WorldWideScience

Sample records for aquatic microbial biodiversity

  1. Forestry practices and aquatic biodiversity: Fish

    Science.gov (United States)

    Gresswell, Robert E.

    2005-01-01

    In the Pacific Northwest, fish communities are found in a diverse array of aquatic habitats ranging from the large coastal rivers of the temperate rainforests, to the fragmented and sometimes ephemeral streams of the xeric interior basins, and high-elevation streams and lakes in the mountainous areas (Rieman et al. 2003). Only high-elevation lakes and streams isolated above barriers to fish passage remained historically devoid of fish because they were never invaded following Pleistocene glaciation (Smith 1981). Despite this widespread distribution and once great population abundances, taxonomic diversity of fishes in these forested systems is naturally lower than in aquatic habitats in the eastern U.S. (Reeves, Bisson, and Dambacher 1998). Interactions among factors that influence species richness in aquatic systems (e.g., basin size, long-term stability of habitat, and barriers to colonization; Smith 1981) continue to influence the occurrence and persistence of fishes in these systems today. Consequently, the larger low-elevation rivers and estuaries support the greatest variety of fish species. In the high-elevation tributary streams, fish communities are less complex because these aquatic systems were less climatically and geologically stable, and fish populations were smaller and more prone to local extirpation. Furthermore, barriers to fish passage inhibited dispersal and colonization (Smith 1981). Streams in forested landscapes generally support salmon and trout, Oncorhynchus spp., whitefish Prosopium spp., sculpins Cottus spp., suckers Catostomus spp., and minnows (Cyprinidae), but in some of the colder streams, chars (e.g., Salvelinus confluentus and Salvelinus malma) and lampreys (Petromyzontidae)may also occur (Rieman et al. 2003).Although biodiversity defined in terms of fish species richness is low in the Pacific Northwest, intraspecific variability is high, and polytypic fish species are common in the diverse aquatic habitats of the region. For

  2. VT Biodiversity Project - Aquatic Sites boundary lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) Exemplary aquatic sites in Vermont, both standing water and running water, are represented in this dataset. It is the result of an analysis by the...

  3. Microbial ecology of Antarctic aquatic systems.

    Science.gov (United States)

    Cavicchioli, Ricardo

    2015-11-01

    The Earth's biosphere is dominated by cold environments, and the cold biosphere is dominated by microorganisms. Microorganisms in cold Southern Ocean waters are recognized for having crucial roles in global biogeochemical cycles, including carbon sequestration, whereas microorganisms in other Antarctic aquatic biomes are not as well understood. In this Review, I consider what has been learned about Antarctic aquatic microbial ecology from 'omic' studies. I assess the factors that shape the biogeography of Antarctic microorganisms, reflect on some of the unusual biogeochemical cycles that they are associated with and discuss the important roles that viruses have in controlling ecosystem function.

  4. Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands

    DEFF Research Database (Denmark)

    Quenta, Estefania; Molina-Rodriguez, Jorge; Gonzales, Karina

    2016-01-01

    The rapid melting of glacier cover is one of the most obvious impacts of climate change on alpine ecosystems and biodiversity. Our understanding of the impact of a decrease in glacier runoff on aquatic biodiversity is currently based on the 'glacier-heterogeneity-diversity' paradigm, according....... These findings provide new insight into the potential effects of glacial retreat on the aquatic environment and biodiversity in the peatlands of the tropical Andes....

  5. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    Science.gov (United States)

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason; Johnson, Sherri L.; Reeves, Gordon H.

    2016-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  6. Urban ponds as an aquatic biodiversity resource in modified landscapes.

    Science.gov (United States)

    Hill, Matthew J; Biggs, Jeremy; Thornhill, Ian; Briers, Robert A; Gledhill, David G; White, James C; Wood, Paul J; Hassall, Christopher

    2017-03-01

    Urbanization is a global process contributing to the loss and fragmentation of natural habitats. Many studies have focused on the biological response of terrestrial taxa and habitats to urbanization. However, little is known regarding the consequences of urbanization on freshwater habitats, especially small lentic systems. In this study, we examined aquatic macro-invertebrate diversity (family and species level) and variation in community composition between 240 urban and 782 nonurban ponds distributed across the United Kingdom. Contrary to predictions, urban ponds supported similar numbers of invertebrate species and families compared to nonurban ponds. Similar gamma diversity was found between the two groups at both family and species taxonomic levels. The biological communities of urban ponds were markedly different to those of nonurban ponds, and the variability in urban pond community composition was greater than that in nonurban ponds, contrary to previous work showing homogenization of communities in urban areas. Positive spatial autocorrelation was recorded for urban and nonurban ponds at 0-50 km (distance between pond study sites) and negative spatial autocorrelation was observed at 100-150 km and was stronger in urban ponds in both cases. Ponds do not follow the same ecological patterns as terrestrial and lotic habitats (reduced taxonomic richness) in urban environments; in contrast, they support high taxonomic richness and contribute significantly to regional faunal diversity. Individual cities are complex structural mosaics which evolve over long periods of time and are managed in diverse ways. This facilitates the development of a wide range of environmental conditions and habitat niches in urban ponds which can promote greater heterogeneity between pond communities at larger scales. Ponds provide an opportunity for managers and environmental regulators to conserve and enhance freshwater biodiversity in urbanized landscapes whilst also facilitating

  7. Effect of pesticides on microbial communities in container aquatic habitats

    Science.gov (United States)

    Muturi, Ephantus J.; Donthu, Ravi Kiran; Fields, Christopher J.; Moise, Imelda K.; Kim, Chang-Hyun

    2017-01-01

    Container aquatic habitats support a specialized community of macroinvertebrates (e.g. mosquitoes) that feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to pesticides. We used a microcosm approach to examine the single and combined effects of two herbicides (atrazine, glyphosate), and three insecticides (malathion, carbaryl, permethrin) on microbial communities of container aquatic habitats. MiSeq sequencing of the V4 region of both bacterial and archaeal 16S rRNA gene was used to characterize the microbial communities of indoor microcosms that were either exposed to each pesticide alone, a mix of herbicides, a mix of insecticides, or a mix of all five insecticides. Individual insecticides but not herbicides reduced the microbial diversity and richness and two insecticides, carbaryl and permethrin, also altered the microbial community structure. A mixture of herbicides had no effect on microbial diversity or structure but a mixture of insecticides or all five pesticides reduced microbial diversity and altered the community structure. These findings suggest that exposure of aquatic ecosystems to individual pesticides or their mixtures can disrupt aquatic microbial communities and there is need to decipher how these changes affect resident macroinvertebrate communities. PMID:28300212

  8. Effect of pesticides on microbial communities in container aquatic habitats.

    Science.gov (United States)

    Muturi, Ephantus J; Donthu, Ravi Kiran; Fields, Christopher J; Moise, Imelda K; Kim, Chang-Hyun

    2017-03-16

    Container aquatic habitats support a specialized community of macroinvertebrates (e.g. mosquitoes) that feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to pesticides. We used a microcosm approach to examine the single and combined effects of two herbicides (atrazine, glyphosate), and three insecticides (malathion, carbaryl, permethrin) on microbial communities of container aquatic habitats. MiSeq sequencing of the V4 region of both bacterial and archaeal 16S rRNA gene was used to characterize the microbial communities of indoor microcosms that were either exposed to each pesticide alone, a mix of herbicides, a mix of insecticides, or a mix of all five insecticides. Individual insecticides but not herbicides reduced the microbial diversity and richness and two insecticides, carbaryl and permethrin, also altered the microbial community structure. A mixture of herbicides had no effect on microbial diversity or structure but a mixture of insecticides or all five pesticides reduced microbial diversity and altered the community structure. These findings suggest that exposure of aquatic ecosystems to individual pesticides or their mixtures can disrupt aquatic microbial communities and there is need to decipher how these changes affect resident macroinvertebrate communities.

  9. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding

    DEFF Research Database (Denmark)

    Valentini, Alice; Taberlet, Pierre; Miaud, Claude

    2016-01-01

    Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool...... for species detection from DNA present into the environment. In this study, we tested if an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony...... the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems. This article is protected by copyright. All rights reserved....

  10. Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring.

    Science.gov (United States)

    Kisand, Veljo; Valente, Angelica; Lahm, Armin; Tanet, Gerard; Lettieri, Teresa

    2012-01-01

    Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our results indicate that the combination of next generation sequencing (NGS) technologies and bioinformatics tools presents a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in various ecosystems to be better assessed and also predicted.

  11. Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring.

    Directory of Open Access Journals (Sweden)

    Veljo Kisand

    Full Text Available Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our results indicate that the combination of next generation sequencing (NGS technologies and bioinformatics tools presents a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in various ecosystems to be better assessed and also predicted.

  12. Aquatic fungi: targeting the forgotten in microbial ecology.

    Science.gov (United States)

    Grossart, Hans-Peter; Rojas-Jimenez, Keilor

    2016-06-01

    Fungi constitute important and conspicuous components of aquatic microbial communities, but their diversity and functional roles remain poorly characterized. New methods and conceptual frameworks are required to accurately describe their ecological roles, involvement in global cycling processes, and utility for human activities, considering both cultivation-independent techniques as well as experiments in laboratory and in natural ecosystems. Here we highlight recent developments and extant knowledge gaps in aquatic mycology, and provide a conceptual model to expose the importance of fungi in aquatic food webs and related biogeochemical processes.

  13. Microbial Cretaceous park: biodiversity of microbial fossils entrapped in amber

    Science.gov (United States)

    Martín-González, Ana; Wierzchos, Jacek; Gutiérrez, Juan C.; Alonso, Jesús; Ascaso, Carmen

    2009-05-01

    Microorganisms are the most ancient cells on this planet and they include key phyla for understanding cell evolution and Earth history, but, unfortunately, their microbial records are scarce. Here, we present a critical review of fossilized prokaryotic and eukaryotic microorganisms entrapped in Cretaceous ambers (but not exclusively from this geological period) obtained from deposits worldwide. Microbiota in ambers are rather diverse and include bacteria, fungi, and protists. We comment on the most important microbial records from the last 25 years, although it is not an exhaustive bibliographic compilation. The most frequently reported eukaryotic microfossils are shells of amoebae and protists with a cell wall or a complex cortex. Likewise, diverse dormant stages (palmeloid forms, resting cysts, spores, etc.) are abundant in ambers. Besides, viral and protist pathogens have been identified inside insects entrapped in amber. The situation regarding filamentous bacteria and fungi is quite confusing because in some cases, the same record was identified consecutively as a member of these phylogenetically distant groups. To avoid these identification errors in the future, we propose to apply a more resolute microscopic and analytical method in amber studies. Also, we discuss the most recent findings about ancient DNA repair and bacterial survival in remote substrates, which support the real possibility of ancient DNA amplification and bacterial resuscitation from Cretaceous resins.

  14. Nitrogen transformations in stratified aquatic microbial ecosystems

    DEFF Research Database (Denmark)

    Revsbech, Niels Peter; Risgaard-Petersen, N.; Schramm, Andreas;

    2006-01-01

    Abstract  New analytical methods such as advanced molecular techniques and microsensors have resulted in new insights about how nitrogen transformations in stratified microbial systems such as sediments and biofilms are regulated at a µm-mm scale. A large and ever-expanding knowledge base about n...

  15. Colorado Plateau Rapid Ecoregion Assessment Management Question B7: What is the location/distribution of these aquatic biodiversity sites?

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — This map shows water features where aquatic biodiversity is likely to be important. It shows buffered streams, wetlands, and deepwater habitats that fall within...

  16. Integrated action planning for biodiversity conservation and sustainable use of highland aquatic resources

    DEFF Research Database (Denmark)

    Bunting, Stuart W.; Luo, S.; Cai, K.

    2016-01-01

    The need for enhanced environmental planning and management for highland aquatic resources is described and rationale for integrated action planning presented. Past action planning initiatives for biodiversity conservation and wetland management are reviewed. A reflective account is given...... analysis and target setting; strategic planning; planning and organisation of activities; coordinated implementation and monitoring; evaluation and revised target-setting. The scope and targeting of actions was evaluated using the DPSIR framework and compatibility with biodiversity conservation and socio......-economic development objectives assessed. Criteria to evaluate the quality of planning processes are proposed. Principles for integrated action planning elaborated here should enable stakeholders to formulate plans to reconcile biodiversity conservation with the wise-use of wetlands....

  17. A preliminary study of airborne microbial biodiversity over Peninsular Antarctica.

    Science.gov (United States)

    Hughes, K A; McCartney, H A; Lachlan-Cope, T A; Pearce, D A

    2004-07-01

    This study used PCR-based molecular biological identification techniques to examine the biodiversity of air sampled over Rothera Point (Antarctic Peninsula). 16S rDNA fragments of 132 clones were sequenced and identified to reveal a range of microorganisms, including cyanobacteria, actinomycetes, diatom plastids and other uncultivated bacterial groups. Matches for microorganisms that would be considered evidence of human contamination were not found. The closest matches for many of the sequences were from Antarctic clones already in the databases or from other cold environments. Whilst the majority of the sequences are likely to be of local origin, back trajectory calculations showed that the sampled air may have travelled over the Antarctic Peninsula immediately prior to reaching the sample site. As a result, a proportion of the detected biota may be of non-local origin. Conventional identification methods based on propagule morphology or culture are often inadequate due to poor preservation of characteristic features or loss of viability during airbome transfer. The application of molecular biological techniques in describing airbome microbial biodiversity represents a major step forward in the study of airborne biota over Antarctica and in the distribution of microorganisms and propagules in the natural environment.

  18. Microbial biodiversity in Alpine Permo-Triassic rock salt

    Science.gov (United States)

    Radax, C.; Wieland, H.; Pfaffenhuemer, M.; Leuko, S.; Rittmann, S.; Weidler, G.; Gruber, C.; Stan-Lotter, H.

    2003-04-01

    Alpine Permo-Triassic rock salt (age 200-250 million years) was shown several times to contain living extremely halophilic Archaea. These organisms might stem from ancient populations that became entrapped and persisted in the rock salt since then. For this reason, rock salt is considered a promising model system for the search for bacterial extraterrestrial life. In our studies on biodiversity in Alpine rock salt, we employed both culture-dependent and culture-independent, PCR-based methods. The latter approach indicated the presence of at least 12 distinct sequence types (phylotypes) in our samples, all of which belonged to the extremely halophilic Archaea. None of the recovered sequences was identical to sequences from databases, suggesting the avoidance of contaminants during experimental procedures. Two phylotypes could be assigned to taxonomically described members of this family; the remaining ten phylotypes appeared only remotely related to known genera of the extremely halophilic Archaea. In contrast, attempts to isolate organisms from the same sample on 15 different growth media so far yielded only two groups of isolates that could be differentiated based on their 16S rRNA genes. One group was very similar to Halococcus strains that we frequently isolated from Alpine rock salt; the other group was closely correlated to one of our novel phylotypes. Analyses of whole cell protein patterns allowed to further differentiate the latter group into two different subgroups that could not be distinguished at the molecular level. These results show that both culture-dependent and culture-independent strategies have to be applied in order to obtain a more complete view of microbial biodiversity in Permo-Triassic rock salt: culture-independent methods yield information on the gross microbial diversity in rock salt, whereas subtle differences can currently only be registered between cultivated strains.

  19. Microbial detoxification of metalaxyl in aquatic system

    Institute of Scientific and Technical Information of China (English)

    Ahmed H.Massoud; Aly S.Derbalah; El-Sayed.B.Belal

    2008-01-01

    Four microorganisms,Pseudomonas sp.(ER2),Aspergillus niger (ER6),Cladosporium herbarum (ER4) and Penicilluim sp.(ER3),were isolated from cucumber leaves previously treated with metalaxyl using enrichment technique.These isolates were evaluated for detoxification of metalaxyl at the recommended dose level in aquatic system.The effect of pH and temperature on the growth ability of the tested isolates was also investigated by measuring the intracellular protein and mycelia dry weight for bacterial and fungal isolates,respectively.Moreover,the toxicity of metalaxyl after 28 d of treatment with the tested isolates was evaluated to confirm the complete removal of any toxic materials (metalaxyl and its metabolites).The results showed that the optimum degree pH for the growth of metalaxyl degrading isolates (bacterial and fungal isolates) was 7.The temperature 30℃ appeared to be the optimum degree for the growth of either fungal or bacterial isolates.The results showed that Pseudomonas sp.(ER2) was the most effective isolate in metalaxyl degradation followed by Aspergillus niger (ER6),Cladosporium herbarum (ER4) and PeniciUuim sp.(ER3),respectively.There is no toxicity of metalaxyl detected in the supernatant after 28 d of treannent with Pseudomonas sp.(ER2).The results suggest that bioremediation by Pseudomonas sp.(ER2) isolate was considered to be effective method for detoxification of metalaxyl in aqueous media.

  20. Ohio Aquatic Gap Analysis-An Assessment of the Biodiversity and Conservation Status of Native Aquatic Animal Species

    Science.gov (United States)

    Covert, S. Alex; Kula, Stephanie P.; Simonson, Laura A.

    2007-01-01

    The goal of the GAP Analysis Program is to keep common species common by identifying those species and habitats that are not yet adequately represented in the existing matrix of conservation lands. The Gap Analysis Program (GAP) is sponsored by the Biological Resources Discipline of the U.S. Geological Survey (USGS). The Ohio Aquatic GAP (OH-GAP) is a pilot project that is applying the GAP concept to aquatic-specifically, riverine-data. The mission of GAP is to provide regional assessments of the conservation status of native animal species and to facilitate the application of this information to land-management activities. OH-GAP accomplished this through * mapping aquatic habitat types, * mapping the predicted distributions of fish, crayfish, and bivalves, * documenting the presence of aquatic species in areas managed for conservation, * providing GAP results to the public, planners, managers, policy makers, and researchers, and * building cooperation with multiple organizations to apply GAP results to state and regional management activities. Gap analysis is a coarse-scale assessment of aquatic biodiversity and conservation; the goal is to identify gaps in the conservation of native aquatic species. It is not a substitute for biological field studies and monitoring programs. Gap analysis was conducted for the continuously flowing streams in Ohio. Lakes, reservoirs, wetlands, and the Lake Erie islands were not included in this analysis. The streams in Ohio are in the Lake Erie and Ohio River watersheds and pass through six of the level III ecoregions defined by Omernik: the Eastern Corn Belt Plains, Southern Michigan/Northern Indiana Drift Plains, Huron/Erie Lake Plain, Erie Drift Plains, Interior Plateau, and the Western Allegheny Plateau. To characterize the aquatic habitats available to Ohio fish, crayfish, and bivalves, a classification system needed to be developed and mapped. The process of classification includes delineation of areas of relative

  1. An examination of the biodiversity-ecosystem function relationship in arable soil microbial communities

    DEFF Research Database (Denmark)

    Griffiths, B.S.; Ritz, Karl; Wheatley, R.

    2001-01-01

    Microbial communities differing in biodiversity were established by inoculating sterile agricultural soil with serially diluted soil suspensions prepared from the parent soil. Three replicate communities of each dilution were allowed to establish an equivalent microbial biomass by incubation for 9...... relates to the numbers and proportions of different microbial species. Biodiversity decreased by ca. 15, 40 and 60% at each successive dilution step. There was no consistent effect of biodiversity on a range of soil processes measured (incorporation of thymidine and leucine, potential nitrification......, nitrate accumulation, respiratory growth response, community level physiological profile and decomposition). Neither was there a direct effect of biodiversity on the variability of the processes, nor on the stability of decomposition when the soils were perturbed by heat or copper. The biodiversity of...

  2. Do diatoms run downhill? Using biodiversity of terrestrial and aquatic diatoms to identify hydrological connectivity between aquatic zones in Luxembourg

    Science.gov (United States)

    Pfister, L.; Wetzel, C. E.; Martinez-Carreras, N.; Frentress, J.; Ector, L.; Hoffmann, L.; McDonnell, J. J.

    2011-12-01

    have been represented mainly by monoraphid species such as Achnanthidium subatomoides and Achnanthidium minutissimum. A general qualitative overview of the diatom flora - concerning specific ecological requirements of the taxa - showed that most diatom species are characteristic of the riparian zone (30%), while 12% are typical of the riparian/upland transition zone. Only 3% of species are strictly freshwater (Aquatic zone) forms and 8% stem from the aquatic/riparian zone. The qualitative analysis of drift collected by automatic samplers showed that during floods the origin of diatom species partly stems from riparian and/or terrestrial-upland habitats. Additional investigations over a longer period and range of events are being conducted. Furthermore, the study of the biodiversity of diatoms in this small catchment will also contribute to a better definition of the ecological preferences of many species which are still poorly known to date.

  3. Diversity and distribution of aquatic insects in Southern Brazil wetlands: implications for biodiversity conservation in a Neotropical region.

    Science.gov (United States)

    Maltchik, Leonardo; Dalzochio, Marina Schmidt; Stenert, Cristina; Rolon, Ana Silvia

    2012-03-01

    The selection of priority areas is an enormous challenge for biodiversity conservation. Some biogeographic methods have been used to identify the priority areas to conservation, and panbiogeography is one of them. This study aimed at the utilization of panbiogeographic tools, to identify the distribution patterns of aquatic insect genera, in wetland systems of an extensive area in the Neotropical region (approximately 280 000km2), and to compare the distribution of the biogeographic units identified by the aquatic insects, with the conservation units of Southern Brazil. We analyzed the distribution pattern of 82 genera distributed in four orders of aquatic insects (Diptera, Odonata, Ephemeroptera and Trichoptera) in Southern Brazil wetlands. Therefore, 32 biogeographic nodes corresponded to the priority areas for conservation of the aquatic insect diversity. Among this total, 13 were located in the Atlantic Rainforest, 16 in the Pampa and three amongst both biomes. The distribution of nodes showed that only 15% of the dispersion centers of insects were inserted in conservation units. The four priority areas pointed by node cluster criterion must be considered in further inclusions of areas for biodiversity conservation in Southern Brazil wetlands, since such areas present species from different ancestral biota. The inclusion of such areas into the conservation units would be a strong way to conserve the aquatic biodiversity in this region.

  4. Soil functional operating range linked to microbial biodiversity and community composition using denitrifiers as model guild.

    Directory of Open Access Journals (Sweden)

    Sara Hallin

    Full Text Available Soil microorganisms are key players in biogeochemical cycles. Yet, there is no consistent view on the significance of microbial biodiversity for soil ecosystem functioning. According to the insurance hypothesis, declines in ecosystem functioning due to reduced biodiversity are more likely to occur under fluctuating, extreme or rapidly changing environmental conditions. Here, we compare the functional operating range, a new concept defined as the complete range of environmental conditions under which soil microbial communities are able to maintain their functions, between four naturally assembled soil communities from a long-term fertilization experiment. A functional trait approach was adopted with denitrifiers involved in nitrogen cycling as our model soil community. Using short-term temperature and salt gradients, we show that the functional operating range was broader and process rates were higher when the soil community was phylogenetically more diverse. However, key bacterial genotypes played an important role for maintaining denitrification as an ecosystem functioning under certain conditions.

  5. Microbial nitrous oxide production and nitrogen cycling associated with aquatic invertebrates

    OpenAIRE

    Heisterkamp, Ines

    2012-01-01

    Nitrogen cycling is intimately linked to the activity of microorganisms that mediate the diverse nitrogen transformations and play a fundamental role in regulating the fate of nitrogen in the Earth s terrestrial and aquatic ecosystems. Microbial activity is influenced by physical, chemical, and biological factors that can be profoundly shaped by macrofaunal organisms, especially in benthic aquatic systems. This thesis therefore aimed at investigating the interactions between microorganisms an...

  6. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal......-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen...... that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen....

  7. The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil.

    Science.gov (United States)

    Abbasian, Firouz; Lockington, Robin; Megharaj, Mallavarapu; Naidu, Ravi

    2016-06-01

    Crude oil spills resulting from excavation, transportation and downstream processes can cause intensive damage to living organisms and result in changes in the microbial population of that environment. In this study, we used a pyrosequencing analysis to investigate changes in the microbial population of soils contaminated with crude oil. Crude oil contamination in soil resulted in the creation of a more homogenous population of microorganisms dominated by members of the Actinomycetales, Clostridiales and Bacillales (all belonging to Gram-positive bacteria) as well as Flavobacteriales, Pseudomonadales, Burkholderiales, Rhizobiales and Sphingomonadales (all belonging to Gram-negative bacteria). These changes in the biodiversity decreased the ratios of chemoheterotrophic bacteria at higher concentrations of crude oil contamination, with these being replaced by photoheterotrophic bacteria, mainly Rhodospirillales. Several of the dominant microbial orders in the crude oil contaminated soils are able to degrade crude oil hydrocarbons and therefore are potentially useful for remediation of crude oil in contaminated sites.

  8. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.

    Science.gov (United States)

    Gilichinsky, D A; Wilson, G S; Friedmann, E I; McKay, C P; Sletten, R S; Rivkina, E M; Vishnivetskaya, T A; Erokhina, L G; Ivanushkina, N E; Kochkina, G A; Shcherbakova, V A; Soina, V S; Spirina, E V; Vorobyova, E A; Fyodorov-Davydov, D G; Hallet, B; Ozerskaya, S M; Sorokovikov, V A; Laurinavichyus, K S; Shatilovich, A V; Chanton, J P; Ostroumov, V E; Tiedje, J M

    2007-04-01

    Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.

  9. Biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, A. (Princeton Univ., Princeton, NJ (United States)); Carper, R. (John Hopkins Univ., Baltimore, MD (United States))

    1993-10-30

    Traditional herbalists act as a first-level screen for plants which may contain chemicals with significant pharmaceutical potential. Unfortunately, the destruction of rain forests is likely to lead to the extinction of many plant species before their potential can be explored. 165,000 km[sup 2] of tropical forest and 90,000 km[sup 2] of range land are destroyed or degraded each year, an annual attrition rate of about 1% for tropical forest. If these losses continue until only land set aside in parks is left, 66% of plant and 69% of animal species may be lost. The burning of forests to clear land for human settlement also makes a significant contribution to the greenhouse gases that are raising global mean temperatures. There are synergisms--here between rainforest destruction, loss of biodiversity, and global climate change--with potential impacts on health. Some aspects will be explored more fully in the contributions on vector-borne diseases and direct impacts and in the collaborative review of monitoring with which the series ends.

  10. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity

    Science.gov (United States)

    Climate change and Nr from anthropogenic activities are causing some of the most rapid changes in biodiversity in recent times. Climate change is causing warming trends that result in poleward and elevational range shiftsof flora and fauna, and changes in phenology, particularly ...

  11. New Abundant Microbial Groups in Aquatic Hypersaline Environments

    OpenAIRE

    Ghai, Rohit; Pašić, Lejla; Fernández González, Ana Beatriz; Martín Cuadrado, Ana Belén; Megumi Mizuno, Carolina; McMahon, Katherine D.; Papke, R Thane; Stepanauskas, Ramunas; Rodríguez Brito, Beltrán; Rohwer, Forest; Sánchez-Porro Álvarez, Cristina; Ventosa Ucero, Antonio; Rodríguez Valera, Francisco

    2011-01-01

    We describe the microbiota of two hypersaline saltern ponds, one of intermediate salinity (19%) and a NaCl saturated crystallizer pond (37%) using pyrosequencing. The analyses of these metagenomes (nearly 784 Mb) reaffirmed the vast dominance of Haloquadratum walsbyi but also revealed novel, abundant and previously unsuspected microbial groups. We describe for the first time, a group of low GC Actinobacteria, related to freshwater Actinobacteria, abundant in low and intermediate salinities. M...

  12. Succession of aquatic microbial communities as a result of the water quality variations in continuous water

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-chang; WEN Xiang-hua; QIAN Yi

    2004-01-01

    The changes of structural and functional parameters of aquatic microbial communities in continuous water on campus of Tsinghua University, China are investigated by polyurethane foam unit(PFU) method. The measured compositions of the communities include alga, protozoa, and some metazoa(such as rotifers). The measured indicators of water quality include water temperature, pH value, dissolved oxygen(DO), potassium permanganate index(CODMn), total nitrogen(TN), total phosphorus(TP) and chlorophyll-a(Chla). The trophic level, expressed by the trophic level indices(TLIc), is assessed with analytic hierarchy process and principal component analysis(AHP-PCA) method. The changing trends of the structural and functional parameters of aquatic microbial communities, such as Margalef index of diversity(D), Shannon-weaver index of diversity (H), Heterotropy index(HI), number of species when the colonization gets equilibrium(Seq), colonizing speed constant(G) and time spent when 90 percent of Seq colonized in PFU(T90%), are also analyzed. The experimental results showed the succession of aquatic microbial communities along the water flow is consistent with the water quality changes, so the parameters of microbial community can reflect the changes of water quality from the ecological view.

  13. Invasive ornamental fish: a potential threat to aquatic biodiversity in peninsular India

    Directory of Open Access Journals (Sweden)

    J.D.M. Knight

    2010-02-01

    Full Text Available Alien fish find their way into newer habitats and ecosystems opportunistically. Once in a new habitat, these species try to occupy empty niches and compete with native species. An alien species becomes invasive wherever it has a competetive advantage over native species. Ecology of aquatic invasive alien species is rather poorly understood as most attention has been on invertebrates as that which spread through ballast water. Invasive alien species of fish that have taken advantage of the aquarium trade are emerging as the most important threats to fragile aquatic habitats. Regulations to this trade are rather weak and there is a general lack of data on the ecological impact of alien fish species despite the fact that a third of the world’s worst aquatic invasive species are aquarium or ornamental species.

  14. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  15. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    OpenAIRE

    Viorica Coşier; I. Valentin Petrescu-Mag

    2008-01-01

    Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996). The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutage...

  16. Coupling interaction between biodiversity and aquatic habitat area in Western Route Project vicinity

    Institute of Scientific and Technical Information of China (English)

    Shi-min TIAN; Zhao-yin WANG; Xiang-jun LIU; Shi-kui LIANG

    2010-01-01

    The Western Route of the South-to-North Water Transfer Project will divert water from the upper Yangtze River and its tributaries,the Dadu River and Yalong River,to the upper Yellow River.The project may ease the water shortage in the Yellow River Basin.However,it may also have some effects on the ecosystem in the upper Yangtze River Basin.Benthic invertebrates play an important role in the river ecosystem,particularly in the circulation of materials and nutrition.Benthic invertebrates are widely used to quickly assess river ecosystems because of their rapid response to changes in the water environment.The diversity of benthic invertebrates is closely associated with the aquatic habitat area.This study examined this interaction by sampling the benthic invertebrates in an expanding area.The conclusions are that the diversity of benthic invertebrates begins to decrease when the aquatic habitat area is reduced to 45% of the original area,and decreases dramatically when the aquatic habitat area is reduced to 10% of the original area.The aquatic habitat area should be kept at more than 45% of the original area in order to maintain the significant diversity of benthic invertebrates.

  17. [Seasonal variation of functional diversity of aquatic microbial community in Apostichopus japonicus cultural pond].

    Science.gov (United States)

    Yan, Fa-Jun; Tian, Xiang-Li; Dong, Shuang-Lin; Yang, Gang

    2014-05-01

    The functional diversity of aquatic microbial communities in sea cucumber (Apostichopus japonicus) cultural ponds was examined in this paper. The Biolog plate technique and redundancy analysis (RDA) method were used to evaluate seasonal changes and their relationships with environmental factors. The results showed that both total amount and types of carbon sources utilized by microbes in the sea cucumber cultural ponds varied seasonally, and were the highest in summer and lowest in winter, with polymers being the main type of carbon sources. Principal component analysis revealed that the carbon utilization diversity of the microbial communities varied significantly over the seasonal courses. A total of 10 categories of carbon sources were significantly related to the principal component 1, among which were polymers, carbohydrates, carboxylic acids, amino acids, and amines. Significant seasonal changes were detected for all carbon utilization diversity indices of the microbial communities, including Shannon, McIntosh, Simpson, and S-E. However, seasonal variations were different among the microbial diversity indices. RDA analysis revealed that TP, NO(3-)-N, TN, and PO4(3-)-P were the critical environmental factors influencing the seasonal changes in functional diversity of aquatic microbial community in sea cucumber cultural ponds.

  18. Microbial ecology of the salmon necrobiome: evidence salmon carrion decomposition influences aquatic and terrestrial insect microbiomes.

    Science.gov (United States)

    Pechal, Jennifer L; Benbow, M Eric

    2016-05-01

    Carrion decomposition is driven by complex relationships that affect necrobiome community (i.e. all organisms and their genes associated with a dead animal) interactions, such as insect species arrival time to carrion and microbial succession. Little is understood about how microbial communities interact with invertebrates at the aquatic-terrestrial habitat interface. The first objective of the study was to characterize internal microbial communities using high-throughput sequencing of 16S rRNA gene amplicons for aquatic insects (three mayfly species) in streams with salmon carcasses compared with those in streams without salmon carcasses. The second objective was to assess the epinecrotic microbial communities of decomposing salmon carcasses (Oncorhynchus keta) compared with those of terrestrial necrophagous insects (Calliphora terraenovae larvae and adults) associated with the carcasses. There was a significant difference in the internal microbiomes of mayflies collected in salmon carcass-bearing streams and in non-carcass streams, while the developmental stage of blow flies was the governing factor in structuring necrophagous insect internal microbiota. Furthermore, the necrophagous internal microbiome was influenced by the resource on which the larvae developed, and changes in the adult microbiome varied temporally. Overall, these carrion subsidy-driven networks respond to resource pulses with bottom-up effects on consumer microbial structure, as revealed by shifting communities over space and time.

  19. Oxygen supply in aquatic ectotherms: partial pressure and solubility together explain biodiversity and size patterns.

    Science.gov (United States)

    Verberk, Wilco C E P; Bilton, David T; Calosi, Piero; Spicer, John I

    2011-08-01

    Aquatic ectotherms face the continuous challenge of capturing sufficient oxygen from their environment as the diffusion rate of oxygen in water is 3 x 10(5) times lower than in air. Despite the recognized importance of oxygen in shaping aquatic communities, consensus on what drives environmental oxygen availability is lacking. Physiologists emphasize oxygen partial pressure, while ecologists emphasize oxygen solubility, traditionally expressing oxygen in terms of concentrations. To resolve the question of whether partial pressure or solubility limits oxygen supply in nature, we return to first principles and derive an index of oxygen supply from Fick's classic first law of diffusion. This oxygen supply index (OSI) incorporates both partial pressure and solubility. Our OSI successfully explains published patterns in body size and species across environmental clines linked to differences in oxygen partial pressure (altitude, organic pollution) or oxygen solubility (temperature and salinity). Moreover, the OSI was more accurately and consistently related to these ecological patterns than other measures of oxygen (oxygen saturation, dissolved oxygen concentration, biochemical oxygen demand concentrations) and similarly outperformed temperature and altitude, which covaried with these environmental clines. Intriguingly, by incorporating gas diffusion rates, it becomes clear that actually more oxygen is available to an organism in warmer habitats where lower oxygen concentrations would suggest the reverse. Under our model, the observed reductions in aerobic performance in warmer habitats do not arise from lower oxygen concentrations, but instead through organismal oxygen demand exceeding supply. This reappraisal of how organismal thermal physiology and oxygen demands together shape aerobic performance in aquatic ectotherms and the new insight of how these components change with temperature have broad implications for predicting the responses of aquatic communities to

  20. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    Directory of Open Access Journals (Sweden)

    Viorica Coşier

    2008-12-01

    Full Text Available Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996. The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutagenic (Ishikawa et al 1994 to the trivalent form (insoluble and an essential element for humans (Song et al 2006. Different sources of chromium-reducing bacteria and many sources of carbon and energy added to the Kvasnikov mineral basal medium (Komori et al 1990 with increasing amount of chromate (200- 1000 mg/l were tested. Two bacterial strains, able to reduce even 1000 mg chromate/l, were isolated in pure culture. For one of these bacterial strains, we determined the optimum conditions for the reduction of Cr (VI.

  1. Freshwater Wetland Habitat Loss and Fragmentation: Implications for Aquatic Biodiversity Conservation

    Science.gov (United States)

    Wolaver, B. D.; Pierre, J. P.; Labay, B. J.; Ryberg, W. A.; Hibbits, T. J.; Prestridge, H. L.

    2015-12-01

    Anthropogenic land use changes have caused widespread wetland loss and fragmentation. This trend has important implications for aquatic biota conservation, including the semi-aquatic Western Chicken Turtle (Deirochelys reticularia miaria). This species inhabits seasonally inundated, ephemeral water bodies and adjacent uplands in the southeastern U.S. However, wetland conversion to agriculture and urbanization is thought to cause the species' decline, particularly in Texas, which includes the westernmost part of its range. Because the species moves only a few kilometers between wetlands, it particularly sensitive to habitat loss and fragmentation. Thus, as part of the only state-funded species research program, this study provides the U.S. Fish and Wildlife Service (FWS) with scientific data to determine if the species warrants protection under the Endangered Species Act (ESA). We use a species distribution model to map potentially suitable habitat for most of East Texas. We evaluate landscape-scale anthropogenic activities in this region which may be contributing to the species' decline. We identify areas of urbanization, agricultural expansion, forestry, and resulting wetland loss. We find that between 2001 and 2011 approximately 80 km2 of wetlands were lost in potentially suitable habitat, including the urbanizing Houston area. We use spatial geostatistics to quantify wetland habitat fragmentation. We also introduce the Habitat Alteration Index (HAI), which calculates total landscape alteration and mean probability of occurrence to identify high-quality habitat most at risk of recent anthropogenic alteration. Population surveys by biologists are targeting these areas and future management actions may focus on mitigating anthropogenic activities there. While this study focuses on D. r. miaria, this approach can evaluate wetland habitat of other aquatic organisms.

  2. Nutritional composition of aquatic species in Laotian rice field ecosystems : possible impact of reduced biodiversity

    OpenAIRE

    Nurhasan, Mulia

    2008-01-01

    The population density of Laos PDR has increased from 15 persons per square km in 1985 to 19 persons in 1995 and to 24 persons in 2005. This has threatened food security, which in Laos PDR is generally synonymous with rice availability. Rice production in Laos rose by 70 percent from 1990 to 2004. Evidence from Vietnam, Malaysia and Central Thailand has shown that the rise of rice production steadily decreases the population of aquatic animals in rice field ecosystems, as a result of higher a...

  3. Biodiversity of genes encoding anti-microbial traits within plant associated microbes

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-04-01

    Full Text Available The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produce a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous genes. We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.

  4. Biodiversity and fermentative activity of caecal microbial communities in wild and farm rabbits from Spain.

    Science.gov (United States)

    Abecia, L; Rodríguez-Romero, N; Yañez-Ruiz, D R; Fondevila, M

    2012-06-01

    In order to study the microbial caecal ecosystem of wild and domestic rabbits through the fermentation characteristics and concentration and diversity of bacterial and archaeal communities, caecal samples from sixteen wild rabbits (WR) were contrasted with two groups (n = 4) of farm rabbits receiving low (LSF) or high (HSF) soluble fibre diets from 28 (weaning) to 51 days of age. DNA was extracted for quantifying bacteria and Archaea by qPCR and for biodiversity analysis of microbial communities by DGGE. Samples from WR had lower caecal pH and ammonia and higher volatile fatty acids concentration than farm animals. Lower acetate and higher butyrate proportions were detected in WR. Bacterial and archaeal DGGE profiles were clearly different between wild and farm rabbits, and diet-affected population of farm rabbits. Similarity index of bacteria was lower than 0.40 among WR, and 0.52 among farm rabbits. In conclusion, caecal fermentation characteristics differ between wild and farm rabbits, which harbour clearly different bacterial and archaeal communities. In farm rabbits, diversity is influenced by the dietary level of soluble fibre.

  5. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples.

    Directory of Open Access Journals (Sweden)

    Shannon J Williamson

    Full Text Available Viruses are the most abundant biological entities on our planet. Interactions between viruses and their hosts impact several important biological processes in the world's oceans such as horizontal gene transfer, microbial diversity and biogeochemical cycling. Interrogation of microbial metagenomic sequence data collected as part of the Sorcerer II Global Ocean Expedition (GOS revealed a high abundance of viral sequences, representing approximately 3% of the total predicted proteins. Cluster analyses of the viral sequences revealed hundreds to thousands of viral genes encoding various metabolic and cellular functions. Quantitative analyses of viral genes of host origin performed on the viral fraction of aquatic samples confirmed the viral nature of these sequences and suggested that significant portions of aquatic viral communities behave as reservoirs of such genetic material. Distributional and phylogenetic analyses of these host-derived viral sequences also suggested that viral acquisition of environmentally relevant genes of host origin is a more abundant and widespread phenomenon than previously appreciated. The predominant viral sequences identified within microbial fractions originated from tailed bacteriophages and exhibited varying global distributions according to viral family. Recruitment of GOS viral sequence fragments against 27 complete aquatic viral genomes revealed that only one reference bacteriophage genome was highly abundant and was closely related, but not identical, to the cyanomyovirus P-SSM4. The co-distribution across all sampling sites of P-SSM4-like sequences with the dominant ecotype of its host, Prochlorococcus supports the classification of the viral sequences as P-SSM4-like and suggests that this virus may influence the abundance, distribution and diversity of one of the most dominant components of picophytoplankton in oligotrophic oceans. In summary, the abundance and broad geographical distribution of viral

  6. Microbial community-level toxicity testing of linear alkylbenzene sulfonates in aquatic microcosms.

    Science.gov (United States)

    Brandt, Kristian K; Jørgensen, Niels O G; Nielsen, Tommy H; Winding, Anne

    2004-08-01

    Complex microbial communities may serve as ideal and ecologically relevant toxicity indicators. We here report an assessment of frequently used methods in microbial ecology for their feasibility to detect toxic effects of the environmentally important surfactant linear alkylbenzene sulfonate (LAS) on microbial communities in lake water and treated waste water. The two microbial communities were evaluated for changes in community structure and function over a period of 7 weeks in replicated aquatic microcosms amended with various levels of LAS (0, 0.1, 1, 10 or 100 mg l(-1)) and inorganic nutrients. In general, the two communities behaved similarly when challenged with LAS. Following lag periods of 1-3 weeks, LAS was degraded to non-toxic substances. Denaturing gradient gel electrophoresis of 16S rRNA gene fragments and [3H]leucine incorporation were the most sensitive assays with effect levels of 0-1 and 1-10 mg LAS l(-1), respectively. Community-level physiological profiles and pollution-induced community tolerance determinations using Biolog microplates demonstrated less sensitivity with effect levels of 10-100 mg LAS l(-1). Total cell counts and net uptake of inorganic N and P were unaffected even at 100 mg LAS l(-1). Interestingly, different microbial communities developed in some replicate microcosms, indicating the importance of stochastic events for community succession. We conclude that microbial community-level toxicity testing holds great promise and suggest a polyphasic approach involving a range of independent methods targeting both the structure and function of the tested microbial communities.

  7. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales

    NARCIS (Netherlands)

    Maher, D.T.; Santos, I.S.; Leuven, J.R.F.W.; Oakes, J.M.; Erler, D.V.; Carvalho, M.C.; Eyre, B.D.

    2013-01-01

    Development of cavity ring-down spectroscopy (CRDS) has enabled real-time monitoring of carbon stable isotope ratios of carbon dioxide and methane in air. Here we demonstrate that CRDS can be adapted to assess aquatic carbon cycling processes from microbial to ecosystem scales. We first measured in

  8. Antimicrobial effect of Calotropis procera active principles against aquatic microbial pathogens isolated from shrimp and fishes

    Institute of Scientific and Technical Information of China (English)

    Subramanian Velmurugan; Vijayaragavan Thanga Viji; Mariavincent Michael Babu; Mary Josephine Punitha; Thavasimuthu Citarasu

    2012-01-01

    Objective: To study the influence of Calotropis procera (C. procera) active principles against aquatic microbial pathogens isolated from shrimp and fishes. Methods: C. procera leaf powder was serially extracted with hexane, ethyl acetate and methanol and screened by antibacterial, antifungal and antiviral activity against aquatic pathogens which isolated from shrimp/fish. After initial screening, the active extract was purified through column chromatography and again screened. Finally the active fractions were characterized by phytochemical analysis and GC-MS analysis. Results: In vitro antibacterial, antifungal and antiviral screening revealed that, the ethyl acetate extracts were effectively suppressed the bacterial pathogens Pseudomonas aeruginosa (P. aeruginosa), Vibrio harveyi (V. harveyi) and Aeromons hydrophila (A. hydrophila) of more than 20 mm zone of inhibition; the fungi Fusarium sp and the killer virus WSSV. The ethyl acetate extracts of C. procera incubated WSSV was failed to multiply its progeny in the in vivo system of shrimp P. monodon. The shrimp had 80% survival after WSSV challenge from the control group significantly (P<0.001) and also PCR detection confirmed that no WSSV transcription found in shrimp haemolymph. After purified the ethyl acetate extracts again antimicrobial screening performed and it concluded that the fraction namely F-II was effectively suppressed the bacterial growth and WSSV due to its enriched active principles such as cardiac glycosides, Phenols, alkaloids, Tannin and quinines. Surprisingly this fraction, F-II was effectively controlled the WSSV at 90% level at a highest significant level (P<0.001). Finally the structural characterization by GC-MS analysis revealed that, the F-II fraction contained Phenols including several other compounds such as 2,4-bis(1,1-dimethylethyl)-, Methyl tetradecanoate, Bicyclo[3.1.1] heptane, 2,6,6-trimethyl-, (1α,2β,5α)-and Hexadecanoic acid etc. Conclusions: The present study revealed

  9. Effects of acute gamma-irradiation on the aquatic microbial microcosm in comparison with chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, Shoichi, E-mail: fuma@nirs.go.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ishii, Nobuyoshi; Takeda, Hiroshi; Miyamoto, Kiriko; Yanagisawa, Kei [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Kawaguchi, Isao [Regulatory Sciences Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Tanaka, Nobuyuki [Environmental Chemistry Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan); Polikarpov, Gennady G. [The A.O. Kovalevsky Institute of Biology of Southern Seas, Sevastopol 99011 (Ukraine)

    2009-12-15

    Effects of acute gamma-irradiation were investigated in the aquatic microcosm consisting of green algae (Chlorella sp. and Scenedesmus sp.) and a blue-green alga (Tolypothrix sp.) as producers; an oligochaete (Aeolosoma hemprichi), rotifers (Lecane sp. and Philodina sp.) and a ciliate protozoan (Cyclidium glaucoma) as consumers; and more than four species of bacteria as decomposers. At 100 Gy, populations were not affected in any taxa. At 500-5000 Gy, one or three taxa died out and populations of two or three taxa decreased over time, while that of Tolypothrix sp. increased. This Tolypothrix sp. increase was likely an indirect effect due to interspecies interactions. The principal response curve analysis revealed that the main trend of the effects was a dose-dependent population decrease. For a better understanding of radiation risks in aquatic microbial communities, effect doses of gamma-rays compared with copper, herbicides and detergents were evaluated using the radiochemoecological conceptual model and the effect index for microcosm.

  10. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica.

    Science.gov (United States)

    Obbels, Dagmar; Verleyen, Elie; Mano, Marie-José; Namsaraev, Zorigto; Sweetlove, Maxime; Tytgat, Bjorn; Fernandez-Carazo, Rafael; De Wever, Aaike; D'hondt, Sofie; Ertz, Damien; Elster, Josef; Sabbe, Koen; Willems, Anne; Wilmotte, Annick; Vyverman, Wim

    2016-06-01

    The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.

  11. Integrated action planning for biodiversity conservation and sustainable use of highland aquatic resources: evaluating outcomes for the Beijiang River, China

    DEFF Research Database (Denmark)

    Bunting, Stuart W.; Cai, K.; Luo, S.;

    2016-01-01

    of integrated action planning from five sites in China, India and Vietnam. Eight planning phases are described encompassing: stakeholder assessment and partner selection; rapport building and agreement on collaboration; integrated biodiversity, ecosystem services, livelihoods and policy assessment; problem...... analysis and target setting; strategic planning; planning and organisation of activities; coordinated implementation and monitoring; evaluation and revised target-setting. The scope and targeting of actions was evaluated using the DPSIR framework and compatibility with biodiversity conservation and socio-economic...

  12. Effects of acute {gamma}-irradiation on community structure of the aquatic microbial microcosm

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, Shoichi, E-mail: fuma@nirs.go.j [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ishii, Nobuyoshi; Takeda, Hiroshi [Environmental Radiation Effects Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Doi, Kazutaka; Kawaguchi, Isao [Regulatory Sciences Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shikano, Shuichi [Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi 980-8576 (Japan); Tanaka, Nobuyuki [Marine Environment Section, Water and Soil Environment Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Inamori, Yuhei [Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima 960-1296 (Japan)

    2010-11-15

    To characterise indirect effects of ionising radiation on aquatic microbial communities, effects of acute {gamma}-irradiation were investigated in a microcosm consisting of populations of green algae (Chlorella sp. and Scenedesmus sp.) and a blue-green alga (Tolypothrix sp.) as producer; a ciliate protozoan (Cyclidium glaucoma), rotifers (Lecane sp. and Philodina sp.) and an oligochaete (Aeolosoma hemprichi) as consumer; and more than four species of bacteria as decomposers. Population changes in the constituent organisms were observed over 160 days after irradiation. Prokaryotic community structure was also examined by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. Principle response curve analysis revealed that the populations of the microcosm as a whole were not significantly affected at 100 Gy while they were adversely affected at 500-5000 Gy in a dose-dependent manner. However, some effects on each population, including each bacterial population detected by DGGE, did not depend on radiation doses, and some populations in the irradiated microcosm were larger than those of the control. These unexpected results are regarded as indirect effects through interspecies interactions, and possible mechanisms are proposed originating from population changes in other organisms co-existing in the microcosm. For example, some indirect effects on consumers and decomposers likely arose from interspecies competition within each trophic level. It is also likely that prey-predator relationships between producers and consumers caused some indirect effects on producers.

  13. Phylogenetic and Functional Metagenomic Profiling for Assessing Microbial Biodiversity in Environmental Monitoring

    OpenAIRE

    Veljo Kisand; Angelica Valente; Armin Lahm; Gerard Tanet; Teresa Lettieri

    2012-01-01

    Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples t...

  14. Biodiversity value of agricultural drainage ditches; a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes.

    NARCIS (Netherlands)

    Verdonschot, R.C.M.; Keizer-Vlek, H.E.; Verdonschot, P.F.M.

    2011-01-01

    1. Drainage ditches are a common aquatic habitat in the lowland agricultural landscape of north-western Europe. The invertebrate fauna of these waters is poorly known compared with that of the semi-natural wetland fragments found in this region. While most wetlands are designated as nature reserves,

  15. Long-Term Impacts of Forest Ditching on Non-Aquatic Biodiversity: Conservation Perspectives for a Novel Ecosystem

    OpenAIRE

    Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko

    2013-01-01

    Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests t...

  16. Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches.

    Science.gov (United States)

    Bertics, Victoria J; Ziebis, Wiebke

    2009-11-01

    We used a combination of field and laboratory approaches to address how the bioturbation activity of two crustaceans, the ghost shrimp Neotrypaea californiensis and the fiddler crab Uca crenulata, affects the microbial diversity in the seabed of a coastal lagoon (Catalina Harbor, Santa Catalina Island, CA, USA). Detailed geochemical analyses, including oxygen microsensor measurements, were performed to characterize environmental parameters. We used a whole-assemblage fingerprinting approach (ARISA: amplified ribosomal intergenic spacer analysis) to compare bacterial diversity along geochemical gradients and in relation to subsurface microniches. The two crustaceans have different burrowing behaviors. The ghost shrimp maintains complex, deep-reaching burrows and permanently lives subterranean, supplying its burrow with oxygen-rich water. In contrast, the fiddler crab constructs simpler, J-shaped burrows, which it does not inhabit permanently and does not actively ventilate. Our goal was to address how varying environmental parameters affect benthic microbial communities. An important question in benthic microbial ecology has been whether burrows support similar or unique communities compared with the sediment surface. Our results showed that sediment surface microbial communities are distinct from subsurface assemblages and that different burrow types support diverse bacterial taxa. Statistical comparisons by canonical correspondence analysis indicated that the availability of oxidants (oxygen, nitrate, ferric iron) play a key role in determining the presence and abundance of different taxa. When geochemical parameters were alike, microbial communities associated with burrows showed significant similarity to sediment surface communities. Our study provides implications on the community structure of microbial communities in marine sediments and the factors controlling their distribution.

  17. Commercial product exploitation from marine microbial biodiversity: some legal and IP issues.

    Science.gov (United States)

    Tichet, Camille; Nguyen, Hong Khanh; Yaakoubi, Sefia El; Bloch, Jean-François

    2010-09-01

    The biodiversity found in the marine environment is remarkable and yet largely unknown compared with the terrestrial one. The associated genetic resource, also wide and unrevealed, has raised a strong interest from the scientific and industrial community. However, despite this growing interest, the discovery of new compounds extracted from marine organisms, more precisely from microorganisms, is ruled by a complex legislation. The access and transfer of genetic resource are ruled by the Convention on Biological Diversity. One of the three core objectives of this convention is to ensure the fair and equitable sharing of benefits generated by the use of genetic resources and to split these benefits between the different stakeholders. From the discovery of a microorganism to the commercialization of a product, three main stakeholders are involved: providers of microorganisms, e.g. academic institutes, the scientists who will perform R&D on biodiversity, and the industrial companies which will commercialize the final product arising from the R&D results. This article describes how difficult and complex it might be to ensure a fair distribution of benefits of this research between the parties.

  18. "Bugs on Bugs": An Inquiry-Based, Collaborative Activity to Learn Arthropod & Microbial Biodiversity

    Science.gov (United States)

    Lampert, Evan C.; Morgan, Jeanelle M.

    2015-01-01

    Diverse communities of arthropods and microbes provide humans with essential ecosystem goods and services. Arthropods are the most diverse and abundant macroscopic animals on the planet, and many remain to be discovered. Much less is known about microbial diversity, despite their importance as free-living species and as symbionts. We created…

  19. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2016-05-01

    Full Text Available During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA as target for the green sulfur bacteria and of two reaction center proteins (pufLM for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS reductase (aprA, sulfate thioesterase (soxB and dissimilatory sulfite reductase (dsrAB for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK for denitrifying bacteria and with genes

  20. New Dimensions in Microbial Ecology—Functional Genes in Studies to Unravel the Biodiversity and Role of Functional Microbial Groups in the Environment

    Science.gov (United States)

    Imhoff, Johannes F.

    2016-01-01

    During the past decades, tremendous advances have been made in the possibilities to study the diversity of microbial communities in the environment. The development of methods to study these communities on the basis of 16S rRNA gene sequences analysis was a first step into the molecular analysis of environmental communities and the study of biodiversity in natural habitats. A new dimension in this field was reached with the introduction of functional genes of ecological importance and the establishment of genetic tools to study the diversity of functional microbial groups and their responses to environmental factors. Functional gene approaches are excellent tools to study the diversity of a particular function and to demonstrate changes in the composition of prokaryote communities contributing to this function. The phylogeny of many functional genes largely correlates with that of the 16S rRNA gene, and microbial species may be identified on the basis of functional gene sequences. Functional genes are perfectly suited to link culture-based microbiological work with environmental molecular genetic studies. In this review, the development of functional gene studies in environmental microbiology is highlighted with examples of genes relevant for important ecophysiological functions. Examples are presented for bacterial photosynthesis and two types of anoxygenic phototrophic bacteria, with genes of the Fenna-Matthews-Olson-protein (fmoA) as target for the green sulfur bacteria and of two reaction center proteins (pufLM) for the phototrophic purple bacteria, with genes of adenosine-5′phosphosulfate (APS) reductase (aprA), sulfate thioesterase (soxB) and dissimilatory sulfite reductase (dsrAB) for sulfur oxidizing and sulfate reducing bacteria, with genes of ammonia monooxygenase (amoA) for nitrifying/ammonia-oxidizing bacteria, with genes of particulate nitrate reductase and nitrite reductases (narH/G, nirS, nirK) for denitrifying bacteria and with genes of methane

  1. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants

    Science.gov (United States)

    Xu, Peng; Xiao, En-Rong; Xu, Dan; Zhou, Yin; He, Feng; Liu, Bi-Yun; Zeng, Lei; Wu, Zhen-Bin

    2017-01-01

    Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments

  2. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    Science.gov (United States)

    Xu, Peng; Xiao, En-Rong; Xu, Dan; Zhou, Yin; He, Feng; Liu, Bi-Yun; Zeng, Lei; Wu, Zhen-Bin

    2017-01-01

    Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments

  3. Microbial biodiversity in cheese consortia and comparative Listeria growth on surfaces of uncooked pressed cheeses.

    Science.gov (United States)

    Callon, Cécile; Retureau, Emilie; Didienne, Robert; Montel, Marie-Christine

    2014-03-17

    The study set out to determine how changes in the microbial diversity of a complex antilisterial consortium from the surface of St-Nectaire cheese modify its antilisterial activities. On the basis of the microbial composition of a natural complex consortium named TR15 (Truefood consortium 15), three new consortia of different species and strain compositions were defined: TR15-SC (58 isolates from TR15 collection), TR15-M (pools of isolates from selective counting media) and TR15-BHI (pools of isolates from BHI medium). Their antilisterial activities on the surfaces of uncooked pressed cheese made with pasteurised milk were compared with the activity of complex consortium TR15 and a control cheese inoculated only with starter culture (Streptococcus thermophilus, Lactobacillus delbrueckii). The natural consortium TR15 was the most inhibitory, followed by reconstituted consortium TR15-BHI. The dynamics of the cheese rind microbial flora were monitored by counting on media and by isolate identification using 16S rDNA sequencing and direct 16S rDNA Single Strand Conformation Polymorphism analysis. The combination of these methods showed that rind with natural consortium TR15 had greater microbial diversity and different microbial dynamics than cheese rinds with reconstituted consortia. Cheese rind with the natural consortium showed higher citrate consumption and the highest concentrations of lactic and acetic acids, connected with high levels of lactic acid bacteria such as Carnobacterium maltaromaticum, Vagococcus fluvialis, Enterococcus gilvus, Leuconostoc mesenteroides, Brochothrix thermosphacta and Lactococcus lactis, ripening bacteria such as Arthrobacter nicotianae/arilaitensis, and Gram negative bacteria (Pseudomonas psychrophila and Enterobacter spp.). The highest L. monocytogenes count was on rind with TR15-M and was positively associated with the highest pH value, high succinic and citric acid contents, and the highest levels of Marinilactibacillus

  4. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor.

    Science.gov (United States)

    Scheckenbach, Frank; Hausmann, Klaus; Wylezich, Claudia; Weitere, Markus; Arndt, Hartmut

    2010-01-05

    Eukaryotic microbial life at abyssal depths remains "uncharted territory" in eukaryotic microbiology. No phylogenetic surveys have focused on the largest benthic environment on this planet, the abyssal plains. Moreover, knowledge of the spatial patterns of deep-sea community structure is scanty, and what little is known originates primarily from morphology-based studies of foraminiferans. Here we report on the great phylogenetic diversity of microbial eukaryotic communities of all 3 abyssal plains of the southeastern Atlantic Ocean--the Angola, Cape, and Guinea Abyssal Plains--from depths of 5,000 m. A high percentage of retrieved clones had no close representatives in genetic databases. Many clones were affiliated with parasitic species. Furthermore, differences between the communities of the Cape Abyssal Plain and the other 2 abyssal plains point to environmental gradients apparently shaping community structure at the landscape level. On a regional scale, local species diversity showed much less variation. Our study provides insight into the community composition of microbial eukaryotes on larger scales from the wide abyssal sea floor realm and marks a direction for more detailed future studies aimed at improving our understanding of deep-sea microbes at the community and ecosystem levels, as well as the ecological principles at play.

  5. Long-term impacts of forest ditching on non-aquatic biodiversity: conservation perspectives for a novel ecosystem.

    Science.gov (United States)

    Remm, Liina; Lõhmus, Piret; Leis, Mare; Lõhmus, Asko

    2013-01-01

    Artificial drainage (ditching) is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails), abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut). We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i) silvicultural techniques to

  6. Long-term impacts of forest ditching on non-aquatic biodiversity: conservation perspectives for a novel ecosystem.

    Directory of Open Access Journals (Sweden)

    Liina Remm

    Full Text Available Artificial drainage (ditching is widely used to increase timber yield in northern forests. When the drainage systems are maintained, their environmental impacts are likely to accumulate over time and along accompanying management, notably after logging when new forest develops on decayed peat. Our study provides the first comprehensive documentation of long-term ditching impacts on terrestrial and arboreal biodiversity by comparing natural alder swamps and second-generation drained forests that have evolved from such swamps in Estonia. We explored species composition of four potentially drainage-sensitive taxonomic groups (vascular plants, bryophytes, lichens, and snails, abundance of species of conservation concern, and their relationships with stand structure in two-ha plots representing four management types (ranging from old growth to clearcut. We found that drainage affected plot-scale species richness only weakly but it profoundly changed assemblage composition. Bryophytes and lichens were the taxonomic groups that were most sensitive both to drainage and timber-harvesting; in closed stands they responded to changed microhabitat structure, notably impoverished tree diversity and dead-wood supply. As a result, natural old-growth plots were the most species-rich and hosted several specific species of conservation concern. Because the most influential structural changes are slow, drainage impacts may be long hidden. The results also indicated that even very old drained stands do not provide quality habitats for old-growth species of drier forest types. However, drained forests hosted many threatened species that were less site type specific, including early-successional vascular plants and snails on clearcuts and retention cuts, and bryophytes and lichens of successional and old forests. We conclude that three types of specific science-based management tools are needed to mitigate ditching effects on forest biodiversity: (i silvicultural

  7. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates

    Institute of Scientific and Technical Information of China (English)

    D.B.JOHNSON

    2008-01-01

    Mining companies have become increasingly aware of the potential of microbiological approaches for recovering base and precious metals from low-grade ores,and for remediating acidic,metal-rich wastewaters that drain from both operating and abandoned mine sites.Biological systems offer a number of environmental and (sometimes) economical advantages over conventional approaches,such as pyrometallurgy,though their application is not appropriate in every situation.Mineral processing using micro-organisms has been exploited for extracting gold,copper,uranium and cobalt,and current developments are targeting other base metals.Recently,there has been a great increase in our knowledge and understanding of both the diversity of the microbiology of biomining environments,and of how the microorganisms interact with each other.The results from laboratory experiments which have simulated both stirred tank and heap bioreactor systems have shown that microbial consortia are more robust than pure cultures of mineral-oxidizing acidophiles,and also tend to be more effective at bioleaching and bio-oxidizing ores and concentrates.The paper presented a concise review of the nature and interactions of microbial consortia that are involved in the oxidation of sulfide minerals,and how these might be adapted to meet future challenges in biomining operations.

  8. Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics.

    Science.gov (United States)

    Llorens-Marès, Tomàs; Yooseph, Shibu; Goll, Johannes; Hoffman, Jeff; Vila-Costa, Maria; Borrego, Carles M; Dupont, Chris L; Casamayor, Emilio O

    2015-07-01

    Stratified sulfurous lakes are appropriate environments for studying the links between composition and functionality in microbial communities and are potentially modern analogs of anoxic conditions prevailing in the ancient ocean. We explored these aspects in the Lake Banyoles karstic area (NE Spain) through metagenomics and in silico reconstruction of carbon, nitrogen and sulfur metabolic pathways that were tightly coupled through a few bacterial groups. The potential for nitrogen fixation and denitrification was detected in both autotrophs and heterotrophs, with a major role for nitrogen and carbon fixations in Chlorobiaceae. Campylobacterales accounted for a large percentage of denitrification genes, while Gallionellales were putatively involved in denitrification, iron oxidation and carbon fixation and may have a major role in the biogeochemistry of the iron cycle. Bacteroidales were also abundant and showed potential for dissimilatory nitrate reduction to ammonium. The very low abundance of genes for nitrification, the minor presence of anammox genes, the high potential for nitrogen fixation and mineralization and the potential for chemotrophic CO2 fixation and CO oxidation all provide potential clues on the anoxic zones functioning. We observed higher gene abundance of ammonia-oxidizing bacteria than ammonia-oxidizing archaea that may have a geochemical and evolutionary link related to the dominance of Fe in these environments. Overall, these results offer a more detailed perspective on the microbial ecology of anoxic environments and may help to develop new geochemical proxies to infer biology and chemistry interactions in ancient ecosystems.

  9. Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica.

    Science.gov (United States)

    Soo, Rochelle M; Wood, Susanna A; Grzymski, Joseph J; McDonald, Ian R; Cary, S Craig

    2009-03-01

    Tramway Ridge, located near the summit of Mount Erebus in Antarctica, is probably the most remote geothermal soil habitat on Earth. Steam fumaroles maintain moist, hot soil environments creating extreme local physicochemical differentials. In this study a culture-independent approach combining automated rRNA intergenic spacer analysis (ARISA) and a 16S rRNA gene library was used to characterize soil microbial (Bacterial and Archaeal) diversity along intense physicochemical gradients. Statistical analysis of ARISA data showed a clear delineation between bacterial community structure at sites close to fumaroles and all other sites. Temperature and pH were identified as the primary drivers of this demarcation. A clone library constructed from a high-temperature site led to the identification of 18 novel bacterial operational taxonomic units (OTUs). All 16S rRNA gene sequences were deep branching and distantly (85-93%) related to other environmental clones. Five of the signatures branched with an unknown group between candidate division OP10 and Chloroflexi. Within this clade, sequence similarity was low, suggesting it contains several yet-to-be described bacterial groups. Five archaeal OTUs were obtained and exhibited high levels of sequence similarity (95-97%) with Crenarchaeota sourced from deep-subsurface environments on two distant continents. The novel bacterial assemblage coupled with the unique archaeal affinities reinvigorates the hypotheses that Tramway Ridge organisms are relics of archaic microbial lineages specifically adapted to survive in this harsh environment and that this site may provide a portal to the deep-subsurface biosphere.

  10. ASSESSMENT OF THE BIODIVERSITY OF SAMPLES USED FOR ISOLATION OF MICROBIAL STRAINS CAPABLE OF CONVERTING STRAW DESTINED AS A SUBSTRATE FOR BIOGAS PLANT

    Directory of Open Access Journals (Sweden)

    Krystyna Cybulska

    2016-01-01

    Full Text Available In biogas plants, almost any type of organic matter can be used as a substrate to produce biogas. To make the process of methane fermentation more effective, these materials are pretreated. This applies in particular to a group of difficult substrates. Straw, due to its hemicellulose structure and saturation, is hardly fermented by biogas reactor microorganisms. The methods of post-harvest residue preparation for anaerobic digestion being applied so far are expensive, while their application has a negative effect on methanoegenic bacteria. Therefore, the microorganisms being able to degrade straw hemicellulose structure, utilisation of which could precede the proper fermentation process, have been searched for. This paper presents the results of microbial biodiversity analysis in the environmental samples being lupin, cereal, rape and maize straw as well as hay and haylage at different degradation stages. The analysis of biodiversity will help at a further stage of study to isolate active microbial strains showing cellulolytic, hemicellulolytic or ligninolytic activity which are desirable in the process of straw biodegradation. Analysis of the microbial count was performed by the method of deep inoculation on different microbiological culture media. The conducted tests include determination of the number of fungi, bacteria and actinomycetes. The results obtained confirm the usefulness of the analysed samples for isolation of microbial strains capable of converting straw preceding the biogas production.

  11. Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10.

    Science.gov (United States)

    Tanaka, Yasuhiro; Tamaki, Hideyuki; Matsuzawa, Hiroaki; Nigaya, Masahiro; Mori, Kazuhiro; Kamagata, Yoichi

    2012-01-01

    A number of molecular ecological studies have revealed complex and unique microbial communities in various terrestrial plant roots; however, little is known about the microbial communities of aquatic plant roots in spite of their potential use for water quality improvement in aquatic environments (e.g. floating treatment wetland system). Here, we report the microbial communities inhabiting the roots of emerged plants, reed (Phragmites australis) and Japanese loosestrife (Lythrum anceps), collected from a floating treatment wetland in a pond by both culture-independent and culture-dependent approaches. Culture-independent analysis based on 16S rRNA gene sequences revealed that the microbial compositions between the two aquatic plant roots were clearly different (e.g. the predominant microbe was Betaproteobacteria for reed and Alphaproteobacteria for Japanese loosestrife). In comparisons of microbial communities between the plant roots and pond water taken from near the plants, the microbial diversity in the plant roots (e.g. 4.40-4.26 Shannon-Weiner index) were higher than that of pond water (e.g. 3.15 Shannon-Weiner index). Furthermore, the plant roots harbored 2.5-3.5 times more phylogenetically novel clone phylotypes than pond water. The culture-dependent approach also revealed differences in the microbial composition and diversity among the two plant roots and pond water. More importantly, compared to pond water, we succeeded in isolating approximately two times more novel isolate phylotypes, including a bacterium of candidate phylum OP10 (recently named Armatimonadetes) from the plant roots. These findings suggest that aquatic plants roots are significant sources for a variety of novel organisms.

  12. The feasibility of automated online flow cytometry for in-situ monitoring of microbial dynamics in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Michael Domenic Besmer

    2014-06-01

    Full Text Available Fluorescent staining coupled with flow cytometry (FCM is often used for the monitoring, quantification and characterization of bacteria in engineered and environmental aquatic ecosystems including seawater, freshwater, drinking water, wastewater, and industrial bioreactors. However, infrequent grab sampling hampers accurate characterization and subsequent understanding of microbial dynamics in all of these ecosystems. A logic technological progression is high throughput and full automation of the sampling, staining, measurement, and data analysis steps. Here we assess the feasibility and applicability of automated FCM by means of actual data sets produced with prototype instrumentation. As proof-of-concept we demonstrate examples of microbial dynamics in (i flowing tap water from a municipal drinking water supply network and (ii river water from a small creek subject to two rainfall events. In both cases, automated measurements were done at 15-min intervals during 12 to 14 consecutive days, yielding more than 1000 individual data points for each ecosystem. The extensive data sets derived from the automated measurements allowed for the establishment of baseline data for each ecosystem, as well as for the recognition of daily variations and specific events that would most likely be missed (or miss-characterized by infrequent sampling. In addition, the online FCM data from the river water was combined and correlated with online measurements of abiotic parameters, showing considerable potential for a better understanding of cause-and-effect relationships in aquatic ecosystems. Although several challenges remain, the successful operation of an automated online FCM system and the basic interpretation of the resulting data sets represent a breakthrough towards the eventual establishment of fully automated online microbiological monitoring technologies.

  13. Adenosine triphosphate concentration in relation to microbial biomass in aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, H.W. Jr.

    1977-01-01

    Analyses of adenosine triphosphate (ATP) extracted from a sediment community of an aquatic ecosystem by the sulfuric acid method are complicated by inhibitions from inorganic and organic compounds. Inhibitions by inorganic compounds are reversible while those by organic compounds are irreversible. The primary inhibition by organic compounds results by complexing with acid-soluble fulvic acids which will prevent the detection of as much as 80% of the ATP present in a sample by the luciferin-luciferase reaction. Analytical techniques were developed to partially circumvent such interferences. Biomass interpretations from ATP concentrations in aquatic systems are complicated by the diversity of the microbiota and by the variability in the carbon to ATP ratio caused by environmental conditions. However, when levels of ATP are considered as a physiological condition of a sedimentary community, this data provides a means to interpret community metabolism not available hitherto.

  14. A Hydration-Based Biophysical Index for the Onset of Soil Microbial Coexistence

    OpenAIRE

    Gang Wang; Dani Or

    2012-01-01

    Mechanistic exploration of the origins of the unparalleled soil microbial biodiversity represents a vast and uncharted scientific frontier. Quantification of candidate mechanisms that promote and sustain such diversity must be linked with microbial functions and measurable biophysical interactions at appropriate scales. We report a novel microbial coexistence index (CI) that links macroscopic soil hydration conditions with microscale aquatic habitat fragmentation that impose restrictions on c...

  15. Could the canopy structure of bryophytes serve as an indicator of microbial biodiversity? A test for testate amoebae and microcrustaceans from a subtropical cloud forest in Dominican Republic.

    Science.gov (United States)

    Acosta-Mercado, D; Cancel-Morales, N; Chinea, J D; Santos-Flores, C J; De Jesús, I Sastre

    2012-07-01

    The mechanisms that ultimately regulate the diversity of microbial eukaryotic communities in bryophyte ecosystems remain a contentious topic in microbial ecology. Although there is robust consensus that abiotic factors, such as water chemistry of the bryophyte and pH, explain a significant proportion of protist and microcrustacean diversity, there is no systematic assessment of the role of bryophyte habitat complexity on such prominent microbial groups. Water-holding capacity is correlated with bryophyte morphology and canopy structure. Similarly, canopy structure explains biodiversity dynamics of the macrobiota suggesting that canopy structure may also be a potential parameter for understanding microbial diversity. Canopy roughness of the dominant bryophyte species within the Bahoruco Cloud Forest, Cachote, Dominican Republic, concomitant with their associated diversity of testate amoebae and microcrustaceans was estimated to determine whether canopy structure could be added to the list of factors explaining microbial biodiversity in bryophytes. We hypothesized that smooth (with high moisture content) canopies will have higher species richness, density, and biomass of testate amoebae and higher richness and density of microcrustaceans than rough (desiccation-prone) canopies. For testate amoebae, we found 83 morphospecies with relative low abundances. Species richness and density differed among bryophytes with different bryophyte canopy structures and based on non-metric multidimensional scaling, canopy roughness explained 25% of the variation in species composition although not as predicted. Acroporium pungens (low roughness, LR) had the lowest species richness (2 ± 0.61 SD per gram dry weight bryophyte), and density (2.1 ± 0.61 SD individual per gram of dry weight bryophyte); whereas Thuidium urceolatum (high roughness) had the highest richness (24 ± 10.82 SD) and density (94 ± 64.30 SD). The fact that the bryophyte with the highest roughness had the highest

  16. Modeling Microbial Biogeochemistry from Terrestrial to Aquatic Ecosystems Using Trait-Based Approaches

    Science.gov (United States)

    King, E.; Molins, S.; Karaoz, U.; Johnson, J. N.; Bouskill, N.; Hug, L. A.; Thomas, B. C.; Castelle, C. J.; Beller, H. R.; Banfield, J. F.; Steefel, C. I.; Brodie, E.

    2014-12-01

    Currently, there is uncertainty in how climate or land-use-induced changes in hydrology and vegetation will affect subsurface carbon flux, the spatial and temporal distribution of flow and transport, biogeochemical cycling, and microbial metabolic activity. Here we focus on the initial development of a Genome-Enabled Watershed Simulation Capability (GEWaSC), which provides a predictive framework for understanding how genomic information stored in a subsurface microbiome affects biogeochemical watershed functioning, how watershed-scale processes affect microbial function, and how these interactions co-evolve. This multiscale framework builds on a hierarchical approach to multiscale modeling, which considers coupling between defined microscale and macroscale components of a system (e.g., a catchment being defined as macroscale and biogeofacies as microscale). Here, we report our progress in the development of a trait-based modeling approach within a reactive transport framework that simulates coupled guilds of microbes. Guild selection is driven by traits extracted from, and physiological properties inferred from, large-scale assembly of metagenome data. Meta-genomic, -transcriptomic and -proteomic information are also used to complement our existing biogeochemical reaction networks and contributes key reactions where biogeochemical analyses are unequivocal. Our approach models the rate of nutrient uptake and the thermodynamics of coupled electron donors and acceptors for a range of microbial metabolisms including heterotrophs and chemolitho(auto)trophs. Metabolism of exogenous substrates fuels catabolic and anabolic processes, with the proportion of energy used for each based upon dynamic intracellular and environmental conditions. In addition to biomass development, anabolism includes the production of key enzymes, such as nitrogenase for nitrogen fixation or exo-enzymes for the hydrolysis of extracellular polymers. This internal resource partitioning represents a

  17. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming

    Science.gov (United States)

    Boyd, E.S.; King, S.; Tomberlin, J.K.; Nordstrom, D.K.; Krabbenhoft, D.P.; Barkay, T.; Geesey, G.G.

    2009-01-01

    Summary Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH ??? 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg +), while undetectable or near the detection limit (0.025 ng l -1) in the source water of the springs, was present at concentrations of 4-7 ng g-1 dry weight of mat biomass. Detection of MeHg + in tracheal tissue of larvae grazing the mat suggests that MeHg+ enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg+ was two to five times higher in larval tissue than mat biomass indicating MeHg+ biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg+ to species in the food web whose range extends beyond a particular geothermal feature of YNP. ?? 2008 The Authors. Journal compilation ?? 2008 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  19. Adenosine triphosphate concentration in relation to microbial biomass in aquatic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, H.W. Jr.

    1977-01-01

    Analyses of adenosine triphosphate (ATP) extracted from a sediment community by the sulfuric acid method are complicated by inhibitions from inorganic and organic compounds. Inhibitions by inorganic compounds are reversible while those by organic compounds are irreversible. The primary inhibition by organic compounds results by complexing with acid-soluble fulvic acids which will prevent the detection of as much as 80% of the ATP present in a sample by the luciferin-luciferase reaction. Analytical techniques were developed to parially circumvent such interferences. Biomass interpretations from ATP concentrations in aquatic systems are complicated by the diversity of the microbiota and by the variability in the carbon to ATP ratio caused by environmental conditions. However, when levels of ATP are considered as a physiological condition of a sedimentary community, this data provide a means to interpret community metabolism not available hitherto.

  20. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Directory of Open Access Journals (Sweden)

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  1. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  2. Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation.

    Science.gov (United States)

    Tytgat, Bjorn; Verleyen, Elie; Obbels, Dagmar; Peeters, Karolien; De Wever, Aaike; D'hondt, Sofie; De Meyer, Tim; Van Criekinge, Wim; Vyverman, Wim; Willems, Anne

    2014-01-01

    The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1-22.2%) and OTU (3.5-3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1-V2 and V3-V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number of OTUs

  3. Biodiversidad de Heteroptera (Hemiptera acuáticas y semiacuáticas de la Patagonia argentina Biodiversity of aquatic and semiaquatic Heteroptera (Hemiptera from Argentinean Patagonia

    Directory of Open Access Journals (Sweden)

    María Cecilia Melo

    2009-06-01

    Full Text Available Las Heteroptera acuáticas y semiacuáticas (infraórdenes Nepomorpha, Gerromorpha y Leptopodomorpha no presentan una alta diversidad específica en Argentina, hasta el momento se han registrado 208 especies. Carlos Berg en 1881, publica el primer trabajo que hace referencia a heterópteros de la Patagonia, en el que lista los insectos recolectados durante la Campaña del Desierto. Desde principios de la década del '60, las Heteroptera acuáticas han sido estudiadas principalmente por A.O. Bachmann y colaboradores. Hasta el momento, se han registrado 36 especies pertenecientes a las familias Corixidae, Notonectidae, Belostomatidae, Gelastocoridae, Naucoridae y Nepidae (Nepomorpha; Hydrometridae, Veliidae y Mesoveliidae (Gerromorpha, y Saldidae (Leptopodomorpha. La mayoría de estas especies extienden su distribución geográfica hacia el norte de la Argentina, excepto Sigara (Tropocorixa egbertae Hungerford, S. (T. trimaculata (Le Guillou, S. (T. vuriloche Bachmann, S. (T. forciceps (Spinola, Trichocorixa milicorum Bachmann (Corixidae, Notonecta (Paranecta virescens Blanchard, N. (P. fazi Hungerford, N. (P. vereertbruggheni Hungerford (Notonectidae, Pseudosaldula bergi (Haglund y P. paralia (Torres, P. angusta (Drake & Carvalho, P. sola (Drake & Carvalho, P. doeringi (Drake & Carvalho y Saldula differata Drake & Carvalho (Saldidae, que son exclusivas de la Patagonia. El conocimiento de la diversidad de Heteroptera acuáticas y semiacuáticas en la Patagonia es bueno y, por los datos recogidos, su estado de conservación es aceptable ya que aproximadamente el 40% de la especies encontradas en áreas naturales protegidas son exclusivas de la región y representan cerca del 40 % del número de especies exclusivas de la Patagonia.The aquatic and semiaquatic Heteroptera (infraorders Nepomorpha, Gerromorpha and Leptopodomorpha show a low diversity in Argentina; up to now 208 species have been recorded. In 1881 Carlos Berg provided the first reference

  4. Biodiversity Prospecting.

    Science.gov (United States)

    Sittenfeld, Ana; Lovejoy, Annie

    1994-01-01

    Examines the use of biodiversity prospecting as a method for tropical countries to value biodiversity and contribute to conservation upkeep costs. Discusses the first agreement between a public interest organization and pharmaceutical company for the extraction of plant and animal materials in Costa Rica. (LZ)

  5. An Aquatic Microbial Metaproteomics Workflow: From Cells to Tryptic Peptides Suitable for Tandem Mass Spectrometry-based Analysis.

    Science.gov (United States)

    Colatriano, David; Walsh, David A

    2015-09-15

    Meta-omic technologies such as metagenomics, metatranscriptomics and metaproteomics can aid in the understanding of microbial community structure and metabolism. Although powerful, metagenomics alone can only elucidate functional potential. On the other hand, metaproteomics enables the description of the expressed in situ metabolism and function of a community. Here we describe a protocol for cell lysis, protein and DNA isolation, as well as peptide digestion and extraction from marine microbial cells collected on a cartridge filter unit (such as the Sterivex filter unit) and preserved in an RNA stabilization solution (like RNAlater). In mass spectrometry-based proteomics studies, the identification of peptides and proteins is performed by comparing peptide tandem mass spectra to a database of translated nucleotide sequences. Including the metagenome of a sample in the search database increases the number of peptides and proteins that can be identified from the mass spectra. Hence, in this protocol DNA is isolated from the same filter, which can be used subsequently for metagenomic analysis.

  6. Direct and indirect effects of temperature on the population dynamics and ecosystem functioning of aquatic microbial ecosystems.

    Science.gov (United States)

    Beveridge, Oliver S; Petchey, Owen L; Humphries, Stuart

    2010-11-01

    1. While much is known about the direct effect that temperature can have on aquatic communities, less is known about its indirect effect via the temperature dependence of viscosity and temperature-dependent trophic interactions. 2. We manipulated the temperature (5-20 °C) and the viscosity (equivalent to 5-20 °C) of water in laboratory-based bacteria-protist communities. Communities contained food chains with one, two or three trophic levels. Responses measured were population dynamics (consumer carrying capacity and growth rate, average species population density, and the coefficient of variation of population density through time) and ecosystem function (decomposition). 3. Temperature, viscosity and food chain length produced significant responses in population dynamics. Temperature-dependent viscosity had a significant effect on the carrying capacity and growth rates of consumers, as well as the average density of the top predator. Overall, indirect effects of temperature via changes in viscosity were subtle in comparison to the indirect effect of temperature via trophic interactions. 4. Our results highlight the importance of direct and indirect effects of temperature, mediated through trophic interactions and physical changes in the environment, both for population dynamics and ecosystem processes. Future mechanistic modelling of effects of environmental change on species will benefit from distinguishing the different mechanisms of the overall effect of temperature.

  7. Biodiversity Conservation in Asia

    OpenAIRE

    Dale Squires

    2014-01-01

    Asian's remarkable economic growth brought many benefits but also fuelled threats to its ecosystems and biodiversity. Economic growth brings biodiversity threats but also conservation opportunities. Continued biodiversity loss is inevitable, but the types, areas and rates of biodiversity loss are not. Prioritising biodiversity conservation, tempered by what is tractable, remains a high priority. Policy and market distortions and failures significantly underprice biodiversity, undermine ecosys...

  8. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    Science.gov (United States)

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  9. Fish biodiversity sampling in stream ecosystems: a process for evaluating the appropriate types and amount of gear

    Science.gov (United States)

    Smith, Joseph M.; Wells, Sarah P.; Mather, Martha E.; Muth, Robert M.

    2014-01-01

    Because human impacts and climate change threaten aquatic ecosystems, a need exists to quantify catchment-scale biodiversity patterns and identify conservation actions that can mitigate adverse human impacts on aquatic biota.

  10. How to Show the Real Microbial Biodiversity? A Comparison of Seven DNA Extraction Methods for Bacterial Population Analyses in Matrices Containing Highly Charged Natural Nanoparticles.

    Science.gov (United States)

    Kaden, Rene; Krolla-Sidenstein, Peter

    2015-10-20

    A DNA extraction that comprises the DNA of all available taxa in an ecosystem is an essential step in population analysis, especially for next generation sequencing applications. Many nanoparticles as well as naturally occurring clay minerals contain charged surfaces or edges that capture negatively charged DNA molecules after cell lysis within DNA extraction. Depending on the methodology of DNA extraction, this phenomenon causes a shift in detection of microbial taxa in ecosystems and a possible misinterpretation of microbial interactions. With the aim to describe microbial interactions and the bio-geo-chemical reactions during a clay alteration experiment, several methods for the detection of a high number of microbial taxa were examined in this study. Altogether, 13 different methods of commercially available DNA extraction kits provided by seven companies as well as the classical phenol-chloroform DNA extraction were compared. The amount and the quality of nucleic acid extracts were determined and compared to the amplifiable amount of DNA. The 16S rRNA gene fragments of several taxa were separated using denaturing gradient gel electrophoresis (DGGE) to determine the number of different species and sequenced to get the information about what kind of species the microbial population consists of. A total number of 13 species was detected in the system. Up to nine taxa could be detected with commercially available DNA extraction kits while phenol-chloroform extraction lead to three detected species. In this paper, we describe how to combine several DNA extraction methods for the investigation of microbial community structures in clay.

  11. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  12. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  13. Biodiversity of Mesophilic Microbial Community BYND-8 Capability of Lignocellulose Degradation and Its Effect on Biogas Production%复合菌系BYND-8的种群组成及其对沼气产量的影响

    Institute of Scientific and Technical Information of China (English)

    王伟东; 宋亚彬; 王彦杰; 高亚梅; 荆瑞勇; 崔宗均

    2011-01-01

    为了明确1组在中温下(30℃)高效分解木质纤维素的复合菌系的菌群组成.研究复合菌系预处理秸秆对沼气发酵的影响,利用平板分离法和变性梯度凝胶电泳(DGGE)法研究了中温木质纤维素降解复合菌系BYND-8的菌种组成多样性,通过添加该复合系菌液到以牛粪为原料的沼气发酵体系,研究了添加秸秆降解液对沼气产量的影响.利用平板法分离得到了6株细菌,它们与Serratia sp.PSGB 13、Serratia marcescens strain UFLA-25LS、Serratia marcescens strain DAP33、Alcaligenes sp.YcX-20、Stenotrophomonas mahophilia strain c6和Bacillus cereus isolate BRL02-71的相似率分别达到了99%、100%、96%、100%、100%和99%.同时利用DGGE方法还检测到了1株利用平板分离法没有获得到的细菌,它的16S rDNA V3区的序列与Uncultured bacterium clone ATB-KS-1446具有100%的同源性.稻秆经复合菌系BYND-8预处理后应用于沼气发酵中,在发酵的前15d内,累积产气量达到13 167 mL,甲烷产量达到7 248 mL.比对照分别提高了44.5%和95.3%.复合菌系具有较高的菌种组成多样性,将复合菌系应用于沼气发酵的原料预处理过程中,可以将产气时间提前,并提高产气量.%The biodiversity of a mesophilic microbial community BYND-8 capable of degrading lignocellulose at 30℃ was detected using denaturing gradient gel electrophoresis(DGGE) and the isolation of pure cultures, and the effect of the liquid of rice straw degradation by BYND-8 on biogas production was measured. Six bacterial strains were isolated using peptone cellulose solution medium, and the highest similarities of their 16S rDNA gene sequences to Serratia sp. PSGB 13, S. marcescens strain UFLA-25LS, S. marcescens strain DAP33, Alcaligenes sp. YcX-20, Stenotrophomonus maltophilia strain C6, Bacillus cereus isolate BRL02-71 were 99% , 100% , 96% ,100% , 100% and 99% , respectively. In addition, one band was detected besides six bands of

  14. Aquatic invasive species: Lessons from cancer research

    Science.gov (United States)

    Sepulveda, Adam; Ray, Andrew; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Gresswell, Robert E.; Gross, Jackson A.; Kershner, Jeffrey L.

    2014-01-01

    Aquatic invasive species are disrupting ecosystems with increasing frequency. Successful control of these invasions has been rare: Biologists and managers have few tools for fighting aquatic invaders. In contrast, the medical community has long worked to develop tools for preventing and fighting cancer. Its successes are marked by a coordinated research approach with multiple steps: prevention, early detection, diagnosis, treatment options and rehabilitation. The authors discuss how these steps can be applied to aquatic invasive species, such as the American bullfrog (Lithobates catesbeianus), in the Northern Rocky Mountain region of the United States, to expedite tool development and implementation along with achievement of biodiversity conservation goals.

  15. Biodiversity Is Life

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Greater numbers of species are disappearing from the planet. Biodiversity protection has become an urgent task for all of us.Given this,the UN declared 2010 the International Year of Biodiversity. Chinese conservationists call for increased awareness of the importance of saving the biodiversity.The following are the perspectives of some Chinese scientists on the significance of,and measures for,biodiversity protection:

  16. Progress in Biodiversity Informatics

    Directory of Open Access Journals (Sweden)

    Keping Ma

    2010-09-01

    Full Text Available Biodiversity Informatics is a young and rapidly growing field that brings information science and technologies to bear on the data and information generated by the study of biodiversity and related subjects. Recent years, biodiversity informatics community has made an extraordinary effort to digitize primary biodiversity data, and develop modelling tools, data integration, and county/ regional/ global biodiversity networks. In doing so, the community is creating an unprecedented global sharing of information and data produced by biodiversity science, and encouraging people to consider, survey and monitor natural biodiversity. Due to success of several international biodiversity informatics projects, such as Species 2000, Global Biodiversity Information Facility, Barcoding of Life and Encyclopedia of Life, digitized information on species inventories, herbarium specimens, multimedia and literature is available through internet. These projects not only make great contributions to sharing digitized biodiversity data, but also in prompting the implementation of important biodiversity information standards, such as Darwin Core, and in the establishment of regional and national biodiversity networks. These efforts will facilitate the future establishment of a strong information infrastructure for data sharing and exchange at a global scale. Besides focusing on browsing and searching digitized data, scientists should also work on building data mining and modeling, such as MAXENT for Ecological Niche Modelling and LifeDesk for taxonomist’s knowledge management. At the same time, the idea of citizen sciences gains popularity showing us the benefit of the public working closely with the scientific community in completing internet-based biodiversity informatics activities. Therefore, biodiversity informatics has broad prospects, and is helping to build strong facilities that will aid in implementing the goals set by Global Plant Conservation Strategy and

  17. Biodiversity and globalization

    OpenAIRE

    Heal, Geoffrey

    2002-01-01

    Reduction of the earth’s biodiversity as a result of human activities is a matter of great concern to prominent scientists. What are the economic aspects of this loss? In economic terms, what is biodiversity and why might it matter? And is the loss of biodiversity in any way connected with globalization of the economy?

  18. Environmental bacteriophages : viruses of microbes in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Télesphore eSIME - NGANDO

    2014-07-01

    Full Text Available Since the discovery 2-3 decades ago that viruses of microbes are abundant in marine ecosystems, viral ecology has grown increasingly to reach the status of a full scientific discipline in environmental sciences. A dedicated ISVM society, the International Society for Viruses of Microorganisms (http://www.isvm.org/, was recently launched. Increasing studies in viral ecology are sources of novel knowledge related to the biodiversity of living things, the functioning of ecosystems, and the evolution of the cellular world. This is because viruses are perhaps the most diverse, abundant, and ubiquitous biological entities in the biosphere, although local environmental conditions enrich for certain viral types through selective pressure. They exhibit various lifestyles that intimately depend on the deep-cellular mechanisms, and are ultimately replicated by members of all three domains of cellular life (Bacteria, Eukarya, Archaea, as well as by giant viruses of some eukaryotic cells. This establishes viral parasites as microbial killers but also as cell partners or metabolic manipulators in microbial ecology. The present chapter sought to review the literature on the diversity and functional roles of viruses of microbes in environmental microbiology, focusing primarily on prokaryotic viruses (i.e. phages in aquatic ecosystems, which form the bulk of our knowledge in modern environmental viral ecology.

  19. Microcosms metacommunities in river network: niche effects and biodiversity

    Science.gov (United States)

    Giometto, A.; Carrara, F.; Altermatt, F.; Rinaldo, A.

    2012-04-01

    Many highly diverse landscapes exhibit hierarchical spatial structures that are shaped by geomorphological processes. Riverine ecosystems, among the most diverse habitats on Earth, represent an outstanding example of such mechanisms. In these landscapes, in which connectivity directly influences metacommunity processes, habitat capacity contributes to control biodiversity at several levels. A previous study has already highlighted the effect of connectivity on species distribution at local and regional scales, but habitat capacity was kept uniform. We studied the interaction of connectivity and habitat capacity in an aquatic microcosm experiment, in which microbial communities were grown in 36-well culture plates connected by dispersal. Dispersal occurred by periodic transfer of culture medium among connected local communities, following river network topology. The effect of habitat capacity in these landscapes was investigated by comparing three different spatial configurations of local community volumes: 1. Power law distributed volumes, according to drainage area. 2. Spatial random permutation of the volumes in the above configuration. 3. Equal distribution of volumes (preserving the total volume with respect to the above configurations). The net effect of habitat capacity on community composition was isolated in a control treatment in which communities were kept isolated for the whole duration of the experiment. In all treatments we observed that varying volumes induced niche effects: some protozoan species preferentially occupied larger nodes (systematically in isolation). Nevertheless, there is evidence that position along the network played a significant role in shaping biodiversity patterns. Size distribution measurements for each community were taken with a CASY cell counter, and species abundances data on log scale precision were collected by direct microscope observation.

  20. Impact of Power Station on Biodiversity of Aquatic Higher Plants in Haba River%电站开发对哈巴河水生高等植物生物多样性的影响

    Institute of Scientific and Technical Information of China (English)

    牛建功; 蔡林钢; 李红; 刘建

    2012-01-01

    2009年至2011年连续3年的7~8月累计调查数据分析表明,电站开发使得额尔齐斯河的一级支流———哈巴河部分河段由原来的天然河流型生态群落逐步演变为水库型生态群落,水生高等植物多样性和种类组成也随之发生改变:由河流型的挺水、湿生草本植物逐渐演替为水库型的沉水、沼生植物;植物最远分布区域Lmax也从33 m减少到了12 m。正在新建的电站A库区无水生高等植物,电站A坝下河段物种丰富度指数为0.57,已建成多年的电站C库区为0.42,电站C坝下河段为0.57,表明电站开发对物种丰富度指数的影响只是暂时的,其水生植物种类数量变动不明显。从β多样性指数来看,电站开发修建过程中多样性变化为100%,电站运行前后多样性变化高达87%,表明电站开发对水生高等植物β多样性指数的影响较为明显。%The analysis of successive three year data from 2009 to 2011 revealed that the power station construction had some impact on partial Haba River reach, the ecological community gradually changing from natural river type to reservoir type, and diversity of aquatic higher plants being changed consequently. During the development of power station, the aquatic higher plants was changed from the river type emerged plants and hygrophytes to reservoir type submerged plants and marsh plants, and the furthest distribution distance Lmax was reduced from 33 m to 12 m. In the diversity index, there were no higher plants in the reservoir area of power station A which was under construction, with richness index of 0.57 in its lower reach. The value of its reservoir area was found 0.42, and the value of lower reach 0.57 in the power station C where was built many years ago, indicating that power station development affected richness index temporarily, without significant variation in number of aquatic plant species composition. The 13 diversity index was found to be changed by 100

  1. Impact of the European Water framework directive on knowledge of biodiversity Impact of the European Water framework directive on knowledge of biodiversity

    Directory of Open Access Journals (Sweden)

    Christine Argillier and Mario Lepage

    2011-03-01

    Full Text Available The European Water framework directive requires observation and monitoring of certain biological communities to assess the ecological status of aquatic environments. How does the WFD contribute to knowledge and evaluation of aquatic biodiversity? What may be the results in terms of monitoring?The concept of biodiversity is complex and difficult to describe in an exhaustive manner. The Water Framework Directive (WFD, through its aquatic ecosystem monitoring network, aims to assess the ecological and chemical status of water bodies. This assessment requires observations on certain biological communities in a definite number of European sites representing continental, transitional and coastal water bodies. Consequently, the WFD contributes to improving knowledge on biodiversity. Nevertheless, genetic diversity and some communities are clearly not targeted and the monitoring networks are not well designed to assess changes in biodiversity. However, we may expect improvements in scientific knowledge of ecosystems and in the monitoring programmes that will make possible better convergence of environmental objectives.

  2. Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania.

    Science.gov (United States)

    Grant, Christopher J; Weimer, Alexander B; Marks, Nicole K; Perow, Elliott S; Oster, Jacob M; Brubaker, Kristen M; Trexler, Ryan V; Solomon, Caroline M; Lamendella, Regina

    2015-01-01

    Mercury (Hg) is a persistent element in the environment that has the ability to bioaccumulate and biomagnify up the food chain with potentially harmful effects on ecosystems and human health. Twenty-four streams remotely located in forested watersheds in northwestern PA containing naturally reproducing Salvelinus fontinalis (brook trout), were targeted to gain a better understanding of how Marcellus shale natural gas exploration may be impacting water quality, aquatic biodiversity, and Hg bioaccumulation in aquatic ecosystems. During the summer of 2012, stream water, stream bed sediments, aquatic mosses, macroinvertebrates, crayfish, brook trout, and microbial samples were collected. All streams either had experienced hydraulic fracturing (fracked, n = 14) or not yet experienced hydraulic fracturing (non-fracked, n = 10) within their watersheds at the time of sampling. Analysis of watershed characteristics (GIS) for fracked vs non-fracked sites showed no significant differences (P > 0.05), justifying comparisons between groups. Results showed significantly higher dissolved total mercury (FTHg) in stream water (P = 0.007), lower pH (P = 0.033), and higher dissolved organic matter (P = 0.001) at fracked sites. Total mercury (THg) concentrations in crayfish (P = 0.01), macroinvertebrates (P = 0.089), and predatory macroinvertebrates (P = 0.039) were observed to be higher for fracked sites. A number of positive correlations between amount of well pads within a watershed and THg in crayfish (r = 0.76, P shale natural gas exploration is having an effect on aquatic ecosystems.

  3. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    Science.gov (United States)

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  4. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    Directory of Open Access Journals (Sweden)

    María Sofía Urbieta

    2015-07-01

    Full Text Available The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  5. The value of biodiversity

    OpenAIRE

    CJR. Alho

    2008-01-01

    In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence), biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper,...

  6. 水生植物在微生物燃料电池中的应用研究进展%Progress on Application of Aquatic Plants in Microbial Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    何洁; 张晟; 滕加泉; 夏世斌

    2013-01-01

    Microbial fuel cell (MFC) can degrade pollutants and simultaneously convert chemical energy to electricity.As an interdisciplinary exploration in sewage treatment which recovers environment friendly energy, it provides new technology to effectively solve energy and environment problem.Aquatic plants in microbial fuel cell have been tested which show good sewage purification effect and biological producing electrical characteristics.Recently there are two categories for use of aquatic plant as MFC.One uses plant root zone as battery anode, to use root zone secretions to solve the problem of MFC fuel, and the other directly uses low water plants algae for building biocathode MFC, to use algae photosynthesis producing oxygen and build aerobic biocathode MFC, then restore CO2.Mechanism, regulation measure, operating conditions and technological parameters of aquatic plant in MFC were analyzed and reviewed, further study was also proposed.%微生物燃料电池在降解污染物的同时能将污染物中的化学能转化为电能.研究微生物燃料电池是对污水处理过程中回收环境友好能源的多学科交叉探索,可以为我国有效解决能源与环境问题提供新的技术途径.水生植物在微生物燃料电池研究中已得到了应用,显示出了良好的污水净化效果和生物产电特性.目前利用水生植物构建的微生物燃料电池,一类是将高等植物根区作为电池的阳极系统,目的是利用根区分泌物解决MFC的燃料问题;另一类是直接将低等水生植物藻类构建生物阴极型微生物燃料电池,其实质是利用藻类光合作用产氧构建好氧型生物阴极微生物燃料电池而还原CO2.文章对水生植物在微生物燃料中的作用机制、调控措施、运行条件、工艺参数等方面的研究现状进行了综合分析,也提出了需要深入研究的方向.

  7. Recovering biodiversity knowledge

    NARCIS (Netherlands)

    Meijerink, G.W.; Smolders, H.; Sours, S.; Pou, S.

    2005-01-01

    Cambodian¿s civil wars have seriously affected the country¿s agro-biodiversity and the farmers¿ traditional knowledge in this field. The PEDIGREA project aims at conserving on-farm agro-biodiversity conservation and in Cambodia it focuses on vegetable diversity. It tries to link the preservation of

  8. Biodiversity: Luxury or necessity

    NARCIS (Netherlands)

    Rotmans, J.; Groot, de R.S.; Vliet, van A.J.H.

    2002-01-01

    Because biodiversity is so complex and varied, knowledge in this area is still relatively limited. It can be stated that this complexity, combined with structural uncertainty, may well lead to an unpredictable future and further loss of biodiversity which will be characterised by non-linearity, thre

  9. Biodiversity of cryopegs in permafrost.

    Science.gov (United States)

    Gilichinsky, David; Rivkina, Elizaveta; Bakermans, Corien; Shcherbakova, Viktoria; Petrovskaya, Lada; Ozerskaya, Svetlana; Ivanushkina, Natalia; Kochkina, Galina; Laurinavichuis, Kyastus; Pecheritsina, Svetlana; Fattakhova, Rushania; Tiedje, James M

    2005-06-01

    This study describes the biodiversity of the indigenous microbial community in the sodium-chloride water brines (cryopegs) derived from ancient marine sediments and sandwiched within permafrost 100-120,000 years ago after the Arctic Ocean regression. Cryopegs remain liquid at the in situ temperature of -9 to -11 degrees C and make up the only habitat on the Earth that is characterized by permanently subzero temperatures, high salinity, and the absence of external influence during geological time. From these cryopegs, anaerobic and aerobic, spore-less and spore-forming, halotolerant and halophilic, psychrophilic and psychrotrophic bacteria, mycelial fungi and yeast were isolated and their activity was detected below 0 degrees C.

  10. Structure and biodiversity of zooplankton communities in freshwater habitats of a Vereda Wetland Region, Minas Gerais, Brazil

    OpenAIRE

    Olívia Penatti Pinese; José Fernando Pinese; Kleber Del Claro

    2015-01-01

    Abstract Aims: Vereda wetlands are among the most important aquatic habitats in Brazilian savannah (Cerrado) because of their association with river springs and its relevancy for biodiversity conservation. This study aimed to determine and compare the biodiversity of zooplankton in vereda lakes, differentiated by the presence or absence of aquatic macrophytes at an environmental reserve in Uberlândia, Minas Geais, Southeastern Brazil. Zooplanctonic abundance patterns and their relation with e...

  11. Biodiversity enhances reef fish biomass and resistance to climate change.

    Science.gov (United States)

    Duffy, J Emmett; Lefcheck, Jonathan S; Stuart-Smith, Rick D; Navarrete, Sergio A; Edgar, Graham J

    2016-05-31

    Fishes are the most diverse group of vertebrates, play key functional roles in aquatic ecosystems, and provide protein for a billion people, especially in the developing world. Those functions are compromised by mounting pressures on marine biodiversity and ecosystems. Because of its economic and food value, fish biomass production provides an unusually direct link from biodiversity to critical ecosystem services. We used the Reef Life Survey's global database of 4,556 standardized fish surveys to test the importance of biodiversity to fish production relative to 25 environmental drivers. Temperature, biodiversity, and human influence together explained 47% of the global variation in reef fish biomass among sites. Fish species richness and functional diversity were among the strongest predictors of fish biomass, particularly for the large-bodied species and carnivores preferred by fishers, and these biodiversity effects were robust to potentially confounding influences of sample abundance, scale, and environmental correlations. Warmer temperatures increased biomass directly, presumably by raising metabolism, and indirectly by increasing diversity, whereas temperature variability reduced biomass. Importantly, diversity and climate interact, with biomass of diverse communities less affected by rising and variable temperatures than species-poor communities. Biodiversity thus buffers global fish biomass from climate change, and conservation of marine biodiversity can stabilize fish production in a changing ocean.

  12. Community Structures of Macrobenthos and Biodiversity in Natural Aquatic Germplasm Resource Reserve Zone in Hailang River%海浪河水产种质资源保护区大型底栖动物群落结构及多样性

    Institute of Scientific and Technical Information of China (English)

    霍堂斌; 姜作发; 张伟; 刘刚

    2012-01-01

    2011年8月,对海浪河大型底栖动物群落结构进行了调查研究。本次调查共采集到了大型底栖动物14目31科56种,其中水生昆虫43种,分属7目21科,占总数75.44%。海浪河特有鱼类国家级水产种质资源保护区境内大型底栖动物共计13目30科51种,依群落数量看,蜉蝣目、毛翅目、双翅目为优势类群。海浪河大型底栖动物平均密度为180.19 ind.m-2、生物量为3.20 g.m-2。在各功能摄食生态类群中,捕食者最多,为25种,收集者15种,撕食者10种,刮食者6种。角锥毛石蚕(Brachycentinao)、泥苞虫(Setodes)、小划蝽(Siga substraia-ta)、Epeorus uenoi和Stenpsyche griseipennis是目前海浪河大型底栖动物的优势种。采用Shannon-Weiner生物指数、BI生物指数和Simposon生物指数对海浪河水质评价表明,各生物指数水质评价结果相似,洁净度排序趋势基本一致,均表明海浪河特有鱼类水产种质资源保护区境内水质比较清洁。%A survey was conducted to investigate the community structure and biodiversity of macrozoobenthos in the Hailang River during August in 2011.A total of 56 species of macrobenthos were collected,belonging to 14 orders and 31 families,among which aquatic insects were the predominant,with 43 species(75.44% of the total) belonging to 21 families and 7 orders.A total of 51 species of macrobenthos were found in Endemic Fish Natural Aquatic Germplasm Resource Reserve Zone in Hailang River,belonging to 13 orders and 30 families,among which Ephemerida,Trichoptera and Diptera were prevalent groups in the number of community.The macrobenthos were found at annual average density of 180.19 ind·m-2 and biomass of 3.20 g·m-2.The maximum was found to be the predators with 25 species in all functional feeding groups,followed by 15 collectors,10 scrapers and 6 shredders.The prevalent macrobenthos species were of Brachycentinao,Setodes,Siga substraiata,Epeorus uenoi and Stenpsyche

  13. 水生植物对沉积物微生物群落功能多样性的影响%Effects of Aquatic Macrophyte Planting on Functional Diversity of Microbial Community in Sediment

    Institute of Scientific and Technical Information of China (English)

    赵良元; 陶晶祥; 刘敏

    2015-01-01

    Differences in the functiona1 diversity of microbia1 community between rhizosphere sediment of Acorus calamus and non-rhizosphere sediment were investigated using Biolog-Eco microplates.Results showed that the growth of Acorus calamus could significantly increase the microbial activity and diversity in the rhizosphere sedi-ment.The total microorganism activity (AWCD,average well color development)and the diversity including the Shannon-Wiener index,Simpson index,richness index and Pielou evenness index of rhizosphere sediment was sig-nificantly higher than that of non-rhizosphere sediment.Microorganisms using sugar as the main carbon source was the main microorganism groups in the rhizosphere sediment of Acorus calamus,whereas microbes in the non-rhizo-sphere sediment mainly used ester and amine as carbon source.The carbon sources causing the metabolic differ-ences between non-rhizosphere sediment and rhizosphere sediment were D-Cellobiose,β-Methyl-D-Glucoside,Glu-cose-1-Phosphate,D-Galacturonic Acid,D-Glucosaminic Acid,Phenylethyl-amine,N-Acetyl-D-Glucosamine,D-Galactonic Acid y-Lactone,D-Mannitol and D,L-a-Glycerol.Analysis on the differences of functional diversity in microbial community between rhizosphere and nonrhizosphere sediment aims to reveal the mechanism of rhizosphere effect of aquatic macrophyte and provides scientific basis for improving the efficiency of pollutant removal by aquatic macrophyte.%为研究水生植物对沉积物微生物群落功能多样性的影响,采用Biolog-Eco微平板法分析非根际沉积物及菖蒲根际沉积物微生物群落功能多样性差异。结果表明:水生植物菖蒲的生长可大大提高沉积物中微生物的活性及多样性,菖蒲根际微生物总活性(AWCD)、微生物多样性指数(包括Shannon-Wiener 指数、丰富度指数及Pielou 均匀度指数)均显著高于非根际沉积物;菖蒲根际沉积物微生物主要是一些利用酯类及糖类作为碳源的微生物

  14. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  15. Microbial metagenomics in the Baltic Sea: Recent advancements and prospects for environmental monitoring.

    Science.gov (United States)

    Ininbergs, Karolina; Bergman, Birgitta; Larsson, John; Ekman, Martin

    2015-06-01

    Metagenomics refers to the analysis of DNA from a whole community. Metagenomic sequencing of environmental DNA has greatly improved our knowledge of the identity and function of microorganisms in aquatic, terrestrial, and human biomes. Although open oceans have been the primary focus of studies on aquatic microbes, coastal and brackish ecosystems are now being surveyed. Here, we review so far published studies on microbes in the Baltic Sea, one of the world's largest brackish water bodies, using high throughput sequencing of environmental DNA and RNA. Collectively the data illustrate that Baltic Sea microbes are unique and highly diverse, and well adapted to this brackish-water ecosystem, findings that represent a novel base-line knowledge necessary for monitoring purposes and a sustainable management. More specifically, the data relate to environmental drivers for microbial community composition and function, assessments of the microbial biodiversity, adaptations and role of microbes in the nitrogen cycle, and microbial genome assembly from metagenomic sequences. With these discoveries as background, prospects of using metagenomics for Baltic Sea environmental monitoring are discussed.

  16. Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA on Testing for Surface-Coated Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    YounJung Jung

    2015-07-01

    Full Text Available Four different manufactured surface-coated silver nanoparticles (AgNPs with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM. Both branched polyethylenimine (BPEI-AgNPs and polyethylene glycol (PEG-AgNPs were shown to be stable with 2% NaCl (non-aggregation, whereas both citrate (Cit-AgNPs and tannic acid (Tan-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50 for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs. It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results.

  17. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  18. Elucidating the diversity of aquatic microdochium and trichoderma species and their activity against the fish pathogen Saprolegnia diclina

    NARCIS (Netherlands)

    Liu, Yiying; Zachow, Christin; Raaijmakers, J.M.; Bruijn, De Irene

    2016-01-01

    Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security

  19. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    Science.gov (United States)

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  20. Business and biodiversity

    DEFF Research Database (Denmark)

    Andersen, Rasmus Meyer; Lehmann, Martin; Christensen, Per

    - a challenge that needs to be shared between conservationists, green organisations, public authorities, as well as the private sector. A new wave of green initiatives has emerged within the culture of business and marketing. The reasons for why businesses should engage in environmental actions are many......, but the effort has until now considered biodiversity actions relatively little, compared to other areas such as e.g. climate related actions. Nevertheless, the opportunity for businesses to meet their responsibilities and lift a share of the challenge is far from being just a romantic thought. Nor...... is the challenge of engaging businesses in responsible actions. The core challenge is to create awareness of the environmental phenomenon biodiversity, inform about the significance of business involvement, and encourage the business world to participate in this process of protecting biodiversity as the valuable...

  1. Plant biodiversity impacts on soil stability

    Science.gov (United States)

    Gould, Iain; Quinton, John; Bardgett, Richard

    2014-05-01

    In recent times, growing threats to global biodiversity have raised awareness from the scientific community, with particular interest on how plant diversity impacts on ecosystem functioning. In the field of plant-soil interactions, much work has been done to research the implications of species loss, primarily focussing on biological processes such as plant productivity, microbial activity and carbon cycling. Consequently, virtually nothing is known about how plant diversity might impact on soil physical properties, and what mechanisms might be involved. This represents a serious gap in knowledge, given that maintaining soils with good structural integrity can reduce soil erosion and water pollution, and can lead to improved plant yield. Therefore, there is a need for a greater understanding of how plant communities and ecological interactions between plant roots and soils can play a role in regulating soil physical structure. Soil aggregation is an important process in determining soil stability by regulating soil water infiltration and having consequences for erodibility. This is influenced by both soil physical constituents and biological activity; including soil organic carbon content, microbial growth, and increased plant rooting. As previously mentioned, plant diversity influences carbon dynamics, microbial activity and plant growth, therefore could have substantial consequences for soil aggregate stability. Here, we present results from a series of plant manipulation experiments, on a range of scales, to understand more about how plant diversity could impact on soil aggregate stability. Soils from both a plant manipulation mesocosm experiment, and a long term biodiversity field study, were analysed using the Le Bissonnais method of aggregate stability breakdown. Increasing plant species richness was found to have a significant positive impact on soil aggregate stability at both scales. In addition to this, the influence of species identity, functional group

  2. Enhancing the Biodiversity of Ditches in Intensively Managed UK Farmland.

    Science.gov (United States)

    Shaw, Rosalind F; Johnson, Paul J; Macdonald, David W; Feber, Ruth E

    2015-01-01

    Drainage ditches, either seasonally flooded or permanent, are commonly found on intensively managed lowland farmland in the UK. They are potentially important for wetland biodiversity but, despite their ubiquity, information on their biodiversity and management in the wider countryside is scarce. We surveyed 175 ditches for their physical and chemical characteristics, spatial connectivity, plant communities and aquatic invertebrates in an area of intensively managed farmland in Oxfordshire, UK and collected information on ditch management from farmer interviews. Water depth and shade had a small impact on the diversity of plant and invertebrate communities in ditches. Increased shade over the ditch channel resulted in reduced taxonomic richness of both channel vegetation and aquatic invertebrates and channel vegetation cover was lower at shaded sites. Invertebrate taxonomic richness was higher when water was deeper. Spatial connectivity had no detectable impact on the aquatic invertebrate or plant communities found in ditches. The number of families within the orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which contain many pollution-sensitive species, declined with decreasing pH of ditch water. As time since dredging increased, the number of EPT families increased in permanent ditches but decreased in temporary ditches. Whether or not a ditch was in an agri-environment scheme had little impact on the reported management regime or biodiversity value of the ditch. Measures for increasing the amount of water in ditches, by increasing the water depth or promoting retention of water in ditches, could increase the biodiversity value of ditches in agricultural land. Some temporary ditches for specialised species should be retained. Reducing the amount of shade over narrow ditches by managing adjacent hedgerows is also likely to increase the species diversity of plant and invertebrate communities within the ditch. We recommend that to preserve or enhance the

  3. Operationalizing biodiversity for conservation planning

    Indian Academy of Sciences (India)

    Sahotra Sarkar; Chris Margules

    2002-07-01

    Biodiversity has acquired such a general meaning that people now find it difficult to pin down a precise sense for planning and policy-making aimed at biodiversity conservation. Because biodiversity is rooted in place, the task of conserving biodiversity should target places for conservation action; and because all places contain biodiversity, but not all places can be targeted for action, places have to be prioritized. What is needed for this is a measure of the extent to which biodiversity varies from place to place. We do not need a precise measure of biodiversity to prioritize places. Relative estimates of similarity or difference can be derived using partial measures, or what have come to be called biodiversity surrogates. Biodiversity surrogates are supposed to stand in for general biodiversity in planning applications. We distinguish between true surrogates, those that might truly stand in for general biodiversity, and estimator surrogates, which have true surrogates as their target variable. For example, species richness has traditionally been the estimator surrogate for the true surrogate, species diversity. But species richness does not capture the differences in composition between places; the essence of biodiversity. Another measure, called complementarity, explicitly captures the differences between places as we iterate the process of place prioritization, starting with an initial place. The relative concept of biodiversity built into the definition of complementarity has the level of precision needed to undertake conservation planning.

  4. Freshwater habitats in Plovdiv town and its surroundings and their importance for the biodiversity

    Directory of Open Access Journals (Sweden)

    DILYAN GEORGIEV

    2015-08-01

    Full Text Available The current synopsis reviews the types of aquatic habitats, that are located in the city of Plovdiv and analyses their importance for the biodiversity. Studies of the biodiversity in urban landscapes are of particular importance because they are still scarce. Several plant and animal groups are studied in the city of Plovdiv – mosses, mollusks, fish, amphibians, reptiles, birds and mammals. Their distribution among habitats is presented, as well as specific threats and conservation problems.

  5. Freshwater biodiversity: importance, threats, status and conservation challenges.

    Science.gov (United States)

    Dudgeon, David; Arthington, Angela H; Gessner, Mark O; Kawabata, Zen-Ichiro; Knowler, Duncan J; Lévêque, Christian; Naiman, Robert J; Prieur-Richard, Anne-Hélène; Soto, Doris; Stiassny, Melanie L J; Sullivan, Caroline A

    2006-05-01

    because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

  6. Consequences of biodiversity loss for litter decomposition across biomes.

    Science.gov (United States)

    Handa, I Tanya; Aerts, Rien; Berendse, Frank; Berg, Matty P; Bruder, Andreas; Butenschoen, Olaf; Chauvet, Eric; Gessner, Mark O; Jabiol, Jérémy; Makkonen, Marika; McKie, Brendan G; Malmqvist, Björn; Peeters, Edwin T H M; Scheu, Stefan; Schmid, Bernhard; van Ruijven, Jasper; Vos, Veronique C A; Hättenschwiler, Stephan

    2014-05-08

    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.

  7. When Leeches reveal Biodiversity

    DEFF Research Database (Denmark)

    Schnell, Ida Bærholm

    to provide information about vertebrate biodiversity. This thesis covers the development of a monitoring method based on iDNA extracted from terrestrial haematophagous leeches, a continuation of the work presented in Schnell et al., 2012. The chapters investigate and/or discuss different subjects regarding...

  8. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...

  9. Books, Biodiversity, and Beyond!

    Science.gov (United States)

    Governor, Donna; Helms, Sarah

    2007-01-01

    Reading in science class does not have to be boring, but it is no secret to students or teachers that textbooks are not much fun to read. It is always a challenge for teachers to find reading materials that would grab the interests of their students. In this article, the author relates how she used Biodiversity, a nonfiction book by Dorothy…

  10. Biodiversity in the Anthropocene

    Science.gov (United States)

    Ellis, E. C.

    2012-12-01

    Humans have altered or replaced native ecosystems across more than three quarters of the terrestrial biosphere, creating new global patterns of biodiversity as a result of native species extinctions, domestication and anthropogenic introductions of nonnative species. These anthropogenic global changes in biodiversity have been portrayed as resulting primarily from recent and unprecedented human disturbances that are potentially indicative of catastrophic changes in the Earth system. Yet anthropogenic changes in species richness and community structure caused by human populations and their use of land have been widespread and profound in many regions since before the Holocene, and have been sustained for millennia in many regions, especially in the Temperate Zone. Beyond the anthropogenic megafaunal extinctions of the Pleistocene, habitat loss and fragmentation by agricultural land use has been sustained throughout the Holocene in many biomes at levels theoretically associated with major species extinctions. Anthropogenic patterns of species extinction differ greatly among taxa, with mammals and other larger fauna showing the greatest impacts. However, spatially explicit observations and models of contemporary global patterns of vascular plant species richness confirm that while native losses are likely significant across at least half of Earth's ice-free land, species richness has increased overall in most regional landscapes, mostly because nonnative species invasions tend to exceed native losses. Effective stewardship of biodiversity in the Anthropocene will require integrated global frameworks for observing, modeling and forecasting anthropogenic biodiversity change processes within the novel biotic communities created and sustained by human systems.; Percentage of terrestrial biomes converted to agricultural land over time. ; Conceptual diagram of biodiversity patterns associated with variations in population density, land use and land cover.

  11. Aquatic Therapy for Children

    Science.gov (United States)

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  12. Birds as biodiversity surrogates

    DEFF Research Database (Denmark)

    Larsen, Frank Wugt; Bladt, Jesper Stentoft; Balmford, Andrew

    2012-01-01

    1. Most biodiversity is still unknown, and therefore, priority areas for conservation typically are identified based on the presence of surrogates, or indicator groups. Birds are commonly used as surrogates of biodiversity owing to the wide availability of relevant data and their broad popular...... appeal. However, some studies have found birds to perform relatively poorly as indicators. We therefore ask how the effectiveness of this approach can be improved by supplementing data on birds with information on other taxa. 2. Here, we explore two strategies using (i) species data for other taxa...... areas identified on the basis of birds alone performed well in representing overall species diversity where birds were relatively speciose compared to the other taxa in the data sets. Adding species data for one taxon increased surrogate effectiveness better than adding genus- and family-level data...

  13. Educating for preserving biodiversity

    Directory of Open Access Journals (Sweden)

    Méndez, I. E.

    2014-01-01

    Full Text Available The notion of “culture of diversity” is presented in a new dimension. “That of educating for preserving biodiversity” is advanced together with its main challenges. The need of educating the masses for preserving biodiversity is perhaps the most outstanding to be faced, particularly if pedagogic requirements and the diversity of population is to be met. Likewise, it should help to put individuals in contact with the many elements conforming biodiversity and lead them to recognize its value ethically and esthetically. The research presents the framework for designing educating programs enhancing the genetic level, the ecosystem and the qualitative dimension and including materials and energy flood and its meaning for the homeostasis and autopoiesis of the system, together with its interactions with other components for achieving an equilibrium and stability. The importance of the natural evolution tendency is highlighted.

  14. Landscape Management and Biodiversity

    OpenAIRE

    Başkent, Emin Zeki

    1998-01-01

    For the protection, enhancement and management of forests for today's and future generations, an understanding of the spatial structure of forest ecosystems along with base forest management planning are necessary. In this study are presented an introduction, a description, an explanation of different approaches and the basic principles of landscape management or ecosystems management within the evolution of the forest management process. Furthermore, the issue of biodiversity or biologi...

  15. Biodiversity, globalisation and poverty.

    Science.gov (United States)

    Olorode, Omotoye

    2007-06-10

    The erosion of the stock of biodiversity on earth developed historically with the so-called voyages of discovery (and their antecedents), colonial conquests and the accompanying movements of natural products and peoples, i.e. movements of populations and genetic materials. These events happened with the development of technology and the so-called conquest, by man, of his environment and the appertaining development of specialization not only in industry but also in agriculture and environmental management. The development of specialization resulted in the homogenization of processes, products, inputs and input industries; this increased homogenization had the corollary of arrested heterogeneity across the board; what they call globalization is part of this process. The efficiency of homogenization, however, engendered new problems of fragility of human environment and of production and social relations and processes. The effects of this complex situation, in general terms and in terms of biodiversity in particular, have been more devastating for the more vulnerable regions, classes of people, and peoples of the world. A continuous rethinking of the epistemology and the social and political bases of existing policies on environment in general, and of biodiversity conservation in particular, has become imperative.

  16. European mountain biodiversity

    Directory of Open Access Journals (Sweden)

    Nagy, Jennifer

    1998-12-01

    Full Text Available This paper, originally prepared as a discussion document for the ESF Exploratory Workshop «Trends in European Mountain Biodiversity - Research Planning Workshop», provides an overview of current mountain biodiversity research in Europe. It discusses (a biogeographical trends, (b the general properties of biodiversity, (c environmental factors and the regulation of biodiversity with respect to ecosystem function, (d the results of research on mountain freshwater ecosystems, and (e climate change and air pollution dominated environmental interactions.- The section on biogeographical trends highlights the importance of altitude and latitude on biodiversity. The implications of the existence of different scales over the different levels of biodiversity and across organism groups are emphasised as an inherent complex property of biodiversity. The discussion on ecosystem function and the regulation of biodiversity covers the role of environmental factors, productivity, perturbation, species migration and dispersal, and species interactions in the maintenance of biodiversity. Regional and long-term temporal patterns are also discussed. A section on the relatively overlooked topic of mountain freshwater ecosystems is presented before the final topic on the implications of recent climate change and air pollution for mountain biodiversity.

    [fr] Ce document a été préparé à l'origine comme une base de discussion pour «ESF Exploratory Workshop» intitulé «Trends in European Mountain Biodiversity - Research Planning Workshop»; il apporte une vue d'ensemble sur les recherches actuelles portant sur la biodiversité des montagnes en Europe. On y discute les (a traits biogéographiques, (b les caractéristiques générales- de la biodiversité, (c les facteurs environnementaux et la régulation de la biodiversité par rapport à la fonction des écosystèmes, (d les résultats des études sur les écosystèmes aquatiques des montagnes et (e les

  17. The value of biodiversity.

    Science.gov (United States)

    Alho, C J R

    2008-11-01

    In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence), biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc.) with their related economic values.

  18. The value of biodiversity

    Directory of Open Access Journals (Sweden)

    CJR. Alho

    Full Text Available In addition to its intrinsic value (nature working as it is; species are the product of a long history of continuing evolution by means of ecological processes, and so they have the right to continued existence, biodiversity also plays a fundamental role as ecosystem services in the maintenance of natural ecological processes. The economic or utilitarian values of biodiversity rely upon the dependence of man on biodiversity; products that nature can provide: wood, food, fibers to make paper, resins, chemical organic products, genes as well as knowledge for biotechnology, including medicine and cosmetic sub-products. It also encompasses ecosystem services, such as climate regulation, reproductive and feeding habitats for commercial fish, some organisms that can create soil fertility through complex cycles and interactions, such as earthworms, termites and bacteria, in addition to fungi responsible for cycling nutrients like nitrogen, phosphorus and sulfur and making them available to plant absorption. These services are the benefits that people indirectly receive from natural ecosystem functions (air quality maintenance, regional climate, water quality, nutrient cycling, reproductive habitats of commercial fish, etc. with their related economic values.

  19. BioScore: A tool to assess the impacts of European Community policies on Europe's biodiversity

    NARCIS (Netherlands)

    Delbaere, B.; Nieto Serradilla, A.; Snethlage, M.; Alkemade, R.; Boitani, L.; Eggers, J.; Falcucci, A.; Framstad, E.; Heer, de M.; Hennekens, S.M.; Kemitzoglou, D.; Knegt, de B.; Knijf, de G.; Louette, G.; Maes, D.; Maiorano, L.; Nagy, S.; Ozinga, W.A.; Schaminée, J.H.J.; Tol, van S.; Tröltzsch, K.

    2009-01-01

    BioScore offers a European biodiversity impact assessment tool. The tool contains indicator values on the ecological preferences of more than 1000 species of birds, mammals, amphibians, reptiles, fish, butterflies, dragonflies, aquatic macro-invertebrates and vascular plants. These values are linked

  20. Effects of pond draining on biodiversity and water quality of farm ponds.

    Science.gov (United States)

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo.

  1. Combined effects of drought and the fungicide tebuconazole on aquatic leaf litter decomposition.

    Science.gov (United States)

    Pesce, Stéphane; Zoghlami, Olfa; Margoum, Christelle; Artigas, Joan; Chaumot, Arnaud; Foulquier, Arnaud

    2016-04-01

    Loss of biodiversity and altered ecosystem functioning are driven by the cumulative effects of multiple natural and anthropogenic stressors affecting both quantity and quality of water resources. Here we performed a 40-day laboratory microcosm experiment to assess the individual and combined effects of drought and the model fungicide tebuconazole (TBZ) on leaf litter decomposition (LLD), a fundamental biogeochemical process in freshwater ecosystems. Starting out from a worst-case scenario perspective, leaf-associated microbial communities were exposed to severe drought conditions (four 5-day drought periods alternated with 4-day immersion periods) and/or a chronic exposure to TBZ (nominal concentration of 20μgL(-1)). We assessed the direct effects of drought and fungicide on the structure (biomass, diversity) and activity (extracellular enzymatic potential) of fungal and bacterial assemblages colonizing leaves. We also investigated indirect effects on the feeding rates of the amphipod Gammarus fossarum on leaves previously exposed to drought and/or TBZ contamination. Results indicate a stronger effect of drought stress than fungicide contamination under the experimental conditions applied. Indeed, the drought stress strongly impacted microbial community structure and activities, inhibiting the LLD process and leading to cascading effects on macroinvertebrate feeding. However, despite the lack of significant effect of TBZ applied alone, the effects of drought on microbial functions (i.e., decrease in LLD and in enzymatic activities) and on Gammarus feeding rates were more pronounced when drought and TBZ stresses were applied together. In a perspective of ecological risk assessment and ecosystem management for sustainability, these findings stress the need for deeper insight into how multiple stressors can affect the functioning of aquatic ecosystems and associated services.

  2. Backbones of evolutionary history test biodiversity theory for microbes.

    Science.gov (United States)

    O'Dwyer, James P; Kembel, Steven W; Sharpton, Thomas J

    2015-07-07

    Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.

  3. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  4. Biofuels and biodiversity.

    Science.gov (United States)

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good.

  5. Biodiversity conservation including uncharismatic species

    DEFF Research Database (Denmark)

    Muñoz, Joaquin

    2007-01-01

    Recent papers mention ideas on the topics of biodiversity conservation strategies and priorities (Redford et al. 2003; Lamoreux et al. 2006; Rodrı´guez et al. 2006), the current status of biodiversity (Loreau et al. 2006), the obligations of conservation biologists regarding management policies...... (Chapron 2006; Schwartz 2006), and the main threats to biodiversity (including invasive species) (Bawa 2006). I suggest, however, that these articles do not really deal with biodiversity. Rather, they all focus on a few obviously charismatic groups (mammals, birds, some plants, fishes, human culture...

  6. Soil biodiversity and human health

    Science.gov (United States)

    Wall, Diana H.; Nielsen, Uffe N.; Six, Johan

    2015-12-01

    Soil biodiversity is increasingly recognized as providing benefits to human health because it can suppress disease-causing soil organisms and provide clean air, water and food. Poor land-management practices and environmental change are, however, affecting belowground communities globally, and the resulting declines in soil biodiversity reduce and impair these benefits. Importantly, current research indicates that soil biodiversity can be maintained and partially restored if managed sustainably. Promoting the ecological complexity and robustness of soil biodiversity through improved management practices represents an underutilized resource with the ability to improve human health.

  7. Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study.

    Science.gov (United States)

    Crowther, Thomas W; Maynard, Daniel S; Leff, Jonathan W; Oldfield, Emily E; McCulley, Rebecca L; Fierer, Noah; Bradford, Mark A

    2014-09-01

    The consequences of deforestation for aboveground biodiversity have been a scientific and political concern for decades. In contrast, despite being a dominant component of biodiversity that is essential to the functioning of ecosystems, the responses of belowground biodiversity to forest removal have received less attention. Single-site studies suggest that soil microbes can be highly responsive to forest removal, but responses are highly variable, with negligible effects in some regions. Using high throughput sequencing, we characterize the effects of deforestation on microbial communities across multiple biomes and explore what determines the vulnerability of microbial communities to this vegetative change. We reveal consistent directional trends in the microbial community response, yet the magnitude of this vegetation effect varied between sites, and was explained strongly by soil texture. In sandy sites, the difference in vegetation type caused shifts in a suite of edaphic characteristics, driving substantial differences in microbial community composition. In contrast, fine-textured soil buffered microbes against these effects and there were minimal differences between communities in forest and grassland soil. These microbial community changes were associated with distinct changes in the microbial catabolic profile, placing community changes in an ecosystem functioning context. The universal nature of these patterns allows us to predict where deforestation will have the strongest effects on soil biodiversity, and how these effects could be mitigated.

  8. Factors driving semi-aquatic predator occurrence in traditional cattle drinking pools: conservation issues

    Directory of Open Access Journals (Sweden)

    Raoul Manenti

    2016-08-01

    Full Text Available In several cases, human impact on water bodies and on their freshwater communities is detrimental, but in some cases the human activity may favour and enhance the biodiversity of small water bodies, as traditional cattle drinking pools. Despite their small size, small water bodies may constitute hot spot of biodiversity often representing the only lentic aquatic biotope in landscapes where superficial water lacks or flows in lotic environments like creeks and streams. Predators are good indicators of biodiversity in ponds and give information of food chain web complexity. In particular, semi-aquatic predators like amphibians and dragonflies may account for a substantial percentage of energy flow between aquatic and terrestrial ecosystems. In this study, we evaluated the conservation value of traditional cattle drinking pools building by assessing the factors determining the occurrence and distribution of the semi-aquatic predators. From April to August 2015, we investigated 30 distinct pools recording several abiotic and biotic environmental variables. We detected 4 semi-aquatic predators: Salamandra salamandra larvae, Triturus carnifex, Aeshna sp. larvae and Libellula sp. larvae. Abiotic features played a major role in shaping the predator community that resulted linked to stable, with no dryness period, and large drinking pools. Invertebrate prey biomass was not particularly important, while vegetation cover and occurrence of unpalatable tadpoles were the most important biotic features of the pools. Our study provides novel evidence on the importance of cattle drinking pools management to preserve biodiversity especially in areas where traditional pastoral activity is disappearing.

  9. Patterns in Biodiversity: Spatial organisation of biodiversity in the Netherland

    NARCIS (Netherlands)

    Schouten, M.A.

    2007-01-01

    A better understanding of biodiversity and its current threats is urgently needed, especially in the Netherlands where high population density, industrialisation, and intensive land-use have radically altered the natural landscape. Often, biodiversity research is seriously hampered by a lack of data

  10. Net present biodiversity value and the design of biodiversity offsets.

    Science.gov (United States)

    Overton, Jacob McC; Stephens, R T Theo; Ferrier, Simon

    2013-02-01

    There is an urgent need to develop sound theory and practice for biodiversity offsets to provide a better basis for offset multipliers, to improve accounting for time delays in offset repayments, and to develop a common framework for evaluating in-kind and out-of-kind offsets. Here, we apply concepts and measures from systematic conservation planning and financial accounting to provide a basis for determining equity across type (of biodiversity), space, and time. We introduce net present biodiversity value (NPBV) as a theoretical and practical measure for defining the offset required to achieve no-net-loss. For evaluating equity in type and space we use measures of biodiversity value from systematic conservation planning. Time discount rates are used to address risk of non-repayment, and loss of utility. We illustrate these concepts and measures with two examples of biodiversity impact-offset transactions. Considerable further work is required to understand the characteristics of these approaches.

  11. [90Sr and 137Cs in higher aquatic plants of the Chernobyl nuclear plant exlusion zone

    Science.gov (United States)

    Gudkov, D I; Derevets, V V; Kuz'menko, M I; Nazarov, A B

    2001-01-01

    The content of radionuclides 90Sr and 137Cs in higher aquatic plants of water objects within Chernobyl NPP exclusion zone has been analysed. Biodiversity of phytocenose was studied and species-indicators of radioactive contamination were revealed. The seasonal dynamics of radionuclide content in macrophytes was studied and the role of main aquatic plant clumps in processes of 137Cs and 90Sr distribution in abiotic component of biohydrocenose was demonstrated.

  12. Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available BACKGROUND: Marine snow (small amorphous aggregates with colloidal properties is present in all oceans of the world. Surface water warming and the consequent increase of water column stability can favour the coalescence of marine snow into marine mucilage, large marine aggregates representing an ephemeral and extreme habitat. Marine mucilage characterize aquatic systems with altered environmental conditions. METHODOLOGY/PRINCIPAL FINDINGS: We investigated, by means of molecular techniques, viruses and prokaryotes within the mucilage and in surrounding seawater to examine the potential of mucilage to host new microbial diversity and/or spread marine diseases. We found that marine mucilage contained a large and unexpectedly exclusive microbial biodiversity and hosted pathogenic species that were absent in surrounding seawater. We also investigated the relationship between climate change and the frequency of mucilage in the Mediterranean Sea over the last 200 years and found that the number of mucilage outbreaks increased almost exponentially in the last 20 years. The increasing frequency of mucilage outbreaks is closely associated with the temperature anomalies. CONCLUSIONS/SIGNIFICANCE: We conclude that the spreading of mucilage in the Mediterranean Sea is linked to climate-driven sea surface warming. The mucilage can act as a controlling factor of microbial diversity across wide oceanic regions and could have the potential to act as a carrier of specific microorganisms, thereby increasing the spread of pathogenic bacteria.

  13. Linking soil biodiversity and agricultural soil management

    NARCIS (Netherlands)

    Thiele-Bruhn, S.; Bloem, J.; Vries, de F.T.; Kalbitz, K.; Wagg, C.

    2012-01-01

    Soil biodiversity vastly exceeds aboveground biodiversity, and is prerequisite for ecosystem stability and services. This review presents recent findings in soil biodiversity research focused on interrelations with agricultural soil management. Richness and community structure of soil biota depend o

  14. Undergraduate Students' Attitudes toward Biodiversity

    Science.gov (United States)

    Huang, Hui-Ju; Lin, Yu-Teh Kirk

    2014-01-01

    The study investigated American and Taiwan undergraduate students' attitudes toward biodiversity. The survey questionnaire consisted of statements prompted by the question "To what extent do you agree with the following statements about problems with the biodiversity issues." Students indicated strongly disagree, disagree, agree,…

  15. Biodiversity: Who Knows, Who Cares?

    Science.gov (United States)

    Zemits, Birut

    2006-01-01

    Biodiversity is an abstract concept, attracting various responses from different people according to where they have come from and what ecosystems they have been closely linked to. In theory, most people would agree that protecting biodiversity is an important process, but in practice, few people commit to actions on a local level. This paper…

  16. Biodiversity: past, present, and future

    Science.gov (United States)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1997-01-01

    Data from the fossil record are used to illustrate biodiversity in the past and estimate modern biodiversity and loss. This data is used to compare current rates of extinction with past extinction events. Paleontologists are encouraged to use this data to understand the course and consequences of current losses and to share this knowledge with researchers interested in conservation and ecology.

  17. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does conf

  18. Microbial Biodiversity in Rhizosphere ofLycium bararumL. Relative to Cultivation History%不同种植年限宁夏枸杞根际微生物多样性变化

    Institute of Scientific and Technical Information of China (English)

    纳小凡; 郑国琦; 彭励; 雷川怡; 杨红艳; 马玉; 赵强; 石硕矾

    2016-01-01

    为了解长期人工种植枸杞根际土壤微生物的种群结构变化特征,利用Illumina MiSeq测序平台分别对种植5 a、10 a和15 a宁夏枸杞根际土壤微生物基因组总DNA中16S和18S rDNA基因的部分区域进行测序,经UPARSE pipeline和RDP classifier软件进行聚类分析和物种注释.结果表明,长期种植宁夏枸杞不会改变其根际土壤pH,但会导致根际土壤全磷、有效磷、全盐含量和电导率升高.测序结果表明,不同种植年限枸杞根际土壤细菌群落α多样性无显著变化,但真菌群落多样性在种植10 a枸杞中较种植5 a时显著降低(p<0.05),表明根际细菌群落多样性受种植年限影响较小.从门的分类水平看,酸杆菌门、放线菌门、拟杆菌门、厚壁菌门、绿弯菌门、泉古菌门、蓝菌门、芽单胞菌门、变形菌门以及真菌子囊菌门、担子菌门、接合菌门的比例在不同种植年限的枸杞根际土壤中显著改变(p<0.05).属水平的分析也表明,共有27个细菌属和16个真菌属的比例发生改变(p<0.05),这些结果表明枸杞根际土壤微生物群落组成受种植年限的影响更大.相关性分析结果表明,种植年限、土壤全磷及有效磷含量是影响枸杞根际微生物群落结构的主要因子.%The rhizosphere is a critical interface where exchange of substance takes place between plants roots and their surrounding soil. In the rhizosphere,interactions between the plant and soil microbes, though affected by a series of factors,such as physic-chemical properties of the rhizospheric soil,genotype of their host plant,can be beneficial to growth of the plant,the microbes or both. However,it is still not very clear how long-term cultivation ofLycium bararumL. would affect soil microbial community structure in the rhizosphere of the plant. Therefore,rhizospheric soil samples were collected fromLycium bararum L. fields different in cultivation history(5 a,10 a and 15 a)in a farm of

  19. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    Krogh (contributor), Paul Henning

    on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...... and climate change? The first ever European Atlas of Soil Biodiversity uses informative texts, stunning photographs and maps to answer these questions and other issues. The European Atlas of Soil Biodiversity functions as a comprehensive guide allowing non-specialists to access information about this unseen...... Biodiversity'. Starting with the smallest organisms such as the bacteria, this segment works through a range of taxonomic groups such as fungi, nematodes, insects and macro-fauna to illustrate the astonishing levels of heterogeneity of life in soil. The European Atlas of Soil Biodiversity is more than just...

  20. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments

    Science.gov (United States)

    Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji

    2016-12-01

    Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.

  1. Fungal Biodiversity in the Alpine Tarfala Valley

    Directory of Open Access Journals (Sweden)

    Claudia Coleine

    2015-10-01

    Full Text Available Biological soil crusts (BSCs are distributed worldwide in all semiarid and arid lands, where they play a determinant role in element cycling and soil development. Although much work has concentrated on BSC microbial communities, free-living fungi have been hitherto largely overlooked. The aim of this study was to examine the fungal biodiversity, by cultural-dependent and cultural-independent approaches, in thirteen samples of Arctic BSCs collected at different sites in the Alpine Tarfala Valley, located on the slopes of Kebnekaise, the highest mountain in northern Scandinavia. Isolated fungi were identified by both microscopic observation and molecular approaches. Data revealed that the fungal assemblage composition was homogeneous among the BSCs analyzed, with low biodiversity and the presence of a few dominant species; the majority of fungi isolated belonged to the Ascomycota, and Cryptococcus gilvescens and Pezoloma ericae were the most frequently-recorded species. Ecological considerations for the species involved and the implication of our findings for future fungal research in BSCs are put forward.

  2. The Biodiversity Informatics Potential Index

    Directory of Open Access Journals (Sweden)

    Ariño Arturo H

    2011-12-01

    Full Text Available Abstract Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a the intrinsic biodiversity potential (the biological richness or ecological diversity of a country; (b the capacity of the country to generate biodiversity data records; and (c the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a identifying

  3. Towards understanding, managing and protecting microbial ecosystems

    Directory of Open Access Journals (Sweden)

    Paul eBodelier

    2011-04-01

    Full Text Available Microbial communities are at the very basis of life on earth, catalysing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper indentifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology.

  4. Water Quality Criteria for Human Health and Aquatic Life

    Science.gov (United States)

    Collaborative effort with the Office of Water to provide science in support of the development and implementation of new or revised ambient water quality criteria for microbial and chemical contaminants for human health and aquatic life. The research also addresses implementation...

  5. Selective preservation and origin of petroleum-forming aquatic kerogen

    Science.gov (United States)

    Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1983-01-01

    Studies of a marine algal sapropel from Mangrove Lake, Bermuda, by 13C NMR and stable carbon isotopic methods show that precursors of aquatic kerogen (insoluble, macromolecular, paraffinic humic substances) are primary components of algae and possibly associated bacteria and that these substances survive microbial decomposition and are selectively preserved during early diagenesis. ?? 1983 Nature Publishing Group.

  6. Urban biodiversity: patterns and mechanisms.

    Science.gov (United States)

    Faeth, Stanley H; Bang, Christofer; Saari, Susanna

    2011-03-01

    The patterns of biodiversity changes in cities are now fairly well established, although diversity changes in temperate cities are much better studied than cities in other climate zones. Generally, plant species richness often increases in cities due to importation of exotic species, whereas animal species richness declines. Abundances of some groups, especially birds and arthropods, often increase in urban areas despite declines in species richness. Although several models have been proposed for biodiversity change, the processes underlying the patterns of biodiversity in cities are poorly understood. We argue that humans directly control plants but relatively few animals and microbes-the remaining biological community is determined by this plant "template" upon which natural ecological and evolutionary processes act. As a result, conserving or reconstructing natural habitats defined by vegetation within urban areas is no guarantee that other components of the biological community will follow suit. Understanding the human-controlled and natural processes that alter biodiversity is essential for conserving urban biodiversity. This urban biodiversity will comprise a growing fraction of the world's repository of biodiversity in the future.

  7. Indicators for Monitoring Soil Biodiversity

    DEFF Research Database (Denmark)

    Bispo, A.; Cluzeau, D.; Creamer, R.

    2009-01-01

    is made for a set of suitable indicators for monitoring the decline in soil biodiversity (Bispo et al. 2007). These indicators were selected both from a literature review and an inventory of national monitoring programmes. Decline in soil biodiversity was defined as the reduction of forms of life living...... indicators are actually measured.   For monitoring application it was considered in ENVASSO that only three key indicators per soil stress were practical. For indicating biodiversity decline it was difficult to arrive at a small set of indicators due to the complexity of soil biota and functions. Therefore...

  8. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  9. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  10. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  11. Diversity of Aquatic Insects in Keniam River, National Park, Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Rasdi, Z.

    2012-09-01

    Full Text Available The study on biodiversity of aquatic insects was carried out covering the area of Kuala Keniam to Kuala Perkai River, National Park, Pahang, Malaysia. The macro invertebrate community was found in the different types of micro-habitat and various flowing speed levels in good quality of water of Keniam Rivers consisted mainly of aquatic insects. There are large numbers and wide species of aquatic insects in aquatic habitats make them of great ecological importance. There are three divided strata with total of nine sampling location were carried out within several varieties of microhabitats such as sandy, cobble, gravel, leaf and the pool area. The aquatic insects were collected and sampled by using a D-framed aquatic kick net. There was a wide variety of aquatic insects belonging to at least 8 orders in the study area. The orders of insect were Odonata, Coleoptera, Diptera, Trichoptera, Thysanura, Orthopthera, Hemiptera and Ephemeroptera. Throughout the study period, there is range from total of 140 to 604 individuals of aquatic insect trapped monthly and collected in Keniam River from September 2009 to December 2010. Some group of aquatic insects were found significant (χ2<0.05 different abundance between strata and sampling dates as well as habitat on the diversity of aquatic insects in Keniam River. The abundance and distribution of aquatic insects‟ species were varied and not constant from one month to another during the study period due to biotic and abiotic factors. Species diversity of aquatic insects varied in different strata of the Keniam River. This indicates the richness and diverse groups of aquatic insects in the study area. It adds to the fact that the undisturbed habitat quality is most suitable for insects to breed and multiply under the natural ecosystem with abundant food supply. Moving upstream from Kuala Perkai to lower stream to Kuala Keniam, one can observe various types of habitats for aquatic insects to live.

  12. ZOONOSIS OF AQUATICAL ORGANISMS

    OpenAIRE

    2001-01-01

    Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and tra...

  13. Economic inequality predicts biodiversity loss.

    Science.gov (United States)

    Mikkelson, Gregory M; Gonzalez, Andrew; Peterson, Garry D

    2007-05-16

    Human activity is causing high rates of biodiversity loss. Yet, surprisingly little is known about the extent to which socioeconomic factors exacerbate or ameliorate our impacts on biological diversity. One such factor, economic inequality, has been shown to affect public health, and has been linked to environmental problems in general. We tested how strongly economic inequality is related to biodiversity loss in particular. We found that among countries, and among US states, the number of species that are threatened or declining increases substantially with the Gini ratio of income inequality. At both levels of analysis, the connection between income inequality and biodiversity loss persists after controlling for biophysical conditions, human population size, and per capita GDP or income. Future research should explore potential mechanisms behind this equality-biodiversity relationship. Our results suggest that economic reforms would go hand in hand with, if not serving as a prerequisite for, effective conservation.

  14. MCBS Sites of Biodiversity Significance

    Data.gov (United States)

    Minnesota Department of Natural Resources — This data layer represents areas with varying levels of native biodiversity that may contain high quality native plant communities, rare plants, rare animals, and/or...

  15. An international biodiversity observation year.

    Science.gov (United States)

    Wall; Adams; Mooney; Boxshall; Dobson; Nakashizuka

    2001-01-01

    The International Geophysical Year (IGY), which took place between July 1957 and December 1958, helped us to rethink the world. At a time when there was a major paradigm shift in our understanding of the physical world, the international collaboration of the IGY helped to reset the discipline. The International Biodiversity Observation Year (IBOY) is now occurring at a time when our dependence on, and understanding of, biodiversity is being acknowledged as a paradigm shift in our present view of the world. Although the benefits of IGY were initially intellectual with practical effects remaining unknown until many years later, the benefits of greater knowledge of biodiversity will support efforts towards sustainability and affect the quality of life, both now and in the future. By providing the framework for international collaborations between scientists involved in every aspect of life on Earth, IBOY has the potential to redefine our current understanding of biodiversity in a manner similar to how IGY helped redefine the geophysical world.

  16. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  17. Ecotoxicology & Impact on Biodiversity

    Directory of Open Access Journals (Sweden)

    Shanky Bhat

    2013-07-01

    Full Text Available Ecotoxicology can be defined as the ‘study of impacts of pollutants on the structure and function of ecosystems’ it can be by manmade poisonous chemicals and their effect on the environment, it does not include the study of naturally occurring toxins or it is a scientific discipline combining the methods of ecology and toxicology in studying the effects of toxic substances and especially pollutants on the environment. Ecotoxicology is a mix of various discipline ecology, toxicology, analytical chemistry, physiology, molecular biology, and mathematics. Ecotoxicology looks at the impacts of contaminants including populations, pesticides on individuals, natural communities, and ecosystems. Communities of living things and the environments they live in form ecosystems.Ecosystems include rivers, ponds, deserts, grasslands, and forests, and they too can be affected by pesticides. Ecotoxicologists also study what happens to the pesticides themselves, where they go in the environment, how long they last, and how they finally break down. Herein we review what is ecotoxicology, different kinds of toxicants their impact on biodiversity, assessment of toxicity of environmental toxicant.

  18. Filling in biodiversity threat gaps

    DEFF Research Database (Denmark)

    Joppa, L. N.; O'Connor, Brian; Visconti, Piero

    2016-01-01

    increase to 10,000 times the background rate should species threatened with extinction succumb to pressures they face (4). Reversing these trends is a focus of the Convention on Biological Diversity's 2020 Strategic Plan for Biodiversity and its 20 Aichi Targets and is explicitly incorporated...... into the United Nations' 2030 Agenda for Sustainable Development and its 17 Sustainable Development Goals (SDGs). We identify major gaps in data available for assessing global biodiversity threats and suggest mechanisms for closing them....

  19. Biodiversity of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 2 stream_content_type text/plain stream_name Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt stream_source_info Biodiversity_Western_Ghats_Inf_Kit_1994_3.1_1.pdf.txt Content-Encoding ISO-8859-1 Content-Type text.../plain; charset=ISO-8859-1 ...

  20. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    block number) FIELD GROUP SUB-GROUP Allelopathy "Bioassay . Growth inhibition. Aquatic macrophytes. Biocontrol Lena minor 19. ABSTRACT (Continue on...Bibliography of Aquatic Plant Allelopathy ........ Al 2 ALLELOPATHIC AQUATIC PLANTS FOR AQUATIC PLANT MANAGEMENT; A FEASIBILITY STUDY Introduction Background 1...nutrients, water, and other biotic effects could have overriding effects that appear as competition or allelopathy . These biotic factors must be

  1. 转Bt基因抗虫棉对土壤微生物群落生物多样性的影响%Effect of Transgenic Bt Cotton on Biodiversity of Soil Microbial Community.

    Institute of Scientific and Technical Information of China (English)

    李孝刚; 刘标; 徐文华; 曹伟; 方志翔; 刘蔸蔸; 贺昭和; 韩正敏

    2011-01-01

    设置非转基因抗虫棉棉田以及分别种植7和10 a转Bt基因抗虫棉的棉田3个处理,于2007--2008年棉花苗期、蕾期、花铃期和吐絮期采样测定了土壤中5个微生物种类的数量,以监测长期种植转Bt基因抗虫棉对土壤微生物群落生物多样性的影响.结果表明,3种类型棉田土壤细菌、真菌、固氮菌、反硝化细菌、亚硝化细菌数量以及微生物多样性指数在整个棉花生长期内变化趋势基本一致,其中,在棉花蕾期各种微生物数量达到高峰.与种植非转基因抗虫棉相比,不同种植年限转Bt基因抗虫棉对土壤细菌、真菌、固氮菌、反硝化细菌、亚硝化细菌数量和微生物多样性指数都无显著影响,但随着采样时间的不同,3种类型棉田土壤各类微生物数量和多样性指数都呈明显季节变化.%Transgenic Bt cotton has been released into the environment commercially for over 10 years in China,and its influence on soil microbes is an important part of biosafety research. To monitor impact of long-term cultivation of transgenic Bt cotton on diversity of soil microbial community, one cotton field where non-transgenic had been planted all along and other two cotton fields where transgenic Bt cotton had been planted for seven and ten years, respectively, were selected and soil samples were taken from these fields at four different cotton growth stages, namely, seedling, budding, bell forming and boll opening stage during 2007 and 2008. Results show that the populations of bacteria, fungi, azotobacter, denitrobacteria, nitrosobacteria and the diversity indices of microbes have a similar variation pattern during the cotton 8rowing period in three cotton fields and their populations peaked at the budding stage. There was no significant difference in population and diversity index of soil microbes between the two transgenic Bt cotton fields different in cultivation history, but significant seasonal variation of the

  2. Microbial Community and Urban Water Quality

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; ZHANG Yongyu; LIU Lemian; WANG Changfu; YU Xiaoqing

    2012-01-01

    Urbanization of China is substantial and growing, and water resources are crucial for both economic and social sustainable development. Unfortunately, the frequency and intensity of water contamination events are increasing at an unprecedented rate and often accompanied by increased pollutant loading due to human activities such as irreversible industrialization and urbanization. The impacts of human pollution are most evident and of greatest concern at the microbial level. The research of the Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, has been focusing mainly on aquatic microorganisms in the urban environment, from drinking water and landscape water to waste water. Its projects fall into three categories: biomonitoring and bioassessment, microbial ecology and diversity, ecotoxicology and environmental microbiology. Its scientific topics include the aquatic ecological safety and microbial food web.

  3. Multifactorial diversity sustains microbial community stability

    NARCIS (Netherlands)

    Erkus, O.; Jager, de V.C.L.; Spus, M.; Alen-Boerrigter, van I.J.; Rijswijck, van I.M.H.; Hazelwood, L.; Janssen, P.W.; Hijum, van S.A.F.T.; Kleerebezem, M.; Smid, E.J.

    2013-01-01

    Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two spec

  4. Mining Hot Springs for Biodiversity and Novel Enzymes

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth

    The existence of microbial life at extreme environments, such as hot springs, has been known for a few decades. The remarkable ability of microorganisms to withstand the extreme conditions of their habitats, has astounded scientist and pushed the limits of what was considered possible. Thermophilic...... culture-dependent as well as culture-independent methods. Each hot spring sample was enriched on various polymeric substrates at high temperatures in the search of thermophilic microorganism with the ability to degrade the substrate. Enzymatic activity of the cultures was confirmed, the most promising...... the biodiversity within the environment. By comparing several metagenomic data sets from hot spring from around the world, we could analyze community structures of cellular microorganisms as well as the biodiversity of viral sequences. We found that crenarchaeal viruses are dominant in these environments...

  5. Evolution, plant breeding and biodiversity

    Directory of Open Access Journals (Sweden)

    Salvatore Ceccarelli

    2011-11-01

    Full Text Available This paper deals with changes in biodiversity during the course of evolution, plant domestication and plant breeding. It shows than man has had a strong influence on the progressive decrease of biodiversity, unconscious at first and deliberate in modern times. The decrease in biodiversity in the agricultures of the North causes a severe threat to food security and is in contrasts with the conservation of biodiversity which is part of the culture of several populations in the South. The concluding section of the paper shows that man could have guided evolution in a different way and shows an example of participatory plant breeding, a type of breeding which is done in collaboration with farmers and is based on selection for specific adaptation. Even though participatory plant breeding has been practiced for only about 20 years and by relatively few groups, the effects on both biodiversity and crop production are impressive. Eventually the paper shows how participatory plant breeding can be developed into ‘evolutionary plant breeding’ to cope in a dynamic way with climate changes.

  6. Motivations for conserving urban biodiversity.

    Science.gov (United States)

    Dearborn, Donald C; Kark, Salit

    2010-04-01

    In a time of increasing urbanization, the fundamental value of conserving urban biodiversity remains controversial. How much of a fixed budget should be spent on conservation in urban versus nonurban landscapes? The answer should depend on the goals that drive our conservation actions, yet proponents of urban conservation often fail to specify the motivation for protecting urban biodiversity. This is an important shortcoming on several fronts, including a missed opportunity to make a stronger appeal to those who believe conservation biology should focus exclusively on more natural, wilder landscapes. We argue that urban areas do offer an important venue for conservation biology, but that we must become better at choosing and articulating our goals. We explored seven possible motivations for urban biodiversity conservation: preserving local biodiversity, creating stepping stones to nonurban habitat, understanding and facilitating responses to environmental change, conducting environmental education, providing ecosystem services, fulfilling ethical responsibilities, and improving human well-being. To attain all these goals, challenges must be faced that are common to the urban environment, such as localized pollution, disruption of ecosystem structure, and limited availability of land. There are, however, also challenges specific only to particular goals, meaning that different goals will require different approaches and actions. This highlights the importance of specifying the motivations behind urban biodiversity conservation. If the goals are unknown, progress cannot be assessed.

  7. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... network of scientists, conservation organizations, government agencies, Permanent Participants Arctic community experts and leaders. Using an ecosystem-based monitoring approach which includes species, ecological functions, ecosystems, their interactions, and potential drivers, the CBMP focuses...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP...

  8. Intense ultraviolet perturbations on aquatic primary producers

    CERN Document Server

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  9. Capabilities of Seven Species of Aquatic Macrophytes for Phytoremediation of Pentachlorophenol Contaminated Sediment

    Science.gov (United States)

    Zhao, Liangyuan; Guo, Weijie; Li, Qingyun; Li, Huan; Zhao, Weihua; Cao, Xiaohuan

    2017-01-01

    Sediments are regarded as the ultimate sink of pentachlorophenol(PCP) in aquatic environment, and capabilities of seven species of aquatic macrophytes for remediating PCP contaminated sediment were investigated. Seven species of aquatic macrophytes could significantly accelerate the degradation of PCP in sediments. Among all, canna indica L., Acorus calamus L. and Iris tectorum Maxim. can be used as efficient alternative plants for remediation of PCP contaminated sediment, which attained 98%, 92% and 88% of PCP removal in sediments, respectively. PCP was detected only in root tissues and the uptake was closely related to the root lipid contents of seven plants. The presence of seven aquatic macrophytes significantly increased microbial populations and the activities of dehydrogenase compared with control sediments, indicating that rhizosphere microorganism played important role in the remediation process. In conclusion, seven species of aquatic macrophytes may act as promising tools for the PCP phytoremediation in aquatic environment, especially Canna indica L., Acorus calamus L. and Iris tectorum Maxim.

  10. Edge Effects Are Important in Supporting Beetle Biodiversity in a Gravel-Bed River Floodplain

    OpenAIRE

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation stat...

  11. Data intensive computing for biodiversity

    CERN Document Server

    Dhillon, Sarinder K

    2013-01-01

    This book is focused on the development of a data integration framework for retrieval of biodiversity information from heterogeneous and distributed data sources. The data integration system proposed in this book links remote databases in a networked environment, supports heterogeneous databases and data formats, links databases hosted on multiple platforms, and provides data security for database owners by allowing them to keep and maintain their own data and to choose information to be shared and linked. The book is a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development for data integration in biodiversity.

  12. Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge

    KAUST Repository

    Van Der Merwe, Riaan

    2014-06-01

    The discharge of concentrate and other process waters from seawater reverse osmosis (SWRO) plant operations into the marine environment may adversely affect water quality in the near-field area surrounding the outfall. The main concerns are the increase in salt concentration in receiving waters, which results in a density increase and potential water stratification near the outfall, and possible increases in turbidity, e.g., due to the discharge of filter backwash waters. Changes in ambient water quality may affect microbial abundance in the area, for example by hindering the photosynthesis process or disrupting biogenesis. It is widely accepted that marine biodiversity is lower in more extreme conditions, such as high salinity environments. As aquatic microbial communities respond very rapidly to changes in their environment, they can be used as indicators for monitoring ambient water quality. The objective of this study was to assess possible changes in microbial abundance as a result of concentrate discharge into the near-field area (<. 25. m) surrounding the outfall of the King Abdullah University of Science and Technology (KAUST) SWRO plant. Flow cytometric (FCM) analysis was conducted in order to rapidly determine microbial abundance on a single-cell level in 107 samples, taken by diving, from the discharge area, the intake area and two control sites. FCM analysis combined the measurement of distinct scatter of cells and particles, autofluorescence of cyanobacteria and algae, and fluorescence after staining of nucleic acids with SYBR® Green for a total bacterial count. The results indicate that changes in microbial abundance in the near-field area of the KAUST SWRO outfall are minor and appear to be the result of a dilution effect rather than a direct impact of the concentrate discharge. © 2014 Elsevier B.V.

  13. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  14. Aquatic Equipment Information.

    Science.gov (United States)

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  15. Biodiversity Risk Assessment of Protected Ecosystems

    Directory of Open Access Journals (Sweden)

    Vitalija Rudzkienė

    2013-10-01

    Full Text Available Forest ecosystems are characterised by the most abundant biodiversity because there are the best conditions for existence of various species of plants, animals and various other organisms there. Generally, in the last decades a lot of attention is given to biodiversity, and scientific research draws attention to an increasing loss of biodiversity. Biodiversity measurements are needed in order to understand biodiversity changes and to control them. Measurements and assessments of biodiversity of ecosystems reveal the condition of an ecosystem of a certain territory as well as create the basis for a strategy of preserving separate species. A lot of indices for assessing biodiversity risk have been created in the last decades. Integrated indices are composed when joining indices, and one of them is the integrated biodiversity risk assessment index NABRAI (National Biodiversity Risk Assessment Index. This article analyses the principles of creating biodiversity risk indices, possible alternatives of components (variables of biodiversity resources, impact and response indices, and their suitability at the national level. Assessment and ranking methodology, adapted for assessment of biodiversity risk of local protected territories and for ranking of territories, is presented. Report data of directorates of Lithuanian national and regional parks are used for the analysis, as well as the data served as a basis to calculate integrated biodiversity risk indices of several protected territories of Lithuania.DOI: http://dx.doi.org/10.5755/j01.erem.65.3.4478

  16. Global biodiversity monitoring: from data sources to essential biodiversity variables

    Science.gov (United States)

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  17. Biodiverse planting for carbon and biodiversity on indigenous land.

    Science.gov (United States)

    Renwick, Anna R; Robinson, Catherine J; Martin, Tara G; May, Tracey; Polglase, Phil; Possingham, Hugh P; Carwardine, Josie

    2014-01-01

    Carbon offset mechanisms have been established to mitigate climate change through changes in land management. Regulatory frameworks enable landowners and managers to generate saleable carbon credits on domestic and international markets. Identifying and managing the associated co-benefits and dis-benefits involved in the adoption of carbon offset projects is important for the projects to contribute to the broader goal of sustainable development and the provision of benefits to the local communities. So far it has been unclear how Indigenous communities can benefit from such initiatives. We provide a spatial analysis of the carbon and biodiversity potential of one offset method, planting biodiverse native vegetation, on Indigenous land across Australia. We discover significant potential for opportunities for Indigenous communities to achieve carbon sequestration and biodiversity goals through biodiverse plantings, largely in southern and eastern Australia, but the economic feasibility of these projects depend on carbon market assumptions. Our national scale cost-effectiveness analysis is critical to enable Indigenous communities to maximise the benefits available to them through participation in carbon offset schemes.

  18. Children prioritize virtual exotic biodiversity over local biodiversity.

    Directory of Open Access Journals (Sweden)

    Jean-Marie Ballouard

    Full Text Available Environmental education is essential to stem current dramatic biodiversity loss, and childhood is considered as the key period for developing awareness and positive attitudes toward nature. Children are strongly influenced by the media, notably the internet, about biodiversity and conservation issues. However, most media focus on a few iconic, appealing, and usually exotic species. In addition, virtual activities are replacing field experiences. This situation may curb children knowledge and concerns about local biodiversity. Focusing our analyses on local versus exotic species, we examined the level of knowledge and the level of diversity of the animals that French schoolchildren are willing to protect, and whether these perceptions are mainly guided by information available in the internet. For that, we collected and compared two complementary data sets: 1 a questionnaire was administered to schoolchildren to assess their knowledge and consideration to protect animals, 2 an internet content analysis (i.e. Google searching sessions using keywords was performed to assess which animals are the most often represented. Our results suggest that the knowledge of children and their consideration to protect animal are mainly limited to internet contents, represented by a few exotic and charismatic species. The identification rate of local animals by schoolchildren was meager, suggesting a worrying disconnection from their local environment. Schoolchildren were more prone to protect "virtual" (unseen, exotic rather than local animal species. Our results reinforce the message that environmental education must also focus on outdoor activities to develop conservation consciousness and concerns about local biodiversity.

  19. Introduced aquatic plants and algae

    Science.gov (United States)

    Non-native aquatic plants such as waterhyacinth and hydrilla severely impair the uses of aquatic resources including recreational faculties (lakes, reservoirs, rivers) as well as timely delivery of irrigation water for agriculture. Costs associated with impacts and management of all types of aquatic...

  20. Aquatic Plants and their Control.

    Science.gov (United States)

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  1. Unravelling microbial communities with DNA-microarrays: challenges and future directions

    NARCIS (Netherlands)

    Wagner, M.; Smidt, H.; Loy, A.; Zhou, J.

    2007-01-01

    High-throughput technologies are urgently needed for monitoring the formidable biodiversity and functional capabilities of microorganisms in the environment. Ten years ago, DNA microarrays, miniaturized platforms for highly parallel hybridization reactions, found their way into environmental microbi

  2. Analysis of Forest Biodiversity Changes in China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    By reference of the evaluative data of forest biodiversity changes in China from 1973 to 1998, the variation analysis models of the pressure index of forest biodiversity, forest ecosystem diversity and forest species diversity, as well as the general index of forest biodiversity are developed using Statistical Package for the Social Sciences (SPSS). Furthermore established is the relevant model of mutation of forest diversity potential functions. This paper points out that changes of forest biodiversity...

  3. Business Meets Biodiversity Conference 2012

    NARCIS (Netherlands)

    Vollaard, B.; Man, M. de; Verweij, P.A.

    2012-01-01

    How can companies successfully integrate the sustainable management of ecosystems and biodiversity into their business models? This was the central question at the international conference ‘Business Meets Biodiversity’ held in Utrecht, The Netherlands, on June 27th 2012. The organizing committee, co

  4. Teaching Biodiversity: A Successful Approach

    Science.gov (United States)

    Gilbert, Lynne; Brown, Lucy

    2010-01-01

    This article takes you on a journey through the authors' school course unit, the "Variety of Life," which aims to unpick the idea of biodiversity and its many facets. The aims and principles of each teaching topic are defined, teaching activities suggested, resources described and the skills each topic develops listed. Whilst aimed at…

  5. Biodiversity in Word and Meaning

    Science.gov (United States)

    Slingsby, David

    2010-01-01

    This article argues that we need to abandon the word "biodiversity", to rediscover the biology that it obscures and to rethink how to introduce this biology to young people. We cannot go back to the systematics that once made up a large part of a biology A-level course (ages 16-18), so we need to find alternative ways of introducing the…

  6. Biodiversity Conservation in the REDD

    Directory of Open Access Journals (Sweden)

    Ferry Slik JW

    2010-11-01

    Full Text Available Abstract Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics.

  7. Africa's hotspots of biodiversity redefined

    NARCIS (Netherlands)

    Küper, W.; Sommer, J.H.; Lovett, J.C.; Beentje, H.J.; Rompaey, van R.S.A.R.; Chatelain, C.; Sosef, M.S.M.; Barthlott, W.

    2004-01-01

    A key problem for conservation is the coincidence of regions of high biodiversity with regions of high human impact. Twenty-five of the most threatened centers of plant diversity were identified by Myers et al., and these "hotspots" play a crucial role in international conservation strategies. The p

  8. Trading biodiversity for pest problems

    Science.gov (United States)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  9. Aquatic macrophyte community varies in urban reservoirs with different degrees of eutrophication

    Directory of Open Access Journals (Sweden)

    Suelen Cristina Alves da Silva

    2014-06-01

    Full Text Available AIM: Investigate spatial and temporal variation in the aquatic macrophyte community in four urban reservoirs located in Curitiba metropolitan region, Brazil. We tested the hypothesis that aquatic macrophyte community differ among reservoirs with different degrees of eutrophication. METHODS: The reservoirs selected ranged from oligotrophic/mesotrophic to eutrophic. Sampling occurred in October 2011, January 2012 and June 2012. Twelve aquatic macrophytes stands were sampled at each reservoir. Species were identified and the relative abundance of aquatic macrophytes was estimated. Differences among reservoirs and over sampling periods were analyzed: i through two‑way ANOVAs considering the stand extent (m and the stand biodiversity - species richness, evenness, Shannon-Wiener index and beta diversity (species variation along the aquatic macrophyte stand; and ii through PERMANOVA considering species composition. Indicator species that were characteristic for each reservoir were also identified. RESULTS: The aquatic macrophyte stand extent varied among reservoirs and over sampling periods. Species richness showed only temporal variation. On the other hand, evenness and Shannon-Wiener index varied only among reservoirs. The beta diversity of macrophyte stands did not vary among reservoirs or over time, meaning that species variability among aquatic macrophyte stands was independent of the stand extent and reservoir eutrophication. Community composition depended on the reservoir and sampling period. CONCLUSIONS: Our results support our initial expectation that reservoirs of different degrees of eutrophication have different aquatic macrophyte communities. As a consequence, each reservoir had particular indicator species. Therefore, monitoring and management efforts must be offered for each reservoir individually.

  10. Assessing biodiversity funding during the sixth extinction.

    Science.gov (United States)

    Amato, George; DeSalle, Rob

    2012-08-01

    Funding for understanding biodiversity on this planet has had a checkered and unsatisfactory history. There have been some true successes in developing models for assessing biodiversity, but satisfactory governmental and international support has been piecemeal and unsatisfactory. A true solution to the biodiversity crisis will require greater attention from governmental and international funding agencies.

  11. Delayed biodiversity change: no time to waste.

    Science.gov (United States)

    Essl, Franz; Dullinger, Stefan; Rabitsch, Wolfgang; Hulme, Philip E; Pyšek, Petr; Wilson, John R U; Richardson, David M

    2015-07-01

    Delayed biodiversity responses to environmental forcing mean that rates of contemporary biodiversity changes are underestimated, yet these delays are rarely addressed in conservation policies. Here, we identify mechanisms that lead to such time lags, discuss shifting human perceptions, and propose how these phenomena should be addressed in biodiversity management and science.

  12. Biology Student Teachers' Conceptual Frameworks regarding Biodiversity

    Science.gov (United States)

    Dikmenli, Musa

    2010-01-01

    In recent years, biodiversity has received a great deal of attention worldwide, especially in environmental education. The reasons for this attention are the increase of human activities on biodiversity and environmental problems. The purpose of this study is to investigate biology student teachers' conceptual frameworks regarding biodiversity.…

  13. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    OpenAIRE

    2011-01-01

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functi...

  14. Scaling macroscopic aquatic locomotion

    Science.gov (United States)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  15. Counting Viruses and Bacteria in Photosynthetic Microbial Mats

    OpenAIRE

    Carreira, C.; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures typically used in benthic viral ecology were applied to the complex matrix of microbial mats but were found to inefficiently extract viruses. Here, we present a method for extraction and quantifica...

  16. Biodiversity optimal sampling: an algorithmic solution

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2012-03-01

    Full Text Available Biodiversity sampling is a very serious task. When biodiversity sampling is not representative of the biodiversity spatial pattern due to few data or uncorrected sampling point locations, successive analyses, models and simulations are inevitably biased. In this work, I propose a new solution to the problem of biodiversity sampling. The proposed approach is proficient for habitats, plant and animal species, in addition it is able to answer the two pivotal questions of biodiversity sampling: 1 how many sampling points and 2 where are the sampling points.

  17. Options for promoting high-biodiversity REDD+

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Steve; Mcnally, Richard; Grieg-Gran, Maryanne; Roe, Dilys; Mohammed, Essam Yassin

    2011-11-15

    International climate and biodiversity conventions agree that to be effective in the long term, strategies to reduce emissions from deforestation, forest degradation, conservation and enhancement of forest carbon stocks, and sustainable forest management (REDD+), must not undermine biodiversity. But how do countries achieve 'high-biodiversity REDD+' in practice? At a global level, options include immediate policy strengthening in international negotiations; promotion of co-benefit standards; and financial incentives and preferences for buying countries. At a national level, developing countries can also promote high-biodiversity REDD+ through more coherent policies; integrated planning; regulatory and economic instruments; and improved monitoring of biodiversity impacts.

  18. THE FLOOD PULSE INFLUENCE IN ECOLIMNOLOGICAL PANTANAL LAKES: A STUDY TO UNDERSTAND THE BIODIVERSITY DYNAMICS OF AQUATIC INVERTEBRATES = A INFLUÊNCIA DO PULSO DE INUNDAÇÃO NA ECOLIMNOLOGIA DE BAÍAS PANTANEIRAS: UM ESTUDO NA DINÂMICA DE INVERTEBRADOS AQUÁTICOS

    Directory of Open Access Journals (Sweden)

    Ernandes Sobreira Oliveira Junior

    2013-01-01

    Full Text Available This study aimed to compare the environmental variables with this biota in two bays in the Pantanal near the city of Cáceres-MT. Data of biotic and abiotic variables of the water sampling were analyzed on six sampling points for one year survey comprising four Pantanal hydrological periods. Rich invertebrate fauna associated with aquatic macrophytes were found; with the Class Insecta is that with greater representativeness. There were significant differences between periods for hydrological variables dissolved oxygen, transparency and depth. The most significant correlations occurred between groups Nematoda, Ostracoda, Decapoda, Chironomidae, Copepoda and Dityscidae with dissolved oxygen, conductivity and depth. These data may indicate that the limnological variables influence in the aquatic invertebrates community and changes in water quality may result in a change in the microbiota, which is plays a fundamental role in the flow of matter and nutrient cycling within an ecosystem. = Este estudo se propôs relacionar as variáveis ambientais com a biota presente em duas baías do Pantanal Matogrossense, próximas à cidade de Cáceres-MT. Foram coletados dados de variáveis bióticas e abióticas da água em seis pontos de amostragem durante um ano de pesquisa, compreendendo os quatro períodos hidrológicos do Pantanal. Foi encontrada rica fauna de invertebrados aquáticos associados à macrófitas, tendo a Classe Insecta maior representatividade. As variáveis oxigênio dissolvido, transparência e profundidade apresentaram diferenças estatisticamente significativas entre os períodos hidrológicos. Os grupos Nematoda, Ostracoda, Decapoda, Chironomidae, Dityscidae e Copepoda estiveram significativamente correlacionados com as variáveis estudadas. Estes resultados podem indicar que as variáveis limnológicas exerceram influência na comunidade de invertebrados aquáticos e que modificações na qualidade da água podem resultar em uma altera

  19. Passive internal transport of aquatic organisms by waterfowl in Doñana, south-west Spain.

    NARCIS (Netherlands)

    Figuerola, J.; Green, J.; Santamaria, L.

    2003-01-01

    Aim Waterbirds may play an important role in the maintenance of aquatic ecosystem biodiversity by transporting plants and invertebrate propagules between different wetlands. The aim of this study is to provide the first quantitative analysis of the transport of plant and animal propagules by a commu

  20. Aquatic insect assemblages associated with subalpine stream segment types in relict glaciated headwaters

    Science.gov (United States)

    Kubo, Joshua S.; Torgersen, Christian E.; Bolton, Susan M.; Weekes, Anne A.; Gara, Robert I.

    2013-01-01

    1. Aquatic habitats and biotic assemblages in subalpine headwaters are sensitive to climate and human impacts. Understanding biotic responses to such perturbations and the contribution of high-elevation headwaters to riverine biodiversity requires the assessment of assemblage composition among habitat types. We compared aquatic insect assemblages among headwater stream segment types in relict glaciated subalpine basins in Mt. Rainier National Park, Washington, USA. 2. Aquatic insects were collected during summer and autumn in three headwater basins. In each basin, three different stream segment types were sampled: colluvial groundwater sources, alluvial lake inlets, and cascade-bedrock lake outlets. Ward's hierarchical cluster analysis revealed high β diversity in aquatic insect assemblages, and non-metric multidimensional scaling indicated that spatial and temporal patterns in assemblage composition differed among headwater stream segment types. Aquatic insect assemblages showed more fidelity to stream segment types than to individual basins, and the principal environmental variables associated with assemblage structure were temperature and substrate. 3. Indicator species analyses identified specific aquatic insects associated with each stream segment type. Several rare and potentially endemic aquatic insect taxa were present, including the recently described species, Lednia borealis (Baumann and Kondratieff). 4. Our results indicate that aquatic insect assemblages in relict glaciated subalpine headwaters were strongly differentiated among stream segment types. These results illustrate the contribution of headwaters to riverine biodiversity and emphasise the importance of these habitats for monitoring biotic responses to climate change. Monitoring biotic assemblages in high-elevation headwaters is needed to prevent the potential loss of unique and sensitive biota.

  1. Understanding microbial/DOM interactions using fluorescence and flow cytometry

    Science.gov (United States)

    Fox, Bethany; Rushworth, Cathy; Attridge, John; Anesio, Alexandre; Cox, Tim; Reynolds, Darren

    2015-04-01

    The transformation and movement of dissolved organic carbon (DOC) within freshwater aquatic systems is an important factor in the global cycling of carbon. DOC within aquatic systems is known to underpin the microbial food web and therefore plays an essential role in supporting and maintaining the aquatic ecosystem. Despite this the interactions between bacteria and dissolved organic matter (DOM) are not well understood, although the literature indicates that the microbial processing of bioavailable DOM is essential during the production of autochthonous, labile, DOM. DOM can be broadly characterised by its fluorescing properties and Coble et al. (2014) define terrestrially derived DOM as exhibiting "peak C" fluorescence, whilst labile microbially derived DOM is defined as showing "peak T" fluorescence. Our work explores the microbial/DOM interactions by analysing aquatic samples using fluorescence excitation and emission matrices (EEMs) in conjunction with microbial consumption of dissolved oxygen. Environmental and synthetic water samples were subjected to fluorescence characterisation using both fluorescence spectroscopy and in situ fluorescence sensors (Chelsea Technologies Group Ltd.). PARAFAC analysis and peak picking were performed on EEMs and compared with flow cytometry data, used to quantify bacterial numbers present within samples. Synthetic samples were created using glucose, glutamic acid, nutrient-rich water and a standard bacterial seed. Synthetic samples were provided with terrestrially derived DOM via the addition of an aliquot of environmental water. Using a closed system approach, samples were incubated over time (up to a maximum of 20 days) and analysed at pre-defined intervals. The main focus of our work is to improve our understanding of microbial/DOM interactions and how these interactions affect both the DOM characteristics and microbial food web in freshwater aquatic systems. The information gained, in relation to the origin, microbial

  2. Accounting for biodiversity in the dairy industry.

    Science.gov (United States)

    Sizemore, Grant C

    2015-05-15

    Biodiversity is an essential part of properly functioning ecosystems, yet the loss of biodiversity currently occurs at rates unparalleled in the modern era. One of the major causes of this phenomenon is habitat loss and modification as a result of intensified agricultural practices. This paper provides a starting point for considering biodiversity within dairy production, and, although focusing primarily on the United States, findings are applicable broadly. Biodiversity definitions and assessments (e.g., indicators, tools) are proposed and reviewed. Although no single indicator or tool currently meets all the needs of comprehensive assessment, many sustainable practices are readily adoptable as ways to conserve and promote biodiversity. These practices, as well as potential funding opportunities are identified. Given the state of uncertainty in addressing the complex nature of biodiversity assessments, the adoption of generally sustainable environmental practices may be the best currently available option for protecting biodiversity on dairy lands.

  3. Place prioritization for biodiversity content

    Indian Academy of Sciences (India)

    Sahotra Sarkar; Anshu Aggarwal; Justin Garson; Chris R Margules; Juliane Zeidler

    2002-07-01

    The prioritization of places on the basis of biodiversity content is part of any systematic biodiversity conservation planning process. The place prioritization procedure implemented in the ResNet software package is described. This procedure is primarily based on the principles of rarity and complementarity. Application of the procedure is demonstrated with two analyses, one data set consisting of the distributions of termite genera in Namibia, and the other consisting of the distributions of bird species in the Islas Malvinas/Falkland Islands. The attributes that data sets should have for the effective and reliable application of such procedures are discussed. The procedure used here is compared to some others that are also currently in use.

  4. Urban lifestyle and urban biodiversity

    DEFF Research Database (Denmark)

    Petersen, L. K.; Lyytimäki, J.; Normander, B.

    2007-01-01

    the green needs of urban lifestyle in the planning process does not come by itself. Nor does finding the synergies between urban lifestyle and urban biodiversity. Careful planning including stakeholder involvement is required. In this process various mapping techniques and use of indicators can be most...... be important habitats and valuable corridors for both common and less common species. At the same time a comprehensive, functional and viable green structure is important for urban populations to whom it serves many functions and offers a whole range of benefits. Urban green structure should serve both...... biodiversity, recreational, educational and other needs. However, uncovered and unsealed space is constantly under pressure for building and infrastructure development in the urban landscape, and the design and usages of urban green structure is a matter of differing interests and expectations. Integrating...

  5. ANTHROPIC RISK ASSESSMENT ON BIODIVERSITY

    OpenAIRE

    2014-01-01

    This paper presents a methodology for risk assessment of anthropic activities on habitats and species. The method has been developed for Veneto Region, in order to simplify and improve the quality of EIA procedure (VINCA). Habitats and species, animals and plants, are protected by European Directive 92/43/EEC and 2009/147/EC but they are subject at hazard due to pollution produced by human activities. Biodiversity risks may conduct to deterioration and disturbance in ecological niche...

  6. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    Science.gov (United States)

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  7. Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes

    Science.gov (United States)

    Chun, Chan Lan; Peller, Julie R.; Shively, Dawn; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J.

    2017-01-01

    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90 days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24 h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines.

  8. Pain in aquatic animals.

    Science.gov (United States)

    Sneddon, Lynne U

    2015-04-01

    Recent developments in the study of pain in animals have demonstrated the potential for pain perception in a variety of wholly aquatic species such as molluscs, crustaceans and fish. This allows us to gain insight into how the ecological pressures and differential life history of living in a watery medium can yield novel data that inform the comparative physiology and evolution of pain. Nociception is the simple detection of potentially painful stimuli usually accompanied by a reflex withdrawal response, and nociceptors have been found in aquatic invertebrates such as the sea slug Aplysia. It would seem adaptive to have a warning system that allows animals to avoid life-threatening injury, yet debate does still continue over the capacity for non-mammalian species to experience the discomfort or suffering that is a key component of pain rather than a nociceptive reflex. Contemporary studies over the last 10 years have demonstrated that bony fish possess nociceptors that are similar to those in mammals; that they demonstrate pain-related changes in physiology and behaviour that are reduced by painkillers; that they exhibit higher brain activity when painfully stimulated; and that pain is more important than showing fear or anti-predator behaviour in bony fish. The neurophysiological basis of nociception or pain in fish is demonstrably similar to that in mammals. Pain perception in invertebrates is more controversial as they lack the vertebrate brain, yet recent research evidence confirms that there are behavioural changes in response to potentially painful events. This review will assess the field of pain perception in aquatic species, focusing on fish and selected invertebrate groups to interpret how research findings can inform our understanding of the physiology and evolution of pain. Further, if we accept these animals may be capable of experiencing the negative experience of pain, then the wider implications of human use of these animals should be considered.

  9. Visualizing aquatic bacteria by light and transmission electron microscopy.

    Science.gov (United States)

    Silva, Thiago P; Noyma, Natália P; Duque, Thabata L A; Gamalier, Juliana P; Vidal, Luciana O; Lobão, Lúcia M; Chiarini-Garcia, Hélio; Roland, Fábio; Melo, Rossana C N

    2014-01-01

    The understanding of the functional role of aquatic bacteria in microbial food webs is largely dependent on methods applied to the direct visualization and enumeration of these organisms. While the ultrastructure of aquatic bacteria is still poorly known, routine observation of aquatic bacteria by light microscopy requires staining with fluorochromes, followed by filtration and direct counting on filter surfaces. Here, we used a new strategy to visualize and enumerate aquatic bacteria by light microscopy. By spinning water samples from varied tropical ecosystems in a cytocentrifuge, we found that bacteria firmly adhere to regular slides, can be stained by fluorochoromes with no background formation and fast enumerated. Significant correlations were found between the cytocentrifugation and filter-based methods. Moreover, preparations through cytocentrifugation were more adequate for bacterial viability evaluation than filter-based preparations. Transmission electron microscopic analyses revealed a morphological diversity of bacteria with different internal and external structures, such as large variation in the cell envelope and capsule thickness, and presence or not of thylakoid membranes. Our results demonstrate that aquatic bacteria represent an ultrastructurally diverse population and open avenues for easy handling/quantification and better visualization of bacteria by light microscopy without the need of filter membranes.

  10. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh

    Science.gov (United States)

    Kang, Sung-Ryong; King, Sammy L.

    2012-01-01

    Salinization of coastal freshwater environments is a global issue. Increased salinity from sea level rise, storm surges, or other mechanisms is common in coastal freshwater marshes of Louisiana, USA. The effects of salinity increases on aquatic macroinvertebrates in these systems have received little attention, despite the importance of aquatic macroinvertebrates for nutrient cycling, biodiversity, and as a food source for vertebrate species. We used microcosm experiments to evaluate the effects of salinity, duration of exposure, and prey availability on the relative survival of dominant aquatic macroinvertebrates (i.e., Procambarus clarkii Girard, Cambarellus puer Hobbs, Libellulidae, Dytiscidae cybister) in a freshwater marsh of southwestern Louisiana. We hypothesized that increased salinity, absence of prey, and increased duration of exposure would decrease survival of aquatic macroinvertebrates and that crustaceans would have higher survival than aquatic insect taxon. Our first hypothesis was only partially supported as only salinity increases combined with prolonged exposure duration affected aquatic macroinvertebrate survival. Furthermore, crustaceans had higher survival than aquatic insects. Salinity stress may cause mortality when acting together with other stressful conditions.

  11. Grasshopper (Orthoptera: Acrididae) biodiversity and grassland ecosystems

    Institute of Scientific and Technical Information of China (English)

    ZHONG-WEI GUO; HONG-CHANG LI; YA-LING GAN

    2006-01-01

    Interesting results may arise by combining studies on the structure and function of ecosystems with that of biodiversity for certain species. Grasshopper biodiversity is the result of the evolution of grassland ecosystems; however, it also impacts on the structure and the function of those ecosystems. We consider there to be a close relationship between the health of grassland ecosystems and grasshopper biodiversity. The main problems involved in this relationship are likely to include: (i) grasshopper biodiversity and its spatial pattern; (ii) the effect of grasshopper biodiversity on the ecological processes of grassland ecosystems; (iii) the biodiversity threshold of grasshopper population explosions;(iv) the relationship between grasshopper biodiversity and the natural and human factors that affect grassland ecosystems; and (v) grasshopper biodiversity and the health of grassland ecosystems. The solutions to these problems may provide sound bases for controlling disasters caused by grasshoppers and managing grassland ecosystems in the west of China. In this paper, we introduced two concepts for grasshopper biodiversity, that is, "spatial pattern" and "biodiversity threshold". It is helpful to understand the action of the spatial pattern of grasshopper biodiversity on the ecological processes of grassland ecosystems and the effect of this spatial pattern on the health of those ecosystems, owing to the fact that, in the west of China, grasslands are vast and grasshoppers are widely distributed. Moreover, we inferred that the change in the level of component richness at each type of grasshopper biodiversity can make an impact on grassland ecosystems, and therefore, there is likely to be a threshold to grasshopper biodiversity for the stability and the sustainability of those ecosystems.

  12. Conceptual Framework for Aquatic Interfaces

    Science.gov (United States)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  13. Economic growth, biodiversity loss and conservation effort.

    Science.gov (United States)

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  14. Harnessing private sector conservation of biodiversity

    OpenAIRE

    Productivity Commission

    2002-01-01

    'Harnessing Private Sector Conservation of Biodiversity' was released on 4 December 2001. This paper provides an economic perspective on the role the private sector can play in conservation of biodiversity. It focuses on opportunities for governments to facilitate biodiversity conservation by enabling markets to allocate resources better. With more than 60 per cent of Australia's land area under private management, conservation cannot be adequately addressed without private sector participati...

  15. Marine biodiversity and ecosystem functioning: A perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Anil, A.C.

    and promoting high biodiversity. The importance of such grazers in biodiversity processes is worthy of future studies. Diseases may constitute a nother major cause of distu r- bance, having profound effects on biodiversity. Several recent studies have... shown that phytoplankton diversity in the water column may be significantly affected by viral diseases. Disturbances and diversity Predation and disease s may be considered as different mechanisms of disturbance. Underwood 8 has discussed...

  16. Scaling laws predict global microbial diversity.

    Science.gov (United States)

    Locey, Kenneth J; Lennon, Jay T

    2016-05-24

    Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ∼35,000 sites and ∼5.6⋅10(6) species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we show similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upward of 1 trillion (10(12)) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.

  17. Can rice field channels contribute to biodiversity conservation in Southern Brazilian wetlands?

    Science.gov (United States)

    Maltchik, Leonardo; Rolon, Ana Silvia; Stenert, Cristina; Machado, Iberê Farina; Rocha, Odete

    2011-12-01

    Conservation of species in agroecosystems has attracted attention. Irrigation channels can improve habitats and offer conditions for freshwater species conservation. Two questions from biodiversity conservation point of view are: 1) Can the irrigated channels maintain a rich diversity of macrophytes, macroinvertebrates and amphibians over the cultivation cycle? 2) Do richness, abundance and composition of aquatic species change over the rice cultivation cycle? For this, a set of four rice field channels was randomly selected in Southern Brazilian wetlands. In each channel, six sample collection events were carried out over the rice cultivation cycle (June 2005 to June 2006). A total of 160 taxa were identified in irrigated channels, including 59 macrophyte species, 91 taxa of macroinvertebrate and 10 amphibian species. The richness and abundance of macrophytes, macroinvertebrates and amphibians did not change significantly over the rice cultivation cycle. However, the species composition of these groups in the irrigation channels varied between uncultivated and cultivated periods. Our results showed that the species diversity found in the irrigation channels, together with the permanence of water enables these man-made aquatic networks to function as important systems that can contribute to the conservation of biodiversity in regions where the wetlands were converted into rice fields. The conservation of the species in agriculture, such as rice field channels, may be an important alternative for biodiversity conservation in Southern Brazil, where more than 90% of wetland systems have already been lost and the remaining ones are still at high risk due to the expansion of rice production.

  18. Biodiversity and its fragility in Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    PU Ying-shan; ZHANG Zhi-yi; PU Li-na; HUI Chao-mao

    2007-01-01

    In Yunnan, 8 major aspects of biodiversity and fragility in landforms, ecosystems, distribution populations, alien invasion, segregation, pollution and maladministration with various menace factors causing biodiversity loss have been described. It is revealed that the facts that the biodiversity and fragility coexists in this paper. Accordingly, 6 major countermeasures for effective conservation and rational utilization of the provincial biodiversity were suggested on the basis of thescientific development concepts, principles of nature protection,conservation biology, resource management and ethnobotany and present status in Yunnan with rich intangible resources such as climatic,ethnical and cultural diversity, etc.

  19. Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems

    NARCIS (Netherlands)

    Hunter, W.R.; Niederdorfer, R.; Gernand, A.; Veuger, B.; Prommer, J.; Mooshammer, M.; Wanek, W.; Battin, T.J.

    2016-01-01

    In fluvial ecosystems mineral erosion, carbon (C), and nitrogen (N) fluxes are linked via organomineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictab

  20. Sites for priority biodiversity conservation in the Caribbean Islands Biodiversity Hotspot

    OpenAIRE

    V. Anadon-Irizarry; D.C. Wege; A. Upgren; Young, R.; Boom, B; Leon, Y.M.; Y. Arias; Koenig, K.; Morales, A. L.; Burke, W.

    2012-01-01

    The Caribbean Islands Biodiversity Hotspot is exceptionally important for global biodiversity conservation due to high levels of species endemism and threat. A total of 755 Caribbean plant and vertebrate species are considered globally threatened, making it one of the top Biodiversity Hotspots in terms of threat levels. In 2009, Key Biodiversity Areas (KBAs) were identified for the Caribbean Islands through a regional-level analysis of accessible data and literature, followed by extensive nat...

  1. Metabolism of mineral-sorbed organic matter depends upon microbial lifestyle in fluvial ecosystems

    OpenAIRE

    Hunter, William Ross; Niederdorfer, Robert; Gernand, Anna; Veuger, Bart; Prommer, Judith; Mooshammer, Maria; Wanek, Wolfgang; Battin, Tom J.

    2016-01-01

    In fluvial ecosystems mineral erosion, carbon (C) and nitrogen (N) fluxes are linked via organo-mineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organo-mineral sorption affects aquatic microbial metabolism, using organo-mineral particles containing a mix of 13C, 15N-labelled amino acids. We traced ...

  2. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.

    Science.gov (United States)

    Kuehn, Kevin A; Francoeur, Steven N; Findlay, Robert H; Neely, Robert K

    2014-03-01

    Microbial communities associated with submerged detritus in aquatic ecosystems often comprise a diverse mixture of autotrophic and heterotrophic microbes, including algae, bacteria, protozoa, and fungi. Recent studies have documented increased rates of plant litter mass loss when periphytic algae are present. We conducted laboratory and field experiments to assess potential metabolic interactions between natural autotrophic and heterotrophic microbial communities inhabiting submerged decaying plant litter of Typha angustifolia and Schoenoplectus acutus. In the field, submerged plant litter was either exposed to natural sunlight or placed under experimental canopies that manipulated light availability and growth of periphytic algae. Litter was collected and returned to the laboratory, where algal photosynthesis was manipulated (light/dark incubation), while rates of bacterial and fungal growth and productivity were simultaneously quantified. Bacteria and fungi were rapidly stimulated by exposure to light, thus establishing the potential for algal priming of microbial heterotrophic decay activities. Experimental incubations of decaying litter with 14C- and 13C-bicarbonate established that inorganic C fixed by algal photosynthesis was rapidly transferred to and assimilated by heterotrophic microbial decomposers. Periphytic algal stimulation of microbial heterotrophs, especially fungal decomposers, is an important and largely unrecognized interaction within the detrital microbial landscape, which may transform our current conceptual understanding of microbial secondary production and organic matter decomposition in aquatic ecosystems.

  3. Coral reef resilience through biodiversity

    Science.gov (United States)

    Rogers, Caroline S.

    2013-01-01

    Irrefutable evidence of coral reef degradation worldwide and increasing pressure from rising seawater temperatures and ocean acidification associated with climate change have led to a focus on reef resilience and a call to “manage” coral reefs for resilience. Ideally, global action to reduce emission of carbon dioxide and other greenhouse gases will be accompanied by local action. Effective management requires reduction of local stressors, identification of the characteristics of resilient reefs, and design of marine protected area networks that include potentially resilient reefs. Future research is needed on how stressors interact, on how climate change will affect corals, fish, and other reef organisms as well as overall biodiversity, and on basic ecological processes such as connectivity. Not all reef species and reefs will respond similarly to local and global stressors. Because reef-building corals and other organisms have some potential to adapt to environmental changes, coral reefs will likely persist in spite of the unprecedented combination of stressors currently affecting them. The biodiversity of coral reefs is the basis for their remarkable beauty and for the benefits they provide to society. The extraordinary complexity of these ecosystems makes it both more difficult to predict their future and more likely they will have a future.

  4. Aquatic Natural Areas Analysis and Evaluation: Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Baranski, Dr. Michael J. [Catawba College

    2011-04-01

    maximum score possible. A highly ranked ANA or ARA is one that is large in size compared to other areas, includes a greater proportion of the watershed within Reservation boundaries, contains a number of status taxa at high densities, exhibits a high overall biodiversity, has very good or excellent habitat and water quality, is well protected and isolated from disturbances, and shows several other characteristics that contribute to natural area value. In this report, the term 'natural area' is loosely defined as a terrestrial or aquatic system that exhibits, or is thought to exhibit, high natural integrity and other significant natural values. The purpose of the present study is to evaluate and rank the currently recognized Aquatic Natural Areas (ANAs) and Aquatic Reference Areas (ARAs) on the Oak Ridge Reservation (ORR) for their natural area value. A previous study (Baranski 2009) analyzed, evaluated, and ranked terrestrial areas (Natural Areas [NAs], Reference Areas [RAs], and Cooperative Management Areas [CMAs]) on the ORR for natural area value, and a precise methodology for natural area evaluation was developed. The present study is intended to be a complement and companion to the terrestrial area study and attempts to employ a similar methodology for aquatic areas so that aquatic and terrestrial areas can be compared on a similar scale. This study specifically develops criteria for assessing the ecological, biodiversity, and natural area importance and significance of aquatic systems on the Reservation in a relevant and consistent manner. The information can be integrated into the Tennessee Natural Heritage Program (http://tn.gov/environment/na/nhp.shtml) system and applied to potential new aquatic areas. Further, the information will be useful in planning, management, and protection efforts on the ORR.

  5. Lack of recognition of genetic biodiversity: International policy and its implementation in Baltic Sea marine protected areas.

    Science.gov (United States)

    Laikre, Linda; Lundmark, Carina; Jansson, Eeva; Wennerström, Lovisa; Edman, Mari; Sandström, Annica

    2016-10-01

    Genetic diversity is needed for species' adaptation to changing selective pressures and is particularly important in regions with rapid environmental change such as the Baltic Sea. Conservation measures should consider maintaining large gene pools to maximize species' adaptive potential for long-term survival. In this study, we explored concerns regarding genetic variation in international and national policies that governs biodiversity and evaluated if and how such policy is put into practice in management plans governing Baltic Sea Marine Protected Areas (MPAs) in Sweden, Finland, Estonia, and Germany. We performed qualitative and quantitative textual analysis of 240 documents and found that agreed international and national policies on genetic biodiversity are not reflected in management plans for Baltic Sea MPAs. Management plans in all countries are largely void of goals and strategies for genetic biodiversity, which can partly be explained by a general lack of conservation genetics in policies directed toward aquatic environments.

  6. Does biodiversity protect humans against infectious disease?

    Science.gov (United States)

    Wood, Chelsea L; Lafferty, Kevin D; DeLeo, Giulio; Young, Hillary S; Hudson, Peter J; Kuris, Armand M

    2014-04-01

    Control of human infectious disease has been promoted as a valuable ecosystem service arising from the conservation of biodiversity. There are two commonly discussed mechanisms by which biodiversity loss could increase rates of infectious disease in a landscape. First, loss of competitors or predators could facilitate an increase in the abundance of competent reservoir hosts. Second, biodiversity loss could disproportionately affect non-competent, or less competent reservoir hosts, which would otherwise interfere with pathogen transmission to human populations by, for example, wasting the bites of infected vectors. A negative association between biodiversity and disease risk, sometimes called the "dilution effect hypothesis," has been supported for a few disease agents, suggests an exciting win-win outcome for the environment and society, and has become a pervasive topic in the disease ecology literature. Case studies have been assembled to argue that the dilution effect is general across disease agents. Less touted are examples in which elevated biodiversity does not affect or increases infectious disease risk for pathogens of public health concern. In order to assess the likely generality of the dilution effect, we review the association between biodiversity and public health across a broad variety of human disease agents. Overall, we hypothesize that conditions for the dilution effect are unlikely to be met for most important diseases of humans. Biodiversity probably has little net effect on most human infectious diseases but, when it does have an effect, observation and basic logic suggest that biodiversity will be more likely to increase than to decrease infectious disease risk.

  7. Digital Geogames to Foster Local Biodiversity

    Science.gov (United States)

    Schaal, Sonja; Schaal, Steffen; Lude, Armin

    2015-01-01

    The valuing of biodiversity is considered to be a first step towards its conservation. Therefore, the aim of the BioDiv2Go project is to combine sensuous experiences discovering biodiversity with mobile technology and a game-based learning approach. Following the competence model for environmental education (Roczen et al, 2014), Geogames (location…

  8. Marine biodiversity survey of St. Eustatius, 2015

    NARCIS (Netherlands)

    Hoeksema, B.W.

    2016-01-01

    The Statia Marine Biodiversity Expedition (2015) was organized by Naturalis Biodiversity Center in Leiden (the national museum of natural history of the Netherlands) and ANEMOON Foundation (a Dutch organisation of citizen scientists) in Bennebroek, The Netherlands. This field survey served as a base

  9. Aquatic invertebrate sampling at selected outfalls in Operable Unit 1082; Technical areas 9, 11, 16 and 22

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1995-09-01

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory conducted preliminary aquatic sampling at outfalls within Operable Unit 1082 and nearby natural waterways. Eleven outfalls were sampled a total of eighteen times. Three natural waterways (upper Pajarito Canyon, Starmer`s Gulch, and Bulldog Spring) in the vicinity were sampled a total of six times. At most sites, EST recorded hydrological condition, physico-chemical parameters, wildlife uses, and vegetation. At each outfall with water and each natural waterway, EST collected an aquatic invertebrate sample which was analyzed by taxa composition, Wilhm`s biodiversity index, the community tolerance quotient (CTQ), and density. The physico-chemical parameters at most outfalls and natural waterways fell within the normal range of natural waters in the area. However, the outfalls are characterized by low biodiversity and severely stressed communities composed of a restricted number of taxa. The habitat at the other outfalls could probably support well-developed aquatic communities if sufficient water was available. At present, the hydrology at these outfalls is too slight and/or sporadic to support such a community in the foreseeable future. In contrast to the outfalls, the natural waterways of the area had greater densities of aquatic invertebrates, higher biodiversities, and lower CTQs.

  10. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications

    Science.gov (United States)

    Perissinotto, Renzo; Bird, Matthew S.; Bilton, David T.

    2016-01-01

    Abstract Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this

  11. Predaceous water beetles (Coleoptera, Hydradephaga) of the Lake St Lucia system, South Africa: biodiversity, community ecology and conservation implications.

    Science.gov (United States)

    Perissinotto, Renzo; Bird, Matthew S; Bilton, David T

    2016-01-01

    Water beetles are one of the dominant macroinvertebrate groups in inland waters and are excellent ecological indicators, reflecting both the diversity and composition of the wider aquatic community. The predaceous water beetles (Hydradephaga) make up around one-third of known aquatic Coleoptera and, as predators, are a key group in the functioning of many aquatic habitats. Despite being relatively well-known taxonomically, ecological studies of these insects in tropical and subtropical systems remain rare. A dedicated survey of the hydradephagan beetles of the Lake St Lucia wetlands (South Africa) was undertaken between 2013 and 2015, providing the first biodiversity census for this important aquatic group in the iSimangaliso Wetland Park, a UNESCO World Heritage Site within the Maputaland biodiversity hotspot. A total of 32 sites covering the entire spectrum of waterbody types were sampled over the course of three collecting trips. The Lake St Lucia wetlands support at least 68 species of Hydradephaga, a very high level of diversity comparing favourably with other hotspots on the African continent and elsewhere in the world and a number of taxa are reported for South Africa for the first time. This beetle assemblage is dominated by relatively widespread Afrotropical taxa, with few locally endemic species, supporting earlier observations that hotspots of species richness and centres of endemism are not always coincident. Although there was no significant difference in the number of species supported by the various waterbody types sampled, sites with the highest species richness were mostly temporary depression wetlands. This contrasts markedly with the distribution of other taxa in the same system, such as molluscs and dragonflies, which are most diverse in permanent waters. Our study is the first to highlight the importance of temporary depression wetlands and emphasises the need to maintain a variety of wetland habitats for aquatic conservation in this biodiverse

  12. Collapse of biodiversity in fractured metacommunities

    Science.gov (United States)

    Fisher, Charles; Mehta, Pankaj

    2014-03-01

    The increasing threat to global biodiversity from climate change, habitat destruction, and other anthropogenic factors motivates the search for features that increase the resistance of ecological communities to destructive disturbances. Recently, Gibson et al (Science 2013) observed that the damming of the Khlong Saeng river in Thailand caused a rapid collapse of biodiversity in the remaining tropical forests. Using a theoretical model that maps the distribution of coexisting species in an ecological community to a disordered system of Ising spins, we show that fracturing a metacommunity by inhibiting species dispersal leads to a collapse in biodiversity in the constituent local communities. The biodiversity collapse can be modeled as a diffusion on a rough energy landscape, and the resulting estimate for the rate of extinction highlights the role of species functional diversity in maintaining biodiversity following a disturbance.

  13. Focus on biodiversity, health and wellbeing

    Science.gov (United States)

    Stephens, Carolyn; Athias, Renato

    2015-12-01

    In 2012 Environmental Research Letters (ERL) launched a focus series of research papers on the theme of biodiversity, health and well-being. It was the year of the second Rio Summit on Sustainable Development, a huge number of species had been made extinct and conservationists were making increasingly urgent calls for the protection of biodiversity. The situation is ever more critical. Since we started the issue more species have become extinct, and hundreds more have now become critically endangered. The focus issue highlighted the complexity of the links of biodiversity and health, and provides more evidence for the importance to human health of biodiversity on our planet. Research papers contrasted anthropocentric western scientific views of biodiversity and its ecosystem service to humans, with the more horizontal conceptions of indigenous communities in the Amazon—and as many cultures have recognized throughout history, they recognize that we are part of nature: nature does not exist for us.

  14. The origins of tropical marine biodiversity.

    Science.gov (United States)

    Bowen, Brian W; Rocha, Luiz A; Toonen, Robert J; Karl, Stephen A

    2013-06-01

    Recent phylogeographic studies have overturned three paradigms for the origins of marine biodiversity. (i) Physical (allopatric) isolation is not the sole avenue for marine speciation: many species diverge along ecological boundaries. (ii) Peripheral habitats such as oceanic archipelagos are not evolutionary graveyards: these regions can export biodiversity. (iii) Speciation in marine and terrestrial ecosystems follow similar processes but are not the same: opportunities for allopatric isolation are fewer in the oceans, leaving greater opportunity for speciation along ecological boundaries. Biodiversity hotspots such as the Caribbean Sea and the Indo-Pacific Coral Triangle produce and export species, but can also accumulate biodiversity produced in peripheral habitats. Both hotspots and peripheral ecosystems benefit from this exchange in a process dubbed biodiversity feedback.

  15. Aquatic Invertebrate Development Working Group

    Science.gov (United States)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  16. Assessing the effects of chemicals on aquatic microbial ecosystems

    NARCIS (Netherlands)

    Rocha Dimitrov, M.

    2016-01-01

    Nowadays, an increasing number of synthetic chemicals are used in a vast range of applications. When reflecting about our daily activities, it is not difficult to realize how much of our life style is dependent on synthetic chemicals. From the food we eat, medicines we take to the health care produc

  17. Degradation of Jet and Missile Fuels by Aquatic Microbial Communities.

    Science.gov (United States)

    1987-07-01

    also nuite persistent, as was ethylcyclohexane. Many of the hydrocarbons (p-xylene, 1,3,5-TMP, naphthalene, the mono- substituted alkanes, heptane...on Recovery Potential of Oiled Marine Northern Environments, Nova Scotia, October 10-14, 1917. 32. Colwell, R.R., Mills , A.L., Walker, J.D., Tello

  18. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    Science.gov (United States)

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  19. Monitoring Biodiversity using Environmental DNA

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis

    was less successful than acoustic detections. However, at one site, long-finned pilot whale – a species rarely sighted in the target area – was detected. Another study examines DNA extracted from leeches to account for biodiversity of terrestrial mammals, on which they have been feeding. The persistence......, a study tests the applicability of non-destructive DNA extraction from old and ancient insect remains. DNA is successfully retrieved, amplified and equenced from dried museum beetle specimens up to 188 years old, ermafrost-preserved macrofossils up to 26.000 years old and directly from 1800-3000 years old......As any species interacts with its environment, most of them will at some point expel DNA to their surroundings. Such DNA can be picked up in environmental samples, isolated and analysed. Within the last decade, this has become a multidisciplinary research field known as Environmental DNA (eDNA...

  20. Biodiversity mapping in sensitive areas

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Tor; Ulssnes, Amund; Nissen-Lie, Torild [DNV, Oslo (Norway)

    2008-07-01

    When oil companies are entering new unexplored areas their potential footprint on the environment should be measured in a way that necessary action could be included in the planning of the activity. These actions should reduce the impact to accepted levels. Traditional baseline studies, including sediment and macro fauna sampling, are carried out in homogeneous areas. In heterogeneous and unexplored areas there is a need for more information than these traditional sediment analyses can give. To increase the knowledge from specific areas biodiversity mapping has been carried out. To combine the knowledge from ROV surveys, modelling, current measurements, sediment characteristics, seismic, macro fauna and background levels of chemicals contents in the sediments, both prior to the exploration, and after the drilling have taken place the operator can document their footprint on the marine environment. (author)

  1. Cycad diversification and tropical biodiversity

    Directory of Open Access Journals (Sweden)

    Rull, V.

    2012-12-01

    Full Text Available The recent unexpected discovery that living Cycadales are not Jurassic-Cretaceous (200– 65 Mya relicts, as all their extant genera began to diversify during the Late Miocene (12 Mya, has challenged a classical evolutionary myth. This brief note shows how this finding may also provide new clues on the shaping of the high tropical biodiversity

    El reciente e inesperado descubrimiento de que las Cycadales actuales no son relictos Jurásico-Cretácicos (200-65 Mya, ya que todos sus géneros iniciaron su diversificación durante el Mioceno Tardío (12 Mya, ha puesto en entredicho un mito evolutivo clásico. En esta nota se expone como este hallazgo puede, además, proporcionar nuevas pistas sobre el origen de la elevada biodiversidad tropical.

  2. Biodiversity effects on plant stoichiometry.

    Science.gov (United States)

    Abbas, Maike; Ebeling, Anne; Oelmann, Yvonne; Ptacnik, Robert; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang W; Wilcke, Wolfgang; Hillebrand, Helmut

    2013-01-01

    In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (-27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for

  3. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  4. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three......-dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  5. Aquatic Remediation of Communication Disorders.

    Science.gov (United States)

    Smith, Virginia M.

    1985-01-01

    A 10-day aquatics program for learning disabled children with hand-eye coordination problems and low self-esteem is described. Activities for each session (including relaxation exercises) are listed. (CL)

  6. Aquatic Plants Aid Sewage Filter

    Science.gov (United States)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  7. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    Science.gov (United States)

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  8. Threats to China's Biodiversity by Contradictions Policy.

    Science.gov (United States)

    Zheng, Heran; Cao, Shixiong

    2015-02-01

    China has among the highest biodiversities in the world, but faces extreme biodiversity losses due to the country's huge population and its recent explosive socioeconomic development. Despite huge efforts and investments by the government and Chinese society to conserve biodiversity, especially in recent decades, biodiversity losses may not have been reversed, and may even have been exacerbated by unintended consequences resulting from these projects. China's centralized approach to biodiversity conservation, with limited local participation, creates an inflexible and inefficient approach because of conflicts between local communities and national administrators over the benefits. Although community-based conservation may be an imperfect approach, it is an essential component of a successful future national conservation plan. Biodiversity conservation should be considered from the perspective of systems engineering and a governance structure that combines centralization with community-level conservation. In this paper, we describe China's complex challenge: how to manage interactions between humans and nature to find win-win solutions that can ensure long-term biodiversity conservation without sacrificing human concerns.

  9. Methodological tests of a heterotrophy index for aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    R. M. Antonio

    Full Text Available Experiments in glucose mineralization were carried out to investigate the effects caused by natural forcing functions on both the decomposition rates and heterotrophy capacity of aquatic ecosystems. In addition, the methodology used could show connections between mineralization rates measured in both laboratory and field work with those measured in aquatic ecosystems. Water samples from Infernão lagoon (21º35'S and 47º51'W were collected, filtered, enriched with glucose, and incubated under aerobic and anaerobic conditions. The glucose concentration variation, dissolved oxygen (DO consumption, pH, electric conductivity, and total CO2 amount in the water were determined for sixteen days. In the period with intense oxygen consumption there was also an evident glucose demand and the dissolved oxygen consumption rate was approximately the same as that for glucose mineralization. The process in the aerobic chambers was 2.2 times faster than that in the anaerobic chambers. An initial acidification of the water samples, probably due to microbial carbonic acid liberation, was noted. A rise in pH values was also observed at the end of the process. The electric conductivity was low for both aerobic and anaerobic chambers, indicating a probable ion uptake by microbial organisms due to the presence of carbon sources. The glucose content variations corresponded to both CO2 formation and dissolved oxygen consumption. It was estimated that 19.4% of the initial glucose content turned into CO2 and the remaining 80.6% into humic compounds and microbial biomass. This experiment showed that glucose can be used as a substrate indicating the heterotrophy of a given aquatic ecosystem.

  10. Methodological tests of a heterotrophy index for aquatic ecosystems.

    Science.gov (United States)

    Antonio, R M; Bianchini Júnior, I

    2003-08-01

    Experiments in glucose mineralization were carried out to investigate the effects caused by natural forcing functions on both the decomposition rates and heterotrophy capacity of aquatic ecosystems. In addition, the methodology used could show connections between mineralization rates measured in both laboratory and field work with those measured in aquatic ecosystems. Water samples from Infernão lagoon (21 degrees 35'S and 47 degrees 51'W) were collected, filtered, enriched with glucose, and incubated under aerobic and anaerobic conditions. The glucose concentration variation, dissolved oxygen (DO) consumption, pH, electric conductivity, and total CO2 amount in the water were determined for sixteen days. In the period with intense oxygen consumption there was also an evident glucose demand and the dissolved oxygen consumption rate was approximately the same as that for glucose mineralization. The process in the aerobic chambers was 2.2 times faster than that in the anaerobic chambers. An initial acidification of the water samples, probably due to microbial carbonic acid liberation, was noted. A rise in pH values was also observed at the end of the process. The electric conductivity was low for both aerobic and anaerobic chambers, indicating a probable ion uptake by microbial organisms due to the presence of carbon sources. The glucose content variations corresponded to both CO2 formation and dissolved oxygen consumption. It was estimated that 19.4% of the initial glucose content turned into CO2 and the remaining 80.6% into humic compounds and microbial biomass. This experiment showed that glucose can be used as a substrate indicating the heterotrophy of a given aquatic ecosystem.

  11. Late Quaternary climate change shapes island biodiversity

    DEFF Research Database (Denmark)

    Weigelt, Patrick; Steinbauer, Manuel; Cabral, Juliano

    2016-01-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration–extinction dynamics1, or as geologically dynamic with biodiversity resulting from immigration–speciation–extinction dynamics influenced by changes in island...... sea levels3, 4 and caused massive changes in island area, isolation and connectivity5, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory2, 6. Consequences of these oscillations for present biodiversity remain unassessed5, 7...

  12. Soil microbial biomass and function are altered by 12 years of crop rotation

    Science.gov (United States)

    McDaniel, Marshall D.; Grandy, A. Stuart

    2016-11-01

    Declines in plant diversity will likely reduce soil microbial biomass, alter microbial functions, and threaten the provisioning of soil ecosystem services. We examined whether increasing temporal plant biodiversity in agroecosystems (by rotating crops) can partially reverse these trends and enhance soil microbial biomass and function. We quantified seasonal patterns in soil microbial biomass, respiration rates, extracellular enzyme activity, and catabolic potential three times over one growing season in a 12-year crop rotation study at the W. K. Kellogg Biological Station LTER. Rotation treatments varied from one to five crops in a 3-year rotation cycle, but all soils were sampled under a corn year. We hypothesized that crop diversity would increase microbial biomass, activity, and catabolic evenness (a measure of functional diversity). Inorganic N, the stoichiometry of microbial biomass and dissolved organic C and N varied seasonally, likely reflecting fluctuations in soil resources during the growing season. Soils from biodiverse cropping systems increased microbial biomass C by 28-112 % and N by 18-58 % compared to low-diversity systems. Rotations increased potential C mineralization by as much as 53 %, and potential N mineralization by 72 %, and both were related to substantially higher hydrolase and lower oxidase enzyme activities. The catabolic potential of the soil microbial community showed no, or slightly lower, catabolic evenness in more diverse rotations. However, the catabolic potential indicated that soil microbial communities were functionally distinct, and microbes from monoculture corn preferentially used simple substrates like carboxylic acids, relative to more diverse cropping systems. By isolating plant biodiversity from differences in fertilization and tillage, our study illustrates that crop biodiversity has overarching effects on soil microbial biomass and function that last throughout the growing season. In simplified agricultural systems

  13. Antibiotics promote aggregation within aquatic bacterial communities

    Directory of Open Access Journals (Sweden)

    Gianluca eCorno

    2014-07-01

    Full Text Available The release of antibiotics (AB into the environment poses several threats for human health due to potential development of ABresistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold.These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of

  14. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Directory of Open Access Journals (Sweden)

    Keith G. Tidball

    2012-01-01

    Full Text Available Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the latest revision of the 2010 CBD target. Various factors may affect the implementation of the CBD, including lack of public education and awareness on biodiversity-related issues. This paper explores how biodiversity education has been carried out and documents successes and failures in the field. Based on a comprehensive literature review, we identified four main challenges: the need to define an approach for biodiversity education, biodiversity as an ill-defined concept, appropriate communication, and the disconnection between people and nature. These represent obstacles to the achievement of educational targets, and therefore, to accomplishing conservation goals as set forth by the CBD.

  15. Land transformation and its implication for biodiversity integrity and hydrological functioning from 1944 to 1999, Karkloof catchment, South Africa

    Directory of Open Access Journals (Sweden)

    Vanessa D. Weyer

    2015-03-01

    Full Text Available Background and objectives: Land transformation of the Karkloof catchment is described for the period 1944–1999, together with implications for biodiversity integrity and hydrological functioning.Method: Maps of land categories were generated by using aerial photographs and a geographical information system. Property ownership and extent were mapped based on title deed searches and analysis of property grants. Implications of land transformation on biodiversity integrity and hydrological functioning were determined according to an expert approach using the analytic hierarchy process.Results: More than half (54% of the natural grassland area has been transformed to commercial timber plantations (427% increase and commercial agricultural cropping (311% increase. Loss of grassland in the Karkloof catchment is considered to be representative of the general trend in the moist eastern portion of the Grassland Biome of South Africa. Both combined forest and woodland and areas of dense alien vegetation increased (26% and 397%, respectively, whereas the area under subsistence cultivation decreased (98%. Land ownership has changed from private individuals to private business entities (31% and corporate forestry (26%. Biodiversity integrity of the catchment is estimated to have decreased by 326% and hydrological functioning for the support of aquatic biodiversity by 166%.Conclusion: Continued pressure to change patterns of ownership and land use is expected. This is likely to occur within the global context of climate change, population growth and shortages of land and its products. Immense pressure on the land areas, and specifically water services and biodiversity, is likely to occur, with associated environmental impacts.

  16. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments in terrestrial, marine, freshwater...... and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect......, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity, and to identify knowledge gaps and priorities. This poster will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based monitoring...

  17. Biodiversity Information Serving Our Nation (BISON)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Biodiversity Information Serving Our Nation (BISON) project is an online mapping information system consisting of a large collection of species occurrence...

  18. Hollow rhodoliths increase Svalbard's shelf biodiversity

    Science.gov (United States)

    Teichert, Sebastian

    2014-11-01

    Rhodoliths are coralline red algal assemblages that commonly occur in marine habitats from the tropics to polar latitudes. They form rigid structures of high-magnesium calcite and have a good fossil record. Here I show that rhodoliths are ecosystem engineers in a high Arctic environment that increase local biodiversity by providing habitat. Gouged by boring mussels, originally solid rhodoliths become hollow ecospheres intensely colonised by benthic organisms. In the examined shelf areas, biodiversity in rhodolith-bearing habitats is significantly greater than in habitats without rhodoliths and hollow rhodoliths yield a greater biodiversity than solid ones. This biodiversity, however, is threatened because hollow rhodoliths take a long time to form and are susceptible to global change and anthropogenic impacts such as trawl net fisheries that can destroy hollow rhodoliths. Rhodoliths and other forms of coralline red algae play a key role in a plurality of environments and need improved management and protection plans.

  19. Coastal and marine biodiversity of India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkataraman, K.; Wafar, M.V.M.

    This paper summarizes what is known of the coastal and marine biodiversity of the Indian seas and their various ecosystems, from past literature, museum records and other lesser-known sources of information. The synthesis suggests that the number...

  20. Ecosystem function and biodiversity on coral reefs

    OpenAIRE

    1994-01-01

    The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.

  1. Scientific contributions of extensive biodiversity monitoring.

    Science.gov (United States)

    Couvet, Denis; Devictor, Vincent; Jiguet, Frédéric; Julliard, Romain

    2011-05-01

    To develop a complete and informative biodiversity observation system, it is necessary to compare the strengths and limits of various monitoring schemes. In this article, we examine the various advantages of extensively monitoring fine-grained spatial variations of biodiversity, where the prominent traits of many species within a community (abundance, phenology, etc.) are regularly recorded at numerous sites over a large territory, usually via human observation networks. Linking these variations with environmental factors sheds lights on the major mechanisms leading to changes in biodiversity, thus increasing our knowledge of macroecology and community ecology. This extensive monitoring allows us to assess diffuse effects, contributing to the sound use of the precautionary principle. Combined with site-focused monitoring, information gathered from extensive monitoring provides the raw material necessary to build biodiversity scenarios.

  2. Antarctica and the strategic plan for biodiversity

    Science.gov (United States)

    Chown, Steven L.; Brooks, Cassandra M.; Terauds, Aleks; Le Bohec, Céline; van Klaveren-Impagliazzo, Céline; Whittington, Jason D.; Butchart, Stuart H. M.; Coetzee, Bernard W. T.; Collen, Ben; Convey, Peter; Gaston, Kevin J.; Gilbert, Neil; Gill, Mike; Höft, Robert; Johnston, Sam; Kennicutt, Mahlon C.; Kriesell, Hannah J.; Le Maho, Yvon; Lynch, Heather J.; Palomares, Maria; Puig-Marcó, Roser; Stoett, Peter; McGeoch, Melodie A.

    2017-01-01

    The Strategic Plan for Biodiversity, adopted under the auspices of the Convention on Biological Diversity, provides the basis for taking effective action to curb biodiversity loss across the planet by 2020—an urgent imperative. Yet, Antarctica and the Southern Ocean, which encompass 10% of the planet’s surface, are excluded from assessments of progress against the Strategic Plan. The situation is a lost opportunity for biodiversity conservation globally. We provide such an assessment. Our evidence suggests, surprisingly, that for a region so remote and apparently pristine as the Antarctic, the biodiversity outlook is similar to that for the rest of the planet. Promisingly, however, much scope for remedial action exists. PMID:28350825

  3. Biodiversity: modelling angiosperms as networks.

    Science.gov (United States)

    Gottlieb, O R; Borin, M R

    2000-11-01

    In the neotropics, one of the last biological frontiers, the major ecological concern should not involve local strategies, but global effects often responsible for irreparable damage. For a holistic approach, angiosperms are ideal model systems dominating most land areas of the present world in an astonishing variety of form and function. Recognition of biogeographical patterns requires new methodologies and entails several questions, such as their nature, dynamics and mechanism. Demographical patterns of families, modelled via species dominance, reveal the existence of South American angiosperm networks converging at the central Brazilian plateau. Biodiversity of habitats, measured via taxonomic uniqueness, reveal higher creative power at this point of convergence than in more peripheral regions. Compositional affinities of habitats, measured via bioconnectivity, reveal the decisive role of ecotones in the exchange or redistribution of information, energy and organisms among the ecosystems. Forming dynamic boundaries, ecotones generate and relay evolutionary novelty, and integrate all neotropical ecosystems into a single vegetation net. Connectivity in such plant webs may depend on mycorrhizal links. If sufficiently general such means of metabolic transfer will require revision of the chemical composition of many plants.

  4. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    OpenAIRE

    Veen, M.P.; Sanders, M E; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity – could not be met. The picture in the Netherlands is less positive if the average low quality of the remaining Dutch biodiversity is taken into account. If the impacts on biodiversity abroad of impo...

  5. Soil biodiversity in artificial black pine stands after selective silvicultural treatments: preliminary results

    Science.gov (United States)

    Mocali, Stefano; Fabiani, Arturo; Butti, Fabrizio; De Meo, Isabella; Bianchetto, Elisa; Landi, Silvia; Montini, Piergiuseppe; Samaden, Stefano; Cantiani, Paolo

    2016-04-01

    The decay of forest cover and soil erosion is a consequence of continual intensive forest exploitation, such as grazing and wildfires over the centuries. From the end of the eighteenth century up to the mid-1900s, black pine plantations were established throughout the Apennines' range in Italy, to improve forest soil quality. The main aim of this reafforestation was to re-establish the pine as a first cover, pioneer species. A series of thinning activities were therefore planned by foresters when these plantations were designed. The project Selpibiolife (LIFE13 BIO/IT/000282) has the main objective to demonstrate the potential of an innovative silvicultural treatment to enhance soil biodiversity under black pine stands. The monitoring will be carried out by comparing selective and traditional thinning methods (selecting trees from below leaving well-spaced, highest-quality trees) to areas without any silvicultural treatments (e.g. weeding, cleaning, liberation cutting). The monitoring survey was carried out in Pratomagno and Amiata Val D'Orcia areas on the Appennines (Italy) and involved different biotic levels: microorganisms, mesofauna, nematodes and macrofauna (Coleoptera). The results displayed a significant difference between the overall biodiversity of the two areas. In particular, microbial diversity assessed by both biochemical (microbial biomass, microbial respiration, metabolic quotient) and molecular (PCR-DGGE) approaches highlighted different a composition and activity of microbial communities within the two areas before thinning. Furthermore, little but significant differences were observed for mesofauna and nematode community as well which displayed a higher diversity level in Amiata areas compared to Pratomagno. In contrast, Coleoptera showed higher richness values in Pratomagno, where the wood degrader Nebria tibialis specie dominated, compared to Amiata. As expected, a general degraded biodiversity was observed in both areas before thinning.

  6. Responses of alpine biodiversity to climate change

    OpenAIRE

    Yang Liu; Jian Zhang; Wanqin Yang

    2009-01-01

    The alpine belt is the temperature-driven treeless region between the timberline and the snowline. Alpine belts are ideal sites for monitoring climate change because species in mountain habitats are especially sensitive to climate change. Global warming is shifting the distribution of alpine biodiversity and is leading to glacial retreat, implying that alterations in alpine biodiversity are indicators of climate change. Therefore, more attention has been given to changes in species compositio...

  7. Marine biodiversity survey of St. Eustatius, 2015

    OpenAIRE

    Hoeksema, B. W.

    2016-01-01

    The Statia Marine Biodiversity Expedition (2015) was organized by Naturalis Biodiversity Center in Leiden (the national museum of natural history of the Netherlands) and ANEMOON Foundation (a Dutch organisation of citizen scientists) in Bennebroek, The Netherlands. This field survey served as a baseline study to explore the marine biota of St. Eustatius, a small island on the boundary between the eastern Caribbean and the West Atlantic. Since 2010, St. Eustatius is part of the Caribbean Nethe...

  8. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  9. Aquatic plants for removal of mevinphos from the aquatic environment

    Science.gov (United States)

    Wolverton, B. C.

    1975-01-01

    Fragrant waterlily (Nymphaea odorata, Ait.), joint-grass (Paspalum distichum L.), and rush (Juncus repens, Michx.) were used to evaluate the effectiveness of vascular aquatic plants in removing the insecticide mevinphos (dimethyl-1-carbomethoxy-1propen-2-yl phosphate) from waters contaminated with this chemical. The emersed aquatic plants fragrant waterlily and joint-grass removed 87 and 93 ppm of mevinphos from water test systems in less than 2 weeks without apparent damage to the plants; whereas rush, a submersed plant, removed less insecticide than the water-soil controls. Water-soil control still contained toxic levels of this insecticide, as demonstrated by fish bioassay studies, after 35 days.

  10. The integration of biodiversity into One Health.

    Science.gov (United States)

    Romanelli, C; Cooper, H D; de Souza Dias, B F

    2014-08-01

    A better understanding of the links between biodiversity, health and disease presents major opportunities for policy development, and can enhance our understanding of how health-focused measures affect biodiversity, and conservation measures affect health. The breadth and complexity of these relationships, and the socio-economic drivers by which they are influenced, in the context of rapidly shifting global trends, reaffirm the need for an integrative, multidisciplinary and systemic approach to the health of people, livestock and wildlife within the ecosystem context. Loss of biodiversity, habitat fragmentation and the loss of natural environments threaten the full range of life-supporting services provided by ecosystems at all levels of biodiversity, including species, genetic and ecosystem diversity. The disruption of ecosystem services has direct and indirect implications for public health, which are likely to exacerbate existing health inequities, whether through exposure to environmental hazards or through the loss of livelihoods. One Health provides a valuable framework for the development of mutually beneficial policies and interventions at the nexus between health and biodiversity, and it is critical that One Health integrates biodiversity into its strategic agenda.

  11. The biodiversity-dependent ecosystem service debt.

    Science.gov (United States)

    Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel

    2015-02-01

    Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.

  12. Towards a Duty of Care for Biodiversity

    Science.gov (United States)

    Earl, G.; Curtis, A.; Allan, C.

    2010-04-01

    The decline in biodiversity is a worldwide phenomenon, with current rates of species extinction more dramatic than any previously recorded. Habitat loss has been identified as the major cause of biodiversity decline. In this article we suggest that a statutory duty of care would complement the current mix of policy options for biodiversity conservation. Obstacles hindering the introduction of a statutory duty of care include linguistic ambiguity about the terms ‘duty of care’ and ‘stewardship’ and how they are applied in a natural resource management context, and the absence of a mechanism to guide its implementation. Drawing on international literature and key informant interviews we have articulated characteristics of duty of care to reduce linguistic ambiguity, and developed a framework for implementing a duty of care for biodiversity at the regional scale. The framework draws on key elements of the common law ‘duty of care’, the concepts of ‘taking reasonable care’ and ‘avoiding foreseeable harm’, in its logic. Core elements of the framework include desired outcomes for biodiversity, supported by current recommended practices. The focus on outcomes provides opportunities for the development of innovative management practices. The framework incorporates multiple pathways for the redress of non-compliance including tiered negative sanctions, and positive measures to encourage compliance. Importantly, the framework addresses the need for change and adaptation that is a necessary part of biodiversity management.

  13. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    Science.gov (United States)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  14. Fracked ecology: Response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation.

    Science.gov (United States)

    Grant, Christopher James; Lutz, Allison K; Kulig, Aaron D; Stanton, Mitchell R

    2016-12-01

    Unconventional natural gas development and hydraulic fracturing practices (fracking) are increasing worldwide due to global energy demands. Research has only recently begun to assess fracking impacts to surrounding environments, and very little research is aimed at determining effects on aquatic biodiversity and contaminant biomagnification. Twenty-seven remotely-located streams in Pennsylvania's Marcellus Shale basin were sampled during June and July of 2012 and 2013. At each stream, stream physiochemical properties, trophic biodiversity, and structure and mercury levels were assessed. We used δ15N, δ13C, and methyl mercury to determine whether changes in methyl mercury biomagnification were related to the fracking occurring within the streams' watersheds. While we observed no difference in rates of biomagnificaion related to within-watershed fracking activities, we did observe elevated methyl mercury concentrations that were influenced by decreased stream pH, elevated dissolved stream water Hg values, decreased macroinvertebrate Index for Biotic Integrity scores, and lower Ephemeroptera, Plecoptera, and Trichoptera macroinvertebrate richness at stream sites where fracking had occurred within their watershed. We documented the loss of scrapers from streams with the highest well densities, and no fish or no fish diversity at streams with documented frackwater fluid spills. Our results suggest fracking has the potential to alter aquatic biodiversity and methyl mercury concentrations at the base of food webs.

  15. Achievements and Prospects of Biodiversity Informatics in China

    Institute of Scientific and Technical Information of China (English)

    JI Liqiang

    2010-01-01

    @@ Biodiversity information is the basis for conservation and sustainable use of biodiversity.It not only helps us understand the status quo of biodiversity,but also reveals the relationships between its different components and hence their dynamic variations.Furthermore,it will help us predict the trend of future biodiversity development,and lay the basis for related analyses and scientific decision making on biodiversity conservation.

  16. A model of provenance applied to biodiversity datasets

    OpenAIRE

    Amanqui, Flor K; De Nies, Tom; Dimou, Anastasia; Verborgh, Ruben; Mannens, Erik; Van De Walle, Rik; Moreira, Dilvan

    2016-01-01

    Nowadays, the Web has become one of the main sources of biodiversity information. An increasing number of biodiversity research institutions add new specimens and their related information to their biological collections and make this information available on the Web. However, mechanisms which are currently available provide insufficient provenance of biodiversity information. In this paper, we propose a new biodiversity provenance model extending the W3C PROV Data Model. Biodiversity data is...

  17. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  18. BASELINE STATUS FOR FLORA AND FAUNA WITH AQUATIC BIODIVERSITY IN DAHEJ AREA, DISTRICT BHARUCH GUJARAT

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2015-03-01

    Full Text Available Floristic and Faunistic pattern of the area was studied based on inquiries from the local population, personal observation and forest officials. The study area falls under Dahej, Bharuch District of Gujarat state. Western part of the study area is occupied by the mud flats and Saltpans. There is almost plain without much undulation, a fallow land; hence not mush vegetation cover, except scattered Prosopis juliflora shrubs and few trees of Prosopis cineraria. Total 41 species of trees belong to 20 families are enumerated from the study area. Shrubs encountered during the present survey are 27 shrub species belong to 18 families are enumerated from the study area. The dominant shrub community in this area was represented by Prosopis Juliflora (Gando baval, Calotropis procera, C. gigantea (Akado, Ipomoea fistulosa (Nasarmo, Lawsonia inermis (Mendhi, Abutilon indicum (Khapat and Lantana camara (Ganthai. Painted stork (Mycteria leucocephala was observed which is grouped under near threatened birds by IUCN. Among the birds in the study area, Pea fowl (Pavo cristatus, is included in schedule I of Wild life protection Act (1972, while many other birds are included in schedule IV. Among the reptiles, Indian Cobra (Naja naja, and Common rat snake (Ptyas mucosus were provided protection as per Schedule-II of Wild life protection act, (1972. Among mammals, Common Mongoose (Herpestes edwardsi, Jackal (Canis aureus (Linnaeus and Jungle cat (Felis Chaus are schedule–II animals. Nilgai (Boselaphus tragocamelus is protected as Schedule-III animal and Hares and five stripped squirrels are included in schedule IV of Wild Life Protection act 1972.

  19. Perturbations to aquatic photosynthesis due to high-energy cosmic ray induced muon flux in the extragalactic shock model

    CERN Document Server

    Rodriguez, Lien; Rodriguez, Oscar

    2013-01-01

    We modify a mathematical model of photosynthesis to quantify the perturbations that high energy muons could make on aquatic primary productivity. Then we apply this in the context of the extragalactic shock model, according to which Earth receives an enhanced dose of high-energy cosmic rays when it is at the galactic north. We obtain considerable reduction in the photosynthesis rates, consistent with potential drops in biodiversity.

  20. Measurement of undisturbed di-nitrogen emissions from aquatic ecosystems

    Science.gov (United States)

    Qin, Shuping, Clough, Timothy, Lou, Jiafa; Hu, Chunsheng; Oenema, Oene; Wrage-Mönnig, Nicole; Zhang, Yuming

    2016-04-01

    Increased production of reactive nitrogen (Nr) from atmospheric di-nitrogen (N2) during the last century has greatly contributed to increased food production1-4. However, enriching the biosphere with Nr through N fertilizer production, combustion, and biological N2 fixation has also caused a series of negative effects on global ecosystems 5,6, especially aquatic ecosystems7. The main pathway converting Nr back into the atmospheric N2 pool is the last step of the denitrification process, i.e., the reduction of nitrous oxide (N2O) into N2 by micro-organisms7,8. Despite several attempts9,10, there is not yet an accurate, fast and direct method for measuring undisturbed N2 fluxes from denitrification in aquatic sediments at the field scale11-14. Such a method is essential to study the feedback of aquatic ecosystems to Nr inputs1,2,7. Here we show that the measurement of both N2O emission and its isotope signature can be used to infer the undisturbed N2 fluxes from aquatic ecosystems. The microbial reduction of N2O increases the natural abundance of 15N-N2O relative to 14N-N2O (δ15N-N2O). We observed linear relationships between δ15N-N2O and the logarithmic transformed N2O/(N2+N2O) emission ratios. Through independent measurements, we verified that the undisturbed N2 flux from aquatic ecosystems can be inferred from measurements of N2O emissions and the δ15N-N2O signature. Our method allows the determination of field-scale N2 fluxes from undisturbed aquatic ecosystems, and thereby allows model predictions of denitrification rates to be tested. The undisturbed N2 fluxes observed are almost one order of magnitude higher than those estimated by the traditional method, where perturbation of the system occurs, indicating that the ability of aquatic ecosystems to remove Nr may have been severely underestimated.

  1. Marine and other aquatic dermatoses

    Directory of Open Access Journals (Sweden)

    Jandhyala Sridhar

    2017-01-01

    Full Text Available Occupational and recreational aquatic activity predisposes our population to a wide variety of dermatoses. Sunburn, urticaria, jellyfish stings, and contact dermatitis to rubber equipment are common allergies that are encountered in the aquatic environment. Among the infections, tinea versicolor, intertrigo, and verruca vulgaris are widespread. Swimmer's itch may occur due to skin penetration by schistosome cercariae, while free-floating nematocysts of marine coelenterates may precipitate seabather's eruption. “Suit squeeze” due to cutaneous barotrauma and lymphoedematous peau d'orange due to decompression are rare, described entities. This review serves as a ready reckoner for Indian dermatologists and medical practitioners to identify and manage these conditions.

  2. Aquatic insect assemblages of man-made permanent ponds, Buenos Aires city, Argentina.

    Science.gov (United States)

    Fontanarrosa, M S; Collantes, M B; Bachmann, A O

    2013-02-01

    Freshwater habitats are important elements within urban green space and they are endangered by various types of human activity. With the aim to increase the knowledge about species biodiversity in urban ecosystems, we characterised the assemblages of aquatic insects in four permanent man-made ponds in Buenos Aires city (Argentina) during a 1-year period. We recorded 32 species with Sigara spp. (Hemiptera) as the most abundant. The removal of aquatic vegetation from the studied ponds may have affected both the establishment and permanence of the insect community. Swimmers were the dominant group in the studied sites, followed by burrowers and sprawlers, and only a few strictly climbers were collected. Therefore, all sampled ponds were dominated by collectors (principally gatherers), secondarily by predators and only few shredders were detected, which was much affected by the removal of macrophytes. Non-parametric abundance indexes estimated a number of species very close to the observed number in each site. Conversely, the incidence indexes estimated more species because there were many more taxa present only in one sample than those represented by few individual in a sample. Our data provides some insights on the community of man-made ponds that can improve the management of these aquatic urban habitats. Considering that macrophytes affect animal assemblages due to their role as physical structures that increase the complexity or heterogeneity of habitats, they should not be removed by authorities in order to promote biodiversity.

  3. 关于中国淡水生态系统生物多样性监测与管理的探讨%BIODIVERSITY MONITORING FOR AND MANAGEMENT OF FRESHWATER ECOSYSTEMS IN CHINA: A DISCUSSION AND POSITION PAPER

    Institute of Scientific and Technical Information of China (English)

    XU Dong-Jiong; LI Gang

    2006-01-01

    Due to the rapid economic growth and the continuous increase of human, ecosystem disturbances and habitat destructions, the biodiversity of freshwater ecosystems in China is rapidly declining. This issue is gradually gaining the government's attention as its environmental policy becomes more and more equally-weighed on both "pollution prevention and control" and "ecological conservation" issues while only the former was emphasized in the past. However, some unsolved issues still exist with regard to aquatic biodiversity monitoring and management in China. For example, there are functional overlaps among governmental departments; regional ecological function divisions are not clarified; biodiversity is usually neglected or not emphasized in environmental impact assessment for construction projects; and so on. In our opinion, the following areas should be emphasied: (a) enhancing the cooperation among governmental departments; (b) setting up mechanisms to allow ecological watershed management;(c) establishing the biodiversity conservation and ecological restoration planning for local freshwater ecosystem; (d) clarifying the ecological function divisions; (e) enhancing the biodiversity monitoring and management for freshwater ecosystem in environmental impact assessment studies for industrial construction and rural development projects; (f) establishing a technical regulatory framework for related monitoring and management activities which includes an index system for monitoring and assessment; (g) studying and establishing the related biological criteria for formulating assessment standards; and (h) paying attention to aquatic vegetation,fishes, benthic macro-invertebrates and other key aquatic assemblages.

  4. Compensation for biodiversity loss – Advice to the Netherlands' Taskforce on Biodiversity and Natural Resources

    NARCIS (Netherlands)

    Bie, de S.; Dessel, van B.

    2011-01-01

    Compensation of damage to biodiversity is one of the mechanisms to settle environmental costs. It concerns creating new opportunities for biodiversity, which as a minimum equals the residual impact after a company or organization has attempted to avoid, prevent and mitigate that impact. In the Nethe

  5. Breaking boundaries for biodiversity : expanding the policy agenda to halt biodiversity loss

    NARCIS (Netherlands)

    Veen, M.P.; Sanders, M.E.; Tekelenburg, A.; Gerritsen, A.L.; Lörzing, J.A.; Brink, Th.

    2010-01-01

    Our assessment from the perspective of the Netherlands, a country in the temperate zone, showed a slightly positive picture, in line with the overall results for this zone. The loss of biodiversity in the Netherlands has been slowed down, but the European target – halting the loss of biodiversity

  6. Challenges of Biodiversity Education: A Review of Education Strategies for Biodiversity Education

    Science.gov (United States)

    Navarro-Perez, Moramay; Tidball, Keith G.

    2012-01-01

    Biodiversity conservation has increasingly gained recognition in national and international agendas. The Convention on Biological Diversity (CBD) has positioned biodiversity as a key asset to be protected to ensure our well-being and that of future generations. Nearly 20 years after its inception, results are not as expected, as shown in the…

  7. Biodiversity of Jinggangshan Mountain: the importance of topography and geographical location in supporting higher biodiversity.

    Science.gov (United States)

    Zhou, Ting; Chen, Bao-Ming; Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason's richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM's area was in the mid-altitude region and approximately 40% of JGM's area was in the 10°-20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM.

  8. Biodiversity of Jinggangshan Mountain: the importance of topography and geographical location in supporting higher biodiversity.

    Directory of Open Access Journals (Sweden)

    Ting Zhou

    Full Text Available Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM, an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason's richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM's area was in the mid-altitude region and approximately 40% of JGM's area was in the 10°-20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM.

  9. Biodiversity of Jinggangshan Mountain: The Importance of Topography and Geographical Location in Supporting Higher Biodiversity

    Science.gov (United States)

    Liu, Gang; Huang, Fang-Fang; Liu, Jin-Gang; Liao, Wen-Bo; Wang, Ying-Yong; Ren, Si-Jie; Chen, Chun-Quan; Peng, Shao-Lin

    2015-01-01

    Diversity is mainly determined by climate and environment. In addition, topography is a complex factor, and the relationship between topography and biodiversity is still poorly understood. To understand the role of topography, i.e., altitude and slope, in biodiversity, we selected Jinggangshan Mountain (JGM), an area with unique topography, as the study area. We surveyed plant and animal species richness of JGM and compared the biodiversity and the main geographic characteristics of JGM with the adjacent 4 mountains. Gleason’s richness index was calculated to assess the diversity of species. In total, 2958 spermatophyte species, 418 bryophyte species, 355 pteridophyte species and 493 species of vertebrate animals were recorded in this survey. In general, the JGM biodiversity was higher than that of the adjacent mountains. Regarding topographic characteristics, 77% of JGM’s area was in the mid-altitude region and approximately 40% of JGM’s area was in the 10°–20° slope range, which may support more vegetation types in JGM area and make it a biodiversity hotspot. It should be noted that although the impact of topography on biodiversity was substantial, climate is still a more general factor driving the formation and maintenance of higher biodiversity. Topographic conditions can create microclimates, and both climatic and topographic conditions contribute to the formation of high biodiversity in JGM. PMID:25763820

  10. Climate-smart management of biodiversity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  11. Biodiversity information platforms: From standards to interoperability

    Directory of Open Access Journals (Sweden)

    Walter Berendsohn

    2011-11-01

    Full Text Available One of the most serious bottlenecks in the scientific workflows of biodiversity sciences is the need to integrate data from different sources, software applications, and services for analysis, visualisation and publication. For more than a quarter of a century the TDWG Biodiversity Information Standards organisation has a central role in defining and promoting data standards and protocols supporting interoperability between disparate and locally distributed systems. Although often not sufficiently recognized, TDWG standards are the foundation of many popular Biodiversity Informatics applications and infrastructures ranging from small desktop software solutions to large scale international data networks. However, individual scientists and groups of collaborating scientist have difficulties in fully exploiting the potential of standards that are often notoriously complex, lack non-technical documentations, and use different representations and underlying technologies. In the last few years, a series of initiatives such as Scratchpads, the EDIT Platform for Cybertaxonomy, and biowikifarm have started to implement and set up virtual work platforms for biodiversity sciences which shield their users from the complexity of the underlying standards. Apart from being practical work-horses for numerous working processes related to biodiversity sciences, they can be seen as information brokers mediating information between multiple data standards and protocols. The ViBRANT project will further strengthen the flexibility and power of virtual biodiversity working platforms by building software interfaces between them, thus facilitating essential information flows needed for comprehensive data exchange, data indexing, web-publication, and versioning. This work will make an important contribution to the shaping of an international, interoperable, and user-oriented biodiversity information infrastructure.

  12. Microbial fuel cells for biosensor applications.

    Science.gov (United States)

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  13. Emerging trends in genomic approaches for microbial bioprospecting.

    Science.gov (United States)

    Akondi, K B; Lakshmi, V V

    2013-02-01

    Microorganisms constitute two out of the three domains of life on earth. They exhibit vast biodiversity and metabolic versatility. This enables the microorganisms to inhabit and thrive in even the most extreme environmental conditions, making them all pervading. The magnitude of biodiversity observed among microorganisms substantially supersedes that exhibited by the eukaryotes. These characteristics make the microbial world a very lucrative and inexhaustible resource for prospecting novel bioactive molecules. Despite their vast potential, over 99% of the microbial world still remains to be explored. The primary reason for this is that the culture-dependent methods used in the laboratories are grossly insufficient, as they support the growth of under 1% of the microorganisms found in nature. This limitation necessitated the development of techniques to circumvent culture dependency and gain access to the outstanding majority of the microorganisms. The development of culture-independent techniques has essentially reshaped the study of microbial diversity and community dynamics. Application of genomic and metagenomic approaches is contributing substantially towards characterization of the real microbial diversity. The amenability of these techniques to high throughput has opened the doors to explore the vast number of "uncultivable" microbial forms in substantially lesser time. The present article provides an update on the recent technological advances and emerging trends in exploring microbial community.

  14. Biological conservation of aquatic inland habitats: these are better days

    Directory of Open Access Journals (Sweden)

    Ian J. Winfield

    2013-08-01

    Full Text Available The biodiversity of aquatic inland habitats currently faces unprecedented threats from human activities. At the same time, although much is known about the functioning of freshwater ecosystems the successful transfer of such knowledge to practical conservation has not been universal. Global awareness of aquatic conservation issues is also hampered by the fact that conditions under the water surface are largely hidden from the direct experience of most members of society. Connectivity, or lack of it, is another challenge to the conservation of freshwater habitats, while urban areas can play a perhaps unexpectedly important positive role. Freshwater habitats frequently enjoy benefits accruing from a sense of ownership or stewardship by local inhabitants, which has led to the development of conservation movements which commonly started life centred on the aquatic inland habitat itself but of which many have now matured into wider catchment-based conservation programmes. A demonstrable need for evidence-based conservation management in turn requires scientific assessments to be increasingly robust and standardised, while at the same time remaining open to the adoption of technological advances and welcoming the rapidly developing citizen science movement. There is evidence of real progress in this context and conservation scientists are now communicating their findings to environmental managers in a way and on a scale that was rarely seen a couple of decades ago. It is only in this way that scientific knowledge can be efficiently transferred to conservation planning, prioritisation and ultimately management in an increasingly scaled-up, joined-up and resource-limited world. The principle of ‘prevention is better than cure’ is particularly appropriate to most biological conservation issues in aquatic inland habitats and is inextricably linked to educating and/or nudging appropriate human behaviours. When prevention fails, some form of emergency

  15. Diatom community biodiversity in an Alpine protected area: a study in the Maritime Alps Natural Park

    Directory of Open Access Journals (Sweden)

    Francesca BONA

    2011-08-01

    Full Text Available As part of the "All Taxa Biodiversity Inventories" (ATBIs coordinated by the European Distributed Institute of Taxonomy (EDIT, we analysed diatom communities colonizing different habitats of the Valasco Valley (Maritime Alps Natural Park. The aim of this research was to shed light on the diatom richness in an Alpine context through i the collection of data concerning diatom communities inhabiting an unexplored watershed of the Maritime Alps Natural Park, including all of the most important aquatic habitats (comparison among river, springs and peat bogs and assemblages (epilithic and epiphytic diatom communities; ii analysis of the main environmental factors driving the development of diatom communities in different habitats. We completed a list of 174 diatom taxa. In general, river samples were poorer in terms of species richness than spring and peat bog ones, probably due to the selective role of the fast flow, while springs sheltered the highest biodiversity of the Valasco Valley. Peat bog communities were mainly composed of acidophilous taxa, sometimes planktonic and forming colonies. Epilithic and epiphytic samples did not show significant differences in terms of composition and biodiversity, even though it was statistically possible to identify indicator species for each assemblage. The study also highlighted the presence of several taxa included in the German Red List as endangered or decreasing, especially in the epiphytic samples. Since the water nutrient level and substrate geology were similar among habitats, the main environmental factors shaping Valasco diatom communities were water velocity and pH.

  16. Five Years of Experimental Warming Increases the Biodiversity and Productivity of Phytoplankton.

    Science.gov (United States)

    Yvon-Durocher, Gabriel; Allen, Andrew P; Cellamare, Maria; Dossena, Matteo; Gaston, Kevin J; Leitao, Maria; Montoya, José M; Reuman, Daniel C; Woodward, Guy; Trimmer, Mark

    2015-12-01

    Phytoplankton are key components of aquatic ecosystems, fixing CO2 from the atmosphere through photosynthesis and supporting secondary production, yet relatively little is known about how future global warming might alter their biodiversity and associated ecosystem functioning. Here, we explore how the structure, function, and biodiversity of a planktonic metacommunity was altered after five years of experimental warming. Our outdoor mesocosm experiment was open to natural dispersal from the regional species pool, allowing us to explore the effects of experimental warming in the context of metacommunity dynamics. Warming of 4°C led to a 67% increase in the species richness of the phytoplankton, more evenly-distributed abundance, and higher rates of gross primary productivity. Warming elevated productivity indirectly, by increasing the biodiversity and biomass of the local phytoplankton communities. Warming also systematically shifted the taxonomic and functional trait composition of the phytoplankton, favoring large, colonial, inedible phytoplankton taxa, suggesting stronger top-down control, mediated by zooplankton grazing played an important role. Overall, our findings suggest that temperature can modulate species coexistence, and through such mechanisms, global warming could, in some cases, increase the species richness and productivity of phytoplankton communities.

  17. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  18. Aquatic Plant Water Quality Criteria

    Science.gov (United States)

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  19. Aquatic Exercise for the Aged.

    Science.gov (United States)

    Daniel, Michael; And Others

    The development and implementation of aquatic exercise programs for the aged are discussed in this paper. Program development includes a discussion of training principles, exercise leadership and the setting up of safe water exercise programs for the participants. The advantages of developing water exercise programs and not swimming programs are…

  20. Morbillivirus infections in aquatic mammals

    NARCIS (Netherlands)

    I.K.G. Visser (Ilona); M.F. van Bressem; T. Barrett (Thomas); A.D.M.E. Osterhaus (Albert)

    1993-01-01

    textabstractInfections with morbilliviruses have caused heavy losses among different populations of aquatic mammals during the last 5 years. Two different morbilliviruses were isolated from disease outbreaks among seals in Europe and Siberia: phocid distemper virus-1 (PDV-1) and phocid distemper vir

  1. Macroecology of biodiversity: disentangling local and regional effects.

    Science.gov (United States)

    Pärtel, Meelis; Bennett, Jonathan A; Zobel, Martin

    2016-07-01

    Contents 404 I. 404 II. 404 III. 405 IV. 406 V. 407 VI. 408 409 References 409 SUMMARY: Macroecology of biodiversity disentangles local and regional drivers of biodiversity by exploring large-scale biodiversity relationships with environmental or biotic gradients, generalizing local biodiversity relationships across regions, or comparing biodiversity patterns among species groups. A macroecological perspective is also important at local scales: a full understanding of local biodiversity drivers, including human impact, demands that regional processes be taken into account. This requires knowledge of which species could inhabit a site (the species pool), including those that are currently absent (dark diversity). Macroecology of biodiversity is currently advancing quickly owing to an unprecedented accumulation of biodiversity data, new sampling techniques and analytical methods, all of which better equip us to face current and future challenges in ecology and biodiversity conservation.

  2. Biodiversity of frog haemoparasites from sub-tropical northern KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Netherlands, Edward C; Cook, Courtney A; Kruger, Donnavan J D; du Preez, Louis H; Smit, Nico J

    2015-04-01

    Since South Africa boasts a high biodiversity of frog species, a multispecies haemoparasite survey was conducted by screening the blood from 29 species and 436 individual frogs. Frogs were collected at three localities in sub-tropical KwaZulu-Natal, a hotspot for frog diversity. Twenty per cent of the frogs were infected with at least one of five groups of parasites recorded. Intraerythrocytic parasites comprising Hepatozoon, Dactylosoma, and viral or bacterial organisms, as well as extracellular parasites including trypanosomes and microfilarid nematodes were found. A significant difference (P < 0.01) in the prevalence of parasitaemia was found across species, those semi-aquatic species demonstrating the highest, followed by semi-terrestrial frog species. None of those species described as purely terrestrial and aquatic were infected. Hepatozoon and Trypanosoma species accounted for most of the infections, the former demonstrating significant differences in intensity of infection across species, families and habitat types (P = 0.028; P = 0.006; P = 0.007 respectively). Per locality, the first, the formally protected Ndumo Game Reserve, had the highest biodiversity of haemoparasite infections, with all five groups of parasites recorded. The other two sites, that is the area bordering the reserve and the Kwa Nyamazane Conservancy, had a lower diversity with no parasite infections recorded and only Hepatozoon species recorded respectively. Such findings could be ascribed to the anthropogenic impact on the latter two sites, the first by the rural village activities, and the second by the bordering commercial sugar cane agriculture. Future studies should include both morphological and molecular descriptions of the above parasites, as well as the identification of potential vectors, possibly clarifying the effects human activities may have on frog haemoparasite life cycles and as such their biodiversity.

  3. Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation.

    Science.gov (United States)

    Alho, C J R

    2008-11-01

    Seasonal flooding is the most important ecological phenomenon in the Pantanal. Every year many parts of the biome change from terrestrial into aquatic habitats and vice-versa. The degree of inundation creates a range of major habitats. Flooding occupies about 80% of the whole Pantanal. In contrast, during the dry season, most of the flooded areas stay dry, when the water returns to the river beds or evaporates. The Pantanal is a large continental savanna wetland (147,574 km(2) in Brazil), touching Bolivia to the north and Paraguay to the south. The maze of fluctuating water levels, nutrients, and biota forms a dynamic ecosystem. The vegetation comprises 1,863 phanerogam plant species listed for the floodplain and 3,400 for the whole basin and 250 species of aquatic plants. The complex vegetation cover and seasonal productivity support a diverse and abundant fauna within the floodplain: 263 species of fish, 41 of amphibians, 113 of reptiles (177 for the basin), 463 of birds and 132 mammal species. Many endangered species occur, including jaguar (Panthera onca Linnaeus, 1758). Waterfowl are exceptionally abundant during the dry season. Analysis of the root causes of the threats to biodiversity indicated that deforestation (17% of the Pantanal and 63% of the surrounding uplands) with modification and loss of natural habitats due to cattle ranching, unsustainable agriculture, mining, environmental contamination (including mercury, pesticides, urban sewage), non organized tourism, fire, disturbances at the upstream region modifying hydrological flow, erosion, weak implementation and enforcement of legislation are the major issues to face conservation action and sustainable use. Under an evolutionary focus, local biodiversity seems to be well adapted to seasonal shrinking and expansion of natural habitats due to flooding. However, the conversion of natural vegetation due to human occupation is a real threat to biodiversity.

  4. Making the case for biodiversity in South Africa: Re-framing biodiversity communications

    Directory of Open Access Journals (Sweden)

    Kristal Maze

    2016-05-01

    Full Text Available Background: Biodiversity education and public awareness do not always contain the motivational messages that inspire action amongst decision-makers. Traditional messages from the biodiversity sector are often framed around threat, with a generally pessimistic tone. Aspects of social marketing can be used to support positive messaging that is more likely to inspire action amongst the target audience.Objectives: The South African biodiversity sector embarked on a market research process to better understand the target audiences for its messages and develop a communications strategy that would reposition biodiversity as integral to the development trajectory of South Africa.Method: The market research process combined stakeholder analysis, market research, engagement and facilitated dialogue. Eight concept messages were developed that framed biodiversity communications in different ways. These messages were tested with the target audience to assess which were most relevant in a developing-world context.Results: The communications message that received the highest ranking in the market research process was the concept of biodiversity as a ‘national asset’. This frame places biodiversity as an equivalent national priority to other economic and social imperatives. Other messages that ranked highly were the emotional message of biodiversity as ‘our children’s legacy’ and the action-based ‘practical solutions’.Conclusion: Based on the findings, a communications strategy known as ‘Making the case for biodiversity’ was developed that re-framed the economic, emotional and practical value propositions for biodiversity. The communications strategy has already resulted in greater political and economic attention towards biodiversity in South Africa.

  5. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    Science.gov (United States)

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  6. Species ages in neutral biodiversity models.

    Science.gov (United States)

    Chisholm, Ryan A; O'Dwyer, James P

    2014-05-01

    Biogeography seeks to understand the mechanisms that drive biodiversity across long temporal and large spatial scales. Theoretical models of biogeography can be tested by comparing their predictions of quantities such as species ages against empirical estimates. It has previously been claimed that the neutral theory of biodiversity and biogeography predicts species ages that are unrealistically long. Any improved theory of biodiversity must rectify this problem, but first it is necessary to quantify the problem precisely. Here we provide analytical expressions for species ages in neutral biodiversity communities. We analyse a spatially implicit metacommunity model and solve for both the zero-sum and non-zero-sum cases. We explain why our new expressions are, in the context of biodiversity, usually more appropriate than those previously imported from neutral molecular evolution. Because of the time symmetry of the spatially implicit neutral model, our expressions also lead directly to formulas for species persistence times and species lifetimes. We use our new expressions to estimate species ages of forest trees under a neutral model and find that they are about an order of magnitude shorter than those predicted previously but still unrealistically long. In light of our results, we discuss different models of biogeography that may solve the problem of species ages.

  7. Ecology and evolution of mammalian biodiversity.

    Science.gov (United States)

    Jones, Kate E; Safi, Kamran

    2011-09-12

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future.

  8. Ecology and evolution of mammalian biodiversity

    Science.gov (United States)

    Jones, Kate E.; Safi, Kamran

    2011-01-01

    Mammals have incredible biological diversity, showing extreme flexibility in eco-morphology, physiology, life history and behaviour across their evolutionary history. Undoubtedly, mammals play an important role in ecosystems by providing essential services such as regulating insect populations, seed dispersal and pollination and act as indicators of general ecosystem health. However, the macroecological and macroevolutionary processes underpinning past and present biodiversity patterns are only beginning to be explored on a global scale. It is also particularly important, in the face of the global extinction crisis, to understand these processes in order to be able to use this knowledge to prevent future biodiversity loss and loss of ecosystem services. Unfortunately, efforts to understand mammalian biodiversity have been hampered by a lack of data. New data compilations on current species' distributions, ecologies and evolutionary histories now allow an integrated approach to understand this biodiversity. We review and synthesize these new studies, exploring the past and present ecology and evolution of mammalian biodiversity, and use these findings to speculate about the mammals of our future. PMID:21807728

  9. Geography of conservation spending, biodiversity, and culture.

    Science.gov (United States)

    McClanahan, T R; Rankin, P S

    2016-10-01

    We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross-national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost.

  10. Aquatic Macrophyte Risk Assessment for Pesticides

    NARCIS (Netherlands)

    Maltby, L.; Arnold, D.; Arts, G.H.P.; Davies, J.; Heimbach, F.; Pickl, C.; Poulsen, V.

    2009-01-01

    Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to aquat

  11. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community.

    Science.gov (United States)

    Zhou, Jizhong; Liu, Wenzong; Deng, Ye; Jiang, Yi-Huei; Xue, Kai; He, Zhili; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Wang, Aijie

    2013-03-05

    ABSTRACT The processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2 production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management. IMPORTANCE Microorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of

  12. Biodiversity at the Ecosystem Level - Patterns and Processes

    DEFF Research Database (Denmark)

    This publication contains the presentations and discussions from the second DanBIF conference, entitled Biodiversity at the Ecosystem Level – Patterns and Processes. The questions asked at this conference were: What is biodiversity at the ecosystem level? How is it related to biodiversity at other...... levels of organization? How may GBIF (Global Biodiversity Information Facility) deal with ecosystem level data and informatics? The conference had two important goals. The first was to present an overview of contemporary research related to ecosystem level biodiversity and the second was to help GBIF...... formulate a strategy for dealing with biodiversity above the species and molecular levels and make data available for the end-users....

  13. A meta-analysis of soil biodiversity impacts on the carbon cycle

    Science.gov (United States)

    de Graaff, M.-A.; Adkins, J.; Kardol, P.; Throop, H. L.

    2015-03-01

    Loss of biodiversity impacts ecosystem functions, such as carbon (C) cycling. Soils are the largest terrestrial C reservoir, containing more C globally than the biotic and atmospheric pools together. As such, soil C cycling, and the processes controlling it, has the potential to affect atmospheric CO2 concentrations and subsequent climate change. Despite the growing evidence of links between plant diversity and soil C cycling, there is a dearth of information on whether similar relationships exist between soil biodiversity and C cycling. This knowledge gap occurs even though there has been increased recognition that soil communities display high levels of both taxonomic and functional diversity and are key drivers of fluxes of C between the atmosphere and terrestrial ecosystems. Here, we used meta-analysis and regression analysis to quantitatively assess how soil biodiversity affects soil C cycling pools and processes (i.e., soil C respiration, litter decomposition, and plant biomass). We compared the response of process variables to changes in diversity both within and across groups of soil organisms that differed in body size, a grouping that typically correlates with ecological function. When studies that manipulated both within- and across-body size group diversity were included in the meta-analysis, loss of diversity significantly reduced soil C respiration (-27.5%) and plant tissue decomposition (-18%) but did not affect above- or belowground plant biomass. The loss of within-group diversity significantly reduced soil C respiration, while loss of across-group diversity did not. Decomposition was negatively affected both by loss of within-group and across-group diversity. Furthermore, loss of microbial diversity strongly reduced soil C respiration (-41%). In contrast, plant tissue decomposition was negatively affected by loss of soil faunal diversity but was unaffected by loss of microbial diversity. Taken together, our findings show that loss of soil

  14. Biodiversity and Resilience of Ecosystem Functions.

    Science.gov (United States)

    Oliver, Tom H; Heard, Matthew S; Isaac, Nick J B; Roy, David B; Procter, Deborah; Eigenbrod, Felix; Freckleton, Rob; Hector, Andy; Orme, C David L; Petchey, Owen L; Proença, Vânia; Raffaelli, David; Suttle, K Blake; Mace, Georgina M; Martín-López, Berta; Woodcock, Ben A; Bullock, James M

    2015-11-01

    Accelerating rates of environmental change and the continued loss of global biodiversity threaten functions and services delivered by ecosystems. Much ecosystem monitoring and management is focused on the provision of ecosystem functions and services under current environmental conditions, yet this could lead to inappropriate management guidance and undervaluation of the importance of biodiversity. The maintenance of ecosystem functions and services under substantial predicted future environmental change (i.e., their 'resilience') is crucial. Here we identify a range of mechanisms underpinning the resilience of ecosystem functions across three ecological scales. Although potentially less important in the short term, biodiversity, encompassing variation from within species to across landscapes, may be crucial for the longer-term resilience of ecosystem functions and the services that they underpin.

  15. Fossil Biodiversity: Red Noise Plus Signal

    CERN Document Server

    Melott, A L; Melott, Adrian L.; Lieberman, Bruce S.

    2006-01-01

    We have examined the Fourier power spectrum as well as the Hurst exponent of extinction, origination, and total biodiversity in the marine fossil record, using a recently improved geologic timescale. We find all of them strongly inconsistent with past claims of self-similarity as well as inconsistent with random walk behavior. Instead, they are dominated by low-frequency power, with approximate f^-2 power over one decade in frequency. The spectrum turns over at about 10^5 y, lending plausibility to connections with galactic dynamics. Even in the background of this low-frequency dominance, a previously noted 62 My biodiversity cycle stands out with better than 99% confidence above the noise level, accounting for about 35% of the total variance in the fossil biodiversity record.

  16. Biodiversity and the feel-good factor

    DEFF Research Database (Denmark)

    Dallimer, Martin; Irvine, Katherine N.; Skinner, Andrew M. J.

    2012-01-01

    Over half of the world's human population lives in cities, and for many, urban greenspaces are the only places where they encounter biodiversity. This is of particular concern because there is growing evidence that human well-being is enhanced by exposure to nature. However, the specific qualities...... of greenspaces that offer the greatest benefits remain poorly understood. One possibility is that humans respond positively to increased levels of biodiversity. Here, we demonstrate the lack of a consistent relationship between actual plant, butterfly, and bird species richness and the psychological well......-being of urban greenspace visitors. instead, well-being shows a positive relationship with the richness that the greenspace users perceived to be present. One plausible explanation for this discrepancy, which we investigate, is that people generally have poor biodiversity-identification skills. The apparent...

  17. Molecular biodiversity of Red Sea demosponges.

    Science.gov (United States)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M; Berumen, Michael L; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone; Wörheide, Gert

    2016-04-30

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  18. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-01-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103

  19. A conservation agenda for the Pantanal's biodiversity

    Directory of Open Access Journals (Sweden)

    CJR Alho

    Full Text Available The Pantanal's biodiversity constitutes a valuable natural resource, in economic, cultural, recreational, aesthetic, scientific and educational terms. The vegetation plus the seasonal productivity support a diverse and abundant fauna. Many endangered species occur in the region, and waterfowl are exceptionally abundant during the dry season. Losses of biodiversity and its associated natural habitats within the Pantanal occur as a result of unsustainable land use. Implementation of protected areas is only a part of the conservation strategy needed. We analyse biodiversity threats to the biome under seven major categories: 1 conversion of natural vegetation into pasture and agricultural crops, 2 destruction or degradation of habitat mainly due to wild fire, 3 overexploitation of species mainly by unsustainable fishing, 4 water pollution, 5 river flow modification with implantation of small hydroelectric plants, 6 unsustainable tourism, and 7 introduction of invasive exotic species.

  20. The circumpolar biodiversity monitoring program - Terrestrial plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Circumpolar Biodiversity Monitoring Program, CBMP, Terrestrial Plan, www.caff.is/terrestrial, is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders......, northern communities, and scientists to detect, understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity. This presentation will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based...... monitoring with survey-based monitoring and remotely sensed data. The CBMP Terrestrial Plan intends to build upon and expand existing monitoring networks, engaging participants across a range of capacity and interests. The presentation will summarize the recommended focal soil ecosystem components...

  1. Biodiversity analysis in the digital era

    Science.gov (United States)

    2016-01-01

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in ‘Big Data’ biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481789

  2. Molecular biodiversity of Red Sea demosponges

    KAUST Repository

    Erpenbeck, Dirk

    2016-01-07

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.

  3. Biodiversity analysis in the digital era.

    Science.gov (United States)

    La Salle, John; Williams, Kristen J; Moritz, Craig

    2016-09-05

    This paper explores what the virtual biodiversity e-infrastructure will look like as it takes advantage of advances in 'Big Data' biodiversity informatics and e-research infrastructure, which allow integration of various taxon-level data types (genome, morphology, distribution and species interactions) within a phylogenetic and environmental framework. By overcoming the data scaling problem in ecology, this integrative framework will provide richer information and fast learning to enable a deeper understanding of biodiversity evolution and dynamics in a rapidly changing world. The Atlas of Living Australia is used as one example of the advantages of progressing towards this future. Living in this future will require the adoption of new ways of integrating scientific knowledge into societal decision making.This article is part of the themed issue 'From DNA barcodes to biomes'.

  4. Educating for biodiversity conservation in urban parks

    Directory of Open Access Journals (Sweden)

    Guerra, M. C.

    2014-01-01

    Full Text Available This article is intended to propose a procedure for learning about biodiversity in urban parks, as a contribution for educating conservation of natural resources. The procedure was named “Diagnosis of biodiversity conservation status in urban parks”. It comprises for stages describing the physic, geographic, socio-historic, and cultural study of the park as well as a taxonomic inventory of species, its distribution, presence in Cuba, and menaces they are subjected to. This facilitates to carry out educative activities. The introduction of the procedure is thought of from an ethno-biological and interdisciplinary perspective for training students in biological, geographical, historical, cultural and ethnological procedures, seeking a holistic approach to environment. The effectiveness of the proposal was appraised by accounting the experience of a class at “Casino Campestre” park in Camagüey City. Key words: biodiversity, urban parks, procedures, conservation training

  5. Plate tectonics drive tropical reef biodiversity dynamics

    Science.gov (United States)

    Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc

    2016-05-01

    The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.

  6. Taxonomic survey and characterization of the habitat of aquatic insects in protected areas in a subtropical island

    Directory of Open Access Journals (Sweden)

    Jéssica da Rosa Pires

    2015-09-01

    Full Text Available Taxonomic inventories are the basis of several ecological studies and they enable a better understanding of the local and regional biodiversity. This paper aimed to survey the aquatic insect fauna in a subtropical island, as well as to generate information on the habitats used by the taxa found. Two regions showing a good state of environmental conservation in the Santa Catarina Island, in Santa Catarina, Brazil, were selected: “Lagoa do Peri” Municipal Park and “Desterro” Environmental Protected Area. Aquatic invertebrates were collected by using a Surber sampler (in a lotic environment and an Eckman-Birge dredger (in a lentic environment between 2009 and 2012. Sixty taxa were found, belonging to eight taxonomic orders. Thus, there were 19 new registers of aquatic insect families for Santa Catarina. At the sites of this study, 13 families already known for Santa Catarina were not observed, according to a comparison with articles published until July 2014. As for the habitat, richness differed between the types of the habitats sampled, with lower richness in the substrate “sand”. The study represents a significant contribution to knowledge on aquatic insects in Santa Catarina, especially regarding the biodiversity in islands.

  7. Impact of GM crops on biodiversity.

    Science.gov (United States)

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  8. Human Streptococcus agalactiae strains in aquatic mammals and fish

    Directory of Open Access Journals (Sweden)

    Delannoy Christian MJ

    2013-02-01

    Full Text Available Abstract Background In humans, Streptococcus agalactiae or group B streptococcus (GBS is a frequent coloniser of the rectovaginal tract, a major cause of neonatal infectious disease and an emerging cause of disease in non-pregnant adults. In addition, Streptococcus agalactiae causes invasive disease in fish, compromising food security and posing a zoonotic hazard. We studied the molecular epidemiology of S. agalactiae in fish and other aquatic species to assess potential for pathogen transmission between aquatic species and humans. Methods Isolates from fish (n = 26, seals (n = 6, a dolphin and a frog were characterized by pulsed-field gel electrophoresis, multilocus sequence typing and standardized 3-set genotyping, i.e. molecular serotyping and profiling of surface protein genes and mobile genetic elements. Results Four subpopulations of S. agalactiae were identified among aquatic isolates. Sequence type (ST 283 serotype III-4 and its novel single locus variant ST491 were detected in fish from Southeast Asia and shared a 3-set genotype identical to that of an emerging ST283 clone associated with invasive disease of adult humans in Asia. The human pathogenic strain ST7 serotype Ia was also detected in fish from Asia. ST23 serotype Ia, a subpopulation that is normally associated with human carriage, was found in all grey seals, suggesting that human effluent may contribute to microbial pollution of surface water and exposure of sea mammals to human pathogens. The final subpopulation consisted of non-haemolytic ST260 and ST261 serotype Ib isolates, which belong to a fish-associated clonal complex that has never been reported from humans. Conclusions The apparent association of the four subpopulations of S. agalactiae with specific groups of host species suggests that some strains of aquatic S. agalactiae may present a zoonotic or anthroponotic hazard. Furthermore, it provides a rational framework for exploration of pathogenesis and host

  9. Proposed Release Guides to Protect Aquatic Biota

    Energy Technology Data Exchange (ETDEWEB)

    Marter, W.L.

    2001-03-28

    At the request of South Carolina Department of Health and Environmental Control (SCDHEC) and the Department of Energy (DOE), the Savannah River Laboratory was assigned the task of developing the release guides to protect aquatic biota. A review of aquatic radioecology literature by two leading experts in the field of radioecology concludes that exposure of aquatic biota at one rad per day or less will not produce detectable deleterious effects on aquatic organisms. On the basis of this report, DOE recommends the use of one rad per day as an interim dose standard to protect aquatic biota.

  10. Bats, Blood-Feeders and Biodiversity

    DEFF Research Database (Denmark)

    Bohmann, Kristine

    DNA metabarcoding of environmental samples has rapidly become a valuable tool for ecological studies such as biodiversity and diet studies. To reveal the diversity in environmental samples such as soil, water, and faeces, this approach principally employs PCR amplification of environmental DNA...... minimising the occurrence of errors. Centered around metabarcoding dietary studies of bat droppings and leech gut contents, this continuous exploration and refinement is reflected in both the work and structure of this thesis. After a thesis introduction and two chapters on environmental DNA and biodiversity...

  11. Biodiversity in a Florida Sandhill Ecosystem

    Directory of Open Access Journals (Sweden)

    Samantha Robertson

    2009-01-01

    Full Text Available This project compares two transects of land in the University of South Florida's Botanical Gardens for their biodiversity. The transects were chosen to represent a Florida sandhill ecosystem and the individual Longleaf Pine, Saw Palmetto, Turkey Oak, Laurel Oak and Live Oak specimens were counted. All other species above waist height were counted as "other"?. Once the individuals were counted, the Simpson's and Shannon-Wiener indices were calculated. Since the Shannon-Wiener index incorporates several diversity characteristics, it is typically more reliable than Simpson's. However, both biodiversity indices agreed that transect B was more diverse than transect A.

  12. Microbial Metalloproteomics

    Directory of Open Access Journals (Sweden)

    Peter-Leon Hagedoorn

    2015-12-01

    Full Text Available Metalloproteomics is a rapidly developing field of science that involves the comprehensive analysis of all metal-containing or metal-binding proteins in a biological sample. The purpose of this review is to offer a comprehensive overview of the research involving approaches that can be categorized as inductively coupled plasma (ICP-MS based methods, X-ray absorption/fluorescence, radionuclide based methods and bioinformatics. Important discoveries in microbial proteomics will be reviewed, as well as the outlook to new emerging approaches and research areas.

  13. Microbial Ecosystems, Protection of

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Nelson, K.E.

    2014-01-01

    Synonyms Conservation of microbial diversity and ecosystem functions provided by microbes; Preservation of microbial diversity and ecosystem functions provided by microbes Definition The use, management, and conservation of ecosystems in order to preserve microbial diversity and functioning. Introdu

  14. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    -dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we...... to distribute photons evenly between the photosynthetic tissues. As scattering and attenuation in the water column increase, the effect of thallus structure on production declines and thin transparent macrophytes are more efficient at utilizing light than thick opaque macrophytes. The results confirm...... combined a simple mechanistic model and empirical measurements on artificially structured macroalgal communities (Ulva lactuca) with varying thallus absorptance and community density. Predicted and measured values corresponded closely and revealed that gross production in high-light environments...

  15. Evaluation of nutrient limitation in aquatic ecosystems with nitrogen fixing bacteria

    Institute of Scientific and Technical Information of China (English)

    WU Gen-fu; WU Xue-chang; XUAN Xiao-dong; ZHOU Xue-ping

    2006-01-01

    There has always been a great need for simple and accurate bioassays for evaluating nutrient limitation in aquatic ecosystems. Whereas organic carbon is usually considered to be the limiting nutrient for microbial growth in many aquatic ecosystems,there are, however, many water sources that are limited by phosphorus or nitrogen. A method named "nitrogen fixing bacterial growth potential" (NFBGP) test, which is based on pre-culturing ofautochthonous (target) microorganisms was described. The method was applied to evaluate phosphorus or nitrogen nutrient limitation in lake and sewage water samples using an isolate of the nitrogen fixing bacterium, Azorhizobium sp. WS6. The results corresponded well to those from the traditional algal growth potential (AGP) test and the bacterial regrowth potential (BRP) test, suggesting that the NFBGP test is a useful supplementary method for evaluating the limiting nutrient, especially phosphorus, in an aquatic environment.

  16. The Occurrence of Bioactive Micromonosporae in Aquatic Habitats of the Sunshine Coast in Australia

    Directory of Open Access Journals (Sweden)

    D. Ipek Kurtböke

    2008-06-01

    Full Text Available Screening strategies based on the ecological knowledge of antibiotic producing microorganisms and their roles in the natural environment are being increasingly employed in the search for novel antibiotic agents. Micromonosporae are common inhabitants of aquatic habitats and have proved to be a continuing source of novel bioactive compounds including antibacterial and antitumor agents. The ecological distribution and frequency of bioactive micromonosporae in Sunshine Coast region aquatic habitats were studied through a range of selective isolation procedures designed to negatively select against the isolation of unwanted microbial taxa commonly associated with marine environments. It was revealed that bioactive compound producing species of micromonosporae were present in the aquatic habitats of the Sunshine Coast region in Australia.

  17. Correcting the disconnect between phylogenetics and biodiversity informatics.

    Science.gov (United States)

    Miller, Joseph T; Jolley-Rogers, Garry

    2014-01-14

    Rich collections of biodiversity data are now synthesized in publically available databases and phylogenetic knowledge now provides a sound understanding of the origin of organisms and their place in the tree of life. However, these knowledge bases are poorly linked, leading to underutilization or worse, an incorrect understanding of biodiversity because there is poor evolutionary context. We address this problem by integrating biodiversity information aggregated from many sources onto phylogenetic trees. PhyloJIVE connects biodiversity and phylogeny knowledge bases by providing an integrated evolutionary view of biodiversity data which in turn can improve biodiversity research and the conservation decision making process. Biodiversity science must assert the centrality of evolution to provide effective data to counteract global change and biodiversity loss.

  18. Why financial incentives can destroy economically valuable biodiversity in Ethiopia

    NARCIS (Netherlands)

    Gatzweiler, F.; Reichhuber, A.; Hein, L.G.

    2007-01-01

    Ethiopian montane rainforests are economically valuable repositories of biodiversity, especially of wild Coffea arabica populations, and they are vanishing at accelerating rates. Our research results confirm theory which explains biodiversity loss by diverging private and social net benefits from la

  19. Core issues in the economics of biodiversity conservation.

    Science.gov (United States)

    Tisdell, Clement A

    2011-02-01

    Economic evaluations are essential for assessing the desirability of biodiversity conservation. This article highlights significant advances in theories and methods of economic evaluation and their relevance and limitations as a guide to biodiversity conservation; considers the implications of the phylogenetic similarity principle for the survival of species; discusses consequences of the Noah's Ark problem for selecting features of biodiversity to be saved; analyzes the extent to which the precautionary principle can be rationally used to support the conservation of biodiversity; explores the impact of market extensions, market and other institutional failures, and globalization on biodiversity loss; examines the relationship between the rate of interest and biodiversity depletion; and investigates the implications of intergenerational equity for biodiversity conservation. The consequences of changes in biodiversity for sustainable development are given particular attention.

  20. Status and strategies for marine biodiversity of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    The status of marine biodiversity and factors responsible for the degradation and loss of marine biodiversity are discussed. Goa has abundant marine wealth. Phytoplankton, marine algae, manglicolous fungi, seagrasses, mangrove flora and other...

  1. Anatomical adaptations of aquatic mammals.

    Science.gov (United States)

    Reidenberg, Joy S

    2007-06-01

    This special issue of the Anatomical Record explores many of the anatomical adaptations exhibited by aquatic mammals that enable life in the water. Anatomical observations on a range of fossil and living marine and freshwater mammals are presented, including sirenians (manatees and dugongs), cetaceans (both baleen whales and toothed whales, including dolphins and porpoises), pinnipeds (seals, sea lions, and walruses), the sea otter, and the pygmy hippopotamus. A range of anatomical systems are covered in this issue, including the external form (integument, tail shape), nervous system (eye, ear, brain), musculoskeletal systems (cranium, mandible, hyoid, vertebral column, flipper/forelimb), digestive tract (teeth/tusks/baleen, tongue, stomach), and respiratory tract (larynx). Emphasis is placed on exploring anatomical function in the context of aquatic life. The following topics are addressed: evolution, sound production, sound reception, feeding, locomotion, buoyancy control, thermoregulation, cognition, and behavior. A variety of approaches and techniques are used to examine and characterize these adaptations, ranging from dissection, to histology, to electron microscopy, to two-dimensional (2D) and 3D computerized tomography, to experimental field tests of function. The articles in this issue are a blend of literature review and new, hypothesis-driven anatomical research, which highlight the special nature of anatomical form and function in aquatic mammals that enables their exquisite adaptation for life in such a challenging environment.

  2. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure.

    Science.gov (United States)

    Sandberg, Dustin C; Battista, Lorna J; Arnold, A Elizabeth

    2014-05-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.

  3. Responses of Aquatic Bacteria to Terrestrial Runoff: Effects on Community Structure and Key Taxonomic Groups

    Science.gov (United States)

    Le, Huong T.; Ho, Cuong T.; Trinh, Quan H.; Trinh, Duc A.; Luu, Minh T. N.; Tran, Hai S.; Orange, Didier; Janeau, Jean L.; Merroune, Asmaa; Rochelle-Newall, Emma; Pommier, Thomas

    2016-01-01

    Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as

  4. Banning Trophy Hunting Will Exacerbate Biodiversity Loss.

    Science.gov (United States)

    Di Minin, Enrico; Leader-Williams, Nigel; Bradshaw, Corey J A

    2016-02-01

    International pressure to ban trophy hunting is increasing. However, we argue that trophy hunting can be an important conservation tool, provided it can be done in a controlled manner to benefit biodiversity conservation and local people. Where political and governance structures are adequate, trophy hunting can help address the ongoing loss of species.

  5. Plant biodiversity changes in Carboniferous tropical wetlands

    DEFF Research Database (Denmark)

    Cleal, C.J.; Uhl, D.; Cascales-Miñana, B.

    2012-01-01

    Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands (“coal swamps”) has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland...

  6. Calculating Biodiversity in the Real World

    Science.gov (United States)

    Schen, Melissa; Berger, Leslie

    2014-01-01

    One of the standards for life science addressed in the "Next Generation Science Standards" (NGSS Lead States 2013) is "Ecosystems: Interactions, Energy, and Dynamics" (HS-LS2). A critical concept included in this core idea is biodiversity. To show competency, students are expected to design investigations, collect data, and…

  7. Endangered Species & Biodiversity: A Classroom Project & Theme

    Science.gov (United States)

    Lauro, Brook

    2012-01-01

    Students discover the factors contributing to species losses worldwide by conducting a project about endangered species as a component of a larger classroom theme of biodiversity. Groups conduct research using online endangered- species databases and present results to the class using PowerPoint. Students will improve computer research abilities…

  8. Optimal fire histories for biodiversity conservation.

    Science.gov (United States)

    Kelly, Luke T; Bennett, Andrew F; Clarke, Michael F; McCarthy, Michael A

    2015-04-01

    Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems.

  9. Soil phosphorus constrains biodiversity across European grasslands.

    Science.gov (United States)

    Ceulemans, Tobias; Stevens, Carly J; Duchateau, Luc; Jacquemyn, Hans; Gowing, David J G; Merckx, Roel; Wallace, Hilary; van Rooijen, Nils; Goethem, Thomas; Bobbink, Roland; Dorland, Edu; Gaudnik, Cassandre; Alard, Didier; Corcket, Emmanuel; Muller, Serge; Dise, Nancy B; Dupré, Cecilia; Diekmann, Martin; Honnay, Olivier

    2014-12-01

    Nutrient pollution presents a serious threat to biodiversity conservation. In terrestrial ecosystems, the deleterious effects of nitrogen pollution are increasingly understood and several mitigating environmental policies have been developed. Compared to nitrogen, the effects of increased phosphorus have received far less attention, although some studies have indicated that phosphorus pollution may be detrimental for biodiversity as well. On the basis of a dataset covering 501 grassland plots throughout Europe, we demonstrate that, independent of the level of atmospheric nitrogen deposition and soil acidity, plant species richness was consistently negatively related to soil phosphorus. We also identified thresholds in soil phosphorus above which biodiversity appears to remain at a constant low level. Our results indicate that nutrient management policies biased toward reducing nitrogen pollution will fail to preserve biodiversity. As soil phosphorus is known to be extremely persistent and we found no evidence for a critical threshold below which no environmental harm is expected, we suggest that agro-environmental schemes should include grasslands that are permanently free from phosphorus fertilization.

  10. A biosystematic basis for pelagic biodiversity

    NARCIS (Netherlands)

    Spoel, van der S.

    1994-01-01

    Biodiversity can be considered to be a human appreciation of the biological entity diversity. Diversity can be expressed numerically on the basis of taxa found, but it can also be expressed as the contribution of a specimen to the diversity, for which a formula is proposed. Diversity is the sum of t

  11. Visual Analytics for Exploring Changes in Biodiversity

    NARCIS (Netherlands)

    Slingsby, A.; van Loon, E.; Kolditz, O.; Rink, K.; Scheuermann, G.

    2013-01-01

    We report on ongoing work in which we are designing a visual interface to a large database of species observation data. Our design allows the data to be explored and visually summarised by space, time and species, helping assess the data’s suitability for helping answer questions about biodiversity.

  12. Is biofuel policy harming biodiversity in Europe?

    NARCIS (Netherlands)

    Eggers, J.; Tröltzsch, K.; Falcucci, A.; Verburg, P.H.; Ozinga, W.A.

    2009-01-01

    We assessed the potential impacts of land-use changes resulting from a change in the current biofuel policy on biodiversity in Europe. We evaluated the possible impact of both arable and woody biofuel crops on changes in distribution of 313 species pertaining to different taxonomic groups. Using spe

  13. Multifunctional floodplain management and biodiversity effects

    NARCIS (Netherlands)

    Schindler, Stefan; O’Neill, Fionnuala H.; Biró, Marianna; Damm, Christian; Gasso, Viktor; Kanka, Robert; Sluis, van der Theo; Krug, Andreas; Lauwaars, Sophie G.; Sebesvari, Zita; Pusch, Martin; Baranovsky, Boris; Ehlert, Thomas; Neukirchen, Bernd; Martin, James R.; Euller, Katrin; Mauerhofer, Volker; Wrbka, Thomas

    2016-01-01

    Floodplain ecosystems are biodiversity hotspots and supply multiple ecosystem services. At the same time they are often prone to human pressures that increasingly impact their intactness. Multifunctional floodplain management can be defined as a management approach aimed at a balanced supply of m

  14. Biodiversity, conservation biology, and rational choice.

    Science.gov (United States)

    Frank, David

    2014-03-01

    This paper critically discusses two areas of Sahotra Sarkar's recent work in environmental philosophy: biodiversity and conservation biology and roles for decision theory in incorporating values explicitly in the environmental policy process. I argue that Sarkar's emphasis on the practices of conservation biologists, and especially the role of social and cultural values in the choice of biodiversity constituents, restricts his conception of biodiversity to particular practical conservation contexts. I argue that life scientists have many reasons to measure many types of diversity, and that biodiversity metrics could be value-free. I argue that Sarkar's emphasis on the limitations of normative decision theory is in tension with his statement that decision theory can "put science and ethics together." I also challenge his claim that multi-criteria decision tools lacking axiomatic foundations in preference and utility theory are "without a rational basis," by presenting a case of a simple "outranking" multi-criteria decision rule that can violate a basic normative requirement of preferences (transitivity) and ask whether there may nevertheless be contexts in which such a procedure might assist decision makers.

  15. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes.

  16. Temperature Impacts on Deep-Sea Biodiversity

    Science.gov (United States)

    Yasuhara, M.; Danovaro, R.

    2015-12-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes.

  17. An Investigation on Students' Perceptions of Biodiversity

    Science.gov (United States)

    Yorek, Nurettin; Aydin, Halil; Ugulu, Ilker; Dogan, Yunus

    2008-01-01

    In this study, pupils' constructions of some concepts related to biodiversity like classifying living things, variation in living things and ecosystem elements, and the concept of life were investigated in the light of constructivist theory of learning. For this purpose, a biological diversity conceptual understanding test formed by a series of…

  18. Business and Biodiversity: a frame analysis

    NARCIS (Netherlands)

    Burg, van den S.W.K.; Bogaardt, M.J.

    2014-01-01

    It is often stated that business has a key role to play in the protection of biodiversity and ecosystems. Various instruments are developed that enable businesses to assess their impact and dependence on ecosystem services. Actual use of these instruments remains limited. This paper uses discourse a

  19. A review of marine biodiversity information resources

    Directory of Open Access Journals (Sweden)

    Kwangtsao Shao

    2014-05-01

    Full Text Available Although biodiversity of marine remains high, it increasingly suffers from human interference and destruction. The world’s largest open, online, georeferenced database is the Ocean Biogeographic Information System (OBIS; it has information on a total of 120,000 species with 37 million records. The World Register of Marine Species (WoRMS has collected taxonomic information on 220,000 global marine species. Besides these two large databases, three single-taxa databases were established for marine organisms—FishBase, AlgaeBase, and Hexacorallians of the World. Many databases on organisms are cross-taxa and include both terrestrial and marine species, such as Encyclopedia of Life (EOL, CoL (Species 2000 , Integrated Taxonomic Information System (ITIS, Wikispecies, ETI Bioinformatics, Barcode of Life (BOL, GenBank, Biodiversity Heritage Library (BHL, SeaLifeBase, Marine Species Identification Portal, and FAO Fisheries and Aquaculture Fact Sheets. Above databases were mainly established to focus on taxonomy and species descriptions. The Global Biodiversity Information Facility (GBIF, Discover Life, AquaMaps, etc. can provide integrated ecological distribution data, user customized maps, and data for download. By changing the values of environmental factors such as water temperature and salinity in an established distribution model, the distribution of a species can be predicted with different parameters. Websites of other organizations, such as Google Earth Ocean, National Geographic, and NGOs such as ReefBase, aim to raise public awareness on ocean conservation with rich and diversified content. Google Images and Google Scholar are very useful in cooperating with keywords provided by marine biodiversity websites to complement the lack of images or references. Most of the above websites are linked to each other, and thus users can access and query data conveniently. To be useful for conservation, biodiversity databases need both to promote public

  20. Gammarus-Microbial Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Daniel Nelson

    2011-01-01

    Full Text Available Gammarus spp. are typically classified as shredders under the functional feeding group classification. In the wild and in the laboratory, Gammarus spp. will often shred leaves, breaking them down into finer organic matter fractions. However, leaf litter is a poor quality food source (i.e., high C : N and C : P ratios and very little leaf material is assimilated by shredders. In freshwater habitats leaf litter is colonized rapidly (within ∼1-2 weeks by aquatic fungi and bacteria, making the leaves more palatable and nutritious to consumers. Several studies have shown that Gammarus spp. show preference for conditioned leaves over nonconditioned leaves and certain fungal species to others. Furthermore, Gammarus spp. show increased survival and growth rates when fed conditioned leaves compared to non-conditioned leaves. Thus, Gammarus spp. appear to rely on the microbial biofilm associated with leaf detritus as a source of carbon and/or essential nutrients. Also, Gammarus spp. can have both positive and negative effects on the microbial communities on which they fed, making them an important component of the microbial loop in aquatic ecosystems.

  1. Biodiversity and Edge Effects: An Activity in Landscape Ecology

    Science.gov (United States)

    Hart, Justin L.

    2007-01-01

    Biodiversity and the conservation of biodiversity have received increased attention during the last few decades and these topics have been implemented into many G7-12 science curricula. This work presents an exercise that may be used in middle and high school classrooms to help students better understand spatial aspects of biodiversity. The…

  2. Biodiversity data obsolescence and land uses changes

    Directory of Open Access Journals (Sweden)

    Nora Escribano

    2016-12-01

    Full Text Available Background Primary biodiversity records (PBR are essential in many areas of scientific research as they document the biodiversity through time and space. However, concerns about PBR quality and fitness-for-use have grown, especially as derived from taxonomical, geographical and sampling effort biases. Nonetheless, the temporal bias stemming from data ageing has received less attention. We examine the effect of changes in land use in the information currentness, and therefore data obsolescence, in biodiversity databases. Methods We created maps of land use changes for three periods (1956–1985, 1985–2000 and 2000–2012 at 5-kilometres resolution. For each cell we calculated the percentage of land use change within each period. We then overlaid distribution data about small mammals, and classified each data as ‘non-obsolete or ‘obsolete,’ depending on both the amount of land use changes in the cell, and whether changes occurred at or after the data sampling’s date. Results A total of 14,528 records out of the initial 59,677 turned out to be non-obsolete after taking into account the changes in the land uses in Navarra. These obsolete data existed in 115 of the 156 cells analysed. Furthermore, more than one half of the remaining cells holding non-obsolete records had not been visited at least for the last fifteen years. Conclusion Land use changes challenge the actual information obtainable from biodiversity datasets and therefore its potential uses. With the passage of time, one can expect a steady increase in the availability and use of biological records—but not without them becoming older and likely to be obsolete by land uses changes. Therefore, it becomes necessary to assess records’ obsolescence, as it may jeopardize the knowledge and perception of biodiversity patterns.

  3. Toward a microbial Neolithic revolution in buildings.

    Science.gov (United States)

    Thaler, David S

    2016-03-29

    The Neolithic revolution--the transition of our species from hunter and gatherer to cultivator--began approximately 14,000 years ago and is essentially complete for macroscopic food. Humans remain largely pre-Neolithic in our relationship with microbes but starting with the gut we continue our hundred-year project of approaching the ability to assess and cultivate benign microbiomes in our bodies. Buildings are analogous to the body and it is time to ask what it means to cultivate benign microbiomes in our built environment. A critical distinction is that we have not found, or invented, niches in buildings where healthful microbial metabolism occurs and/or could be cultivated. Key events affecting the health and healthfulness of buildings such as a hurricane leading to a flood or a burst pipe occur only rarely and unpredictably. The cause may be transient but the effects can be long lasting and, e.g., for moisture damage, cumulative. Non-invasive "building tomography" could find moisture and "sentinel microbes" could record the integral of transient growth. "Seed" microbes are metabolically inert cells able to grow when conditions allow. All microbes and their residue present actinic molecules including immunological epitopes (molecular shapes). The fascinating hygiene and microbial biodiversity hypotheses propose that a healthy immune system requires exposure to a set of microbial epitopes that is rich in diversity. A particular conjecture is that measures of the richness of diversity derived from microbiome next-generation sequencing (NGS) can be mechanistically coupled to--rather than merely correlated with some measures of--human health. These hypotheses and conjectures inspire workers and funders but an alternative is also consequent to the first Neolithic revolution: That the genetic uniformity of contemporary foods may also decrease human exposure to molecular biodiversity in a heath-relevant manner. Understanding the consequences--including the unintended

  4. Desiccation of sediments affects assimilate transport within aquatic plants and carbon transfer to microorganisms.

    Science.gov (United States)

    von Rein, I; Kayler, Z E; Premke, K; Gessler, A

    2016-11-01

    With the projected increase in drought duration and intensity in future, small water bodies, and especially the terrestrial-aquatic interfaces, will be subjected to longer dry periods with desiccation of the sediment. Drought effects on the plant-sediment microorganism carbon continuum may disrupt the tight linkage between plants and microbes which governs sediment carbon and nutrient cycling, thus having a potential negative impact on carbon sequestration of small freshwater ecosystems. However, research on drought effects on the plant-sediment carbon transfer in aquatic ecosystems is scarce. We therefore exposed two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, to a month-long summer drought in a mesocosm experiment. We followed the fate of carbon from leaves to sediment microbial communities with (13) CO2 pulse labelling and microbial phospholipid-derived fatty acid (PLFA) analysis. We found that drought reduced the total amount of carbon allocated to stem tissues but did not delay the transport. We also observed an increase in accumulation of (13) C-labelled sugars in roots and found a reduced incorporation of (13) C into the PLFAs of sediment microorganisms. Drought induced a switch in plant carbon allocation priorities, where stems received less new assimilates leading to reduced starch reserves whilst roots were prioritised with new assimilates, suggesting their use for osmoregulation. There were indications that the reduced carbon transfer from roots to microorganisms was due to the reduction of microbial activity via direct drought effects rather than to a decrease in root exudation or exudate availability.

  5. Sites for priority biodiversity conservation in the Caribbean Islands Biodiversity Hotspot

    Directory of Open Access Journals (Sweden)

    V. Anadon-Irizarry

    2012-08-01

    Full Text Available The Caribbean Islands Biodiversity Hotspot is exceptionally important for global biodiversity conservation due to high levels of species endemism and threat. A total of 755 Caribbean plant and vertebrate species are considered globally threatened, making it one of the top Biodiversity Hotspots in terms of threat levels. In 2009, Key Biodiversity Areas (KBAs were identified for the Caribbean Islands through a regional-level analysis of accessible data and literature, followed by extensive national-level stakeholder consultation. By applying the Vulnerability criterion, a total of 284 Key Biodiversity Areas were defined and mapped as holding 409 (54% of the region’s threatened species. Of these, 144 (or 51% overlapped partially or completely with protected areas. Cockpit Country, followed by Litchfield Mountain - Matheson’s Run, Blue Mountains (all Jamaica and Massif de la Hotte (Haiti were found to support exceptionally high numbers of globally threatened taxa, with more than 40 such species at each site. Key Biodiversity Areas, building from Important Bird Areas, provide a valuable framework against which to review the adequacy of existing national protected-area systems and also to prioritize which species and sites require the most urgent conservation attention.

  6. Informing and influencing the interface between biodiversity science and biodiversity policy in South Africa.

    Science.gov (United States)

    Crouch, Neil R; Smith, Gideon F

    2011-01-01

    South Africa, as a megadiverse country (±21 700 vascular plants, 4800 vertebrates and 68 900 invertebrates described), is presently engaged with an extended, modified Global Strategy for Plant Conservation (GSPC). The country is fortunate in having a strong tradition of systematics research and, inter alia, houses several million preserved plant specimens (±1 million databased and georeferenced), allowing taxonomists and conservationists to track both the occurrence and distribution of indigenous and naturalized plant species. These rich local resources have been extensively drawn upon to deliver, with varying degrees of success, the 16 outcome-oriented GSPC 2010 Targets. The National Environmental Management: Biodiversity Act (NEMBA, 2004), the National Biodiversity Strategy and Action Plan (NBSAP) and the National Biodiversity Framework (NBF) have provided a robust legislative, enabling and policy framework for making operational and advancing GSPC-related efforts. However, within an emerging economy, the conservation of biodiversity has competed for government resources with housing, sanitation, primary education, basic health care and crime prevention, delivery of which translates to the currency of politicians: votes. A key challenge identified by local (and global) biodiversity scientists for the current GSPC phase is broad-scale advocacy, communicating the changing state of nature, and the inter-relatedness of biodiversity and human well-being. The nature of meeting this challenge is explored.

  7. What is marine biodiversity? Towards common concepts and their implications for assessing biodiversity status

    Directory of Open Access Journals (Sweden)

    Sabine Cochrane

    2016-12-01

    Full Text Available ‘Biodiversity’ is one of the most common keywords used in environmental sciences, spanning from research to management, nature conservation and consultancy. Despite this, our understanding of the underlying concepts varies greatly, between and within disciplines as well as among the scientists themselves. Biodiversity can refer to descriptions or assessments of the status and condition of all or selected groups of organisms, from the genetic variability, to the species, populations, communities, and ecosystems. However, a concept of biodiversity also must encompass understanding the interactions and functions on all levels from individuals up to the whole ecosystem, including changes related to natural and anthropogenic environmental pressures. While biodiversity as such is an abstract and relative concept rooted in the spatial domain, it is central to most international, European and national governance initiatives aimed at protecting the marine environment. These rely on status assessments of biodiversity which typically require numerical targets and specific reference values, to allow comparison in space and/or time, often in association with some external structuring factors such as physical and biogeochemical conditions. Given that our ability to apply and interpret such assessments requires a solid conceptual understanding of marine biodiversity, here we define this and show how the abstract concept can and needs to be interpreted and subsequently applied in biodiversity assessments.

  8. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity

    NARCIS (Netherlands)

    Meyer, S.; Ebeling, A.; Eisenhauer, Nico; Mommer, L.; Ravenek, Janneke M.; Weigelt, Alexandra

    2016-01-01

    Abstract. Human-caused declines in biodiversity have stimulated intensive research on the consequences
    of biodiversity loss for ecosystem services and policy initiatives to preserve the functioning of
    ecosystems. Short-term biodiversity experiments have documented positive effects of plant s

  9. Student Teachers' Understanding of the Terminology, Distribution, and Loss of Biodiversity: Perspectives from a Biodiversity Hotspot and an Industrialized Country

    Science.gov (United States)

    Fiebelkorn, Florian; Menzel, Susanne

    2013-01-01

    The loss of biodiversity is one of the most urgent global environmental problems of our time. Public education and awareness building is key to successful biodiversity protection. Knowledgeable and skilled student teachers are a key component for the successful implementation of biodiversity education in schools. Yet, little empirical evidence…

  10. Structure and biodiversity of zooplankton communities in freshwater habitats of a Vereda Wetland Region, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Olívia Penatti Pinese

    2015-09-01

    Full Text Available Abstract Aims: Vereda wetlands are among the most important aquatic habitats in Brazilian savannah (Cerrado because of their association with river springs and its relevancy for biodiversity conservation. This study aimed to determine and compare the biodiversity of zooplankton in vereda lakes, differentiated by the presence or absence of aquatic macrophytes at an environmental reserve in Uberlândia, Minas Geais, Southeastern Brazil. Zooplanctonic abundance patterns and their relation with environmental parameters were also discussed and presented through multivariate statistics. Methods Twelve samples were taken at water surface, at 15-day intervals in 2006. It was observed a total richness of 75 species, including 12 genera, 29 species and one sub-species as new records for Minas Gerais State. Results Rotifers were the predominant group and Lecanidae was the most diverse family. Among cladocerans, Chydoridae showed the greatest richness and Bosminidae the highest abundance. Few adult copepods were sampled in this study, but nauplii were very frequent. Cyclopidae was the most common family among copepods and there was no record of Calanoida. Conclusions The difference in composition among the studied lakes was remarkable. The lake with macrophytes showed the greatest richness but the lowest density, and the opposite situation occurred in the other lake. This can be explained by the fact that aquatic macrophytes, as primary producers, exert a bottom-up effect on zooplankton community, sustaining a high local diversity in contrast with a low numeric abundance of these microorganisms. Therefore, this pattern may have been created by the surround heterogeneity and, at the same time, by the reduction of available minerals of the system caused by macrophyte matter fixation. Many studies on zooplankton need to be developed in palm swamp communities in order to better comprehend the biological diversity and the energy balance in different habitats for

  11. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  12. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment

    Directory of Open Access Journals (Sweden)

    Gabriel Yaxal Ponce-Soto

    2015-04-01

    Full Text Available The increase of nutrients in water bodies, in particular nitrogen (N and phosphorus (P due to the recent expansion of agricultural and other human activities is accelerating environmental degradation of these water bodies, elevating the risk of eutrophication and reducing biodiversity. To evaluate the ecological effects of the influx of nutrients in an oligotrophic and stoichiometrically imbalanced environment, we performed a replicated in situ mesocosm experiment. We analyzed the effects of a N- and P-enrichment on the bacterial interspecific interactions in an experiment conducted in the Cuatro Cienegas Basin (CCB in Mexico. This is a desert ecosystem comprised of several aquatic systems with a large number of microbial endemic species. The abundance of key nutrients in this basin exhibits strong stoichiometric imbalance (high N:P ratios, suggesting that species diversity is maintained mostly by competition for resources. We focused on the biofilm formation and antibiotic resistance of 960 strains of cultivated bacteria in two habitats, water and sediment, before and after three weeks of fertilization. The water habitat was dominated by Pseudomonas, while Halomonas dominated the sediment. Strong antibiotic resistance was found among the isolates at time zero in the nutrient-poor bacterial communities, but resistance declined in the bacteria isolated in the nutrient-rich environments, suggesting that in the nutrient-poor original environment, negative inter-specific interactions were important, while in the nutrient-rich environments, competitive interactions are not so important. In water, a significant increase in the percentage of biofilm-forming strains was observed for all treatments involving nutrient addition.

  13. A one ocean model of biodiversity

    Science.gov (United States)

    O'Dor, Ronald K.; Fennel, Katja; Berghe, Edward Vanden

    2009-09-01

    The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have shown us that hundreds of millions of years of ocean history can be revealed from records of a single phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the relationships of hundreds of phyla to track this history back billions of years. The technologies demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or unknowable. The secrets of the largest component of the biosphere are knowable. The cost of understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details. Biodiversity reflects long-term survival of DNA sequences, stabilizing "ecosystem services" despite environmental change. In the ocean, mechanisms for ensuring survival range from prokaryotes maintaining low concentrations of replicable DNA throughout the ocean volume, anticipating local change, to animals whose mobility increases with mass to avoid local change through movement. Whales can reach any point in the ocean in weeks, but prokaryotes can only diffuse. The high metabolic costs of mobility are offset by the dramatically lower number of DNA replicates required to ensure survival. Reproduction rates probably scale more or less inversely with body mass. Bacteria respond in a week, plankton in a year, whales in a century. We generally lack coherent theories to explain the origins of animals (metazoans) and the contributions of biodiversity to ecosystems. The One Ocean Model suggests that mobile

  14. Metabolic diversity and microbial biomass in forest soils across climatic and tree species diversity gradients

    OpenAIRE

    Carnol, Monique; Bosman, Bernard; Vanoppen, Astrid; De Wandeler, Hans; Muys, Bart

    2013-01-01

    The biogeochemical cycling in forest ecosystems is highly dependent on the interactions between plants and soil. Tree species affect element cycling through deposition in throughfall, litterfall, microbial activities in soil and rhizosphere processes. Tree species diversification has been suggested for maintaining forest ecosystem services and combining provisioning and supporting services within multifunctional and sustainable forestry. However, the understanding of the role of biodiversity ...

  15. Databases, Scaling Practices, and the Globalization of Biodiversity

    Directory of Open Access Journals (Sweden)

    Esther Turnhout

    2011-03-01

    Full Text Available Since the Convention on Biological Diversity in 1992, biodiversity has become an important topic for scientific research. Much of this research is focused on measuring and mapping the current state of biodiversity, in terms of which species are present at which places and in which abundance, and making extrapolations and future projections, that is, determining the trends. Biodiversity databases are crucial components of these activities because they store information about biodiversity and make it digitally available. Useful biodiversity databases require data that are reliable, standardized, and fit for up-scaling. This paper uses material from the EBONE-project (European Biodiversity Observation Network to illustrate how biodiversity databases are constructed, how data are negotiated and scaled, and how biodiversity is globalized. The findings show a continuous interplay between scientific ideals related to objectivity and pragmatic considerations related to feasibility and data availability. Statistics was a crucial feature of the discussions. It also proved to be the main device in up-scaling the data. The material presented shows that biodiversity is approached in an abstract, quantitative, and technical way, disconnected from the species and habitats that make up biodiversity and the people involved in collecting the data. Globalizing biodiversity involves decontextualization and standardization. This paper argues that while this is important if the results of projects like EBONE are to be usable in different contexts, there is a risk involved as it may lead to the alienation from the organizations and volunteers who collect the data upon which these projects rely.

  16. EPA Region 7 Aquatic Focus Areas (ECO_RES.R7_AQUATIC_FOCUS_AREAS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This shapefile consists of 347 individual Aquatic Ecological System (AES) polygons that are the Aquatic Conservation Focus Areas for EPA Region 7. The focus areas...

  17. Aquatic Organic Matter Fluorescence - from phenomenon to application

    Science.gov (United States)

    Reynolds, Darren

    2014-05-01

    (bioluminescent reporter bacteria) for the discovery and characterization of bacteriophage and to assess their potential use as a bio-control/antimicrobial in the health and agri-food sectors. Presently, he is developing, in collaboration with industrial partners, in-situ fluorescence sensors to help further understand the role of dissolved organic matter in underpinning the microbial processes in aquatic systems through time, a project funded by the Natural Environment Research Council, UK.

  18. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  19. Disaggregating the evidence linking biodiversity and ecosystem services

    Science.gov (United States)

    Ricketts, Taylor H.; Watson, Keri B.; Koh, Insu; Ellis, Alicia M.; Nicholson, Charles C.; Posner, Stephen; Richardson, Leif L.; Sonter, Laura J.

    2016-01-01

    Ecosystem services (ES) are an increasingly popular policy framework for connecting biodiversity with human well-being. These efforts typically assume that biodiversity and ES covary, but the relationship between them remains remarkably unclear. Here we analyse >500 recent papers and show that reported relationships differ among ES, methods of measuring biodiversity and ES, and three different approaches to linking them (spatial correlations, management comparisons and functional experiments). For spatial correlations, biodiversity relates more strongly to measures of ES supply than to resulting human benefits. For management comparisons, biodiversity of ‘service providers' predicts ES more often than biodiversity of functionally unrelated taxa, but the opposite is true for spatial correlations. Functional experiments occur at smaller spatial scales than management and spatial studies, which show contrasting responses to scale. Our results illuminate the varying dynamics relating biodiversity to ES, and show the importance of matching management efforts to the most relevant scientific evidence. PMID:27713429

  20. Economic valuation for the conservation of marine biodiversity.

    Science.gov (United States)

    Beaumont, N J; Austen, M C; Mangi, S C; Townsend, M

    2008-03-01

    Policy makers are increasingly recognising the role of environmental valuation to guide and support the management and conservation of biodiversity. This paper presents a goods and services approach to determine the economic value of marine biodiversity in the UK, with the aim of clarifying the role of valuation in the management of marine biodiversity. The goods and services resulting from UK marine biodiversity are detailed, and 8 of the 13 services are valued in monetary terms. It is found that a decline in UK marine biodiversity could result in a varying, and at present unpredictable, change in the provision of goods and services, including reduced resilience and resistance to change, declining marine environmental health, reduced fisheries potential, and loss of recreational opportunities. The results suggest that this approach can facilitate biodiversity management by enabling the optimal allocation of limited management resources and through raising awareness of the importance of marine biodiversity.

  1. Disaggregating the evidence linking biodiversity and ecosystem services

    Science.gov (United States)

    Ricketts, Taylor H.; Watson, Keri B.; Koh, Insu; Ellis, Alicia M.; Nicholson, Charles C.; Posner, Stephen; Richardson, Leif L.; Sonter, Laura J.

    2016-10-01

    Ecosystem services (ES) are an increasingly popular policy framework for connecting biodiversity with human well-being. These efforts typically assume that biodiversity and ES covary, but the relationship between them remains remarkably unclear. Here we analyse >500 recent papers and show that reported relationships differ among ES, methods of measuring biodiversity and ES, and three different approaches to linking them (spatial correlations, management comparisons and functional experiments). For spatial correlations, biodiversity relates more strongly to measures of ES supply than to resulting human benefits. For management comparisons, biodiversity of `service providers' predicts ES more often than biodiversity of functionally unrelated taxa, but the opposite is true for spatial correlations. Functional experiments occur at smaller spatial scales than management and spatial studies, which show contrasting responses to scale. Our results illuminate the varying dynamics relating biodiversity to ES, and show the importance of matching management efforts to the most relevant scientific evidence.

  2. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy.

    Science.gov (United States)

    Xu, Yang; Sun, Guang-Dong; Jin, Jing-Hua; Liu, Ying; Luo, Mu; Zhong, Zhi-Ping; Liu, Zhi-Pei

    2014-01-15

    Bioremediation of an aged and heavily contaminated soil was performed using microbial remediation, phytoremediation, and microbial/phytoremediation. The removal efficiency of polycyclic aromatic hydrocarbons (PAHs) was in the order microbial/phytoremediation>microbial remediation≈phytoremediation>control. The removal percentage of microbial/phytoremediation (69.6%) was twice that of control. Kocuria sp. P10 significantly enhanced PAH removal (Psoil microbial communities were also detected by pyrosequencing. The results indicated that biodiversity of the soil bacterial community gradually increased with time and was slightly lower in control, as indicated by operational taxonomic unit (OTU) numbers and Shannon-Wiener indices. Proportions of Betaproteobacteria and Gammaproteobacteria were consistently high in all groups. Actinobacteridae were initially predominant (>37.8%) but rapidly decreased to bioremediation process and a possible basis for ecological assessment for bioremediation on a large scale.

  3. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  4. Minimizing microbial contamination of sperm samples

    Science.gov (United States)

    Jenkins, Jill A.; Tiersch, Terrence R.; Green, Christopher C.

    2011-01-01

    Taken from the Methods section: With the collection and translocation of gametes from aquatic species, a potential hazard exists for microbial transfer. Contamination of semen can occur during collection, processing, storage, and transport. Some preventative measures are described below for limiting the spread and amplification of microorganisms such as bacteria, viruses, fungi, mycoplasmas, and parasites. Generally, sanitation during collection is essential. Materials and equipment used to freeze semen should be sterile. Following good practice guidelines for handling and processing samples collected for freezing is especially important for non-domestic animals where disease-free status cannot be guaranteed and unsophisticated technology is used (Russell et al. 1977).

  5. Macroeconomic policy, growth, and biodiversity conservation.

    Science.gov (United States)

    Lawn, Philip

    2008-12-01

    To successfully achieve biodiversity conservation, the amount of ecosystem structure available for economic production must be determined by, and subject to, conservation needs. As such, the scale of economic systems must remain within the limits imposed by the need to preserve critical ecosystems and the regenerative and waste assimilative capacities of the ecosphere. These limits are determined by biophysical criteria, yet macroeconomics involves the use of economic instruments designed to meet economic criteria that have no capacity to achieve biophysically based targets. Macroeconomic policy cannot, therefore, directly solve the biodiversity erosion crisis. Nevertheless, good macroeconomic policy is still important given that bad macroeconomy policy is likely to reduce human well-being and increase the likelihood of social upheaval that could undermine conservation efforts.

  6. Key Biodiversity Areas identification in Japan Hotspot

    Directory of Open Access Journals (Sweden)

    Y. Natori

    2012-08-01

    Full Text Available Priority sites within Japan Hotspot were identified using Key Biodiversity Area (KBA criteria, based on vulnerability and irreplaceability. The identification process considered 217 trigger species from mammals, birds, reptiles, amphibians, freshwater and brackish water fishes and odonates, and focused on identifying gaps in Japan’s protected-area system. We identified 228 sites as KBAs and 50 rivers as candidate KBAs. Collectively, KBAs occupy 18% of the land, about half is not protected. Sites selected include natural and semi-natural environments, and appropriate form of protection is site-dependent. Twenty percent of Japanese terrestrial area is already protected, although to varying degrees, but additional 8% should also receive protection or proper management to strengthen the conservation of biodiversity in Japan.

  7. Agroforestry: a refuge for tropical biodiversity?

    Science.gov (United States)

    Bhagwat, Shonil A; Willis, Katherine J; Birks, H John B; Whittaker, Robert J

    2008-05-01

    As rates of deforestation continue to rise in many parts of the tropics, the international conservation community is faced with the challenge of finding approaches which can reduce deforestation and provide rural livelihoods in addition to conserving biodiversity. Much of modern-day conservation is motivated by a desire to conserve 'pristine nature' in protected areas, while there is growing recognition of the long-term human involvement in forest dynamics and of the importance of conservation outside protected areas. Agroforestry -- intentional management of shade trees with agricultural crops -- has the potential for providing habitats outside formally protected land, connecting nature reserves and alleviating resource-use pressure on conservation areas. Here we examine the role of agroforestry systems in maintaining species diversity and conclude that these systems can play an important role in biodiversity conservation in human-dominated landscapes.

  8. Reframing the Food-Biodiversity Challenge.

    Science.gov (United States)

    Fischer, Joern; Abson, David J; Bergsten, Arvid; French Collier, Neil; Dorresteijn, Ine; Hanspach, Jan; Hylander, Kristoffer; Schultner, Jannik; Senbeta, Feyera

    2017-03-08

    Given the serious limitations of production-oriented frameworks, we offer here a new conceptual framework for how to analyze the nexus of food security and biodiversity conservation. We introduce four archetypes of social-ecological system states corresponding to win-win (e.g., agroecology), win-lose (e.g., intensive agriculture), lose-win (e.g., fortress conservation), and lose-lose (e.g., degraded landscapes) outcomes for food security and biodiversity conservation. Each archetype is shaped by characteristic external drivers, exhibits characteristic internal social-ecological features, and has characteristic feedbacks that maintain it. This framework shifts the emphasis from focusing on production only to considering social-ecological dynamics, and enables comparison among landscapes. Moreover, examining drivers and feedbacks facilitates the analysis of possible transitions between system states (e.g., from a lose-lose outcome to a more preferred outcome).

  9. The underestimated biodiversity of tropical grassy biomes.

    Science.gov (United States)

    Murphy, Brett P; Andersen, Alan N; Parr, Catherine L

    2016-09-19

    For decades, there has been enormous scientific interest in tropical savannahs and grasslands, fuelled by the recognition that they are a dynamic and potentially unstable biome, requiring periodic disturbance for their maintenance. However, that scientific interest has not translated into widespread appreciation of, and concern about threats to, their biodiversity. In terms of biodiversity, grassy biomes are considered poor cousins of the other dominant biome of the tropics-forests. Simple notions of grassy biomes being species-poor cannot be supported; for some key taxa, such as vascular plants, this may be valid, but for others it is not. Here, we use an analysis of existing data to demonstrate that high-rainfall tropical grassy biomes (TGBs) have vertebrate species richness comparable with that of forests, despite having lower plant diversity. The Neotropics stand out in terms of both overall vertebrate species richness and number of range-restricted vertebrate species in TGBs. Given high rates of land-cover conversion in Neotropical grassy biomes, they should be a high priority for conservation and greater inclusion in protected areas. Fire needs to be actively maintained in these systems, and in many cases re-introduced after decades of inappropriate fire exclusion. The relative intactness of TGBs in Africa and Australia make them the least vulnerable to biodiversity loss in the immediate future. We argue that, like forests, TGBs should be recognized as a critical-but increasingly threatened-store of global biodiversity.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.

  10. DNA barcoding the floras of biodiversity hotspots

    OpenAIRE

    Lahaye, Renaud; van der Bank, Michelle; Bogarin, Diego; Warner, Jorge; Pupulin, Franco; Gigot, Guillaume; Maurin, Olivier; Duthoit, Sylvie; Barraclough, Timothy G.; Savolainen, Vincent

    2008-01-01

    DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern A...

  11. A Catalogue of marine biodiversity indicators

    Directory of Open Access Journals (Sweden)

    Heliana Teixeira

    2016-11-01

    Full Text Available A Catalogue of Marine Biodiversity Indicators was developed with the aim of providing the basis for assessing the environmental status of the marine ecosystems. Useful for the implementation of the Marine Strategy Framework Directive (MSFD, this catalogue allows the navigation of a database of indicators mostly related to biological diversity, non-indigenous species, food webs, and seafloor integrity. Over 600 indicators were compiled, which were developed and used in the framework of different initiatives (e.g. EU policies, research projects and in national and international contexts (e.g. Regional Seas Conventions, and assessments in non-European seas. The catalogue reflects the current scientific capability to address environmental assessment needs by providing a broad coverage of the most relevant indicators for marine biodiversity and ecosystem integrity.The available indicators are reviewed according to their typology, data requirements, development status, geographical coverage, relevance to habitats or biodiversity components, and related human pressures. Through this comprehensive overview, we discuss the potential of the current set of indicators in a wide range of contexts, from large-scale to local environmental programs, and we also address shortcomings in light of current needs.Developed by the DEVOTES Project, the catalogue is freely available through the DEVOTool software application, which provides browsing and query options for the associated metadata. The tool allows extraction of ranked indicator lists best fulfilling selected criteria, enabling users to search for suitable indicators to address a particular biodiversity component, ecosystem feature, habitat or pressure in a marine area of interest.This tool is useful for EU Member States, Regional Sea Conventions, the European Commission, non-governmental organizations, managers, scientists and any person interested in marine environmental assessment. It allows users to

  12. Coastal biodiversity and bioresources: variation and sustainability

    Science.gov (United States)

    Qin, Song; Liu, Zhengyi; Yu, Roger Ziye

    2016-03-01

    The 1st International Coastal Biology Congress (1st ICBC) was held in Yantai, China, in Sep. 26-30, 2014. Eighteen manuscripts of the meeting presentations were selected in this special issue. According to the four themes set in the ICBC meeting, this special issue include four sections, i.e., Coastal Biodiversity under Global Change, Adaptation and Evolution to Special Environment of Coastal Zone, Sustainable Utilization of Coastal Bioresources, and Coastal Biotechnology. Recent advances in these filed are presented.

  13. Engaging the public in biodiversity issues

    OpenAIRE

    2008-01-01

    To engage people in biodiversity and other environmental issues, one must provide the opportunity for enhanced understanding that empowers individuals to make choices and take action based on sound science and reliable recommendations. To this end, we must acknowledge some real challenges. Recent surveys show that, despite growing public concern, environmental issues still rank below many other problems, such as terrorism, health care, the economy, and (in the U.S.) family values. Moreover, m...

  14. The Role of Corporations in Ensuring Biodiversity

    Science.gov (United States)

    KELLY; HODGE

    1996-11-01

    / Corporations own approximately 25% of all private land in the United States and, therefore, play an essential role in protecting biodiversity and maintaining natural habitats. The Wildlife Habitat Council (WHC) is a unique joint venture between conservation organizations and corporations to utilize corporate lands for ensuring biodiversity. The following case studies demonstrate how corporations have helped ensure healthy ecosystems and provided critical leadership in regional efforts. Amoco Chemical Company's Cooper River Plant has been instrumental in developing a cooperative project that involves numerous corporations, plantation owners, private citizens, nonprofit organizations, government agencies, and community groups to develop a comprehensive, ecosystem-based management plan for part of the Cooper River in Charleston, South Carolina, USA. The second case focuses on the Morie Company, a national sand quarry operator headquartered in southern New Jersey, USA. Morie Company is working with WHC, community groups, the Pinelands Commission, and other state regulatory agencies to explore sustainable development opportunities for companies within the Pinelands regulations. The third case takes us to DuPont Company's Asturias, Spain, site. A win-win success story of improved habitat and cost savings is the result of DuPont's concern for the environment, ability to work with a variety of groups, and willingness to consider innovative restoration techniques. The fourth case discusses Consumers Power Company's Campbell Plant in West Olive, Michigan, USA. In addition to implementing projects that contribute to biodiversity, Consumers Power has developed an environmental education field station to teach others about the importance of natural habitats. The final case highlights Baltimore Gas & Electric Company's efforts to maintain habitat for endangered species at their Calvert Cliffs site in Maryland.KEY WORDS: Partnerships; Stewardship; International; Habitats

  15. Hydrodynamics of Microbial Filter-Feeding

    Science.gov (United States)

    Andersen, Anders; Nielsen, Lasse Tor; Dolger, Julia; Kiorboe, Thomas

    2016-11-01

    Microbial filter-feeders form an important group of plankton with significance to the aquatic food webs. While the concept of filter-feeding is straightforward, our quantitative understanding of microbial filter-feeding leaves a lot to be desired. As a model organism, we focus on the filter-feeding choanoflagellate Diaphanoeca grandis. We quantify the feeding flow using particle tracking, and demonstrate that hydrodynamic theory underestimates the observed clearance rate by an order of magnitude. We find similar discrepancies for other choanoflagellate species, highlighting an apparent paradox. To resolve the paradox we argue that D. grandis and other choanoflagellates must have so far unbeknownst morphological features. Specifically, we suggest a flagellar vane that connects the flagellum to the filter, as known in choanocytes of sponges, creating a radically different, and order of magnitude more capable, pumping mechanism. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  16. Coastal biodiversity and ecosystem services flows at the landscape scale: The CBESS progamme.

    Science.gov (United States)

    Paterson, David; Bothwell, John; Bradbury, Richard; Burrows, Michael; Burton, Niall; Emmerson, Mark; Garbutt, Angus; Skov, Martin; Solan, Martin; Spencer, Tom; Underwood, Graham

    2015-04-01

    The health of the European coastline is inextricably linked to the economy and culture of coastal nations but they are sensitive to climate change. As global temperatures increase, sea levels will rise and the forces experienced where land meets sea will become more destructive. Salt marshes, mudflats, beaches will be affected. These landscapes support a wide range of economically valuable animal and plant species, but also act as sites of carbon storage, nutrient recycling, and pollutant capture and amelioration. Their preservation is of utmost importance. Our programme: "A hierarchical approach to the examination of the relationship between biodiversity and ecosystem service flows across coastal margins" (CBESS) is designed to understand the landscape-scale links between the functions that these systems provide (ecosystem service flows) and the organisms that provide these services (biodiversity stocks) and moves beyond most previous studies, conducted at smaller scales. Our consortium of experts ranges from microbial ecologists, through environmental economists, to mathematical modellers, and organisations (RSPB, BTO, CEFAS, EA) with vested interest in the sustainable use of coastal wetlands. CBESS spans the landscape scale, investigating how biodiversity stocks provide ecosystem services (cf. National Ecosystem Assessment: Supporting services; Provisioning services; Regulating services; and Cultural services). CBESS combined a detailed study of two regional landscapes with a broad-scale UK-wide study to allow both specific and general conclusions to be drawn. The regional study compares two areas of great UK national importance: Morecambe Bay on the west coast and the Essex coastline on the east. We carried out biological and physical surveys at more than 600 stations combined with in situ measures of ecosystem funtction to clarify how biodiversity can provide these important ecosystem functions across scales. This information will be shared with those

  17. Biodiversity and chemodiversity: future perspectives in bioprospecting.

    Science.gov (United States)

    Ramesha, B T; Gertsch, Jürg; Ravikanth, G; Priti, V; Ganeshaiah, K N; Uma Shaanker, R

    2011-10-01

    Biological diversity and its constituent chemical diversity have served as one of the richest sources of bioprospecting leading to the discovery of some of the most important bioactive molecules for mankind. Despite this excellent record, in the recent past, however, bioprospecting of biological resources has met with little success; there has been a perceptible decline in the discovery of novel bioactive compounds. Several arguments have been proposed to explain the current poor success in bioprospecting. Among them, it has been argued that to bioprospect more biodiversity may not necessarily be productive, considering that chemical and functional diversity might not scale with biological diversity. In this paper, we offer a critique on the current perception of biodiversity and chemodiversity and ask to what extent it is relevant in the context of bioprospecting. First, using simple models, we analyze the relation among biodiversity, chemodiversity and functional redundancies in chemical plans of plants and argue that the biological space for exploration might still be wide open. Second, in the context of future bioprospecting, we argue that brute-force high throughput screening approaches alone are insufficient and cost ineffective in realizing bioprospecting success. Therefore, intelligent or non-random approaches to bioprospecting need to be adopted. We review here few examples of such approaches and show how these could be further developed and used in the future to accelerate the pace of discovery.

  18. Conservation easements: biodiversity protection and private use.

    Science.gov (United States)

    Rissman, Adena R; Lozier, Lynn; Comendant, Tosha; Kareiva, Peter; Kiesecker, Joseph M; Shaw, M Rebecca; Merenlender, Adina M

    2007-06-01

    Conservation easements are one of the primary tools for conserving biodiversity on private land. Despite their increasing use, little quantitative data are available on what species and habitats conservation easements aim to protect, how much structural development they allow, or what types of land use they commonly permit. To address these knowledge gaps, we surveyed staff responsible for 119 conservation easements established by the largest nonprofit easement holder, The Nature Conservancy, between 1985 and 2004. Most easements (80%) aimed to provide core habitat to protect species or communities on-site, and nearly all were designed to reduce development. Conservation easements also allowed for a wide range of private uses, which may result in additional fragmentation and habitat disturbance. Some residential or commercial use, new structures, or subdivision of the property were permitted on 85% of sampled conservation easements. Over half (56%) allowed some additional buildings, of which 60% restricted structure size or building area. Working landscape easements with ranching, forestry, or farming made up nearly half (46%) of the easement properties sampled and were more likely than easements without these uses to be designated as buffers to enhance biodiversity in the surrounding area. Our results demonstrate the need for clear restrictions on building and subdivision in easements, research on the compatibility of private uses on easement land, and greater public understanding of the trade-offs implicit in the use of conservation easements for biodiversity conservation.

  19. Invasion ecology: Origin and biodiversity effects

    Directory of Open Access Journals (Sweden)

    John C. Briggs

    2013-09-01

    Full Text Available The history of invasion ecology, with respect to its mid-19th century beginning and its extended relationship with island biogeography, has not been investigated. In fact, most historical accounts begin with the publication of Charles Elton's book in 1958. Since that time, the field has undergone a phenomenal growth until it has become a major specialty area related to ecology, biogeography, and macroecology. Over the years, invasion studies have made significant contributions to knowledge in the areas of colonization, adaptation, biodiversity, evolution, and species relationships. But also, many ecologists became convinced that invasive species were responsible for native extinctions and the loss of biodiversity. However, new studies, based upon documented extinctions and their causes, have shown that invaders are rarely implicated. Instead, successful (colonizing invaders are almost invariably accommodated by the native species that occupy the necessary habitat. Accommodation results in a gain in species diversity of the invaded area. Diversity gain generally results in a more stable system with higher productivity and a greater resistance to invasion. Furthermore, as the fossil data indicate, invasions may eventually result in additional speciation that adds to global biodiversity. These data provide evidence of a dynamic, global system consisting of successful invasions that extend from high species diversity centers outward to where diversity is less and the competition weaker.

  20. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  1. Global priorities for marine biodiversity conservation.

    Science.gov (United States)

    Selig, Elizabeth R; Turner, Will R; Troëng, Sebastian; Wallace, Bryan P; Halpern, Benjamin S; Kaschner, Kristin; Lascelles, Ben G; Carpenter, Kent E; Mittermeier, Russell A

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.

  2. How does economic risk aversion affect biodiversity?

    Science.gov (United States)

    Mouysset, L; Doyen, L; Jiguet, F

    2013-01-01

    Significant decline of biodiversity in farmlands has been reported for several decades. To limit the negative impact of agriculture, many agro-environmental schemes have been implemented, but their effectiveness remains controversial. In this context, the study of economic drivers is helpful to understand the role played by farming on biodiversity. The present paper analyzes the impact of risk aversion on farmland biodiversity. Here "risk aversion" means a cautious behavior of farmers facing uncertainty. We develop a bio-economic model that articulates bird community dynamics and representative farmers selecting land uses within an uncertain macro-economic context. It is specialized and calibrated at a regional scale for France through national databases. The influence of risk aversion is assessed on ecological, agricultural, and economic outputs through projections at the 2050 horizon. A high enough risk aversion appears sufficient to both manage economic risk and promote ecological performance. This occurs through a diversification mechanism on regional land uses. However, economic calibration leads to a weak risk-aversion parameter, which is consistent with the current decline of farmland birds. Spatial disparities however suggest that public incentives could be necessary to reinforce the diversification and bio-economic effectiveness.

  3. Climate change patterns in Amazonia and biodiversity.

    Science.gov (United States)

    Cheng, Hai; Sinha, Ashish; Cruz, Francisco W; Wang, Xianfeng; Edwards, R Lawrence; d'Horta, Fernando M; Ribas, Camila C; Vuille, Mathias; Stott, Lowell D; Auler, Augusto S

    2013-01-01

    Precise characterization of hydroclimate variability in Amazonia on various timescales is critical to understanding the link between climate change and biodiversity. Here we present absolute-dated speleothem oxygen isotope records that characterize hydroclimate variation in western and eastern Amazonia over the past 250 and 20 ka, respectively. Although our records demonstrate the coherent millennial-scale precipitation variability across tropical-subtropical South America, the orbital-scale precipitation variability between western and eastern Amazonia exhibits a quasi-dipole pattern. During the last glacial period, our records imply a modest increase in precipitation amount in western Amazonia but a significant drying in eastern Amazonia, suggesting that higher biodiversity in western Amazonia, contrary to 'Refugia Hypothesis', is maintained under relatively stable climatic conditions. In contrast, the glacial-interglacial climatic perturbations might have been instances of loss rather than gain in biodiversity in eastern Amazonia, where forests may have been more susceptible to fragmentation in response to larger swings in hydroclimate.

  4. Biodiversity Information Serving Our Nation (BISON)

    Science.gov (United States)

    ,

    2013-01-01

    Researchers collect species occurrence data, records of an organism at a particular time in a particular place, as a primary or ancillary function of many biological field investigations. Presently, these data reside in numerous distributed systems and formats (including publications) and are consequently not being used to their full potential. As a step toward addressing this challenge, the Core Science Analytics and Synthesis (CSAS) program of the US Geological Survey (USGS) is developing Biodiversity Information Serving Our Nation (BISON), an integrated and permanent resource for biological occurrence data from the United States. BISON will leverage the accumulated human and infrastructural resources of the long-term USGS investment in research and information management and delivery. CSAS is also the U.S. Node of the Global Biodiversity Information Facility (GBIF), an international, government-initiated and funded effort focused on making biodiversity data freely available for scientific research, conservation and sustainable development. CSAS, with its partners at Department of Energy's Oak Ridge National Laboratory (ORNL), hosts a full mirror of the hundreds of millions of global records to which GBIF provides access. BISON has been initiated with the 110 million records GBIF makes available from the U.S. and is integrating millions more records from other sources each year.

  5. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots.

    Science.gov (United States)

    Katouzian, Ahmad-Reza; Sari, Alireza; Macher, Jan N; Weiss, Martina; Saboori, Alireza; Leese, Florian; Weigand, Alexander M

    2016-03-01

    Biodiversity hotspots are centers of biological diversity and particularly threatened by anthropogenic activities. Their true magnitude of species diversity and endemism, however, is still largely unknown as species diversity is traditionally assessed using morphological descriptions only, thereby ignoring cryptic species. This directly limits evidence-based monitoring and management strategies. Here we used molecular species delimitation methods to quantify cryptic diversity of the montane amphipods in the Irano-Anatolian and Caucasus biodiversity hotspots. Amphipods are ecosystem engineers in rivers and lakes. Species diversity was assessed by analysing two genetic markers (mitochondrial COI and nuclear 28S rDNA), compared with morphological assignments. Our results unambiguously demonstrate that species diversity and endemism is dramatically underestimated, with 42 genetically identified freshwater species in only five reported morphospecies. Over 90% of the newly recovered species cluster inside Gammarus komareki and G. lacustris; 69% of the recovered species comprise narrow range endemics. Amphipod biodiversity is drastically underestimated for the studied regions. Thus, the risk of biodiversity loss is significantly greater than currently inferred as most endangered species remain unrecognized and/or are only found locally. Integrative application of genetic assessments in monitoring programs will help to understand the true magnitude of biodiversity and accurately evaluate its threat status.

  6. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  7. Biodiversity, the Human Microbiome and Mental Health: Moving toward a New Clinical Ecology for the 21st Century?

    Directory of Open Access Journals (Sweden)

    Susan L. Prescott

    2016-01-01

    Full Text Available Advances in research concerning the brain-related influences of the microbiome have been paradigm shifting, although at an early stage, clinical research involving beneficial microbes lends credence to the notion that the microbiome may be an important target in supporting mental health (defined here along the continuum between quality of life and the criteria for specific disorders. Through metagenomics, proteomics, metabolomics, and systems biology, a new emphasis to personalized medicine is on the horizon. Humans can now be viewed as multispecies organisms operating within an ecological theatre; it is important that clinicians increasingly see their patients in this context. Historically marginalized ecological aspects of health are destined to become an important consideration in the new frontiers of practicing medicine with the microbiome in mind. Emerging evidence indicates that macrobiodiversity in the external environment can influence mental well-being. Local biodiversity may also drive differences in human-associated microbiota; microbial diversity as a product of external biodiversity may have far-reaching effects on immune function and mood. With a focus on the microbiome as it pertains to mental health, we define environmental “grey space” and emphasize a new frontier involving bio-eco-psychological medicine. Within this concept the ecological terrain can link dysbiotic lifestyles and biodiversity on the grand scale to the local human-associated microbial ecosystems that might otherwise seem far removed from one another.

  8. Biodiversity and dynamics of the bacterial community of packaged king scallop (Pecten maximus) meat during cold storage.

    Science.gov (United States)

    Coton, M; Joffraud, J J; Mekhtiche, L; Leroi, F; Coton, E

    2013-09-01

    The microbial biodiversity and dynamics of king scallops meat and coral during cold storage (cold chain rupture: 1/3 storage time at 4 °C followed by 2/3 at 8 °C), was assessed by combining culture-dependant and -independent methods. Products were packaged as follows: aerobic, vacuum packed and 3 different CO2/N2 modified atmospheres and the impact of these conditions on the microbial communities was assessed. Results indicated that under air (current packaging condition), the dominant species corresponded to Brochothrix thermosphacta, Pseudomonas spp. and Shewanella spp. These species have regularly been associated in the literature with food (especially seafood), and product spoilage. Moellerella wisconsensis was the only species detected on VRBG medium, however, its impact on the food product is unclear. Packaging conditions influenced the ecosystem equilibrium and biodiversity. Except for day 8, the lowest counts for all studied flora were observed for modified atmosphere packaging (MAP) containing >80% CO2. Moreover, in these conditions, higher biodiversity by Temporal Temperature Gradient Gel Electrophoresis (TTGE) and the non-detection of specific flora (i.e. Pseudoalteromonas haloplanktis) were observed. At day 8, scallops packaged using these conditions were still acceptable from a sensorial point of view (odour), although the initial load of the king scallop was high (total psychrotrophic flora reached 5.5 log CFU/g).

  9. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    Directory of Open Access Journals (Sweden)

    Simone D Langhans

    Full Text Available Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m, distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest, and time of the year (February-November across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy, to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  10. Edge effects are important in supporting beetle biodiversity in a gravel-bed river floodplain.

    Science.gov (United States)

    Langhans, Simone D; Tockner, Klement

    2014-01-01

    Understanding complex, dynamic, and diverse ecosystems is essential for developing sound management and conservation strategies. Gravel-bed river floodplains are composed of an interlinked mosaic of aquatic and terrestrial habitats hosting a diverse, specialized, and endangered fauna. Therefore, they serve as excellent models to investigate the biodiversity of multiple ecotones and related edge effects. In this study, we investigated the abundance, composition, richness, and conservation status of beetle assemblages at varying sediment depth (0, 0.1, 0.6 and 1.1 m), distance from the channel (1, 5, 20, and 60-100 m, and 5 m within the riparian forest), and time of the year (February-November) across a 200 m-wide gravel bar at the near-natural Tagliamento River (Italy), to detect edge effects in four floodplain ecotones: aquatic-terrestrial, forest-active floodplain, sediment-air, and sediment-groundwater. We used conventional pitfall traps and novel tube traps to sample beetles comparably on the sediment surface and within the unsaturated sediments. We found a total of 308 beetle species (including 87 of conservation concern) that showed multiple, significant positive edge effects across the floodplain ecotones, mainly driven by spatial heterogeneity: Total and red list beetle abundance and richness peaked on the sediment surface, at channel margins, and at the edge of the riparian forest. All ecotones possessed edge/habitat specialists. Most red list species occurred on the sediment surface, including five species previously considered extinct--yet two of these species occurred in higher densities in the unsaturated sediments. Conservation and management efforts along gravel-bed rivers must therefore promote a dynamic flow and sediment regime to create and maintain habitat heterogeneity and ecotone diversity, which support a unique and high biodiversity.

  11. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    Science.gov (United States)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale

  12. Representing Microbial Processes in Environmental Reactive Transport Models

    Science.gov (United States)

    van Cappellen, P.

    2009-04-01

    Microorganisms play a key role in the biogeochemical functioning of the earth's surface and shallow subsurface. In the context of reactive transport modeling, a major challenge is to derive, parameterize, calibrate and verify mathematical expressions for microbially-mediated reactions in the environmental. This is best achieved by combining field observations, laboratory experiments, theoretical principles and modeling. Here, I will illustrate such an integrated approach for the case of microbial respiration processes in aquatic sediments. Important issues that will be covered include experimental design, model consistency and performance, as well as the bioenergetics and transient behavior of geomicrobial reaction systems.

  13. Forest restoration, biodiversity and ecosystem functioning

    Directory of Open Access Journals (Sweden)

    Aerts Raf

    2011-11-01

    Full Text Available Abstract Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an

  14. Functionally stable and phylogenetically diverse microbial enrichments from microbial fuel cells during wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Shun'ichi Ishii

    Full Text Available Microbial fuel cells (MFCs are devices that exploit microorganisms as biocatalysts to recover energy from organic matter in the form of electricity. One of the goals of MFC research is to develop the technology for cost-effective wastewater treatment. However, before practical MFC applications are implemented it is important to gain fundamental knowledge about long-term system performance, reproducibility, and the formation and maintenance of functionally-stable microbial communities. Here we report findings from a MFC operated for over 300 days using only primary clarifier effluent collected from a municipal wastewater treatment plant as the microbial resource and substrate. The system was operated in a repeat-batch mode, where the reactor solution was replaced once every two weeks with new primary effluent that consisted of different microbial and chemical compositions with every batch exchange. The turbidity of the primary clarifier effluent solution notably decreased, and 97% of biological oxygen demand (BOD was removed after an 8-13 day residence time for each batch cycle. On average, the limiting current density was 1000 mA/m(2, the maximum power density was 13 mW/m(2, and coulombic efficiency was 25%. Interestingly, the electrochemical performance and BOD removal rates were very reproducible throughout MFC operation regardless of the sample variability associated with each wastewater exchange. While MFC performance was very reproducible, the phylogenetic analyses of anode-associated electricity-generating biofilms showed that the microbial populations temporally fluctuated and maintained a high biodiversity throughout the year-long experiment. These results suggest that MFC communities are both self-selecting and self-optimizing, thereby able to develop and maintain functional stability regardless of fluctuations in carbon source(s and regular introduction of microbial competitors. These results contribute significantly toward the

  15. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover.

    Science.gov (United States)

    Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo

    2015-12-01

    To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time-decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, PClimate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity.

  16. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  17. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  18. Control of Fish and Aquatic Plants.

    Science.gov (United States)

    Hesser, R. B.; And Others

    This agriculture extension service publication from Pennsylvania State University is a handbook for the water body manager. The bulk of the contents deals with aquatic plant control. The different types of aquatic plants, their reproduction and growth, and their role in the ecology of the water body are introduced in this main section. Also, the…

  19. Aquatic Therapy: A Viable Therapeutic Recreation Intervention.

    Science.gov (United States)

    Broach, Ellen; Dattilo, John

    1996-01-01

    Reviews literature on the effects of aquatic therapy (swimming and exercise) to improve function. Research shows that aquatic therapy has numerous psychological and physical benefits, and it supports the belief that participation can provide a realistic solution to maintaining physical fitness and rehabilitation goals while engaging in enjoyable…

  20. Aquatic Therapy. Making Waves in Therapeutic Recreation.

    Science.gov (United States)

    Broach, Ellen; Dattilo, John

    1996-01-01

    Therapeutic recreation professionals often use aquatic therapy to improve physiological and psychological functioning, and they have reported improvements for people with many different types of disabilities. The paper discusses aquatic therapy methods, water as a therapeutic environment, professional training and development, and lifestyle…

  1. Estimating Aquatic Insect Populations. Introduction to Sampling.

    Science.gov (United States)

    Chihuahuan Desert Research Inst., Alpine, TX.

    This booklet introduces high school and junior high school students to the major groups of aquatic insects and to population sampling techniques. Chapter 1 consists of a short field guide which can be used to identify five separate orders of aquatic insects: odonata (dragonflies and damselflies); ephemeroptera (mayflies); diptera (true flies);…

  2. Drastic changes in aquatic bacterial populations from the Cuatro Cienegas Basin (Mexico) in response to long-term environmental stress.

    Science.gov (United States)

    Pajares, Silvia; Eguiarte, Luis E; Bonilla-Rosso, German; Souza, Valeria

    2013-12-01

    Understanding the changes of aquatic microbial community composition in response to changes in temperature and ultraviolet irradiation is relevant for predicting biogeochemical modifications in the functioning of natural microbial communities under global climate change scenarios. Herein we investigate shifts in the bacterioplankton composition in response to long-term changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with composite aquatic microbial communities from natural pools within the Cuatro Cienegas Basin (Mexican Chihuahuan desert) and were subject to different temperatures and UV conditions. 16S rRNA gene clone libraries were obtained from water samples at the mid-point (4 months) and the end of the experiment (8 months). An increase in bacterial diversity over time was found in the treatment of constant temperature and UV protection, which suggests that stable environments promote the establishment of complex and diverse bacterial community. Drastic changes in the phylogenetic bacterioplankton composition and structure were observed in response to fluctuating temperature and increasing UV radiation and temperature. Fluctuating temperature induced the largest decrease of bacterial richness during the experiment, indicating that frequent temperature changes drive the reduction in abundance of several species, most notably autotrophs. The long-term impact of these environmental stresses reduced diversity and selected for generalist aquatic bacterial populations, such as Porphyrobacter. These changes at the community level occur at an ecological time scale, suggesting that under global warming scenarios cascade effects on the food web are possible if the microbial diversity is modified.

  3. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA.

    Science.gov (United States)

    Lodge, David M; Turner, Cameron R; Jerde, Christopher L; Barnes, Matthew A; Chadderton, Lindsay; Egan, Scott P; Feder, Jeffrey L; Mahon, Andrew R; Pfrender, Michael E

    2012-06-01

    Three mantras often guide species and ecosystem management: (i) for preventing invasions by harmful species, 'early detection and rapid response'; (ii) for conserving imperilled native species, 'protection of biodiversity hotspots'; and (iii) for assessing biosecurity risk, 'an ounce of prevention equals a pound of cure.' However, these and other management goals are elusive when traditional sampling tools (e.g. netting, traps, electrofishing, visual surveys) have poor detection limits, are too slow or are not feasible. One visionary solution is to use an organism's DNA in the environment (eDNA), rather than the organism itself, as the target of detection. In this issue of Molecular Ecology, Thomsen et al. (2012) provide new evidence demonstrating the feasibility of this approach, showing that eDNA is an accurate indicator of the presence of an impressively diverse set of six aquatic or amphibious taxa including invertebrates, amphibians, a fish and a mammal in a wide range of freshwater habitats. They are also the first to demonstrate that the abundance of eDNA, as measured by qPCR, correlates positively with population abundance estimated with traditional tools. Finally, Thomsen et al. (2012) demonstrate that next-generation sequencing of eDNA can quantify species richness. Overall, Thomsen et al. (2012) provide a revolutionary roadmap for using eDNA for detection of species, estimates of relative abundance and quantification of biodiversity.

  4. The roles of biological interactions and pollutant contamination in shaping microbial benthic community structure

    OpenAIRE

    Louati, H.; Ben Said, O.; A. Soltani; Got, P; Mahmoudi, E.; Cravo-Laureau, C.; Duran, R.; Aissa, P.; Pringault, Olivier

    2013-01-01

    Biological interactions between metazoans and the microbial community play a major role in structuring food webs in aquatic sediments. Pollutants can also strongly affect the structure of meiofauna and microbial communities. This study aims investigating, in a non-contaminated sediment, the impact of meiofauna on bacteria facing contamination by a mixture of three PAHs (fluoranthene, phenanthrene and pyrene). Sediment microcosms were incubated in the presence or absence of meiofauna during 30...

  5. Growth and functioning of the microbial plankton community: effects of temperature, nutrients and light

    OpenAIRE

    Brauer, V. S.

    2015-01-01

    Microbial plankton form the basis of the food web in aquatic habitats. Due to their vast abundances they influence the cycling of elements and the Earth’s climate at a global scale. This thesis aims at a better understanding of how environmental factors such as temperature and the availability of nutrients and light affect the growth and functioning of microbial plankton communities. The thesis combines experimental studies and mathematical modelling to address open questions in community eco...

  6. Forty years of experiments on aquatic invasive species: are study biases limiting our understanding of impacts?

    Directory of Open Access Journals (Sweden)

    Mads Thomsen

    2014-06-01

    Full Text Available Invasions by non-native species are a threat to biodiversity because invaders can impact native populations, communities and entire ecosystems. To manage this threat, it is necessary to have a strong mechanistic understanding of how non-native species affect local species and communities. We reviewed 259 published papers (1972–2012 that described field experiments quantifying the impact of aquatic non-native species, to examine whether various types of study biases are limiting this understanding. Our review revealed that invasion impacts had been experimentally quantified for 101 aquatic non-native species, in all major freshwater and marine habitats, on all continents except Antarctica and for most higher taxonomic groupings. Over one-quarter (26% of studies included tests for impacts on local biodiversity. However, despite this extensive research effort, certain taxa, habitats and regions remain poorly studied. For example, of the over one hundred species examined in previous studies, only one was a marine fish and only six were herbivores. Furthermore, over half (53% the studies were from the USA and two-thirds (66% were from experiments conducted in temperate latitudes. By contrast, only 3% of studies were from Africa and <2% from high latitudes. We also found that one-fifth (20% of studies were conducted in estuaries, but only 1% from coral reefs. Finally, we note that the standard procedure of pooling or not reporting non-significant treatments and responses is likely to limit future synthetic advancement by biasing meta-analysis and severely limiting our ability to identify non-native species with none or negligible ecological impacts. In conclusion, a future focus on poorly-studied taxa, habitats and regions, and enhanced reporting of results, should improve our understanding and management of impacts associated with aquatic non-native species.

  7. Biodiversity, chemical diversity and drug discovery.

    Science.gov (United States)

    Singh, Sheo B; Pelaez, Fernando

    2008-01-01

    Drugs developed from microbial natural products are in the fundaments of modern pharmaceutical companies. Despite decades of research, all evidences suggest that there must remain many interesting natural molecules with potential therapeutic application yet to be discovered. Any efforts to successfully exploit the chemical diversity of microbial secondary metabolites need to rely heavily on a good understanding of microbial diversity, being the working hypothesis that maximizing biological diversity is the key strategy to maximizing chemical diversity. This chapter presents an overview of diverse topics related with this basic principle, always in relation with the discovery of novel secondary metabolites. The types of microorganisms more frequently used for natural products discovery are briefly reviewed, as well as the differences between terrestrial and marine habitats as sources of bioactive secondary metabolite producers. The concepts about microbial diversity as applied to prokaryotes have evolved in the last years, but recent data suggest the existence of true biogeographic patterns of bacterial diversity, which are also discussed. Special attention is dedicated to the existing strategies to exploit the microbial diversity that is not easy to tackle by conventional approaches. This refers explicitly to the current attempts to isolate and cultivate the previously uncultured bacteria, including the application of high throughput techniques. Likewise, the advances of microbial molecular biology has allowed the development of metagenomic approaches, i.e., the expression of biosynthetic pathways directly obtained from environmental DNA and cloned in a suitable host, as another way of accessing microbial genetic resources. Also, approaches relying on the genomics of metabolite producers are reviewed.

  8. Habitat and Biodiversity of On-Farm Water Storages: A Case Study in Southeast Queensland, Australia

    Science.gov (United States)

    Markwell, Kim A.; Fellows, Christine S.

    2008-02-01

    On-farm water storages (locally known as farm dams or farm ponds) are an important part of many agricultural landscapes, as they provide a reliable source of water for irrigation and stock. Although these waterbodies are artificially constructed and morphologically simple, there is increasing interest in their potential role as habitat for native flora and fauna. In this article, we present results from a case study which examined the habitat characteristics (such as water physical and chemical parameters, benthic metabolism, and macrophyte cover) and the macrophyte and macroinvertebrate biodiversity of eight farm ponds on four properties in the Stanley Catchment, Southeast Queensland, Australia. Each landowner was interviewed to allow a comparison of the management of the ponds with measured habitat and biodiversity characteristics, and to understand landowners’ motivations in making farm pond management decisions. The physical and chemical water characteristics of the study ponds were comparable to the limited number of Australian farm ponds described in published literature. Littoral zones supported forty-five macroinvertebrate families, with most belonging to the orders Hemiptera, Coleoptera, Odonata, and Diptera. Invertebrate community composition was strongly influenced by littoral zone macrophyte structure, with significant differences between ponds with high macrophyte cover compared to those with bare littoral zones. The importance of littoral zone macrophytes was also suggested by a significant positive relationship between invertebrate taxonomic richness and macrophyte cover. The landowners in this study demonstrated sound ecological knowledge of their farm ponds, but many had not previously acknowledged them as having high habitat value for native flora and fauna. If managed for aquatic organisms as well as reliable water sources, these artificial habitats may help to maintain regional biodiversity, particularly given the large number of farm ponds

  9. Microbial degradation of xenobiotic, aromatic pollutants in humic water.

    OpenAIRE

    Larsson, P.; Okla, L; Tranvik, L.

    1988-01-01

    The microbial degradation of a number of 14C-labeled, recalcitrant, aromatic pollutants, including trichloroguaiacol and di-, tri-, and pentachlorophenol, was investigated in aquatic model systems in the laboratory. Natural, mixed cultures of microorganisms in the water from a brown-water lake with a high content of humic compounds mineralized all of the tested substances to a higher degree than did microorganisms in the water from a clear-water lake. Dichlorophenol was the most rapidly degra...

  10. Cetacean brains: how aquatic are they?

    Science.gov (United States)

    Marino, Lori

    2007-06-01

    The adaptation of cetaceans to a fully aquatic lifestyle represents one of the most dramatic transformations in mammalian evolutionary history. Two of the most salient features of modern cetaceans are their fully aquatic lifestyle and their large brains. This review article will offer an overview of comparative neuroanatomical research on aquatic mammals, including analyses of odontocete cetacean, sirenian, pinniped, and fossil archaeocete brains. In particular, the question of whether a relationship exists between being fully aquatic and having a large brain is addressed. It has been hypothesized that the large, well-developed cetacean brain is a direct product of adaptation to a fully aquatic lifestyle. The current consensus is that the paleontological evidence on brain size evolution in cetaceans is not consistent with this hypothesis. Cetacean brain enlargement took place millions of years after adaptation to a fully aquatic existence. Neuroanatomical comparisons with sirenians and pinnipeds provide no evidence for the idea that the odontocete's large brain, high encephalization level, and extreme neocortical gyrification is an adaptation to a fully aquatic lifestyle. Although echolocation has been suggested as a reason for the high encephalization level in odontocetes, it should be noted that not all aquatic mammals echolocate and echolocating terrestrial mammals (e.g., bats) are not particularly highly encephalized. Echolocation is not a requirement of a fully aquatic lifestyle and, thus, cannot be considered a sole effect of aquaticism on brain enlargement. These results indicate that the high encephalization level of odontocetes is likely related to their socially complex lifestyle patterns that transcend the influence of an aquatic environment.

  11. Biodiversity, climate change and poverty: exploring the links

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Swiderska, Krystyna

    2008-02-15

    Biodiversity — the variety of all life, from genes and species to ecosystems — is intimately linked to Earth's climate and, inevitably, to climate change. Biodiversity and poverty are also inextricably connected. For instance, changes to natural ecosystems influence both climate change and people's ability to cope with some of its damaging impacts. And in their turn climate change, as well as people's responses to it, affect biodiversity. Unpicking all these strands clearly shows that conserving and managing biodiversity can help natural systems and vulnerable people cope with a shifting global climate. Yet compared to activities such as forest conservation and afforestation — widely noted as a way of sequestering carbon and cutting greenhouse gas emissions — biodiversity conservation is a neglected area. That must change: urgent support is needed for local solutions to biodiversity loss that provide benefits on all counts.

  12. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    Science.gov (United States)

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  13. The influence of urbanisation on macroinvertebrate biodiversity in constructed stormwater wetlands.

    Science.gov (United States)

    Mackintosh, Teresa J; Davis, Jenny A; Thompson, Ross M

    2015-12-01

    The construction of wetlands in urban environments is primarily carried out to assist in the removal of contaminants from wastewaters; however, these wetlands have the added benefit of providing habitat for aquatic invertebrates, fish and waterbirds. Stormwater quantity and quality is directly related to impervious area (roads, sealed areas, roofs) in the catchment. As a consequence, it would be expected that impervious area would be related to contaminant load and biodiversity in receiving waters such as urban wetlands. This study aimed to establish whether the degree of urbanisation and its associated changes to stormwater runoff affected macroinvertebrate richness and abundance within constructed wetlands. Urban wetlands in Melbourne's west and south east were sampled along a gradient of urbanisation. There was a significant negative relationship between total imperviousness (TI) and the abundance of aquatic invertebrates detected for sites in the west, but not in the south east. However macroinvertebrate communities were relatively homogenous both within and between all study wetlands. Chironomidae (non-biting midges) was the most abundant family recorded at the majority of sites. Chironomids are able to tolerate a wide array of environmental conditions, including eutrophic and anoxic conditions. Their prevalence suggests that water quality is impaired in these systems, regardless of degree of urbanisation, although the causal mechanism is unclear. These results show some dependency between receiving wetland condition and the degree of urbanisation of the catchment, but suggest that other factors may be as important in determining the value of urban wetlands as habitat for wildlife.

  14. What are the costs and benefits of biodiversity recovery in a highly polluted estuary?

    Science.gov (United States)

    Pascual, M; Borja, A; Franco, J; Burdon, D; Atkins, J P; Elliott, M

    2012-01-01

    Biodiversity recovery measures have often been ignored when dealing with the restoration of degraded aquatic systems. Furthermore, biological valuation methods have been applied only spatially in previous studies, and not jointly on a temporal and spatial scale. The intense monitoring efforts carried out in a highly polluted estuary, in northern Spain (Nervión estuary), allowed for the economic valuation of the costs and the biological valuation of the benefits associated with a 21 years sewage scheme application. The analysis show that the total amount of money invested into the sewage scheme has contributed to the estuary's improvement of both environmental and biological features, as well as to an increase in the uses and services provided by the estuary. However, the inner and outer parts of the estuary showed different responses. An understanding of the costs and trajectories of the environmental recovery of degraded aquatic systems is increasingly necessary to allow policy makers and regulators to formulate robust, cost-efficient and feasible management decisions.

  15. Biodiversity offsets and the challenge of achieving no net loss.

    Science.gov (United States)

    Gardner, Toby A; VON Hase, Amrei; Brownlie, Susie; Ekstrom, Jonathan M M; Pilgrim, John D; Savy, Conrad E; Stephens, R T Theo; Treweek, Jo; Ussher, Graham T; Ward, Gerri; Ten Kate, Kerry

    2013-12-01

    Businesses, governments, and financial institutions are increasingly adopting a policy of no net loss of biodiversity for development activities. The goal of no net loss is intended to help relieve tension between conservation and development by enabling economic gains to be achieved without concomitant biodiversity losses. biodiversity offsets represent a necessary component of a much broader mitigation strategy for achieving no net loss following prior application of avoidance, minimization, and remediation measures. However, doubts have been raised about the appropriate use of biodiversity offsets. We examined what no net loss means as a desirable conservation outcome and reviewed the conditions that determine whether, and under what circumstances, biodiversity offsets can help achieve such a goal. We propose a conceptual framework to substitute the often ad hoc approaches evident in many biodiversity offset initiatives. The relevance of biodiversity offsets to no net loss rests on 2 fundamental premises. First, offsets are rarely adequate for achieving no net loss of biodiversity alone. Second, some development effects may be too difficult or risky, or even impossible, to offset. To help to deliver no net loss through biodiversity offsets, biodiversity gains must be comparable to losses, be in addition to conservation gains that may have occurred in absence of the offset, and be lasting and protected from risk of failure. Adherence to these conditions requires consideration of the wider landscape context of development and offset activities, timing of offset delivery, measurement of biodiversity, accounting procedures and rule sets used to calculate biodiversity losses and gains and guide offset design, and approaches to managing risk. Adoption of this framework will strengthen the potential for offsets to provide an ecologically defensible mechanism that can help reconcile conservation and development. Balances de Biodiversidad y el Reto de No Obtener P

  16. Core Issues in the Economics of Biodiversity Conservation

    OpenAIRE

    Tisdell, Clement A.

    2010-01-01

    Critically reviews the following core issues in the economics of biodiversity conservation: reliance on the stated preferences of individuals as a guide to biodiversity conservation, the relevance of the phylogenetic similarity principle (and other attributes of organisms) for the survival of species; the implications of the Noah’s ark problem for selecting features of biodiversity to be saved and the difficulties raised by criteria based on safe minimum populations of species or on minimum e...

  17. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  18. Chromosome studies in the aquatic monocots of Myanmar: A brief review with additional records

    Directory of Open Access Journals (Sweden)

    Yu Ito

    2014-05-01

    Full Text Available Myanmar (Burma constitutes a significant component of the Indo-Myanmar biodiversity hotspot, with elements of the Indian, the Indochina, and the Sino-Japanese floristic regions, yet thus far only a few reliable sources of the country's flora have been available. As a part of a contribution for the floristic inventory of Myanmar, since it is important in a floristic survey to obtain as much information as possible, in addition to previous two reports, here we present three more chromosome counts in the aquatic monocots of Myanmar: Limnocharis flava with 2n = 20, Sagittaria trifolia with 2n = 22 (Alismataceae, and Potamogeton distinctus × P. nodosus with 2n = 52 (Potamogetonaceae; the third one is new to science. A brief review of cytological researches in the floristic regions' 45 non-hybrid aquatic monocots plus well investigated two inter-specific hybrids that are recorded in Myanmar is given, indicating that the further works with a focus on species in Myanmar that has infra-specific chromosome variation in the floristic regions will address the precise evolutionary history of the aquatic flora of Myanmar.

  19. Chromosome studies in the aquatic monocots of Myanmar: A brief review with additional records.

    Science.gov (United States)

    Ito, Yu; Tanaka, Nobuyuki

    2014-01-01

    Myanmar (Burma) constitutes a significant component of the Indo-Myanmar biodiversity hotspot, with elements of the Indian, the Indochina, and the Sino-Japanese floristic regions, yet thus far only a few reliable sources of the country's flora have been available. As a part of a contribution for the floristic inventory of Myanmar, since it is important in a floristic survey to obtain as much information as possible, in addition to previous two reports, here we present three more chromosome counts in the aquatic monocots of Myanmar: Limnocharisflava with 2n = 20, Sagittariatrifolia with 2n = 22 (Alismataceae), and Potamogetondistinctus × Potamogetonnodosus with 2n = 52 (Potamogetonaceae); the third one is new to science. A brief review of cytological researches in the floristic regions' 45 non-hybrid aquatic monocots plus well investigated two inter-specific hybrids that are recorded in Myanmar is given, indicating that the further works with a focus on species in Myanmar that has infra-specific chromosome variation in the floristic regions will address the precise evolutionary history of the aquatic flora of Myanmar.

  20. Study of Value Assessment Model of Forest Biodiversity Based on the Habitat Area in China

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2014-03-01

    Full Text Available Forest biodiversity is an important part of biodiversity. There is an essential significance of studying forest biodiversity assessment for promoting the conservation of biodiversity and enhancing biodiversity management in China. This study collected forest biodiversity habitat area, output value of forestry and so on forest biodiversity assessment-related data from 2001 to 2010 in China and using optimal control methods in cybernetics to establish value assessment model of forest biodiversity based on the data of habitat area, as well as calculated the optimal price for forest biodiversity assessment. The result showed that forest biodiversity habitat assessment of the optimal price is 9,970 RMB Yuan/ha and there is a dynamic model for forest biodiversity assessment. Finally, the study suggested that studies of forest biodiversity assessment in China, in particular, studying of valuation of forest biodiversity should consider using shadow price and the social, economic and other factors should be taken into account

  1. Nitrogen cycle in microbial mats: completely unknown?

    Science.gov (United States)

    Coban, O.; Bebout, B.

    2015-12-01

    Microbial mats are thought to have originated around 3.7 billion years ago, most likely in the areas around submarine hydrothermal vents, which supplied a source of energy in the form of reduced chemical species from the Earth's interior. Active hydrothermal vents are also believed to exist on Jupiter's moon Europa, Saturn's moon Enceladus, and on Mars, earlier in that planet's history. Microbial mats have been an important force in the maintenance of Earth's ecosystems and the first photosynthesis was also originated there. Microbial mats are believed to exhibit most, if not all, biogeochemical processes that exist in aquatic ecosystems, due to the presence of different physiological groups of microorganisms therein. While most microbially mediated biogeochemical transformations have been shown to occur within microbial mats, the nitrogen cycle in the microbial mats has received very little study in spite of the fact that nitrogen usually limits growth in marine environments. We will present the first results in the determination of a complete nitrogen budget for a photosynthetic microbial mat. Both in situ sources and sinks of nitrogen in photosynthetic microbial mats are being measured using stable isotope techniques. Our work has a particular focus on recently described, but poorly understood, processes, e.g., anammox and dissimilatory nitrate reduction, and an emphasis on understanding the role that nitrogen cycling may play in generating biogenic nitrogen isotopic signatures and biomarker molecules. Measurements of environmental controls on nitrogen cycling should offer insight into the nature of co-evolution of these microbial communities and their planets of origin. Identifying the spatial (microscale) as well as temporal (diel and seasonal) distribution of nitrogen transformations, e.g., rates of nitrification and denitrification, within mats, particularly with respect to the distribution of photosynthetically-produced oxygen, is anticipated. The results

  2. Invertebrates in stormwater wet detention ponds — Sediment accumulation and bioaccumulation of heavy metals have no effect on biodiversity and community structure

    Energy Technology Data Exchange (ETDEWEB)

    Stephansen, Diana Agnete, E-mail: das@civil.aau.dk [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Nielsen, Asbjørn Haaning [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark); Hvitved-Jacobsen, Thorkild [Department of Environmental Engineering, Aalborg University, Fredrik Bajers Vej 7H, 9200 Aalborg East (Denmark); Pedersen, Morten Lauge; Vollertsen, Jes [Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, 9220 Aalborg East (Denmark)

    2016-10-01

    The invertebrate diversity in nine stormwater wet detention ponds (SWDP) was compared with the diversity in eleven small shallow lakes in the western part of Denmark. The SWDPs and lakes were chosen to reflect as large a gradient of pollutant loads and urbanization as possible. The invertebrates as well as the bottom sediments of the ponds and shallow lakes were analyzed for copper, iron, zinc, cadmium, chromium, lead, aluminum, nickel, arsenic and the potentially limiting nutrient, phosphorus. The Principal Component Analysis showed that invertebrates in SWDPs and lakes differed with respect to bioaccumulation of these elements, as did the sediments, albeit to a lesser degree. However, the Detrended Correspondence Analysis and the TWINSPAN showed that the invertebrate populations of the ponds and lakes could not be distinguished, with the possible exception of highway ponds presenting a distinct sub-group of wet detention ponds. The SWDPs and shallow lakes studied seemed to constitute aquatic ecosystems of similar taxon richness and composition as did the 11 small and shallow lakes. This indicates that SWDPs, originally constructed for treatment and flood protection purposes, become aquatic environments which play a local role for biodiversity similar to that of natural small and shallow lakes. - Highlights: • Biota of stormwater ponds had higher levels of metals compared to natural lakes. • Bioaccumulation of metals did not affect the biodiversity of the water bodies. • Biota composition in stormwater ponds and natural lakes was indistinguishable. • Stormwater ponds can play a role for biodiversity similar to natural lakes.

  3. Biodiversity of Fungi : Inventory and Monitoring Methods

    Science.gov (United States)

    Mueller, G.M.; Bills, G.F.; Foster, M.S.

    2004-01-01

    Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. An wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. Fungi are among the most important organisms in the world; they play vital roles in ecosystem functions and have wide-ranging effects, both positive and negative, on humans and human-related activities. There are about 1.5 million species of fungi. The combination of fungal species and abundances in an ecosystem are often used as indicators of ecosystem health and as indicators of the effects of pollution and of different management and use plans. Because of their significance, it is important that these organisms be monitored. This book is the first comprehensive treatment of fungal inventory and monitoring, including standardized sampling protocols as well as information on study design, sample preservation, and data analysis.

  4. Biodiversity in cultivated Panax notoginseng populations

    Institute of Scientific and Technical Information of China (English)

    Dong WANG; Deborah HONG; Hwee-ling KOH; Ying-jun ZHANG; Chong-ren YANG; Yan HONG

    2008-01-01

    Aim:Panax notoginseng is a cultivated ginseng species highly valued for its various pharmacological activities mostly associated with triterpenoid saponin glycosides. It would be of great interest to understand biodiversity in this gin-seng species after its long history of domestication. Methods: We collected 92 random sampled 3-year-old P notoginseng plants from 4 counties of Wenshan prefecture in Yunnan province, China and documented their morphological fea-tures of plant height, stem color, number of leaves/leaflets and dry weight of tap root. Their genetic diversity was evaluated by fluorescent amplified fragment length polymorphism (fAFLP) analysis. Results: Among the samples collected, variable morphological features were observed. For these 4 populations (Zhulijie, Shangliuhe, Bazai and Jinbuhuan) analyzed by fAFLP, percentage of polymor-phic bands among the total number of 582 discrete bands were 74.05%, 45.36%, 38.83% and 51.89% respectively. Mean genetic heterozygosity were 0.166, 0.093, 0.094 and 0.125. On the other hand, Nei genetic distances among populations were all <0.03. Further analysis of molecular variance (AMOVA) attributed most (93.5%) genetic diversity to within population variation. Principal coordi-nates analysis (PCA) did not group any population distinctively. Conclusion: This domesticated ginseng species still maintains a fair level of biodiversity and this conclusion is consistent with the local practice of non-selective collection of seeds for next season planting. There was no genetic drift in populations. Biodi-versity ofP notoginseng can be exploited to improve this important herb through breeding. Two possible strategies include inbreeding for pure lines and hybrid breeding with genetic divergent parents for hybrid vigor.

  5. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  6. Microbial conversions of terpenoids

    OpenAIRE

    Parshikov, Igor A

    2015-01-01

    The monograph describes examples of the application of microbial technology for obtaining of derivatives of terpenoids. Obtaining new derivatives of terpenoids, including artemisinin derivatives with increased antimalarial activity, is an important goal of research in microbial biotechnology and medicinal chemistry.

  7. Geocoding LCSH in the Biodiversity Heritage Library

    Directory of Open Access Journals (Sweden)

    Marc Crozier

    2008-03-01

    Full Text Available Reusing metadata generated through years of cataloging practice is a natural and pragmatic way of leveraging an institution's investment in describing its resources. Using Library of Congress Subject Headings (LCSH, the Biodiversity Heritage Library generates new interfaces for browsing and navigating books in a digital library. LCSH are grouped into tag clouds and plotted on interactive maps using methods available within the Google Maps Application Programming Interface (API. Code examples are included, and issues related to these interfaces and the underlying LCSH data are examined.

  8. Global biodiversity loss: Exaggerated versus realistic estimates

    OpenAIRE

    John C. Briggs

    2016-01-01

    For the past 50 years, the public has been made to feel guilty about the tragedy of human-caused biodiversity loss due to the extinction of hundreds or thousands of species every year. Numerous articles and books from the scientific and popular press and publicity on the internet have contributed to a propaganda wave about our grievous loss and the beginning of a sixth mass extinction. However, within the past few years, questions have arisen about the validity of the data which led to the do...

  9. Forecasting effects of global warming on biodiversity

    DEFF Research Database (Denmark)

    Botkin, D.B.; Saxe, H.; Araújo, M.B.

    2007-01-01

    The demand for accurate forecasting of the effects of global warming on biodiversity is growing, but current methods for forecasting have limitations. In this article, we compare and discuss the different uses of four forecasting methods: (1) models that consider species individually, (2) niche...... and theoretical ecological results suggest that many species could be at risk from global warming, during the recent ice ages surprisingly few species became extinct. The potential resolution of this conundrum gives insights into the requirements for more accurate and reliable forecasting. Our eight suggestions...

  10. Biodiversity and phylogenetic analysis of the gut microbiome ofEuphausia superba Dana from the Rose Sea of the Antarctic Ocean

    Institute of Scientific and Technical Information of China (English)

    YUAN Lidong; LI Lingzhi; TIAN Xiaoqing; TANG Yingying; FAN Chengqi; HUANG Hongliang; YANG Qiao

    2016-01-01

    Metabolites derived from marine symbiotic microorganisms have great potential as lead compounds for the discovery of novel marine drugs.Euphausia superba Dana, which lives in the Antarctic Ocean, is regarded as a new source of marine microbial natural products. However, no studies have examined the biodiversity of the symbiotic intestinal microbiome ofE. superba. To address this issue, the species diversity and abundance of the gut microbiome ofE. superba Dana from the Rose Sea of the Antarctic Ocean were analyzed by culture-independent high-throughput sequencing and pure culture methods. A comparison with gene databases revealed that the microbiome contained 61 known microbial species and a plethora of uncultivable microorganisms. Additionally, 7% of the species in the microbiome were currently unknown. The microbes belonged to 56 genera, eight of which, includingArthrobacter,Bacillus,Candidatus,Lactococcus,Lysinibacillus,Leuconostoc,Solibacillus, andVibrio, were dominant, as wereVibrionaceae spp. Moreover, 81 microbial strains were isolated by the pure culture method, and they belonged to 36 genera, includingMobilicoccus,Rhodococcus,Arthrobacter, andMicrobacterium. The results obtained by two different methods demonstrate the richness of the microbial biodiversity of the gut microbiome ofE. superba, and it also suggests that they have good potential for the discovery of novel marine microbial species.

  11. Accounting for changes in biodiversity and ecosystem services from a business perspective : Preliminary guidelines towards a biodiversity accountability framework

    OpenAIRE

    Houdet, Joël; Pavageau, Charlotte; Trommetter, Michel; Weber, Jacques

    2009-01-01

    Biodiversity refers to the dynamics of interactions between organisms in changing environments. Within the context of accelerating biodiversity loss worldwide, firms are under increasing pressures from stakeholders to develop appropriate tools to account for the nature and consequences of their actions, inclusive of their influences on ecosystem services used by other agents. This paper presents a two-pronged approach towards accounting for changes in biodiversity and ecosystem services from ...

  12. Childhood microbial keratitis

    Directory of Open Access Journals (Sweden)

    Abdullah G Al Otaibi

    2012-01-01

    Conclusion: Children with suspected microbial keratitis require comprehensive evaluation and management. Early recognition, identifying the predisposing factors and etiological microbial organisms, and instituting appropriate treatment measures have a crucial role in outcome. Ocular trauma was the leading cause of childhood microbial keratitis in our study.

  13. Microfluidics and microbial engineering.

    Science.gov (United States)

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  14. Human Exploitation of Aquatic Landscapes. Editorial

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes

    2014-11-01

    Full Text Available Aquatic landscapes such as rivers, lakes, and seas played an important role in past human behaviour, affecting modes of subsistence, patterns of mobility, access to material resources, and technological choices and their developments. The interaction with aquatic landscapes was also influential in the establishment of economic and social structures and in the formation of communal identities. The aim of this special themed issue of Internet Archaeology is to contribute to a better understanding of different forms of human interaction with aquatic landscapes.

  15. A Mixed Picture of AQUATIC PRODUCTS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Aquatic products constitute an important part of China's international trade in agricultural products with the strongest competitiveness for export.The aquatic products industry of apparent competitive edge has maintained a considerable trade surplus despite the general trend of trade deficit among agricultural products in recent years.Nevertheless,the great changes taking place in the global economic and trade pattern in late years have given rise to the increasing uncertainties of the supply and demand as well as the price in the international aquatic products market.

  16. Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation.

    Science.gov (United States)

    Beninde, Joscha; Veith, Michael; Hochkirch, Axel

    2015-06-01

    Understanding varying levels of biodiversity within cities is pivotal to protect it in the face of global urbanisation. In the early stages of urban ecology studies on intra-urban biodiversity focused on the urban-rural gradient, representing a broad generalisation of features of the urban landscape. Increasingly, studies classify the urban landscape in more detail, quantifying separately the effects of individual urban features on biodiversity levels. However, while separate factors influencing biodiversity variation among cities worldwide have recently been analysed, a global analysis on the factors influencing biodiversity levels within cities is still lacking. We here present the first meta-analysis on intra-urban biodiversity variation across a large variety of taxonomic groups of 75 cities worldwide. Our results show that patch area and corridors have the strongest positive effects on biodiversity, complemented by vegetation structure. Local, biotic and management habitat variables were significantly more important than landscape, abiotic or design variables. Large sites greater than 50 ha are necessary to prevent a rapid loss of area-sensitive species. This indicates that, despite positive impacts of biodiversity-friendly management, increasing the area of habitat patches and creating a network of corridors is the most important strategy to maintain high levels of urban biodiversity.

  17. Towards a Mathematical Description of Biodiversity Evolution

    Science.gov (United States)

    Horvath, Jorge E.

    2014-09-01

    We outline in this work a mathematical description of biodiversity evolution based on a second-order differential equation (also known as the "inertial/Galilean view"). After discussing the motivations and explicit forms of the simplest "forces", we are lead to an equation analogue to a harmonic oscillator. The known solutions for the homogeneous problem are then tentatively related to the biodiversity curves of Sepkoski and Alroy et al., suggesting mostly an inertial behavior of the time evolution of the number of genera and a quadratic behavior in some long-term evolution after extinction events. We present the Green function for the dynamical system and apply it to the description of the recovery curve after the Permo-Triassic extinction, as recently analyzed by Burgess, Bowring and Shen. Even though the agreement is not satisfactory, we point out direct connections between observed drop times after massive extinctions and mathematical constants and discuss why the failure ensues, suggesting a more complex form of the second-order mathematical description.

  18. PYCNOIB: biodiversity and biogeography of Iberian pycnogonids.

    Directory of Open Access Journals (Sweden)

    Anna Soler-Membrives

    Full Text Available Biodiversity and biogeographic studies comparing the distribution patterns of benthic marine organisms across the Iberian Atlantic and Mediterranean waters are scarce. The Pycnogonida (sea spiders are a clear example of both endemicity and diversity, and are considered a key taxon to study and monitor biogeographic and biodiversity patterns. This is the first review that compiles data about abundance and diversity of Iberian pycnogonids and examines their biogeographic patterns and bathymetric constraints using GIS tools. A total of 17,762 pycnogonid records from 343 localities were analyzed and were found to contain 65 species, 21 genera and 12 families. Achelia echinata and Ammothella longipes (family Acheliidae were the most abundant comprising ~80% of the total records. The Acheliidae is also the most speciose in Iberian waters with 15 species. In contrast, the family Nymphonidae has 7 species but is significantly less abundant (<1% of the total records than Acheliidae. Species accumulation curves indicate that further sampling would increase the number of Iberian species records. Current sampling effort suggests that the pycnogonid fauna of the Mediterranean region may be richer than that of the Atlantic. The Strait of Gibraltar and the Alboran Sea are recognized as species-rich areas that act as buffer zones between the Atlantic and Mediterranean boundaries. The deep waters surrounding the Iberian Peninsula are poorly surveyed, with only 15% of the sampling sites located below 1000 m. Further deep-water sampling is needed mainly on the Iberian Mediterranean side.

  19. Global biodiversity loss: Exaggerated versus realistic estimates

    Directory of Open Access Journals (Sweden)

    John C. Briggs

    2016-06-01

    Full Text Available For the past 50 years, the public has been made to feel guilty about the tragedy of human-caused biodiversity loss due to the extinction of hundreds or thousands of species every year. Numerous articles and books from the scientific and popular press and publicity on the internet have contributed to a propaganda wave about our grievous loss and the beginning of a sixth mass extinction. However, within the past few years, questions have arisen about the validity of the data which led to the doom scenario. Here I show that, for the past 500 years, terrestrial animals (insects and vertebrates have been losing less than two species per year due to human causes. The majority of the extinctions have occurred on oceanic islands with little effect on continental ecology. In the marine environment, losses have also been very low. At the same time, speciation has continued to occur and biodiversity gain by this means may have equaled or even surpassed the losses. While species loss is not, so far, a global conservation problem, ongoing population declines within thousands of species that are at risk on land and in the sea constitute an extinction debt that will be paid unless those species can be rescued.

  20. Characteristics and conservation of biodiversity in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    潘伯荣; 张元明

    2002-01-01

    The Xinjiang Uygur Autonomous Region covers nearly 1/6 territory of China, with vari-ous landscape patterns, environmental conditions and three key regions of biodiversity of China.The ecosystem here has a relatively simple structure and fragile ecological stability. The coverageof sparse vegetation here is only 2.1% which is far lower than 14%, the average coverage all overthe country. Although the fragile and unstable ecosystems are improved partly in the past, the totalsituation in Xinjiang has worsened (such as drying up of rivers and lakes, desertification andsalinization of soil, deterioration of meadow, reduction of biodiversity, etc.). Although the speciesnumbers of Xinjiang are few, the diversity of taxa is very high. The types of plant communities areabundant, and the flora abounds in one-species genus, one-genus family and few-species genus.Also, the fauna abounds in endangered species and endemic species, of which 108 species ofvertebrates were listed as nationally protected species. In addition, there are abundantanti-adversity gene pools. The present paper puts forwards several suggestions for biodiversityconservation in Xinjiang.

  1. GEOSPATIAL CHARACTERIZATION OF BIODIVERSITY: NEED AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    P. S. Roy

    2012-08-01

    Full Text Available Explaining the distribution of species and understanding their abundance and spatial distribution at multiple scales using remote sensing and ground based observation have been the central aspect of the meeting of COP10 for achieving CBD 2020 targets. In this respect the Biodiveristy Characterization at Landscape Level for India is a milestone in biodiversity study in this country. Satellite remote sensing has been used to derive the spatial extent and vegetation composition patterns. Sensitivity of different multi-scale landscape metrics, species composition, ecosystem uniqueness and diversity in distribution of biological diversity is assessed through customized landscape analysis software to generate the biological richness surface. The uniqueness of the study lies in the creation of baseline geo-spatial data on vegetation types using multi-temporal satellite remote sensing data (IRS LISS III, deriving biological richness based on spatial landscape analysis and inventory of location specific information about 7964 unique plant species recorded in 20,000 sample plots in India and their status with respect to endemic, threatened and economic/medicinal importance. The results generated will serve as a baseline database for various assessment of the biodiversity for addressing CBD 2020 targets.

  2. Facilitation as a ubiquitous driver of biodiversity.

    Science.gov (United States)

    McIntire, Eliot J B; Fajardo, Alex

    2014-01-01

    Models describing the biotic drivers that create and maintain biological diversity within trophic levels have focused primarily on negative interactions (i.e. competition), leaving marginal room for positive interactions (i.e. facilitation). We show facilitation to be a ubiquitous driver of biodiversity by first noting that all species use resources and thus change the local biotic or abiotic conditions, altering the available multidimensional niches. This can cause a shift in local species composition, which can cause an increase in beta, and sometimes alpha, diversity. We show that these increases are ubiquitous across ecosystems. These positive effects on diversity occur via a broad host of disparate direct and indirect mechanisms. We identify and unify several of these facilitative mechanisms and discuss why it has been easy to underappreciate the importance of facilitation. We show that net positive effects have a long history of being considered ecologically or evolutionarily unstable, and we present recent evidence of its potential stability. Facilitation goes well beyond the common case of stress amelioration and it probably gains importance as community complexity increases. While biodiversity is, in part, created by species exploiting many niches, many niches are available to exploit only because species create them.

  3. Towards a Mathematical Description of Biodiversity Evolution

    Directory of Open Access Journals (Sweden)

    Jorge E. Horvath

    2014-09-01

    Full Text Available We outline in this work a mathematical description of biodiversity evolution based on a second-order differential equation (also known as the “inertial/Galilean view”. After discussing the motivations and explicit forms of the simplest “forces”, we are lead to an equation analogue to a harmonic oscillator. The known solutions for the homogeneous problem are then tentatively related to the biodiversity curves of Sepkoski and Alroy et al., suggesting mostly an inertial behavior of the time evolution of the number of genera and a quadratic behavior in some long-term evolution after extinction events. We present the Green function for the dynamical system and apply it to the description of the recovery curve after the Permo-Triassic extinction, as recently analyzed by Burgess, Bowring and Shen. Even though the agreement is not satisfactory, we point out direct connections between observed drop times after massive extinctions and mathematical constants and discuss why the failure ensues, suggesting a more complex form of the second-order mathematical description.

  4. Growth and functioning of the microbial plankton community: effects of temperature, nutrients and light

    NARCIS (Netherlands)

    Brauer, V.S.

    2015-01-01

    Microbial plankton form the basis of the food web in aquatic habitats. Due to their vast abundances they influence the cycling of elements and the Earth’s climate at a global scale. This thesis aims at a better understanding of how environmental factors such as temperature and the availability of nu

  5. Linkages between benthic microbial and feshwater insect communities in degraded peatland ditches

    NARCIS (Netherlands)

    Whatley, M.H.; van Loon, E.E.; Cerli, C.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2014-01-01

    Many wetlands are heavily modified and identifying the environmental drivers of indicator groups like aquatic insects is complicated by multiple stressors and co-varying environmental factors. Yet, incorporating data from other biological groups, such as microbial communities, potentially reveals wh

  6. Biodegradation of pesticides using fungi species found in the aquatic environment.

    Science.gov (United States)

    Oliveira, B R; Penetra, A; Cardoso, V V; Benoliel, M J; Barreto Crespo, M T; Samson, R A; Pereira, V J

    2015-08-01

    Relatively limited attention has been given to the presence of fungi in the aquatic environment compared to their occurrence in other matrices. Taking advantage and recognizing the biodegradable capabilities of fungi is important, since these organisms may produce many potent enzymes capable of degrading toxic pollutants. Therefore, the aim of this study was to evaluate the potential ability of some species of filamentous fungi that occur in the aquatic environment to degrade pesticides in untreated surface water. Several laboratory-scale experiments were performed using the natural microbial population present in the aquatic environment as well as spiked fungi isolates that were found to occur in different water matrices, to test the ability of fungi to degrade several pesticides of current concern (atrazine, diuron, isoproturon and chlorfenvinphos). The results obtained in this study showed that, when spiked in sterile natural water, fungi were able to degrade chlorfenvinphos to levels below detection and unable to degrade atrazine, diuron and isoproturon. Penicillium citrinum, Aspergillus fumigatus, Aspergillus terreus and Trichoderma harzianum were found to be able to resist and degrade chlorfenvinphos. These fungi are therefore expected to play an important role in the degradation of this and other pollutants present in the aquatic environment.

  7. Long-term oil contamination causes similar changes in microbial communities of two distinct soils.

    Science.gov (United States)

    Liao, Jingqiu; Wang, Jie; Jiang, Dalin; Wang, Michael Cai; Huang, Yi

    2015-12-01

    Since total petroleum hydrocarbons (TPH) are toxic and persistent in environments, studying the impact of oil contamination on microbial communities in different soils is vital to oil production engineering, effective soil management and pollution control. This study analyzed the impact of oil contamination on the structure, activity and function in carbon metabolism of microbial communities of Chernozem soil from Daqing oil field and Cinnamon soil from Huabei oil field through both culture-dependent techniques and a culture-independent technique-pyrosequencing. Results revealed that pristine microbial communities in these two soils presented disparate patterns, where Cinnamon soil showed higher abundance of alkane, (polycyclic aromatic hydrocarbons) PAHs and TPH degraders, number of cultivable microbes, bacterial richness, bacterial biodiversity, and stronger microbial activity and function in carbon metabolism than Chernozem soil. It suggested that complicated properties of microbes and soils resulted in the difference in soil microbial patterns. However, the changes of microbial communities caused by oil contamination were similar in respect of two dominant phenomena. Firstly, the microbial community structures were greatly changed, with higher abundance, higher bacterial biodiversity, occurrence of Candidate_division_BRC1 and TAO6, disappearance of BD1-5 and Candidate_division_OD1, dominance of Streptomyces, higher percentage of hydrocarbon-degrading groups, and lower percentage of nitrogen-transforming groups. Secondly, microbial activity and function in carbon metabolism were significantly enhanced. Based on the characteristics of microbial communities in the two soils, appropriate strategy for in situ bioremediation was provided for each oil field. This research underscored the usefulness of combination of culture-dependent techniques and next-generation sequencing techniques both to unravel the microbial patterns and understand the ecological impact of

  8. Plant-microbe interaction in aquatic system and their role in the management of water quality: a review

    Science.gov (United States)

    Srivastava, Jatin K.; Chandra, Harish; Kalra, Swinder J. S.; Mishra, Pratibha; Khan, Hena; Yadav, Poonam

    2016-04-01

    Microbial assemblage as biofilm around the aquatic plant forms a firm association that largely depends upon the mutual supplies of nutrients, e.g., microbes interact with plants in an aquatic system most likely for organic carbon and oxygen, whereas plants receive defensive immunity and mineral exchange. Apart from the mutual benefits, plant-microbe interactions also influence the water quality especially at rhizosphere providing inherent ability to the aquatic system for the mitigation of pollution from the water column. The review presents and in-depth information along with certain research advancements made in the field of ecological and bio/chemical aspects of plant-microbe interactions and the underlying potential to improve water quality.

  9. Dietary supplements for aquatic sports.

    Science.gov (United States)

    Derave, Wim; Tipton, Kevin D

    2014-08-01

    Many athletes use dietary supplements, with use more prevalent among those competing at the highest level. Supplements are often self-prescribed, and their use is likely to be based on an inadequate understanding of the issues at stake. Supplementation with essential micronutrients may be useful when a diagnosed deficiency cannot be promptly and effectively corrected with food-based dietary solutions. When used in high doses, some supplements may do more harm than good: Iron supplementation, for example, is potentially harmful. There is good evidence from laboratory studies and some evidence from field studies to support health or performance benefits from appropriate use of a few supplements. The available evidence from studies of aquatic sports is small and is often contradictory. Evidence from elite performers is almost entirely absent, but some athletes may benefit from informed use of creatine, caffeine, and buffering agents. Poor quality assurance in some parts of the dietary supplements industry raises concerns about the safety of some products. Some do not contain the active ingredients listed on the label, and some contain toxic substances, including prescription drugs, that can cause health problems. Some supplements contain compounds that will cause an athlete to fail a doping test. Supplement quality assurance programs can reduce, but not entirely eliminate, this risk.

  10. Nitrous oxide emission by aquatic macrofauna

    DEFF Research Database (Denmark)

    Stief, Peter; Poulsen, Morten; Nielsen, Lars Peter

    2009-01-01

      A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N2O-to-N2 production ratio suggested...... delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic...... animals is quantitatively important in nitraterich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability...

  11. Submerged Aquatic Vegetation (SAV) - Volusia County Seagrass

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Aquatic vegetation in Volusia County. DEP SEA_GRASSES This polygon GIS data set represents a compilation of statewide seagrass data from various source agencies and...

  12. Nonindigenous Aquatic Species Database Marine Fishes

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Nonindigenous Aquatic Species Database (NAS) information resource is an established central repository for spatially referenced biogeographic accounts of...

  13. 76 FR 60863 - Aquatic Nuisance Species Task Force Meeting

    Science.gov (United States)

    2011-09-30

    ... include: Commercial harvest of aquatic invasive species, State Aquatic Nuisance Species Management Plans...-Chair, Aquatic Nuisance Species Task Force, Acting Assistant Director--Fisheries and Habitat... Fish and Wildlife Service Aquatic Nuisance Species Task Force Meeting AGENCY: Fish and Wildlife...

  14. Using AquaticHealth.net to Detect Emerging Trends in Aquatic Animal Health

    Directory of Open Access Journals (Sweden)

    Geoff Grossel

    2013-05-01

    Full Text Available AquaticHealth.net is an open-source aquatic biosecurity intelligence application. By combining automated data collection and human analysis, AquaticHealth.net provides fast and accurate disease outbreak detection and forecasts, accompanied with nuanced explanations. The system has been online and open to the public since 1 January 2010, it has over 200 registered expert users around the world, and it typically publishes about seven daily reports and two weekly disease alerts. We document the major trends in aquatic animal health that the system has detected over these two years, and conclude with some forecasts for the future.

  15. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5

  16. Toward meaningful end points of biodiversity in life cycle assessment.

    Science.gov (United States)

    Curran, Michael; de Baan, Laura; De Schryver, An M; Van Zelm, Rosalie; Hellweg, Stefanie; Koellner, Thomas; Sonnemann, Guido; Huijbregts, Mark A J

    2011-01-01

    Halting current rates of biodiversity loss will be a defining challenge of the 21st century. To assess the effectiveness of strategies to achieve this goal, indicators and tools are required that monitor the driving forces of biodiversity loss, the changing state of biodiversity, and evaluate the effectiveness of policy responses. Here, we review the use of indicators and approaches to model biodiversity loss in Life Cycle Assessment (LCA), a methodology used to evaluate the cradle-to-grave environmental impacts of products. We find serious conceptual shortcomings in the way models are constructed, with scale considerations largely absent. Further, there is a disproportionate focus on indicators that reflect changes in compositional aspects of biodiversity, mainly changes in species richness. Functional and structural attributes of biodiversity are largely neglected. Taxonomic and geographic coverage remains problematic, with the majority of models restricted to one or a few taxonomic groups and geographic regions. On a more general level, three of the five drivers of biodiversity loss as identified by the Millennium Ecosystem Assessment are represented in current impact categories (habitat change, climate change and pollution), while two are missing (invasive species and overexploitation). However, methods across all drivers can be greatly improved. We discuss these issues and make recommendations for future research to better reflect biodiversity loss in LCA.

  17. Soil biodiversity and soil community composition determine ecosystem multifunctionality.

    Science.gov (United States)

    Wagg, Cameron; Bender, S Franz; Widmer, Franco; van der Heijden, Marcel G A

    2014-04-08

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth's biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

  18. Forsaking Nature? Contesting "Biodiversity" through Competing Discourses of Sustainability

    Science.gov (United States)

    Kopnina, Helen

    2013-01-01

    The Convention on Biodiversity has developed the concept of "ecosystem services" and "natural resources" in order to describe ways in which humans benefit from healthy ecosystems. Biodiversity, conceived through the economic approach, was recognized to be of great social and economic value to both present and future…

  19. The Global Genome Biodiversity Network (GGBN) Data Portal.

    Science.gov (United States)

    Droege, Gabriele; Barker, Katharine; Astrin, Jonas J; Bartels, Paul; Butler, Carol; Cantrill, David; Coddington, Jonathan; Forest, Félix; Gemeinholzer, Birgit; Hobern, Donald; Mackenzie-Dodds, Jacqueline; Ó Tuama, Éamonn; Petersen, Gitte; Sanjur, Oris; Schindel, David; Seberg, Ole

    2014-01-01

    The Global Genome Biodiversity Network (GGBN) was formed in 2011 with the principal aim of making high-quality well-documented and vouchered collections that store DNA or tissue samples of biodiversity, discoverable for research through a networked community of biodiversity repositories. This is achieved through the GGBN Data Portal (http://data.ggbn.org), which links globally distributed databases and bridges the gap between biodiversity repositories, sequence databases and research results. Advances in DNA extraction techniques combined with next-generation sequencing technologies provide new tools for genome sequencing. Many ambitious genome sequencing projects with the potential to revolutionize biodiversity research consider access to adequate samples to be a major bottleneck in their workflow. This is linked not only to accelerating biodiversity loss and demands to improve conservation efforts but also to a lack of standardized methods for providing access to genomic samples. Biodiversity biobank-holding institutions urgently need to set a standard of collaboration towards excellence in collections stewardship, information access and sharing and responsible and ethical use of such collections. GGBN meets these needs by enabling and supporting accessibility and the efficient coordinated expansion of biodiversity biobanks worldwide.

  20. What Lives Where & Why? Understanding Biodiversity through Geospatial Exploration

    Science.gov (United States)

    Trautmann, Nancy M.; Makinster, James G.; Batek, Michael

    2013-01-01

    Using an interactive map-based PDF, students learn key concepts related to biodiversity while developing data-analysis and critical-thinking skills. The Bird Island lesson provides students with experience in translating geospatial data into bar graphs, then interpreting these graphs to compare biodiversity across ecoregions on a fictional island.…