WorldWideScience

Sample records for aquatic organic fractions

  1. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  3. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  4. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    Science.gov (United States)

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  5. Chapter 6: Selenium Toxicity to Aquatic Organisms

    Science.gov (United States)

    This chapter addresses the characteristics and nature of organic selenium (Se) toxicity to aquatic organisms, based on the most current state of scientific knowledge. As such, the information contained in this chapter relates to the 'toxicity assessment' phase of aquatic ecologi...

  6. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.

    Science.gov (United States)

    Katagi, Toshiyuki

    2010-01-01

    The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is

  7. Methods of dosimetry for aquatic organisms

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1979-01-01

    The importance is emphasized of accurate estimates of radiation doses or dose rates that must be made for experiments to investigate the effects of irradiation on aquatic organisms. Computational methods are described which provide the best estimate of radiation dose or dose rates received by aquatic organisms when living in contaminated water. Also, techniques appropriate to the determination of radiation doses from external sources are briefly discussed. (author)

  8. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-12-01

    The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Acute toxicity of birch tar oil on aquatic organisms

    Directory of Open Access Journals (Sweden)

    M. HAGNER

    2008-12-01

    Full Text Available Birch tar oil (BTO is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50 of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean, Lumbriculus variegatus (oligochaeta worm, Daphnia magna (crustacean, Lymnea sp. (mollusc, Lemna minor (vascular plant, Danio rerio (fish, Scenedesmus gracilis (algae, and Vibrio fischeri (bacterium were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

  10. 40 CFR 161.490 - Wildlife and aquatic organisms data requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Wildlife and aquatic organisms data... § 161.490 Wildlife and aquatic organisms data requirements. (a) Table. Sections 161.100 through 161.102 describe how to use this table to determine the wildlife and aquatic organisms data requirements and the...

  11. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  12. Semipermeable membrane devices in monitoring of organic pollutants in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Sabaliunas, D

    1999-03-01

    Semipermeable membrane devices (SPMDs) are passive samplers capable of concentrating hydrophobic chemicals from water, sediments, soil and air. They consist of layflat polymeric membrane such as polyethylene containing a thin film of synthetic lipid such as triolein. The transport of hydrophobic chemicals through the membrane into the lipid is governed by the process of passive diffusion. Therefore, SPMDs sample chemicals in a way similar to organisms. This thesis deals with the application of SPMDs in the monitoring of concentrations and effects of organic pollutants in the aquatic environment. SPMDs were exposed to various pesticides (organochlorines, synthetic pyrethroids, dinitroanilines, amides) in laboratory flow-through experiments to study the uptake kinetics of organic chemicals from water. To compare the uptake of model compounds by SPMDs and aquatic organisms, the membrane samplers were exposed to chemicals side-by-side with bivalves. Mixtures of chemicals accumulated by SPMDs and mussels were tested in standard toxicity and genotoxicity assays (Microtox, Mutatox, invertebrate toxicity tests, the Ames test, sister chromatid exchange test). These studies showed that the uptake pattern of organic compounds by SPMDs and aquatic organisms was similar, and the passive samplers accumulated levels of chemicals sufficient for standard bioassays. To further validate the method, SPMDs were deployed in a number of polluted water sources in Lithuania. Bioassay-directed fractionation and chemical analytical methods were used to identify pollutants sampled (PAHs, PCBs, organochlorines) and their effects were evaluated in bioassays. SPMDs proved to be useful tools in monitoring of organic pollutants under the field conditions. Criteria for bioassays to be integrated with the SPMD technique were defined based on the results of these studies. Some important factors in the integration of SPMDs and bioassays (toxicity of SPMD-inherent oleic and sediment

  13. Temperature influences on growth of aquatic organisms

    International Nuclear Information System (INIS)

    Coutant, C.C.; Suffern, J.S.

    1977-01-01

    Temperature profoundly affects the growth rates of aquatic organisms, and its control is essential for effective aquaculture. Characteristically, both low and high temperatures produce slow growth rates and inefficient food conversion, while intermediate temperature ranges provide rapid growth and efficient food conversion. Distinct, species-specific optimum temperatures and upper and lower temperatures of zero growth can often be defined. Thermal effects can be greatly modified by amounts and quality of food. These data not only provide the basis for criteria which maintain growth of wild organisms but also for effectively using waste heat to create optimal conditions of temperature and food ration for growing aquatic organisms commercially

  14. Effects of low-level chronic irradiation on aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Etoh, H. (National Inst. of Radiological Sciences, Chiba (Japan))

    1980-10-01

    Effects of continual irradiation for a long term on fishes and aquatic invertebrates were outlined. Effects of low-level chronic irradiation on aquatic organisms were less than acute effects induced when the same dose was irradiated once. The radiosensitivity of the genital organ to continual irradiation was high. There was a difference in radiosensitivity of the genital organ between female and male, and the degree of the difference varied according to kinds of animals. In an experiment on continual irradiation of adult killifishes, ova recovered from radiation damage, but spermatozoa did not recover. Incubation rates of eggs obtained from aquatic organisms which lived in water where radioactive sewage flowed into decreased significantly, and the frequency of reverse position of salivary gland chromosomes which were peculiar to exposed organisms increased in larvae of Chironomus tentans.

  15. Radioactive contamination of aquatic media and organisms

    International Nuclear Information System (INIS)

    Fontaine, Y.

    1960-01-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [fr

  16. Effects of naturally occurring aquatic organic fractions on 241Am uptake by Scenedesmus obliquus (Chlorophyceae) and Aeromonas hydrophila (Pseudomonadaceae)

    International Nuclear Information System (INIS)

    Giesy, J.P. Jr.; Paine, D.

    1977-01-01

    Naturally occurring organics were extracted from water collected from Skinface Pond near Aiken, S.C. Organics were separated into four nominal diameter size fractions (I, greater than 0.0183; II, 0.0183 to 0.0032; III, 0.0032 to 0.0009; IV, less than 0.0009 μm) by membrane ultrafiltration and introduced into Scenedesmus obliquus and Aeromonas hydrophila cultures to determine their effects on 241 Am availability for uptake. Effects on 241 Am uptake were determined in actively growing S. obliquus cultures after 96 h of growth and in dense cultures of nongrowing cells after 4 h. Uptake by A. hydrophila was determined after 4 and 24 h in actively growing cultures. All organic fractions stimulated S. obliquus growth, with the most pronounced effects due to larger organic fractions, whereas no apparent growth stimulation of A. hydrophila was observed for any organic fraction. For both long-term and short-term studies, cellular 241 Am concentration (picocuries/cell) increased with increasing 241 Am concentration for S. obliquus and A. hydrophila. Fraction IV increased 241 Am uptake by both S. obliquus and A. hydrophila during 4-h incubations. During 96-h incubations fraction I was flocculated and cosedimented, with S. obliquus and A. hydrophila cells causing an apparent increase in 241 Am uptake. Fractions II and III reduced apparent 241 Am uptake by S. obliquus as a result of biological dilution caused by increased algal growth due to the organics. Fraction IV caused a reduction in 241 Am uptake by S. obliquus not attributable to biological dilution. Organics increased 241 Am uptake by A. hydrophila during 4- and 24-h incubations. A. hydrophila also caused flocculation of fraction I during 96-h incubations

  17. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  18. Species and biogeochemical cycles of organic phosphorus in sediments from a river with different aquatic plants located in Huaihe River Watershed, China.

    Science.gov (United States)

    Yuan, He Zhong; Pan, Wei; Ren, Li Jun; Liu, Eeng Feng; Shen, Ji; Geng, Qi Fang; An, Shu Qing

    2015-01-01

    The results of phosphorus fractionation in the sediments from a contaminated river containing different aquatic plants, analyzed by solution 31P-NMR for Organic Phosphorus, showed that the concentration of Inorganic Phosphorus dominated in all species and Organic Phosphorus accounted for over 20% of Total Phosphorus. In general, orthophosphate was dominant in all the sampling sites. The proportion of Organic Phosphorus accounting for the Total Phosphorus in the sediments with different plant decreased in the following order: Paspalum distichum>Typha orientalis>Hydrilla verticillata. Phosphorus-accumulation ability of Paspalum distichum was obviously stronger than Typha orientalis and Hydrilla verticillata. The Organic Phosphorus was in aquatic plants dominated by humic-associated P (Hu-P), which converted to Inorganic Ohosphorus more significantly in submerged plants than in emerged plants. The sediment dominated by Paspalum distichum abundantly accumulated Organic Phosphorus in the orthophosphate monoester fraction. The degradation and mineralization of orthophosphate monoester was the important source of high Inorganic Phosphorus concentration and net primary productivity in Suoxu River. The Organic Phosphorus derived from Typha orientalis and Hydrilla verticillata was dramatically converted to Inorganic Phosphorus when the environmental factors varied.

  19. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    Science.gov (United States)

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  20. Bioaccumulation and trophic transfer of engineered nanoparticles in aquatic organisms

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael

    chemicals. However, with fundamentally different chemical and physical properties of ENPs compared to soluble chemicals current TGs could be inadequate and possibly lead to wrong interpretation of results obtained. One of the key issues is the dual action of ENPs consisting both of a chemical identity...... and functionalizations with different aquatic organisms were investigated. Furthermore, multiple microscopy methods were used to assess internationalization in the aquatic organisms. Finally, different exposure routes were used to determine if it could affect localization in the aquatic organisms. The influence......O ENPs (-OH and -Octyl functionalization) it was found that large micron sized aggregates was also available for uptake in D. magna showing high uptake, possibly also associated with the carapace of the test organism. Functionalization with -Octyl increased the uptake compared to pristine ZnO ENPs while...

  1. Patterns of transuranic uptake by aquatic organisms: consequences and implications

    International Nuclear Information System (INIS)

    Eyman, L.D.; Trabalka, J.R.

    1980-01-01

    Literature on the behavior of plutonium and transuranic elements in aquatic organisms is reviewed. The commonality of observed distribution coefficients over a wide array of aquatic environments (both freshwater and marine) and the lack of biomagnification in aquatic food chains from these environments are demonstrated. These findings lead to the conclusion that physical processes dominate in the transfer of transuranic elements from aquatic environments to man. The question of the nature of the association of plutonium with aquatic biota (surface sorption vs biological incorporation) is discussed as well as the importance of short food chains in the transfer of plutonium to man

  2. Effects of ionizing radiation on aquatic organisms and ecosystems

    International Nuclear Information System (INIS)

    1976-01-01

    A panel of experts in November 1971 specifically considered the effects of ionizing radiation on aquatic organisms and ecosystems and formulated detailed suggestions for research in the area. A further panel meeting took place in April 1974. The results of the work are presented in this report which is divided into 3 chapters in the first chapter the concentrations of natural and artificial radionuclides in aquatic environments and the radiation dose rates received by aquatic organisms are discussed. In particular, simple dosimetry models for phytoplankton, zooplankton, mollusca, crustacea and fish are presented which permit the estimation of the dose rates from incorporated radionuclides and from radionuclides in the external environment. In the second chapter the somatic and genetic effects of ionizing radiation on aquatic organisms are reviewed. Somatic effects are discussed separately as effects due to short-term (acute) exposure to near-lethal doses of radiation. Great attention is paid to the effects due to long-term (chronic) exposure at lower doses rates. Consideration is given to behaviour, repair mechanisms and metabolic stimulation after exposure, and also the influence of environmental factors on radiation effects. In the third chapter the potential effects of low-level irradiation on aquatic populations are considered. First, the possible consequences of somatic effects on egg and larval mortality, stock-recruitment, fecundity and ecosystem stability are discussed. Subsequently, the assessment of genetic effects as they relate to population genetics and increased mutation rates are considered

  3. Characterization of plant-derived carbon and phosphorus in lakes by sequential fractionation and NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shasha [College of Water Sciences, Beijing Normal University, Beijing 100875 (China); State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Zhu, Yuanrong, E-mail: zhuyuanrong07@mails.ucas.ac.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wu, Fengchang, E-mail: wufengchang@vip.skleg.cn [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Meng, Wei [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); He, Zhongqi [USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124 (United States); Giesy, John P. [State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2016-10-01

    Although debris from aquatic macrophytes is one of the most important endogenous sources of organic matter (OM) and nutrients in lakes, its biogeochemical cycling and contribution to internal load of nutrients in eutrophic lakes are still poorly understood. In this study, sequential fractionation by H{sub 2}O, 0.1 M NaOH and 1.0 M HCl, combined with {sup 13}C and {sup 31}P NMR spectroscopy, was developed and used to characterize organic carbon (C) and phosphorus (P) in six aquatic plants collected from Tai Lake (Ch: Taihu), China. Organic matter, determined by total organic carbon (TOC), was unequally distributed in H{sub 2}O (21.2%), NaOH (29.9%), HCl (3.5%) and residual (45.3%) fractions. For P in debris of aquatic plants, 53.3% was extracted by H{sub 2}O, 31.9% by NaOH, and 11% by HCl, with 3.8% in residual fractions. Predominant OM components extracted by H{sub 2}O and NaOH were carbohydrates, proteins and aliphatic acids. Inorganic P (P{sub i}) was the primary form of P in H{sub 2}O fractions, whereas organic P (P{sub o}) was the primary form of P in NaOH fractions. The subsequent HCl fractions extracted fewer species of C and P. Some non-extractable carbohydrates, aromatics and metal phytate compounds remained in residual fractions. Based on sequential extraction and NMR analysis, it was proposed that those forms of C (54.7% of TOC) and P (96.2% of TP) in H{sub 2}O, NaOH and HCl fractions are potentially released to overlying water as labile components, while those in residues are stable and likely preserved in sediments of lakes. These results will be helpful in understanding internal loading of nutrients from debris of aquatic macrophytes and their recycling in lakes. - Highlights: • Sequential fractionation combined with NMR analysis was applied on aquatic plants. • Labile and stable C and P forms in aquatic plants were characterized. • 54.7% of OM and 96.2% of P in aquatic plants are potentially available. • 45.3% of OM and 3.8% of P in aquatic

  4. Providing Aquatic Organism Passage in Vertically Unstable Streams

    Directory of Open Access Journals (Sweden)

    JanineM Castro

    2016-04-01

    Full Text Available Aquatic organism passage barriers have been identified as one of the key impediments to recovery of salmonids and other migratory aquatic organisms in the Pacific Northwest of the United States. As such, state and federal agencies invest millions of dollars annually to address passage barriers. Because many barriers function as ad hoc grade control structures, their removal and/or replacement can unwittingly set off a cascade of effects that can negatively impact the very habitat and passage that project proponents seek to improve. The resultant vertical instability can result in a suite of effects that range from floodplain disconnection and loss of backwater and side channel habitat, to increased levels of turbidity. Risk assessment, including an evaluation of both the stage of stream evolution and a longitudinal profile analysis, provides a framework for determining if grade control is warranted, and if so, what type of structure is most geomorphically appropriate. Potential structures include placement of large wood and roughness elements, and constructed riffles, step-pools, and cascades. The use of structure types that mimic natural reach scale geomorphic analogues should result in improved aquatic organism passage, increased structural resilience, and reduced maintenance.

  5. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  6. Radiation doses to aquatic organisms from natural radionuclides

    International Nuclear Information System (INIS)

    Brown, J E; Jones, S R; Saxen, R; Thoerring, H; Batlle, J Vives i

    2004-01-01

    A framework for protection of the environment is likely to require a methodology for assessing dose rates arising from naturally occurring radionuclides. This paper addresses this issue for European aquatic environments through a process of (a) data collation, mainly with respect to levels of radioactivity in water sediments and aquatic flora and fauna, (b) the use of suitable distribution coefficients, concentration factors and global data where data gaps are present and (c) the utilisation of a reference organism approach whereby a finite number of suitable geometries are selected to allow dose per unit concentration factors to be derived and subsequent absorbed dose calculations (weighted or unweighted) to be made. The majority of the calculated absorbed dose, for both marine and freshwater organisms, arises from internally incorporated alpha emitters, with 210 Po and 226 Ra being the major contributors. Calculated doses are somewhat higher for freshwater compared to marine organisms, and the range of doses is also much greater. This reflects both the much greater variability of radionuclide concentrations in freshwater as compared to seawater, and also variability or uncertainty in concentration factor values. This work has revealed a number of substantial gaps in published empirical data especially for European aquatic environments

  7. Cytogenetic methods for the detection of radiation-induced chromosome damage in aquatic organisms

    International Nuclear Information System (INIS)

    Kligerman, A.D.

    1979-01-01

    One means of evaluating the genetic effects of radiation on the genomes of aquatic organisms is to screen radiation-exposed cells for chromosome aberrations. A brief literature review of studies dealing with radiation-induced chromosome damage in aquatic organisms is presented, and reasons are given detailing why most previous studies are of little quantitative value. Suggestions are made for obtaining adequate qualitative and quantitative data through the use of modern cytogenetic methods and a model systems approach to the study of cytogenetic radiation damage in aquatic organisms. Detailed procedures for both in vivo and in vitro cytogenetic methods are described, and experimental considerations are discussed. Finally, suggestions for studies that could be of value in establishing protective guidelines for aquatic ecosystems are presented. (author)

  8. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    International Nuclear Information System (INIS)

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  9. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  10. Fuzzy model for risk assessment of persistent organic pollutants in aquatic ecosystems

    International Nuclear Information System (INIS)

    Seguí, X.; Pujolasus, E.; Betrò, S.; Àgueda, A.; Casal, J.; Ocampo-Duque, W.; Rudolph, I.; Barra, R.; Páez, M.; Barón, E.; Eljarrat, E.; Barceló, D.; Darbra, R.M.

    2013-01-01

    We developed a model for evaluating the environmental risk of persistent organic pollutants (POPs) to aquatic organisms. The model is based on fuzzy theory and uses information provided by international experts through a questionnaire. It has been tested in two case studies for a particular type of POPs: brominated flame retardants (BFRs). The first case study is related to the EU-funded AQUATERRA project, with sampling campaigns carried out in two Ebro tributaries in Spain (the Cinca and Vero Rivers). The second one, named the BROMACUA project, assessed different aquatic ecosystems in Chile (San Vicente Bay) and Colombia (Santa Marta Marsh). In both projects, the BFRs under study were polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). However, the model can be extrapolated to other POPs and to different aquatic ecosystems to provide useful results for decision-makers. -- The risk of POPs for aquatic organisms was assessed at several sites around the world, using a fuzzy-based model to provide useful results for decision-makers

  11. Research of aquatic organism addition influence on the reproduction of yeast cells in the dough

    Directory of Open Access Journals (Sweden)

    Дмитро Павлович Крамаренко

    2016-12-01

    Full Text Available The analysis of the research results of influence of various amounts of aquatic organism additions on the reproduction of yeast cells is given. A positive impact of aquatic organism addition of animal and plant origin in investigated quantities on the reproduction of yeast cells is revealed. The influence of the chemical composition of the aquatic organism additives on the reproduction of yeast cells is proved

  12. Influence of Organic Manure on Organic Phosphorus Fraction in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGYONG-SONG; NIWU-ZHONG; 等

    1993-01-01

    The transformation of organic P(Po) from organic manures in two types of soils (ultisol and entisol) and the influences of external addition of organic substance or inorganic P(Pi) on Po under the condition of the 60% maximum water capacity were investigated.The results obtained from Po fractionation experiments indicated that all the Po fractions except for the highly resistant Po fraction decreased during incubation.Application of pig feces and cow feces could largely increase each fraction of Po in the soils.Immediately after application of organic manure into the soils a large part of labile and moderately labile Po from organic manure was transferred into moderately resistant Po,which might be due to the fact that Ca-or Mg-inositol P was precipitated into Fe-inositol P.However,the availability of Po from organic manure in the soils would increase again after incubation because of the transformation of moderately labile and resistant Po fractions into labile Po fractions.Addition of cellulose or Pi into the soils showed a good effect on increasing all the Po fractions except for the highly resistant Po,and this effect was much more pronounced when cellulose was applied in combination with Pi.Therefore,in view of the effect of organic manure on improving P nutrition to plant,attention should be paid to both the Po and the organic substances from organic manure,It is suggested that application of Pi fertilizer combined with organic manure may be referred to as an effective means of protecting Pi from chemical fixation in soil.

  13. Potential applications of SIMS technique for environmental monitoring based on exposure of aquatic organisms

    International Nuclear Information System (INIS)

    Noller, B.N.

    2000-01-01

    Full text: The kinds of environmental monitoring applications for which SIMS may be applicable, particularly with aquatic organisms, fall into 2 main categories: a) Undertaking controlled dose experiments with aquatic organisms where the nature of exposure is known together with water concentration, soft tissue and shell concentrations; and b) Using aquatic organisms from historically or currently impacted sites where other data or information may or may not be available to give some insight into the exposure pattern, generally from existing water monitoring data, sediment concentrations and other data such as water release or flow data. The advantage of experiments undertaken under controlled conditions is that they enable modelling to be developed and be applied. Usually the controlled studies with aquatic organisms are undertaken following cases of historical exposure. The usefulness of historical studies is therefore questionable unless a clear link with the organism exposure can be established. Some examples will be given to show how historical data could be used to bridge the information gap

  14. Thermal effects on aquatic organisms: annotated bibliography of the 1974 literature

    International Nuclear Information System (INIS)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.

    1975-06-01

    The annotated bibliography covers the 1974 literature concerning thermal effects on aquatic organisms. Emphasis is placed on the effects of the release of thermal effluents on aquatic ecosystems. Indexes are provided for: author, keywords, subject category, geographic location, taxon, and title (alphabetical listing of keyword-in-context of the nontrivial words in the title). (CH)

  15. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    Science.gov (United States)

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Removal of terrestrial DOC in aquatic ecosystems of a temperate river network

    Science.gov (United States)

    Wollheim, W.M.; Stewart, R. J.; Aiken, George R.; Butler, Kenna D.; Morse, Nathaniel B.; Salisbury, J.

    2015-01-01

    Surface waters play a potentially important role in the global carbon balance. Dissolved organic carbon (DOC) fluxes are a major transfer of terrestrial carbon to river systems, and the fate of DOC in aquatic systems is poorly constrained. We used a unique combination of spatially distributed sampling of three DOC fractions throughout a river network and modeling to quantify the net removal of terrestrial DOC during a summer base flow period. We found that aquatic reactivity of terrestrial DOC leading to net loss is low, closer to conservative chloride than to reactive nitrogen. Net removal occurred mainly from the hydrophobic organic acid fraction, while hydrophilic and transphilic acids showed no net change, indicating that partitioning of bulk DOC into different fractions is critical for understanding terrestrial DOC removal. These findings suggest that river systems may have only a modest ability to alter the amounts of terrestrial DOC delivered to coastal zones.

  17. Modeling the role of microplastics in Bioaccumulation of organic chemicals to marine aquatic organisms. Critical Review

    NARCIS (Netherlands)

    Koelmans, A.A.

    2015-01-01

    It has been shown that ingestion of microplastics may increase bioaccumulation of organic chemicals by aquatic organisms. This paper critically reviews the literature on the effects of plastic ingestion on the bioaccumulation of organic chemicals, emphasizing quantitative approaches and mechanistic

  18. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. © 2015 SETAC.

  19. Aquatic indicator organisms as a tool to monitor discharges from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Outola, Iisa; Vartti, Vesa-Pekka; Klemola, Seppo [STUK - Radiation and Nuclear Safety Authority, P.O. Box 14, 00881 Helsinki (Finland)

    2014-07-01

    There are four operating nuclear power plant units in Finland at two separate locations. The units started operation during 1977-1980. The surveillance of radioactive substances in the vicinities of the nuclear power plant is carried out under the permanent monitoring programs. Some 1000 samples are taken annually from the surroundings of the power plants to confirm that the discharges from the power plants are within permissible release limits and to monitor the dispersion of discharges in the environment. Aquatic indicator organisms (macro-algae, periphyton, mussels, crustacean, submerged aquatic plants) are included in the monitoring program. The indicator organisms are valuable monitoring objects both in normal and emergency situations because they accumulate effectively and often very rapidly radioactive substances from the medium. Six different species (Periphyton, Fucus vesiculosus, Myriophyllum spicatum, Potamogeton pectinatus, Saduria entomon, Macoma Baltica/Mytilus edulis) are collected regularly. Number of sampling location for each species varies from 1 to 7. Some species are collected continuously, some 1-2 times in a year. In this study we have evaluated the monitoring results for the aquatic indicator organisms for the period of 2005-2010 concerning concentration of discharge nuclides. Our aim was to answer the following questions using the monitoring data from aquatic organisms: 1) Which radionuclides are released to the marine environment and how often do we detect them? 2) How far from the nuclear power plants discharge radionuclides are detected? 3) How concentration of discharge radionuclides has changed with time in aquatic organisms? The number of discharge nuclides detected in the aquatic indicator samples was 11. Most of them were only detected in few samples, but {sup 58}Co, {sup 60}Co, {sup 54}Mn and {sup 110m}Ag were detected more frequently. Most of the observations above detection limits were made within the 5 km distance from the

  20. Iodine-129 in aquatic organisms near nuclear fuels processing plants

    International Nuclear Information System (INIS)

    Watson, D.G.

    1975-04-01

    Concentrations of 129 I in two aquatic habitats near nuclear fuel processing plants were highest in algae and crustaceans. These two forms may be useful in future monitoring of 129 I. There is some indication of an increase in atom ratios and specific activity in aquatic organisms over that in water and sediments. Additional measurements should be made to verify this conclusion. Efforts should continue to measure the possible long term build-up of 129 I in aquatic environments receiving effluents from fuels reprocessing plants. Even at very low rates of release to the environment, the long physical half-life of 129 I creates the potential for build-up of this nuclide to significant levels. (U.S.)

  1. Mass-Dependent and -Independent Fractionation of Mercury Isotopes in Aquatic Systems

    Science.gov (United States)

    Bergquist, B. A.; Joel, B. D.; Jude, D. J.

    2008-12-01

    Mercury is a globally distributed and highly toxic pollutant. Although Hg is a proven health risk, much of the natural cycle of Hg is not well understood and new approaches are needed to track Hg and the chemical transformations it undergoes in the environment. Recently, we demonstrated that Hg isotopes exhibit two types of isotope fractionation: (1) mass dependent fractionation (MDF) and (2) mass independent fractionation (MIF) of only the odd isotopes (Bergquist and Blum, 2007). The observation of large MIF of Hg isotopes (up to 5 permil) is exciting because only a few other isotopic systems have been documented to display large MIF, the most notable of which are oxygen and sulfur. In both cases, the application of MIF has proven very useful in a variety of fields including cosmochemistry, paleoclimatology, physical chemistry, atmospheric chemistry, and biogeochemistry. Both MDF and MIF isotopic signatures are observed in natural samples, and together they open the door to a new method for tracing Hg pollution and for investigating Hg behavior in the environment. For example, fish record MDF that appears to be related to size and age. Additionally, fish display MIF signatures that are consistent with the photo-reduction of methylmercury (Bergquist and Blum, 2007). If the MDF and MIF in ecosystems can be understood, the signatures in fish could inform us about the sources and processes transforming Hg and why there are differences in the bioaccumulation of Hg in differing ecosystems and populations of fish. This requires sampling of a variety of ecosystems, the sampling of many components of the ecosystems, and the use of other tracers such as carbon and nitrogen isotopes. We have expanded our studies of aquatic ecosystems to include several lakes in North America. Similar to other isotopic systems used to study food web dynamics and structure (i.e., C and N), the MDF of Hg in fish appears to be related to size and age. The MDF recorded in fish likely reflects

  2. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment

    International Nuclear Information System (INIS)

    Stuer-Lauridsen, Frank

    2005-01-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds. - Major developments in the passive sampling of organic contaminants in aquatic environments will support future monitoring, compliance and research

  3. Assessment of the unidentified organic matter fraction in fogwater using fluorescence spectroscopy

    Science.gov (United States)

    Valsaraj, K.; Birdwell, J.

    2010-07-01

    Dissolved organic matter (DOM) in fogwaters from southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix (EEM) fluorescence spectroscopy. The results demonstrate that fluorescence spectroscopy can be used to obtain a qualitative assessment of the large fraction of fogwater organic carbon (~40 - 80% by weight) that cannot be identified in terms of specific chemical compounds. The method has the principle advantage that it can be applied at natural abundance concentrations, thus eliminating the need for large sample volumes required to isolate DOM for characterization by other spectroscopic (NMR, FTIR) and chemical (elemental) analyses. It was anticipated that the fogwater organic matter fluorescence spectra would resemble those of surface and rain waters, containing peaks indicative of both humic substances and fluorescent amino acids. Humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices had values comparable to other natural waters. Biological character (intensity of tyrosine and tryptophan peaks) was found to increase with organic carbon concentration. Fogwater organic matter appears to contain a mixture of terrestrially- and microbially-derived material. The fluorescence results show that most of the unidentified fogwater organic carbon can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems.

  4. Thermal effects on aquatic organisms. Annotated bibliography of the 1975 literature

    International Nuclear Information System (INIS)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.; Dailey, N.S.

    1976-10-01

    Abstracts are presented of 716 papers published during 1975 concerning thermal effects on aquatic organisms. Indexes are included for author, subject category, geographic location, toxon, title, and keywords

  5. Thermal effects on aquatic organisms. Annotated bibliography of the 1975 literature

    Energy Technology Data Exchange (ETDEWEB)

    Coutant, C.C.; Talmage, S.S.; Carrier, R.F.; Collier, B.N.; Dailey, N.S. (comps.)

    1976-10-01

    Abstracts are presented of 716 papers published during 1975 concerning thermal effects on aquatic organisms. Indexes are included for author, subject category, geographic location, toxon, title, and keywords. (CH)

  6. Tracking transformation processes of organic micropollutants in aquatic environments using multi-element isotope fractionation analysis

    International Nuclear Information System (INIS)

    Hofstetter, Thomas B.; Bolotin, Jakov; Skarpeli-Liati, Marita; Wijker, Reto; Kurt, Zohre; Nishino, Shirley F.; Spain, Jim C.

    2011-01-01

    The quantitative description of enzymatic or abiotic transformations of man-made organic micropollutants in rivers, lakes, and groundwaters is one of the major challenges associated with the risk assessment of water resource contamination. Compound-specific isotope analysis enables one to identify (bio)degradation pathways based on changes in the contaminants' stable isotope ratios even if multiple reactive and non-reactive processes cause concentrations to decrease. Here, we investigated how the magnitude and variability of isotope fractionation in some priority pollutants is determined by the kinetics and mechanisms of important enzymatic and abiotic redox reactions. For nitroaromatic compounds and substituted anilines, we illustrate that competing transformation pathways can be assessed via trends of N and C isotope signatures.

  7. Temperature influence on chemical toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Cairns, J. Jr.; Heath, A.G.; Parker, B.C.

    1975-01-01

    The literature on the effects of temperature on chemical toxicity to aquatic animals and microorganisms is reviewed. Microbial photosynthesis and respiration is briefly discussed. It is concluded that there is a paucity of information on the inter-relations of temperature and toxicants to algae, bacteria, and protozoa and that standards based on the in situ response of indigenous organisms to specific discharge areas should be developed

  8. Fractionation and characterization of soil organic carbon during transition to organic farming

    Science.gov (United States)

    Abdelrahman, H.; Olk, D.; Cocozza, C.; Miano, T.

    2012-04-01

    The transition from conventional to organic farming is the most difficult period faced by organic growers as it could be characterized by unstable conditions, such as nutrient availability, production reductions, mineralization extents. As soil organic matter (SOM), specifically soil organic carbon (SOC), is known to play important roles in maintenance and improvement of many soil properties, it is important to define its changes during the transition period. Total SOC might not be the suitable tool to track the changes in organically based soil fertility within a 3- to 5-yr transition period. Labile fractions that are important for nutrient cycling and supply are likely to be controlled by management to a much greater extent than is total SOM. Two field experiments, in south of Italy, were established in 2009 to study the changes in SOC during transition to organic farming. Experiments included a cereal/leguminous rotation with triplicates treatments of permitted amendments (compost and fertilizers). Soils were sampled at the beginning of the project, and after each crop harvest in 2010 and 2011. A sequential fractionation procedure was used to separate different SOC-fractions: light fraction (LF), two size classes of particulate organic matter (POM), mobile humic acid (MHA) and Ca++ bound humic acid (CaHA). Isolated fractions were quantified and analyzed for their content of C, N, carbohydrates and amino compounds fingerprints. The obtained results showed that compost application contributed to significantly higher quantities of LF, POM and MHA than did fertilizers application. Carbohydrates content decreased in LF while increased noticeably in POM and slightly in MHA fractions, which indicates that decomposing materials are converted, within the time span of humification, from young fractions into more mature fractions. Amino compounds were found to provide up to 40% of total soil N with a major contribution of the humified fractions, MHA and CaHA. The utilized

  9. Screening of perfluorinated chemicals (PFCs) in various aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Sanjuan, Maria; Meyer, Johan; Damasio, Joana; Faria, Melissa; Barata, Carlos; Lacorte, Silvia [IDAEA-CSIC, Department of Environmental Chemistry, Barcelona (Spain)

    2010-10-15

    The aim of this study was to evaluate the occurrence of five perfluorinated chemicals (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorobutane sulfonic acid) in aquatic organisms dwelling in either freshwater or marine ecosystems. Organisms selected were insect larvae, oysters, zebra mussels, sardines, and crabs, which are widespread in the environment and may represent potential bioindicators of exposure to PFCs. The study comprises the optimization of a solid-liquid extraction method and determination by high-performance liquid chromatography coupled to tandem mass spectrometry. Using spiked zebra mussels at 10 and 100 ng/g level, the method developed provided recoveries of 96% and 122%, and 82% to 116%, respectively, and a limit of detection between 0.07 and 0.22 ng/g ww. The method was highly sensitivity and robust to determine PFC compounds in a wide array of biological matrices, and no matrix interferents nor blank contamination was observed. Among organisms studied, none of the bivalves accumulated PFCs, and contrarily, insect larvae, followed by fish and crabs contained levels ranging from 0.23 to 144 ng/g ww of PFOS, from 0.14 to 4.3 ng/g ww of PFOA, and traces of PFNA and PFHxS. Assessment of the potential use of aquatic organisms for biomonitoring studies is further discussed. (orig.)

  10. Molybdenum isotope fractionation during adsorption to organic matter

    Science.gov (United States)

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  11. Fluid Mechanics of Aquatic Locomotion at Large Reynolds Numbers

    OpenAIRE

    Govardhan, RN; Arakeri, JH

    2011-01-01

    Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body...

  12. Risk assessment of lambda-cyhalothrin on aquatic organisms in paddy field in China.

    Science.gov (United States)

    Gu, Bao G; Wang, Hui M; Chen, William L; Cai, Dao J; Shan, Zheng J

    2007-06-01

    This study was carried out to assess the risk of lambda-cyhalothrin to aquatic organisms used in paddy field, and to provide assistance in the ecological risk management of lambda-cyhalothrin. The acute toxicities of five individual formulations of lambda-cyhalothrin to four aquatic species were investigated in the laboratory, as well as in a simulated paddy field-pond ecosystem, and the results implicated that lambda-cyhalothrin is highly toxic to fish, and to a greater extent to shrimp. There were differences in the toxicities to each aquatic organisms among different formulations. lambda-Cyhalothrin degraded rapidly in the environment, with half-lives of different formulations in paddy field water (0.23-0.53 days), pond water (0.38-0.63 days), and paddy field soil (0.96-7.35 days), respectively. The water overflow from the paddy field following a simulated rainstorm 12h after application of lambda-cyhalothrin did not cause injury to fish, clam or crab, but was severely hazardous to shrimp. Additionally, no injury to shrimp was found when simulated overflow occurred 4 days after application. These results suggest that the environmental risk of lambda-cyhalothrin to aquatic organisms can be reduced by (1) developing a relatively safe formulation such as a suspension concentrate, and/or (2) controlling the drainage time of the paddy field.

  13. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  14. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review.

    Science.gov (United States)

    Ribeiro, Cláudia; Ribeiro, Ana Rita; Tiritan, Maria Elizabeth

    Aquatic environments are among the most noteworthy ecosystems regarding chemical pollution due to the anthropogenic pressure. In 2000, the European Commission implemented the Water Framework Directive, with the aim of progressively reducing aquatic chemical pollution of the European Union countries. Therefore, the knowledge about the chemical and ecological status is imperative to determine the overall quality of water bodies. Concerning Portugal, some studies have demonstrated the presence of pollutants in the aquatic environment but an overall report is not available yet. The aim of this paper is to provide a comprehensive review about the occurrence of priority substances included in the Water Framework Directive and some classes of emerging organic pollutants that have been found in Portuguese aquatic environment. The most frequently studied compounds comprise industrial compounds, natural and synthetic estrogens, phytoestrogens, phytosterols, pesticides, pharmaceuticals and personal care products. Concentration of these pollutants ranged from few ng L(-1) to higher values such as 30 μg L(-1) for industrial compounds in surface waters and up to 106 μg L(-1) for the pharmaceutical ibuprofen in wastewaters. Compounds already banned in Europe such as atrazine, alkylphenols and alkylphenol polyethoxylates are still found in surface waters, nevertheless their origin is still poorly understood. Beyond the contamination of the Portuguese aquatic environment by priority substances and emerging organic pollutants, this review also highlights the need of more research on other classes of pollutants and emphasizes the importance of extending this research to other locations in Portugal, which have not been investigated yet.

  15. Size fractionation and characterization of natural aquatic colloids and nanoparticles

    International Nuclear Information System (INIS)

    Baalousha, M.; Lead, J.R.

    2007-01-01

    Atomic force microscopy (AFM) was used to image and quantify natural nanoparticles (prefiltered < 25 nm) from three different freshwater sites (Vale Lake, Bailey Brook and Tern Rivers). Four fractions were analysed by AFM; the prefiltered fraction (< 25 nm) and three fractions collected after separation of this prefiltered sample by flow field-flow fractionation (FlFFF) which corresponds to material which has size ranges of < 4.2 nm, 4.2-15.8 nm and 15.8-32.4 nm, as determined by FlFFF theory. The large majority of materials in all samples appeared as < 3 nm nanoparticles, nearly spherical and rich in chromophores active at 254 nm UV, which thus correspond to natural organic matter. However, nanoparticles were also imaged up to slightly more than 25 nm in size, indicating a slight disagreement in sizing between filtration and FlFFF. In addition, some particles in certain fractions were found to be covered with a thin film of less than 0.5-1.0 nm. Substantial differences between sites were observed

  16. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review

    CSIR Research Space (South Africa)

    Mahaye, Ntombikayise

    2017-07-01

    Full Text Available Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key...

  18. Effects of Outreach on the Prevention of Aquatic Invasive Species Spread among Organism-in-Trade Hobbyists.

    Science.gov (United States)

    Seekamp, Erin; Mayer, Jessica E; Charlebois, Patrice; Hitzroth, Greg

    2016-11-01

    Releases of aquatic organisms-in-trade by aquarists, water gardeners, and outdoor pond owners have been identified as aquatic invasive species vectors within the Laurentian Great Lakes region. The trademarked U.S. Fish and Wildlife Service Habitattitude campaign was developed in 2004 to encourage self-regulation by these groups, but little is known about its effects. We surveyed organisms-in-trade hobbyists in the eight Great Lakes states (Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania, and Wisconsin, USA) to assess their recognition of the Habitattitude campaign and their compliance with the campaign's recommended behaviors for organism purchase and disposal. Awareness of the Habitattitude campaign was low, but hobbyists that identified as both water gardeners and aquarium hobbyists were more aware of the campaign than individuals who participated in one of those hobbies. Engaged hobbyists (high aquatic invasive species awareness, concern, and knowledge) were significantly more likely than passive hobbyists (low aquatic invasive species awareness, concern, and knowledge) to make decisions about disposal of live organisms with the intention of preventing aquatic invasive species spread, were more likely to contact other hobbyists for disposal and handling advice, and were less likely to contact professionals, such as retailers. On the basis of our results, we suggest that compliance with recommended behaviors may be increased by fostering hobbyist networks; creating materials that both explain tangible, negative environmental impacts and list specific prevention behaviors; and disseminating these materials through trusted information sources and venues.

  19. Tracking ultrasonically structural changes of natural aquatic organic carbon: Chemical fractionation and spectroscopic approaches.

    Science.gov (United States)

    Al-Juboori, Raed A; Yusaf, Talal; Aravinthan, Vasantha; Bowtell, Leslie

    2016-02-01

    In this study, the structural alteration to DOC for a range of ultrasound treatments was investigated with chemical fractionation and UV-vis spectroscopic measurement. Ultrasound treatments were applied in continuous and pulsed modes at power levels of 48 and 84 W for effective treatment times of 5 and 15 min. Overall results show that the ultrasound treatments tended to degrade the hydrophobic aromatic fraction, while increasing the hydrophilic fraction to a lesser extent. The highest recorded reduction of hydrophobic DOC (17.8%) was achieved with pulse treatment of 84 W for15 min, while the highest increase in the hydrophilic DOC (10.5%) was obtained with continuous treatment at 84 W and 5 min. The optimal ultrasound treatment conditions were found to be pulse mode at high power and short treatment time, causing a minimal increase in the hydrophilic fraction of 1.3% with moderate removal of the hydrophobic fraction of 15.52%. The same treatment conditions, with longer treatment time, resulted in the highest removal of SUVA254 and SUVA280 of 17.09% and 16.93, respectively. These results indicate the potential for ultrasound treatments in DOC structural alteration. The hydrophobic fraction showed strong and significant correlations with UV absorbance at 254 and 280 nm. A254/A204 also exhibited strong and significant correlations with the hydrophobic/hydrophilic ratio. The other UV ratios (A250/A365 (E2/E3) and A254/A436) had weak and insignificant correlations with the hydrophobic/hydrophilic ratio. This confirms the applicability of UV indices as a suitable surrogate method for estimating the hydrophobic/hydrophilic structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of genetically modified organisms on aquatic environments: Review of available data for the risk assessment.

    Science.gov (United States)

    Pott, Antonia; Otto, Mathias; Schulz, Ralf

    2018-09-01

    The aquatic environment is strongly connected to the surrounding agricultural landscapes, which regularly serve as sources of stressors such as agrochemicals. Genetically modified crops, which are cultivated on a large scale in many countries, may also act as stressors. Despite the commercial use of genetically modified organisms (GMOs) for over 20years, their impact on the aquatic environment came into focus only 10years ago. We present the status quo of the available scientific data in order to provide an input for informed aquatic risk assessment of GMOs. We could identify only 39 publications, including 84 studies, dealing with GMOs in the aquatic environment, and our analysis shows substantial knowledge gaps. The available information is restricted to a small number of crop plants, traits, events, and test organisms. The analysis of effect studies reveals that only a narrow range of organisms has been tested and that studies on combinatorial actions of stressors are virtually absent. The analysis of fate studies shows that many aspects, such as the fate of leached toxins, degradation of plant material, and distribution of crop residues in the aquatic habitat, are insufficiently investigated. Together with these research needs, we identify standardization of test methods as an issue of high priority, both for research and risk assessment needed for GMO regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    International Nuclear Information System (INIS)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R.

    2015-01-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L -1 and for LEO was 3.1 ± 1.4 mg L -1 . In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L -1 and 2.4 ± 0.3 mg L -1 respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  2. Ecotoxicological assays of Diethyltoluamide and Lemongrass Essencial Oil in irradiated and non-irradiated aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Gimiliani, Giovana T.; Rogero, Sizue O.; Martini, Gisela A.; Rogero, Jose R., E-mail: sorogero@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Aquatic invertebrates can be potentially exposed to nonradioactive contaminants in conjunction with ionizing radiation, especially in highly industrialized areas surrounding nuclear facilities, where radionuclides can accidentally be discharged in the aquatic environment containing stable chemicals. The aquatic organisms have continually been exposed to chemical contaminants like personal care products (PCPs) which have been found in various environmental matrices and may cause adverse effects to aquatic life and human health as radioactive products. In this study was used C. silvestrii as bioindicator organism in chronic ecotoxicity assays with lemongrass essencial oil (LEO) and Diethyltoluamide (DEET), both are insect repellent. In addition to exposition of the compounds, the organisms were irradiated with gamma rays from Co-60 source. Thus, the aim of this study was to evaluate the possible synergistic effect of gamma radiation and mosquito repellent products in the reproduction of Ceriodaphnia silvestrii utilizing standardized ecotoxicological tests. The C. silvestrii inhibition concentration (IC25; 7 days) result after DEET exposition was 16.4 ± 1.4 mg L{sup -1} and for LEO was 3.1 ± 1.4 mg L{sup -1}. In the irradiated (25 Gy) C. silvestrii exposed to DEET and LEO, the concentration that inhibited reproduction was 16.1 ± 0.9 mg L{sup -1} and 2.4 ± 0.3 mg L{sup -1} respectively. The results showed that the reproduction of irradiated C. silvestrii was not significantly affected when compared with non-irradiated organisms when exposed to DEET or LEO. (author)

  3. FACTORS AFFECTING COLORED DISSOLVED ORGANIC MATTER IN AQUATIC ENVIRONMENTS OF THE SOUTHEASTERN UNITED STATES

    Science.gov (United States)

    The sunlight-absorbing (colored) component of dissolved organic matter (CDOM) in aquatic environments is widely distributed in freshwaters and coastal regions where it influences the fate and transport of toxic organic substances and biologically-important metals such as mercury,...

  4. Modeling time-dependent toxicity to aquatic organisms from pulsed exposure of PAHs in urban road runoff

    International Nuclear Information System (INIS)

    Zhang Wei; Ye Youbin; Tong Yindong; Ou Langbo; Hu Dan; Wang Xuejun

    2011-01-01

    Understanding of the magnitude of urban runoff toxicity to aquatic organisms is important for effective management of runoff quality. In this paper, the aquatic toxicity of polycyclic aromatic hydrocarbons (PAHs) in urban road runoff was evaluated through a damage assessment model. Mortality probability of the organisms representative in aquatic environment was calculated using the monitored PAHs concentration in road runoff. The result showed that the toxicity of runoff in spring was higher than those in summer. Analysis of the time-dependent toxicity of series of runoff water samples illustrated that the toxicity of runoff water in the final phase of a runoff event may be as high as those in the initial phase. Therefore, the storm runoff treatment systems or strategies designed for capture and treatment of the initial portion of runoff may be inappropriate for control of runoff toxicity. - Research highlights: → Toxicity resulting from realistic exposure patterns of urban runoff is evaluated. → Toxicity of runoff water in the final phase is as high as the initial phase. → Treatment of the initial runoff portion is inappropriate to abate runoff toxicity. - Toxicity to aquatic organisms after sequential pulsed exposure to PAHs in urban road runoff is evaluated.

  5. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  6. Radioactive contamination of aquatic organisms of the Yenisei river in the area affected by the activity of a Russian plutonium complex

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Sukovaty, A.

    2005-01-01

    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by a Russian facility producing weapons-grade plutonium, which has been in operation for many years. The aim of the study conducted between 1997 and 2003 was to investigate accumulation of artificial radionuclides by aquatic organisms of the Yenisei River and to estimate the exposure dose rates to organisms from various sources. The aquatic plants sampled were of three species: Potamogeton lucens, Fontinalis antipyretica, and Ceratophyllum demersum. The gamma-spectrometric and radiochemical analysis of the samples of aquatic plants for artificial radionuclides has revealed more than 20 long-lived and short-lived radionuclides, including plutonium isotopes. The aquatic animal Phylolimnogammarus viridis and diatoms also contain artificial radionuclides. For most aquatic organisms under study, the dose received from the artificial irradiation is an order of magnitude higher than the dose received from natural irradiation. As Fontinalis antipyretica features the highest capacity to accumulate artificial radionuclides, it accumulates the largest artificial exposure does among the study aquatic organisms (up to 39 μGy/day)

  7. Zebrabase: An intuitive tracking solution for aquatic model organisms

    OpenAIRE

    Oltova, Jana; Bartunek, Petr; Machonova, Olga; Svoboda, Ondrej; Skuta, Ctibor; Jindrich, Jindrich

    2018-01-01

    Small fish species, like zebrafish or medaka, are constantly gaining popularity in basic research and disease modeling as a useful alternative to rodent model organisms. However, the tracking options for fish within a facility are rather limited. Here, we present an aquatic species tracking database, Zebrabase, developed in our zebrafish research and breeding facility that represents a practical and scalable solution and an intuitive platform for scientists, fish managers and caretakers, in b...

  8. From hilltop to kettle hole: what trends across the terrestrial-aquatic transition zone are revealed by organic matter stable isotope (δ13C and δ15N) composition?

    Science.gov (United States)

    Kayler, Z. E.; Nitzsche, K. N.; Gessler, A.; Kaiser, M. L.; Hoffmann, C.; Premke, K.; Ellerbrock, R.

    2016-12-01

    Steep environmental gradients develop across the interface between terrestrial and aquatic domains that influence organic matter (OM) retention. In NE Germany, kettle holes are small water bodies found in high density across managed landscapes. Kettle hole water budgets are generally fed through precipitation and overland flow and are temporarily connected to groundwater resulting in distinct hydroperiods. We took advantage of the range of environmental conditions created by the fluctuating shoreline to investigate patterns of OM stability along transects spanning from hilltops to sediments within a single kettle hole. We physically and chemically separated OM fractions that are expected to be loosely bound, such as particulate organic matter, to those that are tightly bound, such as OM associated with mineral or metal surfaces. The study design allowed us to investigate stabilization processes at the aggregate, transect, and kettle hole catchment scale. At the aggregate scale, we analyzed soil characteristics (texture, pH, extractable Al, Fe, Ca) to contribute to our understanding of OM stabilization. At the transect scale, we compared isotopic trends in the different fractions against a simple Rayleigh distillation model to infer disruption of the transfer of material, for example erosion, by land management such as tillage or the addition of OM through fertilization. At the kettle hole catchment scale, we correlated our findings with plant productivity, landform properties, and soil wetness proxies. Aggregate scale patterns of OM 13C and 15N were fraction dependent; however, we observed a convergence in isotopic patterns with soil properties from OM of more stabilized fractions. At the transect scale, loosely bound fractions did not conform to the simple model, suggesting these fractions are more dynamic and influenced by land management. The stabilized fractions did follow the Rayleigh model, which implies that transfer processes play a larger role in these

  9. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Science.gov (United States)

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  10. Characterisation and quantification of organic phosphorus and organic nitrogen components in aquatic systems: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom)], E-mail: pworsfold@plymouth.ac.uk; Monbet, Philippe [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia); Tappin, Alan D.; Fitzsimons, Mark F.; Stiles, David A. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL48AA (United Kingdom); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, Clayton 3800, Victoria (Australia)

    2008-08-22

    This review provides a critical assessment of knowledge regarding the determination of organic phosphorus (OP) and organic nitrogen (ON) in aquatic systems, with an emphasis on biogeochemical considerations and analytical challenges. A general background on organic phosphorus and organic nitrogen precedes a discussion of sample collection, extraction, treatment/conditioning and preconcentration of organic phosphorus/nitrogen from sediments, including suspended particulate matter, and waters, including sediment porewaters. This is followed by sections on the determination of organic phosphorus/nitrogen components. Key techniques covered for organic phosphorus components are molecular spectrometry, atomic spectrometry and enzymatic methods. For nitrogen the focus is on the measurement of total organic nitrogen concentrations by carbon hydrogen nitrogen analysis and high temperature combustion, and organic nitrogen components by gas chromatography, high-performance liquid chromatography, gel electrophoresis, mass spectrometry, nuclear magnetic resonance spectrometry, X-ray techniques and enzymatic methods. Finally future trends and needs are discussed and recommendations made.

  11. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances

    Science.gov (United States)

    Duarte, Regina M. B. O.; Santos, Eduarda B. H.; Pio, Casimiro A.; Duarte, Armando C.

    Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning- 13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40-62% of total NMR peak area), followed by oxygenated alkyls (15-21%) and carboxylic acid (5.4-13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (˜18-19%) than that of samples collected during warmer periods (˜6-10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.

  12. Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment.

    Science.gov (United States)

    Stuer-Lauridsen, Frank

    2005-08-01

    Over the past 15 years passive sampling devices have been developed that accumulate organic micropollutants and allow detection at ambient sub ng/l concentrations. Most passive accumulation devices (PADs) are designed for 1-4 weeks field deployment, where uptake is governed by linear first order kinetics providing a time weighted average of the exposure concentration. Semipermeable membrane devices (SPMDs) are the most comprehensively studied PADs, but other samplers may also be considered for aquatic monitoring purposes. The applicability of the PADs is reviewed with respect to commonly monitored aqueous matrices and compounds, the detection limits, and for use in quantitative monitoring related to requirements embedded in the EU Water Framework Directive, the US and EU Water Quality Criteria, and the Danish monitoring aquatic programme. The PADs may monitor >75% of the organic micropollutants of the programmes. Research is warranted regarding the uptake in PADs in low flow environments and for the development of samplers for polar organic compounds.

  13. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    Science.gov (United States)

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The toxicity of oxidised DWCNTs to the aquatic organisms, and related causing mechanisms

    CSIR Research Space (South Africa)

    Lukhele, LP

    2013-08-01

    Full Text Available earlier reported for the three aquatic organisms in earlier scientific reports. Finally, the paper discusses the linkage between the toxicity mechanisms and the physicochemical properties of DWCNTs, namely: agglomeration state, surface chemistry...

  15. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China

    International Nuclear Information System (INIS)

    Ip, C.C.M.; Li, X.D.; Zhang, G.; Wong, C.S.C.; Zhang, W.L.

    2005-01-01

    The accumulation of trace metals in aquatic organisms may lead to serious health problems through the food chain. The present research project aims to study the accumulation and potential sources of trace metals in aquatic organisms of the Pearl River Estuary (PRE). Four groups of aquatic organisms, including fish, crab, shrimp, and shellfish, were collected in the PRE for trace metal and Pb isotopic analyses. The trace metal concentrations in the aquatic organism samples ranged from 0.01 to 2.10 mg/kg Cd, 0.02 to 4.33 mg/kg Co, 0.08 to 4.27 mg/kg Cr, 0.15 to 77.8 mg/kg Cu, 0.17 to 31.0 mg/kg Ni, 0.04 to 30.7 mg/kg Pb, and 8.78 to 86.3 mg/kg Zn (wet weight). High concentrations of Cd were found in crab, shrimp and shellfish samples, while high concentration of Pb was found in fish. In comparison with the baseline reference values in other parts of the world, fish in the PRE had the highest elevated trace metals. The results of Pb isotopic compositions indicated that the bioaccumulation of Pb in fish come from a wide variety of food sources and/or exposure pathways, particularly the anthropogenic inputs. - Relative high concentrations of Cd were found in crab, shrimp and shellfish samples while high concentration of Pb was found in fish, particularly from the anthropogenic inputs

  16. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms

    NARCIS (Netherlands)

    De Bie, T.; De Meester, L.; Brendonck, L.; Martens, K.; Goddeeris, B.; Ercken, D.; Hampel, H.; Denys, L.; Vanhecke, L.; Van der Gucht, K.; Van Wichelen, J.; Vyverman, W.; Declerck, S.A.J.

    2012-01-01

    Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases

  17. The behaviour of chromium in aquatic and terrestrial food chains

    International Nuclear Information System (INIS)

    1975-01-01

    Chromium has been considered both as potential radioactive and conventional pollutant. Chromium-51 is produced by the activation of 50 Cr, which may be present either as a component of steel alloys used in reactors, or in Na 2 CrO 4 added as an anticorrosion agent to the cooling water. Only small amounts of 51 Cr are normally found in the liquid waste of nuclear power plants before discharge into rivers. In exceptional situations, however, as a result of the direct release of cooling waters, the aquatic environments may receive relatively large quantities of 51 Cr. Part of this 51 Cr is adsorbed e.g. to the sediments, but a fraction remains in solution in the river water. Somme accumulation of the radionuclide is observed in fresh water and marine organisms. Therefore, although 51 Cr has a relatively short physical half life (27.8d), it is of interest to acquire better information on its accumulation by different species of fresh water organisms and plants, as well as on its behaviour in soils, in order to evaluate the relative importance of this nuclide in the radioactive contamination of the aquatic and terrestrial food chains. As a related and sometimes associated pollutant, stable chromium is also taken into consideration. This element occurs fairly frequently as an environmental pollutant in many countries, either because of its abundance in soils derived from serpentine or because of its release to the environment from industrial wastes. The sequence of presentation of the experiment data is based on the consecutive steps of the contamination process: aquatic environment, soils, plant link of the food chain. Special attention is paid, in the different chapters, to the behaviour of various chemical forms of chromium and to their distribution in different fractions: soluble in water, adsorbed, precipitated on particles or complexed with organic material

  18. Environmental effects of fenitrothion use in forestry: impacts on insect pollinators, songbirds & aquatic organisms

    National Research Council Canada - National Science Library

    Ernst, W. R; Pearce, P. A; Pollock, T. L

    1989-01-01

    The Team focused on insect pollinators and pollination, forest songbirds, and aquatic organisms because of a judgement that most well documented negative effects of fenitrothion spraying are in those...

  19. Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms.

    Science.gov (United States)

    Wagil, Marta; Białk-Bielińska, Anna; Puckowski, Alan; Wychodnik, Katarzyna; Maszkowska, Joanna; Mulkiewicz, Ewa; Kumirska, Jolanta; Stepnowski, Piotr; Stolte, Stefan

    2015-02-01

    Flubendazole (FLU) and fenbendazole (FEN) belong to benzimidazoles-pharmaceuticals widely used in veterinary and human medicine for the treatment of intestinal parasites as well as for the treatment of systemic worm infections. In recent years, usage of these drugs increased, which resulted in a larger contamination of the environment and possible negative effects on biota. Hence, in our research, we investigated an aquatic ecotoxicity of these pharmaceuticals towards: marine bacteria (Vibrio fischeri), green algae (Scenedesmus vacuolatus), duckweed (Lemna minor) and crustacean (Daphnia magna). Ecotoxicity tests were combined with chemical analysis in order to investigate the actual exposure concentration of the compounds used in the experiment as well as to stability and adsorption studies. As a result, study evaluating sensitivity of different aquatic organisms to these compounds and new ecotoxicological data is presented. The strongest negative impact of FLU and FEN was observed to D. magna.

  20. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  1. Evidence for mass-independent and mass-dependent fractionation of the stable isotopes of mercury by natural processes in aquatic ecosystems

    International Nuclear Information System (INIS)

    Jackson, Togwell A.; Whittle, D. Michael; Evans, Marlene S.; Muir, Derek C.G.

    2008-01-01

    Isotopic and chemical analyses were performed on crustaceans, forage fish, top predator fish, and sediment cores from Lake Ontario and two boreal forest lakes to investigate fractionation of the stable isotopes of Hg in aquatic ecosystems. Multicollector inductively coupled mass spectrometry was used to determine Hg isotope abundances. The Hg isotope data for all three lakes showed mass-independent variation in the organisms but only mass-dependent variation in the sediments. The mass-independent isotope effect was characterised by (1) selective enrichment in isotopes of odd mass number ( 199 Hg and 201 Hg), (2) enrichment in 201 Hg relative to 199 Hg, (3) an inverse relationship between isotopes of odd and even mass number in fish, and (4) a positive correlation with methylHg (CH 3 Hg + ) concentration, and hence with trophic level (although lake whitefish were consistently anomalous, possibly owing to biochemical demethylation). Isotope signatures of species at the same trophic level varied with habitat and diet, differentiating between planktonic and benthic crustaceans and their predators, and between fish that frequent deep, cold water and fish of similar diet that prefer warmer, shallower water, because of corresponding differences in CH 3 Hg + and inorganic Hg content. Isotopic analysis of CH 3 Hg + and inorganic Hg extracted from lake trout proved that the mass-independent isotope effect was due to anomalously high abundances of 199 Hg and 201 Hg in CH 3 Hg + , as implied by the data for whole organisms, suggesting mass-independent fractionation during microbial methylation of Hg. The purely mass-dependent variation in the sediments is attributable to the fact that Hg in sediments is mostly inorganic. The mass-independent fractionation of Hg isotopes can be explained by effects of nuclear spin or nuclear field shift, or both, and penetration of the inner electron shells of Hg by valence electrons of Hg-binding ligands. The results of the research

  2. Properties and reactivity of aquatic organic matter from an Amazonian floodplain system

    Science.gov (United States)

    Perez, M. A. P.; Benedetti, M. F.; Moreira-Turcq, P.

    2009-04-01

    The aim of this study was to characterize the nature of the bulk dissolved organic matter (DOM) in different types of environments in the Amazon River-floodplain system and determine the importance of two different fractions of dissolved organic matter onto adsorption processes that occurs through the transport of organic matter in the Amazon Basin. Seven samples were collected in the Amazon River - "Lago Grande de Curuai" floodplain system, in rising water levels cruise (March 2006). The samples were taken in the Amazon main stem, in white and black floodplain waters, and in the middle of a phytoplaktonic bloom. The bulk, dissolved (i.e. acid-base titration) were characterized for these fractions. Adsorption experiments onto mineral phase from de surface sediment of the Curuai floodplain lake (rich in smectite and kaolinite) were realized with HPO and TPH fractions. The OC concentrations in the natural organic matter (Bulk and < 0.22 micrometer fractions) varied between 3.7-5.7 mg/L. The OC and TN concentrations varied between 510 - 528 mg C/g in the HPO fraction, and 408 - 462 mg C/g in the TPH compounds and between 14.3 - 17.6 mg N/g (HPO), and 22.1 - 30.0 mg N/g (TPH). The molecular weight of both fractions (HPO and TPH) didn't present significant variation. Both fractions presented high aromaticity and they were rich in carboxylic groups, although smaller values are systematically reported for the HPO fractions. The OM of the main stem was the most adsorbed, followed by the white water lake, the phytoplanktonic bloom, and black water lake sample. These results helped us to strengthen the hypothesis that the organic matter carried from the river and sediment in the floodplain is closely associated with mineral phase.

  3. Xylanase and cellulase activities during anaerobic decomposition of three aquatic macrophytes.

    Science.gov (United States)

    Nunes, Maíra F; da Cunha-Santino, Marcela B; Bianchini, Irineu

    2011-01-01

    Enzymatic activity during decomposition is extremely important to hydrolyze molecules that are assimilated by microorganisms. During aquatic macrophytes decomposition, enzymes act mainly in the breakdown of lignocellulolytic matrix fibers (i.e. cellulose, hemicellulose and lignin) that encompass the refractory fraction from organic matter. Considering the importance of enzymatic activities role in decomposition processes, this study aimed to describe the temporal changes of xylanase and cellulose activities during anaerobic decomposition of Ricciocarpus natans (freely-floating), Oxycaryum cubense (emergent) and Cabomba furcata (submersed). The aquatic macrophytes were collected in Óleo Lagoon, Luiz Antonio, São Paulo, Brazil and bioassays were accomplished.  Decomposition chambers from each species (n = 10) were set up with dried macrophyte fragments and filtered Óleo Lagoon water. The chambers were incubated at 22.5°C, in the dark and under anaerobic conditions. Enzymatic activities and remaining organic matter were measured periodically during 90 days. The temporal variation of enzymes showed that C. furcata presented the highest decay and the highest maximum enzyme production. Xylanase production was higher than cellulase production for the decomposition of the three aquatic macrophytes species.

  4. [Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review].

    Science.gov (United States)

    Zhang, Guo; Cao, Zhi-ping; Hu, Chan-juan

    2011-07-01

    Soil organic carbon is of heterogeneity in components. The active components are sensitive to agricultural management, while the inert components play an important role in carbon fixation. Soil organic carbon fractionation mainly includes physical, chemical, and biological fractionations. Physical fractionation is to separate the organic carbon into active and inert components based on the density, particle size, and its spatial distribution; chemical fractionation is to separate the organic carbon into various components based on the solubility, hydrolizability, and chemical reactivity of organic carbon in a variety of extracting agents. In chemical fractionation, the dissolved organic carbon is bio-available, including organic acids, phenols, and carbohydrates, and the acid-hydrolyzed organic carbon can be divided into active and inert organic carbons. Simulated enzymatic oxidation by using KMnO4 can separate organic carbon into active and non-active carbon. Biological fractionation can differentiate microbial biomass carbon and potential mineralizable carbon. Under different farmland management practices, the chemical composition and pool capacity of soil organic carbon fractions will have different variations, giving different effects on soil quality. To identify the qualitative or quantitative relationships between soil organic carbon components and carbon deposition, we should strengthen the standardization study of various fractionation methods, explore the integrated application of different fractionation methods, and sum up the most appropriate organic carbon fractionation method or the appropriate combined fractionation methods for different farmland management practices.

  5. Hierarchical responses to organic contaminants in aquatic ecotoxicological bioassays: from microcystins to biodegradation

    OpenAIRE

    Montenegro, Katia

    2008-01-01

    In this thesis I explore the ecotoxicological responses of aquatic organisms at different hierarchical levels to organic contaminants by means of bioassays. The bioassays use novel endpoints or approaches to elucidate the effects of exposure to contaminants and attempt to give mechanistic explanations that could be used to interpret effects at higher hierarchical scales. The sensitivity of population growth rate in the cyanobacteria species Microcystis aeruginosa to the herbicide glyp...

  6. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  7. Toxicological impacts of antibiotics on aquatic micro-organisms: A mini-review.

    Science.gov (United States)

    Välitalo, Pia; Kruglova, Antonina; Mikola, Anna; Vahala, Riku

    2017-05-01

    Antibiotics are found globally in the environment at trace levels due to their extensive consumption, which raises concerns about the effects they can have on non-target organisms, especially environmental micro-organisms. So far the majority of studies have focused on different aspects of antibiotic resistance or on analyzing the occurrence, fate, and removal of antibiotics from hospital and municipal wastewaters. Little attention has been paid to ecotoxicological effects of antibiotics on aquatic micro-organisms although they play a critical role in most ecosystems and they are potentially sensitive to these substances. Here we review the current state of research on the toxicological impacts of antibiotics to aquatic micro-organisms, including proteobacteria, cyanobacteria, algae and bacteria commonly present in biological wastewater treatment processes. We focus on antibiotics that are poorly removed during wastewater treatment and thus end up in surface waters. We critically discuss and compare the available analytical methods and test organisms based on effect concentrations and identify the knowledge gaps and future challenges. We conclude that, in general, cyanobacteria and ammonium oxidizing bacteria are the most sensitive micro-organisms to antibiotics. It is important to include chronic tests in ecotoxicological assessment, because acute tests are not always appropriate in case of low sensitivity (for example for proteobacteria). However, the issue of rapid development of antibiotic resistance should be regarded in chronic testing. Furthermore, the application of other species of bacteria and endpoints should be considered in the future, not forgetting the mixture effect and bacterial community studies. Due to differences in the sensitivity of different test organisms to individual antibiotic substances, the application of several bioassays with varying test organisms would provide more comprehensive data for the risk assessment of antibiotics

  8. Radioactivity in the Canadian aquatic environment

    International Nuclear Information System (INIS)

    1983-01-01

    Sources of radionuclides arising from natural anthropogenic processes as well as technologically enhanced natural radiation are discussed. Transport, distribution and behaviour of these radionuclides in aquatic systems are influenced by physical, chemical, biological and geological processes and conditions in freshwater and marine environments. Dosimetry of aquatic organisms, as well as various methods of measuring dose rate are presented. Effects of ionizing radiation (acute and chronic exposure) on aquatic organisms, populations and ecosystems are reviewed. This review covers the entire spectrum of the aquatic environment. Results of many studies are summarized. 300+ refs

  9. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    Science.gov (United States)

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  10. Ecological assessments of effluent impacts on communities of indigenous aquatic organisms (symposium), 1979

    International Nuclear Information System (INIS)

    Bates, J.M.; Weber, C.I.

    1981-01-01

    This conference proceedings contains 17 papers, of which 4 are indexed separately. All papers deal with the effects of chemical, radioactive, and thermal effluents on aquatic organisms. The emphasis is on the methods of evaluating the effects of effluents on the standing crop, community structure, and community function

  11. Ubiquitous presence of Fe(II) in aquatic colloids and its association with organic carbon

    CSIR Research Space (South Africa)

    von der Heyden, BP

    2014-08-01

    Full Text Available and freshwater environments. We show that Fe(II)-rich phases are prevalent throughout different aquatic regimes yet exhibit a high degree of chemical heterogeneity. Furthermore, we show that Fe-rich particles show strong associations with organic carbon...

  12. Acute toxicity of anionic and non-ionic surfactants to aquatic organisms.

    Science.gov (United States)

    Lechuga, M; Fernández-Serrano, M; Jurado, E; Núñez-Olea, J; Ríos, F

    2016-03-01

    The environmental risk of surfactants requires toxicity measurements. As different test organisms have different sensitivity to the toxics, it is necessary to establish the most appropriate organism to classify the surfactant as very toxic, toxic, harmful or safe, in order to establish the maximum permissible concentrations in aquatic ecosystems. We have determined the toxicity values of various anionic surfactants ether carboxylic derivatives using four test organisms: the freshwater crustacean Daphnia magna, the luminescent bacterium Vibrio fischeri, the microalgae Selenastrum capricornutum (freshwater algae) and Phaeodactylum tricornutum (seawater algae). In addition, in order to compare and classify the different families of surfactants, we have included a compilation of toxicity data of surfactants collected from literature. The results indicated that V. fischeri was more sensitive to the toxic effects of the surfactants than was D. magna or the microalgae, which was the least sensitive. This result shows that the most suitable toxicity assay for surfactants may be the one using V. fischeri. The toxicity data revealed considerable variation in toxicity responses with the structure of the surfactants regardless of the species tested. The toxicity data have been related to the structure of the surfactants, giving a mathematical relationship that helps to predict the toxic potential of a surfactant from its structure. Model-predicted toxicity agreed well with toxicity values reported in the literature for several surfactants previously studied. Predictive models of toxicity is a handy tool for providing a risk assessment that can be useful to establish the toxicity range for each surfactant and the different test organisms in order to select efficient surfactants with a lower impact on the aquatic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Unifying concepts linking dissolved organic matter composition to persistence in aquatic ecosystems

    Science.gov (United States)

    Kellerman, Anne M.; Guillemette, François; Podgorski, David C.; Aiken, George R.; Butler, Kenna D.; Spencer, Robert G. M.

    2018-01-01

    The link between composition and reactivity of dissolved organic matter (DOM) is central to understanding the role aquatic systems play in the global carbon cycle; yet, unifying concepts driving molecular composition have yet to be established. We characterized 37 DOM isolates from diverse aquatic ecosystems, including their stable and radiocarbon isotopes (δ13C-dissolved organic carbon (DOC) and Δ14C-DOC), optical properties (absorbance and fluorescence), and molecular composition (ultrahigh resolution mass spectrometry). Isolates encompassed end-members of allochthonous and autochthonous DOM from sites across the United States, the Pacific Ocean, and Antarctic lakes. Modern Δ14C-DOC and optical properties reflecting increased aromaticity, such as carbon specific UV absorbance at 254 nm (SUVA254), were directly related to polyphenolic and polycyclic aromatic compounds, whereas enriched δ13C-DOC and optical properties reflecting autochthonous end-members were positively correlated to more aliphatic compounds. Furthermore, the two sets of autochthonous end-members (Pacific Ocean and Antarctic lakes) exhibited distinct molecular composition due to differences in extent of degradation. Across all sites and end-members studied, we find a consistent shift in composition with aging, highlighting the persistence of certain biomolecules concurrent with degradation time.

  14. Assessing off-site impacts of wildfires on aquatic organisms using in-situ assays

    Science.gov (United States)

    Ré, Ana; Saraiva, MariaJoão; Puga, João; Campos, Isabel; Pereira, Joana; Keizer, Jacob; Goncalves, Fernando; Abrantes, Nelson

    2017-04-01

    Wildfires have been recognized as an important source of diffuse pollution to aquatic systems, particularly through the production and transport of pyrolytic substances such as polycyclic aromatic hydrocarbons (PAHs) and metals associated to ash/soil loads. However, the effects of these compounds from recently burnt areas on the aquatic biota have been largely ignored. Hence, the main goal of this study was to assess the ecotoxicological effects of wildfires in aquatic systems through the use of in situ experiments. In this sense, five sites were selected in a catchment partially burnt: two in the main water course - Ceira river (Miranda do Corvo, Portugal), being one located upstream (RUS) and the other downstream (RDS) the burnt area; two in tributary streams within the burnt area (SUS and SDS); and finally one in a stream located in the unburnt part of the catchment (CS). During the first post-fire rainfall events, distinct organisms, including the water flea Daphnia magna, the freshwater shrimp Atyaephyra desmaresti, the freshwater clam Corbicula fluminea and the mosquitofish Gambusia holbrooki were exposed in situ, in all five sites, using dedicated test chambers. After four days of field exposition, the mortality and post-exposure feeding inhibition were evaluated. Feeding depression after exposure time was selected as a sub-lethal endpoint because it is a quick, sensitive and ecologically relevant indicator of toxic stress. The results showed negligible mortality for all the species and sites, thus lethality was not sensitive to discern impacts among the assessed sites. Conversely, the sub-lethal post-exposure feeding inhibition endpoint, revealed a decrease of feeding rate, in streams within the burnt area (SUS and SDS), that seemed to be the most affected places in the study area. Conversely, the sites outside the burnt area, both on river (RUS) and on the stream (CS), showed no adverse effects in this endpoint. Hence, the current results pointed-out that

  15. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    Science.gov (United States)

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  16. Chain-Length Distribution and Hydrogen Isotopic Fraction of n-alkyl Lipids in Aquatic and Terrestrial Plants: Implications for Paleoclimate Reconstructions

    Science.gov (United States)

    Gao, L.; Littlejohn, S.; Hou, J.; Toney, J.; Huang, Y.

    2008-12-01

    Recent studies demonstrate that in lacustrine sediments, aquatic plant lipids (e.g., C22-fatty acid) record lake water D/H ratio variation, while long-chain fatty acids (C26-C32, major components of terrestrial plant leaf waxes), record D/H ratios of precipitation (especially in arid regions). However, there are insufficient literature data for the distribution and hydrogen isotopic fractionation of n-alkyl lipids in aquatic and terrestrial plants. In this study, we determined the chain-length distributions and D/H ratios of n-alkyl lipids from 17 aquatic plant species (9 emergent, 4 floating and 4 submerge species) and 13 terrestrial plant species (7 grasses and 6 trees) from Blood Pond, Massachusetts. Our results are consistent with previous studies and provide a solid basis for the paleoclimatic reconstruction using D/H ratios of aquatic and terrestrial plant biomarkers. In addition, systematic hydrogen isotopic analyses on leaf waxes, leaf, stem and soil waters from trees and grasses significantly advance our understanding of our previously observed large D/H ratio difference between tree and grass leaf waxes. Our data indicate that the observed difference is not due to differences in leaf water D/H ratios. In comparison with grasses, trees use greater proportion of D-enriched residual or stored carbohydrates (as opposed to current photosynthetic carbohydrates) for leaf wax biosynthesis, resulting in higher leaf wax D/H ratios. The residual carbohydrates are enriched in deuterium because of the preferential consumption of light-hydrogen substrates during plant metabolism.

  17. Changes in different organic matter fractions during conventional treatment and advanced treatment

    Institute of Scientific and Technical Information of China (English)

    Chao Chen; Xiaojian Zhang; Lingxia Zhu; Wenjie He; Hongda Han

    2011-01-01

    XAD-8 resin isolation of organic matter in water was used to divide organic matter into the hydrophobic and hydrophilic fractions.A pilot plant was used to investigate the change in both fractions during conventional and advanced treatment processes.The treatment of hydrophobic organics (HPO), rather than hydrophilic organicas (HPI), should carry greater emphasis due to HPO's higher trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP).The removal of hydrophobic matter and its transmission into hydrophilic matter reduced ultimate DBP yield during the disinfection process.The results showed that sand filtration, ozonation, and biological activated carbon (BAC) filtration had distinct influences on the removal of both organic fractions.Additionally, the combination of processes changed the organic fraction proportions present during treatment.The use of ozonation and BAC maximized organic matter removal efficiency, especially for the hydrophobic fraction.In sum, the combination of pre-ozonation,conventional treatment, and O3-BAC removed 48% of dissolved organic carbon (DOC), 60% of HPO, 30% of HPI, 63% of THMFP,and 85% of HAAFP.The use of conventional treatment and O3-BAC without pre-ozonation had a comparable performance, removing 51% of DOC, 56% of HPO, 45% of HPI, 61% of THMFP, and 72% of HAAFP.The effectiveness of this analysis method indicated that resin isolation and fractionation should be standardized as an applicable test to help assess water treatment process efficiency.

  18. Radiocarbon enrichment of soil organic matter fractions in New Zealand soils

    International Nuclear Information System (INIS)

    Goh, K.M.; Stout, J.D.; Rafter, T.A.

    1977-01-01

    Soil organic matter was extracted using the classical procedure and fractionated into humin (nonextractable), humic acid, and fulvic acid. The masses of total organic carbon in the whole soil samples and in the fractions, together with their 14 C content and 13 C/ 12 C ratios, were also determined. The following New Zealand soils were studied: a Fluvaquent, with experimental pasture plots, formed from deeply mixing subsoils of low organic carbon content; a Typic Fragiaqualf and a Typic Dystrochrept with moderately productive pastures; and an Umbric Vitrandept at two sites under native tussock and under introduced grasses of low productivity. The degree of radiocarbon enrichment of the different fractions in both topsoil and subsoil samples was examined in relation to differences in soil type, soil biological activity, and vegetation history. There was variation in the distribution and enrichment of the organic matter fractions both within the same soil type and between soil types, as well as between the topsoil and subsoil of the same soil. Differences appeared to be primarily a function of the stage of decomposition and translocation of the fractions through the soil rather than due to vegetation differences

  19. Toxicity of environmental chemicals and their mixtures to selected aquatic organisms. Behaviour, development and biochemistry; Toxizitaet von Umweltchemikalien und deren Mischungen auf ausgewaehlte aquatische Organismen. Verhalten, Entwicklung und Biochemie

    Energy Technology Data Exchange (ETDEWEB)

    Kienle, Cornelia

    2009-04-28

    In this work, the effects of various single substances (pesticides and metals) as well as binary mixtures of them on zebrafish (Danio rerio) embryos and larvae were assessed on biochemical, developmental, and organism levels. The influence of oxygen depletion on the toxicity of substances was included as an additional interacting factor. To analyse complex interactions, the predator-prey behaviour between zebrafish and chironomid larvae (Chironomus riparius) was investigated. Another aspect of this work were studies on complex mixtures of hydrocarbons such as the water accommodated fraction of crude oil, and their effects on the behaviour of marine amphipods (Corophium volutator), as well as semi-field experiments with freshwater amphipods (Gammarus pulex). My investigations showed that effects of various substances in environmentally relevant concentration ranges are exerted on different levels of biological organisation, both in amphipods and fish. It could be shown that abiotic parameters modify the effects of pollutants. When investigating mixtures of substances with similar or different modes of action, additivity occurred in the majority of cases which usually were consistent for all investigated parameters (enzyme activity, locomotor activity, developmental impairment, mortality). Effects of the neurotoxic insecticide chlorpyrifos on the interactions between fish and chironomids could be detected in environmentally relevant concentration ranges. The effects of the water accommodated fraction of crude oil which represents a great risk for aquatic organisms in costal habitats were displayed by alterations in the behaviour of the marine amphipod Corophium volutator. For a continuous monitoring of water quality in monitoring stations, the resident amphipod Gammarus pulex proved to be a suitable and relevant test organism, as it responds sensitive to complex mixtures of pollutants in surface waters. In summary, behavioural parameters proved to be integrative

  20. Review of reproductive and developmental toxicity induced by organotins in aquatic organisms and experimental animals

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, A.; Takagi, A.; Nishimura, T.; Kanno, J.; Ema, M. [National Inst. of Health Sciences, Tokyo (Japan)

    2004-09-15

    Widespread use of organotins has caused increasing amounts to be released into the environment. The most important non-pesticidal route of entry of organotins into the environment is through leaching of organotin-stabilized PVC in water, and the use in antifouling agents, resulting in the introduction of organotin into the aquatic environment. Data are available regarding the detection of butyltins and phenyltins in aquatic marine organisms and marine products. Food chain bioamplification of butyltin in oysters, mud crabs, marine mussels, chinook salmons, dolphins, tunas, and sharks and of phenyltin in carps and horseshoe crabs has been reported. These findings indicate that organotins accumulate in the food chain and are bioconcentrated, and that humans can be exposed to organotins via seafood. The levels of organotin compounds in seafood are not considered to be sufficiently high to affect human health. However, Belfroid et al. (2000) noted that more research on residual TBT levels in seafood was needed before a definitive conclusion on possible health risks could be drawn. Although the toxicity of organotins has been extensively reviewed, the reproductive and developmental toxicity of organotins is not well understood. We summarized the data of the studies on reproductive and developmental toxicity of organotins in aquatic organisms and experimental animals.

  1. ORGANIC CARBON AND TOTAL NITROGEN IN THE DENSIMETRIC FRACTIONS OF ORGANIC MATTER UNDER DIFFERENT SOIL MANAGEMEN

    Directory of Open Access Journals (Sweden)

    MARCELO RIBEIRO VILELA PRADO

    2016-01-01

    Full Text Available The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF and kudzu (Pueraria montana; Agroforestry System 2: coffee (Coffea canephora, marandu palisade grass (Brachiaria brizantha cv. Marandu, “pinho cuiabano” (Parkia multijuga, teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao; Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.

  2. Radioecology of the aquatic environment

    International Nuclear Information System (INIS)

    Amiard-Triquet, C.; Amiard, J.C.

    1980-01-01

    This book is divided into nine parts as follows: origin of radionuclides in the aquatic environment; assessment of radioactive contamination of the aquatic environment; evolution of radionuclides in waters; behaviour of radionuclides in sediments; quantitative data on accumulation, distribution and biological release of radioactive pollutants; mechanisms of the biological accumulation; influence of ecological factors on radioactive contamination of ecosystems; effects of irradiation on aquatic organisms. The last part is devoted to general conclusions on sanitary and ecological consequences of radioactive pollution of the aquatic environment [fr

  3. Aerosol Mass Scattering Efficiency: Generalized Treatment of the Organic Fraction

    Science.gov (United States)

    Garland, R. M.; Ravishankara, A. R.; Lovejoy, E. R.; Tolbert, M. A.; Baynard, T.

    2005-12-01

    Atmospheric aerosols are complex mixtures of organic and inorganic compounds. Current efforts to provide a simplified parameterization to describe the RH dependence of water uptake and associated optical properties lack the capability to include any dependence on the composition of the organic fraction. Using laboratory generated aerosol we have investigated the validity of such simplified treatment of organic fraction and estimated potential biases. In this study, we use cavity ring-down aerosol extinction photometry (CRD-AEP) to study the relative humidity (RH) dependence of the light extinction of aerosols, σep, simultaneously considering the influence of particle size, chemical composition, and mixing state (internal and external mixtures). We have produced internally mixed aerosol systems including; ammonium sulfate, ammonium nitrate, sodium chloride, dicarboxylic acids, sugars, amino acids and humic acid. These aerosols are produced with an atomizer and size-selected with a Differential Mobility Analyzer (DMA). The particles then enter into a CRD-AEP to measure dry extinction, σep(Dry), after which they travel into a RH conditioner and another CRD-AEP to measure the humidified aerosol extinction, fσ(ep)RH. The ratio of the humidified extinction to the dry extinction is fσ(ep)RH. Representative organic compounds were found to have fσ(ep)RH values that are much smaller than pure salts; though the fσ(ep)RH values vary little within the organic compounds studied. In addition, we have found that treating the inorganic/organic aerosols as external mixtures is generally correct to within ~10%, indicating appropriate simplified treatment of the RH dependence of atmospheric aerosol according to inorganic/organic fraction. In this presentation, we include recommendations for the generalized treatment of the organic fraction, exceptions to this generalized behavior, and estimates of the potential bias caused by generalized treatment.

  4. Design and setup of intermittent-flow respirometry system for aquatic organisms

    DEFF Research Database (Denmark)

    Svendsen, Morten Bo Søndergaard; Bushnell, P.G.; Steffensen, John Fleng

    2016-01-01

    Intermittent-flow respirometry is an experimental protocol for measuring oxygen consumption in aquatic organisms that utilizes the best features of closed (stop-flow) and flow-through respirometry while eliminating (or at least reducing) some of their inherent problems. By interspersing short...... and software further reduces error by allowing many measurements to be made over long periods thereby minimizing animal stress due to acclimation issues. This paper describes some of the fundamental principles that need to be considered when designing and carrying out automated intermittent-flow respirometry...

  5. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  6. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Science.gov (United States)

    Ekvall, Mikael T; Bianco, Giuseppe; Linse, Sara; Linke, Heiner; Bäckman, Johan; Hansson, Lars-Anders

    2013-01-01

    Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale) organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D) tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  8. Saponins in the aquatic environment

    DEFF Research Database (Denmark)

    Jiang, Xiaogang

    -like structure, saponins have a lot of applications, e.g. as foaming agents in consumer products, as adjuvants in the vaccine, as biosurfactants in soil washing and as biopesticides in crop protection. Hence, they may leach into the aquatic environment due to their low octanol/water partition coefficient......This PhD thesis consists of three parts to illustrate the goal of getting a better understanding of the fate and toxicity of saponins in the aquatic environment. It includes an introduction to the general aspects of saponins, their chemistry and the ecotoxicology concepts, and a second part...... and poor binding to organic matter. They may therefore also pose a risk to the aquatic organisms. Since saponins are efficient against pests, they are most likely also toxic to the non-target organisms. However, their fate and toxicity in the environment are not fully understood. There are two main...

  9. Metabolism and genotoxicity of aromatic amines in aquatic organisms

    International Nuclear Information System (INIS)

    Knezovich, J.P.; Krauter, P.W.; Lawton, M.P.; Harrison, F.L.

    1987-01-01

    Marine mussels (Mytilus edulis) and bullfrog tadpoles (Rana catesbeiana) were used to investigate the comparative metabolism and genotoxicity of aromatic amines in vivo. These organisms were selected because they possess distinctly different metabolic capabilities: mussels lack an active mixed-function-oxidase enzyme system that is present in most other organisms, including amphibians. Using 14 C-labeled chemical probes (o- and p-toluidine, 2-aminofluorene (2-AF), and 2-acetylaminofluorene (2-AAF)), mussels and tadpoles well dosed with individual compounds by direct immersion in aqueous solutions. The identities of metabolites were then determined by HPLC and GC/MS methods. Results indicate that the N-conjugating pathways used by mussels result primarily in the detoxification of aromatic amines by limiting the amount of primary amine available for activation. The tadpoles excreted a number of 2-AAF metabolites but did form DNA and protein adducts in the liver. Induction of micronuclei in the peripheral red blood cells was also demonstrated. The tadpole was shown to be a sensitive biological indicator of pollution in aquatic ecosystems

  10. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    Science.gov (United States)

    Smith, Kathleen S.; Ranville, James F.; Lesher, Emily K.; Diedrich, Daniel J.; McKnight, Diane M.; Sofield, Ruth M.

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  11. Nano-plastics in the aquatic environment.

    Science.gov (United States)

    Mattsson, K; Hansson, L-A; Cedervall, T

    2015-10-01

    The amount of plastics released to the environment in modern days has increased substantially since the development of modern plastics in the early 1900s. As a result, concerns have been raised by the public about the impact of plastics on nature and on, specifically, aquatic wildlife. Lately, much attention has been paid to macro- and micro-sized plastics and their impact on aquatic organisms. However, micro-sized plastics degrade subsequently into nano-sizes whereas nano-sized particles may be released directly into nature. Such particles have a different impact on aquatic organisms than larger pieces of plastic due to their small size, high surface curvature, and large surface area. This review describes the possible sources of nano-sized plastic, its distribution and behavior in nature, the impact of nano-sized plastic on the well-being of aquatic organisms, and the difference of impact between nano- and micro-sized particles. We also identify research areas which urgently need more attention and suggest experimental methods to obtain useful data.

  12. Organic carbon characteristics in density fractions of soils with contrasting mineralogies

    Science.gov (United States)

    Yeasmin, Sabina; Singh, Balwant; Johnston, Cliff T.; Sparks, Donald L.

    2017-12-01

    This study was aimed to evaluate the role of minerals in the preservation of organic carbon (OC) in different soil types. Sequential density fractionation was done to isolate particulate organic matter (POM, 2.6 g cm-3) from four soils, i.e., a Ferralsol, a Luvisol, a Vertisol and a Solonetz. Organic matter (OM) in the density fractions was characterised using diffuse reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and mass spectroscopy in the original states (i.e., without any chemical pre-treatment), and after 6% sodium hypochlorite (NaOCl) and 10% hydrofluoric acid (HF) treatments. The NaOCl oxidation resistant fraction was considered as a relatively stable pool of OC and the HF soluble fraction was presumed as the mineral bound OC. Phyllosilicate-dominated soils, i.e., Vertisol, Luvisol and Solonetz, contained a greater proportion of POM than Fe and Al oxide-dominated Ferralsol. Wider C:N ratio and lower δ13C and δ15N in POM suggest the dominance of labile OC in this fraction and this was also supported by a greater proportion of NaOCl oxidised OC in the same fraction that was enriched with aliphatic C. The sequential density fractionation method effectively isolated OM into three distinct groups in the soils: (i) OM associated with Fe and Al oxides (>1.8 g cm-3 in the Ferralsol); (ii) OM associated with phyllosilicates (1.8-2.6 g cm-3) and (iii) OM associated with quartz and feldspar (>2.6 g cm-3) in the other three soils. Greater oxidation resistance, and more dissolution of OC during the HF treatment in the Fe and Al oxides dominated fractions suggest a greater potential of these minerals to protect OC from oxidative degradation as compared to the phyllosilicates, and quartz and feldspar matrices. OM associated with Fe and Al oxides was predominantly aromatic and carboxylate C. Decreased C:N ratio in the NaOCl oxidation resistant OM and HF soluble OM of phyllosilicates, and quartz and feldspars dominant fractions

  13. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    International Nuclear Information System (INIS)

    Morgaleva, T; Morgalev, Yu; Gosteva, I; Morgalev, S

    2015-01-01

    The effect of nanoparticles with the particle size Δ 50 =5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C 20 is determined for all the organisms used in bioassays. L(E)C 50 is estimated for Paramecium caudatum (L(E)C 50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C 50 = 0.529 mg/l), for Daphnia m. S (L(E)C 50 > 100 mg/l) and for fish Danio rerio (L(E)C 50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances. (paper)

  14. Research of nickel nanoparticles toxicity with use of Aquatic Organisms

    Science.gov (United States)

    Morgaleva, T.; Morgalev, Yu; Gosteva, I.; Morgalev, S.

    2015-11-01

    The effect of nanoparticles with the particle size Δ50=5 nm on the test function of aquatic organisms was analyzed by means of biotesting methods with the use of a complex of test-organisms representing general trophic levels. The dependence of an infusoria Paramecium caudatum chemoattractant-elicited response, unicellular algae Chlorella vulgaris Beijer growth rate, Daphnia magna Straus mortality and trophic activity and Danio rerio fish kill due to nNi disperse system concentration, is estimated. It is determined that the release of chlorella into cultivated environment including nNi as a feed for daphnias raises the death rate of entomostracans. The minimal concentration, whereby an organism response to the effect of nNi is registered, depends on the type of test organism and the analysed test function. L(E)C20 is determined for all the organisms used in bioassays. L(E)C50 is estimated for Paramecium caudatum (L(E)C50 = 0.0049 mg/l), for Chlorella vulgaris Beijer (L(E)C50 = 0.529 mg/l), for Daphnia m. S (L(E)C50 > 100 mg/l) and for fish Danio rerio (L(E)C50 > 100 mg/l). According to the Globally Harmonized System hazard substance evaluation criteria and Commission Directive 93/67/EEC, nNi belongs to the “acute toxicity 1” category of toxic substances.

  15. The Mode of Action of Isocyanide in Three Aquatic Organisms, Balanus amphitrite, Bugula neritina and Danio rerio

    KAUST Repository

    Zhang, Yi-Fan; Kitano, Yoshikazu; Nogata, Yasuyuki; Zhang, Yu; Qian, Pei-Yuan

    2012-01-01

    Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine

  16. Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium.

    Science.gov (United States)

    Fevery, Davina; Houbraken, Michael; Spanoghe, Pieter

    2016-04-15

    Various studies focus on professional pesticide use, whereas pressure of non-professional use on human and the environment is often neglected. In this study, an attempt was made to estimate the pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium based on sales figures and by using three exposure models. A classification in non-professional use was made based on type of pesticide, application method and on intensity of non-professional use. Pressure of non-professional use on operators is highest for intensive operators, caused by the use of insecticides in an aerosol spray can. Pressure of non-professional pesticides on aquatic life is mainly generated by the use of herbicides. The aerosol spray induces the highest pressure whereas the trigger application hardly affects operator and environmental exposure. The ordinary non-professional user generates most pressure on aquatic organisms. Pressure of non-professional pesticides on bees is mainly caused by the use of insecticides, especially the active substance imidacloprid in combination with the aerosol spray can application method applied by an intensive operator. In general, both total usage (kg) and pressure of pesticides decreased for the period 2005 to 2012 due to efforts made by the government and industry. The results of this study suggest to pay special attention to aerosol spray applications and the non-professional use of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Toxicokinetic modeling challenges for aquatic nanotoxicology

    Directory of Open Access Journals (Sweden)

    Wei-Yu eChen

    2016-01-01

    Full Text Available Nanotoxicity has become of increasing concern since the rapid development of metal nanoparticles (NPs. Aquatic nanotoxicity depends on crucial qualitative and quantitative properties of nanomaterials that induce adverse effects on subcellular, tissue, and organ level. The dose-response effects of size-dependent metal NPs, however, are not well investigated in aquatic organisms. In order to determine the uptake and elimination rate constants for metal NPs in the metabolically active/ detoxified pool of tissues, a one-compartmental toxicokinetic model can be applied when subcellular partitioning of metal NPs data would be available. The present review is an attempt to describe the nano-characteristics of toxicokinetics and subcellular partitioning on aquatic organisms with the help of the mechanistic modeling for NP size-dependent physiochemical properties and parameters. Physiologically-based pharmacokinetic (PBPK models can provide an effective tool to estimate the time course of NP accumulation in target organs and is useful in quantitative risk assessments. NP accumulation in fish should take into account different effects of different NP sizes to better understand tissue accumulative capacities and dynamics. The size-dependent NP partition coefficient is a crucial parameter that influences tissue accumulation levels in PBPK modeling. Further research is needed to construct the effective systems-level oriented toxicokinetic model that can provide a useful tool to develop quantitatively the robustly approximate relations that convey a better insight into the impacts of environmental metal NPs on subcellular and tissue/organ responses in aquatic organisms.

  18. Use of native aquatic macrophytes in the reduction of organic matter from dairy effluents.

    Science.gov (United States)

    Queiroz, Rita de Cássia Souza de; Andrade, Rodrigo Santos; Dantas, Isadora Rosário; Ribeiro, Vinícius de Souza; Neto, Luciano Brito Rodrigues; Almeida Neto, José Adolfo de

    2017-08-03

    Considering the diversity and the unexplored potential of regional aquatic flora, this study aimed to identify and analyze the potential of native aquatic macrophytes to reduce the organic matter of dairy wastewater (DW) using experimental constructed wetlands. The dairy wastewater (DW) had an average chemical oxygen demand (COD) of 7414.63 mg/L and then was diluted to 3133.16 mg/L (D1) and to 2506.53 mg/L (D2). Total solids, COD, temperature, and pH analyses were performed, and the biochemical oxygen demand (BOD) was estimated from the COD values. The best performance in the reduction of the organic matter was observed for Polygonum sp. (87.5% COD and 79.6% BOD) and Eichhornia paniculata (90% COD and 83.7% BOD) at dilution D1, on the 8th day of the experiment. However, the highest total solids removal was observed for Polygonum sp. (32.2%), on the 4th day, at dilution D2. The total solid (TS) concentration has also increased starting from the 8th day of the experiment was observed which may have been due to the development of mosquito larvae and their mechanical removal by sieving, thus changing the steady state of the experimental systems. The macrophytes Polygonum sp. and E. paniculata were considered suitable for the reduction of organic matter of DW using constructed wetlands.

  19. Three-dimensional tracking of small aquatic organisms using fluorescent nanoparticles.

    Directory of Open Access Journals (Sweden)

    Mikael T Ekvall

    Full Text Available Tracking techniques are vital for the understanding of the biology and ecology of organisms. While such techniques have provided important information on the movement and migration of large animals, such as mammals and birds, scientific advances in understanding the individual behaviour and interactions of small (mm-scale organisms have been hampered by constraints, such as the sizes of existing tracking devices, in existing tracking methods. By combining biology, chemistry and physics we here present a method that allows three-dimensional (3D tracking of individual mm-sized aquatic organisms. The method is based on in-vivo labelling of the organisms with fluorescent nanoparticles, so-called quantum dots, and tracking of the organisms in 3D via the quantum-dot fluorescence using a synchronized multiple camera system. It allows for the efficient and simultaneous study of the behaviour of one as well as multiple individuals in large volumes of observation, thus enabling the study of behavioural interactions at the community scale. The method is non-perturbing - we demonstrate that the labelling is not affecting the behavioural response of the organisms - and is applicable over a wide range of taxa, including cladocerans as well as insects, suggesting that our methodological concept opens up for new research fields on individual behaviour of small animals. Hence, this offers opportunities to focus on important biological, ecological and behavioural questions never before possible to address.

  20. Landscapes of facilitation: how self-organized patchiness of aquatic macrophytes promotes diversity in streams.

    Science.gov (United States)

    Cornacchia, Loreta; van de Koppel, Johan; van der Wal, Daphne; Wharton, Geraldene; Puijalon, Sara; Bouma, Tjeerd J

    2018-04-01

    Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation - due to feedback interactions between plant growth, water flow and sedimentation processes - could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa. Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. © 2018 The Authors Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  1. Dose assessment and radioecological consequences to aquatic organisms in the areas of Russia exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1996-01-01

    A comparative analysis of the radioecological state of aquatic ecosystems in the territory of Russia was performed. The following water bodies were considered: lakes and rivers in the Ural and Chernobyl contaminated areas, the Yenisei River, cooling ponds of nuclear power plants, and the Arctic Seas. It was demonstrated that in all cases under consideration, doses to aquatic organisms were markedly higher than those to humans. Especially high exposure levels to fish and molluscs much in excess of the natural background were observed in a number of water bodies in the Ural and Chernobyl contaminated areas

  2. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.

    Science.gov (United States)

    Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L

    2007-01-15

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.

  3. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Science.gov (United States)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  4. DISTRIBUTION OF ORGANIC CARBON IN DIFFERENT SOIL FRACTIONS IN ECOSYSTEMS OF CENTRAL AMAZONIA

    Directory of Open Access Journals (Sweden)

    Jean Dalmo de Oliveira Marques

    2015-02-01

    Full Text Available Organic matter plays an important role in many soil properties, and for that reason it is necessary to identify management systems which maintain or increase its concentrations. The aim of the present study was to determine the quality and quantity of organic C in different compartments of the soil fraction in different Amazonian ecosystems. The soil organic matter (FSOM was fractionated and soil C stocks were estimated in primary forest (PF, pasture (P, secondary succession (SS and an agroforestry system (AFS. Samples were collected at the depths 0-5, 5-10, 10-20, 20-40, 40-60, 60-80, 80-100, 100-160, and 160-200 cm. Densimetric and particle size analysis methods were used for FSOM, obtaining the following fractions: FLF (free light fraction, IALF (intra-aggregate light fraction, F-sand (sand fraction, F-clay (clay fraction and F-silt (silt fraction. The 0-5 cm layer contains 60 % of soil C, which is associated with the FLF. The F-clay was responsible for 70 % of C retained in the 0-200 cm depth. There was a 12.7 g kg-1 C gain in the FLF from PF to SS, and a 4.4 g kg-1 C gain from PF to AFS, showing that SS and AFS areas recover soil organic C, constituting feasible C-recovery alternatives for degraded and intensively farmed soils in Amazonia. The greatest total stocks of carbon in soil fractions were, in decreasing order: (101.3 Mg ha-1 of C - AFS > (98.4 Mg ha-1 of C - FP > (92.9 Mg ha-1 of C - SS > (64.0 Mg ha-1 of C - P. The forms of land use in the Amazon influence C distribution in soil fractions, resulting in short- or long-term changes.

  5. Colloids as a sink for certain pharmaceuticals in the aquatic environment.

    Science.gov (United States)

    Maskaoui, Khalid; Zhou, John L

    2010-05-01

    filtrate (observed partition coefficients, Kobsp, Kobsoc), between SPM and soluble phase (intrinsic partition coefficients, Kintp, Kintoc), and between colloids and soluble phase (Kcoc) showed that intrinsic partition coefficients (Kintp, Kintoc) are between 25% and 96%, and between 18% and 82% higher than relevant observed partition coefficients values, and are much less variable. Secondly, Kcoc values are 3-4 orders of magnitude greater than Kintoc values, indicating that aquatic colloids are substantially more powerful sorbents for accumulating pharmaceuticals than sediments. Furthermore, mass balance calculations of pharmaceutical concentrations demonstrate that between 23% and 70% of propranolol, 17-62% of sulfamethoxazole, 7-58% of carbamazepine, 19-84% of indomethacine, and 9-74% of diclofenac are present in the colloidal phase. The results provide direct evidence that sorption to colloids provides an important sink for the pharmaceuticals in the aquatic environment. Such strong pharmaceutical/colloid interactions may provide a long-term storage of pharmaceuticals, hence, increasing their persistence while reducing their bioavailability in the environment. Pharmaceutical compounds have been detected not only in the aqueous phase but also in suspended particles; it is important, therefore, to have a holistic approach in future environmental fate investigation of pharmaceuticals. For example, more research is needed to assess the storage and long-term record of pharmaceutical residues in aquatic sediments by which benthic organisms will be most affected. Aquatic colloids have been shown to account for the accumulation of major fractions of total pharmaceutical concentrations in the aquatic environment, demonstrating unequivocally the importance of aquatic colloids as a sink for such residues in the aquatic systems. As aquatic colloids are abundant, ubiquitous, and highly powerful sorbents, they are expected to influence the bioavailability and bioaccumulation of such

  6. Aquatic toxicology: past, present, and prospects.

    OpenAIRE

    Pritchard, J B

    1993-01-01

    Aquatic organisms have played important roles as early warning and monitoring systems for pollutant burdens in our environment. However, they have significant potential to do even more, just as they have in basic biology where preparations like the squid axon have been essential tools in establishing physiological and biochemical mechanisms. This review provides a brief summary of the history of aquatic toxicology, focusing on the nature of aquatic contaminants, the levels of contamination in...

  7. Method for calculation of upper limit internal alpha dose rates to aquatic organisms with application of plutonium-239 in plankton

    International Nuclear Information System (INIS)

    Paschoa, A.S.; Baptista, G.B.

    1977-01-01

    A method for the calculation of upper limit internal alpha dose rates to aquatic organisms is presented. The mean alpha energies per disintegration of radionuclides of interest are listed to be used in standard methodologies to calculate dose to aquatic biota. As an application, the upper limits for the alpha dose rates from 239 Pu to the total body of plankton are estimated based on data available in open literature [pt

  8. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.

    1983-04-01

    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  9. Aquatic Ecology Section

    International Nuclear Information System (INIS)

    Brocksen, R.W.

    1978-01-01

    Population studies were concerned with predicting long-term consequences of mortality imposed on animal populations by man's activities. These studies consisted of development of a generalized life cycle model and an empirical impingement model for use in impact analysis. Chemical effects studies were conducted on chlorine minimization; fouling by the Asiatic clam; identification of halogenated organics in cooling water; and effects of halogenated organics in cooling systems on aquatic organisms. Ecological transport studies were conducted on availability of sediment-bound 137 Cs and 60 Co to fish; 137 Cs and 60 Co in White Oak Lake fish; and chromium levels in fish from a lake chronically contaminated with chromates from cooling towers. Progress is also reported on the following: effects of irradiation on thermal tolerance of mosquito fish; toxicity of nickel to the developing eggs and larvae of carp; accumulation of selected heavy metals associated with fly ash; and environmental monitoring of aquatic ecosystems

  10. INTERSPECIES CORRELATION ESTIMATION (ICE) FOR ACUTE TOXICITY TO AQUATIC ORGANISMS AND WILDLIFE. II. USER MANUAL AND SOFTWARE

    Science.gov (United States)

    Asfaw, Amha, Mark R. Ellersieck and Foster L. Mayer. 2003. Interspecies Correlation Estimations (ICE) for Acute Toxicity to Aquatic Organisms and Wildlife. II. User Manual and Software. EPA/600/R-03/106. U.S. Environmental Protection Agency, National Health and Environmental Effe...

  11. Ecological Dose Modeling of Aquatic and Riparian Receptors to Strontium-90 with an Emphasis on Radiosensitive Organs

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Traub, Richard J.; Antonio, Ernest J.

    2011-07-20

    The 100-NR-2 site is the location of elevated releases of strontium-90 to the Columbia River via contaminated groundwater. The resulting dose to aquatic and riparian receptors was evaluated in 2005 (DOE 2009) and compared to U.S. Department of Energy (DOE) dose guidance values. We have conducted additional dose assessments for a broader spectrum of aquatic and riparian organisms using RESRAD Biota and specific exposure scenarios. Because strontium-90 accumulates in bone, we have also modeled the dose to the anterior kidney, a blood-forming and immune system organ that lies close to the spinal column of fish. The resulting dose is primarily attributable to the yttrium-90 progeny of strontium-90 and very little of the dose is associated with the beta emission from strontium-90. All dose modeling results were calculated with an assumption of secular equilibrium between strontium-90 and yttrum-90.

  12. The involvement of metallothionein in the development of aquatic invertebrate

    International Nuclear Information System (INIS)

    Mao Huan; Wang Dahui; Yang Wanxi

    2012-01-01

    The many documents on metallothioneins (MTs) in aquatic organisms focus especially on their use as biomarkers in environmental monitoring programs, but there are a few papers that summarize the physiological role of MTs in aquatic organisms especially in their development. The multifaceted role of MTs include involvement in homeostasis, protection against heavy metals and oxidant damage, metabolic regulation, sequestration and/or redox control. MTs could be induced by heavy metals which are able to hinder gametogenesis, suppress embryogenesis, and hamper development. Here we pay more attention on the non-essential metal cadmium, which is the most studied heavy metal regarding MTs, and its effects on the development of aquatic invertebrates. In this paper, we have collected published information on MTs in aquatic organisms – mollusks, crustaceans, etc., and summarize its functions in aquatic invertebrates, especially those related to their development.

  13. Relative age and age sequence of fractions of soil organic matter

    International Nuclear Information System (INIS)

    Scharpenseel, H.W.

    1975-01-01

    Natural radiocarbon measurements on soil fractions provide information regarding the chances of separating the ''old biologically inert carbon'' out of samples of recent soil material. Beyond this, the relative fraction ages are scrutinized for the sequential order of the origin of the fractions within the biosynthetic reaction chain of soil humic matter. Among all fractions compared (classic humic matter fractionation by alkali and acid treatment; successive extraction with organic solvents of increasing polarity; separation according to particle size by Sephadex gel filtration; hydrolysis residue) the 6 n HCl hydrolysis residue shows the most consistent significant age increment. Repeated exhaustive hydrolysis treatment of the same sample material is still pending. All other fraction types indicate an age pattern under strong predetermination by method of origin, e.g., existence or lack of hydromorphy, without an evident enrichment of the ''old biologically inert carbon''. Among the organic extracts, no persistent age hierarchy is noticeable, whereas the classical fractions follow an age sequence mainly parallel to an increase of the molecular weight. Hymatomelanic acids appear rejuvenated by relics of recent carbon derived from the extractant ethanol. Grey humic acids are older than the brown humic acids, humines from fully terrestrial soil environment are older than humic acids, while in hydromorphic soils, cold alkali insoluble young C-compounds seem to be conserved which are liable to falsify rejuvenation of the humines

  14. Comparing the Spectroscopic and Molecular Characteristics of Different Dissolved Organic Matter Fractions Isolated by Hydrophobic and Anionic Exchange Resins Using Fluorescence Spectroscopy and FT-ICR-MS

    Directory of Open Access Journals (Sweden)

    Morgane Derrien

    2017-07-01

    Full Text Available Despite the environmental significance of dissolved organic matter (DOM, characterizing DOM is still challenging due to its structural complexity and heterogeneity. In this study, three different chemical fractions, including hydrophobic acid (HPOA, transphilic acid (TPIA, and hydrophilic neutral and base (HPIN/B fractions, were separated from bulk aquatic DOM samples, and their spectral features and the chemical composition at the molecular level were compared using both fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS. The HPIN/B fraction was distinguished from the two acidic fractions (i.e., HPOA and TPIA by the EEM-PARAFAC, while the TPIA fraction was discriminated by using the molecular parameters derived from the FT-ICR MS analyses. Statistical comparison suggests that the spectral dissimilarity among the three chemical fractions might result from the acido-basic properties of DOM samples, while the differences in molecular composition were more likely to be affected by the hydrophobicity of the DOM fractions. The non-metric multidimensional scaling map further revealed that the HPOA was the most heterogeneous among the three fractions. The number of overlapping formulas among the three chemical fractions constituted only <5% of all identified formulas, and those between two different fractions ranged from 2.0% to 24.1%, implying relatively homogeneous properties of the individual chemical fractions with respect to molecular composition. Although employing chemical fractionation achieved a lowering of the DOM heterogeneity, prevalent signatures of either acido-basic property or the hydrophobic nature of DOM on the characteristics of three chemical isolated fractions were not found for this study.

  15. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  16. The potential of the fresh-water fern Azolla in aquatic farming systems

    Science.gov (United States)

    Bijl, Peter K.; Werf, vd, Adrie; Schluepmann, Henriette; Reichart, Gert-Jan; Brouwer, Paul; Nierop, Klaas G. J.; Hellgardt, Klaus; Brinkhuis, Henk

    2014-05-01

    With aquatic farming systems a new avenue in agriculture is explored, in which the competition with conventional arable land is avoided. The aquatic, ubiquitous, floating fern Azolla is not yet widely explored as potential crop in such farming systems, despite its high potential because it grows in many natural systems under low-light intensities, has an enormous annual yield, and has special biomass qualities for applications in food, feed and specialty chemical industries. But, what makes Azolla particularly interesting as cost-effective crop is its capability to take up atmospheric nitrogen through symbiosis with nitrogen-fixing bacteria Anabaena azollae. This makes Azolla independent of nitrogen fertilization. In order to explore the potential of Azolla as a crop for a suite of applications, we have assembled a team of expertise: AZOFAST, consisting of agricultural engineers, plant physiologists, chemical engineers and organic chemists. Our growth experiments reveal high annual production yields with constant harvest. We are developing a germination and spore collecting/preservation protocol as a first step to domestication. Finally we have explored the biomass quality of different species of extant Azolla. We performed organic chemical analyses on lipid and tannin extracts, and quantified yields of specific compounds within these fractions. In our presentation we will present some of our results to show the potential of Azolla as a new, sustainable aquatic crop serving all kinds of industrial streams from protein feed to platform chemicals.

  17. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    Science.gov (United States)

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  18. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data. Solvent type Average organic HAP mass fraction Typical organic HAP, percent by mass...

  19. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  20. Proceedings of the 36. annual aquatic toxicity workshop

    International Nuclear Information System (INIS)

    Martel, L.; Triffault-Bouchet, G.; Fournier, M.; Campbell, P.G.C.; Pellerin, J.; Lacroix, E.; Burridge, L.E.

    2010-01-01

    This workshop was held to discuss topics related to aquatic and environmental toxicology. Principles, issues, and recent innovations in aquatic toxicology were reviewed. New developments in environmental monitoring were discussed, as well as issues related to environmental regulation. The workshop was attended by a range of stakeholders from governments, universities, and industry. The sessions were entitled: legacy contaminants 1 organics; nanotoxicology; environmental effects monitoring; oil sands; BFR and other emerging contaminants; biomarkers; neuro and endocrine disrupting compounds; remediation of degraded aquatic environments; legacy contaminants 2 hydrocarbons; waterborne and diet-borne metals; water and sediment standards and criteria; pesticides; amphibians and wildlife toxicology; cyanobacteria; amphibians and wildlife toxicology 2; environmental risk assessment; genomics, protemics, and metabolomics; contamination in the Saguenay-St. Lawrence Marine park; legacy contaminants 3 organics and metals; community level indicators; toxicity tests; toxicity mechanisms; areas of concern; general aquatic toxicology; general legacy contaminants; emerging contaminants; cyanobacteria; amphibians and wildlife toxicology 1; omics in aquatic ecotoxicology; organism or population level indicators; and toxicity tests. The workshop featured 250 presentations, of which 24 have been catalogued separately for inclusion in this database. tabs., figs.

  1. The organic fraction of bubble-generated, accumulation mode Sea Spray Aerosol (SSA

    Directory of Open Access Journals (Sweden)

    R. L. Modini

    2010-03-01

    Full Text Available Recent studies have detected a dominant accumulation mode (~100 nm in the Sea Spray Aerosol (SSA number distribution. There is evidence to suggest that particles in this mode are composed primarily of organics. To investigate this hypothesis we conducted experiments on NaCl, artificial SSA and natural SSA particles with a Volatility-Hygroscopicity-Tandem-Differential-Mobility-Analyser (VH-TDMA. NaCl particles were atomiser generated and a bubble generator was constructed to produce artificial and natural SSA particles. Natural seawater samples for use in the bubble generator were collected from biologically active, terrestrially-affected coastal water in Moreton Bay, Australia. Differences in the VH-TDMA-measured volatility curves of artificial and natural SSA particles were used to investigate and quantify the organic fraction of natural SSA particles. Hygroscopic Growth Factor (HGF data, also obtained by the VH-TDMA, were used to confirm the conclusions drawn from the volatility data. Both datasets indicated that the organic fraction of our natural SSA particles evaporated in the VH-TDMA over the temperature range 170–200 °C. The organic volume fraction for 71–77 nm natural SSA particles was 8±6%. Organic volume fraction did not vary significantly with varying water residence time (40 s to 24 h in the bubble generator or SSA particle diameter in the range 38–173 nm. At room temperature we measured shape- and Kelvin-corrected HGF at 90% RH of 2.46±0.02 for NaCl, 2.35±0.02 for artifical SSA and 2.26±0.02 for natural SSA particles. Overall, these results suggest that the natural accumulation mode SSA particles produced in these experiments contained only a minor organic fraction, which had little effect on hygroscopic growth. Our measurement of 8±6% is an order of magnitude below two previous measurements of the organic fraction in SSA particles of comparable sizes. We stress that our results were obtained using coastal seawater and

  2. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Moreno, Laura, E-mail: laura.delgado@eez.csic.es; Wu, Laosheng; Gan, Jay

    2015-08-15

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C{sub free}). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r{sup 2} > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems.

  3. Application of isotope dilution method for measuring bioavailability of organic contaminants sorbed to dissolved organic matter (DOM)

    International Nuclear Information System (INIS)

    Delgado-Moreno, Laura; Wu, Laosheng; Gan, Jay

    2015-01-01

    Natural waters such as surface water and sediment porewater invariably contain dissolved organic matter (DOM). Association of strongly hydrophobic contaminants (HOCs) with DOM leads to decreased toxicity and bioavailability, but bioavailability of DOM-sorbed HOCs is difficult to measure. Current methods to estimate bioavailability of HOCs in water are based on only the freely dissolved concentration (C free ). The ignorance of the exchangeable fraction of HOCs sorbed on DOM may result in an underestimation of the toxicity potential of HOCs to aquatic organisms. Here we explore the applicability of an isotope dilution method (IDM) to measuring the desorption fraction of DOM-sorbed pyrene and bifenthrin and determining their exchangeable pool (E) as an approximation of bioavailability. E values, expressed as percentage of the total concentration, ranged between 0.80 and 0.92% for pyrene and 0.74 and 0.85% for bifenthrin, depending primarily on the amount of chemical in the freely dissolved form. However, between 34 and 78% of the DOM-sorbed pyrene was exchangeable. This fraction ranged between 23% and 82% for bifenthrin. The ability of IDM to predict bioavailability was further shown from a significant relationship (r 2 > 0.72, P < 0.0001) between E and bioaccumulation into Daphnia magna. Therefore, IDM may be used to improve the bioavailability measurement and risk assessment of HOCs in aquatic systems

  4. Hazard identification and risk characterization of bisphenols A, F and AF to aquatic organisms.

    Science.gov (United States)

    Tišler, Tatjana; Krel, Alja; Gerželj, Urška; Erjavec, Boštjan; Dolenc, Marija Sollner; Pintar, Albin

    2016-05-01

    Production of bisphenol A (BPA) analogues such as bisphenol F (BPF) and bisphenol AF (BPAF) has recently increased, due to clear evidence of adverse effects of BPA on humans and wildlife. Bisphenols (BPs) have already been released into aquatic environment without previous available information about potential adverse effects of BPs and their potential risk to aquatic ecosystems. In this study, lethal and sublethal effects of BPF and BPAF to bacteria, algae, crustacea and fish embryos were investigated and the results were compared to the adverse effects obtained for BPA. We found that BPAF was the most toxic compound to Daphnia magna, Danio rerio and Desmodesmus subspicatus; the lowest 72 h EC50 (median effective concentration) and 21 d NOEC (no observed effect concentration) values were determined at 2.2 mg/L regarding zebrafish hatching success and 0.23 mg/L of BPAF obtained for growth and reproduction of water fleas, respectively. In most cases, BPA was more toxic to D. magna, D. rerio and D. subspicatus in comparison to BPF, but pigmentation of zebrafish embryos after 48 h of exposure and reproduction of water fleas after 21-day D. magna reproductive test exposure to BPF were much more impaired. Risk quotients (measured environmental concentration/21 d NOEC) showed that BPA, BPF and BPAF are recently not chronically hazardous to the survival, reproduction and growth of water fleas in surface waters. On the other hand, we importantly show that currently present BPAF concentrations in surface waters could cause a potential ecological risk to aquatic organisms. In the near future, higher concentrations of BPF and BPAF in surface waters are anticipated and for this reason further testing using test systems with various aquatic species and endpoints are needed to provide additional information about toxic impacts of BPF and BPAF on aquatic biota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermal effects on aquatic organisms: an annotated bibliography of the 1976 literature

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (comp.)

    1978-05-01

    This bibliography, containing 784 annotated references on the effects of temperature on aquatic organisms, is part of an assessment of the literature on the effects of thermal power plants on the environment. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title (alphabetical listing of keywords-in-context of nontrivial words in the title).

  6. Thermal effects on aquatic organisms: an annotated bibliography of the 1977 literature

    International Nuclear Information System (INIS)

    Talmage, S.S.

    1978-12-01

    This bibliography, containing 537 references from the 1977 literature, is the seventh in a series of annotated bibliographies on the effects of heat on aquatic organisms. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. References in the bibliography are divided into three subject categories: marine systems, freshwater systems, and estuaries. The references are arranged alphabetically by first author. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title

  7. GULF OF MEXICO AQUATIC MORTALITY NETWORK (GMNET)

    Science.gov (United States)

    Five U.S. states share the northern coast of the Gulf, and each has a program to monitor mortalities of aquatic organisms (fish, shellfish, birds). However, each state has different standards, procedures, and documentation of mortality events. The Gulf of Mexico Aquatic Mortality...

  8. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Aquatic conditions

    Science.gov (United States)

    Warren E. Heilman

    1999-01-01

    This publication provides citizens, private and public organizations, scientists, and others with information about the aquatic conditions in or near national forests in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark-St. Francis National Forests in Arkansas. This report includes water quality analyses...

  10. Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mike, E-mail: mike.williams@csiro.au [CSIRO Land and Water, PMB No 2, Glen Osmond, SA, 5064 (Australia); Kookana, Rai [CSIRO Land and Water, PMB No 2, Glen Osmond, SA, 5064 (Australia)

    2010-08-01

    Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating {sup 12}C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with {sup 14}C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems.

  11. Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment

    International Nuclear Information System (INIS)

    Williams, Mike; Kookana, Rai

    2010-01-01

    Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating 12 C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with 14 C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems.

  12. Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices.

    Science.gov (United States)

    Oren, Adi; Chefetz, Benny

    2012-01-01

    Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Input related microbial carbon dynamic of soil organic matter in particle size fractions

    Science.gov (United States)

    Gude, A.; Kandeler, E.; Gleixner, G.

    2012-04-01

    This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input

  14. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction... formulation data: Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic...

  15. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction... formulation data. Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent...

  16. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... Solvent/solvent blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1...

  17. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the.... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1...

  18. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the... Solvent type Averageorganic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1...

  19. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the.... Solvent/solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1...

  20. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... HAP Mass Fraction for Petroleum Solvent Groups a You may use the mass fraction values in the following... type Average organic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1% xylene...

  1. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction values in the... solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass fraction...

  2. A method for calculation of dose per unit concentration values for aquatic biota

    International Nuclear Information System (INIS)

    Batlle, J Vives i; Jones, S R; Gomez-Ros, J M

    2004-01-01

    A dose per unit concentration database has been generated for application to ecosystem assessments within the FASSET framework. Organisms are represented by ellipsoids of appropriate dimensions, and the proportion of radiation absorbed within the organisms is calculated using a numerical method implemented in a series of spreadsheet-based programs. Energy-dependent absorbed fraction functions have been derived for calculating the total dose per unit concentration of radionuclides present in biota or in the media they inhabit. All radionuclides and reference organism dimensions defined within FASSET for marine and freshwater ecosystems are included. The methodology has been validated against more complex dosimetric models and compared with human dosimetry based on ICRP 72. Ecosystem assessments for aquatic biota within the FASSET framework can now be performed simply, once radionuclide concentrations in target organisms are known, either directly or indirectly by deduction from radionuclide concentrations in the surrounding medium

  3. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser

    NARCIS (Netherlands)

    McDowell, R.W.; Koopmans, G.F.

    2006-01-01

    A proportion of dissolved organic phosphorus (DOP) in soil leachates is readily available for uptake by aquatic organisms and, therefore, can represent a hazard to surface water quality. A study was conducted to characterise DOP in water extracts and soil P fractions of lysimeter soils (pasture

  4. Effect of physicochemical form on copper availability to aquatic organisms

    International Nuclear Information System (INIS)

    Harrison, F.L.

    1983-11-01

    Copper concentration and speciation were determined in influent and effluent waters collected from eight power stations that used copper alloys in their cooling systems. Quantities of copper associated with particles, colloids, and organic and inorganic ligands differed with the site, season, and mode of operation of the station. Under normal operating conditions, the differences between influent and effluent waters were generally small, and most of the copper was in bound (complexed) species. However, copper was high in concentration and present in labile species during start-up of water circulation through some cooling systems and during changeover from an open- to closed-cycle operation. Copper sensitivity of selected ecologically and economically important aquatic organisms was also evaluted. Our primary emphasis was on acute effects and most of the testing was performed under controlled laboratory conditions. However, sublethal effects of copper on a population of bluegills living in a power station cooling lake containing water of low pH were also assessed. The toxic response to copper differed with the species and life stage of the animal and with the chemical form of copper in the water

  5. Effects of exotic plantation forests on soil edaphon and organic matter fractions.

    Science.gov (United States)

    Xu, Gang; Liu, Yao; Long, Zhijian; Hu, Shanglian; Zhang, Yuanbin; Jiang, Hao

    2018-06-01

    There is uncertainty and limited knowledge regarding soil microbial properties and organic matter fractions of natural secondary forest accompanying chemical environmental changes of replacement by pure alien plantation forests in a hilly area of southwest of Sichuan province China. The aim of this study was to evaluate the impact of natural secondary forest (NSF) to pure Cryptomeria fortunei forest (CFF) and Cunninghamia lanceolata forest (CLF) on soil organic fractions and microbial communities. The results showed that the soil total phospholipid fatty acids (PLFAs), total bacteria and fungi, microbial carbon pool, organic recalcitrant carbon (C) and (N) fractions, soil microbial quotient and labile and recalcitrant C use efficiencies in each pure plantation were significantly decreased, but their microbial N pool, labile C and N pools, soil carbon dioxide efflux, soil respiratory quotient and recalcitrant N use efficiency were increased. An RDA analysis revealed that soil total PLFAs, total bacteria and fungi and total Gram-positive and Gram-negative bacteria were significantly associated with exchangeable Al 3+ , exchangeable acid, Al 3+ , available P and Mg 2+ and pH, which resulted into microbial functional changes of soil labile and recalcitrant substrate use efficiencies. Modified microbial C- and N-use efficiency due to forest conversion ultimately meets those of rapidly growing trees in plantation forests. Enlarged soil labile fractions and soil respiratory quotients in plantation forests would be a potential positive effect for C source in the future forest management. Altogether, pure plantation practices could provoke regulatory networks and functions of soil microbes and enzyme activities, consequently leading to differentiated utilization of soil organic matter fractions accompanying the change in environmental factors. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The role of dissolved organic matters in the aquatic photodegradation of atenolol

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Ji, Yuefei; Zhou, Lei; Zhang, Ya [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China); Yang, Xi, E-mail: yangxi@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The main reactive species in the photosensitization between atenolol and DOMs is {center_dot}OH. Black-Right-Pointing-Pointer Dissolved organic matter (DOM) can quench {center_dot}OH and screen light. Black-Right-Pointing-Pointer High yield of {center_dot}OH was observed with iron ions and DOM coexisting under irradiation. Black-Right-Pointing-Pointer SRFA can promote addition of {center_dot}OH on aromatic ring. - Abstract: Atenolol (ATL) is a photostable and hydrolysis resistant beta-blocker and has been frequently detected in natural water. In this study, mechanism on aquatic photodegradation of ATL was investigated with an emphasis on the role of dissolved organic matters (DOMs) as well as other natural water compositions (nitrate, bicarbonate and ferric ions). Significant acceleration of photodegradtion of ATL was observed in the presence of each DOMs added, namely Suwannee River Fulvic Acid (SRFA), Suwannee River Humic Acid (SRHA), Nordic Lake Fulvic Acid (NOFA) and Nordic Lake Humic Acid (NOHA). Hydroxyl radical ({center_dot}OH) was determined as the main reactive species in this process, instead of singlet oxygen or excited triplet of DOM. Addition of these four DOMs all inhibited photodegradation of ATL in nitrate solutions through reducing nitrated-derived {center_dot}OH and screening photons absorbed by nitrate. No loss of ATL was detected in bicarbonate solution with or without DOMs. Bicarbonate exhibited a scavenger of {center_dot}OH derived from DOMs. However, in the presence of iron species, photodegradation of ATL was significantly enhanced by the addition of each DOM, due to the high yield of {center_dot}OH in the photoprocess of Fe(III)-DOM complex. The photoproducts distribution of ATL demonstrated that SRFA promote the hydroxylation on aromatic ring in the presence of nitrate and reduce the ketone moiety to alcohol in the system of ferric ions. Our findings indicate that DOMs should be considered in

  7. Cold shock to aquatic organisms: guidance for power-plant siting, design, and operation

    International Nuclear Information System (INIS)

    Coutant, C.C.

    1977-01-01

    Problems of cold-shock damages to aquatic organisms have arisen at some condenser cooling-water discharges of thermal power stations when the warm-water releases have suddenly terminated. The basis for such damage lies in the exposure of resident organisms to a rapid decrease in temperature and a sustained exposure to low temperature that induces abnormal behavioral or physiological performance and often leads to death. Although some spectacular fish kills from cold shock have occurred, the present knowledge of the hydraulic and biological processes involved can provide guidance for the siting, design, and operation of power-plant cooling systems to minimize the likelihood of significant cold-shock effects. Preventing cold-shock damages is one consideration in minimizing overall environmental impacts of power-plant cooling and in balancing plant costs with environmental benefits

  8. Community effects of carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Velzeboer, I.; Kupryianchyk, D.; Peeters, E.T.H.M.; Koelmans, A.A.

    2011-01-01

    Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the

  9. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    Science.gov (United States)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  10. Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams

    Science.gov (United States)

    Jason B. Fellman; Eran Hood; Richard T. Edwards; Jeremy B. Jones

    2009-01-01

    Dissolved organic matter (DOM) is an important component of aquatic food webs. We compare the uptake kinetics for NH4-N and different fractions of DOM during soil and salmon leachate additions by evaluating the uptake of organic forms of carbon (DOC) and nitrogen (DON), and proteinaceous DOM, as measured by parallel factor (PARAFAC) modeling of...

  11. Radiocarbon and stable carbon isotope compositions of chemically fractionated soil organic matter in a temperate-zone forest

    International Nuclear Information System (INIS)

    Koarashi, Jun; Iida, Takao; Asano, Tomohiro

    2005-01-01

    To better understand the role of soil organic matter in terrestrial carbon cycle, carbon isotope compositions in soil samples from a temperate-zone forest were measured for bulk, acid-insoluble and base-insoluble organic matter fractions separated by a chemical fractionation method. The measurements also made it possible to estimate indirectly radiocarbon ( 14 C) abundances of acid- and base-soluble organic matter fractions, through a mass balance of carbon among the fractions. The depth profiles of 14 C abundances showed that (1) bomb-derived 14 C has penetrated the first 16 cm mineral soil at least; (2) Δ 14 C values of acid-soluble organic matter fraction are considerably higher than those of other fractions; and (3) a significant amount of the bomb-derived 14 C has been preserved as the base-soluble organic matter around litter-mineral soil boundary. In contrast, no or little bomb-derived 14 C was observed for the base-insoluble fraction in all sampling depths, indicating that this recalcitrant fraction, accounting for approximately 15% of total carbon in this temperate-zone forest soil, plays a role as a long-term sink in the carbon cycle. These results suggest that bulk soil organic matter cannot provide a representative indicator as a source or a sink of carbon in soil, particularly on annual to decadal timescales

  12. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  13. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-Current knowledge and suggestions for future research.

    Science.gov (United States)

    Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G

    2017-04-01

    Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO 2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of fauna, micro flora and aquatic organisms database at the vicinity of Gamma Green House in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nur Humaira Lau Abdullah; Mohd Zaidan Kandar; Phua Choo Kwai Hoe

    2012-01-01

    The biodiversity database of non-human biota which consisted of flora, fauna, aquatic organisms and micro flora at the vicinity of Gamma Greenhouse (GGH) in Malaysian Nuclear Agency is under development. In 2011, a workshop on biodiversity and sampling of flora and fauna by local experts had been conducted in BAB to expose the necessary knowledge to all those involved in this study. Since then, several field surveys had been successfully being carried out covering terrestrial and aquatic ecosystems in order to observe species distribution pattern and to collect the non-human biota samples. The surveys had been conducted according to standard survey procedures and the samples collected were preserved and identified using appropriate techniques. In this paper, the work on fauna, micro flora and aquatic organisms was presented. The fauna and micro flora specimens were kept in Biodiversity Laboratory in Block 44. Based on those field surveys several species of terrestrial vertebrate and invertebrate organisms were spotted. A diverse group of mushroom was found to be present at the study site. The presence of several aquatic zooplankton for example Cyclops, Nauplius; phytoplankton and bacteria for example Klebsiella sp, Enterobacter sp and others in the pond nearby proved that the pond ecosystem is in good condition. Through this study, the preliminary biodiversity list of fauna at the vicinity of the nuclear facility, GGH had been developed and the work will continue for complete baseline data development. Besides that, many principles and methodologies used in ecological survey had been learnt and applied but the skills involved still need to be polished through workshops, collaboration and consultation from local experts. Thus far, several agencies had been approached to gain collaboration and consultation such as Institut Perikanan Malaysia, UKM, UPM and UMT. (author)

  15. The fate of eroded soil organic carbon along a European transect – controls after deposition in terrestrial and aquatic systems

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    that the turnover of deposited C is significantly affected by soil and organic matter properties, and whether deposition occurs in terrestrial or aquatic environments. We sampled topsoils from 10 agricultural sites along a European transect, spanning a wide range of SOC and soil characteristics (e.g. texture......The potential fate of eroded soil organic carbon (SOC) after deposition is key to understand carbon cycling in eroding landscapes. Globally, large quantities of sediments and SOC are redistributed by soil erosion on agricul-tural land, particularly after heavy precipitation events. Deposition......, aggregation, C content, etc.). Turnover of SOC was determined for terrestrial and aquatic depositional conditions in a 10-week incubation study. Moreover, we studied the impact of labile carbon inputs (‘priming’) on SOC stability using 13C labelled cellulose. We evaluated potentially important controls...

  16. Radiobiological effects of fractionated intake of 3H-nucleosides by mammalian organism

    International Nuclear Information System (INIS)

    Chetchueva, M.Eh.

    1987-01-01

    Results of experimental study of fractionated intake of 3 H-TgP and 3 H-TsdP by mice organism are presented. As biological tests changes of testic mass and frequency of dominant lethal mutations (DLM) were chosen. Authetic difference in changes of testis mass indices was observed after a single, three-time and ten-time administration of 3 H-DgP to animal organism. During 10-time 3 H-TsdP incorporation 2.2 times as many cells died than in single intake of equal tritium activity. Similar result is obtained in experiment carried out according DLM technique. Necessity of accounting results of fractionated intake of tritium by mice organism in extrapolation to people is pointed out

  17. Toxicity of pentachlorophenol to aquatic organisms under naturally varying and controlled environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hedtke, S.F.; West, C.W.; Allen, K.N.; Norberg-King, T.J.; Mount, D.I.

    1986-06-01

    The toxicity of pentachlorophenol (PCP) was determined in the laboratory for 11 aquatic species. Tests were conducted seasonally in ambient Mississippi River water and under controlled conditions in Lake Superior water. Fifty-one acute toxicity tests were conducted, with LC50 values ranging from 85 micrograms/L for the white sucker Catastomus commersoni during the summer to greater than 7770 micrograms/L for the isopod Asellus racovitzai during the winter. The effect of PCP on growth and/or reproduction was determined for seven species. The most sensitive chronically exposed organisms were the cladoceran Ceriodaphnia reticulata and the snail Physa gyrina. The greatest variation in toxicity was due to species sensitivity. Within a given, season there was as much as a 40-fold difference in LC50 values between species. For any one species, the maximum variation in LC50 between seasons was approximately 14-fold. There were also substantial differences in acute-chronic relationships, with acute/chronic ratios ranging from greater than 37 for C. reticulata to 1 for Simocephalus vetulus. It is suggested that the composition of the aquatic community should be the most important consideration in estimating the potential environmental effects of PCP.

  18. Light fraction of soil organic matter under different management ...

    African Journals Online (AJOL)

    A study on light fraction organic matter was carried out on the soil from three different management systems namely; Gmelina arborea, Tectona grandis and Leucaena leucocephala plantations in the University of Agriculture, Abeokuta Nigeria. Soil samples were collected in each of the three management site at five auger ...

  19. Freshwater Aquatic Nuisance Species Impacts and Management Costs and Benefits at Federal Water Resources Projects

    Science.gov (United States)

    2006-09-01

    ERDC/TN ANSRP-06-3 September 2006 Freshwater Aquatic Nuisance Species Impacts and Management Costs and Benefits at Federal Water Resources...Cole, R. A. (2006). “ Freshwater aquatic nuisance species impacts and management costs and benefits at Federal Water resources projects,” ANSRP...Projects1 by Richard A. Cole THE ISSUE: A small fraction of the species that inhabit the nation’s fresh waters become aquatic nuisance species (ANS

  20. Nonlinear binding of phenanthrene to the extracted fulvic acid fraction in soil in comparison with other organic matter fractions and to the whole soil sample

    International Nuclear Information System (INIS)

    Liu Wenxin; Xu, Shanshan; Xing, Baoshan; Pan, Bo; Tao, Shu

    2010-01-01

    Fractions of soil organic matter in a natural soil were extracted and sorption (or binding) characteristics of phenanthrene on each fraction and to the whole sample were investigated. The organic carbon normalized single point sorption (or binding) coefficient followed lipid > humin (HM) > humic acid (HA) > fulvic acid (FA) > whole soil sample, while the nonlinear exponent exhibited lipid > FA > HA > whole soil sample > HM. FA showed nonlinear binding of phenanthrene as it often does with other fractions. HM and HA contributed the majority of organic carbon in the soil. The calculated sorption coefficients of the whole soil were about two times greater than the measured values at different equilibrium phenanthrene concentrations. As for phenanthrene, the sorption capacity and nonlinearity of the physically mixed HA-HM mixtures were stronger as compared to the chemically reconstituted HA-HM composite. This was attributed to (besides the conditioning effect of the organic solvents) interactions between HA and HM and acid-base additions during fractionation. - Nonlinear binding of phenanthrene to fulvic acid extracted from soil organic matter was found.

  1. An integrated colloid fractionation approach applied to the characterisation of porewater uranium-humic interactions at a depleted uranium contaminated site

    International Nuclear Information System (INIS)

    Graham, Margaret C.; Oliver, Ian W.; MacKenzie, Angus B.; Ellam, Robert M.; Farmer, John G.

    2008-01-01

    Methods for the fractionation of aquatic colloids require careful application to ensure efficient, accurate and reproducible separations. This paper describes the novel combination of mild colloidal fractionation and characterisation methods, namely centrifugal ultrafiltration, gel electrophoresis and gel filtration along with spectroscopic (UV-visible) and elemental (Inductively Coupled Plasma-Optical Emission Spectroscopy, Inductively Coupled Plasma-Mass Spectrometry) analysis, an approach which produced highly consistent results, providing improved confidence in these methods. Application to the study of the colloidal and dissolved components of soil porewaters from one soil at a depleted uranium (DU)-contaminated site revealed uranium (U) associations with both large (100 kDa-0.2 μm) and small (3-30 kDa) humic colloids. For a nearby soil with lower organic matter content, however, association with large (100 kDa-0.2 μm) iron (Fe)-aluminium (Al) colloids in addition to an association with small (3-30 kDa) humic colloids was observed. The integrated colloid fractionation approach presented herein can now be applied with confidence to investigate U and indeed other trace metal migration in soil and aquatic systems

  2. Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf.

    Science.gov (United States)

    Abraham, G; Yadav, R K; Kaushik, G K

    2015-04-01

    Azolla microphylla Kaulf. is an aquatic nitrogen fixing pteridophyte commonly found in aquatic habitats including paddy fields. Methanolic extract of the fronds of A. microphylla was subjected to partial purification by solvent partitioning with diethyl ether and ethyl acetate followed by hydrolysis, and further partitioning with ethyl acetate. The two fractions, thus obtained were tested for antibacterial activity. It was observed that the ethyl acetate fraction inhibited the growth of the pathogenic bacterium Xanthomonas oryzae. The GC-MS analysis of the ethyl acetate fraction showed several prominent peaks with retention time ranging from 8.83 to 45.54 min. A comparison of these peaks with the GC-MS libraries revealed that it could be eicosenes and heptadecanes with potential of antimicrobial activity.

  3. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – A review

    International Nuclear Information System (INIS)

    Augusto, Sofia; Máguas, Cristina; Branquinho, Cristina

    2013-01-01

    During the last decades, awareness regarding persistent organic pollutants (POPs), such dioxins and furans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), has become a cutting-edge topic, due to their toxicity, bioaccumulation and persistency in the environment. Monitoring of PCDD/Fs and PAHs in air and water has proven to be insufficient to capture deposition and effects of these compounds in the biota. To overcome this limitation, environmental biomonitoring using lichens and aquatic mosses, have aroused as promising tools. The main aim of this work is to provide a review of: i) factors that influence the interception and accumulation of POPs by lichens; ii) how lichens and aquatic bryophytes can be used to track different pollution sources and; iii) how can these biomonitors contribute to environmental health studies. This review will allow designing a set of guidelines to be followed when using biomonitors to assess environmental POP pollution. -- Highlights: •We've reviewed the use of lichens and mosses as POP biomonitors. •We've discussed the factors that influence accumulation of POPs in lichens. •We've shown how biomonitors have been used to track pollution sources. •We've designed guidelines for the use of biomonitors to assess POP pollution. -- This review fulfils the lack of knowledge regarding the use of lichens and aquatic mosses as biomonitors of POPs, providing a set of guidelines to be followed

  4. Thermal effects on aquatic organisms: an annotated bibliography of the 1977 literature

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, S.S. (comp.)

    1978-12-01

    This bibliography, containing 537 references from the 1977 literature, is the seventh in a series of annotated bibliographies on the effects of heat on aquatic organisms. The effects of thermal discharges at power plant sites are emphasized. Laboratory and field studies on temperature tolerance and the effects of temperature changes on reproduction, development, growth, distribution, physiology, and sensitivity to other stresses are included. References in the bibliography are divided into three subject categories: marine systems, freshwater systems, and estuaries. The references are arranged alphabetically by first author. Indexes are provided for author, keywords, subject category, geographic location of the study, taxon, and title (alphabetical listing of keywords-in-context of nontrivial words in the title).

  5. Fixation and localisation of manganese in some soft water organisms: I - Distribution of 54Mn in an ecologic system in fresh water; II - study by biochemical fractionation of manganese contained by isolated plant cells

    International Nuclear Information System (INIS)

    Magnaval, Robert; Lachet, Bernard; Gagnaire, Janine; Fourcy, Andre; Neuburger, Michel; Fer, Andre

    1968-12-01

    After having recalled that Manganese 54, an irradiation product of 54 Fe, has a sufficiently long radioactive period to be detected in atmospheric fallouts of nuclear explosions, but also in radioactive wastes produced by research centres, and is generally produced by corrosion of any enclosure submitted to neutron irradiation, the authors report the experimental study of a radioactive pollution of fresh water when this radio-element is a component of this pollution. Different containers are considered. They contain either water and sediments, or water and organic compounds and aquatic plants, or water and sediments and aquatic plants. A solution of 54 MnCl 2 of radioactive pollution is introduced in these containers and the authors study the decrease of radioactivity in water with respect to the considered ecosystem, the 54 Mn concentration in aquatic living species, and the distribution of 54 Mn after 43 days. In a second part, they report the study of the distribution of cellular manganese in isolated biochemical fractions by using the Schmidt and Thannhauser method. Due to the low content, the detection of this mineral nutrient requires a highly sensitive method: dosing of natural manganese by radio-activation

  6. Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China

    International Nuclear Information System (INIS)

    Yang Suwen; Yan Zhenguang; Xu Fanfan; Wang Shengrui; Wu Fengchang

    2012-01-01

    Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant. It has been detected in the environment and has shown to high toxicity to aquatic organisms. To date no aquatic life criteria for TBBPA have been proposed. This work compiled all literature toxicity data of TBBPA on Chinese aquatic species. Eight resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for TBBPA. Ten genera mean acute values and three genera mean chronic values to freshwater aquatic animals, as well as two genera toxicity values to aquatic plants were collected. A criterion maximum concentration of 0.1475 mg/L and a criterion continuous concentration of 0.0126 mg/L were derived based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in risk assessment of TBBPA in the ambient water environment. - Highlights: ► We collected all the published toxicity data of TBBPA to aquatic organisms. ► We performed acute and chronic toxicity testes with eight Chinese resident aquatic species. ► The acute and chronic water quality criteria of TBBPA were developed and validated. ► This work is valuable to predict the risks posed by TBBPA in ambient water environment. - An acute water quality criterion of 0.1475 mg/L and a chronic water quality criterion of 0.0126 mg/L for TBBPA in China were developed according to USEPA guidelines.

  7. Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices

    Science.gov (United States)

    Mills, G.A.; Vrana, B.; Allan, I.; Alvarez, D.A.; Huckins, J.N.; Greenwood, R.

    2007-01-01

    The use of passive sampling in monitoring pharmaceuticals and personal-care products (PPCPs) in the aquatic environment is discussed. The utility of passive sampling methods for monitoring the fraction of heavy metals and the biologically available fraction of non-polar organic priority pollutants is recognized and these technologies are being used in surveys of water quality. These devices are used to measure the dissolved fraction and they can yield information that can be used in the development of risk assessments models. These devices can also be used to locate illegal dumping and to monitor specific sources of input of PPCPs into the environment, or to monitor the effectiveness of water treatment processes in the removal of these compounds from wastewater. These devices can provide representative information at low cost which necessitate a combination of laboratory calibration and field studies for emerging pollutants.

  8. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Part 63—Default Organic HAP Mass Fraction for Solvents and Solvent Blends You may use the mass fraction.... If a solvent blend matches both the name and CAS number for an entry, that entry's organic HAP mass...

  9. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  10. Development of aquatic life criteria for nitrobenzene in China

    International Nuclear Information System (INIS)

    Yan Zhenguang; Zhang Zhisheng; Wang Hong; Liang Feng; Li Ji; Liu Hongling; Sun Cheng; Liang Lijun; Liu Zhengtao

    2012-01-01

    Nitrobenzene is a toxic pollutant and was the main compound involved in the Songhuajiang accident in 2007, one of the largest water pollution accidents in China in the last decade. No aquatic life criteria for nitrobenzene have previously been proposed. In this study, published toxicity data of nitrobenzene to Chinese aquatic species were gathered, and six resident Chinese aquatic organisms were used in toxicity tests to supplement the existing toxicity data for nitrobenzene. Seventeen genuses mean acute values, three genuses mean chronic values to freshwater aquatic animals, and six genus toxicity values to aquatic plants were collected in total. A criterion maximum concentration of 0.018 mg/L and a criterion continuous concentration of 0.001 mg/L were developed based on these data, according to the U.S. Environmental Protection Agency guidelines. These criteria may be useful in the determination of water quality standard of nitrobenzene. - Highlights: ► China is embarking on development of national water quality criteria system. ► Nitrobenzene is a valuable case in development of water quality criteria in China. ► Several Chinese resident aquatic organisms were chosen to be tested. ► The aquatic life criteria for nitrobenzene were developed. - An acute criterion of 0.018 mg/L and a chronic criterion of 0.001 mg/L for nitrobenzene in China were developed according to the U.S. Environmental Protection Agency (USEPA) guidelines.

  11. Assessing the stability of soil organic matter by fractionation and 13C isotope techniques

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kvitkina, A. K.; Evdokimov, I. V.; Bykhovets, S. S.; Stulin, A. F.; Kuzyakov, Ya. V.; Kudeyarov, V. N.

    2015-02-01

    Carbon pools of different stabilities have been separated from the soil organic matter of agrochernozem and agrogray soil samples. The work has been based on the studies of the natural abundance of the carbon isotope composition by C3-C4 transition using the biokinetic, size-density, and chemical fractionation (6 M HCl hydrolysis) methods. The most stable pools with the minimum content of new carbon have been identified by particle-size and chemical fractionation. The content of carbon in the fine fractions has been found to be close to that in the nonhydrolyzable residue. This pool makes up 65 and 48% of Corg in the agrochernozems and agrogray soils, respectively. The combination of the biokinetic approach with particle-size fractionation or 6 M HCl hydrolysis has allowed assessing the size of the medium-stable organic carbon pool with a turnover time of several years to several decades. The organic matter pool with this turnover rate is usually identified from the variation in the 13C abundance by C3-C4 transition. In the agrochernozems and agrogray soils, the medium-stable carbon pool makes up 35 and 46% of Corg, respectively. The isotope indication may be replaced by a nonisotope method to significantly expand the study of the inert and mediumstable organic matter pools in the geographical aspect, but this requires a comparative analysis of particle-size and chemical fractionation data for all Russian soils.

  12. Removal of Chromophoric Dissolved Organic Matter and Heavy Metals in a River-Sea System: Role of Aquatic Microgel Formation

    Science.gov (United States)

    Shiu, R. F.; Lee, C. L.

    2016-12-01

    Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.

  13. VASCULAR PLANTS AS ENGINEERS OF OXYGEN IN AQUATIC SYSTEMS

    Science.gov (United States)

    The impact of organisms on oxygen is one of the most dramatic examples of ecosystem engineering on Earth. In aquatic systems, which have much lower oxygen concentrations than the atmosphere, vascular aquatic plants can affect oxygen concentrations significantly not only on long t...

  14. Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes.

    Science.gov (United States)

    Ateia, Mohamed; Apul, Onur G; Shimizu, Yuta; Muflihah, Astri; Yoshimura, Chihiro; Karanfil, Tanju

    2017-06-20

    Natural organic matter (NOM) is a heterogeneous mixture of organic compounds that is omnipresent in natural waters. To date, the understanding of the adsorption of NOM components by carbon nanotubes (CNTs) is limited because of the limited number of comprehensive studies in the literature examining the adsorption of NOM by CNTs. In this study, 11 standard NOM samples from various sources were characterized, and their adsorption behaviors on four different CNTs were examined side-by-side using total organic carbon, fluorescence, UV-visible spectroscopy, and high-performance size-exclusion chromatography (HPSEC) analysis. Adsorption was influenced by the chemical properties of the NOM, including aromaticity, degree of oxidation, and carboxylic acidity. Fluorescence excitation-emission matrix (EEM) analysis showed preferential adsorption of decomposed and terrestrial-derived NOM compared to freshly produced and microbial-derived NOM. HPSEC analysis revealed preferential adsorption of fractions in the molecular weight range of 0.5-2 kDa for humic acids but in the molecular weight range of 1-3 kDa for all fulvic acids and reverse-osmosis isolates. However, the smallest characterized fraction (MW < 0.4 kDa) in all samples did not adsorb on the CNTs.

  15. Transfer of 226Ra, 228Ra, 210Pb and 210Po in aquatic organisms and food chain

    International Nuclear Information System (INIS)

    Yang Xiaotong; Weng Detong; Chen Wenyin; Chen Xiuyun; Chen Jixi; Zhao Shimin

    1998-01-01

    Objective: To find out the transfer regularities of 226 Ra, 228 Ra, 210 Pb and 210 Po, which are natural radionuclides in the aquatic organisms and food chain. Methods: Large amount of breed of representative aquatic products and their living waters and sediments were collected and treated according to routine experimental procedures. The contents of 226 Ra, 228 Ra, 210 Pb and 210 Po were detected in each sample. Measured data were analyzed statistically and pairwise comparisons were made to determine the differences between groups. Results: 226 Ra, 228 Ra and 210 Pb were mainly deposited in the bones (or shells), their concentration factors (CF) ranged from 10 2 to 10 3 ; the CF ranged only from 10 0 to 10 2 in the flesh. 210 Po was mainly deposited in the soft tissues, CF ranged from 10 2 to 10 4 ; especially in the stomachs and intestines of fishes, the value reached 10 4 . The cooking process did not impinge significantly on the transfer of 226 Ra, 228 Ra and 210 Pb in the food chain (P>0.05), but did significantly influence the transfer of 210 Po, especially in the freshwater fishes and shrimps. Paired comparison test of the activities between raw flesh and cooked flesh showed very significant difference (P 226 Ra, 228 Ra, 210 Pb and 210 Po. Even though the bones (or shells) of aquatic organisms contained relatively higher levels of 226 Ra, 228 Ra and 210 Pb, the cooking process does not significantly increase the radioactive contents in the foodstuffs. However, the cooking process does significantly influence the transfer of 210 Po. It does significantly increase the content of 210 Po in foodstuffs

  16. A study of chemical speciation of metals in aquatic bottom sediment ...

    African Journals Online (AJOL)

    Dele Olutona

    African Journal of Environmental Science and Technology Vol. 6(8), pp. 312-321, August .... each chemical fraction and potential risk of sediment- bound metals to the aquatic ..... Water chemistry of the Amazon River. Geochim. Cosmochim.

  17. Impact of Boron pollution to Biota Marine aquatic

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto-SBS; Imam Hamzah; Fepriadi

    2003-01-01

    Power plants and industrial facilities can release potentially harmful chemicals, like boron through direct aqueous discharges or cycling of cooling water to aquatic ecosystems environmental at plant surrounding. Boron is an essential trace element for the growth of marine biota, but can be toxic in excessive amount. Therefore will adversely affect of growth, reproduction or survival. Toxicity to aquatic organism, including vertebrates, invertebrates and plants can vary depending on the organism's life stage and environment. It is recommended that the maximum concentration of total boron for the protection of marine aquatic life should not exceed 1,2 mg B/L. Early stages of life cycle are more sensitive to boron than later ones, and the use of reconstituted water shows higher toxicity in lower boron concentrations than natural waters. (author)

  18. Data Basin Aquatic Center: expanding access to aquatic conservation data, analysis tools, people and practical answers

    Science.gov (United States)

    Osborne-Gowey, J.; Strittholt, J.; Bergquist, J.; Ward, B. C.; Sheehan, T.; Comendant, T.; Bachelet, D. M.

    2009-12-01

    The world’s aquatic resources are experiencing anthropogenic pressures on an unprecedented scale and aquatic organisms are experiencing widespread population changes and ecosystem-scale habitat alterations. Climate change is likely to exacerbate these threats, in some cases reducing the range of native North American fishes by 20-100% (depending on the location of the population and the model assumptions). Scientists around the globe are generating large volumes of data that vary in quality, format, supporting documentation, and accessibility. Moreover, diverse models are being run at various temporal and spatial scales as scientists attempt to understand previous (and project future) human impacts to aquatic species and their habitats. Conservation scientists often struggle to synthesize this wealth of information for developing practical on-the-ground management strategies. As a result, the best available science is often not utilized in the decision-making and adaptive management processes. As aquatic conservation problems around the globe become more serious and the demand to solve them grows more urgent, scientists and land-use managers need a new way to bring strategic, science-based, and action-oriented approaches to aquatic conservation. The Conservation Biology Institute (CBI), with partners such as ESRI, is developing an Aquatic Center as part of a dynamic, web-based resource (Data Basin; http: databasin.org) that centralizes usable aquatic datasets and provides analytical tools to visualize, analyze, and communicate findings for practical applications. To illustrate its utility, we present example datasets of varying spatial scales and synthesize multiple studies to arrive at novel solutions to aquatic threats.

  19. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zurita, Jorge L. [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Jos, Angeles [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Peso, Ana del; Salguero, Manuel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Camean, Ana M. [Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain); Lopez-Artiguez, Miguel [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Repetto, Guillermo [National Institute of Toxicology and Forensic Sciences, Av. Dr Fedriani s/n, 41009, Seville (Spain); Area of Toxicology, University of Seville, Prof. Garcia Gonzalez 2, 41012, Seville (Spain)], E-mail: repetto@us.es

    2007-11-15

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC{sub 50} of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress ({alpha}-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation.

  20. Toxicological assessment of indium nitrate on aquatic organisms and investigation of the effects on the PLHC-1 fish cell line

    International Nuclear Information System (INIS)

    Zurita, Jorge L.; Jos, Angeles; Peso, Ana del; Salguero, Manuel; Camean, Ana M.; Lopez-Artiguez, Miguel; Repetto, Guillermo

    2007-01-01

    Indium nitrate is mainly used as a semiconductor in batteries, for plating and other chemical and medical applications. There is a lack of available information about the adverse effects of indium compounds on aquatic organisms. Therefore, the toxic effects on systems from four trophic levels of the aquatic ecosystem were investigated. Firstly, the bacterium Vibrio fischeri, the alga Chlorella vulgaris and the cladoceran Daphnia magna were used in the toxicological evaluation of indium nitrate. The most sensitive model was V. fischeri, with a NOAEL of 0.02 and an EC 50 of 0.04 mM at 15 min. Although indium nitrate should be classified as harmful to aquatic organisms, it is not expected to represent acute risk to the aquatic biota. Secondly, PLHC-1 fish cell line was employed to investigate the effects and mechanisms of toxicity. Although protein content, neutral red uptake, methylthiazol metabolization, lysosomal function and acetylcholinesterase activity were reduced in cells, stimulations were observed for metallothionein levels and succinate dehydrogenase and glucose-6-phosphate dehydrogenase activities. No changes were observed in ethoxyresorufin-O-deethylase activity. To clarify the main events in PLHC-1 cell death induced by indium nitrate, nine modulators were applied. They were related to oxidative stress (α-tocopherol succinate, mannitol and sodium benzoate), disruption of calcium homeostasis (BAPTA-AM and EGTA), thiol protection (1,4-dithiotreitol), iron chelation (deferoxiamine) or regulation of glutathione levels (2-oxothiazolidine-4-carboxylic acid and malic acid diethyl ester). The main morphological alterations were hydropic degeneration and loss of cells. At least, in partly, toxicity seems to be mediated by oxidative stress, and particularly by NADPH-dependent lipid peroxidation

  1. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Li, Min; Zhang, Jing; Wang, Guangqian; Yang, Haijun; Whelan, Michael J.; White, Sue M.

    2013-01-01

    Highlights: ► Chemical sequential extraction and 31 P NMR spectroscopy were used for organic P analysis. ► Organic P includes orthophosphate, monoester and diester phosphate and pyrophosphate. ► Highly resistant organic P and monoester phosphate were the dominant organic P. ► HCl pretreatment can remove most inorganic P and increase organic P recovery rate. ► A comprehensive organic P chemical sequential fractionation approach was proposed. - Abstract: Organic P (OP) plays an important role in soil P cycling and is a potential P source for wetland plants. In this study, a modified chemical sequential fractionation method and 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR) of NaOH–EDTA extracts were used to examine the distribution of organic P fractions and compounds in soil profiles of the Beijing Yeyahu Wetland, China. The influence of acid treatment prior to NaOH–EDTA extraction on 31 P NMR spectra was also investigated. Results show that highly resistant OP was the major class of organic P. The rank order of organic P fractions was highly resistant OP (on average accounting for 68.5% of total OP) > moderately resistant OP (15.8%m of total OP) > moderately labile OP (11.4% of total OP) > labile OP (4.3% of total OP). Most of the organic P fractions decreased with soil depth due to the accumulation of plant residues in surface soils and the deposition and diagenesis of soils. Moderately (r = 0.586, p < 0.01) and highly (r = 0.741, p < 0.01) resistant OP fractions were positively correlated with soil organic matter. Phosphorus compounds including orthophosphate (23–74.6% of total P in spectra), monoester phosphate (18.6–76%), diester phosphate (nil-7.8%) and pyrophosphate (nil-6.7%) were characterized using 31 P NMR. Monoester-P was the dominant soil organic P compound identified. The proportion of monoester-P increased significantly in NaOH–EDTA extracts with HCl pretreatment and it was confirmed by chemical analysis. Therefore, it

  2. Isolation and characterization of biochar-derived organic matter fractions and their phenanthrene sorption.

    Science.gov (United States)

    Jin, Jie; Sun, Ke; Liu, Wei; Li, Shiwei; Peng, Xianqiang; Yang, Yan; Han, Lanfang; Du, Ziwen; Wang, Xiangke

    2018-05-01

    Chemical composition and pollutant sorption of biochar-derived organic matter fractions (BDOMs) are critical for understanding the long-term environmental significance of biochar. Phenanthrene (PHE) sorption by the humic acid-like (HAL) fractions isolated from plant straw- (PLABs) and animal manure-based (ANIBs) biochars, and the residue materials (RES) after HAL extraction was investigated. The HAL fraction comprised approximately 50% of organic carbon (OC) of the original biochars. Results of XPS and 13 C NMR demonstrated that the biochar-derived HAL fractions mainly consisted of aromatic clusters substituted by carboxylic groups. The CO 2 cumulative surface area of BDOMs excluding PLAB-derived RES fractions was obviously lower than that of corresponding biochars. The sorption nonlinearity of PHE by the fresh biochars was significantly stronger than that of the BDOM fractions, implying that the BDOM fractions were more chemically homogeneous. The BDOMs generally exhibited comparable or higher OC-normalized distribution coefficients (K oc ) of PHE than the original biochars. The PHE logK oc values of the fresh biochars correlated negatively with the micropore volumes due to steric hindrance effect. In contrast, a positive relationship between the sorption coefficients (K d ) of BDOMs and the micropore volumes was observed in this study, suggesting that pore filling could dominate PHE sorption by the BDOMs. The positive correlation between the PHE logK oc values of the HAL fractions and the aromatic C contents indicates that PHE sorption by the HAL fractions was regulated by aromatic domains. The findings of this study improve our knowledge of the evolution of biochar properties after application and its potential environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The fractional quantum Hall effect goes organic

    International Nuclear Information System (INIS)

    Smet, Jurgen

    2000-01-01

    Physicists have been fascinated by the behaviour of two-dimensional electron gases for the past two decades. All of these experiments were performed on inorganic semiconductor devices, most of them based on gallium arsenide. Indeed, until recently it was thought that the subtle effects that arise due to electron-electron interactions in these devices required levels of purity that could not be achieved in other material systems. However, Hendrik Schoen, Christian Kloc and Bertram Batlogg of Bell Laboratories in the US have now observed the fractional quantum Hall effect - the most dramatic signature of electron-electron interactions - in two organic semiconductors. (U.K.)

  4. Calculation of combustible waste fraction (CWF) estimates used in organics safety issue screening

    International Nuclear Information System (INIS)

    Heasler, P.G.; Gao, F.; Toth, J.J.

    1998-08-01

    This report describes how in-tank measurements of moisture (H 2 O) and total organic carbon (TOC) are used to calculate combustible waste fractions (CWF) for 138 of the 149 Hanford single shell tanks. The combustible waste fraction of a tank is defined as that proportion of waste that is capable of burning when exposed to an ignition source. These CWF estimates are used to screen tanks for the organics complexant safety issue. Tanks with a suitably low fraction of combustible waste are classified as safe. The calculations in this report determine the combustible waste fractions in tanks under two different moisture conditions: under current moisture conditions, and after complete dry out. The first fraction is called the wet combustible waste fraction (wet CWF) and the second is called the dry combustible waste fraction (dry CWF). These two fractions are used to screen tanks into three categories: if the wet CWF is too high (above 5%), the tank is categorized as unsafe; if the wet CWF is low but the dry CWF is too high (again, above 5%), the tank is categorized as conditionally safe; finally, if both the wet and dry CWF are low, the tank is categorized as safe. Section 2 describes the data that was required for these calculations. Sections 3 and 4 describe the statistical model and resulting fit for dry combustible waste fractions. Sections 5 and 6 present the statistical model used to estimate wet CWF and the resulting fit. Section 7 describes two tests that were performed on the dry combustible waste fraction ANOVA model to validate it. Finally, Section 8 presents concluding remarks. Two Appendices present results on a tank-by-tank basis

  5. Assessing exposure risks for aquatic organisms posed by Tamiflu use under seasonal influenza and pandemic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Lin, Chia-Jung; Liao, Chung-Min

    2014-01-01

    Environmental pollution by anti-influenza drugs is increasingly recognized as a threat to aquatic environments. However, little is known about empirical data on risk effects posed by environmentally relevant concentrations of anti-influenza drug based on recently published ecotoxicological researches in Taiwan. Here we linked ecotoxicology models with an epidemiological scheme to assess exposure risks of aquatic organisms and environmental hazards posed by antiviral oseltamivir (Tamiflu) use in Taiwan. Built on published bioassays, we used probabilistic risk assessment model to estimate potential threats of environmentally relevant hazards on algae, daphnid, and zerbrafish. We found that Tamiflu use was unlikely to pose a significant chronic environmental risk to daphnia and zebrafish during seasonal influenza. However, the chronic environmental risk posed by Tamiflu use during pandemic was alarming. We conclude that no significant risk to algal growth was found during seasonal influenza and high pandemic Tamiflu use. -- Highlights: • Environmentally relevant concentrations of anti-influenza drug have ecotoxicologically important effects. • Tamiflu is unlikely to pose a significant chronic environmental risk during seasonal influenza. • Chronic environmental risk posed by Tamiflu during pandemic is alarming. • Tertiary process in sewage treatment plants is crucial in mitigating Tamiflu exposure risk. -- A probabilistic framework can be used for assessing exposure risks posed by environmentally relevant concentrations of anti-influenza drug in aquatic ecosystems

  6. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Science.gov (United States)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  7. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    Science.gov (United States)

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  8. Particle-size fractionation and stable carbon isotope distribution applied to the study of soil organic matter dynamics

    International Nuclear Information System (INIS)

    Cerri, C.; Feller, C.; Balesdent, J.; Victoria, R.; Plenecassagne, A.

    1985-01-01

    The present Note concerns the dynamics of organic matter in soils under forest (C 3 -type vegetation) and 12 and 50 years old sugar-cane (C 4 -type vegetation) cultivation. The decomposition rate of ‘forest organic matter” and the accumulation rate of “sugar-cane organic matter” are estimated through 13 C measurements of total soil and different organic fractions (particle-size, fractionation) [fr

  9. Are sugarcane leaf-detritus well colonized by aquatic macroinvertebrates?

    Directory of Open Access Journals (Sweden)

    Luciene Aparecida Leite-Rossi

    Full Text Available AIM: The aim was to compare the kinetics of decomposition and the colonization of leaf litter of two plant species, the native Talauma ovata (pinha-do-brejo and the exotic Saccharum officinarum (sugarcane, by aquatic macroinvertebrates; METHODS: From each substrate, three recipients of colonization were taken from a stream, and the specimens identified to the lowest taxonomic level on days 7, 15, 34, 44, 61 and 75. The debris was weighed at the beginning and end of the experiment and determined their cell wall fractions; RESULTS: The coefficients of mineralization indicated higher velocity decay of organic matter refractory in T. ovata. There was no difference in taxonomic structure of macroinvertebrates, between the two substrates, but the community exhibited distinct functional feeding groups in the peak of colonization, with a greater number of shredders in T. ovata. The successive states of decomposition of the two plant detritus showed distinct macroinvertebrate densities; CONCLUSIONS: The amount and state of the plant biomass were important factors influencing the density and diversity of the macroinvertebrate fauna throughout the process of organic decomposition.

  10. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus

    NARCIS (Netherlands)

    Laarhoven, Bob; Elissen, H.J.H.; Temmink, H.; Buisman, C.J.N.

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water

  11. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems

    Directory of Open Access Journals (Sweden)

    Francisco Sánchez-Bayo

    2016-11-01

    Full Text Available The widespread use of systemic neonicotinoid insecticides in agriculture results first in contamination of the soil of the treated crops, and secondly in the transfer of residues to the aquatic environment. The high toxicity of these insecticides to aquatic insects and other arthropods has been recognized, but there is little awareness of the impacts these chemicals have on aquatic environments and the ecosystem at large. Recent monitoring studies in several countries, however, have revealed a world-wide contamination of creeks, rivers and lakes with these insecticides, with residue levels in the low μg/L (ppb range. The current extent of aquatic contamination by neonicotinoids is reviewed first, and the findings contrasted with the known acute and chronic toxicity of neonicotinoids to various aquatic organisms. Impacts on populations and aquatic communities, mostly using mesocosms, are reviewed next to identify the communities most at risk from those that undergo little or no impact. Finally, the ecological links between aquatic and terrestrial organisms are considered. The consequences for terrestrial vertebrate species that depend mainly on this food source are discussed together with impacts on ecosystem function. Gaps in knowledge stem from difficulties in obtaining long-term experimental data that relates the effects on individual organisms to impacts on populations and ecosystems. The paper concludes with a summary of findings and the implications they have for the larger ecosystem.

  12. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels

    International Nuclear Information System (INIS)

    Komatsu, Kenshi; Higuchi, Masataka; Sakka, Masatoshi

    1981-01-01

    Accumulation of tritium in aquatic organisms was estimated through a model food chain such as; tritiated water (THO) → diatoms → brine shrimps → Japanese killifish. Tritium accumulations in each organism as organic bound form are expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (μCi/gH) to that in water (μCi/gH). The maximum R values were 0.5 in diatoms, Chaetoceros gracilis, 0.5 in brine shrimps, Artamia salina, and 0.32 in Japanese killifish, Oryzias latipes under the growing condition where tritium accumulation took place from tritiated water without tritiated diets. Brine shrimps and Japanese killifish, which grew from larvae to adult in tritiated sea water with feeding on tritiated diets (model food chain), had the R value at 0.70 and 0.67 respectively, indicating that more tritium accumulation in consumer populations with tritiated diets than those without tritiated diets. In addition, the R values of each organ of Japanese killifish, of DNA and the nucleotides purified from brine shrimps growing under the condition with or without our model food chain were measured to estimate the tritium distribution in the body or various components of the organism. These results did not indicate the seeking characteristic of tritium to some specific organs of compounds. (author)

  13. Accumulation of tritium in aquatic organisms through a food chain with three trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, K.; Higuchi, M.; Sakka, M. (Tohoku Univ., Sendai (Japan). School of Medicine)

    1981-06-01

    Accumulation of tritium in aquatic organisms was estimated through a model food chain such as; tritiated water (THO) ..-->.. diatoms ..-->.. brine shrimps ..-->.. Japanese killifish. Tritium accumulations in each organism as organic bound form are expressed as the R value which is defined as the ratio of tritium specific activity in lyophilized organisms (..mu..Ci/gH) to that in water (..mu..Ci/gH). The maximum R values were 0.5 in diatoms, Chaetoceros gracilis, 0.5 in brine shrimps, Artamia salina, and 0.32 in Japanese killifish, Oryzias latipes under the growing condition where tritium accumulation took place from tritiated water without tritiated diets. Brine shrimps and Japanese killifish, which grew from larvae to adult in tritiated sea water with feeding on tritiated diets (model food chain), had the R value at 0.70 and 0.67 respectively, indicating that more tritium accumulation in consumer populations with tritiated diets than those without tritiated diets. In addition, the R values of each organ of Japanese killifish, of DNA and the nucleotides purified from brine shrimps growing under the condition with or without our model food chain were measured to estimate the tritium distribution in the body or various components of the organism. These results did not indicate the seeking characteristic of tritium to some specific organs of compounds.

  14. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Large Appliances Pt. 63, Subpt. NNNN, Table 3 Table 3 to Subpart NNNN of Part 63—Default Organic HAP.../solvent blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene...

  15. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    International Nuclear Information System (INIS)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.R.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10 -7 to 10 -4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs. - Concentrations of manufactured carbon-based nanoparticles in sediments and soils will be negligible compared to levels of black carbon (soot) nanoparticles

  16. Ecotoxicological Assessment of Aquatic Genotoxicity Using the Comet Assay

    Directory of Open Access Journals (Sweden)

    KHUSNUL YAQIN

    2006-09-01

    Full Text Available Comet assay is a novel biological analysis, which is a sensitive, flexible, simple, rapid, and inexpensive method to assess aquatic genotoxicant. Since Singh and co-workers developed the method in 1988, its use has increased exponentially in various fields. This review discourses on the application of this assay in aquatic ecosystems. Various types of cells from various aquatic organisms have been tested by various genotoxicant both direct- and indirect-acting using the comet assay. The applications of this assay suggest that it is a useful assay to assess aquatic genotoxicants. However, there are some factors, which should be taken into account when using this assay as aquatic ecotoxicological assessment device such as inter-animal and cell variability.

  17. 40 CFR Table 3 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 3 Table 3 to Subpart RRRR of Part 63—Default Organic HAP Mass... blend CAS. No. Average organic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene 108-88...

  18. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Furniture Pt. 63, Subpt. RRRR, Table 4 Table 4 to Subpart RRRR of Part 63—Default Organic HAP Mass... Average organic HAP mass fraction Typical organic percent HAP, by mass Aliphatic 2 0.03 1% Xylene, 1...

  19. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Large Appliances Pt. 63, Subpt. NNNN, Table 4 Table 4 to Subpart NNNN of Part 63—Default Organic HAP... type Average organic HAP mass fraction Typical organic HAP, percent by mass Aliphatic b 0.03 1% Xylene...

  20. Application of adenylate energy charge to problems of environmental impact assessment in aquatic organisms

    Science.gov (United States)

    Ivanovici, A. M.

    1980-03-01

    Various physiological and biochemical methods have been proposed for assessing the effects of environmental perturbation on aquatic organisms. The success of these methods as diagnostic tools has, however, been limited. This paper proposes that adenylate energy charge overcomes some of these limitations. The adenylate energy charge (AEC) is calculated from concentrations of adenine nucleotides ([ATP+½ADP]/[ATP+ADP+AMP]), and is a reflection of metabolic potential available to an organism. Several features of this method are: correlation of specific values with physiological condition or growth state, a defined range of values, fast response times and high precision. Several examples from laboratory and field experiments are given to demonstrate these features. The test organisms used (mollusc species) were exposed to a variety of environmental perturbations, including salinity reduction, hydrocarbons and low doses of heavy metal. The studies performed indicate that the energy charge may be a useful measure in the assessment of environmental impact. Its use is restricted, however, as several limitations exist which need to be fully evaluated. Further work relating values to population characteristics of multicellular organisms needs to be completed before the method can become a predictive tool for management.

  1. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France.

    Science.gov (United States)

    Gentès, Sophie; Maury-Brachet, Régine; Guyoneaud, Rémy; Monperrus, Mathilde; André, Jean-Marc; Davail, Stéphane; Legeay, Alexia

    2013-05-01

    Mercury (Hg) is considered as an important pollutant for aquatic systems as its organic form, methylmercury (MeHg), is easily bioaccumulated and bioamplified along food webs. In various ecosystems, aquatic periphyton associated with macrophyte was identified as an important place for Hg storage and methylation by microorganisms. Our study concerns temperate aquatic ecosystems (South Western France) colonized by invasive macrophytes and characterized by high mercury methylation potentials. This work establishes original data concerning Hg bioaccumulation in organisms (plants, crustaceans, molluscs and fish) from five contrasting ecosystems. For low trophic level species, total Hg (THg) concentrations were low (from 27±2ngTHgg(-1)dw in asiatic clam Corbicula fluminea to 418±114ngTHgg(-1)dw in crayfish Procambarus clarkii). THg concentrations in some carnivorous fish (high trophic level) were close to or exceeded the International Marketing Level (IML) with values ranging from 1049±220ngTHgg(-1)dw in pike perch muscle (Sander lucioperca) to 3910±1307ngTHgg(-1)dw in eel muscle (Anguilla Anguilla). Trophic levels for the individuals were also evaluated through stable isotope analysis, and linked to Hg concentrations of organisms. A significant Hg biomagnification (r(2)= 0.9) was observed in the Aureilhan lake, despite the absence of top predator fish. For this site, Ludwigia sp. periphyton, as an entry point of Hg into food webs, is a serious hypothesis which remains to be confirmed. This study provides a first investigation of Hg transfer in the ecosystems of south western France and allows the assessment of the risk associated with the presence of Hg in aquatic food webs. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Temporal change in the distribution patterns of hexachlorobenzene and dichlorodiphenyltrichloroethane among various soil organic matter fractions

    International Nuclear Information System (INIS)

    Zhang Jingjing; Wen Bei; Shan Xiaoquan; Zhang Shuzhen; Khan, Shahamat U.

    2007-01-01

    Residence time-dependent distribution patterns of hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDT) among different soil organic matter fractions of three Chinese soils were investigated. Soil organic matter (SOM) was fractionated into fulvic acid (FA), humic acid (HA), bound-humic acid (BHA), lipid, and insoluble residue (IR) fractions using methyl isobutyl ketone (MIBK) method. Results revealed that as the residence time prolonged, the amounts of HCB and DDT in the FA, HA and BHA fractions decreased, while those in the lipid and IR fractions increased. One- and two-compartment first order, and one- and two-parameter pore-diffusion kinetic models were used to describe the mobility of HCB and DDT from the FA, HA and BHA fractions. The results suggest that excellent agreements were achieved between the experimental data and fits to the two-compartment first order kinetic model (R 2 > 0.97). The transfer rates of HCB and DDT followed the order FA > HA > BHA. - HCB and DDT tend to transfer from FA, HA and BHA fractions to lipid and IR fractions with increasing residence time

  3. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements

    Directory of Open Access Journals (Sweden)

    Krzyżewska Iwona

    2016-03-01

    Full Text Available The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids, or they can adsorb environmental pollutants (heavy metal ions, organic compounds. Nanosilver (nAg is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

  4. A comprehensive air quality investigation at an aquatic centre: Indoor/outdoor comparisons.

    Science.gov (United States)

    Tolis, Evangelos I; Panaras, Giorgos; Bartzis, John G

    2018-06-01

    Air quality and comfort parameters in a naturally ventilated aquatic centre were studied in relation to the outdoor pollution levels. Simultaneous measurements of PM 2.5, as well as of volatile organic compounds, were carried out for the indoor and outdoor environment of the aquatic centre. The chemical analysis of ionic species and trace elements associated with particulate matter was also performed. In addition, automated analyzer for NO 2 and O 3 was used in order to record the indoor and outdoor levels of these pollutants. Analysis of diurnal variation of the pollutants' concentration was applied to the collected data, allowing the identification of potential variation on the sources affecting the indoor air quality. PM 2.5 concentration was almost two times higher indoors than outdoors with average values of 13.96 and 6.78 μg/m 3 , respectively. Concerning the ion fraction of PM 2.5, SO 4 2- and Ca 2+ were the ions with higher concentration indoors with values of 1.06 and 0.93 μg/m 3 , respectively, while the percentage of Cl - to the PM 2.5 fraction of the indoor atmosphere (9%) was too high than outdoor ones (1%). These results showed that indoor air of swimming pool concerning PM 2.5 and ionic species is mainly affected by the chlorination process along with the comfort conditions (high relative humidity) created during the operation of the facility. The common volatile organic compound concentrations at indoor air are generally in higher levels, compared to the outdoor air with p,m-xylene and toluene to be the substances with the higher concentration for indoor and outdoor area, respectively (7.80 and 1.57 μg/m 3 ); nevertheless, values were rather low compared with the findings of other studies. Also, they clearly demonstrate a diurnal variation as a result of poor ventilation during night. As it was expected, chloroform showed the highest concentration compared to the other volatile organic compounds with values ranging from 3.35 to 135.89 μg/m 3

  5. Effect of pesticides on microbial communities in container aquatic habitats

    Science.gov (United States)

    Mosquitoes develop in a variety of aquatic habitats and feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to agricultural chemicals. We used a microcosm approach to examine ...

  6. Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite

    Science.gov (United States)

    Heckman, K.; Grandy, A. S.; Gao, X.; Keiluweit, M.; Wickings, K.; Carpenter, K.; Chorover, J.; Rasmussen, C.

    2013-11-01

    Solid and aqueous phase Al species are recognized to affect organic matter (OM) stabilization in forest soils. However, little is known about the dynamics of formation, composition and dissolution of organo-Al hydroxide complexes in microbially-active soil systems, where plant litter is subject to microbial decomposition in close proximity to mineral weathering reactions. We incubated gibbsite-quartz mineral mixtures in the presence of forest floor material inoculated with a native microbial consortium for periods of 5, 60 and 154 days. At each time step, samples were density separated into light (2.0 g cm-3) fractions. The light fraction was mainly comprised of particulate organic matter, while the intermediate and heavy density fractions contained moderate and large amounts of Al-minerals, respectively. Multi-method interrogation of the fractions indicated the intermediate and heavy fractions differed both in mineral structure and organic compound composition. X-ray diffraction analysis and SEM/EDS of the mineral component of the intermediate fractions indicated some alteration of the original gibbsite structure into less crystalline Al hydroxide and possibly proto-imogolite species, whereas alteration of the gibbsite structure was not evident in the heavy fraction. DRIFT, Py-GC/MS and STXM/NEXAFS results all showed that intermediate fractions were composed mostly of lignin-derived compounds, phenolics, and polysaccharides. Heavy fraction organics were dominated by polysaccharides, and were enriched in proteins, N-bearing compounds, and lipids. The source of organics appeared to differ between the intermediate and heavy fractions. Heavy fractions were enriched in 13C with lower C/N ratios relative to intermediate fractions, suggesting a microbial origin. The observed differential fractionation of organics among hydroxy-Al mineral types suggests that microbial activity superimposed with abiotic mineral-surface-mediated fractionation leads to strong density

  7. Effects of radioactive nuclides on the reproduction of aquatic organisms

    International Nuclear Information System (INIS)

    Egami, N.

    1979-01-01

    Among various organisms in aquatic environments, fishes are more radiosensitive and critical creatures in terms of the biological effects of radionuclides on the ecosystem. The hatchability of fish eggs is not very sensitive criterion for radiation injury. The differentiation and development of the germ cells of fish embryos are inhibited by the small dose of radiation, and there is some possibility that they are more sensitive indicators of radiation effects. Chromosome aberration is used as an indicator of the effect of small dose of radiation in both cultured cells and cleaved egg cells of fishes. The late effects of radiation have been seen in fishes one or more years after the exposure to the relatively small dose of radiation. The biological materials for detecting the effect of radiation on the quantitative base in future in vitro and in vivo have been established. Current studies are directed toward finding more sensitive indicators of radiation effects, estimating more quantitatively the late effects of radiation on fishes, and analyzing the mechanism of radiation injuries. (Yamashita, S.)

  8. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  9. Immunomodulatory effects of aqueous and organic fractions from Petiveria alliacea on human dendritic cells.

    Science.gov (United States)

    Santander, Sandra Paola; Hernández, John Fredy; Barreto, Claudia Cifuentes; Cifuentes B, Claudia; Masayuki, Aoki; M, Aoki; Moins-Teisserenc, Hélène; H, Moins-Teisserenc; Fiorentino, Susana

    2012-01-01

    Petiveria alliacea is a plant traditionally known for its anti-inflammatory and anti-tumor activities; however, the molecular and cellular mechanisms of its immunomodulatory properties are still unknown. Dendritic cells (DC) promote adaptive immune response by activating T lymphocytes, inducing an effector response or tolerance depending on the DC differentiation level. Herein, we evaluated the immunomodulatory activity of aqueous and organic plant fractions from P. alliacea using human monocyte-derived dendritic cells. The phenotype, cytokine secretion and gene expression were estimated after treatment with the plant fractions. We found that P. alliacea aqueous fraction induced morphological changes and co-stimulatory expression of CD86, indicating partial DC maturation. In addition, pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, IL-10, IL-12p70, and TNF-α were secreted. The fraction also increased NF-κB gene expression while down-regulating TGFβ gene expression. These results suggest that the aqueous fraction can induce partial DC activation, a situation that can be relevant in tolerance induction. It is important to state that the organic fraction by itself does not show any immunomodulatory activity. This study provides evidence for possible immunomodulatory activity of P. alliacea extracts which has been used in traditional medicine in Colombia.

  10. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals

    DEFF Research Database (Denmark)

    Thomas, Paul; Dawick, James; Lampi, Mark

    2015-01-01

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the p...

  11. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  12. Comparison of metal toxic impacts between aquatic and terrestrial organisms: is the free ion concentration a sufficient descriptor?

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Rosenbaum, Ralph K.; Larsen, Henrik Fred

    2011-01-01

    Characterization of metal toxic impacts in comparative risk assessment and life cycle impact assessment (LCIA) should take into account metal speciation and interactions with soil/water organic constituents, because these mechanisms control metal bioavailability and may influence their toxic...... that the free metal ion is an appropriate “general”descriptor of metal toxicity. Results for 128 laboratory tests on Daphnia magna exposed to copper ions (Cu2+) in water show that variation of several orders of magnitude are observed between the toxicity tests. These variations may be a result of the inability...... of magnitude difference occur for the extreme case of barley (Hordeum vulgare). Given the scarcity of terrestrial effect data compared to aquatic data, reliable and transparent, mechanistic-based predictions of terrestrial toxic impacts from aquatic effect data would be an important step ahead in the context...

  13. Aquatic animal telemetry: A panoramic window into the underwater world

    DEFF Research Database (Denmark)

    Hussey, Nigel E.; Kessel, Steven T.; Aarestrup, Kim

    2015-01-01

    The distribution and interactions of aquatic organisms across space and time structure our marine, freshwater, and estuarine ecosystems. Over the past decade, technological advances in telemetry have transformed our ability to observe aquatic animal behavior and movement. These advances are now p...... individuals, populations, and entire ecosystems. The next advance in aquatic telemetry will be the development of a global collaborative effort to facilitate infrastructure and data sharing and management over scales not previously possible....

  14. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France.

    Science.gov (United States)

    St-Pierre, S; Chambers, D B; Lowe, L M; Bontoux, J G

    1999-09-01

    Aquatic biota in the Rhone River downstream of the Marcoule nuclear complex in France are exposed to natural sources of radiation and to radioactivity released from the Marcoule complex. A simple conservative screening level model was used to estimate the range of concentrations in aquatic media (water, sediments, and aquatic organisms) of both artificial and natural radionuclides and the consequent absorbed (whole body) dose rates for aquatic organisms. Five categories of aquatic organisms were studied, namely, submerged aquatic plants (phanerogam), non-bottom-feeding fish, bottom-feeding fish, mollusca, and fish-eating birds. The analysis was based on the radionuclide concentrations reported in four consecutive annual radioecological monitoring reports published by French agencies with nuclear regulatory responsibilities. The results of this assessment were used to determine, qualitatively, the magnitude of any potential health impacts on each of the five categories of aquatic organisms studied. The range of dose rate estimates ranged over three orders of magnitude, with maximum dose rates estimated to be in the order of 1 to 10 microGy h(-1). These maximum dose rates are a factor 40 or more below the international guideline intended to ensure the protection of aquatic populations (about 400 microGy h(-1)), and a factor ten or more below the level which may trigger the need for a more detailed evaluation of potential ecological consequences to the exposed populations (about 100 microGy h(-1)). As a result, chronic levels of radioactivity, artificial and natural, measured in aquatic media downstream of Marcoule are unlikely to result in adverse health impacts on the categories and species of aquatic organisms studied. Thus, based on the screening level analysis discussed in this paper, a more detailed evaluation of the dose rates does not appear to be warranted.

  15. Use of cyanopropyl-bonded hplc column for bioassay-directed fractionation of organic extracts from incinerator emissions

    International Nuclear Information System (INIS)

    DeMarini, D.M.; Williams, R.W.; Brooks, L.R.; Taylor, M.S.

    1992-01-01

    The present study has shown that cyanopropyl-(CN) bonded silica HPLC columns are applicable for the fractionation of mass and mutagenic activity of organic extracts from some incinerator emissions. Dichloromethane-extractable organics from particles emitted by two different municipal waste incinerators and by a pilot-scale rotary kiln incinerator that was combusting polyethylene were fractionated by HPLC, and the mutagenicity of the fractions was determined by means of a microsuspension mutagenicity assay with Salmonella TA98. The CN-bonded silica columns provided high (80-100 percent) mass and mutagenicity recoveries for most emission extracts, and it fractionated the mutagenic activity. The results suggest that the emissions from municipal waste incinerators contain a high amount of direct-acting (-S9) mutagenic activity that is resolvable by HPLC using CN-bonded silica. Sub-fractionation of selected mutagenic HPLC fractions and subsequent analysis by gas chromatography/mass spectroscopy can be used to identify mutagenic species within complex incinerator emissions. The coupling of microsuspension bioassays to HPLC fractionation should be a useful tool for this type of analysis

  16. Aqueous leachate from western red cedar: effects on some aquatic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Peters, G B; Dawson, H J; Hrutfiord, B F; Whitney, R R

    1976-01-01

    Water-soluble extractives from western red cedar heartwood, bark, and foliage were investigated for their toxicity to aquatic organisms. The heartwood lignins and bark extractives were found to be moderately toxic, but the foliage terpenes and heartwood tropolones were more toxic, causing 50% mortality to coho salmon (Oncorhynchus kisutch) fry at 0.33 and 2.7 mg/liter, respectively. Tropolones were significantly less toxic to invertebrates than to free-swimming stages of the fish tested. Fry were found to be the stage of development of coho salmon (O. kisutch) most sensitive to the tropolones, and eyed eggs the least sensitive. Sensitivity of the coho fry to tropolones was moderated by previous sublethal exposure or the presence of a chelatable cation. Results from field studies and a leaching study indicate that directly releasing cedar leachate from landfills or allowing logging debris to enter streams should be avoided. 13 references, 3 figures, 2 tables.

  17. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  18. Risk screening of pharmaceutical compounds in Romanian aquatic environment.

    Science.gov (United States)

    Gheorghe, Stefania; Petre, Jana; Lucaciu, Irina; Stoica, Catalina; Nita-Lazar, Mihai

    2016-06-01

    The aquatic environment is under increased pressure by pharmaceutically active compounds (PhACs) due to anthropogenic activities. In spite of being found at very low concentrations (ng/L to μg/L) in the environment, PhACs represent a real danger to aquatic ecosystems due to their bioaccumulation and long-term effects. In this study, the presence in the aquatic environment of six non-steroidal anti-inflammatory drugs (ibuprofen, diclofenac, acetaminophen, naproxen, indomethacin, and ketoprofen), caffeine, and carbamazepine were monitored. Moreover, their aquatic risk and ecotoxicity by three biological models were evaluated. The monitoring studies performed in Romania showed that all studied PhACs were naturally present at concentrations >0.01 μg/L, pointing out the necessity to perform further toxicity tests for environmental risk assessment. The toxicity studies were carried out on aquatic organisms or bacteria and they indicated, for most of the tested PhACs, an insignificant or low toxicity effects: lethal concentrations (LC50) on fish Cyprinus carpio ranged from 42.60 mg/L to more than 100 mg/L; effective concentrations (EC50) on planktonic crustacean Daphnia magna ranged from 11.02 mg/L to more than 100 mg/L; inhibitory concentrations (IC50)/microbial toxic concentrations (MTC) on Vibrio fischeri and other bacterial strains ranged from 7.02 mg/L to more than 100 mg/L. The PhAC aquatic risk was assessed by using the ratio between measured environmental concentration (MEC) and predicted no effect concentration (PNEC) calculated for each type of organism. The average of quotient risks (RQs) revealed that the presence of these compounds in Romania's aquatic environment induced a lower or moderate aquatic risk.

  19. Tropical dermatology: marine and aquatic dermatology.

    Science.gov (United States)

    Haddad, Vidal; Lupi, Omar; Lonza, Juan Pedro; Tyring, Stephen K

    2009-11-01

    Dermatoses caused by marine organisms are frequently seen in dermatology clinics worldwide. Cutaneous injuries after exposure to marine environments include bacterial and fungal infections and lesions caused by aquatic plants and protists. Some of these diseases are well known by dermatologists, such as Vibrio vulnificus septicemia and erysipeloid, but others are uncommon, such as envenomation caused by ingestion or contact with certain dinoflagellates or cyanobacteria, which are associated with rashes that can begin within minutes after exposure. Many marine/aquatic invertebrates, such as sponges, cnidarians, echinoderms, crustaceans, and mollusks, are associated with different kinds of dermatologic lesions that can vary from irritant or allergic contact dermatitis to physical trauma and envenomations. These cutaneous lesions may result in mild local reactions or can be associated with severe systemic reactions. Invertebrate animals, such as cnidarians, sea urchins, and worms, and aquatic vertebrates, such as venomous fishes and stingrays, are commonly associated with skin lesions in many countries, where they can constitute occupational dermatoses among fishermen and scuba divers, but they can also be observed among persons who contact these animals in kitchens or beaches. The presence of unusual lesions, a recent travel history, and/or a report of contact with an aquatic environment (including ownership of a marine or freshwater aquarium) should alert the dermatologist to the etiology of the cutaneous problems. After completing this learning activity, participants should be able to recognize the cutaneous manifestations of marine/aquatic infections, bites, stings, and wounds, etc., treat the cutaneous manifestations of marine/aquatic injuries, and help prevent marine/aquatic injuries.

  20. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    Science.gov (United States)

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  1. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam.

    Science.gov (United States)

    Chau, H T C; Kadokami, K; Duong, H T; Kong, L; Nguyen, T T; Nguyen, T Q; Ito, Y

    2018-03-01

    The rapid increase in the number and volume of chemical substances being used in modern society has been accompanied by a large number of potentially hazardous chemicals being found in environmental samples. In Vietnam, the monitoring of chemical substances is mainly limited to a small number of known pollutants in spite of rapid economic growth and urbanization, and there is an urgent need to examine a large number of chemicals to prevent impacts from expanding environmental pollution. However, it is difficult to analyze a large number of chemicals using existing methods, because they are time consuming and expensive. In the present study, we determined 1153 substances to grasp a pollution picture of microcontaminants in the aquatic environment. To achieve this objective, we have used two comprehensive analytical methods: (1) solid-phase extraction (SPE) and LC-TOF-MS analysis, and (2) SPE and GC-MS analysis. We collected 42 samples from northern (the Red River and Hanoi), central (Hue and Danang), and southern (Ho Chi Minh City and Saigon-Dongnai River) Vietnam. One hundred and sixty-five compounds were detected at least once. The compounds detected most frequently (>40 % samples) at μg/L concentrations were sterols (cholesterol, beta-sitosterol, stigmasterol, coprostanol), phthalates (bis(2-ethylhexyl) phthalate and di-n-butyl phthalate), and pharmaceutical and personal care products (caffeine, metformin). These contaminants were detected at almost the same detection frequency as in developed countries. The results reveal that surface waters in Vietnam, particularly in the center of large cities, are polluted by a large number of organic micropollutants, with households and business activities as the major sources. In addition, risk quotients (MEC/PNEC values) for nonylphenol, sulfamethoxazole, ampicillin, acetaminophen, erythromycin and clarithromycin were higher than 1, which indicates a possibility of adverse effects on aquatic ecosystems.

  2. E-waste disposal effects on the aquatic environment: Accra, Ghana.

    Science.gov (United States)

    Huang, Jingyu; Nkrumah, Philip Nti; Anim, Desmond Ofosu; Mensah, Ebenezer

    2014-01-01

    The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore

  3. A review of chemosensation and related behavior in aquatic insects.

    Science.gov (United States)

    Crespo, José G

    2011-01-01

    Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.

  4. Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2015-02-01

    The composition of the Organic Fraction of Municipal Solid Waste (OFMSW) strongly depends on the place and time of collection for a specific municipality or area. Moreover synthetic food waste or organic waste from cafeterias and restaurants may not be representative of the overall OFMSW received at treatment facilities for source-separated waste. This work is aimed at evaluating the composition variability of OFMSW, the potential productions of hydrogen and methane from specific organic waste fractions typically present in MSW and the effects of waste composition on overall hydrogen and methane yields. The organic waste fractions considered in the study were: bread-pasta, vegetables, fruits, meat-fish-cheese and undersieve 20mm. Composition analyses were conducted on samples of OFMSW that were source segregated at household level. Batch tests for hydrogen and methane productions were carried out under mesophilic conditions on selected fractions and OFMSW samples. Results indicated that the highest production of hydrogen was achieved by the bread-pasta fraction while the lowest productions were measured for the meat-fish-cheese fraction. The results indicated that the content of these two fractions in organic waste had a direct influence on the hydrogen production potentials of OFMSW. The higher the content of bread-pasta fraction, the higher the hydrogen yields were while the contrary was observed for the meat-fish-cheese fraction. The definition of waste composition therefore represents fundamental information to be reported in scientific literature to allow data comparison. The variability of OFMSW and its effects on hydrogen potentials might also represents a problematic issue in the management of pilot or full-scale plants for the production of hydrogen by dark fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Assessment of the safety of aquatic animal commodities for international trade: the OIE Aquatic Animal Health code.

    Science.gov (United States)

    Oidtmann, B; Johnston, C; Klotins, K; Mylrea, G; Van, P T; Cabot, S; Martin, P Rosado; Ababouch, L; Berthe, F

    2013-02-01

    Trading of aquatic animals and aquatic animal products has become increasingly globalized during the last couple of decades. This commodity trade has increased the risk for the spread of aquatic animal pathogens. The World Organisation for Animal Health (OIE) is recognized as the international standard-setting organization for measures relating to international trade in animals and animal products. In this role, OIE has developed the Aquatic Animal Health Code, which provides health measures to be used by competent authorities of importing and exporting countries to avoid the transfer of agents pathogenic for animals or humans, whilst avoiding unjustified sanitary barriers. An OIE ad hoc group developed criteria for assessing the safety of aquatic animals or aquatic animal products for any purpose from a country, zone or compartment not declared free from a given disease 'X'. The criteria were based on the absence of the pathogenic agent in the traded commodity or inactivation of the pathogenic agent by the commercial processing used to produce the commodity. The group also developed criteria to assess the safety of aquatic animals or aquatic animal products for retail trade for human consumption from potentially infected areas. Such commodities were assessed considering the form and presentation of the product, the expected volume of waste tissues generated by the consumer and the likely presence of viable pathogenic agent in the waste. The ad hoc group applied the criteria to commodities listed in the individual disease chapters of the Aquatic Animal Health Code (2008 edition). Revised lists of commodities for which no additional measures should be required by the importing countries regardless of the status for disease X of the exporting country were developed and adopted by the OIE World Assembly of Delegates in May 2011. The rationale of the criteria and their application will be explained and demonstrated using examples. © 2012 Crown Copyright. Reproduced

  6. 40 CFR Table 6 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 6 Table 6 to Subpart KKKK of Part 63—Default Organic HAP Mass... blend CAS. No. Averageorganic HAP mass fraction Typical organic HAP, percent by mass 1. Toluene 108-88-3...

  7. 76 FR 67437 - Draft Aquatic Life Ambient Water Quality Criteria for Carbaryl-2011

    Science.gov (United States)

    2011-11-01

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OW-2011-0787; FRL-9483-8] Draft Aquatic Life Ambient Water... National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses (1985), (EPA/R-85... authorized Tribes in adopting water quality standards for protecting aquatic life and human health. These...

  8. Interfaces in aquatic ecosystems: Implications for transport and impact of anthropogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knulst, J.

    1996-11-01

    Mechanisms that govern transport, accumulation and toxicity of persistent pollutants at interfaces in aquatic ecosystems were the foci of this thesis. Specific attention was paid to humic substances, their occurrence, composition, and role in exchange processes across interfaces. It was concluded that: The composition of humic substances in aquatic surface microlayers is different from that of the subsurface water and terrestrial humic matter. Levels of dissolved organic carbon (DOC) in the aquatic surface microlayer reflect the DOC levels in the subsurface water. While the levels and enrichment of DOC in the microlayer generally show small variations, the levels and enrichment of particulate organic carbon (POC) vary to a great extent. Similarities exist between aquatic surface films, artificial semi-permeable and biological membranes regarding their structure and functioning. Acidification and liming of freshwater ecosystems affect DOC:POC ratio and humic composition of the surface film, thus influencing the partitioning of pollutants across aquatic interfaces. Properties of lake catchment areas extensively govern DOC:POC ratio both in the surface film and subsurface water. Increased UV-B irradiation changes the DOC:POC ratio in the surface film and thus affect transfer of matter across the interface. Transport of lipophilic, persistent organic pollutants across semi-permeable membranes is influenced by the solutes organic composition. 106 refs, 11 figs, 1 tab

  9. Soil Organic Carbon Fractions Differ in Two Contrasting Tall Fescue Systems

    Science.gov (United States)

    The value of tall fescue (Festuca arundinacea Schreb.) for C sequestration in addition to forage production and soil conservation is of current interest. However, studies relating to the impacts of endophyte infected (E+) and endophyte free (E-) tall fescue on soil organic matter fractions are few....

  10. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions.

    Science.gov (United States)

    Juncos, Romina; Arcagni, Marina; Rizzo, Andrea; Campbell, Linda; Arribére, María; Guevara, Sergio Ribeiro

    2016-02-01

    Volcanic eruptions are recognized sources of toxic elements to freshwater, including arsenic (As). In order to study the short term changes in the bioaccumulation of naturally occurring As by aquatic organisms in Lake Nahuel Huapi (Argentina), located close to the Puyehue-Cordón Caulle volcanic complex (PCCVC), we described As concentrations at different trophic levels and food web transfer patterns in three sites of the lake prior to the last PCCVC eruption (June 2011), and compared As concentrations in biota before and after the eruption. The highest As concentrations and greater variations both between sites and position in the water column, were observed in phytoplankton (3.9-64.8 µg g(-1) dry weight, DW) and small zooplankton (4.3-22.3 µg g(-1) DW). The pattern of As accumulation in aquatic organisms (whole body or muscle) was: primary producers (phytoplankton) > scrapper mollusks (9.3-15.3 µg g(-1) DW) > filter feeding mollusks (5.4-15.6 µg g(-1) DW) > omnivorous invertebrates (0.4-9.2 µg g(-1) DW) > zooplankton (1.2-3.5 µg g(-1) DW) > fish (0.2-1.9 µg g(-1) DW). We observed As biodilution in the whole food web, and in salmonids food chains, feeding on fish prey; but biomagnification in the food chain of creole perch, feeding on benthic crayfish. The impact of the 2011 PCCVC eruption on the As levels of biota was more evident in pelagic-associated organisms (zooplankton and planktivorous fish), but only in the short term, suggesting a brief high bioavailability of As in water after ash deposition. In benthic organisms As variations likely responded to shift in diet due to coverage of the littoral zone with ashes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Assessment of relative accuracy in the determination of organic matter concentrations in aquatic systems

    Science.gov (United States)

    Aiken, G.; Kaplan, L.A.; Weishaar, J.

    2002-01-01

    Accurate determinations of total (TOC), dissolved (DOC) and particulate (POC) organic carbon concentrations are critical for understanding the geochemical, environmental, and ecological roles of aquatic organic matter. Of particular significance for the drinking water industry, TOC measurements are the basis for compliance with US EPA regulations. The results of an interlaboratory comparison designed to identify problems associated with the determination of organic matter concentrations in drinking water supplies are presented. The study involved 31 laboratories and a variety of commercially available analytical instruments. All participating laboratories performed well on samples of potassium hydrogen phthalate (KHP), a compound commonly used as a standard in carbon analysis. However, problems associated with the oxidation of difficult to oxidize compounds, such as dodecylbenzene sulfonic acid and caffeine, were noted. Humic substances posed fewer problems for analysts. Particulate organic matter (POM) in the form of polystyrene beads, freeze-dried bacteria and pulverized leaf material were the most difficult for all analysts, with a wide range of performances reported. The POM results indicate that the methods surveyed in this study are inappropriate for the accurate determination of POC and TOC concentration. Finally, several analysts had difficulty in efficiently separating inorganic carbon from KHP solutions, thereby biasing DOC results.

  12. Distribution of Artificial Radioisotopes in Granulometric and Organic Fractions of Alluvial Soils Downstream the Krasnoyarsk Mining and Chemical Combine

    Energy Technology Data Exchange (ETDEWEB)

    Korobova, Elena M.; Linnik, Vitaly G. [Vernadsky Institute of Geochemistry and Analytical Chemistry, 117991, Moscow (Russian Federation); Brown, Justin E. [Norwegian Radiation Protection Authority P.O. Box 55, N-1332 Oesteraas (Norway)

    2014-07-01

    A study of some artificial radionuclides discharged by the Krasnoyarsk Mining and Chemical Combine (KMCC) in different granulometric and organic fractions of alluvial soils was performed in the near and remote impact zones of the enterprise. Radionuclides were shown to concentrate in fine fractions enriched in hydro-mica and smectites. However in natural conditions the dominating size fraction associated with radionuclide accumulation at the study sites appeared to be made up of silt (0.010 mm) to clay (0.001 mm) sizes. Therefore due to radionuclide sorption and natural aggregation the peaks of a relatively high radionuclide mass accumulation were associated with three granulometric fractions: <0.001 mm, 0.063-0.010 mm and 0.25-0.125 mm. Soil granulometry was shown to reflect specificity of sedimentation at different landscape positions downstream from the KMCC. At the Balchug site a coarser fraction was accumulated close to the channel while finer fractions are deposited at a higher level. The portion of the clay fraction corresponded to the elevation level increasing from the river bank to the terrace. At the Mikhin Island the tendency was different. A coarser fraction was deposited on higher levels while the portion of clay fraction was at a minimum compared to the lower levels. To study the relationship between radionuclide activity concentrations and organic matter content, selected soil samples were subjected to extraction of the humic and fulvic acid fractions with a subsequent determination of radionuclides in the separated phases and the residue component. The air-dry sample was saturated with 0.1 M NaOH, humic acid was precipitated by 1 M HCl at pH=1. The separation resulted in three fractions of the fulvic acids, humic acids, and the residue containing the denuded mineral phase and the refractory organic residue. Radionuclides measured in the first fraction were believed to be the most mobile, those in the second fraction - subjected to the complexation

  13. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  14. Carbon and nitrogen molecular composition of soil organic matter fractions resistant to oxidation

    Science.gov (United States)

    Katherine Heckman; Dorisel Torres; Christopher Swanston; Johannes Lehmann

    2017-01-01

    The methods used to isolate and characterise pyrogenic organic carbon (PyC) from soils vary widely, and there is little agreement in the literature as to which method truly isolates the most chemically recalcitrant (inferred from oxidative resistance) and persistent (inferred from radiocarbon abundance) fraction of soil organic matter. In addition, the roles of fire,...

  15. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Science.gov (United States)

    Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel

    2018-04-01

    We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  16. Biota connect aquatic habitats throughout freshwater ecosystem mosaics

    Science.gov (United States)

    Schofield, Kate A.; Alexander, Laurie C.; Ridley, Caroline E.; Vanderhoof, Melanie; Fritz, Ken M.; Autrey, Bradley; DeMeester, Julie; Kepner, William G.; Lane, Charles R.; Leibowitz, Scott; Pollard, Amina I.

    2018-01-01

    Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.

  17. A method for detecting the presence of organic fraction in nucleation mode sized particles

    Directory of Open Access Journals (Sweden)

    P. Vaattovaara

    2005-01-01

    Full Text Available New particle formation and growth has a very important role in many climate processes. However, the overall knowlegde of the chemical composition of atmospheric nucleation mode (particle diameter, d<20 nm and the lower end of Aitken mode particles (d≤50 nm is still insufficient. In this work, we have applied the UFO-TDMA (ultrafine organic tandem differential mobility analyzer method to shed light on the presence of an organic fraction in the nucleation mode size class in different atmospheric environments. The basic principle of the organic fraction detection is based on our laboratory UFO-TDMA measurements with organic and inorganic compounds. Our laboratory measurements indicate that the usefulness of the UFO-TDMA in the field experiments would arise especially from the fact that atmospherically the most relevant inorganic compounds do not grow in subsaturated ethanol vapor, when particle size is 10 nm in diameter and saturation ratio is about 86% or below it. Furthermore, internally mixed particles composed of ammonium bisulfate and sulfuric acid with sulfuric acid mass fraction ≤33% show no growth at 85% saturation ratio. In contrast, 10 nm particles composed of various oxidized organic compounds of atmospheric relevance are able to grow in those conditions. These discoveries indicate that it is possible to detect the presence of organics in atmospheric nucleation mode sized particles using the UFO-TDMA method. In the future, the UFO-TDMA is expected to be an important aid to describe the composition of atmospheric newly-formed particles.

  18. Effect of microwaves on solubilization of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shahriari, H.; Warith, M.; Kennedy, K.J. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Civil Engineering

    2009-07-01

    Landfilling is the most common method for disposing of municipal solid waste (MSW) in North America. MSW consists of nonbiodegradable fractions as well as biodegradable fractions known as the organic fraction of municipal solid waste (OFMSW). Because of its high moisture content, OFMSW produces large amounts of leachate in landfills. If not treated properly, leachates can pollute groundwater and negatively affect health and the environment. This paper reported on a study that was conducted to determine the effects of microwave (MW) irradiation on the solubilization of organic fraction of municipal solid waste (OFMSW) at different temperatures, MW ramp times, and supplemental water addition (SWA). The objective was to enhance solubilization before anaerobic digestion (AD). MW pretreatment resulted in higher soluble chemical oxygen demand (sCOD), proteins and sugars in the supernatant phase. The highest increase in sCOD was achieved at 175 degrees C. For the same condition, the free liquid volume from bound water released from OFMSW into the supernatant was about 1.39 times higher than the control. The increase in potentially bio-available sCOD increased significantly to more than 200 per cent after microwaving at high temperature. It was concluded that microwaving of OFMSW at high temperature with SWA provides the best conditions for waste solubilisation in preparation for anaerobic digestion. The actual effect of MW pre-treatment on the anaerobic digestion process has yet to be determined. 49 refs., 5 tabs., 3 figs.

  19. The Identification, Types, Taxonomic Orders, Biodiversity and Importance of Aquatic Insects

    OpenAIRE

    J.F.N. Abowei; B.R. Ukoroije

    2012-01-01

    The identification, types, taxonomic orders, biodiversity and importance of aquatic insects was reviewed to facilitate sustainable culture fisheries management and practice. Aquatic insects contribute significantly to fresh water ecosystems, one of many groups of organisms that, together, must be considered in the study of aquatic ecology. As such their study may be a significant part of understanding the ecological state of a given ecosystem and in gauging how that ecosystem will respond to ...

  20. Assessment of soil organic matter persistence under different land uses applying a physical fractionation procedure

    Science.gov (United States)

    Giannetta, Beatrice; Plaza, César; López-de-Sá, Esther G.; Vischetti, Costantino; Zaccone, Claudio

    2017-04-01

    The understanding of the mechanisms involved in the build-up of soil organic matter (SOM) pools with long residence time is tightly linked to the comprehension of C dynamics. Organo-mineral associations are known to be strongly correlated with the accumulation of selective preserved C forms. Adsorption to minerals, as well as occlusion within aggregates, may affect SOM protection in different ways depending on its molecular structure and pedo-climatic conditions. In this research, we investigated changes in quantity and quality of SOM pools characterized by different protection mechanisms in coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil with different organic amendments, in order to evaluate the influence of both land use and organic matter nature on physical and/or chemical stabilization of SOM. In particular, free (FR), intra-macroaggregate (MA), intra-microaggregate (MI), and mineral-associated (Min) fractions were separated in order to define physical and chemical mechanisms responsible for the SOM protection against degradation. All these SOM fractions were analyzed for organic C and total N concentration, and their stability assessed by thermogravimetric analysis (TD-TGA). Preliminary data show that, for all land uses, most of the organic C (40-60%) is found in the Min pool, followed by FR (20-40%)>MI MA. With the only exception of the FR, no significant correlations were found between the C/N ratio and a thermal stability index (H550-400/400-250) of each fraction; at the same time, a highly significant and positive correlation was found between these two parameters in all fractions isolated from agricultural soils. In particular, the thermal stability index measured in all Min fractions may be related to the more marked presence of labile compounds in this pool relative to recalcitrant compounds. Conversely, FR OM could not always represent a fresh and readily decomposable fraction.Furthermore, OM associated

  1. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    Directory of Open Access Journals (Sweden)

    Zhao Guangyu

    2018-01-01

    Full Text Available We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  2. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels

    OpenAIRE

    Rochelle-Newall, E.; Delille, B.; Frankignoulle, M.; Gattuso, J.-P.; Jacquet, S.; Riebesell, Ulf; Terbrüggen, A.; Zondervan, I.

    2004-01-01

    Chromophoric dissolved organic matter (CDOM) represents the optically active fraction of the bulk dissolved organic matter (DOM) pool. Recent evidence pointed towards a microbial source of CDOM in the aquatic environment and led to the proposal that phytoplankton is not a direct source of CDOM, but that heterotrophic bacteria, through reprocessing of DOM of algal origin, are an important source of CDOM. In a recent experiment designed at looking at the effects of elevated pCO2 on blooms of th...

  3. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    Science.gov (United States)

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  4. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  5. APPLICATION OF SALMONIDS (SALMONIDAE N THE BIOMONITORING OF AQUATIC ENVIRONMENT (REVIEW

    Directory of Open Access Journals (Sweden)

    D. Yanovych

    2016-03-01

    Full Text Available Purpose. Due to the pollution of fisheries water bodies by industrial and agricultural waste waters, as well as by xenobiotics coming from other sources, taking into account a pridictable increase in the amounts of such effluents in the short and long terms, the problems related to the study of the effects of the pollutants of different nature and origin on aquatic organisms, especially fish, as well as a prediction of possible adverse consequences on aquatic ecosystems, becomes particularly important. The aim of our work was an analysis and synthesis of existing literature data concerning the indication in the biomonitoring of aquatic environments based on biological markers of salmonids as highly sensitive objects of fish fauna to external factors. Findings. The review summarizes and systematizes the data concerning the use of salmonids in biomonitoring studies. Furthermore, we highlighted and characterized the specificity of bioindication parameters of the aquatic environment state, such as the biochemical, genetic, physiological, morphological, histopathological, behavioral and population markers and noted the effects of hydroecosystem ecotoxication on different levels of biological organization (cell, individual, population, fish community. We also described the possibility of biological monitoring based on saprobic indexes identified for indicator species belonging to salmonids. Originality. In the article describes the structure, pros and cons of the use of specific biomarkers of individual salmonid fish and their populations for assessing the ecological status of aquatic environments. Practical value. The data given in the article can be used to improve the system of the ecological monitoring of aquatic environments by extending the range of indicator indices with organism and population biomarkers of highly sensitive salmonid species.

  6. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  7. Application of Bayesian belief net in modelling the origin and effects of terrigenous dissolved organic matter in a boreal aquatic ecosystem

    Science.gov (United States)

    Rahikainen, Mika; Hoikkala, Laura; Soinne, Helena

    2013-04-01

    Bayesian belief nets (BBN) are capable of developing holistic understanding of the origin, transportation, and effects of dissolved organic matter (DOM) in ecosystems. The role of riverine DOM, transporting carbon and macronutrients N and P into lakes and coastal areas, has been largely neglected in research about processes influencing aquatic ecosystem functions although dissolved organic matter provides a significant nutrient source for primary producers in aquatic environments. This neglect has also contributed to the environmental policies which are focused in the control of inorganic N and P load. It is of great social and economic interest to gain improved knowledge of whether the currently applied policy instruments act in synchrony in mitigating eutrophication caused by N and P versus DOM load. DOM is a complex mixture of compounds that are poorly characterized. DOM export is strongly regulated by land use (urban, forest, agricultural land, peat land), in addition to soil type and soil organic carbon concentration. Furthermore, the composition of DOM varies according to its origin. The fate and effects of DOM loads in the fresh water and coastal environments depend, for example, on their biodegradability. Degradation kinetics again depends on the interactions between composition of the DOM pool and the receiving environment. Impact studies of dissolved organic matter pose a complicated environmental impact assessment challenge for science. There exists strategic uncertainty in the science about the causal dependencies and about the quality of knowledge related to DOM. There is a clear need for systematization in the approach as uncertainty is typically high about many key processes. A cross-sectorial, integrative analysis will aid in focusing on the most relevant issues. A holistic and unambiguous analysis will provide support for policy-decisions and management by indicating which outcome is more probable than another. The task requires coupling complex

  8. An evaluation of organic substance fraction removal during ion exchange with Miex-DOC resin.

    Science.gov (United States)

    Wolska, Małgorzata

    2015-07-01

    In this study, the usefulness of Miex-DOC resin in eliminating organic substances and their fractions from water sources for drinking water was evaluated. The objects of study were samples from three surface water sources and one infiltration water source taken at water treatment plants before treatment in technical conditions. In particular, the effectiveness of removing biodegradable and non-biodegradable fractions as a function of resin dosages and water-resin contact times was evaluated. The ion exchange process with the Miex-DOC resin achieved a high effectiveness in removing aromatic non-biodegradable organic substances, and therefore a reduction in UV254 absorbance. The biodegradable fraction is much less susceptible to removal yet its removal effectiveness allows for a significant reduction in hazards connected with secondary microorganism development. The results of this study indicate the possibility of using ion exchange with the Miex-DOC resin for effective removal of disinfection by-product precursors.

  9. Ozonolysis of α-pinene: parameterization of secondary organic aerosol mass fraction

    Directory of Open Access Journals (Sweden)

    R. K. Pathak

    2007-07-01

    Full Text Available Existing parameterizations tend to underpredict the α-pinene aerosol mass fraction (AMF or yield by a factor of 2–5 at low organic aerosol concentrations (<5 µg m−3. A wide range of smog chamber results obtained at various conditions (low/high NOx, presence/absence of UV radiation, dry/humid conditions, and temperatures ranging from 15–40°C collected by various research teams during the last decade are used to derive new parameterizations of the SOA formation from α-pinene ozonolysis. Parameterizations are developed by fitting experimental data to a basis set of saturation concentrations (from 10−2 to 104 µg m−3 using an absorptive equilibrium partitioning model. Separate parameterizations for α-pinene SOA mass fractions are developed for: 1 Low NOx, dark, and dry conditions, 2 Low NOx, UV, and dry conditions, 3 Low NOx, dark, and high RH conditions, 4 High NOx, dark, and dry conditions, 5 High NOx, UV, and dry conditions. According to the proposed parameterizations the α-pinene SOA mass fractions in an atmosphere with 5 µg m−3 of organic aerosol range from 0.032 to 0.1 for reacted α-pinene concentrations in the 1 ppt to 5 ppb range.

  10. Dose estimation and prediction of radiation effects on aquatic biota resulting from radioactive releases from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Witherspoon, J.P.

    1975-01-01

    Aquatic organisms are exposed to radionuclides released to the environment during various steps of the nuclear fuel cycle. Routine releases from these processes are limited in compliance with technical specifications and requirements of federal regulations. These regulations reflect I.C.R.P. recommendations which are designed to provide an environment considered safe for man. It is generally accepted that aquatic organisms will not receive damaging external radiation doses in such environments; however, because of possible bioaccumulation of radionuclides there is concern that aquatic organisms might be adversely affected by internal doses. The objectives of this paper are: to estimate the radiation dose received by aquatic biota from the different processes and determine the major dose-contributing radionuclides, and to assess the impact of estimated doses on aquatic biota. Dose estimates are made by using radionuclide concentration measured in the liquid effluents of representative facilities. This evaluation indicates the potential for the greatest radiation dose to aquatic biota from the nuclear fuel supply facilities (i.e., uranium mining and milling). The effects of chronic low-level radiation on aquatic organisms are discussed from somatic and genetic viewpoints. Based on the body of radiobiological evidence accumulated up to the present time, no significant deleterious effects are predicted for populations of aquatic organisms exposed to the estimated dose rates resulting from routine releases from conversion, enrichment, fabrication, reactors and reprocessing facilities. At the doses estimated for milling and mining operations it would be difficult to detect radiation effects on aquatic populations; however, the significance of such radiation exposures to aquatic populations cannot be fully evaluated without further research on effects of chronic low-level radiation. (U.S.)

  11. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between terre...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water.......Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...

  12. Physicochemical and spectroscopic properties of natural organic matter (NOM) from various sources and implications for ameliorative effects on metal toxicity to aquatic biota

    Energy Technology Data Exchange (ETDEWEB)

    Al-Reasi, Hassan A.; Wood, Chris M. [Department of Biology, McMaster University, Hamilton, ON, L8S 4K1 (Canada); Smith, D. Scott, E-mail: ssmith@wlu.camailto [Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5 (Canada)

    2011-06-15

    Natural organic matter (NOM), expressed as dissolved organic carbon (DOC in mg C L{sup -1}), is an ubiquitous complexing agent in natural waters, and is now recognized as an important factor mitigating waterborne metal toxicity. However, the magnitude of the protective effect, judged by toxicity measures (e.g. LC50), varies substantially among different NOM sources even for similar DOC concentrations, implying a potential role of NOM physicochemical properties or quality of NOM. This review summarizes some key quality parameters for NOM samples, obtained by reverse osmosis, and by using correlation analyses, investigates their contribution to ameliorating metal toxicity towards aquatic biota. At comparable and environmentally realistic DOC levels, molecular spectroscopic characteristics (specific absorbance coefficient, SAC, and fluorescence index, FI) as well as concentrations of fluorescent fractions obtained from mathematical mixture resolution techniques (PARAFAC), explain considerable variability in the protective effects. NOM quality clearly influences the toxicity of copper (Cu) and lead (Pb). NOM quality may also influence the toxicity of silver (Ag), cadmium (Cd) and inorganic mercury (Hg), but as yet insufficient data are available to unequivocally support the latter correlations between toxicity reduction and NOM quality predictors. Cu binding capacities, protein-to-carbohydrate ratio, and lipophilicity, show insignificant correlation to the amelioration offered by NOMs, but these conclusions are based on data for Norwegian NOMs with very narrow ranges for the latter two parameters. Certainly, various NOMs alleviate metal toxicity differentially and therefore their quality measures should be considered in addition to their quantity.

  13. Does aquatic foraging impact head shape evolution in snakes?

    Science.gov (United States)

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  14. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... Metal Cans Pt. 63, Subpt. KKKK, Table 7 Table 7 to Subpart KKKK of Part 63—Default Organic HAP Mass... Averageorganic HAP mass fraction Typicalorganic HAP, percent by mass Aliphatic b 0.03 1% Xylene, 1% toluene, and...

  15. An Assessment of Cs-137, R-226 and Pa-239, 240 doses for aquatic and terrestrial reference organisms in Poland

    International Nuclear Information System (INIS)

    Krajewski, P.; Suplinska, M.; Rosiak, I.

    2004-01-01

    The doses assessment for aquatic and terrestrial reference organisms was performed, based on the methodology elaborated by U.S. Department of Energy. Four organism types and their corresponding dose limits were used, and the principal exposure pathways were considered for aquatic animal, riparian animal, terrestrial plant, and terrestrial animal organism types respectively. Terrestrial rodent (apodemus flavicollis), Baltic Sea fish (cod, sprat, herring, plaice) and crustaceans (Sanduria entomon and Mytilus edulis) were taken in to special consideration. In the first screening approach the annual doses from 137Cs and 239Pu (bomb-tests-fallout and Czarnobyl origin) and 226Ra (natural radionuclide) to biota were calculated at average, minimum and maximum concentrations of these radionuclides observed in soil, water, and sediment using the default bioaccumulation factors as well as lumped parameters values recommended by DOE Standard. The concentrations of 137Cs measured in the most contaminated region in Poland (Stare Olesno 380 Bqxkg-1 d.w.) and the concentrations of 226Ra for Southern regions of Poland with elevated levels of 226Ra in soil (100 B kg-1 d.w.) were taken in the dose assessment for terrestrial animals. The concentrations of 137Cs and 239Pu and 226Ra determined in see water and bottom sediments from two sub-areas (Gdansk Basin and Bornholm Basin) were used in the dose assessment for aquatic biota. In the second ''site specific'' approach the average empirically measured concentrations of radionuclides in animal tissues were used. At the first approach the total maximal annual doses for terrestrial plants were less then one percent of the recommended dose limits ( 3600 mGyxy-1 ) and items for seawater organisms did not exceed a 40% of this limit whereas the total maximal annual doses for terrestrial animal were close to the recommended dose limit (360 mGyxy-1). It prompted to start supplementary site-specific biota dose assessment through site

  16. Brominated flame retardants in aquatic organisms from the North Sea in comparison with biota from the high Arctic marine environment.

    Science.gov (United States)

    Sørmo, Eugen G; Jenssen, Bjørn M; Lie, Elisabeth; Skaare, Janneche U

    2009-10-01

    The extent of trophic transfer of brominated flame retardants (BFRs), including hexabromocyclododecane (HBCD) and seven polybrominated diphenyl ethers (PBDEs), were examined in pelagic and benthic aquatic animals (invertebrates and fish) in a near-shore estuary environment of the southeastern North Sea (Norway; 59 degrees N). Whole-body burdens of HBCD and several of the most abundant PBDEs biomagnified with increasing trophic position in the food web. Biomagnification of HBCD was particularly strong, resulting in whole-body burdens of this compound comparable to those of total PBDEs in the higher-trophic-level species. Body burdens of PBDEs were higher in pelagic than in benthic aquatic organisms. This was particularly evident for the lesser-brominated and volatile PBDE congeners. Atmospheric gas-water-phytoplankton exchange of these volatile compounds over the water surface may account for this observation. The PBDE burdens in pelagic zooplankton from the North Sea were more than 60-fold greater than those in corresponding pelagic zooplankton from the colder high Arctic latitudes (>78 degrees N) of Norway (Svalbard). This great difference may relate to reduced chemical gas-water exchange over open waters at the colder Arctic latitudes. However, previously measured whole-body burdens of BFRs in other aquatic marine organisms from the high Arctic were comparable or even exceeded those in the North Sea samples of the present study. These include sympagic (sea ice-associated) invertebrates and fish accumulating high burdens of particle-associated BFRs. The present study provides new insight regarding the distribution of BFRs in ecologically different compartments of marine ecosystems, essential information for understanding the food-web transfer and geographical dispersal of these compounds.

  17. Matrix Population Model for Estimating Effects from Time-Varying Aquatic Exposures: Technical Documentation

    Science.gov (United States)

    The Office of Pesticide Programs models daily aquatic pesticide exposure values for 30 years in its risk assessments. However, only a fraction of that information is typically used in these assessments. The population model employed herein is a deterministic, density-dependent pe...

  18. Study on the mercury evolution in a laboratory multi specific aquatic system by using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Bubach, Debora; Guevara, Sergio Ribeiro; Arribere, Maria A.; Pechen de d'Angelo, Ana; Ferrari, Ana; Venturino, Andres

    1999-01-01

    A preliminary study on the evolution of mercury in the organisms of a laboratory multi specific aquatic system was performed using Instrumental Neutron Activation Analysis (INAA). Some of the possible effects of mercury toxicity were monitored by analyzing early biochemical indicators. The system consisted of an aquarium with bed sediments, aquatic macrophytes (Myriophyllum sp.), bivalves (Diplodom sp.) and exotic fish, simulating a long term contamination situation of unknown causes, where the sediments are the contaminant reservoir. Samples of the abiotic components of the system were analyzed at the beginning of the experiment, and again when the organisms were sampled. Fish carcass, kidney and liver samples, bivalve hepatopancreas, and whole macrophytes were extracted ana analyzed for mercury and other elements by INAA at the beginning of the experiment, and after 48 and 96 hours. Since some crustal elements such as Sc and La were detected in the hepatopancreas and macrophyte samples, enrichment factors for mercury, with respect to the <63 μm sediment fraction, were computed to discriminate the metabolized Hg content from that associated to the particulate. The hepatopancreas index, some indicators of oxidative stress (γ-Glutamyl-cysteinyl-glycine content and lipid peroxidation) and brain acetilcolinesterasa were measured as early indicators of toxicity. (author)

  19. Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: The roles of natural organic matter and light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xiaoyan; Shi, Junpeng [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Zhang, Hongwu, E-mail: hwzhang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Ningbo Research Center for Urban Environment, Chinese Academy of Sciences, Ningbo (China)

    2015-07-15

    Highlights: • In the dark, AgNPs formed chain-like structures through bridging effects with NOM. • NOM decelerated the photoreaction of AgNPs but did not stop the photoconversion. • Under extended irradiation, NOM substituted for citrate as a stabilizer. • In different aquatic systems AgNPs would suffer distinct environmental behavior. - Abstract: With the proliferation of silver nanoparticles (AgNPs), their potential entry into the environment has attracted increasing concern. Although photochemical transformation is an important fate of AgNPs in aquatic environments due to their strong light absorption, little is known about the evolution and transformation mechanisms of AgNPs. This study investigated the morphological evolution and reconstruction of AgNPs during photoconversion in the presence of natural organic matter (NOM). In the dark, the AgNPs formed chain-like structures through bridging effects with NOM at concentrations of 0.1 and 1 mg/L, and the proportion of Ag{sup +} in solution in the presence of 10 mg/L NOM was reduced by roughly half compared with that in the absence of NOM. Under irradiation, NOM participated in the photoreaction of AgNPs and can decelerate the photoreaction of AgNPs via several mechanisms, including light attenuation, the formation of a NOM coating, and competing with Ag for photons. Additionally, NOM can substitute for citrate as a stabilizing agent to compensate for the loss of AgNP stability due to citrate mineralization under extended irradiation, producing stable triangular nanosilver in aquatic environments. This study sheds light on the behavioral differences of AgNPs in different aquatic systems, which create uncertainties and difficulties in assessing the environmental risks of AgNPs.

  20. From a microcosm to the catchment scale: studying the fate of organic runoff pollutants in aquatic ecosystems

    Science.gov (United States)

    Böttcher, T.; Schroll, R.

    2009-04-01

    Spray-drift, drainage, erosion and runoff events are the major causes responsible for deportation of agrochemicals as micropollutants to aquatic non-target sites. These processes can lead to the contamination of nearby freshwater ecosystems with considerably high concentrations of xenobiotics. Thus, it is important to unravel the fate of these pollutants and to evaluate their ecological effects. A novel approach to address this goal was established by the development of a microcosm with multiple sampling abilities enabling quantitative assessment of organic volatilisation, mineralization, metabolization and distribution within the aquatic ecosystem. This microcosm system was designed to support modelling approaches of the catchment scale and gain insights into the fate of pesticides simulating a large scale water body. The potential of this microcosm was exemplified for Isoproturon (IPU), a phenylurea derived systemic herbicide, which is frequently found as contaminant in water samples and with the free-floating macrophyte Lemna minor as non-target species, that is common to occur in rural water bodies. During 21 days exposure time, only a small amount of 14C labeled IPU was removed from the aquatic medium. The major portion (about 5%) was accumulated by Lemna minor resulting in a BCF of 15.8. IPU-volatilisation was very low with 0.13% of the initially applied herbicide. Only a minor amount of IPU was completely metabolized, presumably by rhizosphere microorganisms and released as 14CO2. The novel experimental system allowed to quantitatively investigate the fate of IPU and showed a high reproducibility with a mean average 14C-recovery rate of 97.1

  1. Stable carbon isotope fractionation of organic cyst-forming dinoflagellates: Evaluating the potential for a CO2 proxy

    Science.gov (United States)

    Hoins, Mirja; Van de Waal, Dedmer B.; Eberlein, Tim; Reichart, Gert-Jan; Rost, Björn; Sluijs, Appy

    2015-07-01

    Over the past decades, significant progress has been made regarding the quantification and mechanistic understanding of stable carbon isotope fractionation (13C fractionation) in photosynthetic unicellular organisms in response to changes in the partial pressure of atmospheric CO2 (pCO2). However, hardly any data is available for organic cyst-forming dinoflagellates while this is an ecologically important group with a unique fossil record. We performed dilute batch experiments with four harmful dinoflagellate species known for their ability to form organic cysts: Alexandrium tamarense, Scrippsiella trochoidea, Gonyaulax spinifera and Protoceratium reticulatum. Cells were grown at a range of dissolved CO2 concentrations characterizing past, modern and projected future values (∼5-50 μmol L-1), representing atmospheric pCO2 of 180, 380, 800 and 1200 μatm. In all tested species, 13C fractionation depends on CO2 with a slope of up to 0.17‰ (μmol L)-1. Even more consistent correlations were found between 13C fractionation and the combined effects of particulate organic carbon quota (POC quota; pg C cell-1) and CO2. Carbon isotope fractionation as well as its response to CO2 is species-specific. These results may be interpreted as a first step towards a proxy for past pCO2 based on carbon isotope ratios of fossil organic dinoflagellate cysts. However, additional culture experiments focusing on environmental variables other than pCO2, physiological underpinning of the recorded response, testing for possible offsets in 13C values between cells and cysts, as well as field calibration studies are required to establish a reliable proxy.

  2. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    Science.gov (United States)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  3. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    Science.gov (United States)

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  4. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P organic carbon storage. Precipitation intensity less affected TOC, but had greater effects on the labile components POC, ROC, and LFOC.

  5. Cellulase and xylanase activity during the decomposition of three aquatic macrophytes in a tropical oxbow lagoon

    Directory of Open Access Journals (Sweden)

    L Sciessere

    2011-09-01

    Full Text Available Due to the connection between enzymatic activity and degradation of different fractions of organic matter, enzyme assays can be used to estimate degradation rates of particulate and dissolved organic carbon in freshwater systems. The aim of this study was to quantify and model the enzymatic degradation involving the decomposition of macrophytes, describing temporal activity of cellulases (EC 3.2.1.4 and EC 3.2.1.91 and xylanase (EC 3.2.1.8 during in situ decomposition of three aquatic macrophytes (Salvinia sp., Eichhornia azurea and Cyperus giganteus on the surface and water-sediment interface (w-s interface of an oxbow lagoon (Óleo lagoon within a natural Brazilian Savanna Reserve. Overall, the enzymatic degradation of aquatic macrophytes in Óleo lagoon occurred during the whole year and was initiated together with leaching. Xylanase production was ca. 5 times higher than cellulase values due to easy access to this compound by cellulolytic microorganisms. Enzymatic production and detritus mass decay were similar on the surface and w-s interface. Salvinia sp. was the most recalcitrant detritus, with low mass decay and enzymatic activity. E. azurea and C. giganteus decomposition rates and enzymatic production were high and similar. Due to the physicochemical homogeneity observed in the Óleo lagoon, the differences between the decay rates of each species are mostly related with detritus chemical quality.

  6. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    Science.gov (United States)

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  7. Energy Recovery from the Organic Fraction of Municipal Solid Waste: A Real Options-Based Facility Assessment

    Directory of Open Access Journals (Sweden)

    Luigi Ranieri

    2018-01-01

    Full Text Available During the last years, due to the strict regulations on waste landfilling, anaerobic digestion (AD of the organic fraction of municipal solid waste (OFMSW is increasingly considered a sustainable alternative for waste stabilization and energy recovery. AD can reduce the volume of OFMSW going to landfill and produce, at the same time, biogas and compost, all at a profit. The uncertainty about the collected quantity of organic fraction, however, may undermine the economic-financial sustainability of such plants. While the flexibility characterizing some AD technologies may prove very valuable in uncertain contexts since it allows adapting plant capacity to changing environments, the investment required for building flexible systems is generally higher than the investment for dedicated equipment. Hence, an adequate justification of investments in these flexible systems is needed. This paper presents the results of a study aimed at investigating how different technologies may perform from technical, economic and financial standpoints, in presence of an uncertain organic fraction quantity to be treated. Focusing on two AD treatment plant configurations characterized by a technological process with different degree of flexibility, a real options-based model is developed and then applied to the case of the urban waste management system of the Metropolitan Area of Bari (Italy. Results show the importance of pricing the flexibility of treatment plants, which becomes a critical factor in presence of an uncertain organic fraction. Hence, it has to be taken into consideration in the design phase of these plants.

  8. Aquatic to terrestrial transfer of sediment associated persistent organic pollutants is enhanced by bioamplification processes.

    Science.gov (United States)

    Daley, Jennifer M; Corkum, Lynda D; Drouillard, Ken G

    2011-09-01

    Ephemeral emergent insects, such as mayflies (Hexagenia spp.), are commonly used as biomonitors of persistent organic pollutants (POPs) and provide a vector for aquatic-terrestrial contaminant transfer. Mayflies bioaccumulate sediment-associated contaminants by bioconcentration and biomagnification during the aquatic stage and concentrate POP residues postemergence due to bioamplification, which occurs as a result of weight and lipid loss without contaminant loss. The present study quantified polychlorinated biphenyl (PCB) bioamplification in male and female emergent mayflies at three sites. Male mayflies used 36 to 68% of their lipids during emergence, with the exception of caged males that were prevented from flight. Females did not lose lipid content between pre-emergent nymph and emerged life stages. Mass balance indicated no PCB elimination between life stages. The mean PCB bioamplification factor, expressed as the ratio of lipid-equivalent PCB concentrations across life stages, was 2.05 ± 0.38 for male imagos/nymphs and 1.91 ± 0.18 for male imago/subimago life stages. For females, bioamplification factors were close to unity. Wildlife consumers of imago stages of emergent mayflies can potentially increase their total daily intake of PCBs by 36% depending on the sex-ratio composition of their diet relative to animals that feed predominantly on nymph or subimago stages during mass emergence events. Copyright © 2011 SETAC.

  9. Methodology of comprehensive evaluation of the effectiveness and reliability of production lines of preparation of sea water for the cultivation of aquatic organisms

    Directory of Open Access Journals (Sweden)

    S. D. Ugryumova

    2016-01-01

    Full Text Available The factors affecting the efficiency and reliability of technical systems. Set stages of development and modernization of production lines that correspond to specific stages of evaluating the effectiveness and reliability. Considered several methods of definition of indicators of indicators of efficiency and reliability of the equipment in technological lines of fisheries sector: forecasting methods, structural methods, physical methods, logical-probability method (method by I.A. Ryabinin and topological method. Advantages and disadvantages, allowing you to work out the most suitable method, process lines preparation of sea water for the cultivation of aquatic organisms, connected in series. Modernized technological line of preparation of sea water for the cultivation of aquatic organisms differing from the typical line of seawater in hatcheries (Far East, as the presence of a large number of instrumentation: sensors, salinity and temperature; motomeru that continuously monitor turbidity in the range of 50÷100 EMF (30÷60 mg/1 by kaolin; signaling the flow sensors volume level of the filtrate and the backfill layer; analyzers of chemical composition of sea water; analyzers of suspended mechanical impurities; signaling sensors of acidity and oxygen content and replacement filters coarse, fine cleaning and auxiliary equipment. A program of comprehensive evaluation of the effectiveness and reliability of production lines, revealed that conducted the modernization of production line preparation of sea water for the cultivation of aquatic organisms has improved its efficiency by an average of 1.71% to reduce the amount of manual labor by 15.1%; control the process; provide the most rapid, efficient purification of sea water; reduce the cost of replacement filter media.

  10. Distribution of tritium in estuarine waters: the role of organic matter

    International Nuclear Information System (INIS)

    Turner, Andrew; Millward, Geoffrey E.; Stemp, Martin

    2009-01-01

    Tritium is an important environmental radionuclide whose reactivity with ligands and solids in aquatic systems is assumed to be limited. We studied the fractionation and sorption of tritium (added as tritiated water) in river water and seawater, and found that its distribution appears to be influenced by its affinity for organic matter. Tritium rapidly equilibrates with dissolved organic ligands that are retained by a reverse-phase C18 column, and with suspended sediment particles. Significantly, a measurable fraction of sorbed tritium associates with proteinaceous material that is potentially available to sediment-feeding organisms. These characteristics have not been reported previously and cannot be accounted for solely by isotopic exchange with hydrogen. Nevertheless, they are in qualitative agreement with available measurements of tritium in estuarine and coastal waters where its principal discharge is as tritiated water. Further research into the estuarine biogeochemical behaviour of tritium is required and radiological distribution coefficients and concentration factors that are assumed for this radionuclide may require reconsideration.

  11. Distribution of tritium in estuarine waters: the role of organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [Consolidated Radio-isotope Facility, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk; Millward, Geoffrey E.; Stemp, Martin [Consolidated Radio-isotope Facility, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-10-15

    Tritium is an important environmental radionuclide whose reactivity with ligands and solids in aquatic systems is assumed to be limited. We studied the fractionation and sorption of tritium (added as tritiated water) in river water and seawater, and found that its distribution appears to be influenced by its affinity for organic matter. Tritium rapidly equilibrates with dissolved organic ligands that are retained by a reverse-phase C18 column, and with suspended sediment particles. Significantly, a measurable fraction of sorbed tritium associates with proteinaceous material that is potentially available to sediment-feeding organisms. These characteristics have not been reported previously and cannot be accounted for solely by isotopic exchange with hydrogen. Nevertheless, they are in qualitative agreement with available measurements of tritium in estuarine and coastal waters where its principal discharge is as tritiated water. Further research into the estuarine biogeochemical behaviour of tritium is required and radiological distribution coefficients and concentration factors that are assumed for this radionuclide may require reconsideration.

  12. Characteristics of labile organic carbon fractions in reclaimed mine soils: Evidence from three reclaimed forests in the Pingshuo opencast coal mine, China.

    Science.gov (United States)

    Yuan, Ye; Zhao, Zhongqiu; Li, Xuezhen; Wang, Yangyang; Bai, Zhongke

    2018-02-01

    The reclamation of discarded spoils has the potential to stimulate carbon (C) sequestration in reclaimed mine soils (RMSs). Nevertheless, to date the temporal dynamics of labile organic C fractions have not been sufficiently elucidated in RMSs. In this study, soil organic carbon (SOC) and labile organic C fractions, including microbial biomass organic C (MBC), easily oxidizable organic C (EOC) and dissolved organic C (DOC), were determined in Robinia pseudoacacia monoculture forests (reclamation periods of 0, 8, 10, 13, 15, 18 and 30years), Pinus tabuliformis forests (reclamation periods of 0, 10, 19, 23 and 25years) and Ulmus pumila forests (reclamation periods of 0, 18, 20 and 22years) situated on RMSs in the Pingshuo opencast coal mine, China. Changes in labile organic C fractions within the soil profiles (0-100cm) were also identified at the 18- or 19-year plots under the three monoculture forests. Our results showed that, SOC and labile organic C fractions, together with soil microbial quotient (SMQ) and C management index (CMI), increased with time since reclamation, indicating that the quality of RMSs improved over time after initial reclamation under the three forest types. R. pseudoacacia significantly increased the accretion of SOC and EOC in the early stage of reclamation while P. tabuliformis accelerated the accumulation of the MBC fraction. Results for U. pumila indicated that this species had a better ability to store C in RMSs 10years or more after reclamation. SOC and labile organic C fractions both had S-shaped distributions within the soil profiles (0-100cm), with the 0-20cm layer recording the highest values (Pfractions were closely associated and correlated with soil physicochemical properties; our results also showed that nitrogen played an important role in the development of labile organic C fractions. Overall, reclamation accelerated the accretion of both SOC and labile organic C fractions, results of which varied among the reclaimed forests

  13. Characteristics of differently stabilised soil organic carbon fractions in relation to long-term fertilisation in Brown Earth of Northeast China.

    Science.gov (United States)

    Xu, Xiangru; Zhang, Wenju; Xu, Minggang; Li, Shuangyi; An, Tingting; Pei, Jiubo; Xiao, Jing; Xie, Hongtu; Wang, Jingkuan

    2016-12-01

    Long-term use of artificial fertiliser has a significant impact on soil organic carbon (SOC). We used physical-chemical fractionation methods to assess the impact of long-term (26years) fertilisation in a maize cropping system developed on Brown Earth in Northeast China. Plot treatments consisted of control (CK); nitrogen (N) fertiliser (N2); low-level organic manure combined with inorganic N and phosphorus (P) fertiliser (M1N1P1); medium-level organic manure combined with inorganic N fertiliser (M2N2); and high-level organic manure combined with inorganic N and P fertiliser (M4N2P1). Our objectives were to (1) determine the contents of and variations in the SOC fractions; (2) explore the relationship between total SOC and its fractions. In treatments involving organic manure (M1N1P1, M2N2, and M4N2P1), total SOC and physically protected microaggregate (μagg) and μagg occluded particulate organic carbon (iPOC) contents increased by 9.9-58.9%, 1.3-34.7%, 29.5-127.9% relative to control, respectively. But there no significant differences (P>0.05) were detected for the chemically, physically-chemically, and physically-biochemically protected fractions among the M1N1P1, M2N2, and M4N2P1 treatments. Regression analysis revealed that there was a linear positive correlation between SOC and the unprotected coarse particulate organic carbon (cPOC), physically protected μagg, and iPOC fractions (Pfractions responded negatively to SOC content. The highest rate of C accumulation among the SOC fractions occurred in the cPOC fraction, which accounted for as much as 32% of C accumulation as total SOC increased, suggesting that cPOC may be the most sensitive fraction to fertiliser application. We found that treatments had no effect on C levels in H-μsilt and NH-μsilt, indicating that the microaggregated silt C-fractions may have reached a steady state in terms of C saturation in the Brown Earth of Northeast China. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    International Nuclear Information System (INIS)

    Tollefsen, Knut Erik; Nizzetto, Luca; Huggett, Duane B.

    2012-01-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda®, has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 μg/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be well below 1 (PEC

  15. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Tollefsen, Knut Erik, E-mail: ket@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Nizzetto, Luca [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, N-0349 Oslo (Norway); Huggett, Duane B. [Department of Biological Sciences, University of North Texas, P.O. Box 310559, Denton, TX 76203 (United States)

    2012-11-01

    Sucralose (1,6-dichloro-1,6-dideoxy-b-D-fructo-furanosyl 4-chloro-4-deoxy-a-D-galactopyranoside), sold under the trade name Splenda Registered-Sign , has been detected in municipal effluents and surface waters in the United States and Europe. The environmental presence of sucralose has led to interest in the possibility of toxic effects in non-target species. This review presents an environmental risk assessment of sucralose based on available data concerning its presence, fate and effects in the environment. Sucralose, which is made by selective chlorination of sucrose, is a highly stable compound, which undergoes negligible metabolism in mammals, including humans, and displays a low biodegradation potential in the environment. This intense sweetener is highly soluble in water, displays a low bioaccumulation potential and a low sorption potential to soil and organic matter, and thus is predominantly present in the water column. The predicted environmental concentration (PEC) for sucralose, based on measured data in surface waters, was determined to be 10 {mu}g/L. Aquatic toxicity studies using standardized, validated protocols used in regulatory decision making indicate that sucralose does not alter survival, growth and reproduction of aquatic organisms (such as plants, algae, crustaceans and fish) at concentrations > 9000 times higher than those detected in the environment. Some studies, using non-standardized protocols, have reported behavioral and other non-traditional responses in aquatic organisms, but the relevance of these findings for assessing adverse effects on individuals and populations will require further investigation. In terms of traditional risk assessment, the proposed predicted no effect concentration for aquatic organisms (PNEC) was determined to be 0.93 mg/L, based on the lowest no effect concentration (NOEC) from a validated chronic study with mysid shrimp and an application factor of 100. The resultant PEC/PNEC quotient was determined to be

  16. Finfish and aquatic invertebrate pathology resources for now and the future✩

    Science.gov (United States)

    Spitsbergen, Jan M.; Blazer, Vicki S.; Bowser, Paul R.; Cheng, Keith C.; Cooper, Keith R.; Cooper, Timothy K.; Frasca, Salvatore; Groman, David B.; Harper, Claudia M.; (Mac) Law, Jerry M.; Marty, Gary D.; Smolowitz, Roxanna M.; Leger, Judy St.; Wolf, Douglas C.; Wolf, Jeffrey C.

    2009-01-01

    Utilization of finfish and aquatic invertebrates in biomedical research and as environmental sentinels has grown dramatically in recent decades. Likewise the aquaculture of finfish and invertebrates has expanded rapidly worldwide as populations of some aquatic food species and threatened or endangered aquatic species have plummeted due to overharvesting or habitat degradation. This increasing intensive culture and use of aquatic species has heightened the importance of maintaining a sophisticated understanding of pathology of various organ systems of these diverse species. Yet, except for selected species long cultivated in aquaculture, pathology databases and the workforce of highly trained pathologists lag behind those available for most laboratory animals and domestic mammalian and avian species. Several factors must change to maximize the use, understanding, and protection of important aquatic species: 1) improvements in databases of abnormalities across species; 2) standardization of diagnostic criteria for proliferative and nonproliferative lesions; and 3) more uniform and rigorous training in aquatic morphologic pathology. PMID:18948226

  17. Biota and biological principles of the aquatic environment

    International Nuclear Information System (INIS)

    Greeson, P.E.

    1982-01-01

    The first of several compilations of briefing papers on water quality prepared by the U.S. Geological Survey is presented. Each briefing paper is prepared in a simple, nontechnical, easy to understand manner. This U.S. Geological Survey Circular contains papers on selected biota and biological principles of the aquatic environment. Briefing papers are included on Why biology in water quality studies , Stream biology, Phytoplankton, Periphyton, Drift organisms in streams, Family Chironomidae (Diptera), Influences of water temperature on aquatic biota, and Stream channelization: Effects on stream fauna

  18. Evidence for the 'grasshopper' effect and fractionation during long-range atmospheric transport of organic contaminants

    International Nuclear Information System (INIS)

    Gouin, T.; Mackay, D.; Jones, K.C.; Harner, T.; Meijer, S.N.

    2004-01-01

    Although there is indisputable evidence that long-range atmospheric transport (LRAT) of organic contaminants occurs on a global scale, uncertainties remain about the detailed mechanism and extent of this phenomenon as well as the physical-chemical properties which facilitate LRAT. In this study, we discuss how mass balance models and monitoring data can contribute to a fuller understanding of the mechanism and extent of LRAT. Specifically we address the issues of 'grasshopping' or 'hopping' (the extent to which molecules are subject to multiple hops as distinct from a single emission-deposition event) and 'global fractionation' (the differing behavior of chemicals as they are transported). It is shown that simple mass balance models can be used to assist the interpretation of monitoring data while also providing an instrument that can be used to assess the LRAT potential and the extent of hopping that organic substances may experience. The available evidence supports the notion that many persistent organic pollutants experience varying degrees of 'hopping' during their environmental journey and as a consequence become fractionated with distance from source. - Evidence for global scale fractionation and hopping of POPs is reviewed

  19. An assessment of pollution in aquatic environment using bioindicators

    African Journals Online (AJOL)

    This review highlights the importance of biological indicators in monitoring presence of pollution in aquatic environment. This assessment involves the use of living organisms (macro or microorganisms and plants or animals) as bioindicators of pollution in water bodies. These organisms are believed to show higher ...

  20. Evidence based practice and techniques in aquatic therapy for ...

    African Journals Online (AJOL)

    Aquatic therapy (AT) is a holistic method of treatment that involves activity or passive activity to produce healthcare outcomes. The push for holistic treatment in rehabilitation is emphasized by the World Health Organization (WHO) (2009). The WHO suggested that healthcare organizations should turn their attention from ...

  1. SOIL ORGANIC CARBON FRACTIONS AS INFLUENCED BY SOYBEAN CROPPING IN THE HUMID PAMPA OF ARGENTINA

    Directory of Open Access Journals (Sweden)

    Marta E. Conti

    2014-07-01

    Full Text Available The sustainability of continuous cropping systems depends heavily on the years of intensive agricultural production and the choice of crop sequence that alters the fractions of soil organic matter. The aim of this study was to evaluate the impact of continuous soybean cultivation on fractions of organic carbon in the vertic Argiudolls of the Argentinean Pampas. Total organic carbon (TOC, particulate organic carbon (POC , fulvic acids (FA, humic acids (HA, humin (H and carbon produced by microbial respiration (Cresp were assessed in plots with continuous production of soybean for over 15 years (SP and grassland plots that were considered the change control (GP. A significant reduction of TOC and POC variables in cultured soybean SP plots, relative to grassland GP, was observed. The POC / TOC and Cresp / TOC ratios were significantly lower in soybean plots than in grasslands used as controls. These ratios were interpreted as a preferential tendency to maintain high rates of mineralization of labile carbon forms and increased biological stability of humified forms in cultured soybean plots. The shapes of the humic fractions of less complexity, FA and HA, were significantly reduced in the latter plots compared with grasslands, while no significant changes occurred in the more stable and recalcitrant forms of carbon, such as humin, in either plot type.

  2. The Changes of P-fractions and Solubility of Phosphate Rock in Ultisol Treated by Organic Matter and Phosphate Rock

    Directory of Open Access Journals (Sweden)

    Heru Bagus Pulunggono

    2012-09-01

    Full Text Available Phosphorus (P is one of the essential elements for plant, however, its availability is mostly very low in acid soils. It is well documented that application of phosphate rock and organic matter are able to change the level of availability of P-form in acid soils. The objective of the research were to evaluate the changes of P-fractions ( resin-P, NaHCO3-Pi, and NaHCO3-Po and phosphate rock dissolution which were induced by application of organic matter (Imperata cylindrica, Pueraria javanica, dan Colopogonium mucunoides and phosphate rock in Utisol Lampung. The experiment was designed in a completely randomized design with three factors and three replications. The first factor was the types of organic matter (I. cylindrica, P. javanica, and C. mucunoides, the second factor was the rate of organic matter (0, 2.5, and 5%, and the third factor was the rate of phosphate rock (0, 40, and 80 mg P kg-1. The results showed that in the rate of 0 and 1% organic matter, the type of organic matter did not affect P-fraction of NaHCO3-Pi, but in the rate of 2.5 and 5%, NaHCO3-Pi due to application of P. javanica, and C. mucunoides higher than due to application of I. cylindrica. However, the increasing rate of organic matter increased NaHCO3-Pi. Then, P-fraction of Resin-Pi was affected by the type of organic matter, the rate of organic matter, and the rate of phosphate rock, respectively. P-fraction of resin-Pi due to application of P. javanica, and C. mucunoides was higher than due to application of I. cylindrica, but the effect of P. javanica, and C. mucunoides was not different. Increasing the rate of organic matter and phosphate rock increased P-fraction of resin-Pi and NaHCO3-Pi, but P-fraction of NaHCO3-Po was not affected by all treatments. Meanwhile, dissolution of phosphate rock was affected by the kind of organic matter and soil reaction. In the rate of 5% organic matter, dissolution of phosphate rock by application of I. cylindrica (70% was higher

  3. Satellite-Based Assessment of the spatial extent of Aquatic Vegetation in Lake Victoria

    Science.gov (United States)

    Clark, W.; Aligeti, N.; Jeyaprakash, T.; Martins, M.; Stodghill, J.; Winstanley, H.

    2011-12-01

    Lake Victoria in Africa is the second largest freshwater lake in the world and is known for its abundance of aquatic wildlife. In particular over 200 different fish species are caught and sold by local fisherman. The lake is a major contributor to the local economy as a corridor of transportation, source of drinking water, and source of hydropower. However, the invasion of aquatic vegetation such as water hyacinth in the lake has disrupted each of these markets. Aquatic vegetation now covers a substantial area of the coastline blocking waterways, disrupting hydropower, hindering the collection of drinking water and decreasing the profitability of fishing. The vegetation serves as a habitat for disease carrying mosquitoes as well as snakes and snails that spread the parasitic disease bilharzia. The current control measures of invasive aquatic vegetation rely on biological, chemical and mechanical control. The objective of this study was to utilize remote sensing to map aquatic vegetation within Lake Victoria from 2000 to 2011. MODIS, Landsat 4-5TM, and Landsat 7-ETM imagery was employed to perform change detections in vegetation and identify the extent of aquatic vegetation throughout the years. The efficiency of containment efforts were evaluated and ideal time for application of such efforts were suggested. A methodology for aquatic vegetation surveillance was created. The results of this project were presented as a workshop to the Lake Victoria Fisheries Organization, SERVIR, and other partner organizations. The workshop provided instruction into the use of NASA and other satellite derived products. Time series animations of the spatial extent of aquatic vegetation within the lake were created. By identifying seasons of decreased aquatic vegetation, ideal times to employ control efforts were identified. SERVIR will subsequently utilize the methodologies and mapping results of this study to develop operational aquatic vegetation surveillance for Lake Victoria.

  4. Stimulatory activity of four green freshwater sponges on aquatic ...

    African Journals Online (AJOL)

    The effect of green sponges on the abundance of aquatic mycotal species is caused by dissolved organic matter produced during photosynthesis by symbiotic zoochlorellae, a symbionts of green sponges and excreted into the water environment (S. fluviatilis excreted mean 12.8% of carbon fixation). Those excreted organic ...

  5. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy

    Science.gov (United States)

    Interaction and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in lake systems. Thus, coagulation and fractionation of plant-derived DOM by di- and tri-valent Ca, Al, and Fe ions were investigated. Metal ion-induc...

  6. Ultrafiltration technique in conjunction with competing ligand exchange method for Ni–humics speciation in aquatic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Boissel, M.; Reuillon, A.; Babu, P.V.R.; Parthiban, G.

    The combination of ultrafiltration technique with competing ligand exchange method provides a better understanding of interactions between Ni and different molecular weight fractions of humic acid (HA) at varying pH in aquatic environment...

  7. Fire Effects on Soil and Dissolved Organic Matter in a Southern Appalachian Hardwood Forest: Movement of Fire-Altered Organic Matter Across the Terrestrial-Aquatic Interface Following the Great Smoky Mountains National Park Fire of 2016

    Science.gov (United States)

    Matosziuk, L.; Gallo, A.; Hatten, J. A.; Heckman, K. A.; Nave, L. E.; Sanclements, M.; Strahm, B. D.; Weiglein, T.

    2017-12-01

    Wildfire can dramatically affect the quantity and quality of soil organic matter (SOM), producing thermally altered organic material such as pyrogenic carbon (PyC) and polyaromatic hydrocarbons (PAHs). The movement of this thermally altered material through terrestrial and aquatic ecosystems can differ from that of unburned SOM, with far-reaching consequences for soil carbon cycling and water quality. Unfortunately, due to the rapid ecological changes following fire and the lack of robust pre-fire controls, the cycling of fire-altered carbon is still poorly understood. In December 2016, the Chimney Tops 2 fire in Great Smoky Mountains National Park burned over co-located terrestrial and aquatic NEON sites. We have leveraged the wealth of pre-fire data at these sites (chemical, physical, and microbial characterization of soils, continuous measurements of both soil and stream samples, and five soil cores up to 110 cm in depth) to conduct a thorough study of the movement of fire-altered organic matter through terrestrial and aquatic ecosystems. Stream samples have been collected weekly beginning 5 weeks post-fire. Grab samples of soil were taken at discrete time points in the first two months after the fire. Eight weeks post-fire, a second set of cores was taken and resin lysimeters installed at three different depths. A third set of cores and grab samples will be taken 8-12 months after the fire. In addition to routine soil characterization techniques, solid samples from cores and grab samples at all time points will be analyzed for PyC and PAHs. To determine the effect of fire on dissolved organic matter (DOM), hot water extracts of these soil samples, as well as the stream samples and lysimeter samples, will also be analyzed for PyC and PAHs. Selected samples will be analyzed by 1D- and 2D-NMR to further characterize the chemical composition of DOM. This extensive investigation of the quantity and quality of fire-altered organic material at discrete time points

  8. Ozark-Ouachita Highlands Assessment: Aquatic Conditions

    Science.gov (United States)

    Forest Service U.S. Department of Agriculture

    1999-01-01

    This publication provides citizens, private and public organizations, scientists, and others with information about the aquatic conditions in or near national forests in the Ozark-Ouachita Highlands: the Mark Twain in Missouri, the Ouachita in Arkansas and Oklahoma, and the Ozark-St. Francis National Forests in Arkansas. This report includes water quality analyses,...

  9. Biochemical markers for the assessment of aquatic environment contamination

    Science.gov (United States)

    Havelková, Marcela; Randák, Tomáš; Blahová, Jana; Slatinská, Iveta; Svobodová, Zdeňka

    2008-01-01

    The need for assessment of aquatic ecosystem contamination and of its impact on water dwelling organisms was developed in response to rising aquatic environmental pollution. In this field study, liver enzymes of phase I and phase II of xenobiotic transformation, namely cytochrome P450, ethoxyresorufin-O-deethylase, glutathione-S-transferase and tripeptide glutathione were used to assess the contamination of the aquatic environment at different rivers in the Czech Republic. The indicator species selected was the male chub (Leuciscus cephalus L.) and male brown trout (Salmo trutta fario). Chemical analyses included also the assessment of the most important inductors of previously mentioned biochemical markers. The major inductors of monitored biomarkers are industrial contaminants which belong to a large group of organic pollutants (PCB, PAH, PCDD/F, DDT, HCH, HCB and OCS), persistent in the environment. Four different groups of river basins were assessed: the River Tichá Orlice and its tributary the Kralický brook; important tributaries of the River Elbe (the rivers Orlice, Chrudimka, Cidlina, Jizera, Vltava, Ohře and Bílina); major rivers in the Czech Republic (the rivers Lužnice, Otava, Sázava, Berounka, Vltava, Labe, Ohře, Svratka, Dyje, Morava and Odra) and the River Vltava. The use of the biochemical markers together with chemical analyses seems to be an effective way to monitor the quality of aquatic environment. PMID:21218108

  10. Patterning and predicting aquatic insect richness in four West-African coastal rivers using artificial neural networks

    OpenAIRE

    Edia E.O.; Gevrey M.; Ouattara A.; Brosse S.; Gourène G.; Lek S.

    2010-01-01

    Despite their importance in stream management, the aquatic insect assemblages are still little known in West Africa. This is particularly true in South-Eastern Ivory Coast, where aquatic insect assemblages were hardly studied. We therefore aimed at characterising aquatic insect assemblages on four coastal rivers in South-Eastern Ivory Coast. Patterning aquatic insect assemblages was achieved using a Self-Organizing Map (SOM), an unsupervised Artificial Neural Networks (ANN) method. This metho...

  11. Microplastics in aquatic environments: Implications for Canadian ecosystems.

    Science.gov (United States)

    Anderson, Julie C; Park, Bradley J; Palace, Vince P

    2016-11-01

    Microplastics have been increasingly detected and quantified in marine and freshwater environments, and there are growing concerns about potential effects in biota. A literature review was conducted to summarize the current state of knowledge of microplastics in Canadian aquatic environments; specifically, the sources, environmental fate, behaviour, abundance, and toxicological effects in aquatic organisms. While we found that research and publications on these topics have increased dramatically since 2010, relatively few studies have assessed the presence, fate, and effects of microplastics in Canadian water bodies. We suggest that efforts to determine aquatic receptors at greatest risk of detrimental effects due to microplastic exposure, and their associated contaminants, are particularly warranted. There is also a need to address the gaps identified, with a particular focus on the species and conditions found in Canadian aquatic systems. These gaps include characterization of the presence of microplastics in Canadian freshwater ecosystems, identifying key sources of microplastics to these systems, and evaluating the presence of microplastics in Arctic waters and biota. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Sustaining America's Aquatic Biodiversity. Aquatic Insect Biodiversity and Conservation

    OpenAIRE

    Voshell, J. Reese

    2005-01-01

    Provides a description of the structure and appearance of aquatic insects, how they live and reproduce, the habitats they live in, how to collect them, why they are of importance, and threats to their survival; document also includes a brief illustrated summary of the eight major groups of aquatic insects and web links to more information. Part of a 12 part series on sustaining aquatic biodiversity in America.

  13. Aquatic Nuisance Species Locator

    Science.gov (United States)

    Data in this map has been collected by the United States Geological Survey's Nonindigenous Aquatic Species program located in Gainesville, Florida (http://nas.er.usgs.gov/default.aspx). This dataset may have some inaccuracies and is only current to June 15, 2012. The species identified in this dataset are not inclusive of all aquatic nuisance species, but rather a subset identified to be at risk for transport by recreational activities such as boating and angling. Additionally, the locations where organisims have been identified are also not inclusive and should be treated as a guide. Organisms are limited to the following: American bullfrog, Asian clam, Asian shore crab, Asian tunicate, Australian spotted jellyfish, Chinese mitten crab, New Zealand mudsnail, Colonial sea squirt, Alewife, Bighead carp, Black carp, Flathead catfish, Grass carp, Green crab, Lionfish, Northern snakehead, Quagga mussel, Round Goby, Ruffe, Rusty crayfish, Sea lamprey, Silver carp, Spiny water flea, Veined rapa whelk, Zebra mussel

  14. Assessing Transformations of Algal Organic Matter in the Long-Term: Impacts of Humification-Like Processes

    Directory of Open Access Journals (Sweden)

    Maud Leloup

    2015-08-01

    Full Text Available Algae and cyanobacteria are important contributors to the natural organic matter (NOM of eutrophic water resources. The objective of this work is to increase knowledge on the modifications of algal organic matter (AOM properties in the long term to anticipate blooms footprint in such aquatic environments. The production of AOM from an alga (Euglena gracilis and a cyanobacteria (Microcystis aeruginosa was followed up and characterized during the stationary phase and after one year and four months of cultivation, in batch experiments. Specific UV absorbance (SUVA index, organic matter fractionation according to hydrophobicity and apparent molecular weight were combined to assess the evolution of AOM. A comparison between humic substances (HS mainly derived from allochthonous origins and AOM characteristics was performed to hypothesize impacts of AOM transformation processes on the water quality of eutrophic water resources. Each AOM fraction underwent a specific evolution pattern, depending on its composition. Impacts of humification-like processes were predominant over release of biopolymers due to cells decay and led to an increase in the hydrophobic compounds part and molecular weights over time. However, the hydrophilic fraction remained the major fraction whatever the growth stage. Organic compounds generated by maturation of these precursors corresponded to large and aliphatic structures.

  15. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems.

    Science.gov (United States)

    Hilbeck, Angelika; Bundschuh, Rebecca; Bundschuh, Mirco; Hofmann, Frieder; Oehen, Bernadette; Otto, Mathias; Schulz, Ralf; Trtikova, Miluse

    2017-11-01

    For a long time, the environmental risk assessment (ERA) of genetically modified (GM) crops focused mainly on terrestrial ecosystems. This changed when it was scientifically established that aquatic ecosystems are exposed to GM crop residues that may negatively affect aquatic species. To assist the risk assessment process, we present a tool to identify ecologically relevant species usable in tiered testing prior to authorization or for biological monitoring in the field. The tool is derived from a selection procedure for terrestrial ecosystems with substantial but necessary changes to adequately consider the differences in the type of ecosystems. By using available information from the Water Framework Directive (2000/60/EC), the procedure can draw upon existing biological data on aquatic systems. The proposed procedure for aquatic ecosystems was tested for the first time during an expert workshop in 2013, using the cultivation of Bacillus thuringiensis (Bt) maize as the GM crop and 1 stream type as the receiving environment in the model system. During this workshop, species executing important ecological functions in aquatic environments were identified in a stepwise procedure according to predefined ecological criteria. By doing so, we demonstrated that the procedure is practicable with regard to its goal: From the initial long list of 141 potentially exposed aquatic species, 7 species and 1 genus were identified as the most suitable candidates for nontarget testing programs. Integr Environ Assess Manag 2017;13:974-979. © 2017 SETAC. © 2017 SETAC.

  16. Total organic carbon and humus fractions in restored soils from limestone quarries in semiarid climate, SE Spain

    Science.gov (United States)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Ángel Domene Ruiz, Miguel; Solé Benet, Albert

    2016-04-01

    Mining activities generate erosion and loss of plant cover and soil organic matter (SOM), especially in arid and semiarid Mediterranean regions. A precondition for ecosystem restoration in such highly disturbed areas is the development of functional soils with sufficient organic matter. But the SOM quality is also important to long-term C stabilization. The resistance to biodegradation of recalcitrant organic matter fractions has been reported to depend on some intrinsic structural factors of humic acid substances and formation of amorphous organo-mineral recalcitrant complexes. In an experimental soil restoration in limestone quarries in the Sierra de Gádor (Almería), SE Spain, several combinations of organic amendments (sewage sludge and compost from domestic organic waste) and mulches (gravel and woodchip) were added in experimental plots using a factorial design. In each plot, 75 native plants (Anthyllis cytisoides, A. terniflora and Macrochloa tenacissima) were planted and five years after the start of the experiment total organic carbon (TOC), physico-chemical soil properties and organic C fractions (particulate organic matter, H3PO4-fulvic fraction, fulvic acids (FA), humic acids (HA) and humin) were analyzed. We observed significant differences between treatments related to the TOC content and the HA/FA ratio. Compost amendments increased the TOC, HA content and HA/FA ratio, even higher than in natural undisturbed soils, indicating an effective clay humus-complex pointing to progressively increasing organic matter quality. Soils with sewage sludge showed the lowest TOC and HA/FA ratio and accumulated a lower HA proportion indicating poorer organic matter quality and comparatively lower resilience than in natural soils and soils amended with compost.

  17. Integrative Research on Organic Matter Cycling Across Aquatic Gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Nicholas D.; Bianchi, Thomas S.; Medeiros, Patricia M.; Seidel, Michael; Keil, Richard G.; Robinson, Carol

    2017-07-04

    The goal of this research topic was to motivate innovative research that blurs traditional disciplinary and geographical boundaries. As the scientific community continues to gain momentum and knowledge about how the natural world functions, it is increasingly important that we recognize the interconnected nature of earth systems and embrace the complexities of ecosystem transitions. We are pleased to present this body of work, which embodies the spirit of research spanning across the terrestrial-aquatic continuum, from mountains to the sea.

  18. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Science.gov (United States)

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  19. Uptake and depuration of pharmaceuticals in aquatic invertebrates

    International Nuclear Information System (INIS)

    Meredith-Williams, Melanie; Carter, Laura J.; Fussell, Richard; Raffaelli, David; Ashauer, Roman; Boxall, Alistair B.A.

    2012-01-01

    The uptake and depuration of a range of pharmaceuticals in the freshwater shrimp (Gammarus pulex) and the water boatman (Notonecta glauca) was studied. For one compound, studies were also done using the freshwater snail Planobarius corneus. In G. pulex, bioconcentration factors (BCFs) ranged from 4.6 to 185,900 and increased in the order moclobemide < 5-fluoruracil < carbamazepine < diazepam < carvedilol < fluoxetine. In N. glauca BCFs ranged from 0.1 to 1.6 and increased in the order 5-fluorouracil < carbamazepine < moclobemide < diazepam < fluoxetine < carvedilol. For P. corneus, the BCF for carvedilol was 57.3. The differences in degree of uptake across the three organisms may be due to differences in mode of respiration, behaviour and the pH of the test system. BCFs of the pharmaceuticals for each organism were correlated to the pH-corrected liposome–water partition coefficient of the pharmaceuticals. - Highlights: ► One of the first studies exploring the uptake of pharmaceuticals into aquatic invertebrates. ► Data presented on uptake, depuration rates and bioconcentration for a range of pharmaceuticals. ► Uptake is correlated with the pH-corrected liposome–water partition coefficient. ► Findings can be used to better predict impacts of pharmaceuticals on the aquatic environment. - The factors affecting the degree of uptake of pharmaceuticals into aquatic invertebrates were studied. The results indicate that species traits such as respiration and behaviour of the organisms and pH-corrected liposome–water partition coefficients are important factors in determining pharmaceutical uptake.

  20. Diagenetic fractionation of carbon isotopes in particulate and dissolved organic matter in sediments from Skan Bay, Alaska

    International Nuclear Information System (INIS)

    Alperin, M.J.; Reeburgh, W.S.

    1991-01-01

    Isotope fractionation during organic matter diagenesis was investigated by measuring detailed depth distributions of stable carbon isotope ratios in sediment particulate organic carbon (POC) and dissolved organic carbon (DOC) reservoirs. The δ 13 C value of the POC shifted systematically from -19 per-thousand at the surface to -21 per-thousand at 10 cm. Significant trends were also apparent in the δ 13 C-DOC profile. Proceeding down-core, DOC became isotopically heavier between 0 and 5 cm and isotopically lighter at greater depths. Two mechanisms could account for the observed down-core shift in δ 13 C-POC: (a) temporal changes in the isotope ratios of deposited organic matter and (b) isotope fractionation associated with diagenesis. The δ 15 C-DOC depth distribution is sensitive to which mechanism controls the isotopic composition of the POC reservoir. A diagenetic model that couples POC and DOC reservoirs was used to discriminate between temporal changes and diagenetic alteration of the POC isotopic composition. The model indicated that observed trends in δ 13 C-POC and δ 13 C-DOC depth distributions are consistent with isotopic fractionation of POC during diagenesis

  1. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  2. Speciation of organic matter in sandy soil size fractions as revealed by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Jordán, Antonio; Zavala, Lorena M.; de la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    This research deals with the assessment of organic matter structural differences in soil physical fractions before and after lipid extractions. Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: 0.05-0.25 mm) were studied from each soil. . In addition, the two fractions from each soil were exhaustively Soxhlet extracted with a Dichlorometane-Methanol (3:1) mixture to obtain the lipid-free fractions (LF) from each size fraction (LFC and LFF). The composition of the organic matter at a molecular level in the different soil fractions was approached by analytical pyrolysis (Py-GC/MS) and FT-IR spectroscopy. These techniques are complementary and have been found suitable for the structural characterization of complex organic matrices (Moldoveanu, 1998; Piccolo and Stevenson, 1982); whereas Py-GC/MS provides detailed structural information of individual compounds present and a finger-printing of soil organic matter, FT-IR is informative about major functional groups present. The advantages of these techniques are well known: no need for pretreatment are fast to perform, highly reproducible and only small amount of samples are needed. Soil size fractions show contrasting differences in organic matter content (C 4-7 % and F > 40 %) and conspicuous differences were found in the pyrolysis products released by the fractions studied. The main families of pyrolysis compounds have well defined macromolecular precursors, such as lignin, polypeptides, polysaccharides and lipids (González-Vila et al., 2001). The C fractions yield higher relative abundance of lignin and polysaccharide derived pyrolysis compounds. Regarding the differences in the soil organic matter as affected by the different vegetation covers

  3. Large-scale isolation and fractionation of organs of Drosophila melanogaster larvae.

    Science.gov (United States)

    Zweidler, A; Cohen, L H

    1971-10-01

    Methods for the mass isolation of diverse organs from small animals are described. They involve novel devices: a mechanical dissecting system, a centrifugal agitator for the separation of fibrillar from globular particles, and a settling chamber for the fractionation at unit gravity of particles with sedimentation velocities above the useful range for centrifugation. The application of these methods to the isolation of polytene and nonpolytene nuclei from Drosophila melanogaster larvae is described.

  4. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing; Croue, Jean-Philippe

    2012-01-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  5. Contribution of different effluent organic matter fractions to membrane fouling in ultrafiltration of treated domestic wastewater

    KAUST Repository

    Zheng, Xing

    2012-12-01

    In the present work, effluent organic matter (EfOM) in treated domestic wastewater was separated into hydrophobic neutrals, colloids, hydrophobic acids, transphilic acids and neutrals and hydrophilic compounds. Their contribution to dissolved organic carbon (DOC) was identified. Further characterization was conducted with respect to molecular size and hydrophobicity. Each isolated fraction was dosed into salt solution to identify its fouling potential in ultrafiltration (UF) using a hydrophilized polyethersulfone membrane. The results show that each kind of EfOM leads to irreversible fouling. At similar delivered DOC load to the membrane, colloids present the highest fouling effect in terms of both reversible and irreversible fouling. The hydrophobic organics show much lower reversibility than the biopolymers present. However, as they are of much smaller size than the membrane pore opening, they cannot lead to such severe fouling as biopolymers do. In all of the isolated fractions, hydrophilics show the lowest fouling potential. For either colloids or hydrophobic substances, increasing their content in feedwater leads to worse fouling. The co-effect between biopolymers and other EfOM fractions has also been identified as one of the mechanisms contributing to UF fouling in filtering EfOM-containing waters. © IWA Publishing 2012.

  6. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2017-07-24

    The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.

  7. LADTAP-2, Organ Doses to Man and Other Biota from Aquatic Environment

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.; Whelan, G.

    1989-01-01

    LADTAP2 starts with the water concentration at a specific usage location in the environment. The effluent concentration from the impoundment system is related to the water concentrations at the usage locations by two parameters, a dilution factor and a transit time (for radiological decay in transport through the surface water system). The water concentration at the usage location is applied to specific pathway models to estimate the resulting exposure. The pathways included are: ingestion of aquatic foods, such as fish, invertebrates, and aquatic plants; external exposure to shoreline; external exposure to water through boating or swimming; ingestion of drinking water (freshwater sites only); and ingestion of irrigated terrestrial food crops. 3 - Restrictions on the complexity of the problem - Maxima of: 200 nuclides in the release source term, 19 sport fish harvest locations, 19 commercial fish harvest locations, 19 sport invertebrate harvest locations, 19 commercial invertebrate harvest locations, 8 body organs. The radionuclide library contains data for 169 radionuclides

  8. Quantification of organic solvents in aquatic toys and swimming learning devices and evaluation of their influence on the smell properties of the corresponding products.

    Science.gov (United States)

    Wiedmer, Christoph; Buettner, Andrea

    2018-04-01

    Based on the observation that the characteristic odour of inflatable aquatic toys for children is predominantly caused by residues of hazardous organic solvents, the concentrations of cyclohexanone, isophorone and phenol were determined in a selection of 20 products obtained from online suppliers located in Germany. Analytes were extracted with dichloromethane after the addition of non-labelled internal standards, and the volatile fraction was isolated using solvent-assisted flavour evaporation (SAFE). Extracts were then concentrated by Vigreux distillation and analysed by means of gas chromatography with mass spectrometric detection (GC-MS). Furthermore, each sample was evaluated regarding its specific olfactory properties by an expert sensory panel. While some samples did not contain significant amounts of solvents, cyclohexanone concentrations above the lower limit of quantification (LLOQ) were determined in nine samples with six samples containing high concentrations ranging from about 1 to 7 g/kg cyclohexanone. Isophorone concentrations above the LLOQ were observed in eight samples. Thereby, six products contained between 0.3 and 1.6 g/kg isophorone and the remaining two samples contained even about 5 g/kg isophorone, each. Likewise, phenol concentrations exceeded the LLOQ in 14 cases, with four samples containing elevated amounts ranging from about 140 to 280 mg/kg phenol.

  9. AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology.

    Science.gov (United States)

    Arts, Gertie; Davies, Jo; Dobbs, Michael; Ebke, Peter; Hanson, Mark; Hommen, Udo; Knauer, Katja; Loutseti, Stefania; Maltby, Lorraine; Mohr, Silvia; Poovey, Angela; Poulsen, Véronique

    2010-05-01

    Primary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweed's very short generation time). These topics were addressed during the workshop entitled "Aquatic Macrophyte Risk Assessment for Pesticides" (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.

  10. SOIL ORGANIC MATTER FRACTIONS IN PRESERVED AND DISTURBED WETLANDS OF THE CERRADO BIOME

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes de Sousa

    2015-02-01

    Full Text Available Veredas are humid tropical ecosystems, generally associated to hydromorphic soils and a shallow water table. The soils of these ecosystems are affected by the use of the areas around these veredas. The objective of this study was to determine soil organic matter (SOM fractions in veredas adjacent to preserved (native savanna and disturbed environments (agricultural areas and pastures in the Cerrado biome. Soil samples were collected from the 0-10 and 10-20 cm layers along reference lines drawn along the relief following the upper, middle and lower positions of one of the slopes, in the direction of the draining line of the vereda. The soil analysis determined: total soil OC, total nitrogen and C:N ratio; C and N contents and C:N ratio in particulate and mineral-associated fractions (of SOM; fulvic acids, humic acids and humin fractions and ratio between humic and fulvic acids. The agricultural use around the veredas induced changes in the SOM fractions, more pronounced in the lower part of the slope. In the soil surface of this part, the OC levels in the humic substances and the particulate fraction of SOM, as well as total soil OC were reduced in the vereda next to crop fields.

  11. Collaborative Governance Models for Managing Aquatic Resources ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Collaborative Governance Models for Managing Aquatic Resources and Fisheries in the Peruvian ... The idea is to consolidate this knowledge in a model for the participatory ... Linking research to urban planning at the ICLEI World Congress 2018 ... In partnership with UNESCO's Organization for Women in Science for the ...

  12. Characterization of the organic fraction of earthworm humus and composts taken place starting from different substrates

    International Nuclear Information System (INIS)

    Melgarejo, M.R.; Ballesteros, M.I.; Bendeck L, M.

    1998-01-01

    In order to evaluate the quality and the humification degree of different composted materials, the organic fraction of earthworm humus obtained from kitchen and farm residues, coffee pulp, biodegradable garbage and roses residues and of composts from roses and carnation residues were characterized chemically. Thus, determination and analysis of the C/N ratio, as well as the fractionation of the organic matter and the purification and characterization of the humic acids by C, H, N, 0 elemental analysis, UV-VIS spectroscopy were done and different humification parameters were found. The fractionation of the organic matter showed a low content of extracted carbon with respect to the normal content found in the soil humus. The elemental analysis data of the humic acids from the composts and the earthworm humus did not reveal important differences between these materials, while the E4/E6 ratio provided more evident changes. The results showed that the C/N ratio is not an absolute indicative of the Maturity State of the studied materials. The best parameters to estimate the maturity degree of the composts and the earthworm humus turned out to be the polymerization ratio, the humification index and the extracted carbon/non extracted carbon ratio. Among the evaluated materials, the earthworm of roses residues showed the best conditions with respect to content and quality of the organic matter to be added to a soil

  13. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming.

    Science.gov (United States)

    Schnecker, Jörg; Borken, Werner; Schindlbacher, Andreas; Wanek, Wolfgang

    2016-12-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO 2 efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. To investigate the effect of soil warming on functionally different soil organic matter pools, we here investigated the chemical and isotopic composition of bulk soil and three density fractions (free particulate organic matter, fPOM; occluded particulate organic matter, oPOM; and mineral associated organic matter, MaOM) of a C-rich soil from a long-term warming experiment in a spruce forest in the Austrian Alps. At the time of sampling, the soil in this experiment had been warmed during the snow-free period for seven consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO 2 release from the soil continued to be elevated by the warming treatment. Our results, which included organic carbon content, total nitrogen content, δ 13 C, Δ 14 C, δ 15 N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. Surprisingly, the differences in the three density fractions were mostly small and the direction of warming induced change was variable with fraction and soil depth. Warming led to reduced N content in topsoil oPOM and subsoil fPOM and to reduced relative abundance of N-bearing compounds in subsoil MaOM. Further, warming increased the δ 13 C of MaOM at both sampling depths, reduced the relative abundance of carbohydrates while it increased the relative abundance of lignins in subsoil oPOM. As the size of the functionally different SOM pools did not significantly change, we assume that the few and small

  14. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    Science.gov (United States)

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  15. Edible aquatic Coleoptera of the world with an emphasis on Mexico

    Science.gov (United States)

    Ramos-Elorduy, Julieta; Moreno, José Manuel Pino; Camacho, Victor Hugo Martínez

    2009-01-01

    Anthropoentomophagy is an ancient culinary practice wherein terrestrial and aquatic insects are eaten by humans. Of these species of insects, terrestrial insects are far more commonly used in anthropoentomophagy than aquatic insects. In this study we found that there are 22 genera and 78 species of edible aquatic beetles in the world. The family Dytiscidae hosts nine genera, Gyrinidae one, Elmidae two, Histeridae one, Hydrophilidae six, Haliplidae two and Noteridae one. Of the recorded species, 45 correspond to the family Dytiscidae, 19 to Hydrophilidae, three to Gyrinidae, four to Elmidae, two to Histeridae, four to Haliplidae and one to Noteridae. These beetles are the most prized organisms of lentic watersThe family that has the highest number of edible food insect genera and species is Dytiscidae. Here, the global geographic distribution of species in these organisms is shown, and a discussion is presented of its importance as a renewable natural resource widely used for food in various countries. PMID:19379486

  16. Edible aquatic Coleoptera of the world with an emphasis on Mexico

    Directory of Open Access Journals (Sweden)

    Moreno José

    2009-04-01

    Full Text Available Abstract Anthropoentomophagy is an ancient culinary practice wherein terrestrial and aquatic insects are eaten by humans. Of these species of insects, terrestrial insects are far more commonly used in anthropoentomophagy than aquatic insects. In this study we found that there are 22 genera and 78 species of edible aquatic beetles in the world. The family Dytiscidae hosts nine genera, Gyrinidae one, Elmidae two, Histeridae one, Hydrophilidae six, Haliplidae two and Noteridae one. Of the recorded species, 45 correspond to the family Dytiscidae, 19 to Hydrophilidae, three to Gyrinidae, four to Elmidae, two to Histeridae, four to Haliplidae and one to Noteridae. These beetles are the most prized organisms of lentic watersThe family that has the highest number of edible food insect genera and species is Dytiscidae. Here, the global geographic distribution of species in these organisms is shown, and a discussion is presented of its importance as a renewable natural resource widely used for food in various countries.

  17. Release of copper from sintered tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms

    International Nuclear Information System (INIS)

    Thomas, Vernon G.; Santore, Robert C.; McGill, Ian

    2007-01-01

    Sintered tungsten-bronze is a new substitute for lead shot, and is about to be deposited in and around the wetlands of North America. This material contains copper in the alloyed form of bronze. This in vitro study was performed according to U.S. Fish and Wildlife Service criteria to determine the dissolution rate of copper from the shot, and to assess the toxic risk that it may present to aquatic organisms. The dissolution of copper from tungsten-bronze shot, pure copper shot, and glass beads was measured in a buffered, moderately hard, synthetic water of pH 5.5, 6.6, and 7.8 over a 28-day period. The dissolution of copper from both the control copper shot and the tungsten-bronze shot was affected significantly by the pH of the water and the duration of dissolution (all p values < 0.000). The rate of copper release from tungsten bronze shot was 30 to 50 times lower than that from the copper shot, depending on pH (p < 0.0000). The observed expected environmental concentration of copper released from tungsten-bronze shot after 28 days was 0.02 μg/L at pH 7.8, and 0.4 μg/L at pH 5.6, using a loading and exposure scenario specific in a U.S. Fish and Wildlife Service protocol. Ratio Quotient values derived from the highest EEC observed in this study (0.4 μg/L), and the copper toxic effect levels for all aquatic species listed in the U.S. Environmental Protection Agency ambient water quality criteria database, were all far less than the 0.1 criterion value. Given the conditions stipulated by the U.S. Fish and Wildlife Service and the U.S. Environmental Protection Agency, heavy loading from discharged tungsten-bronze shot would not pose a toxic risk to potable water, or to soil. Consequently, it would appear that no toxic risks to aquatic organisms will attend the use of tungsten-bronze shot of the approved composition. Given the likelihood that sintered tungsten-bronze of the same formula will be used for fishing weights, bullets, and wheel balance weights, it is

  18. Quantities and qualities of physical and chemical fractions of soil organic matter under a rye cover crop

    Science.gov (United States)

    To detect the effects of a rye cover crop on labile soil carbon, the light fraction, large particulate organic matter (POM), small POM, and two NaOH-extractable humic fractions were extracted from three depths of a corn soil in central Iowa having an overwinter rye cover crop treatment and a contro...

  19. Cover plants and mineral nitrogen: effects on organic matter fractions in an oxisol under no-tillage in the cerrado

    Directory of Open Access Journals (Sweden)

    Isis Lima dos Santos

    2014-12-01

    Full Text Available Cover plants are essential for the sustainability of no-tillage systems in tropical regions. However, information on the effects of these plants and N fertilization on soil organic matter fractions is still scarce. This study evaluated the effect of cover crops with different chemical composition and of N topdressing on the labile and humified organic matter fractions of an Oxisol of the Cerrado (savanna-like vegetation. The study in a randomized complete block design was arranged in split-plots with three replications. Four cover species were tested in the plots and the presence or absence of N topdressing in the subplot. The following cover species were planted in succession to corn for eight years: Urochloa ruziziensis; Canavalia brasiliensis M. ex Benth; Cajanus cajan (L. Millsp; and Sorghum bicolor (L. Moench. In general, the cultivation of U. ruziziensis increased soil C levels, particularly of C in the humic acid and particulate organic C fractions, which are quality indicators of soil organic matter. The C in humic substances and mineral organic C accounted for the highest proportions of total organic C, demonstrating the strong interaction between organic matter, Fe and Al oxides and kaolinite, which are predominant in these weathered soils of the Cerrado.

  20. Biochemical fractionation and cellular distribution of americium and plutonium in the biomass of freshwater macrophytes

    International Nuclear Information System (INIS)

    Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.Ya.

    2011-01-01

    Accumulation of americium ( 241 Am) and plutonium ( 238,242 Pu) and their distribution in cell compartments and biochemical components of the biomass of freshwater aquatic plants Elodea canadensis, Ceratophyllum demersum and Myrioplyllum spicatum and aquatic moss Fontinalis antipyretica have been investigated in laboratory experiments. Americium and plutonium taken up from water by Elodea canadensis apical shoots were mainly absorbed by structural components of plant cells (90% for 241 Am; 89% for 238 Pu and 82-87% for 242 Pu). About 10-18% of isotope activity was recorded in the cytosol fraction. The major concentration (76-92%) of americium was bound to cell wall cellulose-like polysaccharides of Elodea canadensis, Myriophyllum spicatum, Ceratophyllum demersum and Fontinalis antipyretica, 8-24% of americium activity was registered in the fraction of proteins and carbohydrates, and just a minor concentration (<1%) in the lipid fraction. The distribution of plutonium in the biomass fractions of Elodea was similar to that of americium. Hence, americium and plutonium had the highest affinity to cellulose-like polysaccharides of cell walls of freshwater submerged macrophytes. (author)

  1. DISSOLVED ORGANIC-MATTER, CADMIUM, COPPER AND ZINC IN PIG SLURRY-SIZE AND SOIL SOLUTION-SIZE EXCLUSION CHROMATOGRAPHY FRACTIONS

    NARCIS (Netherlands)

    DELCASTILHO, P; DALENBERG, JW; BRUNT, K; BRUINS, AP

    1993-01-01

    Sephadex size exclusion chromatography was used to prepare molecular size fractions from liquid pig slurry, before and after aerobic interaction with a loamy-sand soil. In the liquid fractions organic matter was characterized and some components were identified. The distribution of zinc and copper

  2. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    Science.gov (United States)

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  3. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  4. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated...... and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties......) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition...

  5. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes.

    Science.gov (United States)

    Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja

    2017-05-01

    Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy.

    Science.gov (United States)

    Madhavan, Dinesh B; Baldock, Jeff A; Read, Zoe J; Murphy, Simon C; Cunningham, Shaun C; Perring, Michael P; Herrmann, Tim; Lewis, Tom; Cavagnaro, Timothy R; England, Jacqueline R; Paul, Keryn I; Weston, Christopher J; Baker, Thomas G

    2017-05-15

    Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester C. While accurate and efficient methods for predicting soil organic C content and composition have recently been developed for soils under agricultural land uses, such methods under forested land uses are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils using physical fractionation by automated wet-sieving and 13 C nuclear magnetic resonance (NMR) spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000-450 cm -1 ) were acquired from finely-ground soils from environmental plantings and agricultural land. Satisfactory prediction models based on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R 2  > 0.90, negligible bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and economically determine TOC and its fractions and thereby accurately describe the effects of land use change such as reforestation on agricultural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  8. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: a comprehensive understanding.

    Directory of Open Access Journals (Sweden)

    Wenzhong Tang

    Full Text Available Aquatic ecosystems in eastern China are suffering threats from heavy metal pollution because of rapid economic development and urbanization. Heavy metals in surface sediments were determined in five different aquatic ecosystems (river, reservoir, estuary, lake, and wetland ecosystems. The average Cd, Cr, Cu, Ni, Pb, and Zn concentrations were 0.716, 118, 37.3, 32.7, 56.6, and 204 mg/kg, respectively, and the higher concentrations were mainly found in sediment samples from river ecosystems. Cd was the most anthropogenically enriched pollutant, followed by Zn and Pb, indicated by enrichment factors >1.5. According to consensus-based sediment quality guidelines, potential ecological risk indices, and risk assessment codes, all five types of aquatic ecosystems were found to be polluted with heavy metals, and the most polluted ecosystems were mainly rivers. Cd was the most serious pollutant in all five aquatic ecosystems, and it was mainly found in the exchangeable fraction (about 30% of the total Cd concentration, on average. The results indicate that heavy metal contamination, especially of Cd, in aquatic ecosystems in eastern China should be taken into account in the development of management strategies for protecting the aquatic environment.

  9. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  10. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe_3O_4 and γ-Fe_2O_3 NPs with particle sizes ranging from 20 to 50 nm, and Fe"0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe"0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe"0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  11. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  12. GRANULOMETRIC AND HUMIC FRACTIONS CARBON STOCKS OF SOIL ORGANIC MATTER UNDER NO-TILLAGE SYSTEM IN UBERABA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2011-12-01

    Full Text Available The cover plant use preceding grain crops in Cerrado soil can increase the carbon stocks of chemical and physical fractions of soil organic matter (SOM. The present study aimed to quantify the carbon stocks of SOM granulometric and humic fractions in a Cerrado area under no-tillage system with different cover plant, and compare the results with those from conventional tillage and fallow areas, in Uberaba, MG, Brazil. The implemented cover crops were: millet, tropical grass and sunn hemp. Furthermore, an area was used in fallow and another as a control area (conventional tillage. After cover crop removal, the areas were subdivided for the corn and soybean plantation. Soil samples were collected in the 0.0-0.025, 0.025-0.05, 0.05-0.10 and 0.10-0.20 m depths, with posterior quantification of total organic carbon (TOC levels and chemical and granulometric fractionation of SOM. Humic acid carbon (C-HAF, fulvic acids (C-FAF and humin (C-HUM were quantified through these fractionations. The granulometric fractions consisted in particulate organic matter (POM and mineral organic matter (MOM. Using the carbon levels for each fraction, the respective stocks for each depth were calculated, including the 0.0-0.20 m layer. In the 0.0-0.20 m layer, TOC had the highest stocks for the millet area. The highest POM stocks were found for the corn plantation over sunn hemp and the fallow and soybean area over millet and tropical grass (0.0-0.20 m. In relation to the MOM stocks, the highest values were observed in the areas with millet, sunn hemp and tropical (palisade grass, all superior to those found in the conventional tillage and fallow areas, independent of evaluated culture (0.10-0.20 m. The highest C-HUM stocks were observed in the area with tropical grass (0.025-0.05 m and areas with tropical grass and sunn hemp (0.10-0.20 m, when compared to conventional tillage, independent of evaluated culture (corn and soybean. The highest C-FAH stocks in the depth of 0

  13. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  14. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils

    Directory of Open Access Journals (Sweden)

    Ewa Błońska

    2017-11-01

    Full Text Available The aim of the study was to present effects of soil properties, especially moisture, on the quantity and quality of soil organic matter. The investigation was performed in the Czarna Rózga Reserve in Central Poland. Forty circular test areas were located in a regular grid of points (100 × 300 m. Each plot was represented by one soil profile located at the plot’s center. Sample plots were located in the area with Gleysols, Cambisols and Podzols with the water table from 0 to 100 cm. In each soil sample, particle size, total carbon and nitrogen content, acidity, base cations content and fractions of soil organic matter were determined. The organic carbon stock (SOCs was calculated based on its total content at particular genetic soil horizons. A Carbon Distribution Index (CDI was calculated from the ratio of the carbon accumulation in organic horizons and the amount of organic carbon accumulation in the mineral horizons, up to 60 cm. In the soils under study, in the temperate zone, moisture is an important factor in the accumulation of organic carbon in the soil. The highest accumulation of carbon was observed in soils of swampy variant, while the lowest was in the soils of moist variant. Large accumulation of C in the soils with water table 80–100 cm results from the thick organic horizons that are characterized by lower organic matter decomposition and higher acidity. The proportion of carbon accumulation in the organic horizons to the total accumulation in the mineral horizons expresses the distribution of carbon accumulated in the soil profile, and is a measure of quality of the organic matter accumulated. Studies have confirmed the importance of moisture content in the formation of the fractional organic matter. With greater soil moisture, the ratio of humic to fulvic acids (HA/FA decreases, which may suggest an increase in carbon mobility in soils.

  15. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  16. Co-Digestion of the Organic Fraction of Municipal Waste With Other Waste Types

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    Several characteristics make anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) difficult. By co-digestion of OFMSW with several other waste types it will be possible to optimize the anaerobic process by waste management. The co-digestion concept involves the treatment...... of several waste types in a single treatment facility. By combining many types of waste it will be possible to treat a wider range of organic waste types by the anaerobic digestion process (figure 1). Furthermore, co-digestion enables the treatment of organic waste with a high biogas potential that makes...... the operation of biogas plants more economically feasible (Ahring et al., 1992a). Thus, co-digestion gives a new attitude to the evaluation of waste: since anaerobic digestion of organic waste is both a waste stabilization method and an energy gaining process with production of a fertilizer, organic waste...

  17. A review of ecological effects and environmental fate of illicit drugs in aquatic ecosystems.

    Science.gov (United States)

    Rosi-Marshall, E J; Snow, D; Bartelt-Hunt, S L; Paspalof, A; Tank, J L

    2015-01-23

    Although illicit drugs are detected in surface waters throughout the world, their environmental fate and ecological effects are not well understood. Many illicit drugs and their breakdown products have been detected in surface waters and temporal and spatial variability in use translates into "hot spots and hot moments" of occurrence. Illicit drug occurrence in regions of production and use and areas with insufficient wastewater treatment are not well studied and should be targeted for further study. Evidence suggests that illicit drugs may not be persistent, as their half-lives are relatively short, but may exhibit "pseudo-persistence" wherein continual use results in persistent occurrence. We reviewed the literature on the ecological effects of these compounds on aquatic organisms and although research is limited, a wide array of aquatic organisms, including bacteria, algae, invertebrates, and fishes, have receptors that make them potentially sensitive to these compounds. In summary, illicit drugs occur in surface waters and aquatic organisms may be affected by these compounds; research is needed that focuses on concentrations of illicit drugs in areas of production and high use, environmental fate of these compounds, and effects of these compounds on aquatic ecosystems at the concentrations that typically occur in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Cs-137 in aquatic organisms in the southern Lake Keurusselkae (Finland)[Radioecology

    Energy Technology Data Exchange (ETDEWEB)

    Ilus, E.; Klemola, S.; Vartti, V.P.; Mattila, J.; Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-04-15

    The results of a study carried out in Lake Keurusselkae, in the Finnish Lake District, are reported. The aim of the study was to collect biota samples for the INDOFERN Project from an area that was rather highly contaminated (70 kBq m{sup -2} of {sup 137}Cs in 1986) with the Chernobyl fallout in Finland. The samples were taken from a relatively small area surrounding the island of Iso Riihisaari in the southern part of the Keurusselkae water course. In total 15 samples of aquatic plants, 6 samples of aquatic animals, 1 water sample and 2 sediment cores were taken. In August 2003, the activity concentration of {sup 137}Cs in the surface water of the southern Lake Keurusselkae was 49 Bq m{sup -3}, whereas it was 310 Bq m{sup -3} in 1988, two year after the Chernobyl accident. In the relatively shallow area surrounding the island of Iso Riihisaari, the total amount of {sup 137}Cs in sediments was 32-37 kBq m{sup -2} in 2003, but in a deeper basin close to this area the total amount of {sup 137}Cs was 130 kBq m{sup -2} in 1990. The clearly highest activity concentration and concentration factor of {sup 137}Cs was found in one sample of Water horsetail (Equisetum fluviatile), 1 430 Bq kg{sup -1} dry wt; CF 29 200, whereas in another sample of the same species the concentration was only 174 Bq kg{sup -1} dry wt. In addition, the Water lily (Nymphaea candida), Spiked water millfoil (Myriophyllum spicatum), Broad-leaved pondweed (Potamogeton natans) and Yellow water lily (Nuphar lutea) seemed to be good indicators for {sup 137}Cs. The tall freshwater clam (Anodonta sp.) seemed to be a modest accumulator of {sup 137}Cs. Contrary to our results from the coastal areas of the Baltic Sea, many aquatic plants demonstrated in fresh water similar accumulation capacity of {sup 137}Cs as fish (perch and roach), while in the sea the uptake of {sup 137}Cs in fish seemed to be more efficient than in aquatic plants. (LN)

  19. Dynamic model for tritium transfer in an aquatic food chain.

    Science.gov (United States)

    Melintescu, A; Galeriu, D

    2011-08-01

    Tritium ((3)H) is released from some nuclear facilities in relatively large quantities. It is a ubiquitous isotope because it enters straight into organisms, behaving essentially identically to its stable analogue (hydrogen). Tritium is a key radionuclide in the aquatic environment, in some cases, contributing significantly to the doses received by aquatic, non-human biota and by humans. The updated model presented here is based on more standardized, comprehensive assessments than previously used for the aquatic food chain, including the benthic flora and fauna, with an explicit application to the Danube ecosystem, as well as an extension to the special case of dissolved organic tritium (DOT). The model predicts the organically bound tritium (OBT) in the primary producers (the autotrophs, such as phytoplankton and algae) and in the consumers (the heterotrophs) using their bioenergetics, which involves the investigation of energy expenditure, losses, gains and efficiencies of transformations in the body. The model described in the present study intends to be more specific than a screening-level model, by including a metabolic approach and a description of the direct uptake of DOT in marine phytoplankton and invertebrates. For a better control of tritium transfer into the environment, not only tritiated water must be monitored, but also the other chemical forms and most importantly OBT, in the food chain.

  20. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    Science.gov (United States)

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2006-01-01

    Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics...... such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher...... biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS(.)m(-3) d(-1). High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS(.)m(-3) d(-1) are applied. Multi...

  2. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    Schidlowski, M.; Eichmann, R.; Fiebiger, W.

    1976-01-01

    37 delta 13 Csub(org) and 9 delta 13 Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 10 9 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.) [de

  3. The use of aquatic macrophytes in monitoring and in assessment of biological integrity

    Science.gov (United States)

    Stewart, P.M.; Scribailo, R.W.; Simon, T.P.; Gerhardt, A.

    1999-01-01

    Aquatic plant species, populations, and communities should be used as indicators of the aquatic environment, allowing detection of ecosystem response to different stressors. Plant tissues bioaccumulate and concentrate toxin levels higher than what is present in the sediments; and this appears to be related to organic matter content, acidification, and buffering capacity. The majority of toxicity studies, most of these with heavy metals, have been done with several Lemna species and Vallisneria americana. Organic chemicals reviewed include pesticides and herbicides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other industrial contaminants. The use of aquatic plant communities as bioindicators of environmental quality was evaluated for specific characteristics and indices that may assess biological integrity. Indices such as the floristic quality index (FQI) and coefficient of conservatism (C) are pioneering efforts to describe the quality of natural areas and protect native biodiversity. Our case study in the Grand Calumet Lagoons found that 'least-impacted' sites had the greatest aquatic plant species richness, highest FQI and C values, and highest relative abundance. Lastly, we introduce the concepts necessary for the development of a plant index of biotic integrity. Development of reference conditions is essential to understanding aquatic plant community structure, function, individual health, condition, and abundance. Information on guild development and tolerance definition are also integral to the development of a multi-metric index.

  4. Responses of Aquatic Bacteria to Terrestrial Runoff: Effects on Community Structure and Key Taxonomic Groups

    Science.gov (United States)

    Le, Huong T.; Ho, Cuong T.; Trinh, Quan H.; Trinh, Duc A.; Luu, Minh T. N.; Tran, Hai S.; Orange, Didier; Janeau, Jean L.; Merroune, Asmaa; Rochelle-Newall, Emma; Pommier, Thomas

    2016-01-01

    Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as

  5. Impact of long-term radiation exposure on aquatic biota within the Chernobyl exclusion zone: 30 years after accident

    International Nuclear Information System (INIS)

    Gudkov, D.I.; Pomortseva, N.A.; Shevtsova, N.L.; Dzyubenko, E.V.; Nazarov, A.B.

    2016-01-01

    Self-purification of closed water bodies within the Chernobyl exclusion zone (EZ) is an extremely slow process. Therefore, ecosystems of the majority of lakes, dead channels and crawls possess high levels of radionuclide contamination of all components. Along with natural decontamination processes in aquatic ecosystems such as physical decay of radionuclides and their water transport outside the EZ, there is a change of physical and chemical forms of radioactive substances in soils of catchment areas, their transformation and transition in the mobile and bioavailable state, washout to the closed aquatic ecosystems and accumulation by hydrobionts. This essentially deteriorates the radiation situation in closed aquatic ecosystems, which are some kind of 'storage system' of radioactive substances in the EZ and results in increase of radiation dose to aquatic species and manifests in a variety of radiation effects at different levels of biological systems. We established dose-related effects in hydrobionts of lakes within the EZ which indicates a damage of biological systems at subcellular, cellular, tissue, organ, organism and population levels as a result of chronic exposure to low doses of ionizing radiation. The rate of chromosomal aberrations in cells of aquatic species, many-a-times exceeds the level of spontaneous mutagenesis level to aquatic biota. Increased levels of chromosome damages may be a manifestation of radiation-induced genetic instability, which is one of the main mechanisms for the protection of living organisms from exposure to stressors with subsequent implementation at higher levels of organization of biological systems. (author)

  6. Extracting and analyzing ejection fraction values from electronic echocardiography reports in a large health maintenance organization.

    Science.gov (United States)

    Xie, Fagen; Zheng, Chengyi; Yuh-Jer Shen, Albert; Chen, Wansu

    2017-12-01

    The left ventricular ejection fraction value is an important prognostic indicator of cardiovascular outcomes including morbidity and mortality and is often used clinically to indicate severity of heart disease. However, it is usually reported in free-text echocardiography reports. We developed and validated a computerized algorithm to extract ejection fraction values from echocardiography reports and applied the algorithm to a large volume of unstructured echocardiography reports between 1995 and 2011 in a large health maintenance organization. A total of 621,856 echocardiography reports with a description of ejection fraction values or systolic functions were identified, of which 70 percent contained numeric ejection fraction values and the rest (30%) were text descriptions explicitly indicating the systolic left ventricular function. The 12.1 percent (16.0% for male and 8.4% for female) of these extracted ejection fraction values are <45 percent. Validation conducted based on a random sample of 200 reports yielded 95.0 percent sensitivity and 96.9 percent positive predictive value.

  7. Effects of Electromagnetic Fields on Fish and Invertebrates: Task 2.1.3: Effects on Aquatic Organisms - Fiscal Year 2011 Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, Dana L.; Schultz, Irvin R.; Marshall, Kathryn E.; Ward, Jeffrey A.; Cullinan, Valerie I.

    2012-05-01

    This fiscal year (FY) 2011 progress report (Task 2.1.3 Effects on Aquatic Organisms, Subtask 2.3.1.1 Electromagnetic Fields) describes studies conducted by PNNL as part of the DOE Wind and Water Power Program to examine the potential effects of electromagnetic fields (EMF) from marine and hydrokinetic devices on aquatic organisms, including freshwater and marine fish and marine invertebrates. In this report, we provide a description of the methods and results of experiments conducted in FY 2010-FY 2011 to evaluate potential responses of selected aquatic organisms. Preliminary EMF laboratory experiments during FY 2010 and 2011 entailed exposures with representative fish and invertebrate species including juvenile coho salmon (Oncorhynchus kisutch), Atlantic halibut (Hippoglossus hippoglossus), California halibut (Paralicthys californicus), rainbow trout (Oncorhynchus mykiss), and Dungeness crab (Metacarcinus magister). These species were selected for their ecological, commercial, and/or recreational importance, as well as their potential to encounter an MHK device or transmission cable during part or all of their life cycle. Based on previous studies, acute effects such as mortality were not expected to occur from EMF exposures. Therefore, our measurement endpoints focused on behavioral responses (e.g., detection of EMF, interference with feeding behavior, avoidance or attraction to EMF), developmental changes (i.e., growth and survival from egg or larval stage to juvenile), and exposure markers indicative of physiological responses to stress. EMF intensities during the various tests ranged from 0.1 to 3 millitesla, representing a range of upper bounding conditions reported in the literature. Experiments to date have shown there is little evidence to indicate distinct or extreme behavioral responses in the presence of elevated EMF for the species tested. Several developmental and physiological responses were observed in the fish exposures, although most were not

  8. Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils

    International Nuclear Information System (INIS)

    Zhou, Tong; Wu, Longhua; Luo, Yongming; Christie, Peter

    2018-01-01

    Soil particulate organic matter (POM) has rapid turnover and metal enrichment, but the interactions between organic matter (OM) and metals have not been well studied. The present study aimed to investigate changes in the OM concentration and composition of the POM fraction and their corresponding effects on metal distribution and extractability in long-term polluted paddy soils. Soil 2000–53 μm POM size fractions had higher contents of C–H and C=O bonds, C–H/C=O ratios and concentrations of fulvic acid (FA), humic acid (HA), cadmium (Cd) and zinc (Zn) than the bulk soils. Cadmium and Zn stocks in soil POM fractions were 24.5–27.9% and 7.12–16.7%, respectively, and were more readily EDTA-extractable. Compared with the control soil, the 2000–250 μm POM size fractions had higher organic carbon concentrations and C/N ratios in the polluted soils. However, there were no significant differences in the contents in C–H and C=O bonds or C–H/C=O ratios of POM fractions among the control, slightly and highly polluted soils. In accordance with the lower contents of C=O bonds and FA and HA concentrations, the Cd and Zn concentrations in 250–53 μm POM size fractions were lower than those in 2000–250 μm POM size fractions. Enrichment of Cd in POM fractions increased with increasing soil pollution level. These results support the view that changes in the OM concentration and the size and composition of POM fractions play a key role in determining the distribution of Cd and Zn in paddy soils. - Highlights: • The OC and FA contents and C/N in POM (2000–250 μm) increased in polluted soil. • Enrichment of Cd and Zn decreased with decreasing POM size. • No significant change in content of C=O group in POM was observed in polluted soil. • Changes in the size and composition of soil POM affected the Cd and Zn distribution. - Interactions between soil organic matter and metals.

  9. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?

    Science.gov (United States)

    Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan

    2010-07-01

    Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms. (c) 2010 SETAC.

  10. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-01-01

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO 2 and by observing the disappearance of test substance with gas chromatography. Additional BOD 5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  11. Composition and structure of natural organic matter through advanced nuclear magnetic resonance techniques

    Directory of Open Access Journals (Sweden)

    Dainan Zhang

    2017-02-01

    Full Text Available Abstract Natural organic matter (NOM plays important roles in biological, chemical, and physical processes within the terrestrial and aquatic ecosystem. Despite its importance, a clear and exhaustive knowledge on NOM chemistry still lacks. Aiming to prove that advanced solid-state 13C nuclear magnetic resonance (NMR techniques may contribute to fill such a gap, in this paper we reported relevant examples of its applicability to NOM components, such as biomass, deposition material, sediments, and kerogen samples. It is found that nonhydrolyzable organic carbons (NHC, chars, and polymethylene carbons are important in the investigated samples. The structure of each of the NHC fractions is similar to that of kerogens, highlighting the importance of selective preservation of NOM to the kerogen origin in the investigated aquatic ecosystems. Moreover, during the artificial maturation experiments of kerogen, the chemical and structural characteristics such as protonated aromatic, nonprotonated carbons, and aromatic cluster size play important roles in the origin and variation of nanoporosity during kerogen maturation. Graphical abstract NMR parameters of thermally stimulated kerogens

  12. Optimization of the fractionated irradiation scheme considering physical doses to tumor and organ at risk based on dose–volume histograms

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Yasutaka [Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan); Mizuta, Masahiro [Laboratory of Advanced Data Science, Information Initiative Center, Hokkaido University, Kita-11, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0811 (Japan); Takao, Seishin; Shirato, Hiroki; Sutherland, Kenneth L. [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-8638 (Japan); Date, Hiroyuki, E-mail: date@hs.hokudai.ac.jp [Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Hokkaido 060-0812 (Japan)

    2015-11-15

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of the tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.

  13. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem.

    Science.gov (United States)

    Oropesa, Ana Lourdes; Floro, António Miguel; Palma, Patrícia

    2017-07-01

    Nicotine is a "life-style compound" widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5-1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

  14. Using AquaticHealth.net to Detect Emerging Trends in Aquatic Animal Health

    Directory of Open Access Journals (Sweden)

    Geoff Grossel

    2013-05-01

    Full Text Available AquaticHealth.net is an open-source aquatic biosecurity intelligence application. By combining automated data collection and human analysis, AquaticHealth.net provides fast and accurate disease outbreak detection and forecasts, accompanied with nuanced explanations. The system has been online and open to the public since 1 January 2010, it has over 200 registered expert users around the world, and it typically publishes about seven daily reports and two weekly disease alerts. We document the major trends in aquatic animal health that the system has detected over these two years, and conclude with some forecasts for the future.

  15. Biomechanical tactics of chiral growth in emergent aquatic macrophytes

    Science.gov (United States)

    Zhao, Zi-Long; Zhao, Hong-Ping; Li, Bing-Wei; Nie, Ben-Dian; Feng, Xi-Qiao; Gao, Huajian

    2015-01-01

    Through natural selection, many plant organs have evolved optimal morphologies at different length scales. However, the biomechanical strategies for different plant species to optimize their organ structures remain unclear. Here, we investigate several species of aquatic macrophytes living in the same natural environment but adopting distinctly different twisting chiral morphologies. To reveal the principle of chiral growth in these plants, we performed systematic observations and measurements of morphologies, multiscale structures, and mechanical properties of their slender emergent stalks or leaves. Theoretical modeling of pre-twisted beams in bending and buckling indicates that the different growth tactics of the plants can be strongly correlated with their biomechanical functions. It is shown that the twisting chirality of aquatic macrophytes can significantly improve their survivability against failure under both internal and external loads. The theoretical predictions for different chiral configurations are in excellent agreement with experimental measurements. PMID:26219724

  16. Aquatic Ecotoxicity of Microplastics and Nanoplastics: Lessons Learned from Engineered Nanomaterials

    DEFF Research Database (Denmark)

    Rist, Sinja; Hartmann, Nanna B.

    2017-01-01

    The widespread occurrence of microplastics in the aquatic environment is well documented through international surveys and scientific studies. Further degradation and fragmentation, resulting in the formation of nanosized plastic particles – nanoplastics – has been highlighted as a potentially...... important issue. In the environment, both microplastics and nanoplastics may have direct ecotoxicological effects, as well as vector effects through the adsorption of co-contaminants. Plastic additives and monomers may also be released from the polymer matrix and cause adverse effects on aquatic organisms...

  17. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    Science.gov (United States)

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically

  18. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  19. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    Directory of Open Access Journals (Sweden)

    Bob Laarhoven

    Full Text Available An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv. The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml, 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin. With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  20. DNA-based identification of aquatic invertebrates useful in the South African context?

    Directory of Open Access Journals (Sweden)

    Hermoine J. Venter

    2016-05-01

    Full Text Available The concept of using specific regions of DNA to identify organisms processes such as DNA barcoding is not new to South African biologists. The African Centre for DNA Barcoding reports that 12 548 plant species and 1493 animal species had been barcoded in South Africa by July 2013, while the Barcode of Life Database (BOLD contains 62 926 records for South Africa, 11 392 of which had species names (representing 4541 species. In light of this, it is surprising that aquatic macroinvertebrates of South Africa have not received much attention as potential barcoding projects thus fa barcoding of aquatic species has tended to focus on invasive species and fishes. Perusal of the BOLD records for South Africa indicates a noticeable absence of aquatic macroinvertebrates, including families used for biomonitoring strategies such as the South African Scoring System. Meanwhile, the approach of collecting specimens and isolating their DNA individually in order to identify them (as in the case of DNA barcoding, has been shifting towards making use of the DNA which organisms naturally shed into their environments (eDNA. Coupling environmental and bulk sample DNA with high-throughput sequencing technology has given rise to metabarcoding, which has the potential to characterise the whole community of organisms present in an environment. Harnessing barcoding and metabarcoding approaches with environmental DNA (eDNA potentially offers a non-invasive means of measuring the biodiversity in an environment and has great potential for biomonitoring. Aquatic ecosystems are well suited to these approaches but could they be useful in a South African context?

  1. Passive sampling of pharmaceuticals and personal care products in aquatic environments

    Czech Academy of Sciences Publication Activity Database

    Křesinová, Zdena; Petrů, Klára; Lhotský, O.; Rodsand, T.; Cajthaml, Tomáš

    2016-01-01

    Roč. 6, č. 1 (2016), s. 43-46 ISSN 1805-0174 Institutional support: RVO:61388971 Keywords : passive sampling * polar organic chemical integrative samplers * aquatic matrices Subject RIV: EE - Microbiology, Virology

  2. Optimization of methodology by X-ray fluorescence for the metals determination in aquatic plants of the high course of the Lerma river

    International Nuclear Information System (INIS)

    Albino P, E.

    2015-01-01

    The high course of the Lerma river has a pollution problem in its hydrological system due to discharges of urban wastewater and industrial areas; the pollutants that affect the hydrological system are metals, which are absorbed by living organisms and probably incorporated into the food chain. For this reason in this work the technique of X-ray fluorescence total reflection was applied in six species of aquatic plants that grow in the high course of the Lerma river: Arroyo Mezapa (Eichhornia crassipes, Juncus efusus, Hydrocotyle, Schoenoplectus validus) Ameyalco river (Lemna gibba) and Atarasquillo river (Berula erecta) in order to evaluate the metals concentration (Cr, Mn, Fe, Ni, Cu, Zn and Pb) as well as the translocation factor and bioaccumulation factor for each aquatic species. According to the results, was observed that the highest concentration of metals is located in the deeper parts; metals which present a significant concentration are Mn and Fe in the six species of aquatic plants. According to the translocation factor the species having a higher translocation of metals are: Juncus efusus in Mn (1.19 mg/L) and Zn (1.31 mg/L), Hydrocotyle (1.14 mg/L), the species Eichhornia crassipes not show translocation. For bioaccumulation factor, was observed that the most bioaccumulation of metals is found in the soluble fraction of the six species of aquatic plants, especially Fe followed of Cu and Zn. Also was considered that the Berula erecta plant had a higher bioaccumulation of metals such as Cr, Mn, Fe, Cu and Zn so it can be considered as a hyper-accumulating species of these elements. With the results can be considered that the technique of X-ray fluorescence total reflection is 95% reliable to determine the concentration of metals within the structures of the aquatic plants used for this study. (Author)

  3. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates.

    Science.gov (United States)

    Foley, Carolyn J; Feiner, Zachary S; Malinich, Timothy D; Höök, Tomas O

    2018-08-01

    Microplastics are present in aquatic ecosystems the world over and may influence the feeding, growth, reproduction, and survival of freshwater and marine biota; however, the extent and magnitude of potential effects of microplastics on aquatic organisms is poorly understood. In the current study, we conducted a meta-analysis of published literature to examine impacts of exposure to microplastics on consumption (and feeding), growth, reproduction, and survival of fish and aquatic invertebrates. While we did observe within-taxa negative effects for all four categories of responses, many of the effects summarized in our study were neutral, indicating that the effects of exposure to microplastics are highly variable across taxa. The most consistent effect was a reduction in consumption of natural prey when microplastics were present. For some taxa, negative effects on growth, reproduction and even survival were also evident. Organisms that serve as prey to larger predators, e.g., zooplankton, may be particularly susceptible to negative impacts of exposure to microplastic pollution, with potential for ramifications throughout the food web. Future work should focus on whether microplastics may be affecting aquatic organisms more subtly, e.g., by influencing exposure to contaminants and pathogens, or by acting at a molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Changes in soil organic carbon fractions after remediation of a coastal floodplain soil.

    Science.gov (United States)

    Wong, V N L; McNaughton, C; Pearson, A

    2016-03-01

    Coastal floodplain soils and wetland sediments can store large amounts of soil organic carbon (SOC). These environments are also commonly underlain by sulfidic sediments which can oxidise to form coastal acid sulfate soils (CASS) and contain high concentrations of acidity and trace metals. CASS are found on every continent globally except Antarctica. When sulfidic sediments are oxidised, scalds can form, which are large bare patches without vegetation. However, SOC stocks and fractions have not been quantified in these coastal floodplain environments. We studied the changes in soil geochemistry and SOC stocks and fractions three years after remediation of a CASS scald. Remediation treatments included raising water levels, and addition of either lime (LO) or lime and mulch (LM) relative to a control (C) site. We found SOC concentrations in the remediated sites (LO and LM) were more than double than that found at site C, reflected in the higher SOC stocks to a depth of 1.6 m (426 Mg C/ha, 478 Mg C/ha and 473 Mg C/ha at sites C, LO and LM, respectively). The particulate organic C (POC) fraction was higher at sites LO and LM due to increased vegetation and biomass inputs, compared to site C. Reformation of acid volatile sulfide (AVS) occurred throughout the profile at site LM, whereas only limited AVS reformation occurred at sites LO and C. Higher AVS at site LM may be linked to the additional source of organic matter provided by the mulch. POC can also potentially contribute to decreasing acidity as a labile SOC source for Fe(3+) and SO4(2-) reduction. Therefore, coastal floodplains and wetlands are a large store of SOC and can potentially increase SOC following remediation due to i) reduced decomposition rates with higher water levels and waterlogging, and ii) high C inputs due to rapid revegetation of scalded areas and high rates of biomass production. These results highlight the importance of maintaining vegetation cover in coastal floodplains and wetlands for

  5. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3.

    Science.gov (United States)

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2017-08-01

    Diesel is a commonly used fuel and a key pollutant on water surface through leaks and accidental spills, thus creating risk directly to planktons as well as other aquatic organisms. We assessed the toxicty of diesel and its water accommodated fraction (WAF) towards two microalgal species, Pseudokirchneriella subcapitata and Chlorella sp. MM3. The toxicity criteria included were: chlorophyll a content as a growth parameter and induction of enzyme activities linked to oxidative stress. Increase in concentrations of diesel or its WAF significantly increased toxicity towards growth, measured in terms of chlorophyll a content in both the algae. Activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) in response to addition of diesel or diesel WAF to the microalgal cultures were dose-dependent. Diesel WAF was more toxic than diesel itself, suggesting that use of WAF may be more relevant for environmental risk assessment of diesel. The overall response of the antioxidant enzymes to toxicants' stress followed the order: POX≥SOD>CAT. The present study clearly demonstrated the use of SOD, POX and CAT as suitable biomarkers for assessing diesel pollution in aquatic ecosystem. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The rates of carbon cycling in several soils from AMS14C measurements of fractionated soil organic matter

    International Nuclear Information System (INIS)

    Trumbore, S.E.; Bonani, G.; Wolfli, W.

    1990-01-01

    14 C mean residence times (MRT) of fractionated organic matter are reported for three pre-bomb soil profiles. Comparisons of organic matter extracted with acid and base showed that the longest MRTs were associated with the non-acid-hydrolysable fraction. The MRT of organic matter in a soil layer represents a combination of the rates of several processes, including decay to CO 2 and transport out of the layer. In some instances (notably in the A horizon of the Podzol soil studied in this paper), the MRT is dominated by the rate of transport, rather than the rate of decay. Thus it is important to use the distribution and balance of carbon in the soil profile to assess the meaning of the MRT with respect to influencing atmospheric CO 2

  7. Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste

    Directory of Open Access Journals (Sweden)

    Vempalli Sudharsan Varma

    2017-11-01

    Full Text Available The study aimed to characterize the microbial population involved in lignocellulose degradation during drum composting of mixed organic waste i.e. vegetable waste, cattle manure, saw dust and dry leaves in a 550 L rotary drum composter. Lignocellulose degradation by different microbial populations was correlated by comparing results from four trials, i.e., Trial 1 (5:4, Trial 2 (6:3, Trial 3 (7:2 and Trial 4 (8:1 of varying waste combinations during 20 days of composting period. Due to proper combination of waste materials and agitation in drum composter, a maximum of 66.5 and 61.4 °C was achieved in Trial 1 and 2 by observing a temperature level of 55 °C for 4–6 d. The study revealed that combinations of waste materials had a major effect on the microbial degradation of waste material and quality of final compost due to its physical properties. However, Trial 1 was observed to have longer thermophilic phase leading to higher degradation of lignocellulosic fractions. Furthermore, Fourier transform infrared spectrometer and fluorescent spectroscopy confirmed the decrease in aliphatic to aromatic ratio and increase in polyphenolic compounds of the compost. Heterotrophic bacteria were observed predominantly due to the readily available organic matter during the initial period of composting. However, fungi and actinomycetes were active in the degradation of lignocellulosic fractions.

  8. Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies.

    Science.gov (United States)

    Epanchin, Peter N; Knapp, Roland A; Lawler, Sharon P

    2010-08-01

    Adjacent food webs may be linked by cross-boundary subsidies: more-productive donor systems can subsidize consumers in less-productive neighboring recipient systems. Introduced species are known to have direct effects on organisms within invaded communities. However, few studies have addressed the indirect effects of nonnative species in donor systems on organisms in recipient systems. We studied the direct role of introduced trout in altering a lake-derived resource subsidy and their indirect effects in altering a passerine bird's response to that subsidy. We compared the abundance of aquatic insects and foraging Gray-crowned Rosy-Finches (Leucosticte tephrocotis dawsoni, "Rosy-Finch") at fish-containing vs. fishless lakes in the Sierra Nevada Mountains of California (USA). Introduced trout outcompeted Rosy-Finches for emerging aquatic insects (i.e., mayflies). Fish-containing lakes had 98% fewer mayflies than did fishless lakes. In lakes without fish, Rosy-Finches showed an aggregative response to emerging aquatic insects with 5.9 times more Rosy-Finches at fishless lakes than at fish-containing lakes. Therefore, the introduction of nonnative fish into the donor system reduced both the magnitude of the resource subsidy and the strength of cross-boundary trophic interactions. Importantly, the timing of the subsidy occurs when Rosy-Finches feed their young. If Rosy-Finches rely on aquatic-insect subsidies to fledge their young, reductions in the subsidy by introduced trout may have decreased Rosy-Finch abundances from historic levels. We recommend that terrestrial recipients of aquatic subsidies be included in conservation and restoration plans for ecosystems with alpine lakes.

  9. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    Science.gov (United States)

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2012-01-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the comparison with spectral profiles obtained from laboratory experiments of

  11. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation.

    Science.gov (United States)

    Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza

    2017-12-01

    Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.

  12. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation

    Directory of Open Access Journals (Sweden)

    Ramin Jaberi

    2017-12-01

    Full Text Available Purpose : Intra-fractional organs at risk (OARs deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT. The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods : Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results : A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions : There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool.

  13. Water reservoirs - aquatic ecosystems subject to eutrophication processes

    International Nuclear Information System (INIS)

    Ionita, Veronica

    1997-01-01

    The paper presents some aspects relating to eutrophication of Batca Doamnei and Reconstructia hydropower lakes situated near Piatra Neamt town. The presence of phosphorus salts in the two water reservoirs (ten times the admissible content) is responsible for excessive growth of plants. In Reconstructia lake the diversity of species is also explained by the existence of large amounts of nitrogen salts. The general characteristic of aquatic macrophyte is the resistance to large variations of environmental factors (water level, currents, temperature, turbidity, organic material content), adaptation to water pollution conditions and development of adverse condition resistant forms. Besides Cladophora, a harmful species in fishing waters when growing excessively, others species are favorable to aquatic life and help to the consolidation of complex lake biocenoses, providing support, food and habitation for many small animal species which also favor other species economically valuable. The aquatic macrophytes are true biological filters which maintain the natural auto-purging potential of the waters. Taking into consideration these facts, the direct and indirect effects of plant destruction on the whole ecosystem should be carefully analyzed

  14. Protozoa interaction with aquatic invertebrate: interest for watercourses biomonitoring.

    Science.gov (United States)

    Palos Ladeiro, M; Bigot, A; Aubert, D; Hohweyer, J; Favennec, L; Villena, I; Geffard, A

    2013-02-01

    Toxoplasma gondii, Cryptosporidium parvum, and Giardia duodenalis are human waterborne protozoa. These worldwide parasites had been detected in various watercourses as recreational, surface, drinking, river, and seawater. As of today, water protozoa detection was based on large water filtration and on sample concentration. Another tool like aquatic invertebrate parasitism could be used for sanitary and environmental biomonitoring. In fact, organisms like filter feeders could already filtrate and concentrate protozoa directly in their tissues in proportion to ambient concentration. So molluscan shellfish can be used as a bioindicator of protozoa contamination level in a site since they were sedentary. Nevertheless, only a few researches had focused on nonspecific parasitism like protozoa infection on aquatic invertebrates. Objectives of this review are twofold: Firstly, an overview of protozoa in worldwide water was presented. Secondly, current knowledge of protozoa parasitism on aquatic invertebrates was detailed and the lack of data of their biological impact was pointed out.

  15. Size matters: the interplay between sensing and size in aquatic environments

    Science.gov (United States)

    Wadhwa, Navish; Martens, Erik A.; Lindemann, Christian; Jacobsen, Nis S.; Andersen, Ken H.; Visser, Andre

    2015-11-01

    Sensing the presence or absence of other organisms in the surroundings is critical for the survival of any aquatic organism. This is achieved via the use of various sensory modes such as chemosensing, mechanosensing, vision, hearing, and echolocation. We ask how the size of an organism determines what sensory modes are available to it while others are not. We investigate this by examining the physical laws governing signal generation, transmission, and reception, together with the limits set by physiology. Hydrodynamics plays an important role in sensing; in particular chemosensing and mechanosensing are constrained by the physics of fluid motion at various scales. Through our analysis, we find a hierarchy of sensing modes determined by body size. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in the literature. Our analysis of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life. The Centre for Ocean Life is a VKR center of excellence supported by the Villum Foundation.

  16. Spatial distribution of cadmium and lead in the sediments of the western Anzali wetlands on the coast of the Caspian Sea (Iran)

    International Nuclear Information System (INIS)

    Zamani-Ahmadmahmoodi, Rasool; Esmaili-Sari, Abbas; Mohammadi, Jahangard; Bakhtiari, Alireza Riyahi; Savabieasfahani, Mozhgan

    2013-01-01

    Highlights: • Total Cd and Pb exhibited positive relationships with total organic matter. • High levels of metals does not necessarily indicate high bioavailable fraction. • The geoaccumulation index indicated that the sediment was uncontaminated. • RAC showed that Cd was much more bioavailable than Pb for aquatic organisms. -- Abstract: Spatial distribution patterns of total cadmium (Cd) and lead (Pb), their bioavailable fractions and total organic matter in sediment from Anzali wetlands are provided. Total sediment Pb was higher than Cd (34.95 versus 0.024 μg/g dry weight). The geoaccumulation index indicated that the sediment was “uncontaminated”, but some stations were categorized as “unpolluted” to “moderately polluted”. Less than 0.01 of Pb existed in exchangeable and carbonate fractions. The sum of exchangeable and carbonate-bound fractions of Cd was 42%, suggesting that Cd poses high risk to the aquatic ecosystems. Total Cd and Pb exhibited positive relationships with total organic matter. Considering spatial distribution maps of total and bioavailable fractions of metals suggested that high concentrations of metals does not necessarily indicate high bioavailable fraction. The methodologies we used in this study can be in more effective management of aquatic ecosystems, as well as ecological risk assessment of metals, and remediation programs

  17. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  18. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L.

    2004-01-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  19. Turnover of eroded soil organic carbon after deposition in terrestrial and aquatic environments

    DEFF Research Database (Denmark)

    Kirkels, Frédérique; Cammeraat, Erik; Kalbitz, Karsten

    cycling. However, the net effect on C fluxes between soils, inland waters and atmosphere remains uncertain. In this study, we determined SOC turnover in terrestrial and aquatic environments and indentified its major controls. A European gradient of agricultural sites was sampled, spanning a wide range...... soil properties (e.g. texture, aggregation, etc.), SOC quantity and quality. In a 16-week incubation experiment, SOC turnover was determined for conditions reflecting downslope soils or inland waters. Moreover, we studied the impact of labile C inputs (‘priming’) on SOC stability using 13C labeled...... cellulose. Physical and chemical soil properties and SOC molecular composition were assessed as potential controls on C turnover. SOC deposition in aquatic environments resulted in upto 3.5 times higher C turnover than deposition on downslope soils. Labile C inputs enlarged total CO2 emissions...

  20. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    International Nuclear Information System (INIS)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-01-01

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  1. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    International Nuclear Information System (INIS)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-01-01

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507–0.119 mm, 0.119–0.063 mm, 3 extracted solutions. A composition of inorganic and carbonaceous particles of natural and anthropogenic origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. -- Highlights: ► Uncommon urban particulate matter collected near the highway in years 2009 and 2010 was deeply characterized. ► Harmful organic compounds and toxic analytes were tested in grain-size fractions and completed with electron microscopy studies. ► Very similar concentration levels were found in elemental composition in samples from two years. ► Petrographic and organic compositions were different in both samples. ► Relatively high mobility of selected analytes was found in 2M HNO 3 extracted solutions.

  2. Antimicrobial effect of Calotropis procera active principles against aquatic microbial pathogens isolated from shrimp and fishes

    Institute of Scientific and Technical Information of China (English)

    Subramanian Velmurugan; Vijayaragavan Thanga Viji; Mariavincent Michael Babu; Mary Josephine Punitha; Thavasimuthu Citarasu

    2012-01-01

    Objective: To study the influence of Calotropis procera (C. procera) active principles against aquatic microbial pathogens isolated from shrimp and fishes. Methods: C. procera leaf powder was serially extracted with hexane, ethyl acetate and methanol and screened by antibacterial, antifungal and antiviral activity against aquatic pathogens which isolated from shrimp/fish. After initial screening, the active extract was purified through column chromatography and again screened. Finally the active fractions were characterized by phytochemical analysis and GC-MS analysis. Results: In vitro antibacterial, antifungal and antiviral screening revealed that, the ethyl acetate extracts were effectively suppressed the bacterial pathogens Pseudomonas aeruginosa (P. aeruginosa), Vibrio harveyi (V. harveyi) and Aeromons hydrophila (A. hydrophila) of more than 20 mm zone of inhibition; the fungi Fusarium sp and the killer virus WSSV. The ethyl acetate extracts of C. procera incubated WSSV was failed to multiply its progeny in the in vivo system of shrimp P. monodon. The shrimp had 80% survival after WSSV challenge from the control group significantly (P<0.001) and also PCR detection confirmed that no WSSV transcription found in shrimp haemolymph. After purified the ethyl acetate extracts again antimicrobial screening performed and it concluded that the fraction namely F-II was effectively suppressed the bacterial growth and WSSV due to its enriched active principles such as cardiac glycosides, Phenols, alkaloids, Tannin and quinines. Surprisingly this fraction, F-II was effectively controlled the WSSV at 90% level at a highest significant level (P<0.001). Finally the structural characterization by GC-MS analysis revealed that, the F-II fraction contained Phenols including several other compounds such as 2,4-bis(1,1-dimethylethyl)-, Methyl tetradecanoate, Bicyclo[3.1.1] heptane, 2,6,6-trimethyl-, (1α,2β,5α)-and Hexadecanoic acid etc. Conclusions: The present study revealed

  3. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  4. Viscosity and not biological mechanisms often controls the effects of temperature on ciliary activity and swimming velocity of small aquatic organisms

    DEFF Research Database (Denmark)

    Larsen, Poul Scheel; Riisgård, H. U.

    2009-01-01

    organisms using cilia or small appendages for propulsion. Here we summarize results from the literature and from own studies on bio-mechanical activities in response to changing temperature or manipulated viscosity at constant temperature, both having the same change in kinematic viscosity. The survey......A number of studies have shown that temperature-dependent viscosity of the ambient water controls or strongly affects bio-mechanical activity such as beat frequency of water-pumping cilia in mussels and ascidians, swimming velocity of sperm cells, ciliates and small (micro- and meso-scale) aquatic...

  5. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  6. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Aquatic Ecotoxicity Testing of Nanoparticles—The Quest To Disclose Nanoparticle Effects

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Sørensen, Sara Nørgaard; Hartmann, Nanna B.

    2016-01-01

    The number of products on the market containing engineered nanoparticles (ENPs) has increased significantly, and concerns have been raised regarding their ecotoxicological effects. Environmental safety assessments as well as relevant and reliable ecotoxicological data are required for the safe...... to ENPs in aquatic test systems. Filling this gap is not straightforward, because of the broad range of ENPs and the different behavior of ENPs compared to “ordinary” (dissolved) chemicals in the ecotoxicity test systems. The risk of generating false negatives, and false positives, in the currently used...... tests is high, and in most cases difficult to assess. This Review outlines some of the pitfalls in the aquatic toxicity testing of ENPs which may lead to misinterpretation of test results. Response types are also proposed to reveal potential nanoparticle effects in the aquatic test organisms....

  8. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

    OpenAIRE

    Ferr?o-Filho, Aloysio da S.; Kozlowsky-Suzuki, Betina

    2011-01-01

    Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, fe...

  9. Mercury bioaccumulation in bats reflects dietary connectivity to aquatic food webs.

    Science.gov (United States)

    Becker, Daniel J; Chumchal, Matthew M; Broders, Hugh G; Korstian, Jennifer M; Clare, Elizabeth L; Rainwater, Thomas R; Platt, Steven G; Simmons, Nancy B; Fenton, M Brock

    2018-02-01

    Mercury (Hg) is a persistent and widespread heavy metal with neurotoxic effects in wildlife. While bioaccumulation of Hg has historically been studied in aquatic food webs, terrestrial consumers can become contaminated with Hg when they feed on aquatic organisms (e.g., emergent aquatic insects, fish, and amphibians). However, the extent to which dietary connectivity to aquatic ecosystems can explain patterns of Hg bioaccumulation in terrestrial consumers has not been well studied. Bats (Order: Chiroptera) can serve as a model system for illuminating the trophic transfer of Hg given their high dietary diversity and foraging links to both aquatic and terrestrial food webs. Here we quantitatively characterize the dietary correlates of long-term exposure to Hg across a diverse local assemblage of bats in Belize and more globally across bat species from around the world with a comparative analysis of hair samples. Our data demonstrate considerable interspecific variation in hair total Hg concentrations in bats that span three orders of magnitude across species, ranging from 0.04 mg/kg in frugivorous bats (Artibeus spp.) to 145.27 mg/kg in the piscivorous Noctilio leporinus. Hg concentrations showed strong phylogenetic signal and were best explained by dietary connectivity of bat species to aquatic food webs. Our results highlight that phylogeny can be predictive of Hg concentrations through similarity in diet and how interspecific variation in feeding strategies influences chronic exposure to Hg and enables movement of contaminants from aquatic to terrestrial ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China

    International Nuclear Information System (INIS)

    Zhang Runyu; Wu Fengchang; Liu Congqiang; Fu Pingqing; Li Wen; Wang Liying; Liao Haiqing; Guo Jianyang

    2008-01-01

    In this study, the characteristics of organic phosphorus (P o ) fractions in sediments of six lakes from the middle and lower reaches of Yangtze River region and Southwestern China Plateau, China were investigated using a soil P o fractionation scheme, and the relationships between P o , inorganic phosphorus (P i ) and pollution status were also discussed. The results show that the rank order of P o fractions was: residual P o > HCl-P o > fulvic acid-P > humic acid-P > NaHCO 3 -P o , with their average relative proportion 8.7:4.6:3.2:2.1:1.0. P o fractions, especially nonlabile P o , were significantly correlated with organic matter, P o and NaOH-P i . Different distribution patterns of P fractions were observed in those two different regions. P o fractions in the heavily polluted sediments were higher than those in moderately and no polluted sediments, it is suggested that P o should be paid more attention in the lake eutrophication investigation. - Organic phosphorus fractions in sediments from 6 different trophic Chinese lakes were characterized using an improved fractionation scheme

  11. Composting and anaerobic digestion of MSW (Municipal Solid Waste) organic fraction. Energy and CO2 balances

    International Nuclear Information System (INIS)

    De Benedetti, B.

    2001-01-01

    The aim of this study is the comparison between different technologies for the treatment of the organic fraction of Municipal Solid Waste. The Life Cycle Assessment (LCA) methodology constitutes the basic approach of the work, as reference international method of analysis, and allows to compare the energy and CO 2 balances taking into account the fractions deriving from renewable resources or from fossils resources. Results obtained show a significant advantage of the anaerobic treatment of MSW if compared with composting technology: obviously this conclusion refers only to an environmental point of view [it

  12. Adsorption of Different Fractions of Organic Matter on the Surface of Metal Oxide

    KAUST Repository

    Zaouri, Noor A

    2013-05-18

    The adsorption of different fractions of organic matter on the surface of Al2O3 and ZrO2 were investigated. The aim was to study the affinity of these fractions on the surface of metal oxide and the effect of several factors. Batch adsorption experiments were conducted with Low molecular weight oxygenated compounds. These chemical compound have been chosen to investigate:1) the aliphatic and aromatic structurer;2)contribution of hydroxyl group and; 3) the number of carboxyl group. HPLC and IC analysis used for determent the concentration of these chemical in the working solution. ATR-FTIR used to distinguish the type of coordination structure with the surface of metal oxide. The results fitted with Langmuir equation. The results showed that the chemical structure and the type and number of attached functional have an impact on the adsorption. Which it was proved via ATR-FTIR where the result showed that each chemical have different coordination structure on the surface of ZrO2 and Al2O3. Different fractions and sources of NOM were used (hydrophobic fraction of Suwannee and Colorado River, biopolymers extracted for the exuded of 2 species of algae, and low molecular acids that do not adsorb in XAD-8 resin). Results showed that these different fractions have different affinity with the surface of Al2O3 and ZrO2. These adsorption behaviors were varying according to the difference in the component of each NOM. Biopolymers showed significant adsorption at acidic pH. These biopolymers are mainly comprised of polysaccharides and this result proved that polysaccharide adsorb on the surface of ZrO2 more than Al2O3.

  13. Fractional dynamic calculus and fractional dynamic equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2018-01-01

    Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations.  Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .

  14. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  15. Sleep alterations in mammals: did aquatic conditions inhibit rapid eye movement sleep?

    Science.gov (United States)

    Madan, Vibha; Jha, Sushil K

    2012-12-01

    Sleep has been studied widely in mammals and to some extent in other vertebrates. Higher vertebrates such as birds and mammals have evolved an inimitable rapid eye movement (REM) sleep state. During REM sleep, postural muscles become atonic and the temperature regulating machinery remains suspended. Although REM sleep is present in almost all the terrestrial mammals, the aquatic mammals have either radically reduced or completely eliminated REM sleep. Further, we found a significant negative correlation between REM sleep and the adaptation of the organism to live on land or in water. The amount of REM sleep is highest in terrestrial mammals, significantly reduced in semi-aquatic mammals and completely absent or negligible in aquatic mammals. The aquatic mammals are obligate swimmers and have to surface at regular intervals for air. Also, these animals live in thermally challenging environments, where the conductive heat loss is approximately ~90 times greater than air. Therefore, they have to be moving most of the time. As an adaptation, they have evolved unihemispheric sleep, during which they can rove as well as rest. A condition that immobilizes muscle activity and suspends the thermoregulatory machinery, as happens during REM sleep, is not suitable for these animals. It is possible that, in accord with Darwin's theory, aquatic mammals might have abolished REM sleep with time. In this review, we discuss the possibility of the intrinsic role of aquatic conditions in the elimination of REM sleep in the aquatic mammals.

  16. Computer modeling of dosimetric pattern in aquatic environment of ...

    African Journals Online (AJOL)

    ... solving the dose rates to aquatic organisms with emphasis on the coastal areas of Nigeria where oil exploration activities involve the use of radioactive materials. Solution of the dose function representing the baseline have been modeled the result of which can be employed in assessing future contamination in the area.

  17. Analysis of humic colloid borne trace elements by flow field-flow fractionation, gel permeation chromatography and icp-mass spectrometry

    International Nuclear Information System (INIS)

    Ngo, Manh Thang; Beck, H.P; Geckeis, H.; Kim, J.I.

    1999-01-01

    Groundwater samples containing aquatic humic substances are analyzed by flow field- flow fractionation (FFFF) and gel permeation chromatography (GPC). Natural concentrations of U, Th and rare earth elements (REE) in a size-fractionated groundwater sample are analyzed by on-line coupling of inductively coupled plasma-mass spectrometry (ICP-MS) to either FFFF or GPC. The uranium, thorium, and REE are found to be quantitatively attached to colloidal species in the investigated groundwater sample. Their distribution in different colloid size fractions, however, is quite heterogeneous. Both, FFFF and GPC reveal that Th and REE are preferentially located in the size fraction > 50 kDalton. U is also attached to low molecular weight humic acid, similar to Fe and Al. This finding could be qualitatively reproduced by sequential ultrafiltration. The results are interpreted in terms of different binding mechanisms for the individual elements in the heterogeneous humic macromolecules. The inclusion of actinides into larger aggregates of aquatic humic acid might explain the considerable kinetic hindrance of actinide-humic acid dissociation reactions described in the literature. (authors)

  18. Analysis of aquatic-phase natural organic matter by optimized LDI-MS method

    KAUST Repository

    Wang, Renqi

    2014-01-26

    The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200-1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200-15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility.

    Science.gov (United States)

    Arp, H P H; Brown, T N; Berger, U; Hale, S E

    2017-07-19

    The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log D oc water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log D oc freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.

  20. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  1. Quantifying aquatic insect deposition from lake to land.

    Science.gov (United States)

    Dreyer, Jamin; Townsend, Philip A; Hook, James C; Hoekman, David; Vander Zanden, M Jake; Gratton, Claudio

    2015-02-01

    Adjacent ecosystems are influenced by organisms that move across boundaries, such as insects with aquatic larval stages and terrestrial adult stages, which transport energy and nutrients from water to land. However, the ecosystem-level effect of aquatic insects on land has generally been ignored, perhaps because the organisms themselves are individually small. At the naturally productive Lake Mývatn, Iceland, we used two readily measured quantities: total insect emergence from water and relative insect density on land, to demonstrate an approach for estimating aquatic insect deposition (e.g., kg N x m(-2) x yr(-1)) to shore. Estimates from emergence traps between 2008 and 20.11 indicated a range of 0.15-3.7 g x m(-2) x yr(-1), or a whole-lake emergence of 3.1-76 Mg/yr; all masses are given as dry mass. Using aerial infall trap measurements of midge relative abundance over land, we developed a local-maximum decay function model to predict proportional midge deposition with distance from the lake. The dispersal model predicted midge abundance with R2 = 0.89, a pattern consistent among years, with peak midge deposition occurring 20-25 m inland and 70% of midges deposited within 100 m of shore. During a high-midge year (2008), we estimate midge deposition within the first 50 m of shoreline to be 100 kg xha(-1) x yr(-1), corresponding to inputs of 10 kg N x ha(-1) x yr(-1) and 1 kg P x ha(-1) x yr(-1), or about three to five times above background terrestrial N deposition rates. Consistent with elevated N input where midges are most dense, we observed that soil available nitrate in resin bags decreases with increasing distance from the lake. Our approach, generalizable to other systems, shows that aquatic insects can be a major source of nutrients to terrestrial ecosystems and have the capacity to significantly affect ecosystem processes.

  2. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    Energy Technology Data Exchange (ETDEWEB)

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-12-31

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  3. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Peter E [ORNL; Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  4. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  5. Bioavailability and distribution and of ceria nanoparticles in simulated aquatic ecosystems, quantification with a radiotracer technique

    International Nuclear Information System (INIS)

    Zhang Zhiyong; Zhang Peng; He Xiao; Ma Yuhui; Lu Kai; Zhao Yuliang

    2014-01-01

    Although the presence of manufactured nanoparticles in the aquatic environment is still largely undocumented, their release could certainly occur in the future, particularly via municipal treatment plant effluents of cities supporting nano-industries. To get an initial estimate of the environmental behavior of nanomaterials, we investigated the distribution and accumulation of ceria nanoparticles in simulated aquatic ecosystems which included aquatic plant, shellfish, fish, water, and sediment using a radiotracer technique. Radioactive ceria ( 141 CeO 2 ) nanoparticles with a diameter of ca. 7 nm were synthesized by a precipitation method and added to the simulated aquatic ecosystems. The results indicate that the concentration of ceria nanoparticles in water decreased to a steady-state value after 3 days; meanwhile, the concentrations of ceria nanoparticles in the aquatic plant and sediment increased to their highest values. The distribution and accumulation characteristics of ceria nanoparticles in various aquatic organisms were different. Ceratophyllum demersum showed a high ability of accumulation of ceria nanoparticles from water. (authors)

  6. Aquatic biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Aquatic biology studies focused on studying the hydrothermal effects of Par Pond reservoir on periphyton, plankton, zooplankton, macrophytes, human pathogens, and microbial activity; the variability between the artificial streams of the Flowing Streams Laboratory and Upper Three Runs Creek; and the bacterial production of methane in Savannah River Plant aquatic systems

  7. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste

    DEFF Research Database (Denmark)

    Mustafa, Muhammad Farooq; Liu, Yanjun; Duan, Zhenhan

    2017-01-01

    Degradation of mechanically sorted organic fraction (MSOF) of municipal solid waste in composting facilities is among the major contributors of volatile compounds (VCs) generation and emission, causes nuisance problems and health risks on site as well as in the vicinages. The aim of current study...

  8. Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems.

    Science.gov (United States)

    Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke

    2014-11-01

    The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of

  9. Contaminant bioavailability in soils, sediments, and aquatic environments

    OpenAIRE

    Traina, Samuel J.; Laperche, Valérie

    1999-01-01

    The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environments can directly influence the chemical reactivity, transport, and ecotoxici...

  10. Automated culture of aquatic model organisms: shrimp larvae husbandry for the needs of research and aquaculture.

    Science.gov (United States)

    Mutalipassi, M; Di Natale, M; Mazzella, V; Zupo, V

    2018-01-01

    Modern research makes frequent use of animal models, that is, organisms raised and bred experimentally in order to help the understanding of biological and chemical processes affecting organisms or whole environments. The development of flexible, reprogrammable and modular systems that may help the automatic production of 'not-easy-to-keep' species is important for scientific purposes and for such aquaculture needs as the production of alive foods, the culture of small larvae and the test of new culture procedures. For this reason, we planned and built a programmable experimental system adaptable to the culture of various aquatic organisms, at different developmental stages. The system is based on culture cylinders contained into operational tanks connected to water conditioning tanks. A programmable central processor unit controls the operations, that is, water changes, temperature, light irradiance, the opening and closure of valves for the discharge of unused foods, water circulation and filtration and disinfection systems, according to the information received by various probes. Various devices may be set to modify water circulation and water changes to fulfil the needs of given organisms, to avoid damage of delicate structures, improve feeding performances and reduce the risk of movements over the water surface. The results obtained indicate that the system is effective in the production of shrimp larvae, being able to produce Hippolyte inermis post-larvae with low mortality as compared with the standard operation procedures followed by human operators. Therefore, the patented prototype described in the present study is a possible solution to automate and simplify the rearing of small invertebrates in the laboratory and in production plants.

  11. Sampling and Analysis Plan for Supplemental Environmental Project: Aquatic Life Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Berryhill, Jesse Tobias [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gaukler, Shannon Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-26

    As part of a settlement agreement for nuclear waste incidents in 2014, several supplemental environment projects (SEPs) were initiated at Los Alamos National Laboratory (LANL or the Laboratory) between the U.S. Department of Energy and the state of New Mexico. One SEP from this agreement consists of performing aquatic life surveys and will be used to assess the applicability of using generic ambient water-quality criteria (AWQC) for aquatic life. AWQC are generic criteria developed by the U.S. Environmental Protection Agency (EPA) to cover a broad range of aquatic species and are not unique to a specific region or state. AWQC are established by a composition of toxicity data, called species sensitivity distributions (SSDs), and are determined by LC50 (lethal concentration of 50% of the organisms studied) acute toxicity experiments for chemicals of interest. It is of interest to determine whether aquatic species inhabiting waters on the Pajarito Plateau are adequately protected using the current generic AWQC. The focus of this study will determine which aquatic species are present in ephemeral, intermittent, and perennial waters within LANL boundaries and from reference waters adjacent to LANL. If the species identified from these waters do not generally represent species used in the SSDs, then SSDs may need to be modified and AWQC may need to be updated. This sampling and analysis plan details the sampling methodology, surveillance locations, temporal scheduling, and analytical approaches that will be used to complete aquatic life surveys. A significant portion of this sampling and analysis plan was formalized by referring to Appendix E: SEP Aquatic Life Surveys DQO (Data Quality Objectives).

  12. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  13. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway.

    Science.gov (United States)

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-10-15

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507-0.119 mm, 0.119-0.063 mm, origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Plastic ingestion in aquatic-associated bird species in southern Portugal.

    Science.gov (United States)

    Nicastro, Katy R; Lo Savio, Roberto; McQuaid, Christopher D; Madeira, Pedro; Valbusa, Ugo; Azevedo, Fábia; Casero, Maria; Lourenço, Carla; Zardi, Gerardo I

    2018-01-01

    Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats affecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5% were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS, silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are of crucial importance to evaluate changes through time and among regions and to define management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  16. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  17. Cell Cycle Control in the Early Embryonic Development of Aquatic Animal Species

    Science.gov (United States)

    Siefert, Joseph C.; Clowdus, Emily A.; Sansam, Christopher L.

    2016-01-01

    The cell cycle is integrated with many aspects of embryonic development. Not only is proper control over the pace of cell proliferation important, but also the timing of cell cycle progression is coordinated with transcription, cell migration, and cell differentiation. Due to the ease with which the embryos of aquatic organisms can be observed and manipulated, they have been a popular choice for embryologists throughout history. In the cell cycle field, aquatic organisms have been extremely important because they have played a major role in the discovery and analysis of key regulators of the cell cycle. In particular, the frog Xenopus laevis has been instrumental for understanding how the basic embryonic cell cycle is regulated. More recently, the zebrafish has been used to understand how the cell cycle is remodeled during vertebrate development and how it is regulated during morphogenesis. This review describes how some of the unique strengths of aquatic species have been leveraged for cell cycle research and suggests how species such as Xenopus and zebrafish will continue to reveal the roles of the cell cycle in human biology and disease. PMID:26475527

  18. Impact of PETIT-SAUT hydroelectric dam on aquatic life (French Guyana)

    International Nuclear Information System (INIS)

    Sissakian, C.

    1992-01-01

    The construction of the hydroelectric scheme of PETIT-SAUT in French Guyana creates a reservoir which covers 310 km 2 of tropical rain forest. This hydroelectric scheme has an influence on the various aspects of the environment. One of the most important aspects is the modification of the water quality and of the aquatic life due to the degradation of organic matter. Some studies of the biology of these area fishes are initiated. At the same time, Electricite de France studies some constructive arrangements and reservoir managements to assure, the most rapidly possible, a return to an aquatic normal life. 6 refs

  19. Chemical attributes, total organic carbon stock and humified fractions of organic matter soil submitted to different systems of sugarcane management

    Directory of Open Access Journals (Sweden)

    Jean Sérgio Rosset

    2014-10-01

    Full Text Available Mechanized harvesting maintenance of trash from cane sugar and soil application of waste as vinasse and filter cake can improve the system of crop yield. Thus, this study aimed to evaluate the changes in the chemical, the stock of total organic carbon and humified organic matter fractions in an Oxisol cultivated with cane sugar with the following management systems: with sugarcane vinasse application (CCV, without application of burnt cane waste (CQS, with burnt cane vinasse application (CQV, with application of burnt cane filter cake (CQTF and burnt cane with joint application of vinasse and filter cake (CQVTF. For reference we used an area of natural vegetation (NV, Cerrado sensu stricto. Treatment CQVTF showed improvement in soil chemical properties, increased inventory levels of total organic carbon – TOC (values ranging from 21.28 to 40.02 Mg ha-1 and humified fractions of soil organic matter in relation to other treatments. The CQS area at a depth of 0-0.05 m, showed the greatest losses of soil TOC stocks (56.3% compared to NV. The adoption of management presented CCV and chemical attributes of the soil TOC stocks equivalent to those observed in areas with CQV CQTF and despite the short period of adoption (3 years. The TOC correlated with the sum of bases (r = 0.76 **, cation exchange capacity (r = 0.59 ** and base saturation (r = 0.63 **, while the humic acids (r = 0.40 ** fulvic acids (r = 0.49 ** and humin (r = 0.59 ** correlated with the cation exchange capacity of the soil. These results indicate that the preservation of trash in the management of cane sugar added to the application of vinasse and filter cake increases the TOC stocks promoting improvement in soil chemical properties.

  20. Journal of Aquatic Sciences

    African Journals Online (AJOL)

    The Journal of Aquatic Sciences publishes articles on problems and issues in Aquatic Sciences from all ... The journal accepts for publication manuscripts of very high international standard containing reports of original scientific research.

  1. Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction

    International Nuclear Information System (INIS)

    McElmurry, Shawn P.; Long, David T.; Voice, Thomas C.

    2010-01-01

    Trace metal cycling in natural waters is highly influenced by the amount and type of dissolved organic C (DOC). Although determining individual species of DOC is unrealistic, there has been success in classifying DOC by determining operationally defined fractions. However, current fractionation schemes do not allow for the simultaneous quantification of associated trace metals. Using operational classifications, a scheme was developed to fractionate DOC based on a set of seven solid-phase extraction (SPE) cartridges. The cartridges isolated fractions based on a range of specific mechanisms thought to be responsible for DOC aggregation in solution, as well as molecular weight. The method was evaluated to determine if it can identify differences in DOC characteristics, including differences in Cu-DOC complexation. Results are that: (1) cartridge blanks were low for both DOC and Cu, (2) differences are observed in the distribution of DOC amongst the fractions from various sources that are consistent with what is known about the DOC materials and the mechanisms operative for each cartridge, (3) when present as a free cation, Cu was not retained by non-cationic cartridges allowing the method to be used to assess Cu binding, (4) the capability of the method to provide quantitative assessment of Cu-DOC complexation was demonstrated for a variety of DOC standards, (5) Cu was found to preferentially bind with high molecular weight fractions of DOC, and (6) estimated partitioning coefficients and conditional binding constants for Cu were similar to those reported elsewhere. The method developed describes DOC characteristics based on specific bonding mechanisms (hydrogen, donor-acceptor, London dispersion, and ionic bonding) while simultaneously quantifying Cu-DOC complexation. The method provides researchers a means of describing not only the extent of DOC complexation but also how that complex will be behave in natural waters.

  2. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas...

  3. Concentration of "1"3"4Cs + "1"3"7Cs bonded to the organic fraction of sediments offshore Fukushima, Japan

    International Nuclear Information System (INIS)

    Ono, Tsuneo; Ambe, Daisuke; Kaeriyama, Hideki

    2015-01-01

    We conducted a sequential chemical extraction experiment for radiocesium ("1"3"4Cs + "1"3"7Cs) using 21 surface sediment samples and two sets of size-fractionated surface sediment samples collected offshore Fukushima. Our results support earlier reports in this area that organic substances in marine sediments have an apparently higher preference for radiocesium than mineral substances. Observations suggest that mineral and organic substances in the marine sediments offshore Fukushima have the same order of preference for radiocesium, primarily because of the existence of ionic competitors in seawater. The apparent preference of radiocesium for organic material is greater because of the partial coverage of sediment mineral surfaces by organic substances. By using these relationships, we created a 2-D map of radiocesium concentration in sediment organic fraction in offshore-Fukushima region. Combining our results with existing monitoring data of marine benthos in offshore-Fukushima sediments, we estimated a transfer coefficient of radiocesium from sediment organic materials to benthic polychaetes as less than 0.03-0.008. (author)

  4. Fluidized bed ash and passive treatment reduce the adverse effects of acid mine drainage on aquatic organisms.

    Science.gov (United States)

    Porter, Clint M; Nairn, Robert W

    2010-10-15

    Elevated concentrations of acidity and metals in acid mine drainage (AMD) may be effectively addressed by active and passive treatment technologies. However, typical evaluations consider only chemical water quality with little if any regard for biological metrics. Robust evaluations including both chemical and biological indicators of water quality improvement are needed. In this study, injection of alkaline fluidized bed ash (FBA) into a flooded underground coal mine was coupled with a five-cell passive treatment system to ameliorate an abandoned AMD discharge in eastern Oklahoma. The passive system included process units promoting both aerobic and anaerobic treatment mechanisms. Resulting water quality changes and biological responses were evaluated. Organisms of two distinct functional groups (the filter-feeding mollusk Corbicula fluminea and the wide-spectrum feeding fish Lepomis macrochirus) were exposed to mine waters in several treatment cells. The combination of treatment technologies was hypothesized to limit potential negative effects on these aquatic organisms. Tissues were harvested and analyzed for concentrations of several metals (Al, Fe, Mn, Mg, Ca, Ni, Cu and Zn) of interest. Organismal responses, such as hepatosomatic index, condition factor, and condition index, did not vary significantly among organisms exposed within different treatment cells when compared to non-AMD impaired waters. Metal tissue accumulation trends, compared to aqueous concentrations, were observed for Fe, Ni and Zn. Exposure experiments with these two organisms indicated that FBA introductions coupled with passive treatment decreased the potential adverse effects of AMD to biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Occurrence of Chiral Bioactive Compounds in the Aquatic Environment: A Review

    Directory of Open Access Journals (Sweden)

    Cláudia Ribeiro

    2017-10-01

    Full Text Available In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well recognized, highlighting the need to include enantioselectivity in environmental risk assessment. Additionally, the information about enantiomeric fraction (EF is crucial since it gives insights about: (i environmental fate (i.e., occurrence, distribution, removal processes and (biodegradation; (ii illicit discharges; (iii consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational drugs, illicit use of pesticides; and (iv enantioselective toxicological effects. Thus, the purpose of this paper is to provide a comprehensive review about the enantioselective occurrence of chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals, illicit drugs, pesticides, polychlorinated biphenyls (PCBs and polycyclic musks (PCMs. Most frequently analytical methods used for separation of enantiomers were liquid chromatography and gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents and direct methods (chiral stationary phases. The occurrence of these chiral micropollutants in the environment is reviewed and future challenges are outlined.

  6. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    Science.gov (United States)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  7. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    Science.gov (United States)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  8. Microbiological properties and oxidizable organic carbon fractions of an oxisol under coffee with split phosphorus applications and irrigation regimes

    Directory of Open Access Journals (Sweden)

    Adriana Rodolfo da Costa

    2013-02-01

    Full Text Available Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting, two irrigation regimes (rainfed and year-round irrigation, with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC, basal respiration (BR, enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4, and total organic carbon (TOC. The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

  9. [Effect of Long-term Fertilizer Application on the Stability of Organic Carbon in Particle Size Fractions of a Paddy Soil in Zhejiang Province, China].

    Science.gov (United States)

    Mao, Xia-li; Lu, Kou-ping; Sun, Tao; Zhang, Xiao-kai; He, Li-zhi; Wang, Hai-long

    2015-05-01

    Effects of chemical fertilizers and organic manure on the soil organic carbon (SOC) content in particle size fractions of paddy soil were investigated in a 17-year long-term fertilization field experiment in Zhejiang Province, China. The inherent chemical composition of silt- and clay-associated SOC was evaluated with solid-state 13C-NMR spectroscopy. Compared to CK (no fertilizer treatment), NPKRS (NPK fertilizers plus rice straw) , NPKOM (NPK fertilizers plus organic manure) , NPK (NPK fertilizers) and OM (organic manure alone) treatments significantly (P fertilizers alone, combined application of organic amendments and NPK fertilizers facilitated the storage of newly sequestered SOC in silt- and clay-sized fractions, which could be more conducive to the stability of SOC. Based on 13C-NMR spectra, both silt and clay fractions were composed of Alkyl-C, O-alkyl-C, Aromatic-C and carbonyl-C. Changes in the relative proportion of different C species were observed between silt and clay fractions: the clay fraction had relatively more Alkyl-C, carbonyl-C and less O-alkyl-C, Aromatic-C than those in the silt fraction. This might be ascribed to the fact that the organic matter complexed with clay was dominated by microbial products, whereas the silt appeared to be rich in aromatic residues derived from plants. The spectra also showed that the relative proportion of different C species was modified by fertilization practices. In comparison with organic amendments alone, the relative proportion of Alkyl-C was decreased by 9.1%-11.9% and 13.7%-19.9% under combined application of organic amendments and chemical fertilizers, for silt and clay, respectively, and that of O-alkyl-C was increased by 2.9%-6.3% and 13.4%-22.1%, respectively. These results indicated that NPKOM and NPKRS treatments reduced the decomposition rate of SOC. The aromaticity, hydrophobicity and, hence, chemical recalcitrance of silt- and clay-associated SOC in the NPK fertilizer treatments were lower than

  10. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events.

    Science.gov (United States)

    Affonso, A G; Queiroz, H L; Novo, E M L M

    2015-11-01

    This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems

  11. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events

    Directory of Open Access Journals (Sweden)

    A. G. Affonso

    Full Text Available Abstract This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012, channels (scroll lakes with high connectivity, sensu Junk et al., 2012 and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples were applied to the variables in order to: 1 quantify differences among aquatic system types; 2 assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system’s types. PERMANOVA showed that the differences between aquatic system’s types and hydrological phases of all variables were highly significant for both main factors (type and phase and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are

  12. Fate of lignin, cutin and suberin in soil organic matter fractions - an incubation experiment

    Science.gov (United States)

    Mueller, Carsten W.; Mueller, Kevin E.; Freeman, Katherine H.; Ingrid, Kögel-Knabner

    2010-05-01

    The turnover of soil organic matter (SOM) is controlled by its chemical composition, its spatial accessibility and the association with the mineral phase. Separation of bulk soils by physical fractionation and subsequent chemical analysis of these fractions should give insights to how compositional differences in SOM drive turnover rates of different size-defined carbon pools. The main objective of this study was to elucidate the relative abundance and recalcitrance of lignin, cutin and suberin in aggregated bulk soils and SOM fractions in the course of SOM decomposition. Bulk soils and physically-separated size fractions (sand, silt and clay) of the Ah horizon of a forest soil (under Picea abies L.Karst) were parallel incubated over a period of one year. In order to differentiate between particulate OM (POM) and mineral-associated SOM the particle size fractions were additionally separated by density after the incubation experiment. We used solid-state 13C-CPMAS NMR spectroscopy and GC-MS (after copper oxide oxidation and solvent extraction) to analyze the composition of the incubated samples. The abundance and isotopic composition (including 13C and 14C) of the respired CO2 further enabled us to monitor the dynamics of SOM mineralization. This approach allowed for differentiating between C stabilization of soil fractions due to accessibility/aggregation and to biochemical recalcitrance at different scales of resolution (GC-MS, NMR). We found a relative enrichment of alkyl C and decreasing lignin contents in the order of sand particulate OM (POM). For the fresh particulate OM (POM) of the sand fraction a clear decay of lignin was observed in the course of the incubation experiment, indicated by decreasing C/V and increasing ac/alV ratios. A relative decrease of aliphatic C in the incubated fractions compared to the incubated bulk soils showed the preferential mineralization of less recalcitrant C compounds that were spatially inaccessible in aggregates of the bulk

  13. Isolation of CYP1A inducing components in coal tar fraction (F3) of Alaska north slope crude oil : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Saravanabhavan, G.; Brown, R.S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Khan, C.W.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology

    2004-07-01

    Recent concerns regarding the effects of weathered crude oil on the early life stage of aquatic organisms are related to reports that blue sac disease (BSD) has been linked to larval fish exposed to crude oil. Studies have shown that a relationship exists between the induction of CYP1A enzymes and the occurrence of BSD in fish species. However, the mechanism of BSD is not fully understood. This study contributed to the Toxicity Identification and Evaluation (TIE) approach by isolating the CYP1A enzyme. An improved separation and analysis method for characterizing crude oil was also developed. Earlier studies revealed that the highest CYP1A activity occurred in the coal tar fraction of crude oil, which is rich in polycyclic aromatic hydrocarbons (PAH) and which contains many classes of compounds such as waxes, asphaltenes and resins. The TIE method included separation of these compound classes as well as a detailed characterization of the PAH classes. A solvent extraction method was also developed to fractionate the coal tar fraction into compound classes with particular emphasis on isolating PAH components. The study showed that fractions rich in PAH were responsible for a significant CYP1A induction in juvenile trout, but fractions poor in PAH did not. The solid phase extraction method offered better PAH fractions for further analysis by liquid chromatography.

  14. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).

    Science.gov (United States)

    Poteat, Monica D; Buchwalter, David B

    2014-04-01

    Calcium sequestration in the hypo-osmotic freshwater environment is imperative in maintaining calcium homeostasis in freshwater aquatic organisms. This uptake process is reported to have the unintended consequence of potentially toxic heavy metal (Cd, Zn) uptake in a variety of aquatic species. However, calcium uptake remains poorly understood in aquatic insects, the dominant invertebrate faunal group in most freshwater ecosystems. Here, we examined Ca uptake and interactions with heavy metals (Cd, Zn) at low ambient Ca levels (12.5 μmol l(-1)) in 12 aquatic insect species within Ephemerellidae (mayfly) and Hydropsychidae (caddisfly), two families differentially responsive to trace metal pollution. We found Ca uptake varied 70-fold across the 12 species studied. Body mass and clade (family) were found to significantly influence both Ca uptake and adsorption (P≤0.05). Zn and Cd uptake rate constants (ku) exhibited a strong correlation (r=0.96, Pinsects generally differ from other freshwater taxa in that aqueous Ca uptake does not appear to be compromised by Cd or Zn exposure. It is important to understand the trace metal and major ion physiology of aquatic insects because of their ecological importance and widespread use as ecological indicators.

  15. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    Science.gov (United States)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  16. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu)

    DEFF Research Database (Denmark)

    Liu, Wen-Xiu; Wang, Yan; He, Wei

    2016-01-01

    Aquatic biota have long been recognized as bioindicators of the contamination caused by hydrophobic organic contaminants (HOCs) in aquatic environments. The primary purpose of the present study is to identify which species of aquatic biota are the most sensitive to organochlorine pesticides (OCPs...

  17. An eDNA assay for river otter detection: A tool for surveying a semi-aquatic mammal

    Science.gov (United States)

    Ticha M. Padgett-Stewart; Taylor M. Wilcox; Kellie J. Carim; Kevin S. McKelvey; Michael K. Young; Michael K. Schwartz

    2016-01-01

    Environmental DNA (eDNA) is an effective tool for the detection of elusive or low-density aquatic organisms. However, it has infrequently been applied to mammalian species. North American river otters (Lontra canadensis) are both broad ranging and semi-aquatic, making them an ideal candidate for examining the uses of eDNA for detection of mammals. We developed...

  18. Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic Sediments

    Science.gov (United States)

    2016-11-01

    FINAL REPORT Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic...passive multisampling method to measure Dioxins/Furans 5a. CONTRACT NUMBER and other contaminant bioavailability in aquatic sediments...This also indicates the bioavailability or pressure (fugacity) of contaminants on organisms2 and consequently represents the exposure level for

  19. Inorganic mercury (Hg2+ uptake by different plankton fractions of Andean Patagonian lakes (Argentina

    Directory of Open Access Journals (Sweden)

    Diéguez M.C.

    2014-07-01

    Full Text Available The species composition and the size structure of natural planktonic food webs may provide essential information to understand the fate of mercury and, in particular, the bioaccumulation pattern of Hg2+ in the water column of lake ecosystems. Heterotrophic and autotrophic picoplankton and phytoplankton are the most important entry points for Hg in aquatic ecosystems since they concentrate Hg2+ and MeHg from ambient water, making them available to planktonic consumers at higher trophic levels of lake food webs. In this investigation we studied the uptake of 197Hg2+ in natural plankton assemblages from four Andean lakes (Nahuel Huapi National Park, Patagonia, Argentina, comprised in the size fractions 0.2-2.7 μm (picoplankton, 0.2-20 μm (pico and nanoplankton and 20-50 μm (microplankton through experiments using Hg2+ labeled with 197Hg2+. The experimental results showed that the uptake of Hg2+ was highest in the smallest plankton fractions (0.2-2.7 μm and 0.2-20 μm compared to the larger fraction comprising microplankton (20-50 um. This pattern was consistent in all lakes, reinforcing the idea that among pelagic organisms, heterotrophic and autotrophic bacteria with the contribution of nanoflagellates and dinoflagellates constitute the main entry point of Hg2+ to the pelagic food web. Moreover, a significant direct relationship was found between the Hg2+ uptake and surface index of the planktonic fractions (SIf. Thus, the smaller planktonic fractions which bore the higher SI were the major contributors to the Hg2+ passing from the abiotic to the biotic pelagic compartments of these Andean lakes.

  20. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice

    Science.gov (United States)

    Tan, Zhengxi; Lal, R.; Owens, L.; Izaurralde, R. C.

    2007-01-01

    Mass distributions of different soil organic carbon (SOC) fractions are influenced by land use and management. Concentrations of C and N in light- and heavy fractions of bulk soils and aggregates in 0–20 cm were determined to evaluate the role of aggregation in SOC sequestration under conventional tillage (CT), no-till (NT), and forest treatments. Light- and heavy fractions of SOC were separated using 1.85 g mL−1 sodium polytungstate solution. Soils under forest and NT preserved, respectively, 167% and 94% more light fraction than those under CT. The mass of light fraction decreased with an increase in soil depth, but significantly increased with an increase in aggregate size. C concentrations of light fraction in all aggregate classes were significantly higher under NT and forest than under CT. C concentrations in heavy fraction averaged 20, 10, and 8 g kg−1 under forest, NT, and CT, respectively. Of the total SOC pool, heavy fraction C accounted for 76% in CT soils and 63% in forest and NT soils. These data suggest that there is a greater protection of SOC by aggregates in the light fraction of minimally disturbed soils than that of disturbed soil, and the SOC loss following conversion from forest to agriculture is attributed to reduction in C concentrations in both heavy and light fractions. In contrast, the SOC gain upon conversion from CT to NT is primarily attributed to an increase in C concentration in the light fraction.

  1. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass.

    Science.gov (United States)

    Boss, Emmanuel; Slade, Wayne; Hill, Paul

    2009-05-25

    Marine aggregates, agglomerations of particles and dissolved materials, are an important particulate pool in aquatic environments, but their optical properties are not well understood. To improve understanding of the optical properties of aggregates, two related studies are presented. In the first, an in situ manipulation experiment is described, in which beam attenuation of undisturbed and sheared suspensions are compared. Results show that in the sheared treatment bulk particle size decreases and beam attenuation increases, consistent with the hypothesis that a significant fraction of mass in suspension is contained in fragile aggregates. Interestingly, the magnitude of increase in beam attenuation is less than expected if the aggregates are modeled as solid spheres. Motivated by this result, a second study is presented, in which marine aggregates are modeled to assess how the beam attenuation of aggregates differs from that of their constituent particles and from solid particles of the same mass. The model used is based on that of Latimer [Appl. Opt. 24, 3231 (1985)] and mass specific attenuation is compared with that based on homogeneous and solid particles, the standard model for aquatic particles. In the modeling we use recent research relating size and solid fraction of aquatic aggregates. In contrast with Mie theory, this model provides a rather size-insensitive mass specific attenuation for most relevant sizes. This insensitivity is consistent with the observations that mass specific beam-attenuation of marine particles is in the range 0.2-0.6m(2)/gr despite large variability in size distribution and composition across varied aquatic environments.

  2. From which soil metal fractions Fe, Mn, Zn and Cu are taken up by olive trees (Olea europaea L., cv. 'Chondrolia Chalkidikis') in organic groves?

    Science.gov (United States)

    Chatzistathis, T; Papaioannou, A; Gasparatos, D; Molassiotis, A

    2017-12-01

    Organic farming has been proposed as an alternative agricultural system to help solve environmental problems, like the sustainable management of soil micronutrients, without inputs of chemical fertilizers. The purposes of this study were: i) to assess Fe, Mn, Zn and Cu bioavailability through the determination of sequentially extracted chemical forms (fractions) and their correlation with foliar micronutrient concentrations in mature organic olive (cv. 'Chondrolia Chalkidikis') groves; ii) to determine the soil depth and the available forms (fractions) by which the 4 metals are taken up by olive trees. DTPA extractable (from the soil layers 0-20, 20-40 and 40-60 cm) and foliar micronutrient concentrations were determined in two organic olive groves. Using the Tessier fractionation, five fractions, for all the metals, were found: exchangeable, bound to carbonates (acid-soluble), bound to Fe-Mn oxides (reducible), organic (oxidizable), as well as residual form. Our results indicated that Fe was taken up by the olive trees as organic complex, mainly from the soil layer 40-60 cm. Manganese was taken up from the exchangeable fraction (0-20 cm); Zinc was taken up as organic complex from the layers 0-20 and 40-60 cm, as well as in the exchangeable form from the upper 20 cm. Copper was taken up from the soil layers 0-20 and 40-60 cm as soluble organic complex, and as exchangeable ion from the upper 20 cm. Our data reveal the crucial role of organic matter to sustain metal (Fe, Zn and Cu) uptake -as soluble complexes-by olive trees, in mature organic groves grown on calcareous soils; it is also expected that these data will constitute a thorough insight and useful tool towards a successful nutrient and organic C management for organic olive groves, since no serious nutritional deficiencies were found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cs adsorption on the clay-sized fraction of various soils: effect of organic matter destruction and charge compensating cation

    International Nuclear Information System (INIS)

    Staunton, S.; Levacic, P.

    1999-01-01

    The association of organic matter with clay minerals may decrease their affinity for Cs and thus enhance its bioavailability. We have investigated this hypothesis by comparing Cs adsorption on several soils, both topsoils and the corresponding subsoils, before and after organic matter destruction with H 2 O 2 . The clay-sized fractions were homoionic in either K, Na or Ca, to avoid artefacts due to variable composition of the exchange complex. All experiments were carried out in dilute suspension under controlled conditions. The affinity of the clay-sized fractions for Cs and the value of the Freundlich b parameter are typical of illites. This supports the hypothesis that the adsorption properties of soils are dominated by small amounts of illite. However, if this is the case, the affinity of soil illites is higher than that of reference illites. The destruction of organic matter has a variable effect. In some cases, a marked enhancement is observed, in others there is no significant effect, or a small decrease. There is no clear pattern relating the effect of organic matter destruction and either dominant clay mineralogy or organic matter content. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Size exclusion chromatography with online ICP-MS enables molecular weight fractionation of dissolved phosphorus species in water samples.

    Science.gov (United States)

    Venkatesan, Arjun K; Gan, Wenhui; Ashani, Harsh; Herckes, Pierre; Westerhoff, Paul

    2018-04-15

    Phosphorus (P) is an important and often limiting element in terrestrial and aquatic ecosystem. A lack of understanding of its distribution and structures in the environment limits the design of effective P mitigation and recovery approaches. Here we developed a robust method employing size exclusion chromatography (SEC) coupled to an ICP-MS to determine the molecular weight (MW) distribution of P in environmental samples. The most abundant fraction of P varied widely in different environmental samples: (i) orthophosphate was the dominant fraction (93-100%) in one lake, two aerosols and DOC isolate samples, (ii) species of 400-600 Da range were abundant (74-100%) in two surface waters, and (iii) species of 150-350 Da range were abundant in wastewater effluents. SEC-DOC of the aqueous samples using a similar SEC column showed overlapping peaks for the 400-600 Da species in two surface waters, and for >20 kDa species in the effluents, suggesting that these fractions are likely associated with organic matter. The MW resolution and performance of SEC-ICP-MS agreed well with the time integrated results obtained using conventional ultrafiltration method. Results show that SEC in combination with ICP-MS and DOC has the potential to be a powerful and easy-to-use method in identifying unknown fractions of P in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Occurrence of β-N-methylamino-l-alanine (BMAA and Isomers in Aquatic Environments and Aquatic Food Sources for Humans

    Directory of Open Access Journals (Sweden)

    Emilie Lance

    2018-02-01

    Full Text Available The neurotoxin β-N-methylamino-l-alanine (BMAA, a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC. The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB, β-amino-N-methyl-alanine (BAMA and N-(2-aminoethyl glycine (AEG. This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  6. Occurrence of β-N-methylamino-l-alanine (BMAA) and Isomers in Aquatic Environments and Aquatic Food Sources for Humans.

    Science.gov (United States)

    Lance, Emilie; Arnich, Nathalie; Maignien, Thomas; Biré, Ronel

    2018-02-14

    The neurotoxin β- N -methylamino-l-alanine (BMAA), a non-protein amino acid produced by terrestrial and aquatic cyanobacteria and by micro-algae, has been suggested to play a role as an environmental factor in the neurodegenerative disease Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia complex (ALS-PDC). The ubiquitous presence of BMAA in aquatic environments and organisms along the food chain potentially makes it public health concerns. However, the BMAA-associated human health risk remains difficult to rigorously assess due to analytical challenges associated with the detection and quantification of BMAA and its natural isomers, 2,4-diamino butyric acid (DAB), β-amino- N -methyl-alanine (BAMA) and N -(2-aminoethyl) glycine (AEG). This systematic review, reporting the current knowledge on the presence of BMAA and isomers in aquatic environments and human food sources, was based on a selection and a score numbering of the scientific literature according to various qualitative and quantitative criteria concerning the chemical analytical methods used. Results from the best-graded studies show that marine bivalves are to date the matrix containing the higher amount of BMAA, far more than most fish muscles, but with an exception for shark cartilage. This review discusses the available data in terms of their use for human health risk assessment and identifies knowledge gaps requiring further investigations.

  7. Using Stable Isotopes to Detect Land Use Change and Nitrogen Sources in Aquatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, K. M. [National Isotope Center, GNS Science, Lower Hutt (New Zealand)

    2013-05-15

    Changing land use is one of the primary causes of increased sedimentation and nutrient levels in aquatic systems, resulting in contamination and reduction of biodiversity. Detecting and quantifying these inputs is the first step towards remediation, and enabling targeted reductions of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as detection and quantification tools in aquatic environments. Carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotopes of sediments, as well as algae and invertebrates from aquatic systems can be used as proxies to record both short and long term environmental change. Excess nitrogen (or nitrogen-compounds) derived from urbanization, industry, forestry, farming and agriculture, increase the bioavailability of nitrogen to aquatic organisms, changing their natural {delta}15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes {delta}{sup 13}C isotopic compositions and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The combined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools, which are useful indicators of source and transport pathways of terrestrial derived material and anthropogenic pollutants into streams, rivers and estuaries. (author)

  8. Predicting soil N mineralization using organic matter fractions and soil properties: A re-analysis of literature data

    NARCIS (Netherlands)

    Ros, G.H.

    2012-01-01

    Extractable organic matter (EOM) fractions have been used to assess the capacity of soils to supply nitrogen (N), but their role in N mineralization and their potential to improve agricultural fertilizer management are still under debate. This paper shows evidence that the relationship between EOM

  9. Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    Directory of Open Access Journals (Sweden)

    C. Moni

    2012-12-01

    Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of 15N labelled litter.

    Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.

    Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

  10. Diet and trophic groups of an aquatic insect community in a tropical stream

    Directory of Open Access Journals (Sweden)

    R. L. Motta

    Full Text Available The diet and trophic groups of an assemblage of aquatic insects were studied in a tropical stream. Genera of the orders Ephemeroptera, Odonata, Plecoptera, Lepidoptera, and Hemiptera showed feeding specialization. Others, such as Trichoptera, Coleoptera, and Diptera, showed great diet variation with genera of different trophic groups. Seasonal variation of insect diet, evident only for some genera of the orders Trichoptera, Lepidoptera, Coleoptera, and Diptera, was due to the differences observed in community composition and to generalist habits of these genera. However, the seasonal comparison of trophic groups showed no significant statistical differences. The great importance of organic matter, a non-limited resource, in the diet of Ribeirão do Atalho aquatic insects may be the explanation for the trophic stability in this community organization.

  11. An integrated approach to aquatic health assessment: water quality index and multibiomarker response

    International Nuclear Information System (INIS)

    Sedeno-Diaz, J. E.; Lopez-Lopez, E.; Jimenez-Trujillo, P.; Tejeda-Vera, R.; Espainal Carrion, T.

    2009-01-01

    The pollution of water bodies reduces their quality and is stressful to their biota. In a river, water usually is of the high-est quality in its headwaters reaches, becoming dirtier along its length as it passes through different land uses. Therefore, the aquatic environment should be assessed using physicochemical and biological features in order to provide a full spectrum of aquatic ecosystem health. Water Quality Indexes can be used to aggregate data on water quality parameters and to translate this information into a single value. The use of bio markers as indicators of toxicity delineates the effects of xenobiotics before the appearance of diseases in aquatic organism. The use of a battery bio markers may be useful to evaluate the various response to mixtures of pollutants. (Author)

  12. Dissolved Organic Matter Composition and Export from U.S. Rivers

    Science.gov (United States)

    Aiken, G.; Butman, D. E.; Spencer, R. G.; Raymond, P.

    2012-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with water and land resource management. Organic source materials, watershed geochemistry, oxidative processes and hydrology strongly influence the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals. In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of a multi-year study designed to assess the seasonal and spatial variability of DOM quantity and quality for 15 large North American river basins. Samples were collected from the mouths of the rivers using a sampling program designed to capture hydrologic and seasonal variability of DOM export. DOM concentrations and composition, based on DOM fractionation on XAD resins, chromophoric dissolved organic matter (CDOM) parameters (ultraviolet /visible absorption and fluorescence spectroscopy), specific compound analyses, and DO14C content varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration and carbon specific ultra-violet absorbance at 254 nm (SUVA254), an optical measurement that is an indicator of DOM aromatic carbon content. In almost all systems, CDOM optical parameters correlated strongly with DOC concentration and hydrophobic organic acid (HPOA) content (aquatic humic substances). In

  13. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    Science.gov (United States)

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  14. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    Science.gov (United States)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  15. Acute toxicity assessment of Osthol content in bio-pesticides using two aquatic organisms

    Directory of Open Access Journals (Sweden)

    Eun-Chae Yim

    2014-12-01

    Full Text Available Objectives This study focused on the assessment of acute toxicity caused by Osthol, a major component of environment-friendly biological pesticides, by using two aquatic organisms. Methods The assessment of acute toxicity caused by Osthol was conducted in Daphnia magna and by examining the morphological abnormalities in Danio rerio embryos. Results The median effective concentration value of Osthol in D. magna 48 hours after inoculation was 19.3 μM. The median lethal concentration of D. rerio embryo at 96 hours was 30.6 μM. No observed effect concentration and predicted no effect concentration values of Osthol in D. magna and D. rerio were calculated as 5.4 and 0.19 μM, respectively. There was an increase in the morphological abnormalities in D. rerio embryo due to Osthol over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation were observed in embryos at 24–48 hours. Symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects, and symptoms of collapse were observed in fertilized embryo tissue within 96 hours. Ocular defects and pigmentation were the additional symptoms observed in this study. Conclusions Because Osthol showed considerable toxicity levels continuous toxicity evaluation in agro-ecosystems is necessary when bio-pesticides containing Osthol are used.

  16. Modeling Aquatic Toxicity through Chromatographic Systems.

    Science.gov (United States)

    Fernández-Pumarega, Alejandro; Amézqueta, Susana; Farré, Sandra; Muñoz-Pascual, Laura; Abraham, Michael H; Fuguet, Elisabet; Rosés, Martí

    2017-08-01

    Environmental risk assessment requires information about the toxicity of the growing number of chemical products coming from different origins that can contaminate water and become toxicants to aquatic species or other living beings via the trophic chain. Direct toxicity measurements using sensitive aquatic species can be carried out but they may become expensive and ethically questionable. Literature refers to the use of chromatographic measurements that correlate to the toxic effect of a compound over a specific aquatic species as an alternative to get toxicity information. In this work, we have studied the similarity in the response of the toxicity to different species and we have selected eight representative aquatic species (including tadpoles, fish, water fleas, protozoan, and bacteria) with known nonspecific toxicity to chemical substances. Next, we have selected four chromatographic systems offering good perspectives for surrogation of the eight selected aquatic systems, and thus prediction of toxicity from the chromatographic measurement. Then toxicity has been correlated to the chromatographic retention factor. Satisfactory correlation results have been obtained to emulate toxicity in five of the selected aquatic species through some of the chromatographic systems. Other aquatic species with similar characteristics to these five representative ones could also be emulated by using the same chromatographic systems. The final aim of this study is to model chemical products toxicity to aquatic species by means of chromatographic systems to reduce in vivo testing.

  17. Ultraviolet irradiation effects incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2012-01-01

    One of the concerns regarding the safety and efficacy of ultraviolet radiation for treatment of drinking water and wastewater is the fate of nitrate, particularly its photolysis to nitrite. In this study, 15N NMR was used to establish for the first time that UV irradiation effects the incorporation of nitrate and nitrite nitrogen into aquatic natural organic matter (NOM). Irradiation of 15N-labeled nitrate in aqueous solution with an unfiltered medium pressure mercury lamp resulted in the incorporation of nitrogen into Suwannee River NOM (SRNOM) via nitrosation and other reactions over a range of pH from approximately 3.2 to 8.0, both in the presence and absence of bicarbonate, confirming photonitrosation of the NOM. The major forms of the incorporated label include nitrosophenol, oxime/nitro, pyridine, nitrile, and amide nitrogens. Natural organic matter also catalyzed the reduction of nitrate to ammonia on irradiation. The nitrosophenol and oxime/nitro nitrogens were found to be susceptible to photodegradation on further irradiation when nitrate was removed from the system. At pH 7.5, unfiltered irradiation resulted in the incorporation of 15N-labeled nitrite into SRNOM in the form of amide, nitrile, and pyridine nitrogen. In the presence of bicarbonate at pH 7.4, Pyrex filtered (cutoff below 290–300 nm) irradiation also effected incorporation of nitrite into SRNOM as amide nitrogen. We speculate that nitrosation of NOM from the UV irradiation of nitrate also leads to production of nitrogen gas and nitrous oxide, a process that may be termed photo-chemodenitrification. Irradiation of SRNOM alone resulted in transformation or loss of naturally abundant heterocyclic nitrogens.

  18. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, H G [Saskatchewan Research Council, Saskatoon, SK (Canada); Nyholm, N [Technical Univ. of Denmark, Lyngby (Denmark). Lab. of Environmental Science and Ecology; Huang, P M [Saskatchewan Univ., Saskatoon (Canada). Saskatchewan Inst. of Pedology

    1996-12-31

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the `Metal mining liquid effluent regulations and guidelines` provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs.

  19. Development of aquatic plant bioassays for rapid screening and interpretive risk assessments of metal mining liquid waste waters

    International Nuclear Information System (INIS)

    Peterson, H.G.; Nyholm, N.; Huang, P.M.

    1995-01-01

    The use of non-photosynthetic organisms alone to describe environmental impact has been recognized by regulatory agencies, industry and academia as being totally inadequate both in Europe and North America. Lack of adequate testing methods for photosynthetic aquatic organisms has been recognized as a major impediment to the successful regulation and safe use of pesticides and waste water discharges and is of even more concern to the metal mining industry due to the non-biodegradable nature of its waste streams. This work shows that the chemical effluent limits set in the 'Metal mining liquid effluent regulations and guidelines' provide variable protection of aquatic photosynthetic organisms and aquatic effects of the more toxic metals (e.g., copper, nickel, and zinc) may occur at levels that are one to two orders of magnitude lower than present limits. To establish adequate protection of receiving water bodies it may be necessary to establish site-specific criteria taking into consideration toxicity modifying factors of individual sites. If the establishment of such criteria is determined with a host of ecologically relevant organisms, it will be possible to design effective environmental protection at the least possible cost. (author). 17 refs., 2 tabs

  20. The organic tritium in the environment

    International Nuclear Information System (INIS)

    Kirchmann, R.

    1979-01-01

    Sources, organization process, and biological availability of organic tritium released in the environment, transfer of organic tritium in the environment from methane or soil to plants and from food to mammals, transfer of tritium in aquatic ecosystems, and dose to man resulting of the ingestion of tritiated food were reviewed and discussed. Some data about transfer of organic tritium in terrestrial and aquatic ecosystems reported by literatures were summarized and were supplied with recent data on biological accumulation of organic tritium in the food chain. It was stressed that more research must be done in future because data available were still insufficient. Last, some research programs in progress or planned were stated. (Tsunoda, M.)

  1. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    Science.gov (United States)

    Chowdhury, Ashim

    2010-05-01

    STUDY ON THE DISTRIBUTION OF ORGANIC CARBON IN SOIL FRACTIONS AND ITS REACTION POTENTIAL OF BINDING THE PESTICIDES **SUMITRA ROY1, SANKHAJIT ROY1, *ASHIM CHOWDHURY2, SASWATI PRADHAN2 and PETER BURAUEL3 1Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalay, Mohanpur, West Bengal, India. 2Department of Agricultural Chemistry and Soil Science, University of Calcutta, West Bengal, India. 3Institute of Chemical Dynamics & Geosphere, FZ-Juelich, Germany. *Correspondence: ashimkly@hotmail.com **Research work carried out as DAAD Sandwich research fellow at FZ- Juelich, Germany Soil is the ultimate sink of all selectively applied pesticides. In addition to the basic physicochemical data of an active ingredient, the fate of the various compounds is largely determined by the type of application. Finally, pesticide and their metabolites, as well as structural elements, remain in the native carbon reserves of the soil or are sorbed & fixed to clay minerals and clay- humus complexes. Soil organic matter (SOM) and the soil microbial community are the crucial components which regulate soil processes and contribute towards the stability of the soil ecosystem. It is an energy source for biological mineralization processes, functions as a buffer and participates in chemical reaction. Knowledge is essential to understand the extent to which the SOM influences the mobilization and immobilization processes of foreign substance in soil and the substance transport and pollutant decomposition in soil. The freshly incorporated organic matter undergoes mineralization and the non mineralized carbon fraction is of special relevance with respect to soil stability in general and decisive for the fate and particular the persistence of xenobiotics in soil. The biological and physicochemical interactions establishing equilibrium between the organic matter bound, fixed or complexed to the soil matrix and that dissolve in the soil solution must be understood in detail to realize

  2. The effect of aquatic intervention on the gross motor function and aquatic skills in children with cerebral palsy.

    Science.gov (United States)

    Dimitrijević, Lidija; Aleksandrović, Marko; Madić, Dejan; Okičić, Tomislav; Radovanović, Dragan; Daly, Daniel

    2012-05-01

    The objective of this study was to investigate the effect of an aquatic intervention on the gross motor function and aquatic skills of children with cerebral palsy (CP). Twenty-nine children with CP, aged 5 to 14, were recruited. Fourteen children completed an aquatic intervention (EG), and 13 children served as controls (CG). Two participants dropped out due to events (illness) unrelated to the intervention. The aquatic intervention lasted 6 weeks (2 sessions per week at 55 minutes per session) with a follow-up period of 3 weeks. The outcome measures were the Gross Motor Function Measure (GMFM) for motor function and the Water Orientation Test Alyn 2 (WOTA 2) for aquatic skills assessment. A significant improvement was observed in the secondary assessment of GMFM and WOTA 2. In contrast to the aquatic skills improvement, the GMFM change was not maintained at follow-up. Our results indicate that children with CP can improve gross motor function on dry land and aquatic skills with a 6-week water intervention. The intervention period was too short for sustainable improvement in dry-land motor skills after intervention (follow-up), but time was sufficient to achieve sustainable improvements in aquatic skills.

  3. Pyrogenic organic matter accumulation after density and particle size fractionation of burnt Cambisol using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    López-Martín, María; Knicker, Heike

    2017-04-01

    Fires lead to formation of the pyrogenic organic matter (PyOM) which is quickly incorporated into the soil. The charring process involves chemical alterations of the litter material, where biologically available structures are transferred into aromatic polymers, such as black carbon (BC) and black nitrogen (BN). In order to reveal the medium term fate of BC and BN in soils, the top 5 cm of A horizons from unburnt, single and double burnt Cambisols of the Sierra de Aznalcóllar (Southern Spain) were collected 7 year after an intense fire and separated according to their density and their size (Golchin et al., 1994; Sohi et al., 2001). The density fractionation yielded in the free (fPOM), occluded particulate organic matter (oPOM) and the mineral-association organic fraction (MAF) and was performed using a sodium polytungstate solution with a density of 1.8 g cm-3. The MAF was further separated into the sand (2 mm to 63 μm) and coarse silt (63 to 20 μm) and fine fraction (solid-state 13C and 15N NMR spectroscopy. The 13C and 15N NMR spectra of all fPOM and oPOM fractions are dominated by signals assignable to O-alkyl C followed by resonance lines of alkyl C. The spectra indicate that fPOM is mainly composed of undecomposed plant debris whereas oPOM is rich in unsubstituted-aliphatic material. The lack of intensity in the chemical shift region from 160 to140 ppm in the spectra of the small size fractions reveals the absence of lignin residues. This, their low C/N ratios and the clear 13C-signal attributed to carboxylic C allows the conclusion that this fraction mainly composed of microbial residues. Former studies evidenced that aromaticity of the burnt bulk soil decreased with elapsing time after the fire. The present investigation revealed that most of the remaining aromatic C accumulated in the POM fractions, which is in contrast to other studies showing a preferential recovery of BC in the fine particle size fractions. Possibly, the poor interaction between Py

  4. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Aquatic species and habitats

    Science.gov (United States)

    Danny C. Lee; James R. Sedell; Bruce E. Rieman; Russell F. Thurow; Jack E. Williams

    1998-01-01

    Continuing human activities threaten the highly prized aquatic resources of the interior Columbia basin. Precipitous declines in native species, particularly Pacific salmon, and a large influx of introduced species have radically altered the composition and distribution of native fishes. Fortunately, areas of relatively high aquatic integrity remain, much of it on...

  6. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    Science.gov (United States)

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (PCDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  7. Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste.

    Science.gov (United States)

    Schievano, Andrea; D'Imporzano, Giuliana; Malagutti, Luca; Fragali, Emilio; Ruboni, Gabriella; Adani, Fabrizio

    2010-07-01

    High-solids anaerobic digestion (HSAD) processes, when applied to different types of organic fractions of municipal solid waste (OFMSW), may easily be subjected to inhibition due to organic overloading. In this study, a new approach for predicting these phenomena was proposed based on the estimation of the putrescibility (oxygen consumption in 20 h biodegradation, OD(20)) of the organic mixtures undergoing the HSAD process. Different wastes exhibiting different putrescibility were subjected to lab-scale batch-HSAD. Measuring the organic loading (OL) as volatile solids (VS) was found unsuitable for predicting overload inhibition, because similar VS contents corresponded to both inhibited and successful trials. Instead, the OL calculated as OD(20) was a very good indicator of the inhibiting conditions (inhibition started for OD(20)>17-18 g O(2)kg(-1)). This new method of predicting inhibition in the HSAD process of diverse OFMSW may be useful for developing a correct approach to the technology in very different contexts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Opportunities for public aquariums to increase the sustainability of the aquatic animal trade.

    Science.gov (United States)

    Tlusty, Michael F; Rhyne, Andrew L; Kaufman, Les; Hutchins, Michael; Reid, Gordon McGregor; Andrews, Chris; Boyle, Paul; Hemdal, Jay; McGilvray, Frazer; Dowd, Scott

    2013-01-01

    The global aquatic pet trade encompasses a wide diversity of freshwater and marine organisms. While relying on a continual supply of healthy, vibrant aquatic animals, few sustainability initiatives exist within this sector. Public aquariums overlap this industry by acquiring many of the same species through the same sources. End users are also similar, as many aquarium visitors are home aquarists. Here we posit that this overlap with the pet trade gives aquariums significant opportunity to increase the sustainability of the trade in aquarium fishes and invertebrates. Improving the sustainability ethos and practices of the aquatic pet trade can carry a conservation benefit in terms of less waste, and protection of intact functioning ecosystems, at the same time as maintaining its economic and educational benefits and impacts. The relationship would also move forward the goal of public aquariums to advance aquatic conservation in a broad sense. For example, many public aquariums in North America have been instrumental in working with the seafood industry to enact positive change toward increased sustainability. The actions include being good consumers themselves, providing technical knowledge, and providing educational and outreach opportunities. These same opportunities exist for public aquariums to partner with the ornamental fish trade, which will serve to improve business, create new, more ethical and more dependable sources of aquatic animals for public aquariums, and perhaps most important, possibly transform the home aquarium industry from a threat, into a positive force for aquatic conservation. © 2012 Wiley Periodicals, Inc.

  9. Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. II - Physical Compartments and Carbon Management Index

    Directory of Open Access Journals (Sweden)

    Otávio dos Anjos Leal

    2015-06-01

    Full Text Available Soils constructed after mining often have low carbon (C stocks and low quality of organic matter (OM. Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC stocks, C distribution in physical fractions of OM and the C management index (CMI of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1, Paspalum notatum (T2, Cynodon dactylon (T3, Urochloa brizantha (T4, bare constructed soil (T5, and natural soil (T6. Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF of OM were determined. The CMI components: carbon pool index (CPI, lability (L and lability index (LI were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

  10. Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay latosol : carbon, nitrogen and 13C distribution in particle-size fractions

    NARCIS (Netherlands)

    Roscoe, R.; Buurman, P.; Velthorst, E.J.

    2000-01-01

    Ultrasonic energy has been widely used to disrupt soil aggregates before fractionating soil physically when studying soil organic matter (SOM). Nevertheless, there is no consensus about the optimum energy desirable to disrupt the soil. We therefore aimed (i) to quantify the effect of varied

  11. Legacy and emerging organohalogenated contaminants in wild edible aquatic organisms: Implications for bioaccumulation and human exposure.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Li, Qing X; Wang, Tao; Zheng, Xiaobo; Peng, Pingan; Mai, Bixian

    2018-03-01

    Highly industrialized and urbanized watersheds may receive various contaminants from anthropogenic activities. In this study, legacy and emerging organohalogenated contaminants (OHCs) were measured in edible wild aquatic organisms sampled from the Pearl River and Dongjiang River in a representative industrial and urban region in China. High concentrations of target contaminants were observed. The Pearl River exhibited higher concentrations of OHCs than the Dongjiang River due to high industrialization and urbanization. Agrochemical inputs remained an important source of OHCs in industrialized and urbanized watershed in China, but vigilance is needed for recent inputs of polychlorinated biphenyls (PCBs) originated from e-waste recycling activities. Bioaccumulation of dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), PCBs, polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus (DP) was biological species- and compound-specific, which can be largely attributed to metabolic capability for xenobiotics. No health risk was related to the daily intake of DDTs, HCHs, and PBDEs via consumption of wild edible species investigated for local residents. However, the current exposure to PCBs through consuming fish is of potential health concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Aquatic exercise training for fibromyalgia.

    Science.gov (United States)

    Bidonde, Julia; Busch, Angela J; Webber, Sandra C; Schachter, Candice L; Danyliw, Adrienne; Overend, Tom J; Richards, Rachel S; Rader, Tamara

    2014-10-28

    Exercise training is commonly recommended for individuals with fibromyalgia. This review examined the effects of supervised group aquatic training programs (led by an instructor). We defined aquatic training as exercising in a pool while standing at waist, chest, or shoulder depth. This review is part of the update of the 'Exercise for treating fibromyalgia syndrome' review first published in 2002, and previously updated in 2007. The objective of this systematic review was to evaluate the benefits and harms of aquatic exercise training in adults with fibromyalgia. We searched The Cochrane Library 2013, Issue 2 (Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, NHS Economic Evaluation Database), MEDLINE, EMBASE, CINAHL, PEDro, Dissertation Abstracts, WHO international Clinical Trials Registry Platform, and AMED, as well as other sources (i.e., reference lists from key journals, identified articles, meta-analyses, and reviews of all types of treatment for fibromyalgia) from inception to October 2013. Using Cochrane methods, we screened citations, abstracts, and full-text articles. Subsequently, we identified aquatic exercise training studies. Selection criteria were: a) full-text publication of a randomized controlled trial (RCT) in adults diagnosed with fibromyalgia based on published criteria, and b) between-group data for an aquatic intervention and a control or other intervention. We excluded studies if exercise in water was less than 50% of the full intervention. We independently assessed risk of bias and extracted data (24 outcomes), of which we designated seven as major outcomes: multidimensional function, self reported physical function, pain, stiffness, muscle strength, submaximal cardiorespiratory function, withdrawal rates and adverse effects. We resolved discordance through discussion. We evaluated interventions using mean differences

  13. Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging.

    Science.gov (United States)

    Marotta, H; Enrich-Prast, A

    2015-11-01

    Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.

  14. The Mode of Action of Isocyanide in Three Aquatic Organisms, Balanus amphitrite, Bugula neritina and Danio rerio

    KAUST Repository

    Zhang, Yi-Fan

    2012-09-18

    Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine fouling invertebrates, and the other organism is the non-target species zebrafish Danio rerio. In the swimming larvae of B. neritina, isocyanide did not affect the total attachment rate (≤50 µg ml^(−1)), but it did change the attachment site by increasing the percentage of attachment on the bottom of the container rather than on the wall or air-water inter-surface. Isocyanide binds several proteins in B. neritina as identified via SDS-PAGE-LC-MS/MS: 1) a 30 kD protein band containing two proteins similar to voltage dependent anion channels (VDAC), which control the direct coupling of the mitochondrial matrix to the energy maintenance of the cytosol and the release of apoptogenic factors from mitochondria of mammalian cells; and 2) an unknown 39 kD protein. In B. amphitrite cyprids, the isocyanide binding protein were 1) a protein similar to NADH-ubiquinone oxidoreductase, which is the “entry enzyme” of oxidative phosphorylation in mitochondria; and 2) cytochrome P450. In Danio rerio embryos, isocyanide caused “wavy” notochords, hydrocephalus, pericardial edema, poor blood circulation, and defects in pigmentation and hematopoiesis, which phenocopied copper deficiency. This is the first report on isocyanide binding proteins in fouling organisms, as well as the first description of its phenotype and potential toxicology in zebrafish.

  15. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy.

    Science.gov (United States)

    Fukuda, Shin-Ya; Iwamoto, Koji; Atsumi, Mika; Yokoyama, Akiko; Nakayama, Takeshi; Ishida, Ken-Ichiro; Inouye, Isao; Shiraiwa, Yoshihiro

    2014-01-01

    The Fukushima 1 Nuclear Power Plant accident in March 2011 released an enormously high level of radionuclides into the environment, a total estimation of 6.3 × 10¹⁷ Bq represented by mainly radioactive Cs, Sr, and I. Because these radionuclides are biophilic, an urgent risk has arisen due to biological intake and subsequent food web contamination in the ecosystem. Thus, urgent elimination of radionuclides from the environment is necessary to prevent substantial radiopollution of organisms. In this study, we selected microalgae and aquatic plants that can efficiently eliminate these radionuclides from the environment. The ability of aquatic plants and algae was assessed by determining the elimination rate of radioactive Cs, Sr and I from culture medium and the accumulation capacity of radionuclides into single cells or whole bodies. Among 188 strains examined from microalgae, aquatic plants and unidentified algal species, we identified six, three and eight strains that can accumulate high levels of radioactive Cs, Sr and I from the medium, respectively. Notably, a novel eustigmatophycean unicellular algal strain, nak 9, showed the highest ability to eliminate radioactive Cs from the medium by cellular accumulation. Our results provide an important strategy for decreasing radiopollution in Fukushima area.

  16. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we......Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  17. Illustrated field guide for aquatic insects study: A collection that lets you view life

    Directory of Open Access Journals (Sweden)

    Andrea Castiblanco-Zerda

    2017-01-01

    Full Text Available This work was developed from the aquatic insects collection (CIA of National Pedagogical University of Colombia, Bogotá. A field guide and ID portable key was outlined, which contributed to the study of aquatic insects with alternative collection methods, through the development of methodologies for observation of living organisms (in situ and in vivo for identification until taxonomic level of family during the field practice and its subsequent return to the habitat, taking into account students’ practical work needs in the field and the active use of Biology Department biological resources. It was concluded that the recognition of aquatic insects families allows articulation between collection and field practices, as well as students’ reflection on methods and goals of the collection, and evaluation of other procedural possibilities as those presented in this work.

  18. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  19. Prioritizing veterinary pharmaceuticals for aquatic environment in Korea.

    Science.gov (United States)

    Kim, Younghee; Jung, Jinyong; Kim, Myunghyun; Park, Jeongim; Boxall, Alistair B A; Choi, Kyungho

    2008-09-01

    Pharmaceutical residues may have serious impacts on nontarget biological organisms in aquatic ecosystems, and have therefore precipitated numerous investigations worldwide. Many pharmaceutical compounds available on the market need to be prioritized based on their potential ecological and human health risks in order to develop sound management decisions. We prioritized veterinary pharmaceuticals in Korea by their usage, potential to enter the environment, and toxicological hazard. Twenty compounds were identified in the top priority class, most of which were antibiotics. Among these compounds, 8 were identified as deserving more immediate attention: amoxicillin, enramycin, fenbendazole, florfenicol, ivermectin, oxytetracycline, tylosin, and virginiamycin. A limitation of this study is that we initially screened veterinary pharmaceuticals by sales tonnage for veterinary use only. However, this is the first attempt to prioritize veterinary pharmaceuticals in Korea, and it provides important concepts for developing environmental risk management plans for such contaminants in aquatic systems. Copyright © 2008 Elsevier B.V. All rights reserved.

  20. Lipids of aquatic sediments, recent and ancient

    Science.gov (United States)

    Eglinton, G.; Hajibrahim, S. K.; Maxwell, J. R.; Quirke, J. M. E.; Shaw, G. J.; Volkman, J. K.; Wardroper, A. M. K.

    1979-01-01

    Computerized gas chromatography-mass spectrometry (GC-MS) is now an essential tool in the analysis of the complex mixtures of lipids (geolipids) encountered in aquatic sediments, both 'recent' (less than 1 million years old) and ancient. The application of MS, and particularly GC-MS, has been instrumental in the rapid development of organic geochemistry and environmental organic chemistry in recent years. The techniques used have resulted in the identification of numerous compounds of a variety of types in sediments. Most attention has been concentrated on molecules of limited size, mainly below 500 molecular mass, and of limited functionality, for examples, hydrocarbons, fatty acids and alcohols. Examples from recent studies (at Bristol) of contemporary, 'recent' and ancient sediments are presented and discussed.