1. Lake eutrophication has increased phytoplankton blooms and sediment organic matter. Among higher plants, small, oligotrophic rosette species (isoetids) have disappeared, while a few tall, eutrophic species (elodeids) may have persisted. Despite recent reduction of nutrient loading in restored......) and two elodeids (Potamogeton crispus and P. perfoliatus), we test whether organic enrichment of lake sediments has a long-lasting influence by: (i) reducing plant growth because of oxygen stress on plant roots and (ii) inhibiting growth more for isoetids than elodeids. We also test whether (iii...... because of greater CO2 supply from sediments being their main CO2 source. At higher organic enrichment, isoetid biomass was reduced, leaf chlorophyll declined up to 10-fold, root length declined from 7 to plant stress. 4. Lobelia was not affected by HCO...

  10. Facile synthesis of mosquitocidal silver nanoparticles using Mussaenda glabra leaf extract: characterisation and impact on non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Nicoletti, Marcello; Benelli, Giovanni

    2016-11-01

    Plant-borne compounds have been proposed for extracellular synthesis of mosquitocidal nanoparticles. However, their impact against mosquito natural enemies has been scarcely studied. Here, we synthesised silver nanoparticles (Ag NPs) using Mussaenda glabra leaf extract as reducing and stabilising agent. Biofabricated Ag NPs were characterised by UV-vis spectrophotometry, X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Compared to the leaf aqueous extract, biosynthesised Ag NPs showed higher toxicity against mosquito vectors Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus with LC50 of 17-19 μg/mL, respectively. Ag NPs were found safer to non-target organisms Diplonychus indicus and Gambusia affinis, with respective LC50 values ranging from 1446 to 8628 μg/mL. Overall, M. glabra-fabricated Ag NPs are a promising and eco-friendly tool against larval populations of mosquito vectors of medical and veterinary importance, with negligible toxicity against other non-target aquatic organisms.

  11. Silver nanoparticle accumulation by aquatic organisms – neutron activation as a tool for the environmental fate of nanoparticles tracing

    Directory of Open Access Journals (Sweden)

    Asztemborska Monika

    2014-12-01

    Full Text Available Water environments are noted as being some of the most exposed to the influence of toxic nanoparticles (NPs. Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs by freshwater larvae of Chironomus and fish Danio rerio. The influence of exposition time, concentration and the source of nanoparticles on the efficiency of AgNP accumulation were studied. It was found that AgNPs are efficiently accumulated by Chironomid larvae for the first 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fish and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more efficiently accumulated if fish are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms

  12. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  13. Toxicity of environmental chemicals and their mixtures to selected aquatic organisms. Behaviour, development and biochemistry; Toxizitaet von Umweltchemikalien und deren Mischungen auf ausgewaehlte aquatische Organismen. Verhalten, Entwicklung und Biochemie

    Energy Technology Data Exchange (ETDEWEB)

    Kienle, Cornelia

    2009-04-28

    In this work, the effects of various single substances (pesticides and metals) as well as binary mixtures of them on zebrafish (Danio rerio) embryos and larvae were assessed on biochemical, developmental, and organism levels. The influence of oxygen depletion on the toxicity of substances was included as an additional interacting factor. To analyse complex interactions, the predator-prey behaviour between zebrafish and chironomid larvae (Chironomus riparius) was investigated. Another aspect of this work were studies on complex mixtures of hydrocarbons such as the water accommodated fraction of crude oil, and their effects on the behaviour of marine amphipods (Corophium volutator), as well as semi-field experiments with freshwater amphipods (Gammarus pulex). My investigations showed that effects of various substances in environmentally relevant concentration ranges are exerted on different levels of biological organisation, both in amphipods and fish. It could be shown that abiotic parameters modify the effects of pollutants. When investigating mixtures of substances with similar or different modes of action, additivity occurred in the majority of cases which usually were consistent for all investigated parameters (enzyme activity, locomotor activity, developmental impairment, mortality). Effects of the neurotoxic insecticide chlorpyrifos on the interactions between fish and chironomids could be detected in environmentally relevant concentration ranges. The effects of the water accommodated fraction of crude oil which represents a great risk for aquatic organisms in costal habitats were displayed by alterations in the behaviour of the marine amphipod Corophium volutator. For a continuous monitoring of water quality in monitoring stations, the resident amphipod Gammarus pulex proved to be a suitable and relevant test organism, as it responds sensitive to complex mixtures of pollutants in surface waters. In summary, behavioural parameters proved to be integrative

  14. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2012-01-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the comparison with spectral profiles obtained from laboratory experiments of

  15. Dry-thermophilic anaerobic digestion of simulated organic fraction of municipal solid waste: process modeling.

    Science.gov (United States)

    Fdez-Güelfo, L A; Álvarez-Gallego, C; Sales Márquez, D; Romero García, L I

    2011-01-01

    Solid retention time (SRT) is a very important operational variable in continuous and semicontinuous waste treatment processes since the organic matter removal efficiency--expressed in terms of percentage of Dissolved Organic Carbon (% DOC) or Volatile Solids (% VS) removed--and the biogas or methane production are closely related with the SRT imposed. Optimum SRT is depending on the waste characteristics and the microorganisms involved in the process and, hence, it should be determined specifically in each case. In this work a series of experiments were carried out to determine the effect of SRT, from 40 to 8 days, on the performance of the dry (30% Total Solids) thermophilic (55°C) anaerobic digestion of organic fraction of Municipal Solid Wastes (OFMSW) operating at semicontinuous regime of feeding. The experimental results show than 15days is the optimum SRT (the best between all proved) for this process. Besides, data of organic matter concentration and methane production versus SRT have been used to obtain the kinetic parameters of the kinetic model of Romero García (1991): the maximum specific growth rate of the microorganisms (μmax=0.580 days(-1)) and the fraction of substrate non-biodegradable (α=0.268).

  16. Relationship between the water-exchangeable fraction of PAH and the organic matter composition of sediments.

    Science.gov (United States)

    Belles, Angel; Alary, Claire; Mamindy-Pajany, Yannick; Abriak, Nor-Edine

    2016-12-01

    The sorption of PAH on 12 different sediments was investigated and was correlated to their corresponding organic matter (OM) content and quality. For this purpose, the OM was precisely characterized using thermal analysis consisting in the successive combustion and quantification of the increasingly thermostable fractions of the OM. Simultaneously, the water-exchangeable fraction of the sorbed PAH defined as the amount of PAH freely exchanged between the water and the sediment (by opposition to the PAH harshly sorbed to the sediments particles) was determined using a passive sampler methodology recently developed. The water concentrations, when the sediment-water system is equilibrated, were also assessed which allows the determination of the sediment-water distribution coefficients without artifacts introduced by the non water-exchangeable fraction of PAH. Hence, the present study provides the distribution coefficients of PAH between the water and 4 different OM fractions combusted at a specific temperature range. The calculated distribution coefficients demonstrate that the sedimentary OM combusted at the intermediate temperature range (between 300 °C and 450 °C) drives the reversible sorption of PAH while the inferred sorption to the OM combusted at a lower and higher temperature range does not dominate the partitioning process.

  17. INFLUENCE OF DISSOLVED ORGANIC MATTER ON AGROCHEMICAL PHOTOREACTIONS IN AQUATIC ENVIRONMENTS

    Science.gov (United States)

    Pioneering studies by Don Crosby and co-workers demonstrated that the sunlight-induced dissipation of agrochemicals in water often is strongly affected by natural constituents in the water such as nitrate and dissolved organic matter. In this presentation, the focus is on the rol...

  18. Behavior persistence in defining threshold switch in stepwise response of aquatic organisms exposed to toxic chemicals.

    Science.gov (United States)

    Ren, Zongming; Li, Shangge; Zhang, Tingting; Qi, Luhuizi; Xing, Na; Yu, Huimin; Jian, Jinfeng; Chon, Tae-Soo; Tang, Bo

    2016-12-01

    As a characteristic in bacterial colony, persistence model described the dynamics of two subpopulations (normal (n) and persister (p)). In order to illustrate the switch of "Threshold" in the stepwise behavior responses of organisms, it is hypothesized that total behavior (Bt) of organisms consists of two types in behavior tendency, intoxication (Bp) and normal/recovery behavior (Bn). Both Bp and Bn could be concurrently affected by environmental stress E, and behavior response modes (M) are decided by the relationship between E and toxicity threshold of test organisms (Ti). The results suggested stress constant λ was decided by the constant rates gnE,gpE, an and ap. Due to different stress constant λ, the behavior responses of indicators showed great difference in different M, which included 'safe mode' (Ms), 'acclimation mode' (Mac), 'adjustment mode' (Maj) and 'toxic effect' (Mte). Usually, Bt during Ms could maintain around 0.8, and Mte would happen once it is lower than 0.2. According to the relationship between Bt values and E changes in 7 Majs, behavior persistence relying on adjustment could reflect the behavior homeostasis of organisms under environmental stress and be regarded as a threshold switch for the stepwise behavior responses. The mathematical analysis of behavior persistence allows making a quantitative prediction on environment assessment that would promote the emergence of persistence, as well as evaluating its ecological implications.

  19. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography-tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms.

    Science.gov (United States)

    Esterhuizen-Londt, Maranda; Kühn, Sandra; Pflugmacher, Stephan

    2015-12-01

    The cyanobacterial toxin cylindrospermopsin (CYN) is of great concern in aquatic environments because of its incidence, multiple toxicity endpoints, and, therefore, the severity of health implications. It may bioaccumulate in aquatic food webs, resulting in high exposure concentrations to higher-order trophic levels, particularly humans. Because of accumulation at primary levels resulting from exposure to trace amounts of toxin, a sensitive analytical technique with proven aquatic applications is required. In the present study, a hydrophilic interaction liquid chromatographic-tandem mass spectrometric method with a lower limit of detection of 200 fg on column (signal-to-noise ratio = 3, n = 9) and a lower limit of quantification of 1 pg on column (signal-to-noise ratio = 11, n = 9) with demonstrated application in 4 aquatic organisms is described. The analytical method was optimized and validated with a linear range (r(2) = 0.999) from 0.1 ng mL(-1) to 100 ng mL(-1) CYN. Mean recovery of the extraction method was 98 ± 2%. Application of the method was demonstrated by quantifying CYN uptake in Scenedesmus subspicatus (green algae), Egeria densa (Brazilian waterweed), Daphnia magna (water flea), and Lumbriculus variegatus (blackworm) after 24 h of static exposure to 50 μg L(-1) CYN. Uptake ranged from 0.05% to 0.11% of the nominal CYN exposure amount. This constitutes a sensitive and reproducible method for extraction and quantification of unconjugated CYN with demonstrated application in 4 aquatic organisms, which can be used in further aquatic toxicological investigations.

  20. Daphnia as a model organism in limnology and aquatic biology: some aspects of its reproduction and development

    Directory of Open Access Journals (Sweden)

    Adam Petrusek

    2011-08-01

    Full Text Available Invertebrates comprise the overwhelming majority of all animal species - around 95% of described species, not including substantial cryptic variation. As it is an extremely diverse and heterogeneous group, research on various invertebrate taxa often follows parallel trajectories, with little interaction among experts on different groups. To promote sharing of knowledge within as well as across taxa, the International Society of Invertebrate Reproduction and Development (ISIRD was established in 1975 in Calicut, India. Since that time, the ISIRD has organised international conferences at three-year intervals where various aspects of invertebrate biology are presented and discussed, naturally with the focus on reproduction and development. Traditionally, marine invertebrate groups have been well represented at all ISIRD congresses, but freshwater invertebrates have often been relatively overlooked at these meetings. The 12th ISIRD congress took place between August 16 and 20, 2010 in Prague, the Czech Republic. Several different Czech institutions collaborated on the organisation of this meeting. As aquatic invertebrate research has a long tradition in the country, we decided to include a section dedicated to popular model organisms in aquatic ecology and evolutionary biology, the "water fleas", cladocerans of the genus Daphnia. The section entitled "Daphnia and other cladocerans as model organisms" was open to any aspects of cladoceran biology directly or indirectly related to their reproduction or development. Unfortunately, the timing of the Prague congress completely overlapped the triennial congress of the International Society of Theoretical and Applied Limnology (SIL in Cape Town, South Africa. This large meeting in a very attractive setting attracted many cladocerologists from all over the world, including Europe. Therefore, the Daphnia section of the Prague ISIRD meeting remained moderate in size, attracting 13 contributions (eight talks

  1. Methodologies to assess the fate of polar organic compounds in aquatic environments

    OpenAIRE

    Magnér, Jörgen

    2010-01-01

    Polar organic compounds (POCs) are chemicals with polar functional groups in their structure. The functional groups make the compounds hydrophilic and less prone to partition with biota. However, the knowledge of their fate is limited due to difficulties associated with their measurements. Although, the persistence of POCs in the environment is generally low, they are considered to be semi-persistent compounds due to their continuous introduction to the environment via wastewater. Studies hav...

  2. Tetrodotoxin--distribution and accumulation in aquatic organisms, and cases of human intoxication.

    Science.gov (United States)

    Noguchi, Tamao; Arakawa, Osamu

    2008-05-28

    Many pufferfish of the family Tetraodontidae possess a potent neurotoxin, tetrodotoxin (TTX). In marine pufferfish species, toxicity is generally high in the liver and ovary, whereas in brackish water and freshwater species, toxicity is higher in the skin. In 1964, the toxin of the California newt was identified as TTX as well, and since then TTX has been detected in a variety of other organisms. TTX is produced primarily by marine bacteria, and pufferfish accumulate TTX via the food chain that begins with these bacteria. Consequently, pufferfish become non-toxic when they are fed TTX-free diets in an environment in which the invasion of TTX-bearing organisms is completely shut off. Although some researchers claim that the TTX of amphibians is endogenous, we believe that it also has an exogenous origin, i.e., from organisms consumed as food. TTX-bearing animals are equipped with a high tolerance to TTX, and thus retain or accumulate TTX possibly as a biologic defense substance. There have been many cases of human intoxication due to the ingestion of TTX-bearing pufferfish, mainly in Japan, China, and Taiwan, and several victims have died. Several cases of TTX intoxication due to the ingestion of small gastropods, including some lethal cases, were recently reported in China and Taiwan, revealing a serious public health issue.

  3. Analytical modelling of stable isotope fractionation of volatile organic compounds in the unsaturated zone

    CERN Document Server

    Bouchard, D; Höhener, P; Hunkeler, D; 10.1016/j.jconhyd.2010.09.006

    2011-01-01

    Analytical models were developed that simulate stable isotope ratios of volatile organic compounds (VOCs) near a point source contamination in the unsaturated zone. The models describe diffusive transport of VOCs, biodegradation and source ageing. The mass transport is governed by Fick's law for diffusion, and the equation for reactive transport of VOCs in the soil gas phase was solved for different source geometries and for different boundary conditions. Model results were compared to experimental data from a one-dimensional laboratory column and a radial-symmetric field experiment, and the comparison yielded a satisfying agreement. The model results clearly illustrate the significant isotope fractionation by gas-phase diffusion under transient state conditions. This leads to an initial depletion of heavy isotopes with increasing distance from the source. The isotope evolution of the source is governed by the combined effects of isotope fractionation due to vaporization, diffusion and biodegradation. The net...

  4. Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (Review of literature)

    Science.gov (United States)

    Karavanova, E. I.

    2013-08-01

    The behavior of dissolved organic matter (DOM) in soils under varying environmental conditions represents a poorly studied aspect of the problem of organic matter loss from soils. The equilibrium and sustainable development of ecosystems in the northern latitudes are largely determined by the balance between the formation of DOM, its accumulation in the lower soil horizons, and its input with runoff into surface waters. The residence time, retention strength in the soil, and thermodynamic and biochemical stabilities depend on the localization of DOM in the pore space and its chemical structure. Amphiphilic properties represent a valuable diagnostic parameter, which can be used to predict the behavior of DOM in the soil. Acidic components of hydrophobic and hydrophilic nature constitute the major portion of DOM in forest soils of the temperate zone. The hydrophilic fraction includes short-chain aliphatic carboxylic acids, hydrocarbons, and amino acids and is poorly sorbed by the solid phase. However, the existence of this fraction in soil solution is also limited both in space (in the finest pores) and time because of higher accessibility to microbial degradation. The hydrophilic fraction composes the major portion of labile DOM in soils. The hydrophobic fraction consists of soluble degradation products of lignin; it is enriched in structural ortho-hydroxybenzene fragments, which ensure its selective sorption and strong retention in soils. Sorption is favored by low pH values (3.5-5), the high ionic strength of solution, the heavy texture and fine porous structure of soil, the high contents of oxalate- and dithionite-soluble iron (and aluminum) compounds, and hydrological conditions characterized by slow water movement. The adsorbed DOM is chemically and biochemically recalcitrant and significantly contributes to the humus reserves in the low mineral horizons of soils.

  5. Adsorption of Different Fractions of Organic Matter on the Surface of Metal Oxide

    KAUST Repository

    Zaouri, Noor A

    2013-05-18

    The adsorption of different fractions of organic matter on the surface of Al2O3 and ZrO2 were investigated. The aim was to study the affinity of these fractions on the surface of metal oxide and the effect of several factors. Batch adsorption experiments were conducted with Low molecular weight oxygenated compounds. These chemical compound have been chosen to investigate:1) the aliphatic and aromatic structurer;2)contribution of hydroxyl group and; 3) the number of carboxyl group. HPLC and IC analysis used for determent the concentration of these chemical in the working solution. ATR-FTIR used to distinguish the type of coordination structure with the surface of metal oxide. The results fitted with Langmuir equation. The results showed that the chemical structure and the type and number of attached functional have an impact on the adsorption. Which it was proved via ATR-FTIR where the result showed that each chemical have different coordination structure on the surface of ZrO2 and Al2O3. Different fractions and sources of NOM were used (hydrophobic fraction of Suwannee and Colorado River, biopolymers extracted for the exuded of 2 species of algae, and low molecular acids that do not adsorb in XAD-8 resin). Results showed that these different fractions have different affinity with the surface of Al2O3 and ZrO2. These adsorption behaviors were varying according to the difference in the component of each NOM. Biopolymers showed significant adsorption at acidic pH. These biopolymers are mainly comprised of polysaccharides and this result proved that polysaccharide adsorb on the surface of ZrO2 more than Al2O3.

  6. The Mode of Action of Isocyanide in Three Aquatic Organisms, Balanus amphitrite, Bugula neritina and Danio rerio

    KAUST Repository

    Zhang, Yi-Fan

    2012-09-18

    Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine fouling invertebrates, and the other organism is the non-target species zebrafish Danio rerio. In the swimming larvae of B. neritina, isocyanide did not affect the total attachment rate (≤50 µg ml^(−1)), but it did change the attachment site by increasing the percentage of attachment on the bottom of the container rather than on the wall or air-water inter-surface. Isocyanide binds several proteins in B. neritina as identified via SDS-PAGE-LC-MS/MS: 1) a 30 kD protein band containing two proteins similar to voltage dependent anion channels (VDAC), which control the direct coupling of the mitochondrial matrix to the energy maintenance of the cytosol and the release of apoptogenic factors from mitochondria of mammalian cells; and 2) an unknown 39 kD protein. In B. amphitrite cyprids, the isocyanide binding protein were 1) a protein similar to NADH-ubiquinone oxidoreductase, which is the “entry enzyme” of oxidative phosphorylation in mitochondria; and 2) cytochrome P450. In Danio rerio embryos, isocyanide caused “wavy” notochords, hydrocephalus, pericardial edema, poor blood circulation, and defects in pigmentation and hematopoiesis, which phenocopied copper deficiency. This is the first report on isocyanide binding proteins in fouling organisms, as well as the first description of its phenotype and potential toxicology in zebrafish.

  7. The mode of action of isocyanide in three aquatic organisms, Balanus amphitrite, Bugula neritina and Danio rerio.

    Directory of Open Access Journals (Sweden)

    Yi-Fan Zhang

    Full Text Available Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine fouling invertebrates, and the other organism is the non-target species zebrafish Danio rerio. In the swimming larvae of B. neritina, isocyanide did not affect the total attachment rate (≤50 µg ml(-1, but it did change the attachment site by increasing the percentage of attachment on the bottom of the container rather than on the wall or air-water inter-surface. Isocyanide binds several proteins in B. neritina as identified via SDS-PAGE-LC-MS/MS: 1 a 30 kD protein band containing two proteins similar to voltage dependent anion channels (VDAC, which control the direct coupling of the mitochondrial matrix to the energy maintenance of the cytosol and the release of apoptogenic factors from mitochondria of mammalian cells; and 2 an unknown 39 kD protein. In B. amphitrite cyprids, the isocyanide binding protein were 1 a protein similar to NADH-ubiquinone oxidoreductase, which is the "entry enzyme" of oxidative phosphorylation in mitochondria; and 2 cytochrome P450. In Danio rerio embryos, isocyanide caused "wavy" notochords, hydrocephalus, pericardial edema, poor blood circulation, and defects in pigmentation and hematopoiesis, which phenocopied copper deficiency. This is the first report on isocyanide binding proteins in fouling organisms, as well as the first description of its phenotype and potential toxicology in zebrafish.

  8. Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals.

    Science.gov (United States)

    Jardine, Timothy D; Woods, Ryan; Marshall, Jonathan; Fawcetr, James; Lobegeiger, Jaye; Valdez, Dominic; Kainz, Martin J

    2015-12-01

    Few studies measure multiple ecological tracers in individual organisms, thus limiting our ability to differentiate among organic matter source pathways and understand consequences of dietary variation and the use of external subsidies in complex food webs. We combined two tracers, stable isotope (SI) ratios and fatty acids (FA), to investigate linkages among ecological compartments (water column, benthos, riparian zone) in food webs in waterholes of a dryland river network, the Border Rivers in southwestern Queensland, Australia. Comprehensive analyses of sources (plankton, periphyton, leaf litter, riparian grasses) and animals (benthic insects, mollusks, large crustaceans, fishes) for SI and FA showed that all three zones contribute to animal biomass, depending on species and life stage. Large fishes derived a subsidy from the riparian/floodplain zone, likely through the consumption of terrestrial and semi-aquatic insects and prawns that fed on detritivorous insects. Importantly, post-larval bony bream (Nematalosa erebi) and golden perch (Macquaria ambigua) were tightly connected to the water column, as evidenced by 13C-depleted, 15N-enriched isotope ratios and a high content of plankton-derived polyunsaturated fatty acids (eicosapentaenoic acid [EPA; 20:53] and docosahexaenoic acid [DHA; 22:6003]). These observations were consistent with expectations from nutritional requirements of fish early life stages and habitat changes associated with maturity. These results highlight the importance of high-quality foods during early development of fishes, and show that attempting to attribute food-web production to a single source pathway overlooks important but often subtle subsidies that maintain viable populations. A complete understanding of food-web dynamics must consider both quantity and quality of different available organic matter sources. This understanding can be achieved with a combined SI and FA approach, but more controlled dietary studies are needed to

  9. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  10. Nitrogen Mineralization from Animal Manures and Its Relation to Organic N Fractions

    Institute of Scientific and Technical Information of China (English)

    LI Ling-ling; LI Shu-tian

    2014-01-01

    Laboratory aerobic incubation was conducted for 161 d to study N mineralization and the changes of organic N fractions of nine different manures (3 chicken manures, 3 pig manures and 3 cattle manures) from different farms/locations. Results indicated that signiifcant (P<0.01 orP<0.001) difference existed in N mineralization between manures. The rapid N mineralization in manures occurred during 56 to 84 d of incubation. First order exponential model can be used to describe N mineralization from chicken manures and pig manures, while quadratic equation can predict mineralization of organic N from cattle manures. An average of 21, 19 and 13% added organic N from chicken manure, pig manure and cattle manure was mineralized during 161 d of incubation. Amino acid-N was the main source of N mineralization. The changes of amino acid-N together with ammonium N could explain signiifcantly 97 and 96% of the variation in mineralized N from manured soils and manures. Amino acid-N and ammonium N are two main N fractions in determining N mineralization potential from manures. Amino acid-N contributed more to the mineralized N than ammonium N.

  11. Evaluation of the effect of water type on the toxicity of nitrate to aquatic organisms.

    Science.gov (United States)

    Baker, Josh A; Gilron, Guy; Chalmers, Ben A; Elphick, James R

    2017-02-01

    A suite of acute and chronic toxicity tests were conducted to evaluate the sensitivity of freshwater organisms to nitrate (as sodium nitrate). Acute exposures with rainbow trout (Onchorhynchus mykiss) and amphipods (Hyalella azteca), as well as chronic exposures with H. azteca (14-d survival and growth), midges (Chironomus dilutus; 10-d survival and growth), daphnids (Ceriodaphnia dubia; 7-d survival and reproduction), and fathead minnows (Pimephales promelas; 7-d survival and growth) were used to determine sublethal and lethal effect concentrations. Modification of nitrate toxicity was investigated across a range of ionic strengths, created through the use of very soft water, and standard preparations of synthetic soft, moderately-hard and hard dilution waters. The most sensitive species tested were C. dubia and H. azteca, in soft water, with reproduction and growth IC25 values of 13.8 and 12.2 mg/L NO3-N, respectively. All of the organisms exposed to nitrate demonstrated significantly reduced effects with increasing ionic strength associated with changes in water type. Possible mechanisms responsible for the modifying effect of increasing major ion concentrations on nitrate toxicity are discussed.

  12. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  13. Dynamic of the active fraction of organic matter in some meadow soils

    Directory of Open Access Journals (Sweden)

    Mahtali Sbih

    2012-01-01

    Full Text Available The microbial biomass (MB and light fraction (LF of organic matter are often considered as active fraction of organic matter (AFOM and as indices of soil fertility and microbial activity. This study was performed in order to assess the turnover of AFOM using long-term incubation (56 weeks at25 °Cin 34 meadow soils with different physical and chemical properties such as soil texture, organic C and total N. The MB and LF were determined at 8 and 5 times during the incubation period using fumigation-extraction technique for MB and densimetric method for LF. The amount of MB-C and MB-N mineralized increased with time of incubation. At the beginning of incubation, the C and N content of soil MB represented respectively 0.76 to 3.7% of total organic C and 1.94 to 10.7% of total N. The C and N content of LF represented respectively 2.9 to 25.6% of total organic C and 1.7 to 17.5% of total N. At the end of incubation, the losses of MB-C and MB-N from soils reached respectively 71 and 82% of the initial amounts. The MB and LF dynamic were well described by a two-component first-order rate model. The amount of N in the labile MB and LF pools represented respectively 54% of total MB-N and 61% of total LF-N. The more stable MB and LF pools had higher half-life than labile pools. The results obtained indicated that the stable LF would be the precursor of soil humic compounds.

  14. ASE extraction method for simultaneous carbon and nitrogen stable isotope analysis in soft tissues of aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Nathalie [ISM/LPTC, UMR 5255 CNRS, Universite de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France); CRH, UMR 212 EME, Institut de Recherche et de Developpement, Av Jean Monnet BP171, 34203 Sete (France); Budzinski, Helene, E-mail: h.budzinski@ism.u-bordeaux1.fr [ISM/LPTC, UMR 5255 CNRS, Universite de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France); Le Menach, Karyn; Tapie, Nathalie [ISM/LPTC, UMR 5255 CNRS, Universite de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France)

    2009-06-08

    Since lipids are depleted in {sup 13}C relative to proteins and carbohydrates, variations in lipid composition among species and within individuals significantly influence {delta}{sup 13}C and may result in misleading ecological interpretations. Whereas lipid extraction before IRMS analysis constitutes a way of stable isotope result lipid-normalisation, such a procedure was given up because of the un-controlled effects of the methods used (i.e., 'Bligh and Dyer', Soxhlet, etc.) on {delta}{sup 15}N. The aim of this work was to develop a simple, rapid and efficient lipid extraction method allowing for simultaneous C and N stable isotope analysis in the biological soft tissues of aquatic organisms. The goal was to be free from the lipid influence on {delta}{sup 13}C values without interfering with {delta}{sup 15}N values. For that purpose, the modern automated pressurized liquid extraction technique ASE (accelerated solvent extraction) was selected. Eel muscles representative of a broad range of fat contents were extracted via ASE by using different semi-polar solvents (100% dichloromethane and 80% n-hexane/20% acetone) and by operating at different temperature (ambient temperature and 100 deg. C) and pressure (750 and 1900 psi) conditions. The results were discussed in terms of lipid extraction efficiency as well as {delta}{sup 13}C and {delta}{sup 15}N variability.

  15. GC/MS Analysis of Organic Compounds in Hot Water-Extractable Fraction from Shenfu Coal

    Institute of Scientific and Technical Information of China (English)

    LI Bao-min; YUAN Cheng; ZONG Zhi-min; CAO Jing-pei; LIU Guang-feng; WEI Xian-yong

    2007-01-01

    Shenfu Coal was extracted with hot pure water and slurry was isolated. The concentrated benzene-soluble fraction (CBSF) was analyzed with GC/MS and four types of organic compounds (OCs) were detected: HACOCs, DTEs, DMDT and LCAs. The amount of benzyl benzoate which is the most abundant OC was calculated by an internal standard method with an indicated amount of BP. The broken hydrogen bonds and ether bonds were responsible for the extraction of OCs from the coal .DTEs, DMDT and LCAs are essentially insoluble in water, whereas they are soluble, probably owing to intermolecular interaction of OCs with HACOCs.

  16. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan;

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...... was to determine the seasonal (summer and winter) variation and human health risk assessment of VCs in the ambient air of different processing units in MSOF at composting plant in China. Average concentration of VCs was 58.50 and 138.03 mg/m3 in summer and winter respectively. Oxygenated compounds were found...

  17. Insights into the secondary fraction of the organic aerosol in a Mediterranean urban area: Marseille

    Directory of Open Access Journals (Sweden)

    I. El Haddad

    2010-11-01

    Full Text Available A comprehensive aerosol characterization was conducted at Marseille during summer, including organic (OC and elemental carbon (EC, major ionic species, radiocarbon (14C, water soluble OC and HULIS (HUmic LIke Substances, elemental composition and primary and secondary organic markers. This paper is the second paper of a two-part series investigating the sources of organic aerosol. While the first paper investigates the primary sources of Organic Aerosol (OA (El Haddad et al., 2010, this second paper focused on the secondary fraction of OA.

    In the context of overall OC mass balance, primary OC (POC contributes on average for only 22% and was dominated by vehicular emissions accounting on average for 17% of OC. As a result, 78% of OC mass cannot be attributed to the major primary sources and remains un-apportioned. Radiocarbon measurements suggest that more than 70% of this fraction is of modern origins, assigned predominantly to biogenic secondary organic carbon (BSOC. Therefore, contributions from three traditional BSOC precursors, isoprene, α-pinene and β-caryophellene, were considered. These were estimated using the ambient concentrations of SOA markers from each precursor and laboratory-derived marker mass fraction factors.

    Secondary organic markers derived from isoprene photo-oxidation (i.e. 2-methylglyceric acid and 2-methyltetrols do not exhibit the same temporal trends. This variability was assigned to the influence of NOx concentration on their formation pathways and to their potential decay by further processing in the atmosphere. The influence of changes in isoprene chemistry on assessment of isoprene SOC contribution was evaluated explicitly. The results suggest a 60-fold variation between the different estimates computed using different isoprene SOC markers, implying that the available profiles do not reflect the actual isoprene SOC composition observed in Marseille.

    Using the marker

  18. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays.

    Science.gov (United States)

    Jahnke, Annika; Mayer, Philipp; Schäfer, Sabine; Witt, Gesine; Haase, Nora; Escher, Beate I

    2016-06-07

    Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment and monitoring of such mixtures, a variety of cell-based in vitro and low-complexity in vivo bioassays based on algae, daphnids or fish embryos are available. A very important and sometimes unrecognized challenge is how to combine sampling, extraction and dosing to transfer the mixtures from the environment into bioassays, while conserving (or re-establishing) their chemical composition at adjustable levels for concentration-effect assessment. This article outlines various strategies for quantifiable transfer from environmental samples including water, sediment, and biota into bioassays using total extraction or polymer-based passive sampling combined with either solvent spiking or passive dosing.

  19. Phototransformation of Amlodipine in Aqueous Solution: Toxicity of the Drug and Its Photoproduct on Aquatic Organisms

    Directory of Open Access Journals (Sweden)

    Marina DellaGreca

    2007-01-01

    Full Text Available The phototransformation of amlodipine in water was investigated under various conditions. A quantum yield ΦS2.2×10−4 and a half-life time t1/2 0.419 days were calculated when the drug in water (10−4 M was exposed to sunlight. The only photoproduct found was its pyridine derivative. Formation of this product was explained on the basis of a radical cation intermediate. The acute and chronic toxicity of the drug and its photoproduct were evaluated on different organisms of the freshwater chain (Brachionus calyciflorus, Thamnocephalus platyurus, Daphnia magna, Ceriodaphnia dubia. The photoproduct exhibited a stronger toxic potential than the parent drug on the long time for C. dubia.

  20. The use of aquatic organisms as environmental indicators; Anvaendningen av vattenorganismer som miljoeindikatorer

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, E.

    1993-02-01

    This report is based on literature from the period 1949-1991. It includes a review on the environmental requirements of different taxa (as phytoplankton, waterplants, zooplankton and bottom fauna). In the report possible structures and changes caused by acidification under oligotrophic and eutrophic conditions are described. Over the last decade the use of biological parameters in monitoring has grown in importance and is likely to increase even more in the future. Both environmental indicators (species with narrow requirements) and bioindicators (species used for semiquantitative determination of bioavailability of xenobiotics) are useful. The sensitivity of organisms for e.g. acidification, oxygen deficiency, metal and oil pollutants and nutrients varies. For instance Mayflies has proved very suitable as an indicator of acidification, while bottom fauna (mainly chironomids and oligochaetes) has showed useful for evaluating ecological effects caused by industrial effluents, oxygen deficiency and nutrients. Diatoms is another useful group of indicators, particularly for oligotrophic and eurotrophic conditions. (31 refs., 6 figs.).

  1. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms

    Science.gov (United States)

    Doss, Janis; Culbertson, Kayla; Hahn, Delilah; Camacho, Joanna; Barekzi, Nazir

    2017-01-01

    Since the discovery of bacteriophage in the early 1900s, there have been numerous attempts to exploit their innate ability to kill bacteria. The purpose of this report is to review current findings and new developments in phage therapy with an emphasis on bacterial diseases of marine organisms, humans, and plants. The body of evidence includes data from studies investigating bacteriophage in marine and land environments as modern antimicrobial agents against harmful bacteria. The goal of this paper is to present an overview of the topic of phage therapy, the use of phage-derived protein therapy, and the hosts that bacteriophage are currently being used against, with an emphasis on the uses of bacteriophage against marine, human, animal and plant pathogens. PMID:28335451

  2. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    DEFF Research Database (Denmark)

    Booij, Kees; Robinson, Craig D; Burgess, Robert M;

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shor...... is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.......We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths...... and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations...

  3. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh)

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, Asunción, E-mail: xonborrell@ub.edu [Department of Animal Biology, Institute of Biodiversity (IRBIO), University of Barcelona, Av. Diagonal, 643, Barcelona (Spain); Tornero, Victoria [Department of Animal Biology, Institute of Biodiversity (IRBIO), University of Barcelona, Av. Diagonal, 643, Barcelona (Spain); Bhattacharjee, Dola [Indian Institute of Science Education & Research — Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia, West Bengal (India); Aguilar, Alex [Department of Animal Biology, Institute of Biodiversity (IRBIO), University of Barcelona, Av. Diagonal, 643, Barcelona (Spain)

    2016-03-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ{sup 15}N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health. - Highlights: • Trace elements were determined in organisms from the Sundarbans mangrove. • The levels found were similar to those determined in wildlife from other mangroves. • Levels in three edible species were close to threshold limits for human consumption. • Except for Cr, As and Hg

  4. Sensitivity of aquatic organisms to ethanol and its potential use as bioindicators

    Directory of Open Access Journals (Sweden)

    Adilson Ferreira Silva

    2016-12-01

    Full Text Available The aim of this research was to evaluate the feasibility for the use of the organisms Lemna minor, Azolla caroliniana, Hyphessobrycon eques, Pomacea canaliculata and Daphnia magna as exposure bioindicators for ethanol (lethal and effective concentration 50% - LC50(I/EC50(I. Thus, the following concentrations were used 5.0; 10.0; 20.0; 30.0; 40.0 and 50.0 mg L-1 ethanol on L. minor; 25.0; 50.0; 75.0; 100.0; 150.0 and 200.0 mg L-1 on A. caroliniana; 0.3; 0.5; 1.0; 2.0 and 3.0 mg L-1 on H. eques; 0.05; 0.10; 0.20; 0.40 and 0.80 mg L-1 on P. canaliculata; and 40.0; 60.0; 80.0; 100.0; 120.0 and 140.0 mg L-1 on D. magna. An untreated control was also kept for all organisms, with three repetitions. The increase in the ethanol concentration elevated the electrical conductivity and decreased the water dissolved oxygen and pH. The ethanol LC50 for L. minor and A. caroliniana were 12.78 and 73.11 mg L-1, respectively, and was classified as slightly toxic; 1.22 mg L-1 for H. eques (moderately toxic; 0.39 mg L-1 for P. canaliculata (highly toxic and 98.85 mg L-1 for D. magna (slightly toxic. Thus, H. eques and P. canaliculata have showed good potential for the use as ethanol exposure bioindicators on water bodies.

  5. ORGANIC MATTER AND HUMIC FRACTIONS OF A HAPLIC ACRISOL AS AFFECTED BY COMPOSTED PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lüdtke

    2016-01-01

    Full Text Available The goal of this study was to investigate the effect of composted pig slurry (PS on the organic matter concentration and distribution of humic acid (HA, fulvic acid (FA and humin (HU fractions. The fractions were quantified following the addition of composted PS to the soil, which was produced with no acidification (T2 or with acidification with H3PO4 (T3; and in soil without compost addition (T1. The HA chemical composition was analyzed by FTIR spectroscopy. The addition of the two composts did not change the soil carbon concentration but affected the distribution of the humic fractions. For the three treatments, the carbon concentration of humic substances increased until 52 days following compost addition, with more pronounced increases with the addition of non-acidified PS compost (14.5 g kg-1 and acidified PS compost (15.1 g kg-1. This increase was reflected in both the FA and HA concentrations. The addition of compost with PS acidification resulted in the formation of larger humic micelles (HA with higher aromatic content and fewer functional groups than the non-acidified PS compost. These findings, together with a lower proportion of carbohydrate-type structures, indicated the presence of more stable humic micelles in the soil treated with acidified PS compost.

  6. Fractionation of Added Cadmium in Submerged Soils as Affected by Organic Materials

    Institute of Scientific and Technical Information of China (English)

    WANGGUO; GAOSHAN; 等

    1999-01-01

    The effect of three organic materials(rice straw,Chinese milk vetch and pig manure)on the fractionation of cadmium added into two soils(a red soil and a fluvo-aquic soil) was studied using submerged incubation experiment.The organic materials increased soil soild organic carbon(SOC),pH value,the concentration of active Si in all the treatments and active Fe and Mn in some treatments.Accumulated SOC caused directly the increase of Cd bound to solid organic matter and consequently the decrease of exchangeable Cd.Higher active Si and pH,as well as lower Eh,were also responsible for the reduction of exchangeable Cd.Cd bound to mn oxide was positively correlated with pH values and rose significantly after one-month incubation,but decreased after three-month incubation.Cd bound to amporphous Fe oxide increased with the incubation time,but was not affected significantly by adding organic materials.

  7. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge.

    Science.gov (United States)

    Jasinska, Edyta J; Goss, Greg G; Gillis, Patricia L; Van Der Kraak, Glen J; Matsumoto, Jacqueline; de Souza Machado, Anderson A; Giacomin, Marina; Moon, Thomas W; Massarsky, Andrey; Gagné, Francois; Servos, Mark R; Wilson, Joanna; Sultana, Tamanna; Metcalfe, Chris D

    2015-10-15

    Contaminants of emerging concern (CECs), including pharmaceuticals, personal care products and estrogens, are detected in wastewater treatment plant (WWTP) discharges. However, analytical monitoring of wastewater and surface water does not indicate whether CECs are affecting the organisms downstream. In this study, fathead minnows (Pimephales promelas) and freshwater mussels Pyganodon grandis Say, 1829 (synonym: Anodonta grandis Say, 1829) were caged for 4 weeks in the North Saskatchewan River, upstream and downstream of the discharge from the WWTP that serves the Edmonton, AB, Canada. Passive samplers deployed indicated that concentrations of pharmaceuticals, personal care products, an estrogen (estrone) and an androgen (androstenedione) were elevated at sites downstream of the WWTP discharge. Several biomarkers of exposure were significantly altered in the tissues of caged fathead minnows and freshwater mussels relative to the upstream reference sites. Biomarkers altered in fish included induction of CYP3A metabolism, an increase in vitellogenin (Vtg) gene expression in male minnows, elevated ratios of oxidized to total glutathione (i.e. GSSG/TGSH), and an increase in the activity of antioxidant enzymes (i.e. glutathione reductase, glutathione-S-transferase). In mussels, there were no significant changes in biomarkers of oxidative stress and the levels of Vtg-like proteins were reduced, not elevated, indicating a generalized stress response. Immune function was altered in mussels, as indicated by elevated lysosomal activity per hemocyte in P. grandis caged closest to the wastewater discharge. This immune response may be due to exposure to bacterial pathogens in the wastewater. Multivariate analysis indicated a response to the CECs Carbamazepine (CBZ) and Trimethoprim (TPM). Overall, these data indicate that there is a 1 km zone of impact for aquatic organisms downstream of WWTP discharge. However, multiple stressors in municipal wastewater make measurement and

  8. The Potential Impacts of OTEC Intakes on Aquatic Organisms at an OTEC Site under Development on Kauai, HI

    Energy Technology Data Exchange (ETDEWEB)

    Oney, Stephen K. [OTE Corporation; Hogan, Timothy [Alden Research Laboratory; Steinbeck, John [Tenera Environmental

    2013-08-31

    Ocean thermal energy conversion (OTEC) is a marine renewable energy technology with the potential to contribute significantly to the baseload power needs of tropical island communities and remote U.S. military installations. As with other renewable energy technologies, however, there are potential challenges to its commercialization: technological, financial, social, and environmental. Given the large volumes of seawater required to drive the electricity-producing cycle, there is potential for the intakes to negatively impact the marine resources of the source waterbody through the impingement and entrainment of marine organisms. The goal of this project was to identify feasible warm water intake designs for a land-based OTEC facility proposed for development in Port Allen, Kauai and to characterize the populations of ichthyoplankton near the proposed warm water intake location that could be at risk of entrainment. The specific objectives of this project were to: • Complete a site-specific assessment of available and feasible warm water intake technologies to determine the best intake designs for minimizing impacts to aquatic organisms at the proposed land-based OTEC site in Port Allen, Kauai. • Complete a field sampling program to collect biological data to characterize the baseline populations of ichthyoplankton near the sites being considered for the warm water intake at the proposed land-based OTEC site in Port Allen, Kauai. Various intake design options are presented with the focus on providing adequate environmental protection to the local ichthyoplankton population while providing an economically viable intake option to the OTEC developer. Further definition by NOAA and other environmental regulators is required to further refine the designs presented to meet all US regulations for future OTEC development.

  9. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates : Evaluating the potential for a CO2 proxy

    NARCIS (Netherlands)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert Jan; Rost, Björn; Sluijs, Appy

    2015-01-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, h

  10. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: evaluating the potential for a CO2 proxy

    NARCIS (Netherlands)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-01-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, h

  11. Chemical Hydrolysis and Thermophilic Anaerobic Digestion of Organic Fraction of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    Yosvany Díaz Domínguez

    2014-03-01

    Full Text Available The hydrolysis of the macromolecules that compose the organic fraction of municipal solid waste canbe taken for chemical, physical and biological methods, having all as aim the unfolding of the complexmolecules in simplier monomer. Thereby the degradation of organic matter is enhanced and resultsmore efficient the process of biogas via anaerobic. Chemical pretreatments were employed in the workusing sodium hydroxide (NaOH and hydrogen peroxide (H2O2 as reagents.The soluble chemicaloxygen demand (COD, the maximum methane yield and the methane rates production were used toevaluate the pretreatment actions. The degradation of the waste was able to be increased by allowinga comparative analysis to determine the best working conditions for this stage and subsequently itsimpact in the generation of biogas, methane specifically.

  12. Characteristics of the organic fraction of municipal solid waste and methane production: A review.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2016-08-01

    Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed.

  13. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Science.gov (United States)

    Vaattovaara, P.; Räsänen, M.; Kühn, T.; Joutsensaari, J.; Laaksonen, A.

    2005-12-01

    New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, dammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  14. Organic fraction of solid waste in biodigester; Fracao organica de lixo urbano como substrato para biodigestor

    Energy Technology Data Exchange (ETDEWEB)

    Gorgati, Claudia Q. [UNESP, Botucatu, SP (Brazil). Faculdade de Ciencias Agronomicas. Curso de Pos-graduacao em Energia na Agricultura; Lucas Junior, Jorge de [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Engenharia Rural

    1999-12-01

    The study of the anaerobic digestion was accomplished with the organic fraction of urban solid waste collected at the composting plant - CONSTRUFERT- from the municipal district of Sao Jose do Rio Preto - SP. The essay was conducted in six bio digesters at the Rural Engineering Department of the Faculdade de Ciencias Agrarias e Veterinarias, in Jaboticabal/SP, three of them with fresh urban organic waste and remaining ones with dried and ground material. With regard to the anaerobic digestion the biogas production was monitored and the data indicated the energetic potential of urban waste, which was found to be 0.1034 - 0.1395 m{sup 3}/Kg of raw urban waste with reduction of volatile solids between 56 and 66.50%. (author)

  15. Fractionation of Rare Earth Elements in Plants Ⅰ. Fractionation Patterns and Their Forming Mechanisms in Different Organs of Triticum Aestivum

    Institute of Scientific and Technical Information of China (English)

    Liang Tao; Ding Shiming; Zhang Chaosheng; Zhang Zili; Yan Juncai; Li Haitao

    2005-01-01

    Fractionations of rare earth elements (REEs) and the forming mechanisms in plants were studied using Triticum aestivum as plant material with application of exogenous REEs and hydroponic culture. REEs were significantly fractionated in different parts of Triticum aestivum. M-type tetrad effect could be observed in both root and shoot of Triticum aestivum, which might result from the different abilities of REEs to form phosphate precipitation. Middle REEs (MREEs), light REEs (LREEs) and heavy REEs (HREEs) were enriched in root, stem and leaf of Triticum aestivum, respectively. REE speciation calculations using VMINTEQ program show REEs in simulated xylem solution mainly exist as REE-EDTA- and RE3+, but only HREEs are enriched in REE-EDTA-, while LREEs are enriched in the other REE species. It is suggested that the fractionation between LREEs and HREEs might be caused by the uptake of REE-EDTA- in Triticum aestivum leaves, but might result from the uptake of the other REE species in their stems.

  16. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    Science.gov (United States)

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  17. Pig slurry and mineral fertilization strategies' effects on soil quality: macroaggregate stability and organic matter fractions.

    Science.gov (United States)

    Yagüe, María R; Bosch-Serra, Àngela D; Antúnez, Montserrat; Boixadera, Jaume

    2012-11-01

    Applying pig slurry to the land as fertilizer at appropriate agronomic rates is important to close nutrient cycles and optimize the value of organic matter. However a long-term discussion has taken place about its effects on soil quality. In the north-east of Spain, eight fertilization strategies were evaluated on the soil quality parameters' aggregate stability, soil organic matter (SOM) physical fractions and soil microbial biomass (SMB). Six strategies used different pig slurries (PS) which provided organic matter from 1.7 to 2.6 t ha(-1)yr(-1), the rest (mineral N fertilization and a control) did not. Pig slurries were applied at sowing and/or at cereal tillering, as sidedressing. Field experiments were maintained for an 8-year period, in a silty loam soil devoted to a rainfed winter cereal. Soil samples were taken once, before the last sidedressing in 2011. Aggregate stability was quantified using the standard water-stable aggregate method but including a modification which meant that pre-wetting was avoided (WSA(MOD)). When using the WSA(MOD) method, we found a tendency for the percentage of water-stable aggregates to increase due to PS application (differences of up to 74% in the increment) and it was more marked the nearer they were measured to the application time (3 months vs. 12 months). The strategies which include PS show a positive effect on the SOM amount, mainly in the 0.05-0.2 mm light fraction, which increased by up to 34% with every 10 t ha(-1) organic C applied, and on SMB (up to 53% increment). There is a positive and significant linear relationship (p fertilization strategies improves soil quality parameters. However, the soil quality benefits need to be balanced with any other potential environmental impact.

  18. Comparative Toxicity of Combined Particle and Semi-Volatile Organic Fractions of Gasoline and Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mauderly, Joe; Seagrave, JeanClare; McDonald, Jacob; Gigliotti,Andrew; Nikula, Kristen; Seilkop, Steven; Gurevich, Michael

    2002-08-25

    Little is known about the relative health hazards presented by emissions from in-use gasoline and diesel engines. Adverse health effects have been ascribed to engine emissions on the basis of: (1) the presence of known toxic agents in emissions; (2) high-dose animal and bacterial mutagenicity tests; and (3) studies indicating gradients of health effects with proximity to roadways. Most attention has been given to the particulate fraction of emissions; little attention has been given to the semi-volatile organic fraction. However, the semi-volatile fraction overlaps the particulate fraction in composition and is always present in the vicinity of fresh emissions. Although the potential health effects of diesel emissions have been frequently studied and debated during the past 20 years (EPA, 2002), relatively little attention has been given to the toxicity of emissions from gasoline engines. In view of the considerable progress in cleaning up diesel emissions, it would be useful to compare the toxicity of emissions from contemporary on-road diesel technology with that of emissions from the in-use gasoline fleet that is well-accepted by the public. It would also be useful to have a set of validated tests for rapid, cost-effective comparisons of the toxicity of emission samples, both for comparisons among competing technologies (e.g., diesel, gasoline, natural gas) and for determining the impacts of new fuel, engine, and after-treatment strategies on toxicity. The Office of Heavy Vehicle Technologies has sponsored research aimed at developing and applying rapid-response toxicity tests for collected emission samples (Seagrave et al., 2000). This report presents selected results from that work, which is being published in much greater detail in the peer-reviewed literature (Seagrave et al., 2002).

  19. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  20. Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa.

    Directory of Open Access Journals (Sweden)

    Qiuchan Yang

    Full Text Available Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v, respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms.

  1. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh).

    Science.gov (United States)

    Borrell, Asunción; Tornero, Victoria; Bhattacharjee, Dola; Aguilar, Alex

    2016-03-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ(15)N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health.

  2. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Kumar, Anuj; Mohan, Dinesh

    2014-05-19

    The research aims to develop multispecies quantitative structure-activity relationships (QSARs) modeling tools capable of predicting the acute toxicity of diverse chemicals in various Organization for Economic Co-operation and Development (OECD) recommended test species of different trophic levels for regulatory toxicology. Accordingly, the ensemble learning (EL) approach based classification and regression QSAR models, such as decision treeboost (DTB) and decision tree forest (DTF) implementing stochastic gradient boosting and bagging algorithms were developed using the algae (P. subcapitata) experimental toxicity data for chemicals. The EL-QSAR models were successfully applied to predict toxicities of wide groups of chemicals in other test species including algae (S. obliguue), daphnia, fish, and bacteria. Structural diversity of the selected chemicals and those of the end-point toxicity data of five different test species were tested using the Tanimoto similarity index and Kruskal-Wallis (K-W) statistics. Predictive and generalization abilities of the constructed QSAR models were compared using statistical parameters. The developed QSAR models (DTB and DTF) yielded a considerably high classification accuracy in complete data of model building (algae) species (97.82%, 99.01%) and ranged between 92.50%-94.26% and 92.14%-94.12% in four test species, respectively, whereas regression QSAR models (DTB and DTF) rendered high correlation (R(2)) between the measured and model predicted toxicity end-point values and low mean-squared error in model building (algae) species (0.918, 0.15; 0.905, 0.21) and ranged between 0.575 and 0.672, 0.18-0.51 and 0.605-0.689 and 0.20-0.45 in four different test species. The developed QSAR models exhibited good predictive and generalization abilities in different test species of varied trophic levels and can be used for predicting the toxicities of new chemicals for screening and prioritization of chemicals for regulation.

  3. Energy recovery from organic fractions of municipal solid waste: A case study of Hyderabad city, Pakistan.

    Science.gov (United States)

    Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I

    2016-04-01

    Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country.

  4. Sorption isotherms of brominated diphenyl ethers on natural soils with different organic carbon fractions

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wenxin, E-mail: wxliu@urban.pku.edu.cn [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Li Weibo [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Chen Jianglin [North China Sea Standard and Metrology Center of State Oceanic Administration (SOA), Qingdao 266033 (China); Tao Shu [Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-10-15

    Sorption isotherms of BDE-28 and BDE-47 on natural soils with different contents of soil organic matter (SOM) were investigated. Due to low water solubility of BDEs and resulted narrow ranges of aqueous equilibrium concentration, the linear distribution model showed similar and good fitting efficiency to the linear portion of nonlinear Freundlich curve. For the same sample, the linear and nonlinear model fitting sorption coefficients were close. At the statistically significant level of 0.05 or 0.1, significant relationships of total organic carbon fraction (fOC) with the fitting sorption coefficients can be observed. As for BDE-28, the relationships of fOC and SOM fractions with the single point partition coefficients at different aqueous concentrations of BDEs were significant; while for BDE-47, the relationships became less significant or insignificant, especially at higher aqueous concentrations. The findings in this study may facilitate more understanding on transport and fate of studied BDEs in soil systems. - Both linear distribution and nonlinear Freundlich model could well describe the sorption isotherms of PBDEs on natural soils.

  5. Ozonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction

    Directory of Open Access Journals (Sweden)

    R. K. Pathak

    2007-07-01

    Full Text Available Existing parameterizations tend to underpredict the α-pinene aerosol mass fraction (AMF or yield by a factor of 2–5 at low organic aerosol concentrations (<5 µg m−3. A wide range of smog chamber results obtained at various conditions (low/high NOx, presence/absence of UV radiation, dry/humid conditions, and temperatures ranging from 15–40°C collected by various research teams during the last decade are used to derive new parameterizations of the SOA formation from α-pinene ozonolysis. Parameterizations are developed by fitting experimental data to a basis set of saturation concentrations (from 10−2 to 104 µg m−3 using an absorptive equilibrium partitioning model. Separate parameterizations for α-pinene SOA mass fractions are developed for: 1 Low NOx, dark, and dry conditions, 2 Low NOx, UV, and dry conditions, 3 Low NOx, dark, and high RH conditions, 4 High NOx, dark, and dry conditions, 5 High NOx, UV, and dry conditions. According to the proposed parameterizations the α-pinene SOA mass fractions in an atmosphere with 5 µg m−3 of organic aerosol range from 0.032 to 0.1 for reacted α-pinene concentrations in the 1 ppt to 5 ppb range.

  6. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation

    Institute of Scientific and Technical Information of China (English)

    SHAO Jing'an; LI Yangbing; WEI Chaofu; XIE Deti

    2009-01-01

    A research trial with four land management practices, I.e., traditional tillage-fallow (TTF), traditional till-age-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indi-cated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And,different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.

  7. Analysis of Organic Anionic Surfactants in Fine and Coarse Fractions of Freshly Emitted Sea Spray Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Jayarathne, Thilina; Laskin, Alexander; Laskin, Julia; Lin, Peng; Sultana, Camile M.; Lee, Christopher; Moore, Kathryn A.; Cappa, Christopher; Bertram, Timothy; Prather, Kimberly; Grassian, Vicki H.; Stone, Elizabeth

    2016-02-01

    The inclusion of organic compounds in freshly emitted sea spray aerosol (SSA) has been shown to be size-dependent, with an increasing organic fraction in smaller particles. Defining the molecular composition of sea spray aerosol has proven challenging, due to the mix of continental and background particles even in remote marine environments. Here we have used electrospray ionization-high resolution mass spectrometry in negative ion mode to identify organic compounds in nascent sea spray collected throughout a 25-day mesocosm experiment. Over 280 organic compounds from ten major homologous series were identified. These compounds were operationally defined as molecules containing a hydrophobic alkyl chain with a hydrophilic head group making them surface active. The most abundant class of molecules detected were saturated (C8–C24) and unsaturated (C12–C22) fatty acids. Fatty acid derivatives (including saturated oxo-fatty acids (C5–C18) and saturated hydroxy-fatty acids (C5–C18) were also identified. Interestingly, anthropogenic influences on SSA from the seawater were observed in the form of sulfate (C2–C7, C12–C17) and sulfonate (C16–C22) species. During the mesocosm, the distributions of molecules within each homologous series were observed to respond to variations among the levels of phytoplankton and bacteria in the seawater, indicating an important role of biological processes in determining the composition of SSA.

  8. Long-term effects of mineral and organic fertilization on soil organic matter fractions and sorghum yield under Sudano-Sahelian conditions

    NARCIS (Netherlands)

    Mando, A.; Bonzi, M.; Wopereis, M.C.S.; Lompo, F.; Stroosnijder, L.

    2005-01-01

    Knowledge of changes in soil organic matter (SOM) fractions resulting from agricultural practice is important for decision-making at farm level because of the contrasting effects of different SOM fractions on soils. A long-term trial sited under Sudano-Sahelian conditions was used to assess the effe

  9. Is Zeolite a Detoxificant: Modelling of Ferrous Chloride/Zeolite Application of Aquatic Organisms on Rainbow Trout (Oncorhynchus mykiss to Determine Its Effects on Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Arzu UÇAR

    2016-08-01

    Full Text Available Populations of native fish and aquatic ecosystems have been negatively affected by the contamination of ground and surface waters as a result of various activities. Due to the ferrous chloride (FeCl2, which is used as the reducing agent for the organic synthesis reactions in the contamination of water column and sediment, iron salts may be very toxic for some aquatic organism. In order to minimize these effects, natural products such as zeolite have been widely used recently. For this reason, rainbow trout (Oncorhynchus mykiss were exposed to FeCl2 and/or zeolite for 28 days and their oxidative stress responses were investigated. At the end of the treatment period, oxidative stress responses were determined with antioxidant enzyme activities in the samples taken from liver and kidneys. CAT, SOD, GPx and MDA values for kidney and liver tissues were found statistically important between control and treatment groups (p<0.05. In this study, zeolite application provided lower values in terms of enzyme activities, and the protective effect of zeolite for aquatic organism was supported by biochemical parameters. 

  10. Use of radiocarbon and spectroscopic analyses to characterise soil organic matter pools isolated using different fractionation techniques.

    Science.gov (United States)

    Miller, Gemma; Cloy, Joanna; Garnett, Mark; Sohi, Saran; Rees, Robert; Griffiths, Bryan

    2015-04-01

    Experimental division of soil organic matter (SOM) into functional pools has the potential to improve soil C modelling. Soil physical fractionation techniques seek to quantify these pools, however the fractions isolated vary in number, size, ecological role and composition. The use of different techniques to quantify soil C fractions in different studies presents a question - do similar fractions isolated by different methods fit the same conceptual definition? This study examined a sandy loam from the south-west of Scotland, sampled in summer, which had been under grassland management for at least 20 years. We compared average 14C ages of SOM fractions isolated using three published and frequently applied physical fractionation methods (1) a density separation technique isolating three fractions - free light (FLF) 1.8 g cm 3 (Sohi et al, 2001); (2) a combined physical and chemical separation isolating five fractions: sand and aggregates (S+A) > 63 µm and > 1.8 g cm-3, particulate organic matter (POM) > 63 µm and 45 µm, residual organic carbon (rSOC) the residue left after s+c is oxidised with NaOCl, and dissolved organic carbon (DOC) 4000 years BP for DOC and POM. Both Method 3 fractions were dominated by modern C. The average 14C ages of FLF, IALF, DOC and POM were surprisingly higher than the mineral bound fractions, although they made up a relatively small proportion of the total organic C (8.4 and 12.4 % for Methods 1 and 2 respectively). These results will be discussed alongside data from FTIR and UV-vis spectroscopy. The characterisation of physically separated organic matter pools is likely to provide improved opportunities for modelling the long term behaviour of SOM on the basis of defined chemical and physical properties. References Sohi, S.P., Mahieu, N., Arah, J.R.M., Powlson, D.S., Madari, B. and Gaunt J.L. (2001) A procedure for isolating soil organic matter fractions suitable for modelling. Soil Science Society of America Journal 65

  11. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated...... and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties...... in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability...

  12. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms.

    Science.gov (United States)

    Ren, Jiao; Wang, Xiaoping; Wang, Chuanfei; Gong, Ping; Wang, Xiruo; Yao, Tandong

    2017-01-01

    Biomagnification of some persistent organic pollutants (POPs) has been found in marine and freshwater food chains; however, due to the relatively short food chains in high-altitude alpine lakes, whether trophic transfer would result in the biomagnification of POPs is not clear. The transfer of various POPs, including organochlorine pesticides and polychlorinated biphenyls (PCBs), along the aquatic food chain in Nam Co Lake (4700 m), in the central Tibetan Plateau, was studied. The POPs levels in the water, sediment and biota [plankton, invertebrates and fish (Gymnocypris namensis)] of Nam Co were generally low, with concentrations comparable to those reported for the remote Arctic. The composition profiles of POPs in the fish were different from that in the water, but similar to their food. DDEs, DDDs, PCB 138, 153 and 180 displayed significant positive correlations with trophic levels, with trophic magnification factors (TMFs) ranged between 1.5 and 4.2, implying these chemicals can undergo final biomagnification along food chain. A fugacity-based dynamic bioaccumulation model was applied to the fish with localized parameters, by which the simulated concentrations were comparable to the measured data. Modeling results showed that most compounds underwent net gill loss and net gut uptake; only when the net result of the combined gut and gill fluxes would be positive, bioaccumulation could eventually occur. The net accumulation flux increased with fish age, which was caused by the continuous increase of gut uptake by aged fish. Due to the oligotrophic condition, efficient food absorption is likely the key factor that influences the gut POPs uptake. Long residence times with half-lives up to two decades were found for the higher chlorinated PCBs in Gymnocypris namensis.

  13. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    Science.gov (United States)

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  14. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  15. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    Science.gov (United States)

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  16. Organic removal activity in biofilm and suspended biomass fractions of MBBR systems.

    Science.gov (United States)

    Piculell, Maria; Welander, Thomas; Jönsson, Karin

    2014-01-01

    The moving bed biofilm reactor (MBBR) wastewater treatment process is usually designed based on the assumption that all activity in the process occurs in the biofilm on the MBBR carriers, although there is always some active biomass in the bulk liquid due to biofilm sloughing and, sometimes, free-growing bacteria. In this study the removal of organic matter is evaluated in laboratory-scale MBBR reactors under varying load, hydraulic retention time (HRT), oxygen concentration and volumetric filling degree of carriers in order to determine the heterotrophic activity in the different fractions of the MBBR biomass. The results showed that the heterotrophic conversions in an MBBR can show the same type of diffusion limited dependency on oxygen as nitrification, even for easily degradable substrates such as acetate. The contribution to the removal from the suspended biomass is shown to vary depending on HRT, as the amount of suspended solids changes. The developed method in this report is a useful tool for determining heterotrophic activity in the separate fractions of biomass in MBBRs.

  17. Fractionation of Moderately and Highly Stable Organic Phosphorus in Acid Soil

    Institute of Scientific and Technical Information of China (English)

    FANYEKUAN; LISHIJUN

    1998-01-01

    The fractionation of moderately and highly organic phosphorus(Po) in acid soil was studied by two methods .By the first method,after incubation for 40 d; the mineralization rates of eight constituents of stable Po in the soil were determined.By the second method ,five constituents of peecipitates of stable Po in the soil were separated,then the five precipiates were put back into the original soils and incubated for 40 d and 60 d .Then,mineralization rates of the five precipitates were determined.The same results were obtained by the two methods.When the pH of the alkali solution containing stable Po was adjusted from 3.00 to 3.10,the mineralization rate of moderately stable Po Was rapidly raised.Therefore,the pH 3.00 is the critical point between moderately and highly stable Po.

  18. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-01

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  19. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost

    Energy Technology Data Exchange (ETDEWEB)

    Scaglia, Barbara, E-mail: barbara.scaglia@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira [Laboratório de Química Ambiental, Universidade de São Paulo, Instituto de Química de São Carlos, Avenida Trabalhador São Carlense, 400, São Carlos (Brazil); Tambone, Fulvia [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy); Adani, Fabrizio, E-mail: fabrizio.adani@unimi.it [Gruppo Ricicla Labs – DiSAA, Università degli Studi di Milano, Via Celoria 2 (Italy)

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100–6000 mg carbon L{sup −1}. {sup 13}C CPMAS-NMR and GC–MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS {sup 13}CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R{sup 2} = − 0.85; p < 0.01, n = 6). - Highlights: • Vermicomposting converts waste into organic fertilizer. • Vermicomposts can have biostimulating effect for the presence of hormone-like molecules. • Auxine-like activity was associated to the vermicompost humic acid fraction (HA). • HA carboxylic acids and amino acids, were reported to act as auxin-like molecules. • A linear regression was found between molecules and auxin-like activity.

  20. Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators

    Directory of Open Access Journals (Sweden)

    Laura Núñez-Pons

    2014-04-01

    Full Text Available Generalist predation constitutes a driving force for the evolution of chemical defences. In the Antarctic benthos, asteroids and omnivore amphipods are keystone opportunistic predators. Sessile organisms are therefore expected to develop defensive mechanisms mainly against such consumers. However, the different habits characterizing each predator may promote variable responses in prey. Feeding-deterrence experiments were performed with the circumpolar asteroid macropredator Odontaster validus to evaluate the presence of defences within the apolar lipophilic fraction of Antarctic invertebrates and macroalgae. A total of 51% of the extracts were repellent, yielding a proportion of 17 defended species out of the 31 assessed. These results are compared with a previous study in which the same fractions were offered to the abundant circum-Antarctic amphipod Cheirimedon femoratus. Overall, less deterrence was reported towards asteroids (51% than against amphipods (80.8%, principally in sponge and algal extracts. Generalist amphipods, which establish casual host–prey sedentary associations with biosubstrata (preferentially sponges and macroalgae, may exert more localized predation pressure than sea stars on certain sessile prey, which would partly explain these results. The nutritional quality of prey may interact with feeding deterrents, whose production is presumed to be metabolically expensive. Although optimal defence theory posits that chemical defences are managed and distributed as to guarantee protection at the lowest cost, we found that only a few organisms localized feeding deterrents towards most exposed and/or valuable body regions. Lipophilic defensive metabolites are broadly produced in Antarctic communities to deter opportunistic predators, although several species combine different defensive traits.

  1. Equilibrium of Organic Matter in Heavy Fraction for Three Long-term Experimental Field Soils in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considerable evidence that the soil organic matter (OM) level in agricultural soils will gradually over time reach an equilibrium state under certain bioclimatic conditions and for certain cropping systems has been accumulating. Although models or long-term experiments have been used, this research used physical fractionation procedure to attain an soil OM equilibrium value. To obtain soil OM equilibrium values in the heavy fraction, typical soils from three long-term field experiments at Fengqiu and Yingtan State Key Agro-Ecological Experimental Stations in China were studied using a simple density fractionation procedure and employing the Langmuir equation. Results for the fluvo-aquic soil with organic fertilizer treatments indicated that the soil OM equilibrium value in the heavy fraction was twofold more than that in the inorganic treatments; however, for the paddy soil developed on red soil the OM equilibrium value in the heavy fraction for both treatments was almost identical. It suggested that for fluvo-aquic soils the increased potential of OM for the heavy fraction in the long run was larger for the organic than the inorganic fertilizer applications, whereas for paddy soils developed on red soils under the same conditions the present OM content in the heavy fraction was at or close to this equilibrium level for all treatments, and increased potential was very limited.

  2. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    Science.gov (United States)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic

  3. Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters

    Science.gov (United States)

    Ilina, Svetlana M.; Viers, Jerome; Pokrovsky, Oleg S.; Poitrasson, Franck; Lapitsky, Sergey A.; Alekhin, Yuriy V.

    2010-05-01

    Typical feature of all boreal surface waters is high concentration of dissolved (complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size separation technique, on-site frontal ultrafiltration. Specifically, we aimed to test the possibility of the presence of different pools of metal having specific isotopic signatures in different colloidal fractions using stable isotope measurements. We have chosen Cu for its high affinity to colloidal DOM and Fe for its tendency to form stable organo-mineral colloids of various size. Samples of natural waters were collected from small rivers, lakes, bogs, groundwater and soil environments in the Northern Karelia (NW Russia) during summer baseflow period. Large volumes (20-40 L) of water were filtered in the field through progressively decreasing pore size filters: 20, 10, 5, 0.8, 0.45, 0.22, 0.1 µm and 100, 10 and 1 kDa (1 kDa ~ 1 nm) using nylon and regenerated cellulose membranes and frontal ultrafiltration (Millipore, Amicon) devises. The homogeneity of the sample was verified by tracing radiogenic Sr isotopes in each fraction. In all filtrates and ultrafiltrates (permeates), and in selected retentates, stable isotopic composition of Cu and Fe was measured using double focusing high resolution MC-ICP MS (Neptune). We observe rather constant Cu isotopic ratio in all filtrate series and a systematic enrichment of heavy isotope of Fe with decreasing poresize. These preliminary results can be explained by strong complexation of Cu with small-size organic ligands of fulvic nature and its partial association with organo-mineral colloids. Both Fe(III) - OM complxeation and Fe(III) oxyhydroxides precipitation can be invoked to explain Fe isotope fractionation. This work allows, for the first, time, multi-isotopic approach to trace the origin of colloids in surficial waters and it

  4. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling

    KAUST Repository

    Filloux, Emmanuelle

    2012-11-01

    Anion exchange resin (AER), powder activated carbon (PAC) adsorption and ozonation treatments were applied on biologically treated wastewater effluent with the objective to modify the effluent organic matter (EfOM) matrix. Both AER and PAC led to significant total organic carbon (TOC) removal, while the TOC remained nearly constant after ozonation. Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis showed that the AER treatment preferentially removed high and intermediate molecular weight (MW) humic-like structures while PAC removed low MW compounds. Only a small reduction of the high MW colloids (i.e. biopolymers) was observed for AER and PAC treatments. Ozonation induced a large reduction of the biopolymers and an important increase of the low MW humic substances (i.e. building blocks).Single-cycle microfiltration (MF) and ultrafiltration (UF) tests were conducted using commercially available hollow fibres at a constant flux. After reconcentration to their original organic carbon content, the EfOM matrix modified by AER and PAC treatments exhibited higher UF membrane fouling compared to untreated effluent; result that correlated with the higher concentration of biopolymers. On the contrary, ozonation which induced a significant degradation of the biopolymers led to a minor flux reduction for both UF and MF filtration tests. Based on a single filtration, results indicate that biopolymers play a major role in low pressure membrane fouling and that intermediate and low MW compounds have minor impact. Thus, this approach has shown to be a valid methodology to identify the foulant fractions of EfOM. © 2012 Elsevier Ltd.

  5. Changes of Labile Organic Carbon Fractions in Soils Under Different Rotation Systems

    Institute of Scientific and Technical Information of China (English)

    NI Jin-Zhi; XU Jian-Ming; XIE Zheng-Miao; WANG De-Jian

    2004-01-01

    Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.

  6. [Intensification of Microbial Decomposition of Organic Fraction of Municipal Waste: Laboratory and Field Experiments].

    Science.gov (United States)

    Nikitina, A A; Kevbrina, M V; Kallistova, A Yu; Nekrasova, V K; Litti, Yu V; Nozhevnikova, A N

    2015-01-01

    Methods of intensifying the anaerobic microbial decomposition of the organic fraction of municipal solid waste (MSW) on an MSW landfill and in anaerobic reactors were studied. It was discovered that it is preferable for the initiation and stabilization of the process of anaerobic digestion of organic waste in laboratory bioreactors at 20 and 50 degrees C to use a mixture of activated suspension of soil from the anaerobic zone of the landfill and digested sewage sludge. Stimulation of methanogenesis was shown in field conditions when digested sewage sludge was added directly into the upper layer of anaerobic zone of the landfill. The investigation of methane production during fermentation of concentrated food waste with a mixture of excessive activated sludge in the laboratory under thermophilic conditions (50 degrees C) has shown that the main problem at the first stage of the process was the acidification of the digested mixture due to the accumulation of volatile fatty acids. It was shown that for stable operation of the bioreactor under thermophilic conditions the amount of inoculum added during the start up should be no less than 30%-50%--based on volatile suspended solids. A sharp decrease in the digestion temperature from 50 to 20 degrees C did not cause methanogenesis termination, since the thermophilically fermented biomass contained both thermophilic and mesophilic methanogens.

  7. Organic fraction of municipal solid waste from mechanical selection: biological stabilization and recovery options.

    Science.gov (United States)

    Cesaro, Alessandra; Russo, Lara; Farina, Anna; Belgiorno, Vincenzo

    2016-01-01

    Although current trends address towards prevention strategies, the organic fraction of municipal solid waste is greatly produced, especially in high-income contexts. Its recovery-oriented collection is a common practice, but a relevant portion of the biodegradable waste is not source selected. Mechanical and biological treatments (MBT) are the most common option to sort and stabilize the biodegradable matter ending in residual waste stream. Following the changes of the framework around waste management, this paper aimed at analyzing the quality of the mechanically selected organic waste produced in MBT plants, in order to discuss its recovery options. The material performance was obtained by its composition as well as by its main chemical and physical parameters; biological stability was also assessed by both aerobic and anaerobic methods. On this basis, the effectiveness of an aerobic biostabilization process was assessed at pilot scale. After 21 days of treatment, results proved that the biomass had reached an acceptable biostabilization level, with a potential Dynamic Respirometric Index (DRIP) value lower than the limit required for its use as daily or final landfill cover material. However, the final stabilization level was seen to be influenced by scaling factors and the 21 days of treatment turned to be not so adequate when applied in the existing full-scale facility.

  8. Rheology of sludge from double phase anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Battistoni, P; Pavan, P; Mata-Alvarez, J; Prisciandaro, M; Cecchi, F

    2000-01-01

    In this paper experimental results on the anaerobic digestion of sewage sludge and organic fraction of municipal solid waste (OFMSW) by using a double phase process are reported. The long-term experiment has been carried out on a pilot scale plant, performed in different sets of operative conditions, during which granulometric distributions of particles in sludges and rheological properties of sludges were monitored. A significant fluidification of sludge was evidenced in the meso-thermo process, especially taking into account the variation in sludge behaviour from the first to the second phase. In the thermo-thermo process a fluidification higher than that shown in meso-thermo conditions is not observed, this suggesting that better results in terms of sludge conditioning can be obtained in a long time spent in thermophilic anaerobic digestion. Total volatile solids (TVS) and total fixed solids (TFS) become the most important parameters when mathematical modelling is applied to these processes. In the acidogenic phase, hydraulic retention time (HRT) and temperature are used to determine rigidity coefficient (RC), while only temperature is needed for yield stress (YC). Organic loading rate (OLR) and specific gas production (SGP) exert an important role in methanogenic phase description.

  9. Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Del Borghi, A.; Converti, A.; Palazzi, E.; Del Borghi, M. [Institute of Chemical and Process Engineering ``G.B. Bonino``, Genoa University, Via Opera Pia 15, 16145 Genoa (Italy)

    1999-06-01

    An attempt is presented and discussed to adapt a well-known process successfully employed in the U.S.A. for the simultaneous treatment of the organic fraction of municipal solid waste (MSWOF) and sewage sludge to the particular situation of water works in Italy. It consists of preliminary domestic grinding of MSWOF, its discharge into the sewer, screening, and final digestion of the resulting residue together with sewage sludge. In order to avoid extension work of the present activated sludge sections necessary to face the organic load increase, a fine screening is necessary, while the efficiency of anaerobic digestion can be improved by shifting the system from mesophilic (37 C) to thermophilic (55 C) conditions. The effects of thermal, chemical, and biological pretreatments of both MSWOF and sewage sludge on methane, carbon dioxide, and biogas productions are investigated either separately or jointly. During these pretreatments, volatile suspended solid (VSS) concentration remarkably decreased while soluble chemical oxygen demand (COD) increased as the result of the progressive hydrolysis of the polymeric materials present in the feed. Finally, the kinetic parameters of the hydrolysis of these materials are estimated and compared in order to provide useful information on the factors limiting the anaerobic digestion as well as to suggest the best way to carry out the process on a large scale. (orig.) With 8 figs., 7 tabs., 20 refs.

  10. Phosphorous fractionation in mangrove sediments of Kerala, south west coast of India: the relative importance of inorganic and organic phosphorous fractions.

    Science.gov (United States)

    Resmi, P; Manju, M N; Gireeshkumar, T R; Ratheesh Kumar, C S; Movitha, M; Shameem, K; Chandramohanakumar, N

    2016-06-01

    The study of phosphorous dynamics in mangrove ecosystems of the northern Kerala coast aims to delineate its relationships with other biogeochemical parameters. Our intension is to check the validity of the hypothesis that these mangrove ecosystems act as an efficient trap of organic phosphorous by acting as P sink. The dissolved inorganic phosphate displayed higher concentration in monsoon that could be correlated with higher P leaching from mangrove litter as well as terrigenous input during wet season. Fe(OOH)≈P was much higher in monsoon (235.23 to 557.70 μg g(-1)) and lower in pre-monsoon (36.50 to 154.97 μg g(-1)), and displayed significant contribution towards the inorganic sedimentary P fractions. In monsoon, adsorption of P on iron hydroxides is enhanced by fresh water conditions, but pre-monsoon is characterised by the reductive dissolution of iron oxy hydroxides and the subsequent efflux of P to water column. CaCO3≈Pinorg may be present as an inert fraction in the sediment matrix, and did not display any interrelationship with other geochemical parameters. The abundant total organic P (25 to 73 %) fractions, largely derived from P bound with humic/fulvic acid, played a major role in immobilising P and regulating its dynamics in the nearby estuarine and coastal environment.

  11. Passive internal transport of aquatic organisms by waterfowl in Doñana, south-west Spain.

    NARCIS (Netherlands)

    Figuerola, J.; Green, J.; Santamaria, L.

    2003-01-01

    Aim Waterbirds may play an important role in the maintenance of aquatic ecosystem biodiversity by transporting plants and invertebrate propagules between different wetlands. The aim of this study is to provide the first quantitative analysis of the transport of plant and animal propagules by a commu

  12. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, fractions (LF1, fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive

  13. Defining an exposure-response relationship for suspended kaolin clay particulates and aquatic organisms: work toward defining a water quality guideline for suspended solids.

    Science.gov (United States)

    Gordon, Andrew K; Palmer, Carolyn G

    2015-04-01

    Water quality guidelines for suspended solids generally rely on the percentage departure from reference condition, an approach that has been criticized. Attempts to develop a biological effects-base guideline have, however, been confounded by low data availability. Furthermore, the high biological response variability to suspended solids exposure suggests that organisms are responding not only to exposure concentration and duration but also to other mechanisms of effect associated with suspended particles (e.g., size, shape, and geochemical composition). An alternative option is to develop more situation and site specific guidelines by generating biological effects data to suspended particles of a particular geochemistry and restricted size range. With this in mind, aquatic organism responses to kaolin clay particle exposure were collated from the literature and incorporated into 2 exposure-response relationship approaches. The species sensitivity distribution approach produced a hazardous concentration affecting 5% of species estimate of 58 mg/L for mortality responses, and 36 mg/L for sublethal data. The severity-of-ill-effect approach produced similar estimates for lethal and sublethal data. These results suggest that aquatic organisms are slightly more tolerant of kaolin clay particles than particles from barite or bentonite clays, based on results from previous studies on these clay types. This type of information can enable better estimates of the risk faced by aquatic organisms exposed to suspended solids. For example, when the sediments of a particular water body are dominated by a particular type of clay particle, then the most appropriate exposure-response relationship can be applied.

  14. Separation of inerts by differential sedimentation as previous stage to anaerobic digestion of organic fraction from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, C.; Martinez, V.; Esplugas, P.

    2009-07-01

    Municipal solid waste (MSW) treatment plants have as main function the valuation of municipal waste by means of materials recovery and valuation of organic fraction. In this type of facilities, the anaerobic digestion is a biological treatment of the organic matter collected in origin or mechanically separated from the mixed MSM. The objective is its valuation under the form of biogas and organic compost. Anaerobic digestion has high energy efficiency and a good range or organic matter elimination. Nevertheless, treatment of organic matter recovered from mixed MSW presents serious operation problems due to sedimentation of heavy improper materials (sands, glasses, metals) and flotation of light materials inside the digestors and piping. (Author)

  15. Aquatic Plants Aid Sewage Filter

    Science.gov (United States)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  16. Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10.

    Science.gov (United States)

    Tanaka, Yasuhiro; Tamaki, Hideyuki; Matsuzawa, Hiroaki; Nigaya, Masahiro; Mori, Kazuhiro; Kamagata, Yoichi

    2012-01-01

    A number of molecular ecological studies have revealed complex and unique microbial communities in various terrestrial plant roots; however, little is known about the microbial communities of aquatic plant roots in spite of their potential use for water quality improvement in aquatic environments (e.g. floating treatment wetland system). Here, we report the microbial communities inhabiting the roots of emerged plants, reed (Phragmites australis) and Japanese loosestrife (Lythrum anceps), collected from a floating treatment wetland in a pond by both culture-independent and culture-dependent approaches. Culture-independent analysis based on 16S rRNA gene sequences revealed that the microbial compositions between the two aquatic plant roots were clearly different (e.g. the predominant microbe was Betaproteobacteria for reed and Alphaproteobacteria for Japanese loosestrife). In comparisons of microbial communities between the plant roots and pond water taken from near the plants, the microbial diversity in the plant roots (e.g. 4.40-4.26 Shannon-Weiner index) were higher than that of pond water (e.g. 3.15 Shannon-Weiner index). Furthermore, the plant roots harbored 2.5-3.5 times more phylogenetically novel clone phylotypes than pond water. The culture-dependent approach also revealed differences in the microbial composition and diversity among the two plant roots and pond water. More importantly, compared to pond water, we succeeded in isolating approximately two times more novel isolate phylotypes, including a bacterium of candidate phylum OP10 (recently named Armatimonadetes) from the plant roots. These findings suggest that aquatic plants roots are significant sources for a variety of novel organisms.

  17. Methodology of comprehensive evaluation of the effectiveness and reliability of production lines of preparation of sea water for the cultivation of aquatic organisms

    Directory of Open Access Journals (Sweden)

    S. D. Ugryumova

    2016-01-01

    Full Text Available The factors affecting the efficiency and reliability of technical systems. Set stages of development and modernization of production lines that correspond to specific stages of evaluating the effectiveness and reliability. Considered several methods of definition of indicators of indicators of efficiency and reliability of the equipment in technological lines of fisheries sector: forecasting methods, structural methods, physical methods, logical-probability method (method by I.A. Ryabinin and topological method. Advantages and disadvantages, allowing you to work out the most suitable method, process lines preparation of sea water for the cultivation of aquatic organisms, connected in series. Modernized technological line of preparation of sea water for the cultivation of aquatic organisms differing from the typical line of seawater in hatcheries (Far East, as the presence of a large number of instrumentation: sensors, salinity and temperature; motomeru that continuously monitor turbidity in the range of 50÷100 EMF (30÷60 mg/1 by kaolin; signaling the flow sensors volume level of the filtrate and the backfill layer; analyzers of chemical composition of sea water; analyzers of suspended mechanical impurities; signaling sensors of acidity and oxygen content and replacement filters coarse, fine cleaning and auxiliary equipment. A program of comprehensive evaluation of the effectiveness and reliability of production lines, revealed that conducted the modernization of production line preparation of sea water for the cultivation of aquatic organisms has improved its efficiency by an average of 1.71% to reduce the amount of manual labor by 15.1%; control the process; provide the most rapid, efficient purification of sea water; reduce the cost of replacement filter media.

  18. Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sosnowski, P.; Wieczorek, A.; Ledakowicz, S. [Technical University of Lodz (Poland). Dept. of Bioprocess Engineering

    2003-05-01

    The paper presents the results of investigation of methane fermentation of sewage sludge and organic fraction of municipal solid wastes (OFMSW) as well as the co-fermentation of both substrates under thermophilic and mesophilic conditions. In the first experiment the primary sludge and thickened excess activated sludge were fed into a 40 dm{sup 3} bioreactor operated thermophilically. The second co-fermentation experiment was conducted with the mixture of sewage sludge (75%) and OFMSW (25%) in the same bioreactor arrangement. The other three experiments (III and IV, V) were carried out in quasi-continuous mode in two separated stages: acidogenic digestion in the continuous stirred tank bioreactor under thermophilic conditions (56{sup o}C) and mesophilic methane fermentation (36{sup o}C). The third experiment was conducted with the substrate-OFMSW only, in the fourth run sewage sludge from a municipal water treatment plant was used. In the fifth experiment a mixture of sewage sludge and OFMSW was used. In all experiments the following data were determined: biogas content and productivity, pH, total suspended and volatile solids, elemental content (C, H, N, S) of sludge, OFMSW and inoculum, total organic carbon, total alkalinity and volatile fatty acid content. Comparing the elemental analysis of sewage sludge and OFMSW it is evident that N content is higher in the sludge than in the OFMSW, however, the carbon content relation is the opposite, which may be beneficial to methane yield of co-digestion. Methane concentration in the biogas was above 60% in all cases. Biogas productivity varied between 0.4 and 0.6 dm{sup 3}/g VSS{sub add} depending on substrate added to the digester. The obtained results are generally consistent with literature data. (author)

  19. Labile and stabilised fractions of soil organic carbon in some intensively cultivated alluvial soils.

    Science.gov (United States)

    Verma, B C; Datta, S P; Rattan, R K; Singh, A K

    2013-11-01

    The present investigation was undertaken in view of the limited information on the relative proportion of labile and stabilized fractions of soil organic carbon (SOC) in intensively cultivated lands, particularly under tropics. The specific objectives were i) to study the comparative recovery of SOC by different methods of labile carbon estimation under intensively cultivated lands and ii) to evaluate the impact of agricultural practices on carbon management index. For this purpose, in all, 105 surface soil samples were collected from intensively cultivated tube well and sewage irrigated agricultural lands. These samples were analysed for total as well as labile pools of SOC. Results indicated that Walkley and Black, KMnO4-oxidizable and microbial biomass carbon constituted the total SOC to the extent of 10.2 to 47.4, 1.66 to 23.2 and 0.30 to 5.49%, respectively with the corresponding mean values of 26.2, 9.16 and 2.15%. Lability of SOC was considerably higher in sewage irrigated soils than tube well irrigated soils under intensive cropping. Under soybean-wheat, the higher values of carbon management index (CMI) (279 and 286) were associated with the treatments where entire amount of nitrogen was supplied through FYM. Similar results were obtained under rice-wheat, whereas in case of maize-wheat the highest value of CMI was recorded under treatment receiving NPK through chemical fertilizer along with green manure. There was also a significant improvement in CMI under integrated (chemical fertilizer + organics) and chemical fertilizer-treated plots. The values of CMI ranged from 220 to 272 under cultivated lands receiving irrigation through sewage and industrial effluents.

  20. Spectral study of the complexation of Nd(III) with glutathione reduced (GSH) in the presence and absence of Zn(II) in aquated organic solvents

    Indian Academy of Sciences (India)

    Th David Singh; Ch Sumitra; N Rajmuhon Singh; M Indira Devi

    2004-11-01

    Studies on the difference in energy parameters and comparative absorption spectrophotometry involving 4-4 transitions on Nd(III) and glutathione reduced (GSH) in the absence and presence of Zn(II) have been carried out in aquated organic solvents (50 : 50) like methanol, dioxane, acetonitrile and dimethylformamide. Variations in the spectral energy parameters - Slater-Condon () factor, Lande spin-orbit coupling constant (4), nephelauxetic ratio (), bonding parameter (1/2) and percent covalency () - are calculated and correlated with binding of Nd(III) with GSH in presence and absence of Zn(II).

  1. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    Science.gov (United States)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  2. Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste

    KAUST Repository

    Ghanimeh, Sophia A.

    2012-08-01

    This paper examines the effect of mixing on the performance of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste during the start-up phase and in the absence of an acclimated seed. For this purpose, two digesters were used under similar starting conditions and operated for 235days with different mixing schemes. While both digesters exhibited a successful startup with comparable specific methane yield of 0.327 and 0.314l CH 4/gVS, continuous slow stirring improved stability by reducing average VFA accumulation from 2890 to 825mg HAc/l, propionate content from 2073 to 488mg/l, and VFA-to-alkalinity ratio from 0.32 to 0.07. As a result, the startup with slow mixing was faster and smoother accomplishing a higher loading capacity of 2.5gVS/l/d in comparison to 1.9gVS/l/d for non-mixing. Mixing equally improved microbial abundance from 6.6 to 10gVSS/l and enhanced solids and soluble COD removal. © 2012 Elsevier Ltd.

  3. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  4. Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps

    Science.gov (United States)

    Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike

    2016-04-01

    Instrument downtime leads to uncertainty in the monthly and annual record of cloud fraction (CF), making it difficult to perform time series analyses of cloud properties and perform detailed evaluations of model simulations. As cloud occurrence is partially controlled by the large-scale atmospheric environment, this knowledge is used to reduce uncertainties in the instrument record. Synoptic patterns diagnosed from the North American Regional Reanalysis (NARR) during the period 1997-2010 are classified using a competitive neural network known as the self-organizing map (SOM). The classified synoptic states are then compared to the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) instrument record to determine the expected CF. A number of SOMs are tested to understand how the number of classes and the period of classifications impact the relationship between classified states and CFs. Bootstrapping is utilized to quantify the uncertainty of the instrument record when statistical information from the SOM is included. Although all SOMs significantly reduce the uncertainty of the CF record calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014), SOMs with a large number of classes and separated by month are required to produce the lowest uncertainty and best agreement with the annual cycle of CF. This result may be due to a manifestation of seasonally dependent biases in NARR. With use of the SOMs, the average uncertainty in monthly CF is reduced in half from the values calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014).

  5. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost.

    Science.gov (United States)

    Scaglia, Barbara; Nunes, Ramom Rachide; Rezende, Maria Olímpia Oliveira; Tambone, Fulvia; Adani, Fabrizio

    2016-08-15

    This work studied the auxin-like activity of humic acids (HA) obtained from vermicomposts produced using leather wastes plus cattle dung at different maturation stages (fresh, stable and mature). Bioassays were performed by testing HA concentrations in the range of 100-6000mgcarbonL(-1). (13)C CPMAS-NMR and GC-MS instrumental methods were used to assess the effect of biological processes and starting organic mixtures on HA composition. Not all HAs showed IAA-like activity and in general, IAA-like activity increased with the length of the vermicomposting process. The presence of leather wastes was not necessary to produce the auxin-like activity of HA, since HA extracted from a mix of cattle manure and sawdust, where no leather waste was added, showed IAA-like activity as well. CPMAS (13)CNMR revealed that HAs were similar independently of the mix used and that the humification process involved the increasing concentration of pre-existing alkali soluble fractions in the biomass. GC/MS allowed the identification of the molecules involved in IAA-like effects: carboxylic acids and amino acids. The concentration of active molecules, rather than their simple presence in HA, determined the bio-stimulating effect, and a good linear regression between auxin-like activity and active stimulating molecules concentration was found (R(2)=-0.85; p<0.01, n=6).

  6. Biodegradation of olive-mill pomace mixed with organic fraction of municipal solid waste.

    Science.gov (United States)

    Ağdağ, Osman Nuri

    2011-09-01

    This study investigated the effects of organic fraction of municipal solid waste (OFMSW) addition on the anaerobic treatment of the olive-mill pomace. Biodegradability of olive-mill pomace mixed with OFMSW was examined in anaerobic bioreactors. Only OFMSW was loaded in the first (control) bioreactor, while run 1 and run 2 bioreactors included different ratio of OFMSW and olive-mill pomace. COD, BOD(5), NH(4)-N, pH, VFA, CH(4) quantity and percentage in anaerobic bioreactors were regularly monitored. In addition, inert COD and anaerobic toxicity assay (ATA) were measured in leachate samples. The results of the study showed that 70% of OFMSW addition to olive-mill pomace has an advantage in terms of pollution parameters and methane generation. Since olive-mill pomace is not easy biodegradable, addition of high proportion of OFMSW promotes biodegradability of olive-mill pomace. Decreasing in BOD(5)/COD ratios in the run 1 and run 2 reactors carried out as 62 and 52%, respectively.

  7. Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge.

    Science.gov (United States)

    Borowski, Sebastian

    2015-01-01

    This study investigates the anaerobic digestion of the hydromechanically sorted organic fraction of municipal solid wastes (HS-OFMSW) co-digested with sewage sludge (SS). Eight laboratory-scale experiments were conducted under semi-continuous conditions at 15 and 20 days of solids retention time (SRT). The biogas yield from the waste reached 309 to 315 dm(3)/kgVS and 320 to 361 dm(3)/kgVS under mesophilic and thermophilic conditions, respectively. The addition of SS to HS-OFMSW (1:1 by weight) improved the C/N balance of the mixture, and the production of biogas through anaerobic mesophilic digestion increased to 494 dm(3)/kgVS, which corresponded to 316 dm(3)CH4/kgVS. However, when SS and HS-OFMSW were treated under thermophilic conditions, methanogenesis was inhibited by volatile fatty acids and free ammonia, which concentrations reached 5744 gCH3COOH/m(3) and 1009 gNH3/m(3), respectively.

  8. Cover plants and mineral nitrogen: effects on organic matter fractions in an oxisol under no-tillage in the cerrado

    Directory of Open Access Journals (Sweden)

    Isis Lima dos Santos

    2014-12-01

    Full Text Available Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation. The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L. Millsp; and Sorghum bicolor (L. Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.

  9. Organization of vegetation cover of aquatic ecosystems at Borodinskiy opencast coal mine dumps (Kansk forest-steppe, Eastern Siberia

    Directory of Open Access Journals (Sweden)

    D. Yu. Efimov

    2016-04-01

    Full Text Available The paper present the results of study of the floristic composition and importance of species of aquatic ecosystems on different types of technogenic surfaces of the Borodino coal mine and assessment of the impact of local factors on the structure and the dynamics of vegetation. The list of plant taxa containing 91 species of higher plants and 3 cha-rophytes. The largest amount of macrophytes species are Elodea canadensis Michx., Eleocharis palustris (L. Roem. & Schult., Hydrocharis morsus-ranae L., Potamogeton alpinus Balb., P. perfoliatus L., Sparganium emersum Rehm., Spirodela polyrhiza (L. Schleid., Typha latifolia L., Warnstorfia fluitans (Hedw. Loeske, Chara contraria A. Braun ex Kutz., the basis (up to 67.6‒70.9 % of vegetation mosaic of aquatic systems and differentiate its structure post-technogenic landscape. Sorensen index (QS = 0.63‒0.71 and Spearman rank correlation coefficient (rs = 0.29‒0.62, p < 0.01 values showed the greatest similarity between the species composition of the aquatic complexes arising on mineral surfaces planned dumps. The low level of similarity (QS = 0.13‒0.45; rs = 0.25‒0.34, p < 0.05 in spe-cies composition is typical fir ponds and wetlands formed around the perimeter of the heaps along the erosion of slopes. Non-parametric analysis of variance showed a statistically significant (p < 0.001 differentiation of the species composition of the variables values of the analyzed environmental factors: the direction of reclamation, type and age of geomorphic surfaces dumps. Aquatic complexes significantly complement and enrich the mosaic of man-made landscape of the Borodino coal mine, the potential of their diversity should be taken into account when developing plans and strategies for reclamation of disturbed areas.

  10. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter

    Science.gov (United States)

    Hagvall, Kristoffer; Persson, Per; Karlsson, Torbjörn

    2014-12-01

    Interactions between metals and natural organic matter (NOM) are of great environmental importance and one of the key factors influencing hydrolysis, solubility, and speciation of the metals. However, studying geochemically relevant metals like Al, Fe, and Cu is sometimes associated with analytical problems; for example Fe and Cu are both redox active. Gallium (Ga) is a non-redox active metal that usually occurs at very low concentrations in environmental samples and therefore a wide concentration range of metal(III)-NOM species can be explored by adding Ga(III) to such samples. This makes Ga(III) a good probe and analogue for other metal ions, in particular Al. In addition, due to the increased usage of Ga in society, a better understanding of how Ga interacts with NOM is of importance but such studies are scarce. In this work, Ga(III) interactions with two different organic materials (Suwannee River natural organic matter and Suwannee River fulvic acid) were studied using infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy in a large experimental range (101-84,076 μg Ga g-1 dry weight; pH 3-8). Our IR spectroscopic results showed that Ga(III) is bonded mainly to carboxylic functional groups and suggested that only a fraction of the total number of carboxylic sites in the samples was actively involved in the bonding. Modeling of the EXAFS data revealed that Ga(III) formed mononuclear chelate complexes with NOM that strongly suppressed the hydrolysis and polymerization of Ga(III). At low Ga(III) concentrations (1675-16,649 μg g-1) organic complexes, consisting of 1-3 chelate ring structures, were the dominating species in the entire pH range while at higher concentrations (67,673-84,076 μg g-1, pH 3.0-7.0) we detected mixtures of mononuclear organic Ga(III) complexes, Ga(III) (hydr)oxide, and free Ga(III) (here defined as the hydrated Ga(III) ion and its soluble hydrolysis products). Moreover, the EXAFS results showed significantly

  11. Toxicity of TNT Wastewaters to Aquatic Organisms. Volume 2. Acute Toxicity of Condensate Wastewater and 2,4-Dinitrotoluene

    Science.gov (United States)

    1983-03-01

    condensate wastewater. Fourteen-day static algal assays, performed with Selenastrum capricornutum, Anabaena flos- aguae , Microcystis aeruginosa, and...days ......... ...................... 44 17 Effect of 2,4-DNT on Population Growth of A. flos- aguae and N. pelliculosa Exposed under Static Conditions...stand until the aqueous and benzene fractions separated. The aqueous fractions were drawn off, and benzene residues in those fractions removed by heating

  12. Soil organic carbon and nitrogen content of density fractions and effect of meadow degradation to soil carbon and nitrogen of fractions in alpine Kobresia meadow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This research was conducted on the non-disturbed native alpine Kobresia meadow(YF) and the severely degraded meadow(SDL) of Dari County of Qinghai Province.By a density fractionation approach,each soil sample was divided into two fractions:light fraction(LF) and heavy fraction(HF).The obtained fractions were analyzed for organic carbon(OC) and nitrogen(N) concentrations.The results showed:(1) the OC concentration in HF and LF was 3.84% and 28.63% respectively while the nitrogen concentration in HF and LF was 0.362% and 1.192% respectively in 0-10 cm depth.C:N ratio was 10.6 in HF and 23.8 in LF respectively.(2) As far as the ratio of OC in given fraction to that in gross sample was concerned,dominance of OC in HF was obvious in the whole soil profile.OC in HF increased from 78.95% to 90.33%,while OC in LF decreased from 21.05% to 9.68% with depths.(3) Soil total OC amounted to 47.47 in YF while 17.63 g.kg-1 in SDL,in which the OC content in HF decreased from 37.31 to 16.01 g.kg-1 while OC content in LF decreased from 10.01 to 1.62 g.kg-1.In other words,results of OC and N content show meadow degradation led to the loss of 57% OC in HF and 84% OC in LF from originally native ecosystem on alpine meadow.In addition,meadow degradation led to the loss of 43% N in HF and 79% N in LF from originally native ecosystem on alpine meadow.(4) The main reason for loss of C and N in LF during meadow degradation was not attributed to the decrease of OC and N concentration in LF and LF,but to the decrease in LF dry weight.Loss of N was far lower than loss of C in HF.This may suggest that there is difference in protection mode of C and N in HF.

  13. Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy.

    Science.gov (United States)

    Madhavan, Dinesh B; Baldock, Jeff A; Read, Zoe J; Murphy, Simon C; Cunningham, Shaun C; Perring, Michael P; Herrmann, Tim; Lewis, Tom; Cavagnaro, Timothy R; England, Jacqueline R; Paul, Keryn I; Weston, Christopher J; Baker, Thomas G

    2017-05-15

    Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester C. While accurate and efficient methods for predicting soil organic C content and composition have recently been developed for soils under agricultural land uses, such methods under forested land uses are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils using physical fractionation by automated wet-sieving and (13)C nuclear magnetic resonance (NMR) spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000-450 cm(-1)) were acquired from finely-ground soils from environmental plantings and agricultural land. Satisfactory prediction models based on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R(2) > 0.90, negligible bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and economically determine TOC and its fractions and thereby accurately describe the effects of land use change such as reforestation on agricultural soils.

  14. Capacity of soil to protect organic carbon and biochemical characteristics of density fractions in Ziwulin Haplic Greyxems soil

    Institute of Scientific and Technical Information of China (English)

    WANG Gang; WANG Chunyan; WANG Wenying; WANG Qiji

    2005-01-01

    Physical protection is one of the important ways to stabilize organic carbon in soils. In order to understand the role of soils as a carbon sink or source in global climatic change and carbon cycles and properly manage soils as a carbon sink, we ought to know how many organic carbon (OC) in a given soil could be protected. By a density fractionation approach and ultrasonic technique, each soil sample was divided into three fractions: free light fraction (free-LF), occluded fraction (occluded-LF) and heavy fraction (HF). The obtained fractions were analyzed for total OC content, carbohydrate content and recalcitrant OC content. The results showed: (ⅰ) In the whole soil profile, dominance of OC consistently decreased in the following order: HF, free-LF, occluded-LF. This suggested that OC in soils were mostly protected. From 0-10 to 60-80 cm horizons, the OC in free-LF decreased from 25.27% to 3.72%, while OC in HF they were increased from 72.57% to 95.39%. The OC in occluded-LF was between 2.16% and 0.89%. (ⅱ) Organic carbon recalcitrance in free-LF was similar to that in HF, and was even higher than that in HF below the surface horizon. This suggested that free-LF was not always the most fresh and non-decomposed fraction. OM quality of HF was higher than that of free-LF in the surface 10 cm below, namely the protected OM had higher quality than free OM in these horizons.

  15. Insights on the Phytochemical Profile (Cyclopeptides and Biological Activities of Calotropis procera Latex Organic Fractions

    Directory of Open Access Journals (Sweden)

    Thiago Lustosa Jucá

    2013-01-01

    Full Text Available Calotropis procera is a medicinal plant whose pharmacological properties are associated with its latex. Here, the Calotropis procera latex fractions were investigated in an attempt to trace its phytochemical profile and measure its anti-inflammatory and toxicity activity. The crude latex was partitioned, yielding five fractions (49.4% hexane, 5.2% dichloromethane, 2.0% ethyl acetate, 2.1% n-butanol, and 41.1% aqueous. Phytochemical screening and spectroscopy analysis revealed that dichloromethane is the most chemically diverse fraction. Triterpenes were detected in both the hexane and dichloromethane fractions, while flavonoids were detected in the dichloromethane and ethyl acetate fractions. These fractions were cytotoxic to cancer cell lines (LD50 0.05 to 3.9 μg/mL and lethal to brine shrimp (LD50 10.9 to 65.7 μg/mL. Reduced neutrophil migration in rats was observed in carrageenan-induced peritonitis for the dichloromethane (67%, ethyl acetate (56%, and aqueous (72% fractions. A positive reaction with tolidine and ninhydrin suggested that cyclopeptides are in the ethyl acetate fraction. It is therefore concluded that Calotropis procera latex dichloromethane and ethyl acetate fractions exhibit both in vitro and in vivo activities as well as anti-inflammatory properties. Cyclopeptide detection is especially interesting because previous attempts to investigate these low-molecular cyclic amino acid sequences in C. procera have failed.

  16. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Cui, J.; Chen, X.;

    2006-01-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor proces...

  17. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wu, Fengchang, E-mail: wufengchang@vip.skleg.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-10-01

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H{sub 2}O, 0.1 M NaOH and 1.0 M HCl, combined with {sup 13}C and {sup 31}P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H{sub 2}O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H{sub 2}O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H{sub 2}O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (P{sub i}) was the primary form of P in H{sub 2}O fractions, whereas organic P (P{sub o}) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H{sub 2}O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes. - Highlights: • Sequential fractionation combined with NMR analysis was applied on aquatic plants. • Labile and stable C and P forms in aquatic plants were characterized. • 54.7% of OM and 96.2% of P in aquatic plants are potentially available. • 45.3% of OM and 3.8% of P in aquatic

  18. Total organic carbon and humus fractions in restored soils from limestone quarries in semiarid climate, SE Spain

    Science.gov (United States)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Ángel Domene Ruiz, Miguel; Solé Benet, Albert

    2016-04-01

    Mining activities generate erosion and loss of plant cover and soil organic matter (SOM), especially in arid and semiarid Mediterranean regions. A precondition for ecosystem restoration in such highly disturbed areas is the development of functional soils with sufficient organic matter. But the SOM quality is also important to long-term C stabilization. The resistance to biodegradation of recalcitrant organic matter fractions has been reported to depend on some intrinsic structural factors of humic acid substances and formation of amorphous organo-mineral recalcitrant complexes. In an experimental soil restoration in limestone quarries in the Sierra de Gádor (Almería), SE Spain, several combinations of organic amendments (sewage sludge and compost from domestic organic waste) and mulches (gravel and woodchip) were added in experimental plots using a factorial design. In each plot, 75 native plants (Anthyllis cytisoides, A. terniflora and Macrochloa tenacissima) were planted and five years after the start of the experiment total organic carbon (TOC), physico-chemical soil properties and organic C fractions (particulate organic matter, H3PO4-fulvic fraction, fulvic acids (FA), humic acids (HA) and humin) were analyzed. We observed significant differences between treatments related to the TOC content and the HA/FA ratio. Compost amendments increased the TOC, HA content and HA/FA ratio, even higher than in natural undisturbed soils, indicating an effective clay humus-complex pointing to progressively increasing organic matter quality. Soils with sewage sludge showed the lowest TOC and HA/FA ratio and accumulated a lower HA proportion indicating poorer organic matter quality and comparatively lower resilience than in natural soils and soils amended with compost.

  19. A physically based framework for modeling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2014-12-01

    Full Text Available The presence of a large fraction of organic matter in primary sea spray aerosol (SSA can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely sensed chlorophyll a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC, a polysaccharide-like mixture associated primarily with semilabile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecules. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll a and organic fraction are similar to existing empirical

  20. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical

  1. A physically-based framework for modelling the organic fractionation of sea spray aerosol from bubble film Langmuir equilibria

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2014-03-01

    Full Text Available The presence of a large fraction of organic matter in primary sea spray aerosol (SSA can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC, a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecules. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll a and organic fraction are similar to existing empirical

  2. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    Science.gov (United States)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  3. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste.

    Science.gov (United States)

    Giudicianni, Paola; Bozza, Pio; Sorrentino, Giancarlo; Ragucci, Raffaele

    2015-10-01

    In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment or condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of the common domestic appliances. Finally, the evaluation of the energy recovered in the final product per unit weight of raw material shows that in most cases it is comparable to the energy required from the treatment.

  4. Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation.

    Science.gov (United States)

    Khardenavis, Anshuman Arun; Wang, Jing Yuan; Ng, Wun Jern; Purohit, Hemant J

    2013-01-01

    A hybrid anaerobic solid-liquid system was used for anaerobic digestion of organic fraction of municipal solid waste (OFMSW) consisting of mixed food + fruit waste and vegetable waste. Hydrolysis and acidogenesis potential of the above wastes were evaluated with the aim of producing value-added products in the form of volatile fatty acids (VFAs) and biogas recovery. Efficient hydrolysis and acidogenesis of mixed food + fruit waste was observed at a hydraulic retention time (HRT) of 1-3 d with a five-fold increase in soluble chemical oxygen demand (SCOD) followed by VFA production consisting of 50-75% acetic acid. Longer time was required for hydrolysis of vegetable waste with optimum hydrolysis and SCOD generation at 9 d HRT followed by VFA synthesis consisting of 45% acetic acid. Higher inoculum:substrate ratios resulted in improved hydrolysis and acidogenesis rates for vegetable waste in shorter time of 6 d with higher VFA production and increase in acetic acid content to 70%. When acidogenic leachate was fed into methanogenic reactors, detectable biogas production was observed after 25 d with 37-53% SCOD removal from leachate from mixed food + fruit waste and methane production of 0.066-0.1 L g(-1) SCOD removed and methane content of 38%. Though biogas yield from acidogenic leachate from vegetable waste was lower, nearly 94% volatile solids (VS) removal was observed in the reactors thereby providing methane yield of 0.13-0.21 L g(-1) VS consumed. Thus, the study provided a method for generation of value-added products from an otherwise misplaced resource in the form of OFMSW.

  5. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.

  6. Release of copper from sintered tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms.

    Science.gov (United States)

    Thomas, Vernon G; Santore, Robert C; McGill, Ian

    2007-03-01

    Sintered tungsten-bronze is a new substitute for lead shot, and is about to be deposited in and around the wetlands of North America. This material contains copper in the alloyed form of bronze. This in vitro study was performed according to U.S. Fish and Wildlife Service criteria to determine the dissolution rate of copper from the shot, and to assess the toxic risk that it may present to aquatic organisms. The dissolution of copper from tungsten-bronze shot, pure copper shot, and glass beads was measured in a buffered, moderately hard, synthetic water of pH 5.5, 6.6, and 7.8 over a 28-day period. The dissolution of copper from both the control copper shot and the tungsten-bronze shot was affected significantly by the pH of the water and the duration of dissolution (all p valuestungsten bronze shot was 30 to 50 times lower than that from the copper shot, depending on pH (ptungsten-bronze shot after 28 days was 0.02 microg/L at pH 7.8, and 0.4 microg/L at pH 5.6, using a loading and exposure scenario specific in a U.S. Fish and Wildlife Service protocol. Ratio Quotient values derived from the highest EEC observed in this study (0.4 microg/L), and the copper toxic effect levels for all aquatic species listed in the U.S. Environmental Protection Agency ambient water quality criteria database, were all far less than the 0.1 criterion value. Given the conditions stipulated by the U.S. Fish and Wildlife Service and the U.S. Environmental Protection Agency, heavy loading from discharged tungsten-bronze shot would not pose a toxic risk to potable water, or to soil. Consequently, it would appear that no toxic risks to aquatic organisms will attend the use of tungsten-bronze shot of the approved composition. Given the likelihood that sintered tungsten-bronze of the same formula will be used for fishing weights, bullets, and wheel balance weights, it is expected that the use of this new material in these applications will not be associated with toxic risks to aquatic life.

  7. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger.

  8. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).

    Science.gov (United States)

    Papa, Ester; Villa, Fulvio; Gramatica, Paola

    2005-01-01

    The use of Quantitative Structure-Activity Relationships in assessing the potential negative effects of chemicals plays an important role in ecotoxicology. (LC50)(96h) in Pimephales promelas (Duluth database) is widely modeled as an aquatic toxicity end-point. The object of this study was to compare different molecular descriptors in the development of new statistically validated QSAR models to predict the aquatic toxicity of chemicals classified according to their MOA and in a unique general model. The applied multiple linear regression approach (ordinary least squares) is based on theoretical molecular descriptor variety (1D, 2D, and 3D, from DRAGON package, and some calculated logP). The best combination of modeling descriptors was selected by the Genetic Algorithm-Variable Subset Selection procedure. The robustness and the predictive performance of the proposed models was verified using both internal (cross-validation by LOO, bootstrap, Y-scrambling) and external statistical validations (by splitting the original data set into training and validation sets by Kohonen-artificial neural networks (K-ANN)). The model applicability domain (AD) was checked by the leverage approach to verify prediction reliability.

  9. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    Science.gov (United States)

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste

  10. Laboratory evaluation of aqueous leaf extract of Tephrosia vogelii against larvae of Aedes albopictus (Diptera: Culicidae) and non-target aquatic organisms.

    Science.gov (United States)

    Li, Weisheng; Huang, Congling; Wang, Kun; Fu, Jiantao; Cheng, Dongmei; Zhang, Zhixiang

    2015-06-01

    Mosquito control using insecticides has been the most successful intervention known to reduce malaria prevalence or incidence. However, vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In this research, the leaf aqueous leachate of Tephrosia vogelii was evaluated for its toxicity against larvae of the most invasive mosquito worldwide, Aedes albopictus (Diptera: Culicidae), and toward adults of the water flea, Daphnia magna (Cladocera: Crustacea) and Oreochromis niloticus, two non-target aquatic organisms that share the same ecological niche of A. albopictus. The leaf aqueous leachate of T. vogelii was evaluated against fourth-instar larvae, non-blood fed 3-5 days old laboratory strains of A. albopictus under laboratory condition. In addition, the objective of the present work was to study the environmental safety evaluation for aquatic ecosystem. Mortality was then recorded after 7d exposure. The leaf aqueous leachate of T. vogelii showed high mosquitocidal activity against larvae of A. albopictus, with a LC50=1.18μg/mL. However, it had a remarkable acute toxicity also toward adults of the non-target arthropod D. magna, with a LC50=0.47μg/L and O. niloticus with a LC50=5.31μg/L. The present findings have important implications in the practical control of mosquito larvae in the aquatic ecosystem, as the medicinal plants studied are commonly available in large quantities. The extract could be used in stagnant water bodies for the control of mosquitoes acting as vector for many communicable diseases.

  11. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments

    DEFF Research Database (Denmark)

    Habicht, K S; Canfield, D E

    1997-01-01

    Isotope fractionation during sulfate reduction by natural populations of sulfate-reducing bacteria was investigated in the cyanobacterial microbial mats of Solar Lake, Sinai and the sediments of Logten Lagoon sulfuretum, Denmark. Fractionation was measured at different sediment depths, sulfate...... concentrations, and incubation temperatures. Rates of sulfate reduction varied between 0.1 and 37 micromoles cm-3 d-1, with the highest rates among the highest ever reported from natural sediments. The depletion of 34S during dissimilatory sulfate reduction ranged from 16% to 42%, with the largest 34S...... sulfate reduction. Therefore, additional processes contributing to the fractionation of sulfur isotopes in the sediments are indicated. From both Solar Lake and Logten Lagoon we were able to enrich cultures of elemental sulfur-disproportionating bacteria. We suggest that isotope fractionation accompanying...

  12. Binding of pyrene to dissolved organic matters:fractionation and characterization

    Institute of Scientific and Technical Information of China (English)

    DAI Jing-yu; ZHOU Jiang-min; QIN Shu-ping

    2004-01-01

    Based on a modified Leenheer DOM fractionation scheme, fractionation of DOM from the paddy soil was conducted by using XAD-8 resin into hydrophobic bases(HOB), hydrophobic acids(HOA), acid-insoluble matter(AIM), hydrophobic neutrals(HON) and hydrophilic matter(HIM). In total carbon content of DOM, 35.32% were the HIM and only 0.73% the HOB. However, HOA and AIM altogether occupied 53.45%, while the HON fraction represented 10%. The sorption experiments were conducted to determine the sorption capcity of pyrene on unfractionated DOM and its fractions. Elemental analysis, 1H-NMR and FTIR spectra were carried out on unfractionated DOM and its fractions to examine the relationship between the structure of DOM and partition coefficients(Koc). The results showed that HON had a greater affinity for binding pyrene than other fractions. While HON was characterized by large long-chain alkylate (aliphatic structure). AIM exhibited relative higher Koc values than HOA and HIM, due to much aromatic structure in AIM, while the high content of carboxylic groups of HOA and HIM depressed their binding capacity. This study demonstrates HON is a key subcomponents of DOM in binding of pyrene, in other words, aliphalic structure in DOM play a important role in binding of pyrene.

  13. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it [DIC-MAPI – Università degli Studi di Napoli Federico II (Italy); Bozza, Pio, E-mail: pi.bozza@studenti.unina.it [DIC-MAPI – Università degli Studi di Napoli Federico II (Italy); Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it [DIC-MAPI – Università degli Studi di Napoli Federico II (Italy); Ragucci, Raffaele, E-mail: ragucci@irc.cnr.it [Istituto di Ricerche sulla Combustione – C.N.R. Napoli (Italy)

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment or condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the one of

  14. Inorganic ion composition in Tardigrada: cryptobionts contain a large fraction of unidentified organic solutes.

    Science.gov (United States)

    Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak; Ramløv, Hans; Møbjerg, Nadja

    2013-04-01

    Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na(+) and Cl(-) are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH4(+), Ca(2+), Mg(2+), F(-), SO4(2-) and PO4(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na(+), ×70-800; K(+), ×20-90; Ca(2+) and Mg(2+), ×30-200; F(-), ×160-1040, Cl(-), ×20-50; PO4(3-), ×700-2800; SO4(2-), ×30-150). In contrast, in the marine species H. crispae, Na(+), Cl(-) and SO4(2-) are almost in ionic equilibrium with (brackish) salt water, while K(+), Ca(2+), Mg(2+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq l(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified

  15. Effect of biochar application and soil temperature on characteristics of organic matter associated with aggregate-size and density fractions

    Science.gov (United States)

    Kaiser, Michael; Grunwald, Dennis; Marhan, Sven; Poll, Christian; Bamminger, Chris; Ludwig, Bernard

    2016-04-01

    Potential increases in soil temperature due to climate change might result in intensified soil organic matter (SOM) decomposition and thus higher CO2 emissions. Management options to increase and stabilize SOM include the application of biochar. However, the effects of biochar amendments under elevated soil temperatures on SOM dynamics are largely unknown. The objective of this study was to analyze the effect of biochar application and elevated soil temperature on the amount and composition of OM associated with fractions of different turnover kinetics. Samples were taken from four treatments of the Hohenheim Climate Change Experiment with the factors temperature (ambient or elevated by 2.5 °C in 4 cm depth, six years before sampling) and biochar (control and 30 t / ha Miscanthus pyrolysis biochar, one year before sampling) in two depths (0 - 5 and 5 - 15 cm). Basal respiration and microbial biomass C were analyzed within an incubation experiment. Aggregate size-fractions were separated by wet-sieving and the free light, occluded light (oLF), and heavy fractions were isolated by density fractionation. All fractions were analyzed for organic C and δ13C as well as by infrared spectroscopy. Preliminary data suggest that biochar significantly increased basal respiration and that the microbial biomass C was significantly affected by elevated temperature. No biochar-C was found in the microbial biomass. Biochar and elevated temperature had only minor effects on the organic C associated with aggregate-size classes, although biochar was incorporated into all fractions already after one year of application. Biochar application significantly increased the organic C associated with oLF. In most samples affected by biochar, the proportion of C=O groups was significantly increased. The results suggest that already after one year, biochar-mineral interactions were formed leading to an aggregate occlusion of applied biochar. At least in the short-term, the effect of biochar on

  16. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Vijayan, Periasamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2016-09-01

    Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the

  17. Does the antibiotic amoxicillin affect haemocyte parameters in non-target aquatic invertebrates? The clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis as model organisms.

    Science.gov (United States)

    Matozzo, Valerio; Bertin, Valeria; Battistara, Margherita; Guidolin, Angelica; Masiero, Luciano; Marisa, Ilaria; Orsetti, Alessandro

    2016-08-01

    Amoxicillin (AMX) is one of the most widely used antibiotics worldwide, and its levels in aquatic ecosystems are expected to be detectable. At present, information concerning the toxic effects of AMX on non-target aquatic organisms, such as bivalves, is scarce. Consequently, in this study, we investigated for the first time the effects of AMX on the haemocyte parameters of two bivalve species, the clam Ruditapes philippinarum and the mussel Mytilus galloprovincialis, which share the same habitat in the Lagoon of Venice, in order to compare the relative sensitivity of the two species. The bivalves were exposed to 100, 200 and 400 μg AMX/L for 1, 3 and 7 days, and the effects on the total haemocyte count (THC), the diameter and volume of the haemocytes, haemocyte proliferation, lactate dehydrogenase (LDH) activity in cell-free haemolymph, the haemolymph pH, and the formation of micronuclei were evaluated. The actual concentrations of AMX in the seawater samples from the experimental tanks were also measured. Overall, the obtained results demonstrated that AMX affected slightly the haemocyte parameters of bivalves. In addition, no clear differences in terms of sensitivity to AMX exposure were recorded between the two bivalve species.

  18. Dissolved organic phosphorus and its bioavailable fraction in the Baltic Sea

    Science.gov (United States)

    Nausch, M.; Nausch, G.; Setzkorn, D.; Welz, Ä.

    2009-04-01

    In general, it is accepted that dissolved organic phosphorus (DOP) is besides dissolved inorganic phosphorus (DIP) a source for phosphorus nutrition of phyto- and bacterioplankton. If available, DIP is usually preferred to DOP. DOP becomes the most important source under DIP depleted conditions occurring in the Baltic Sea in summer. However, its contribution to nutrition and consequently its significance is very difficult to appraise because only the bioavailable fraction (BAP = bioavailable phosphorus) can be used by organisms. DOP comprises also inert compounds which persist over longer periods. Therefore, there is an urgent need to quantify the bioavailable DOP. In 2004 and 2005, DOP and BAP concentrations were detected in surface water at three stations in the central Baltic Sea from May until July. In June/July 2008 an intensive measuring campaign was performed throughout the whole Baltic Sea. DOP measurements were done from the entrance to the North Sea in the West until the innermost parts of the Gulf of Bothnia in the North and the Gulf of Finland in the East. BAP was determined at 14 stations in the central and northern parts. DOP was determined using the alkaline potassium peroxidisulphate oxidation method followed by the manual DIP determination. BAP has been detected in time course experiments using 0.8 µm filtered sea water containing free-living heterotrophic bacteria and amended with 7 µM ammonium chloride and 1mg l-1 D-(+) glucosemonohydrate to prevent nitrogen and carbon limitation and increase the phosphorus demand in bacteria. BAP is defined as that proportion of DOP which is used by bacteria and calculated as the difference of DOP concentrations at the beginning and the lowest concentrations during an incubation for 4-6 days. In 2004 and 2005, most DOP concentrations ranged between 0.18 and 0.32 µM, with a declining tendency from spring to summer probably due to elevated uptake compared to its release caused by higher temperatures and DIP

  19. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  20. Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation.

    Science.gov (United States)

    Nair, Arjun; Sartaj, Majid; Kennedy, Kevin; Coelho, Nuno M G

    2014-10-01

    Leachate recirculation has a profound advantage on biodegradation of the organic fraction of municipal solid waste in landfills. Mature leachate from older sections of landfills (>10 years) and young leachate were blended and added to organic fraction of municipal solid waste in a series of biomethane potential assay experiments with different mixing ratios of mature and young leachate and their effect on biogas production was monitored. The improvement in biogas production was in the range of 19%-41% depending on the ratio of mixing old and new leachate. The results are conclusive that the biogas generation could be improved by blending the old and new leachate in a bioreactor landfill system as compared with a conventional system employed in bioreactor landfills today for recirculating the same age leachate.

  1. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    OpenAIRE

    M. Crippa; P. F. DeCarlo; Slowik, J. G.; Mohr, C; M. F. Heringa; R. Chirico; POULAIN L.; F. Freutel; Sciare, J.; Cozic, J.; Marco, C. F.; M. Elsasser; Nicolas, J.B.; N. Marchand; Abidi, E.

    2013-01-01

    The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36%) and nitrate (28–29%), with lower contributions from sulfate (14–16%),...

  2. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    OpenAIRE

    M. Crippa; P. F. DeCarlo; Slowik, J. G.; Mohr, C; M. F. Heringa; R. Chirico; POULAIN L.; F. Freutel; Sciare, J.; Cozic, J.; C. F. Di Marco; M. Elsasser; N. José; N. Marchand; Abidi, E.

    2012-01-01

    The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36%) and nitrate (28–29%), with lower contributions from sulfate (14–16%),...

  3. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    OpenAIRE

    Manjula Gopinathan; Meenambal Thirumurthy

    2012-01-01

    Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along wit...

  4. Proposed Release Guides to Protect Aquatic Biota

    Energy Technology Data Exchange (ETDEWEB)

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  5. 人工纳米材料对水生生物毒性的研究进展%Research progress on toxicity of manufactured nanomaterials to aquatic organisms

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    With rapid development of nanotechnology, manufactured nanomaterials (MNMs) have been widely used in biomedicine, aerospace, construction and many other fields in recent years. Widespread public concerns regarding the aquatic toxicity caused by MNMs have been aroused. In this article, with investigation of huge amount of related scientific research references, five aspects of toxic effects toward aquatic organisms by MNMs have been reviewed. Firstly, the effects on individual growth of aquatic organisms; secondly, the effects on the level of cell and tissue (including gill, liver and brain tissue);thirdly, the effects on the level of molecular and ge-netic (including DNA structure, mRNA and protein expression);fourthly, the effects and mechanism of reproduc-tive toxicity;lastly, the effects on other physiological functions such as photosynthesis and respiration. Meanwhile, potential side effects of MNMs on aquatic organisms’ food chain were evaluated. Furthermore, we prospected the toxicology development direction of MNMs in aquatic environment with an aim to guide the related studies for domestic scholars.%  近年来纳米技术发展迅速,人工纳米材料(MNMs)在生物医学、航空航天和建筑等领域中广泛应用。然而,随着大量MNMs不断进入水环境,人工纳米粒子对水生生物的毒性效应已引起人们的关注。通过调研人工纳米粒子对水生生物毒性的最新研究成果,重点对人工纳米粒子在5个方面对水生生物的毒性效应进行综述:1)对水生生物个体生长的毒性效应;2)对肝组织、鳃组织和脑组织等在组织细胞水平的毒性效应;3)在分子和基因水平上对DNA结构、mRNA和相关蛋白质表达的影响;4)对水生生物的生殖毒性效应和机制;5)对其他生理作用如光合作用和呼吸作用的毒性影响。同时还分析了MNMs对食物链的影响,进一步对MNMs在水体环境中的毒理学发展方向进行了展望,

  6. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    Science.gov (United States)

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ(13)C, Δ(14)C, δ(15)N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ(13)C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small modifications

  7. Growth rate and size effect on carbon isotopic fractionation in diatom-bound organic matter in recent Southern Ocean sediments

    Science.gov (United States)

    Stoll, Heather M.; Mendez-Vicente, Ana; Abrevaya, Lorena; Anderson, Robert F.; Rigual-Hernández, Andrés S.; Gonzalez-Lemos, Saul

    2017-01-01

    Carbon isotopic fractionation during photosynthesis (εp) is used to reconstruct past CO2 and phytoplankton growth rates, typically by measuring the δ13C of biomarkers produced by coccolithophorids. However, organic molecules bound within diatom frustules represent another phase for measurement of δ13C and offer the opportunity to obtain εp for specific diatom sizes and geometries. Here, from core top sediments covering a strong productivity gradient in the Southern Ocean, we present determinations of δ13C and εp from frustule-bound organic matter from a fine opal fraction dominated by pennate diatoms and a coarse opal fraction dominated by larger centric diatoms. The δ13C of the pennate diatom fraction is typically 2.8‰ more positive than that of the centric fraction. Both fractions show a comparable range of 9-10‰ over the core top transect. εp is lowest (6.3‰ in pennate fraction) between the Polar Front (PF) and Southern Antarctic Circumpolar Current Front (SACCF) and increases both to the north and south, with maximum values at greatest distance from the PF (18‰ in the pennate fraction). These spatial changes in εp are too large to arise from the rather modest variation in dissolved CO2 in surface waters across the core top transect. We suggest instead that the maximum εp reflects higher diatom growth rates, and in the case of pennate diatom F. kerguelensis also an increase in the frustule width and volume to surface area ratio. Both processes may result from enhanced Fe supply due to upwelling of circumpolar deep water between the PF and SACCF. Farther south, diatom growth is strongly Fe-limited and farther north it is Fe and Si co-limited. The optima of growth rates between the PF and SACCF appears to be a general feature in all sectors of the Southern Ocean. Such growth rate-induced changes in diatom εp allow us to resolve a 5° northward displacement of the PF during glacial times compared to interglacial times. By estimating CO2 aq in

  8. Monitoring of PAHs and alkylated PAHs in aquatic organisms after 1 month from the Solar I oil spill off the coast of Guimaras Island, Philippines.

    Science.gov (United States)

    Uno, Seiichi; Koyama, Jiro; Kokushi, Emiko; Monteclaro, Harold; Santander, Sheryll; Cheikyula, J Orkuma; Miki, Shizuho; Añasco, Nathaniel; Pahila, Ida G; Taberna, Hilario S; Matsuoka, Tatsuro

    2010-06-01

    Following the oil spill accident of the Solar I tanker in 2006 off the coast of Guimaras Island in the Philippines, polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in some aquatic organisms were investigated at Luzaran in Guimaras and Taklong Islands, which were heavily polluted with spilled oil, immediately and 1 month after the accident. The concentrations of total PAHs were 11.9-52.3 ng/g dry weight in fish. Meanwhile, total PAH concentrations in shellfish were 38.0-3,102 ng/g dry weight in Luzaran and 128-236 ng/g dry weight in Taklong. Pyrene, phenanthrene, and fluoranthene were dominant in most fish and chrysene in all shellfish. Significantly higher concentrations of all alkylated homologs were detected in shellfish than in fish. These differences had two possible causes, that is, the differences between fish and shellfish could be attributed to the uptake routes and/or their metabolizing abilities.

  9. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  10. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Directory of Open Access Journals (Sweden)

    Jacob L Johansen

    Full Text Available Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.. Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m, mid-slope (6 m and deep-slope (9 m depth of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m and frequency (0.54 to 0.20 Hz, emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  11. Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing

    Science.gov (United States)

    Tang, Xiong; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2016-11-01

    Investigation of temperature-resolved carbon fractions of water-soluble organic carbon (WSOC) can improve our understanding of the chemical properties, formation processes and sources of WSOC in aerosols. We developed a method that can examine different temperature-resolved carbon fractions of WSOC and used this method to characterize aerosol samples (n = 102) collected from an urban site in Beijing in 2010-2011. The aerosol composition data including inorganic ions, elements and temperature-resolved carbon fractions of WSOC were used as input of positive matrix factorization (PMF) model to investigate the sources of WSOC. The results showed that the mean concentrations of WSOC were 10.2 μg m- 3 with increased values in winter and decreased values in summer, while WSOC/OC ratios (mean: 51.7%) were higher in spring and summer than in fall and winter. The sampling artifacts of WSOC (18.2%) were higher than those of OC (13.4%). Though WSOC was significantly influenced by biomass burning in spring and winter, the strong correlations between WSOC and other secondary components suggested that WSOC was secondary in nature. Results of temperature-resolved carbon fractions of OC and WSOC showed that WSOC/OC ratios for different carbon fractions had the highest value of 0.92 and lowest value of 0.30. PMF analysis identified four factors, three of which were associated with three organic polar compounds groups (low, medium, and high molecular weight compounds) based on their thermal evolution features, and one of which was attributed to inorganic secondary formation processes. Annually, the contributions of four factors were 20.5%, 46.2%, 12.4% and 20.9%, respectively.

  12. Microbiological properties and oxidizable organic carbon fractions of an oxisol under coffee with split phosphorus applications and irrigation regimes

    Directory of Open Access Journals (Sweden)

    Adriana Rodolfo da Costa

    2013-02-01

    Full Text Available Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting, two irrigation regimes (rainfed and year-round irrigation, with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC, basal respiration (BR, enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4, and total organic carbon (TOC. The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

  13. The influence of different soil management practices on auxin herbicide interactions with organic carbon in soil aggregate fractions

    Science.gov (United States)

    Schnitzler, Frauke; Haupt, Nadine; Burauel, Peter; Berns, Anne E.

    2010-05-01

    The influence of changing organic carbon contents in soils on the sorption and/or sequestration mechanisms of xenobiotics and their bioavailability are still not understood precisely. The present work discusses the turnover of a crop residue interacting with processes like mobilisation, binding and metabolism of an auxin herbicide in soil. The soil type was a haplic chernozem, available in three crop production regimes (low, normal and high) due to three types of fertilisation (none, mineral and mineral & organic) [1]. Two sets of experiments were conducted with undisturbed soil columns under field-like conditions. In the first set 14C-labelled maize straw was incorporated into the top soil and after three months incubation the herbicide benazolin was applied. In the second set the unlabelled maize straw was incorporated first, then 14C-labelled benazolin was added. Soil layers of 0-5 cm and 5-10 cm were fractionated in according to a soil aggregate fractionation procedure [2]. The content of organic carbon and the distribution of benazolin and its metabolites were detected in the gained soil fractions. In general, the specific organic carbon content and the specific 14C-activity of benazolin and its metabolites increased in the order from sand-sized though silt-sized to clay fraction due to increasing specific surface areas and sorption sites of the mineral particles. The highest sorption capacity of benazolin and its metabolites was detected in the soil layers of 0-5 cm with mineral fertilisation. In the 5-10 cm soil layers the binding capacity increased with increasing crop production. It was shown that more than half of the residual 14C-activity was not extractable. LC-MS/MS analysis of the extracts showed that the major components were benazolin and the relatively non-mobile thiazolin. The amount of benazolin in the extracts increased with increasing crop production, but decreased with increasing soil depth. These results indicate that maize straw amendment

  14. Effects of Total Dissolved Solids on Aquatic Organisms: A Review of Literature and Recommendation for Salmonid Species

    OpenAIRE

    P. K. Weber-Scannell; Duffy, L K; Phyllis K. Weber-Scannell; Duffy, Lawrence K.

    2007-01-01

    Total dissolves solids (TDS) are naturally present in water or are the result of mining or some industrial treatment of water. TDS contain minerals and organic molecules that provide benefits such as nutrients or contaminants such as toxic metals and organic pollutants. Current regulations require the periodic monitoring of TDS, which is a measurement of inorganic salts, organic matter and other dissolved materials in water. Measurements of TDS do not differentiate among ions. The amount of T...

  15. Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids.

    Science.gov (United States)

    Shui, Tao; Feng, Shanghuan; Yuan, Zhongshun; Kuboki, Takashi; Xu, Chunbao Charles

    2016-10-01

    In this study, effects of fractionation solvents, catalysts, temperatures and residence time on yields, purity and chemical composition of the products were investigated at the solid/solvent ratio of 1:5 (g/g). It was revealed that mixture of acetic acid/formic acid/water at the ratio of 3:6:1 (v/v/v) resulted in crude cellulose and lignin products of relatively high purity. The use of HCl catalyst contributed to a high crude cellulose yield, while H2SO4 showed an adverse effect on cellulose yield. However, both of these acidic catalysts contributed to much lower hemicellulose contents in the resulted crude cellulose products compared with those obtained without a catalyst. Fractionation at 90°C for 180min in mixed solvents of acetic acid/formic acid/water (3:6:1, v/v/v) with or without catalyst produced crude cellulose with very low residual lignin contents (<4%).

  16. Role of Inorganic and Organic Fractions in Animal Manure Compost in Lead Immobilization and Microbial Activity in Soil

    Directory of Open Access Journals (Sweden)

    Masahiko Katoh

    2016-01-01

    Full Text Available This study aimed to identify how the ratio of inorganic-to-organic components in animal manure compost (AMC affected both lead immobilization and microbial activity in lead-contaminated soil. When AMC containing 50% or more inorganic fraction with high phosphorous content was applied to contaminated soil, the amounts of water-soluble lead in it were suppressed by over 88% from the values in the soil without compost. The residual fraction under sequential extraction increased with the inorganic fraction in the AMC; however, in those AMCs, the levels of microbial enzyme activity were the same or less than those in the control soil. The application of AMC containing 25% inorganic fraction could alter the lead phases to be more insoluble while improving microbial enzyme activities; however, no suppression of the level of water-soluble lead existed during the first 30 days. These results indicate that compost containing an inorganic component of 50% or more with high phosphorus content is suitable for immobilizing lead; however, in the case where low precipitation is expected for a month, AMC containing 25% inorganic component could be used to both immobilize lead and restore microbial activity.

  17. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling.

    Science.gov (United States)

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Tan, Chaoqun; Zhu, Mingqiu

    2014-02-01

    Fouling is a major obstacle to maintain the efficiency of ultrafiltration-based drinking water treatment process. Algal extracellular organic matters (EOMs) are currently considered as one of the major sources of membrane fouling. The objective of this study was to investigate the influence of different hydrophobic/hydrophilic fractions of EOM extracted from Microcystis aeruginosa on ultrafiltration membrane fouling at lab scale. The experimental data indicated that EOM exhibited similar flux decline trends on polyethersulfone (PES) and regenerated cellulose (RC) membranes but caused greater irreversible fouling on PES membrane than RC membrane due to its hydrophobic property. It was also observed that charged hydrophilic (CHPI) and neutral hydrophilic (NHPI) fractions caused greater flux decline over hydrophobic (HPO) and transphilic (TPI) fractions. For PES membrane, the order of the irreversible fouling potentials for the four fractions was HPO>TPI>CHPI>NHPI, while the irreversible fouling potentials of RC membrane were tiny and could be ignored. Fluorescence excitation-emission matrix (EEM) spectra and Fourier transform infrared (FTIR) spectra suggested that protein-like, polysaccharide-like and humic-like substances were the major components responsible for membrane fouling. The results also indicated that the irreversible fouling increased as the pH decreased. The addition of calcium to feed solutions led to more severe flux decline and irreversible fouling.

  18. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity.

    Science.gov (United States)

    Tsarpali, Vasiliki; Dailianis, Stefanos

    2015-07-01

    The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone.

  19. An integrated approach to model the biomagnification of organic pollutants in aquatic food webs of the Yangtze Three Gorges Reservoir ecosystem using adapted pollution scenarios.

    Science.gov (United States)

    Scholz-Starke, Björn; Ottermanns, Richard; Rings, Ursula; Floehr, Tilman; Hollert, Henner; Hou, Junli; Li, Bo; Wu, Ling Ling; Yuan, Xingzhong; Strauch, Katrin; Wei, Hu; Norra, Stefan; Holbach, Andreas; Westrich, Bernhard; Schäffer, Andreas; Roß-Nickoll, Martina

    2013-10-01

    The impounding of the Three Gorges Reservoir (TGR) at the Yangtze River caused large flooding of urban, industrial, and agricultural areas, and profound land use changes took place. Consequently, substantial amounts of organic and inorganic pollutants were released into the reservoir. Additionally, contaminants and nutrients are entering the reservoir by drift, drainage, and runoff from adjacent agricultural areas as well as from sewage of industry, aquacultures, and households. The main aim of the presented research project is a deeper understanding of the processes that determines the bioaccumulation and biomagnification of organic pollutants, i.e., mainly pesticides, in aquatic food webs under the newly developing conditions of the TGR. The project is part of the Yangtze-Hydro environmental program, financed by the German Ministry of Education and Science. In order to test combinations of environmental factors like nutrients and pollution, we use an integrated modeling approach to study the potential accumulation and biomagnification. We describe the integrative modeling approach and the consecutive adaption of the AQUATOX model, used as modeling framework for ecological risk assessment. As a starting point, pre-calibrated simulations were adapted to Yangtze-specific conditions (regionalization). Two exemplary food webs were developed by a thorough review of the pertinent literature. The first typical for the flowing conditions of the original Yangtze River and the Daning River near the city of Wushan, and the second for the stagnant reservoir characteristics of the aforementioned region that is marked by an intermediate between lake and large river communities of aquatic organisms. In close cooperation with German and Chinese partners of the Yangtze-Hydro Research Association, other site-specific parameters were estimated. The MINIBAT project contributed to the calibration of physicochemical and bathymetric parameters, and the TRANSMIC project delivered

  20. Calibration of nylon organic chemical integrative samplers and sentinel samplers for quantitative measurement of pulsed aquatic exposures.

    Science.gov (United States)

    Morrison, Shane A; Belden, Jason B

    2016-06-03

    Environmental exposures often occur through short, pulsed events; therefore, the ability to accurately measure these toxicologically-relevant concentrations is important. Three different integrative passive sampler configurations were evaluated under different flow and pulsed exposure conditions for the measurement of current-use pesticides (n=19), polyaromatic hydrocarbons (n=10), and personal care products (n=5) spanning a broad range of hydrophobicities (log Kow 1.5-7.6). Two modified POCIS-style samplers were investigated using macroporous nylon mesh membranes (35μm pores) and two different sorbent materials (i.e. Oasis HLB and Dowex Optipore L-493). A recently developed design, the Sentinel Sampler (ABS Materials), utilizing Osorb media enclosed within stainless steel mesh (145μm pores), was also investigated. Relatively high sampling rates (Rs) were achieved for all sampler configurations during the short eight-day exposure (4300-27mL/d). Under flow conditions, median Rs were approximately 5-10 times higher for POCIS-style samplers and 27 times higher for Sentinel Samplers, as compared to static conditions. The ability of samplers to rapidly measure hydrophobic contaminants may be a trade off with increased flow dependence. Analyte accumulation was integrative under pulsed and continuous exposures for POCIS-style samplers with mean difference between treatments of 11% and 33%; however, accumulation into Sentinel Samplers was more variable. Collectively, results show that reducing membrane limitations allows for rapid, integrative accumulation of a broad range of analytes even under pulsed exposures. As such, these sampler designs may be suitable for monitoring environmental substances that have short aquatic half-lives.

  1. Evaluation of hormone-like activity of the dissolved organic matter fraction (DOM) of compost and digestate.

    Science.gov (United States)

    Scaglia, Barbara; Pognani, Michele; Adani, Fabrizio

    2015-05-01

    Biomasses are usually applied to soil for their agronomic properties (fertilization and amendment properties). Biomass can also have bio-stimulating effects on plants because of the presence of hormones and hormone-like molecules. Although compost has been the subject for studies of this aspect, no data have yet been reported on the extraction of this kind of molecule from digestate biomass. The aim of this work is to study the auxin- and gibberellin-like activity of pig slurry digestate in comparison with those of pruning and garden wastes compost's dissolved organic fraction (DOM). DOM (i.e., fractioncompost or digestate, whereas digestate showed auxin-like properties which were found to be located in its neutral hydrophobic (NHo) DOM fractions. Hormone activity was due principally to the presence of auxin coming from the anaerobic digestion of aromatic amino acids.

  2. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  3. Determining organic carbon distributions in soil particle size fractions as a precondition of lateral carbon transport modeling at large scales

    Science.gov (United States)

    Schindewolf, Marcus; Seher, Wiebke; Pfeffer, Eduard; Schultze, Nico; Amorim, Ricardo S. S.; Schmidt, Jürgen

    2016-04-01

    The erosional transport of organic carbon has an effect on the global carbon budget, however, it is uncertain, whether erosion is a sink or a source for carbon in the atmosphere. Continuous erosion leads to a massive loss of top soils including the loss of organic carbon historically accumulated in the soil humus fraction. The colluvial organic carbon could be protected from further degradation depending on the depth of the colluvial cover and local decomposing conditions. Another part of eroded soils and organic carbon will enter surface water bodies and might be transported over long distances. The selective nature of soil erosion results in a preferential transport of fine particles while less carbonic larger particles remain on site. Consequently organic carbon is enriched in the eroded sediment compared to the origin soil. As a precondition of process based lateral carbon flux modeling, carbon distribution on soil particle size fractions has to be known. In this regard the present study refers to the determination of organic carbon contents on soil particle size separates by a combined sieve-sedimentation method for different tropical and temperate soils Our results suggest high influences of parent material and climatic conditions on carbon distribution on soil particle separates. By applying these results in erosion modeling a test slope was simulated with the EROSION 2D simulation software covering certain land use and soil management scenarios referring to different rainfall events. These simulations allow first insights on carbon loss and depletion on sediment delivery areas as well as carbon gains and enrichments on deposition areas on the landscape scale and could be used as a step forward in landscape scaled carbon redistribution modeling.

  4. Soil Organic Carbon and Its Fractions Across Vegetation Types: Effects of Soil Mineral Surface Area and Microaggregates

    Institute of Scientific and Technical Information of China (English)

    WU Qing-Biao; WANG Xiao-Ke; OUYANG Zhi-Yun

    2009-01-01

    Soil organic carbon (SOC) can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and the underlying mechanisms that stabilize SOC.In this study,density fractionation and acid hydrolysis were used to assess the spatial variation in SOC,the heavy fraction of organic carbon (HFOC),and the resistant organic carbon (ROC) in soils of the southern Hulun Buir region,northeastern China,and to identify the major factors that contribute to this variation.The results showed that as the contents of clay and silt particles (0-50 μm) increased,both methylene blue (MB) adsorption by soil minerals and microaggregate contents increased in the 0-20 and 20-40 cm soil layers (P<0.05).Although varying with vegetation types,SOC,HFOC,and ROC contents increased significantly with the content of clay and silt particles,MB adsorption by soil minerals,and microaggregate content (P<0.05),suggesting that soil texture,the MB adsorption by soil minerals,and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulun Buir region.

  5. Feasibility Studies on Static Pile Co Composting of Organic Fraction of Municipal Solid Waste With Dairy Waste Water

    Directory of Open Access Journals (Sweden)

    Manjula Gopinathan

    2012-06-01

    Full Text Available Milk processing consumes a large amount of water and generates 6–10 liters of effluent per liter of milk processed. An effluent volume is approximately four times the volume of processed milk. Since the pollutants generated by industry are great losses of production, improvements in production efficiency are recommended to reduce pollutant loads. In this research a series of experimental studies were conducted with regard to bioconversion of organic fraction of municipal solid waste along with dairy waste water at different C/N ratios. About 50 kg of shredded waste containing dairy waste water, saw dust, and organic fraction of municipal solid waste was placed in static piles of different proportions and 500 ml of effective micro-organisms was added to them. The variation in physical and chemical parameters was monitored throughout the process. Results indicate that co composting of dairy waste water with municipal solid waste produces compost that is more stable and homogenous and can be effectively used as soil conditioner.DOI: http://dx.doi.org/10.5755/j01.erem.60.2.963

  6. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-01-11

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha(-1), were higher than 45.90 Mg C ha(-1) in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  7. Direct interaction of dissolved organic matter with aquatic organisms%溶解性有机质与水生生物的直接相互作用研究进展

    Institute of Scientific and Technical Information of China (English)

    陈蕾; 沈超峰; 陈英旭

    2011-01-01

    溶解性有机质广泛存在于天然水体中,具有重要的生态与环境意义.然而在环境科学领域内,天然水体中的溶解性有机质长期以来仅仅被作为惰性的吸附剂对待,其自身的与生物的直接作用却一直被忽视.近年来,越来越多的研究证据表明溶解性有机质自身即具有生物效应.它能在生物表面吸附.并影响细胞膜的电化学性质与膜渗透性,能被生物吸收,进而诱导生物体内化学物质应激反应,诱导并调节生物体内代谢酶的活性,同时对生物产生一定的内分泌干扰效应.溶解性有机质对生物的轻度刺激作用是影响污染物的生物浓缩及毒性效应的重要因子之一,系统地研究其中的机制对评价实际环境中污染物的生态风险有着重要意义.本文综述了溶解性有机质与生物的直接作用的相关研究成果,并探讨目前此分支领域研究中出现的瓶颈问题.%Dissolved organic matter is widely present in aquatic environment with great ecological and environmental significance.In freshwater ecosystems, dissolved organic matter exceeds all living organisms by more than one order of magnitude.The ability of dissolved organic matter to affect aquatic biota indirectly by exerting strong control on the surrounding biogeochemical conditions is well established due to their ability to complex inorganic cations, including metals and a variety of organic compounds.In contrast, the potential direct interaction of these amphiphilic compounds with aquatic organisms themselves has been largely overlooked until recently.However, in the past decade, there has been growing recognition that dissolved organic matter can directly affect the physiology of organisms.Because of the chemical building blocks and physicochemical behavior of dissolved organic matter, researchers have postulated that these substances have a xenobiotic character, with effects such as sorption of dissolved organic matter on living

  8. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  9. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy

    Science.gov (United States)

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by...

  10. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization.

    Science.gov (United States)

    Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève

    2015-05-01

    This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter.

  11. Control Strategy for Anaesthetic Drug Dosage with Interaction Among Human Physiological Organs Using Optimal Fractional Order PID Controller

    CERN Document Server

    Das, Saptarshi; Maharatna, Koushik

    2016-01-01

    In this paper, an efficient control strategy for physiological interaction based anaesthetic drug infusion model is explored using the fractional order (FO) proportional integral derivative (PID) controllers. The dynamic model is composed of several human organs by considering the brain response to the anaesthetic drug as output and the drug infusion rate as the control input. Particle Swarm Optimisation (PSO) is employed to obtain the optimal set of parameters for PID/FOPID controller structures. With the proposed FOPID control scheme much less amount of drug-infusion system can be designed to attain a specific anaesthetic target and also shows high robustness for +/-50% parametric uncertainty in the patient's brain model.

  12. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  13. Long-Term Effects of Dredging Operations Program: Assessing Bioaccumulation in Aquatic Organisms Exposed to Contaminated Sediments

    Science.gov (United States)

    1991-07-01

    between log Ka and log K,. for biocon - centration (reprinted with permission from Connell 1990) chemicals by organisms but at the same time favors...contaminated relative to the water that it respires. Connell (1990) noted that biomagnification is likely to be of more significance than biocon - centration

  14. [Impacts of Land Use Changes on Soil Light Fraction and Particulate Organic Carbon and Nitrogen in Jinyun Mountain].

    Science.gov (United States)

    Lei, Li-guo; Jiang, Chang-sheng; Hao, Qing-ju

    2015-07-01

    Four land types including the subtropical evergreen broad-leaved forest, sloping farmland, orchard and abandoned land were selected to collect soil samples from 0 to 60 cm depth at the same altitude of sunny slope in the Jinyun Mountain in this study. Soil light fraction organic carbon and nitrogen ( LFOC and LFON), and particulate organic carbon and nitrogen (POC and PON) were determined and the distribution ratios and C/N ratios were calculated. The results showed that the contents of LFOC and LFON decreased significantly by 71. 42% and 38. 46% after the forest was changed into sloping farmland (P 0. 05), while the contents of LFOC and LFON increased significantly by 3. 77 and 1. 38 times after the sloping farmland was changed into abandoned land (P organic carbon and nitrogen accumulation; on the contrary, sloping farmland was easy to lose soil labile carbon and nitrogen. The LFOC and LFON distribution ratios were significantly reduced by 31. 20% and 30. 08%, respectively after the forest was changed into the sloping farmland, and increased by 18. 74% and 20. 33% respectively after the forest was changed into the orchard. Nevertheless, the distribution ratios of LFOC and LFON were changed little by converting the forest into the sloping farmland and orchard. The distribution ratios of LFOC, LFON, POC and PON all increased significantly after the farmland was abandoned (P soil organic carbon and nitrogen was enhanced after forest reclamation, while reduced after the sloping farmland was abandoned. The ratios of carbon to nitrogen in soil organic matter, light fraction organic matter and particulate organic matter were in the order of abandoned land (12. 93) > forest (8. 53) > orchard (7. 52) > sloping farmland (4. 40), abandoned land (16. 32) > forest (14. 29) > orchard (11. 32) > sloping farmland (7. 60), abandoned land (23. 41) > sloping farmland (13. 85 ) > forest (10. 30) > orchard (9. 64), which indicated that the degree of organic nitrogen mineralization

  15. Carbon fractions and stocks in organic layers in boreal forest soils. Impacts of climatic and nutritional conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hilli, S.

    2011-07-01

    The SOM in boreal forests contains non-living heterogeneous components resulting from microbial and chemical transformations of organic debris from plant litter. The major components in the plant biomass all decompose at different rates and therefore, contribute variably to the stable storages of soil C. The aims of the current thesis were (1) to explore how climate, soil fertility and initial litter quality affect the decomposition rate of litter, (2) to study how the different carbon fractions found in the plant litter relate to the quality and quantity of SOM in forest soils, (3) to determine whether the recalcitrant fraction of litter is derived from lignin and other polyphenols or from lipophilic compounds and carbohydrates, and (4) to determine whether the litter originating from different plant growth forms affects SOM formation in a similar way. The study was conducted in six north boreal and six south boreal study sites, half of which were mesic and half were sub-xeric. The overall initial litter quality and decomposition rate of carbon fractions did not differ between the two fertility levels and climate regimes. Litter with high initial water-soluble extractives (WSE) and nitrogen (N) decomposed at a faster rate than litter with lower initial WSE and N concentration irrespective of the soil fertility or climate conditions. Although decomposition rate varies among litter types, decomposition rate cannot explain differences in SOM quality or quantity between the northern and southern boreal forests. The organic matter accumulation and relative proportion of acid-insoluble residue (AIR) in SOM was higher in south boreal sites both in sub-xeric and mesic sites. Detailed characterization of the AIR fraction using pyrolysis-GC demonstrated that in the litter layer the concentration of AIR contains lignin and other insoluble polyphenols, but in the F and H layers, lignin-derived and chemically modified polyphenolics and decomposition products of resin acids

  16. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    Science.gov (United States)

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  17. Sediment Surface Areas, Organic Content, and Metal Fractionation of Point Mugu Sediments

    Science.gov (United States)

    Becerra, C. A.; Wong, N.; Khachikian, C. S.

    2002-12-01

    Point Mugu contains one of the largest coastal wetlands ecosystems in California, which includes a Naval Air station, several sewage oxidation ponds and a partly dredged lagoon. Remediation efforts include investigating the feasibility of using the present sewage pond sludge to restore a dredged area in the lagoon. A problem with this approach is the potential release and subsequent environmental impact of the toxic substances from the sludge. Contaminants may become unavailable once sorbed onto particles. In general, this process is a direct function of surface area and organic carbon sorbed onto the sediment. The goal of the current investigation is to provide insight into the biological availability of a suite of metal contaminants in Pt. Mugu marsh sediments by studying changes in the physical and chemical properties of the sediments at horizontal and vertical spatial scales. The surface area and organic carbon for eight cores were measured as well as the first three sequential extraction of a host of metals. We have found that a direct correlation exists between surface area and the organic content of sediments as a function of depth. Surface area and the amount of organic carbon decreases with depth, which could result in higher availability of metals with increasing depth into the sediments.

  18. Influence of nonlinear sorption kinetics on the slow-desorbing organic contaminant fraction in soil

    NARCIS (Netherlands)

    Schlebaum, W.; Schraa, G.; Riemsdijk, van W.H.

    1999-01-01

    Release rates of hydrophobic organic compounds (HOCs) from the soil matrix influence the availability of HOCs in soils or sediments for microbial degradation or removal by physical means (e.g., soil washing or soil venting). In this study it was shown that the initial contaminant concentration influ

  19. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol

    NARCIS (Netherlands)

    Roscoe, R.; Buurman, P.

    2003-01-01

    Reclamation of Brazilian cerrados (savannas) has been intensified in the last decades, with implications for soil quality and soil organic matter (SOM) dynamics. Studying the impact of different tillage systems is essential to define better strategies for land use in Cerrado, which may favor C seque

  20. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Science.gov (United States)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  1. Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide.

    Science.gov (United States)

    Shahriari, Haleh; Warith, Mostafa; Hamoda, Mohamed; Kennedy, Kevin J

    2012-01-01

    In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H(2)O(2)) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175°C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115°C and 145°C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175°C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145°C, with a 26% increase in biogas production after 8days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H(2)O(2) modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H(2)O(2) displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

  2. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study compared the environmental profiles of anaerobic digestion (AD) and incineration, in relation to global warming potential (GWP), for treating individual material fractions that may occur in source-separated organic household waste (SSOHW). Different framework conditions representative...

  3. An Industrial Ecology Approach to Municipal Solid Waste Management: II. Case Studies for Recovering Energy from the Organic Fraction of MSW

    Science.gov (United States)

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery...

  4. Tetrodotoxin – Distribution and Accumulation in Aquatic Organisms, and Cases of Human Intoxication

    Directory of Open Access Journals (Sweden)

    Osamu Arakawa

    2008-05-01

    Full Text Available Many pufferfish of the family Tetraodontidae possess a potent neurotoxin, tetrodotoxin (TTX. In marine pufferfish species, toxicity is generally high in the liver and ovary, whereas in brackish water and freshwater species, toxicity is higher in the skin. In 1964, the toxin of the California newt was identified as TTX as well, and since then TTX has been detected in a variety of other organisms. TTX is produced primarily by marine bacteria, and pufferfish accumulate TTX via the food chain that begins with these bacteria. Consequently, pufferfish become non-toxic when they are fed TTX-free diets in an environment in which the invasion of TTX-bearing organisms is completely shut off. Although some researchers claim that the TTX of amphibians is endogenous, we believe that it also has an exogenous origin, i.e., from organisms consumed as food. TTX-bearing animals are equipped with a high tolerance to TTX, and thus retain or accumulate TTX possibly as a biologic defense substance. There have been many cases of human intoxication due to the ingestion of TTX-bearing pufferfish, mainly in Japan, China, and Taiwan, and several victims have died. Several cases of TTX intoxication due to the ingestion of small gastropods, including some lethal cases, were recently reported in China and Taiwan, revealing a serious public health issue.

  5. Optimizing the performance of microbial fuel cells fed a combination of different synthetic organic fractions in municipal solid waste.

    Science.gov (United States)

    Pendyala, Brahmaiah; Chaganti, Subba Rao; Lalman, Jerald A; Heath, Daniel D

    2016-03-01

    The objective of this study was to establish the impact of different steam exploded organic fractions in municipal solid waste (MSW) on electricity production using microbial fuel cells (MFCs). In particular, the influence of individual steam exploded liquefied waste components (food waste (FW), paper-cardboard waste (PCW) and garden waste (GW)) and their blends on chemical oxygen demand (COD) removal, columbic efficiency (CE) and microbial diversity was examined using a mixture design. Maximum power densities from 0.56 to 0.83 W m(-2) were observed for MFCs fed with different feedstocks. The maximum COD removed and minimum CE were observed for a GW feed. However, a reverse trend (minimum COD removed and maximum CE) was observed for the FW feed. A maximum COD removal (78%) accompanied with a maximum CE (24%) was observed for a combined feed of FW, PCW plus GW in a 1:1:1 ratio. Lactate, the major byproduct detected, was unutilized by the anodic biofilm community. The organic fraction of municipal solid waste (OFMSW) could serve as a potential feedstock for electricity generation in MFCs; however, elevated protein levels will lead to reduced COD removal. The microbial communities in cultures fed FW and PCW was highly diversified; however, the communities in cultures fed FW or a feed mixture containing high FW levels were similar and dominated by Bacteroidetes and β-proteobacteria.

  6. Evaluation of Phytotoxicity for Compost from Organic Fraction of Municipal Solid Waste and Paper & Pulp Mill Sludge

    Directory of Open Access Journals (Sweden)

    Manjula Gopinathan

    2012-03-01

    Full Text Available The compost obtained from composting organic fraction of Municipal solid waste, Paper & Pulp mill sludge and saw dust using different initial mix ratios (1:3, 1:6, 1:9 was used to evaluate phytotoxicity of green gram (Vigna radiata using a seed germination method. The tests were repeated for the compost obtained from organic fraction of MSW and saw dust without the addition of sludge. The control germination test was carried out using deionised water. The results showed that composting generally reduced the phytotoxicity of the mixtures. A germination index was the highest in the mix ratio of 1:9 in the compost obtained from the addition of paper & pulp mill sludge and a germination index was the highest in the mix ratio of 1:6 in the compost obtained without the addition of sludge. The germination percentage, germination index and vigour index values were relatively higher in the compost obtained with the addition of paper & pulp mill sludge. The vigour index was found to be maximal in the mix ratio of 1:3 from the compost obtained with the addition of sludge.DOI: http://dx.doi.org/10.5755/j01.erem.59.1.922

  7. [Effects of Different Land Uses on Soil Active Organic Carbon and Nitrogen Fractions in Jinyun Mountain].

    Science.gov (United States)

    Qi, Xin; Jiang, Chang-sheng; Hao, Qing-ju; Li, Jian-lin

    2015-10-01

    In this paper, we take Jinyun Mountain where located in Beibei district of Chongqing as the research object and explore the effect of different ways of land use on soil active organic carbon, nitrogen components by collecting the soil samples from 0 to 60 cm depth in subtropical evergreen broad-leaved forest (hereinafter referred to as the forest), abandoned land, orchard, farmland and measuring the content of MBC, MBN, DOC and DON. The research results show that the contents of soil MBC, MBN, DOC, DON are reduced with the increase of soil depth in four types of land using soils. Variance analysis of the single factor shows that four kinds of land uses have no significant difference in the contents of MBC, MBN and DON, but the DOC content of the abandoned land is significantly higher than that of other three kinds. It shows that the different ways of land use have no obvious effects on soil MBC, MBN and DON but the abandonment of slope cropland can significantly increase the content of soil DOC. There is no significant difference among the distribution ratio of MBN, DOC, DON in forest, abandoned land, orchard and farmland within the soil from 0 to 60 cm, but the distribution ratio of slope MBC is significantly higher than that of other three kinds. It means farmland soil organic carbon has a higher biological activity, this could due to the application of green manure, farmland manure and other organic fertilizers. Under different land utilizations, DOC/DON is the highest, MBC/MBN is the second, and SOC/TN is the lowest. It means the biological solidification of dissolved organic matter is the strongest, and the mineralization of soil organic matter is the most obvious. Under the four kinds of land uses, there are the lowest ratios in SOC/TN, MBC/MBN and DOC/DON in the farmland. And all the ratios are less than 20, which suggest that the mineralization of farmland soil organic matter is stronger and it's easy to cause the loss of soil carbon.

  8. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    Science.gov (United States)

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (Pstraw mulching or returning in six modes. The storage of POC and POC/TOC ratio in WM and WM-MM treatments, MOC and MOC/TOC ratio in WR treatment, increased significantly in top soil. In the other three treatments with straw mulching and returning (MM, MR, WR-MR), the storage of POC and MOC increased significantly in top soil. These results suggested that straw mulching had the potential to accumulate active organic carbon fraction in soil, straw soil-returning had the potential to accumulate stable organic carbon fraction. Considering organic carbon sequestration in cropland in the region of Guanzhong plain, maize straw mulching or soil-returning was

  9. Anaerobic composting of waste organic fraction. Compostaje anaerobico de la fraccion organica de los residuos

    Energy Technology Data Exchange (ETDEWEB)

    Baere, L. de; Verdonck, O.; Verstraete, W.

    1994-01-01

    The dry anaerobic composting can be carried out in mesophilic and thermophilic conditions. Gas production of 6,2 and 8.5 m''3 biogas m''3 daily in laboratory fermenters was obtained. The quality of waste is higher than obtained in aerobic process. The streptococcus sludge was destroyed. This experimental can be applied for big scale and it permits energy recovery and organic compost of municipal solid wastes. (Author)

  10. Optical properties of natural dissolved organic matter (DOM) in aquatic ecosystems: Applications in ecosystem studies from headwater streams to the deep ocean. (Invited)

    Science.gov (United States)

    Jaffe, R.

    2010-12-01

    The study of natural dissolved organic material (DOM) contributes to the better understanding of ecosystem function as the carbon flux between environmental compartments represents an important linkage between terrestrial and aquatic ecosystems. Within freshwater and marine ecosystems, DOM typically represents the largest pool of detrital organic carbon and greatly exceeds the organic carbon present in living biomass. Thus, the sources and fate of DOM are important terms in carbon budgets. DOM can also influence ecosystem function by controlling microbial food webs, act as a means of nutrient transport, buffer pH and influence toxicity and bioavailability of pollutants, among others. DOM composition influences its ‘quality’ and thus its photo- and bio-reactivity, both of which exert a strong control of the diagenetic reworking of this carbon pool. However, the molecular composition of DOM is highly complex and diverse, and its characterization is a serious challenge to analytical chemists. In recent years, several novel analytical approaches to the characterization of DOM have evolved, including those that are highly structure specific and others that provide information on broader molecular characteristics. Whilst the former are usually expensive and time consuming, the latter, often based on optical properties measurements, feature high sample throughput at a reduced cost but at the expense of structural specificity. While both approaches are complementary under ideal conditions, the latter are best suited for studies involving large spatial and temporal scales. The analysis of DOM optical properties, in particular excitation emission matrix (EEM) fluorescence combined with parallel factor analysis (PARAFAC), has emerged as a practical tool for the broad characterization of DOM quality. This presentation will provide examples for the application of EEM-PARAFAC in assessing environmental dynamics of DOM on both spatial and temporal scales, and in both

  11. Enantiomer fractions of organic chlorinated pesticides in arctic marine ice fauna, zooplankton, and benthos.

    Science.gov (United States)

    Borgå, Katrine; Bidleman, Terry F

    2005-05-15

    Stereoisomers of chiral chlorinated pesticides (alpha-HCH (HCH = hexachlorocyclohexane), trans- and cis-chlordane, MC5, o,p'-DDT) were quantified in arctic marine invertebrates (ice-associated amphipods Gammarus wilkitzkii, pelagic copepods Calanus hyperboreus, krill Thysanoessa inermis, and amphipods Themisto libellula, and benthic amphipods Paramphithoe hystrix). Enantiomer fractions (EFs) were calculated to investigate the influence of habitat, geographic area, and diet on selective bioaccumulation of the (-)- or (+)-enantiomer. Depletion of the (+)-alpha-HCH enantionmer increased from ice fauna to zooplankton to benthos, corresponding to previous reports of EF variations with depth. Chlordanes and o,p'-DDT also showed the strongest enantioselective bioaccumulation in benthic amphipods and less so in zooplankton and ice fauna, which had closer to racemic EFs. Neither diet nor geographic area explained EF differences among samples. Nonracemic EFs in benthos may be related to stereoselective biotransformation, but is most likely reflecting vertical distribution of EFs in the water column and sediments, as demonstrated earlier for alpha-HCH in the Canadian and European Arctic.

  12. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2011-08-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the

  13. [Dynamic changes of surface soil organic carbon and light-fraction organic carbon after mobile dune afforestation with Mongolian pine in Horqin Sandy Land].

    Science.gov (United States)

    Shang, Wen; Li, Yu-qiang; Wang, Shao-kun; Feng, Jing; Su, Na

    2011-08-01

    This paper studied the dynamic changes of surface (0-15 cm) soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in 25- and 35-year-old sand-fixing Mongolian pine (Pinus sylvestris var. mongolica) plantations in Horqin Sandy Land, with a mobile dune as a comparison site. After the afforestation on mobile dune, the content of coarse sand in soil decreased, while that of fine sand and clay-silt increased significantly. The SOC and LFOC contents also increased significantly, but tended to decrease with increasing soil depth. Afforestation increased the storages of SOC and LFOC in surface soil, and the increment increased with plantation age. In the two plantations, the increment of surface soil LFOC storage was much higher than that of SOC storage, suggesting that mobile dune afforestation had a larger effect on surface soil LFOC than on SOC.

  14. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study.

    Science.gov (United States)

    Thomaidi, Vasiliki S; Stasinakis, Athanasios S; Borova, Viola L; Thomaidis, Nikolaos S

    2015-01-01

    The ecological threat associated with emerging pollutants detected in wastewater was estimated in country level. Treated wastewater was analyzed for pharmaceuticals and illicit drugs; whereas the concentrations of all emerging contaminants determined in Greek Sewage Treatment Plants were recorded through literature review. Toxicity data was collected after literature review or using ECOSAR and risk quotients (RQs) were calculated for treated wastewater and 25 Greek rivers, for 3 different aquatic organisms (fish, daphnia magna, algae). According to the results, monitoring data was available for 207 micropollutants belonging to 8 different classes. RQ>1 was calculated for 30 compounds in secondary treated wastewater. Triclosan presented RQ>1 (in algae) for all studied rivers; decamethylcyclopentasilane (in daphnia magna), caffeine (in algae) and nonylphenol (in fish) presented RQ>1 in rivers with dilution factors (DF) equal or lower to 1910, 913 and 824, respectively. The class of emerging contaminants that present the greatest threat due to single or mixture toxicity was endocrine disrupters. The mixture of microcontaminants seems to pose significant ecological risk, even in rivers with DF equal to 2388. Future national monitoring programs should include specific microcontaminants that seem to possess environment risk to surface water.

  15. Fractionation of persistent organic pollutants in fish oil by high-performance liquid chromatography on a 2-(1-pyrenyl)ethyl silica column

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, X.; Marti, R.; Montana, M.J.; Gasser, M.; Margarit, L.; Broto, F.; Diaz-Ferrero, J. [Institut Quimic de Sarria, Ramon Llull University, Analytical Chemistry Department, Barcelona (Spain)

    2010-09-15

    The analysis of persistent organic pollutants in foodstuffs has become necessary for control of their levels in products for human and animal consumption. These analytical procedures usually require a fractionation step in order to separate the different families of pollutants to avoid interferences during the instrumental determination. In this study the separation was carried out on a 2-(1-pyrenyl)ethyl silica column, where analyte fractionation was based on differences in planarity and aromaticity. The fractionation of several types of persistent organic pollutants found in fish oil samples was studied; the pollutants included polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polybrominated diphenyl ethers, and some organochlorine pesticides. Fractions were analyzed by high-resolution gas chromatography with electron-capture detection and high-resolution gas chromatography-high resolution mass spectroscopy. Finally, the whole method (including the purification, fractionation, and instrumental determination steps) was validated and successfully applied to the analysis of several samples of fish oil. (orig.)

  16. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Kasinski, Slawomir, E-mail: slawomir.kasinski@uwm.edu.pl; Wojnowska-Baryla, Irena

    2014-02-15

    Highlights: • The use of an passively aerated reactor enables effective stabilization of OFMSW. • Convective air flow does not inhibit the aerobic stabilization of waste. • The use of an passively aerated reactor reduces the heat loss due to convection. • The volume of supplied air exceeds 1.7–2.88 times the microorganisms demand. - Abstract: Conventional aerobic waste treatment technologies require the use of aeration devices that actively transport air through the stabilized waste mass, which greatly increases operating costs. In addition, improperly operated active aeration systems, may have the adverse effect of cooling the stabilized biomass. Because active aeration can be a limiting factor for the stabilization process, passive aeration can be equally effective and less expensive. Unfortunately, there are few reports documenting the use of passive aeration systems in municipal waste stabilization. There have been doubts raised as to whether a passive aeration system provides enough oxygen to the organic matter mineralization processes. In this paper, the effectiveness of aeration during aerobic stabilization of four different organic fractions of municipal waste in a reactor with an integrated passive ventilation system and leachate recirculation was analyzed. For the study, four fractions separated by a rotary screen were chosen. Despite the high temperatures in the reactor, the air flow rate was below 0.016 m{sup 3}/h. Using Darcy’s equation, theoretical values of the air flow rate were estimated, depending on the intensity of microbial metabolism and the amount of oxygen required for the oxidation of organic compounds. Calculations showed that the volume of supplied air exceeded the microorganisms demand for oxidation and endogenous activity by 1.7–2.88-fold.

  17. SOM quality and phosphorus fractionation to evaluate degradation organic matter: implications for the restoration of soils after fire

    Science.gov (United States)

    Merino, Agustin; Fonturbel, Maria T.; Omil, Beatriz; Chávez-Vergara, Bruno; Fernandez, Cristina; Garcia-Oliva, Felipe; Vega, Jose A.

    2016-04-01

    The design of emergency treatment for the rehabilitation of fire-affected soils requires a quick diagnosis to assess the degree of degradation. For its implication in the erosion and subsequent evolution, the quality of soil organic matter (OM) plays a particularly important role. This paper presents a methodology that combines the visual recognition of the severity of soil burning with the use of simple analytical techniques to assess the degree of degradation of OM. The content and quality of the OM was evaluated in litter and mineral soils using thermogravimetry-differential scanning calorimetry (DSC-TG) spectroscopy, and the results were contrasted with 13C CP-MAS NMR. The types of methodologies were texted to assess the thermal analysis: a) the direct calculation of the Q areas related to three degrees of thermal stabilities: Q1 (200-375 °C; labil OM); Q2 (375-475 °C, recalcitrant OM); and Q3 (475-550 °C). b) deconvolution of DSC curves and calculation of each peak was expressed as a fraction of the total DSC curve area. Additionally, a P fractionation was done following the Hedley sequential extraction method. The severity levels visually showed different degrees of SOM degradation. Although the fire caused important SOM losses in moderate severities, changes in the quality of OM only occurred at higher severities. Besides, the labile organic P fraction decreased and the occluded inorganic P fraction increased in the high severity soils. These changes affect the OM processes such as hydrophobicity and erosion largely responsible for soil degradation post-fire. The strong correlations between the thermal parameters and NMR regions and derived measurements such as hydrophobicity and aromaticity show the usefulness of this technique as rapid diagnosis to assess the soil degradation.The marked loss of polysaccharide and transition to highly thermic-resistant compounds, visible in deconvoluted thermograms, which would explain the changes in microbial activity

  18. Far- and mid-infrared spectroscopy of complex organic matter of astrochemical interest: coal, heavy petroleum fractions and asphaltenes

    Science.gov (United States)

    Cataldo, Franco; García-Hernández, D. A.; Manchado, Arturo

    2013-03-01

    The coexistence of a large variety of molecular species (i.e. aromatic, cycloaliphatic and aliphatic) in several astrophysical environments suggests that unidentified infrared emission (UIE) occurs from small solid particles containing a mix of aromatic and aliphatic structures (e.g. coal, petroleum, etc.), renewing the astronomical interest on this type of materials. A series of heavy petroleum fractions namely `distillate aromatic extract', `Residual Aromatic Extract', heavy aromatic fraction (BQ-1) and asphaltenes derived from BQ-1 were used together with anthracite coal and bitumen as model compounds in matching the band pattern of the emission features of proto-planetary nebulae (PPNe). All the model materials were examined in the mid-infrared (2.5-16.66 μm) and for the first time in the far-infrared (16.66-200 μm), and the infrared bands were compared with the UIE from PPNe. The best match of the PPNe band pattern is offered by the BQ-1 heavy aromatic oil fraction and by its asphaltenes fraction. Particularly interesting is the ability of BQ-1 to match the band pattern of the aromatic-aliphatic C-H stretching bands of certain PPNe, a result which is not achieved neither by the coal model nor by the other petroleum fractions considered here. This study shows that a new interesting molecular model of the emission features of PPNe is asphaltene molecules which are composed by an aromatic core containing three to four condensed aromatic rings surrounded by cycloaliphatic (naphtenic) and aliphatic alkyl chains. Instead, the weakness of the model involving a mixture of polycyclic aromatic hydrocarbons (PAHs) for modelling the aromatic infrared emission bands (AIBs) is shown. The laboratory spectra of these complex organic compounds represent a unique data set of high value for the astronomical community, e.g. they may be compared with the Herschel Space Observatory spectra (˜51-220 μm) of several astrophysical environments such as (proto-) planetary nebulae, H

  19. Cesium accumulation by aquatic organisms at different trophic levels following an experimental release into a small reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Pinder, J.E., E-mail: jepinder@uga.ed [Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 (United States); Hinton, T.G., E-mail: thomas.hinton@irsn.f [Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 (United States); Taylor, B.E., E-mail: TaylorB@dnr.sc.go [Savannah River Ecology Laboratory, P. O. Drawer E, Aiken, SC 29802 (United States); Whicker, F.W., E-mail: ward.whicker@colostate.ed [Department of Environmental and Radiological Health Sciences, Colorado, State University, Fort Collins, CO 80523-1618 (United States)

    2011-03-15

    The rates of accumulation and subsequent loss of stable cesium ({sup 133}Cs) by organisms at different trophic levels within plankton-based and periphyton-based food chains were measured following the addition of {sup 133}Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (L kg{sup -1} d{sup -1} dry mass) and a loss rate parameter k (d{sup -1}) were estimated for each organism using time-series measurements of {sup 133}Cs concentrations in water and biota, and these parameters were used to estimate maximum concentrations, times to maximum concentrations, and concentration ratios (C{sub r}). The maximum {sup 133}Cs concentrations for plankton, periphyton, the insect larva Chaoborus punctipennis, which feeds on plankton, and the snail Helisoma trivolvis, which feeds on periphyton, occurred within the first 14 days following the addition, whereas the maximum concentrations for the fish species Lepomis macrochirus and Micropterus salmoides occurred after 170 days. The C{sub r} based on dry mass for plankton and C. punctipennis were 1220 L kg{sup -1} and 5570 L kg{sup -1}, respectively, and were less than the C{sub r} of 8630 L kg{sup -1} for periphyton and 47,700 L kg{sup -1} for H. trivolvis. Although the C{sub r} differed between plankton-based and periphyton-based food chains, they displayed similar levels of biomagnification. Biomagnification was also indicated for fish where the C{sub r} for the mostly nonpiscivorous L. macrochirus of 22,600 L kg{sup -1} was three times less than that for mostly piscivorous M. salmoides of 71,500 L kg{sup -1}. Although the C{sub r} for M. salmoides was greater than those for periphyton and H. trivolvis, the maximum {sup 133}Cs concentrations for periphyton and H. trivolvis were greater than that for M. salmoides. - Research highlights: {yields} A simple uptake and loss model described the Cs dynamics in all the various biota. {yields} Concentrations of Cs were greater in periphyton than in plankton

  20. Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms.

    Science.gov (United States)

    Murugan, Kadarkarai; Nataraj, Devaraj; Madhiyazhagan, Pari; Sujitha, Vasu; Chandramohan, Balamurugan; Panneerselvam, Chellasamy; Dinesh, Devakumar; Chandirasekar, Ramachandran; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chithravel; Rajaganesh, Rajapandian; Wei, Hui; Syuhei, Ban; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni

    2016-03-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. The Culex genus, with special reference to Culex quinquefasciatus, comprises the most common vectors of filariasis across urban and semi-urban areas of Asia. In recent years, important efforts have been conducted to propose green-synthesized nanoparticles as a valuable alternative to synthetic insecticides. However, the mosquitocidal potential of carbon nanoparticles has been scarcely investigated. In this study, the larvicidal and pupicidal activity of carbon nanoparticle (CNP) and silver nanoparticle (AgNP) was tested against Cx. quinquefasciatus. UV-Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and Raman analysis confirmed the rapid and cheap synthesis of carbon and silver nanoparticles. In laboratory assays, LC50 (lethal concentration that kills 50 % of the exposed organisms) values ranged from 8.752 ppm (first-instar larvae) to 18.676 ppm (pupae) for silver nanoparticles and from 6.373 ppm (first-instar larvae) to 14.849 ppm (pupae) for carbon nanoparticles. The predation efficiency of the water bug Lethocerus indicus after a single treatment with low doses of silver and carbon nanoparticles was not reduced. Moderate evidence of genotoxic effects induced by exposure to carbon nanoparticles was found on non-target goldfish, Carassius auratus. Lastly, the plant extract used for silver nanosynthesis was tested for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Overall, our results pointed out that AgNP and CNP can be a candidate for effective tools to reduce larval and pupal populations of filariasis vectors, with reduced genotoxicity and impact on behavioral traits of other aquatic organisms sharing the same ecological

  1. Primary marine aerosol emissions: size resolved eddy covariance measurements with estimates of the sea salt and organic carbon fractions

    Directory of Open Access Journals (Sweden)

    E. D. Nilsson

    2007-09-01

    Full Text Available Primary marine aerosol fluxes were measured using eddy covariance (EC, a condensation particle counter (CPC and an optical particle counter (OPC with a heated inlet. The later was used to discriminate between sea salt and total aerosol. Measurements were made from the 25 m tower at the research station Mace Head at the Irish west coast, May to September 2002. The aerosol fluxes were dominated by upward fluxes, sea spray from bubble bursting at the ocean surface. The sea salt aerosol number emissions increased two orders of magnitude with declining diameter from 1 to 0.1 μm where it peaked at values of 105 to 107 particles m−2s−1. The sea salt emissions increased at all sizes in the wind range 4 to 22 ms−1, in consistency with a power function of the wind speed. The sea salt emission data were compared to three recent sub micrometer sea salt source parameterisations. The best agreement was with Mårtensson et al. (2003, which appear to apply from 0.1 to 1.1 μm diameters in temperate water (12°C as well as tropical water (25°C. The total aerosol emissions were independent of the wind speed below 10 ms−1, but increased with the wind above 10 ms−1. The aerosol volume emissions were larger for the total aerosol than for the sea salt at all wind speeds, while the sea salt number emissions approached the total number emissions at 15 ms−1. It is speculated that this is caused by organic carbon in the surface water that is depleted at high wind speeds. The data are consistent with an internal aerosol mixture of sea salt, organic carbon and water. Using the aerosol model by Ellison et al. (1999 (a mono-layer of organic carbon surrounding a water-sea-salt brine we show that the total and sea salt aerosol emissions are consistent. This predict that the organic carbon fraction increase with decreasing diameter from a few % at 1 μm over 50% at about 0.5

  2. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.

    Science.gov (United States)

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela

    2014-01-15

    Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., 0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior.

  3. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    Institute of Scientific and Technical Information of China (English)

    Jian-Huai Chen; Zhi-Jian Yao; Jiao-Long Qin; Rui Yan; Ling-Ling Hua; Qing Lu

    2016-01-01

    Background:Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD).Moreover,the exactly topological organization of networks underlying MDD remains unclear.This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients.Methods:The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls.The brain fractional anisotropy-weighted structural networks were constructed,and the global network and regional nodal metrics of the networks were explored by the complex network theory.Results:Compared with the healthy controls,the brain structural network of MDD patients showed an intact small-world topology,but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found.Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions.Conclusions:All these resulted in a less optimal topological organization of networks underlying MDD patients,including an impaired capability of local information processing,reduced centrality of some brain regions and limited capacity to integrate information across different regions.Thus,these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network.

  4. Energy production through organic fraction of municipal solid waste-A multiple regression modeling approach.

    Science.gov (United States)

    Ramesh, N; Ramesh, S; Vennila, G; Abdul Bari, J; MageshKumar, P

    2016-12-01

    In the 21st century, people migrated from rural to urban areas for several reasons. As a result, the populations of Indian cities are increasing day by day. On one hand, the country is developing in the field of science and technology and on the other hand, it is encountering a serious problem called 'Environmental degradation'. Due to increase in population, the generation of solid waste is also increased and is being disposed in open dumps and landfills which lead to air and land pollution. This study is attempted to generate energy out of organic solid waste by the bio- fermentation process. The study was conducted for a period of 7 months at Erode, Tamilnadu and the reading on various parameters like Hydraulic retention time, organic loading rate, sludge loading rate, influent pH, effluent pH, inlet volatile acids, out let volatile fatty acids, inlet VSS/TS ratio, outlet VSS/TS ratio, influent COD, effluent COD and % of COD removal are recorded for every 10 days. The aim of the present study is to develop a model through multiple linear regression analysis with COD as dependent variable and various parameters like HRT, OLR, SLR, influent, effluent, VSS/TS ratio, influent COD, effluent COD, etc as independent variables and to analyze the impact of these parameters on COD. The results of the model developed through step-wise regression method revealed that only four parameters Influent COD, effluent COD, VSS/TS and Influent/pH were main influencers of COD removal. The parameters influent COD and VSS/TS have positive impact on COD removal and the parameters effluent COD and Influent/pH have negative impact. The parameter Influent COD has the highest order of impact, followed by effluent COD, VSS/TS and influent pH. The other parameters HRT, OLR, SLR, INLET VFA and OUTLET VFA were not significantly contributing to the removal of COD. The implementation of the process suggested through this study might bring in dual benefit to the community, viz treatment of solid

  5. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) act as vectors of important pathogens and parasites, such as malaria, dengue, chikungunya, Japanese encephalitis and lymphatic filariasis. The use of synthetic mosquitocides often leads to high operational costs and adverse non-target effects. Recently, plant-borne compounds have been proposed for rapid extracellular biosynthesis of mosquitocidal nanoparticles. However, the impact of these nanomosquitocides against biological control agents of mosquito larval populations has been poorly studied. In this research, we biosynthesized silver nanoparticles (Ag NP) using the Barleria cristata leaf extract as a reducing and stabilizing agent. The biosynthesis of Ag NP was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectrophotometry. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the clustered and irregular shapes of Ag NP. The presence of silver was confirmed by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy investigated the identity of secondary metabolites, which may also act as Ag NP capping agents. The acute toxicity of B. cristata leaf extract and biosynthesized Ag NP was evaluated against larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to the leaf aqueous extract, biosynthesized Ag NP showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with lethal concentration (LC)50 values of 12.46, 13.49, and 15.01 μg/mL, respectively. Notably, biosynthesized Ag NP were found safer to non-target organisms Diplonychus indicus, Anisops bouvieri, and Gambusia affinis, with respective LC50 values ranging from 633.26 to 866.92 μg/mL. Overall, our results highlight that B. cristata-fabricated Ag NP are a promising and eco-friendly tool against young instar populations of mosquito vectors of medical and veterinary importance.

  6. Ozonolysis of beta-pinene: temperature dependence of secondary organic aerosol mass fraction.

    Science.gov (United States)

    Pathak, Ravikant; Donahue, Neil M; Pandis, Spyros N

    2008-07-15

    The SOA formation from beta-pinene ozonolysis at modest precursor concentrations (2-40 ppb) was investigated in the temperature range of 0-40 degrees C. The presence of inert seeds and high ozone concentrations is necessary to minimize losses of semivolatile vapors to the walls of the smog chamber. beta-pinene secondary organic aerosol production increases significantly with decreasing temperature. An increase by a factor of 2-3, depending on the reacted beta-pinene concentration, was observed as the temperature decreased from 40 to 0 degrees C. This increase appearsto be due mainly to the shifting of partitioning of the semivolatile SOA componentstoward the particulate phase and not to a change of the beta-pinene product distribution with temperature. The measurements are used to develop a new temperature-dependent parametrization for the four-component basis-set. The parametrization predicts much higher SOA production for beta-pinene ozonolysis for typical atmospheric conditions than the values that have been suggested by previous studies.

  7. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure

    Directory of Open Access Journals (Sweden)

    Yagi Renato

    2003-01-01

    Full Text Available This work evaluates effects of cattle manure vermicompost in association with liming on soil fertility indexes. The experiment was carried out in greenhouse conditions, in pots containing samples of a Typic Hapludox, medium-textured soil. Five levels of vermicompost (equivalent to 0, 28, 42, 56, and 70 t ha-1, dry weight and five liming levels (to raise base saturation to 20, 30, 40, 50, and 60% were combined in a factorial scheme and samples were incubated for 180 days. Samples of the same soil received the equivalent to 70 t ha-1 of the cattle manure used to produce the vermicompost, and the same lime rates. Cattle manure was better than vermicompost to supply K and Mg. Small differences in P supply were observed between the manures. The vermicompost increased the levels of Ca, pH, organic matter (OM and CEC more than the manure. C-humic acids decreased and C-humin increased with vermicompost application. With liming, C-humic acids decreased, but the total content of OM was not affected.

  8. Cellulose solvent- and organic solvent-based lignocellulose fractionation enabled efficient sugar release from a variety of lignocellulosic feedstocks.

    Science.gov (United States)

    Sathitsuksanoh, Noppadon; Zhu, Zhiguang; Zhang, Y-H Percival

    2012-08-01

    Developing feedstock-independent biomass pretreatment would be vital to second generation biorefineries that would fully utilize diverse non-food lignocellulosic biomass resources, decrease transportation costs of low energy density feedstock, and conserve natural biodiversity. Cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF) was applied to a variety of feedstocks, including Miscanthus, poplar, their mixture, bagasse, wheat straw, and rice straw. Although non-pretreated biomass samples exhibited a large variation in enzymatic digestibility, the COSLIF-pretreated biomass samples exhibited similar high enzymatic glucan digestibilities and fast hydrolysis rates. Glucan digestibilities of most pretreated feedstocks were ∼93% at five filter paper units per gram of glucan. The overall glucose and xylose yields for the Miscanthus:poplar mixture at a weight ratio of 1:2 were 93% and 85%, respectively. These results suggested that COSLIF could be regarded as a feedstock-independent pretreatment suitable for processing diverse feedstocks by adjusting pretreatment residence time only.

  9. A new approach to the kinetic study of anaerobic degradation of the organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Cecchi, Franco; Traverso, P.G.; Fazzini, Guido (Venice Univ. (IT). Dip. Scienze Ambientali); Alvarez, J.M. (Barcelona Univ. (ES). Dip. d' Enginyeria Quimica i Metallurgia); Medici, Franco (L' Aquila Univ. (IT). Dip. di Chimica Ingegneria Chimica e Materiali)

    1990-01-01

    The kinetic models proposed by Monod, Chen and Hashimoto and Singh as well as those of a first order and diffusional type have been tested for fit as mathematical descriptions to describe substrate utilization during anaerobic digestion of the organic fraction of source sorted municipal solid waste. A new model, described as step diffusional is proposed and the results obtained with it are compared with those obtained using previously published models. The new model is found to show a better fit to the experimental result than those obtained with other models. The new model takes into account simple qualitative and quantitative chemical characteristics of the substrate to be digested. Although this new model is more complex than some others since it involves four kinetic constants, conceptually it is simple enough to find practical applications. (author).

  10. Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction

    Directory of Open Access Journals (Sweden)

    E. S. M. Borges

    2009-09-01

    Full Text Available Most works reported in the literature focus on thermal treatment of waste activated sludge at temperatures in the range of 160 to 180ºC. This research aimed at evaluating the thermal treatment of excess anaerobic sludge at much lower temperatures, using biogas generated in the wastewater treatment process as the energy source for heating a simplified thermal reactor. Direct burning of the biogas allowed an increase in the sludge temperature up to values close to 75ºC, for a 7-hour heating period. Sludge samples taken at different heating times showed that the thermal disintegration of the organic fraction allowed increases in the concentration of protein, carbohydrate, lipid and COD parameters by 30 to 35 times, as well as a 50% increase in the biogas production. Moreover, the simplified thermal treatment system proved to be an effective alternative for recovering energy from biogas and for controlling methane emissions to the atmosphere.

  11. Does grassland introduction into cropping cycles affect carbon dynamics through changes of allocation of soil organic matter within aggregate fractions?

    Science.gov (United States)

    Panettieri, M; Rumpel, C; Dignac, M-F; Chabbi, A

    2017-01-15

    Implementation of ley grassland into crop rotation could have positive influence in soil ecosystem services such as C storage. The periodical changes of land-use plus the in situ labelling given by the introduction of maize crops under ley grassland induce differences in soil organic matter (SOM) that could be traced either by stable isotopes or by the characterization of plant biomarkers such as lignin derived phenols. Evaluation of SOM dynamics is often limited by the complexity of soil matrix. To override these limitations, a hierarchical approach to decompose the soil mosaic into aggregates has been proposed in this study. Soil and plant samples were collected from a long-term experimental area in Lusignan (western France). Soils from four different treatments (bare fallow, permanent maize, permanent grassland, and ley grassland based on 6years of grassland followed by 3years of maize) were sampled, fractionated into water stable aggregates, and finally analysed for carbon, nitrogen, and lignin contents, as well as for (13)C isotopic signature. Soils under ley and permanent grassland stored higher amount of SOM in larger aggregates and preserved more efficiently the lignin stocks than the corresponding samples under permanent maize. Contemporary, finer fraction of ley grassland showed higher mean residence time of organic carbon, probably due to a legacy effect of the previous years under grassland. Even if maize derived SOM was identified, the grassland footprint was still dominating the ley grassland soils, as described by the principal component analysis. Strong correlation between these results and the quality and stoichiometry of the vegetal litter returned to soil were found, evidencing the needs for a comprehensive evaluation at a molecular level of all the parameters modified by land-use changes, including tillage, to understand the potential for carbon storage of different agroecosystems.

  12. Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. II - Physical Compartments and Carbon Management Index

    Directory of Open Access Journals (Sweden)

    Otávio dos Anjos Leal

    2015-06-01

    Full Text Available Soils constructed after mining often have low carbon (C stocks and low quality of organic matter (OM. Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC stocks, C distribution in physical fractions of OM and the C management index (CMI of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1, Paspalum notatum (T2, Cynodon dactylon (T3, Urochloa brizantha (T4, bare constructed soil (T5, and natural soil (T6. Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF of OM were determined. The CMI components: carbon pool index (CPI, lability (L and lability index (LI were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

  13. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  14. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  15. Using solid (13)C NMR coupled with solution (31)P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    Science.gov (United States)

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid (13)C and solution (31)P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid (13)C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution (31)P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  16. Characteristics of C-, N-DBPs formation from algal organic matter: role of molecular weight fractions and impacts of pre-ozonation.

    Science.gov (United States)

    Zhou, Shiqing; Zhu, Shumin; Shao, Yisheng; Gao, Naiyun

    2015-04-01

    Extracellular organic matter (EOM) and intracellular organic matter (IOM) of Microcystis aeruginosa have been reported to contribute to the formation of carbonaceous disinfection by-products (C-DBPs) and nitrogenous disinfection by-products (N-DBPs). Little is known about DBPs formation from different molecular weight (MW) fractions, especially for N-nitrosodimethylamine (NDMA). This study fractionated EOM and IOM into several MW fractions using a series of ultrafiltration membranes and is the first to report on the C-DBPs and N-DBPs formation from chlorination and chloramination of different MW fractions. Results showed that EOM and IOM were mainly distributed in low-MW (100 KDa) fractions. Additionally, the low-MW and high-MW fractions of EOM and IOM generally took an important part in forming C-DBPs and N-DBPs, either in chlorination or in chloramination. Furthermore, the effects of pre-ozonation on the formation of DBPs in subsequent chlorination and chloramination were also investigated. It was found that ozone shifted the high-MW fractions of EOM and IOM into lower MW fractions and increased the C-DBPs and N-DBPs yields to different degrees. As low-MW fractions are more difficult to remove than high-MW fractions by conventional treatment processes, therefore, activated carbon adsorption, nanofiltration (NF) and biological treatment processes can be ideal to remove the low-MW fractions and minimize the formation potential of C-DBPs and N-DBPs. Moreover, the use of ozone should be carefully considered in the treatment of algal-rich water.

  17. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  18. Acute toxicity of smoke screen materials to aquatic organisms, white phosphorus-felt, red phosphorus-butyl rubber and SGF No. 2 fog oil. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Poston, T.M.; McFadden, K.M.; Bean, R.M.; Clark, M.L.; Thomas, B.L.; Killand, B.W.; Prohammer, L.A.; Kalkwarf, D.R.

    1986-04-01

    The acute toxicity of three obscurants was determined for nine freshwater organisms. The materials tested were white phosphorus-felt smoke, red phosphorus-butyl rubber (RP-BR) smoke, and smoke generator fuel (SGF) No. 2 fog oil (bulk and vaporized). The chemistry of WP-F and RP-BR smoke in water and the resulting effects on aquatic organisms are similar. Combustion of these two obscurants and their deposition in water leads to the formation of many complex oxy-phosphoric acids. Rates of hydrolysis of these complex products to ortho-phosphate were inconsistent and unpredictable over time. These products acidify water and produce toxic effects after exhausting the buffering capacity of the water. Acute 96 hr tests using Daphnia magna with neutralized and nonneutralized exposure solutions indicated that the presence of unidentified toxic component(s) acted independently of pH. At pH levels of 6.0 to 7.0, phosphorus combustion products precipitated out of solution leading to a bimodal toxic response in extended 96-hr tests with Daphnia magna. Most components of fog oil had low solubility in water. Saturation was apparent at approximately 0.1 to 0.3 mg/L total oil. Vaporization had no demonstrable effect on the chemistry or toxicity of the fog oil. Neither the bulk fog oil nor the vaporized fog oil was acutely toxic to freshwater animals at concentrations less than 10 mg/L total oil. In oil-water mixes in excess of 1.0 mg/L total oil, fog oil quickly separated and floated to the surface. The primary hazard associated with vaporized and bulk fog oil was the physical effect of oil fouling the organisms. Photolysis increased the concentration of water-soluble components of the fog oil. Acute toxicity was demonstrated in oil-water mixes (approx.10 mg/L total oil) of photolyzed bulk and vaporized fog oil. No difference in toxicity was observed between photolyzed and non-photolyzed dilutions of OWM at comparable levels of total oil.

  19. Field and laboratory studies on the impact of two Bt rice lines expressing a fusion protein Cry1Ab/1Ac on aquatic organisms.

    Science.gov (United States)

    Wang, Yongmo; Huang, Jiacheng; Hu, Huawei; Li, Jianhong; Liu, Biao; Zhang, Guoan

    2013-06-01

    Genetically modified (GM) rice expressing Bt toxins is at the edge of commercial release in China. However, little information is available concerning the impact of Bt rice on aquatic organisms which are abundant in paddy field. A two-year study was conducted to assess the effects of two GM rice lines expressing a fusion protein Cry1Ab/1Ac (Bt rice) on three groups of zooplankton, rotifers, cladocerans and copepods in field conditions. Multi-factor ANOVA revealed that the population densities of rotifers, cladocerans and copepods in paddy field varied significantly between years and rice developmental stages, but did not differ significantly between Bt and non-Bt rice treatments. In all the field investigations, only one significant difference was found on copepods in the tillering stage of 2009, but the difference was not related to the presence of the Cry toxin. Under open-air conditions, we simulated the farming practice of straw mulch, using Bt rice straw as a food source for the water flea Daphnia hyalina. After one and two months of culture, the density of D. hyalina did not differ between Bt rice treatments and non-Bt rice treatments. A laboratory experiment found that purified Bt toxins Cry1Ab and Cry1Ac had no toxic effect on D. hyalina even in the treatment in which the Bt toxin concentration was as high as 2500ng/ml. Those above results indicate that the two Bt rice lines have no negative effect on the three groups of zooplankton. However, further studies are needed to compare the effects of Bt rice and non-Bt rice on the paddy zooplankton community in the context of integrated pest management which includes the use of pesticides.

  20. Estimation of Energy Potential from Organic Fractions of Municipal Solid Waste by Using Empirical Models at Hyderabad, Pakistan.

    Directory of Open Access Journals (Sweden)

    Muhammad Safar Korai

    2016-01-01

    Full Text Available MSW (Municipal Solid Waste now-a-day is considered as a precious renewable energy resource for various purposes. In view of above fact, one hundred samples of MSW were collected from different locations of study area. Quantities of each organic waste component were determined by using physical balance and also their proximate analysis was performed by using oven and muffle furnace. In this study, nine empirical models were used for estimating the energy value in terms of heat from OFMSW (Organic Fractions of Municipal Solid Waste, namely two of them were based upon physical composition, four of them were on the basis of its proximate analysis and remaining three of them was according to ultimate analysis of OFMSW. From comparison of all energy models, the empirical Model No. 3 and No. 4 based upon proximate analysis have highest energy recovery potential than all of others. Moreover, the result of Model No.3 on the basis of proximate analysis is closer to the calorific value of mixed OFMSW than the values obtained by rest of models. Therefore, this is the best model to be used. From the outcomes of this study it can be realized that the energy recovery from the OFMSW plays a vital role for economical growth of the country. On that account, a systematic approach should be performed in detail before making a decision on such option

  1. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration

    Science.gov (United States)

    Rui, Yichao; Murphy, Daniel V.; Wang, Xiaoli; Hoyle, Frances C.

    2016-10-01

    Rebuilding ‘lost’ soil carbon (C) is a priority in mitigating climate change and underpinning key soil functions that support ecosystem services. Microorganisms determine if fresh C input is converted into stable soil organic matter (SOM) or lost as CO2. Here we quantified if microbial biomass and respiration responded positively to addition of light fraction organic matter (LFOM, representing recent inputs of plant residue) in an infertile semi-arid agricultural soil. Field trial soil with different historical plant residue inputs [soil C content: control (tilled) = 9.6 t C ha‑1 versus tilled + plant residue treatment (tilled + OM) = 18.0 t C ha‑1] were incubated in the laboratory with a gradient of LFOM equivalent to 0 to 3.8 t C ha‑1 (0 to 500% LFOM). Microbial biomass C significantly declined under increased rates of LFOM addition while microbial respiration increased linearly, leading to a decrease in the microbial C use efficiency. We hypothesise this was due to insufficient nutrients to form new microbial biomass as LFOM input increased the ratio of C to nitrogen, phosphorus and sulphur of soil. Increased CO2 efflux but constrained microbial growth in response to LFOM input demonstrated the difficulty for C storage in this environment.

  2. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Sajeena Beevi, B; Madhu, G; Sahoo, Deepak Kumar

    2015-02-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9L/kg VS (volatile solid) for the total solid (TS) concentration of 100g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day(-1).

  3. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com [Department of Chemical Engineering, Govt. Engineering College, Thrissur, Kerala 680 009 (India); Madhu, G., E-mail: profmadhugopal@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India); Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  4. Biogas from the organic fraction of municipal solid waste: dealing with contaminants for a solid oxide fuel cell energy generator.

    Science.gov (United States)

    Papurello, Davide; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Silvestri, Silvia

    2014-11-01

    The present work investigates electricity production using a high efficiency electrochemical generator that employs as fuel a biogas from the dry anaerobic digestion of the organic fraction of municipal solid waste (OFMSW). The as-produced biogas contains several contaminants (sulfur, halogen, organic silicon and aromatic compounds) that can be harmful for the fuel cell: these were monitored via an innovative mass spectrometry technique that enables for in-line and real-time quantification. A cleaning trap with activated carbons for the removal of sulfur and other VOCs contained in the biogas was also tested and monitored by observing the different breakthrough times of studied contaminants. The electrochemical generator was a commercial Ni anode-supported planar Solid Oxide Fuel Cell (SOFC), tested for more than 300 h with a simulated biogas mixture (CH4 60 vol.%, CO2 40 vol.%), directly fed to the anode electrode. Air was added to promote the direct internal conversion of CH4 to H2 and CO via partial oxidation (POx). The initial breakthrough of H2S from the cleaning section was also simulated and tested by adding ∼1 ppm(v) of sulfur in the anode feed; a full recovery of the fuel cell performance after 24h of sulfur exposure (∼1 ppm(v)) was observed upon its removal, indicating the reliable time of anode exposure to sulfur in case of exhausted guard bed.

  5. Insights Into Water-Soluble Organic Aerosol Sources From Carbon-13 Ratios of Size Exclusion Chromatography Fractions

    Science.gov (United States)

    Ruehl, C. R.; Chuang, P. Y.; McCarthy, M. D.

    2008-12-01

    Many sources of organic aerosols have been identified and quantified, and much of this work has used individual (mosty water-insoluble) compounds as tracers of primary sources. However, most organic aerosol cannot be molecularly characterized, and the water-soluble organic carbon (WSOC) in many aerosols is thought to originate from gaseous precursors (i.e., it is secondary in nature). It can therefore be difficult to infer aerosol sources, particularly of background (i.e., aged) aerosols, and of the relatively high-MW component of aerosols. The stable isotope ratios (δ13C) of organic aerosols have been used to distinguish between sources, with lighter values (-30‰ to -25‰) interpreted as having originated from fossil fuel combustion and C4 biogenic emission, and heavier values (-25‰ to - 20‰) indicating a marine or C3 biogenic source. Most published measurements were of either total suspended particulates or PM2.5, however, and it is unknown to what extent these fractions differ from submicron WSOC. We report δ13C for submicron WSOC collected at a variety of sites, ranging from marine to polluted to background continental. Bulk marine organic δ13C ranged from -30.4 to - 27.6‰, slightly lighter than previously published results. This could be due to the elimination of supermicron cellular material or other biogenic primary emissions from the sample. Continental WSOC δ13C ranged from -19.1 to -29.8‰, with heavier values (-19.8 ± 1.0‰) in Oklahoma and lighter values at Great Smoky Mountain National Park in Tennessee (-25.8 ± 2.6‰) and Illinois (-24.5 ± 1.0‰). This likely results from the greater proportional of C3 plant material in the Oklahoma samples. In addition to bulk samples, we used size exclusion chromatography (SEC) to report δ13C of organic aerosols as a function of hydrodynamic diameter. Variability and magnitude of hydrodynamic diameter was greatest at low SEC pH, indicative of the acidic character of submicron WSOC. Tennessee

  6. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  7. Combination of biodegradable organic matter quantification and XAD-fractionation as effective working parameter for the study of biodegradability in environmental and anthropic samples.

    Science.gov (United States)

    Labanowski, Jerome; Feuillade, Geneviève

    2009-01-01

    The present work proposes to couple quantification of biodegradable organic matter (BOM) with XAD-fractionation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) analysis were applied to fractions extracted by XAD resin. An examination of mechanisms during consumption of BOM has been carried out, using comparison of biodegradability between the bulk BOM of samples (landfill leachate and surface water) and the sum of BOM contents obtained for the extracted fractions. Results point out that a cometabolism mechanism seems to be involved during the degradation of the surface water fractions. On the other hand, fractions extracted from the leachate seem to be degraded as primary substratum. The more reactive fractions of the leachate (HPO*) and the water (HPI) have been identified as well the less reactive (HPI* and HPO, respectively). The BDOC contents determined for the bulk leachate and surface water are 10+/-2% and 28+/-2%, respectively. The values of AOC are 107+/-18 microg C acetate L(-1) and 163+/-21 microg C acetate L(-1), respectively.

  8. A novel technique for the precise measurement of CO2 production rate in small aquatic organisms as validated on aeshnid dragonfly nymphs.

    Science.gov (United States)

    Harter, Till S; Brauner, Colin J; Matthews, Philip G D

    2017-03-15

    The present study describes and validates a novel yet simple system for simultaneous in vivo measurements of rates of aquatic CO2 production (ṀCO2 ) and oxygen consumption (ṀO2 ), thus allowing the calculation of respiratory exchange ratios (RER). Diffusion of CO2 from the aquatic phase into a gas phase, across a hollow fibre membrane, enabled aquatic ṀCO2  measurements with a high-precision infrared gas CO2 analyser. ṀO2  was measured with a PO2  optode using a stop-flow approach. Injections of known amounts of CO2 into the apparatus yielded accurate and highly reproducible measurements of CO2 content (R(2)=0.997, P<0.001). The viability of in vivo measurements was demonstrated on aquatic dragonfly nymphs (Aeshnidae; wet mass 2.17 mg-1.46 g, n=15) and the apparatus produced precise ṀCO2  (R(2)=0.967, P<0.001) and ṀO2  (R(2)=0.957, P<0.001) measurements; average RER was 0.73±0.06. The described system is scalable, offering great potential for the study of a wide range of aquatic species, including fish.

  9. Biochemical methane potential of fractions of organic matter extracted from a municipal solid waste leachate: Impact of their hydrophobic character.

    Science.gov (United States)

    Baccot, Camille; Pallier, Virginie; Feuillade-Cathalifaud, Geneviève

    2016-12-05

    Many data on anaerobic digestion (AD) and co-digestion of municipal solid waste leachate (MSWL) are already available in literature. They mainly deal with its performances to decrease the chemical oxygen demand (COD) of MSWL and no information is given on the impact of the specific characteristics of the dissolved organic matter (DOM) in leachate on these performances. DOM in leachate evolves towards more aromatic and hydrophobic compounds during landfilling with increasing specific ultra-violet absorbance index (SUVA) and hydrophobic character. However, according to the humification stages, this DOM would not present the same aptitude for AD. This research thus focused on (i) optimizing a biochemical methane potential (BMP) test applied to MSWL by using the Taguchi method and (ii) evaluating the impact of the hydrophobic character of the DOM in leachate on the BMP of MSWL to finally define the humification degree more suitable for AD. Hydrophobic-like (HPO(∗)) and transphilic-like (TPH(∗)) compounds extracted from leachate by a fractionation protocol were tested because of their high content in MSWL during acetogenesis and methanogenesis steps. After 275days of AD, the content in hydrophobic compounds and the SUVA indexes increased in the digestates. Moreover, even if the biogas and methane productions were not significantly different during the whole tests (4072±350mLgDOC(-1) and 2370±95mLgDOC(-1) respectively), the volume of biogas produced directly correlated with the TPH(∗) fraction content in the initial digestates. On the contrary, the methane percentage in biogas was anti-correlated with the hydrophilic-like compounds content. The hydrophobic-like molecules seem thus not to be directly involved in the methanogenic step, however they promote the increase of the methane percent in the biogas.

  10. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China.

    Science.gov (United States)

    Xu, Xiangru; Zhang, Wenju; Xu, Minggang; Li, Shuangyi; An, Tingting; Pei, Jiubo; Xiao, Jing; Xie, Hongtu; Wang, Jingkuan

    2016-12-01

    Long-term use of artificial fertiliser has a significant impact on soil organic carbon (SOC). We used physical-chemical fractionation methods to assess the impact of long-term (26years) fertilisation in a maize cropping system developed on Brown Earth in Northeast China. Plot treatments consisted of control (CK); nitrogen (N) fertiliser (N2); low-level organic manure combined with inorganic N and phosphorus (P) fertiliser (M1N1P1); medium-level organic manure combined with inorganic N fertiliser (M2N2); and high-level organic manure combined with inorganic N and P fertiliser (M4N2P1). Our objectives were to (1) determine the contents of and variations in the SOC fractions; (2) explore the relationship between total SOC and its fractions. In treatments involving organic manure (M1N1P1, M2N2, and M4N2P1), total SOC and physically protected microaggregate (μagg) and μagg occluded particulate organic carbon (iPOC) contents increased by 9.9-58.9%, 1.3-34.7%, 29.5-127.9% relative to control, respectively. But there no significant differences (P>0.05) were detected for the chemically, physically-chemically, and physically-biochemically protected fractions among the M1N1P1, M2N2, and M4N2P1 treatments. Regression analysis revealed that there was a linear positive correlation between SOC and the unprotected coarse particulate organic carbon (cPOC), physically protected μagg, and iPOC fractions (Pfractions responded negatively to SOC content. The highest rate of C accumulation among the SOC fractions occurred in the cPOC fraction, which accounted for as much as 32% of C accumulation as total SOC increased, suggesting that cPOC may be the most sensitive fraction to fertiliser application. We found that treatments had no effect on C levels in H-μsilt and NH-μsilt, indicating that the microaggregated silt C-fractions may have reached a steady state in terms of C saturation in the Brown Earth of Northeast China.

  11. Phosphorous fractionation in mangrove sediments of Kerala, south west coast of India: the relative importance of inorganic and organic phosphorous fractions

    Digital Repository Service at National Institute of Oceanography (India)

    Resmi, P; Manju, M.N.; Gireeshkumar, T.R.; Ratheeshkumar, C.S.; Movitha, M.; Shameem, K.; Chandramohanakumar, N.

    act as an efficient trap of organic phosphorous by acting as P sink. The dissolved inorganic phosphate displayed higher concentration in monsoon that could be correlated with higher P leaching from mangrove litter as well as terrigenous input during...

  12. Aquatic Therapy for Children

    Science.gov (United States)

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  13. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  14. Airborne measurements of the spatial distribution of aerosol chemical composition across Europe and evolution of the organic fraction

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2009-12-01

    Full Text Available The spatial distribution of aerosol chemical composition and the evolution of the Organic Aerosol (OA fraction is investigated based upon airborne measurements of aerosol chemical composition in the planetary boundary layer across Europe. Sub-micron aerosol chemical composition was measured using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. A range of sampling conditions were evaluated, including relatively clean background conditions, polluted conditions in North-Western Europe and the near-field to far-field outflow from such conditions. Ammonium nitrate and OA were found to be the dominant chemical components of the sub-micron aerosol burden, with mass fractions ranging from 20–50% each. Ammonium nitrate was found to dominate in North-Western Europe during episodes of high pollution, reflecting the enhanced NOx and ammonia sources in this region. OA was ubiquitous across Europe and concentrations generally exceeded sulphate by 50–100%. A factor analysis of the OA burden was performed in order to probe the evolution across this large range of spatial and temporal scales. Two separate Oxygenated Organic Aerosol (OOA components were identified; one representing an aged-OOA, termed Low Volatility-OOA and another representing fresher-OOA, termed Semi Volatile-OOA on the basis of their mass spectral similarity to previous studies. The factors derived from different flights were not chemically the same but rather reflect the range of OA composition sampled during a particular flight. Significant chemical processing of the OA was observed downwind of major sources in North-Western Europe, with the LV-OOA component becoming increasingly dominant as the distance from source and photochemical processing increased. The measurements suggest that the aging of OA can be viewed as a continuum, with a progression from a less oxidised, semi-volatile component to a highly oxidised, less-volatile component. Substantial amounts of

  15. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    Science.gov (United States)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the responsible for the relative enrichment of alkyl C. This study demonstrates that changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  16. Modul.LES: a multi-compartment, multi-organism aquatic life support system as experimental platform for research in ∆g

    Science.gov (United States)

    Hilbig, Reinhard; Anken, Ralf; Grimm, Dennis

    In view of space exploration and long-term satellite missions, a new generation of multi-modular, multi-organism bioregenerative life support system with different experimental units (Modul.LES) is planned, and subunits are under construction. Modul.LES will be managed via telemetry and remote control and therefore is a fully automated experimental platform for different kinds of investigations. After several forerunner projects like AquaCells (2005), C.E.B.A.S. (1998, 2003) or Aquahab (OHB-System AG the Oreochromis Mossambicus Eu-glena Gracilis Aquatic Habitat (OmegaHab) was successfully flown in 2007 in course of the FOTON-M3 Mission. It was a 3 chamber controlled life support system (CLSS), compris-ing a bioreactor with the green algae Euglena gracilis, a fish chamber with larval cichlid fish Oreochromis mossambicus and a filter chamber with biodegrading bacteria. The sensory super-vision of housekeeping management was registered and controlled by telemetry. Additionally, all scientific data and videos of the organisms aboard were stored and sequentially transmitted to relay stations. Based on the effective performance of OmegaHab, this system was chosen for a reflight on Bion-M1 in 2012. As Bion-M1 is a long term mission (appr. 4 weeks), this CLSS (OmegaHab-XP) has to be redesigned and refurbished with enhanced performance. The number of chambers has been increased from 3 to 4: an algae bioreactor, a fish tank for adult and larval fish (hatchery inserted), a nutrition chamber with higher plants and crustaceans and a filter chamber. The OmegaHab-XP is a full automated system with an extended satellite downlink for video monitoring and housekeeping data acquisition, but no uplink for remote control. OmegaHab-XP provides numerous physical and chemical parameters which will be monitored regarding the state of the biological processes and thus enables the automated con-trol aboard. Besides the two basic parameters oxygen content and temperature, products of the

  17. Mutagenicity and in vivo toxicity of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions.

    Science.gov (United States)

    Seagrave, JeanClare; McDonald, Jacob D; Gigliotti, Andrew P; Nikula, Kristen J; Seilkop, Steven K; Gurevich, Michael; Mauderly, Joe L

    2002-12-01

    Exposure to engine emissions is associated with adverse health effects. However, little is known about the relative effects of emissions produced by different operating conditions, fuels, or technologies. Rapid screening techniques are needed to compare the biological effects of emissions with different characteristics. Here, we examined a set of engine emission samples using conventional bioassays. The samples included combined particulate material and semivolatile organic compound fractions of emissions collected from normal- and high-emitter gasoline and diesel vehicles collected at 72 degrees F, and from normal-emitter groups collected at 30 degrees F. The relative potency of the samples was determined by statistical analysis of the dose-response curves. All samples induced bacterial mutagenicity, with a 10-fold range of potency among the samples. Responses to intratracheal instillation in rats indicated generally parallel rankings of the samples by multiple endpoints reflecting cytotoxic, inflammatory, and lung parenchymal changes, allowing selection of a more limited set of parameters for future studies. The parameters selected to assess oxidative stress and macrophage function yielded little useful information. Responses to instillation indicated little difference in potency per unit of combined particulate material and semivolatile organic compound mass between normal-emitter gasoline and diesel vehicles, or between emissions collected at different temperatures. However, equivalent masses of emissions from high-emitter vehicles of both types were more potent than those from normal-emitters. While preliminary in terms of assessing contributions of different emissions to health hazards, the results indicate that a subset of this panel of assays will be useful in providing rapid, cost-effective feedback on the biological impact of modified technology.

  18. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    Science.gov (United States)

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than

  19. Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin

    Science.gov (United States)

    Sullivan, Amy P.; Weber, Rodney J.

    2006-03-01

    Group separation of the aqueous extract of fine particles bearing water-soluble organic carbon (WSOC) provides unique insights into the sources of organic carbon (OC). XAD-8 resin coupled with a Total Organic Carbon analyzer allows for direct quantification. We term the fraction of WSOC not retained by a XAD-8 resin column at pH 2 as hydrophilic WSOC (WSOCxp); this includes saccharides, amines, and carbonyls and aliphatic monocarboxylic/dicarboxylic/oxocarboxylic acids with less than 4 or 5 carbons. The fraction of WSOC retained by XAD-8, termed the hydrophobic fraction (WSOCxr), include aromatic acids, phenols, organic nitrates, cyclic acids, and carbonyls and monocarboxylic/dicarboxylic acids with greater than 3 or 4 carbons. However, only aromatic compounds (or aromatic-like compounds with similar properties) can subsequently be extracted from XAD-8 with high efficiency. By coupling a Particle-into-Liquid Sampler with this technique, online measurements of WSOC, WSOCxp, and WSOCxr are possible. Urban measurements from St. Louis and Atlanta, on a carbon mass basis, show an increase in the mean WSOC fraction from winter (51%) to summer (61%), due to increases in the WSOCxp/OC from 0.25 to 0.35. During a summer Atlanta PM event, WSOC to OC was 0.75, driven largely by increases in the WSOCxp. The results are consistent with the view that in the summer, there are increased amounts of oxygenated polar compounds, possibly from secondary organic aerosol production, and that these compounds account for an even larger fraction of OC during stagnation events. A companion paper describes a method to further group speciate these XAD-8 isolated fractions.

  20. Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste.

    Science.gov (United States)

    Pretel, R; Moñino, P; Robles, A; Ruano, M V; Seco, A; Ferrer, J

    2016-09-01

    The objective of this study was to evaluate the economic and environmental sustainability of a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to €0.023 per m(3) of treated water) when treating low-sulphate influent. Life cycle analysis (LCA) results revealed that operating at high sludge retention times (70 days) and treating UWW jointly with OFMSW enhances the overall environmental performance of AnMBR technology.

  1. Performance of compostable baby used diapers in the composting process with the organic fraction of municipal solid waste.

    Science.gov (United States)

    Colón, Joan; Mestre-Montserrat, Maria; Puig-Ventosa, Ignasi; Sánchez, Antoni

    2013-05-01

    In modern societies, disposable diapers constitute a significant percentage of municipal solid wastes. They have been traditionally landfilled or incinerated as only limited recycling processes are being implemented in some parts of Europe. With the implementation of separated collection systems for the organic fraction of municipal solid wastes (OFMSWs) and the need to preserve the environment, compostable diapers have appeared in the market to avoid the main environmental impacts associated to non-biodegradable disposable diapers. In this study, a full-scale composting of door-to-door collected OFMSW with a 3% (w/w) of compostable diapers has also been carried out. Previously, lab-scale experiments confirmed that almost 50% of carbon of compostable diapers is emitted as CO2 under aerobic controlled conditions. The results obtained at full-scale demonstrate that both the composting process and the final end product (compost) are not altered by the presence of compostable diapers in crucial aspects such as pathogenic content, stability and elemental composition (including nutrients and heavy metals). The main conclusion of this study is that the collection of the OFMSW with compostable diapers can be a new way to transform this waste into high-quality compost.