WorldWideScience

Sample records for aquatic humic substances

  1. DBP formation of aquatic humic substances

    Science.gov (United States)

    Pomes, M.L.; Green, W.R.; Thurman, E.M.; Orem, W.H.; Lerch, H.E.

    1999-01-01

    Aquatic humic substances (AHSs) in water generate potentially harmful disinfection by-products (DBPs) such as haloacetic acids (HAAs) and trihalomethanes (THMs) during chlorination. AHSs from two Arkansas reservoirs were characterized to define source, identify meta-dihydroxybenzene (m-DHB) structures as probable DBP precursors, and evaluate predicted HAA and THM formation potentials. Elemental nitrogen content 0.5 ??eq/mg, ??13C values of -27???, and low yields of syringyl phenols found by cupric oxide (CuO) oxidation suggest a pine tree source for the AHSs found in the Maumelle and Winona reservoirs in Little Rock, Ark. CuO oxidation yielded fewer m-DHB structures in Maumelle AHSs than in Winona AHSs. A higher 3,5-dihydroxybenzoic acid (3,5-DHBA) content correlated with increased HAA and THM formation potential. The 3,5-DHBA concentration in Winona AHSs was similar to the range found in AHSs extracted from deciduous leaf litter, twigs, and grass leachates.

  2. Order of functionality loss during photodegradation of aquatic humic substances

    Science.gov (United States)

    Thorn, Kevin A.; Younger, Steven J.; Cox, Larry G.

    2009-01-01

    The time course photodegradation of the Nordic aquatic fulvic and humic acids and Suwannee River XAD-4 acids subjected to UV irradiation with an unfiltered medium pressure mercury lamp was studied by liquid-state 13C nuclear magnetic resonance. Photodecarboxylation was a significant pathway in all cases. Decreases in ketone, aromatic, and O-alkyl carbons were observed throughout the course of the irradiations, whereas C-alkyl carbons resisted photodegradation. Peaks attributable to the low-molecular-weight photodegradation products bicarbonate, formate, acetate, and succinate grew in intensity with irradiation time. The final products of the irradiations were decarboxylated, hydrophobic, predominantly C-alkyl and O-alkyl materials that were resistant to further photodegradation. The total amount of carbon susceptible to loss appeared to be related mainly to the total concentration of carbonyl and aromatic carbons and partly to the concentration of O-alkyl carbons in the fulvic, humic, and XAD-4 acids. The carbon losses for Nordic fulvic, Nordic Humic, Suwannee fulvic, and Suwannee XAD-4 acids were estimated to be 75, 63, 56, and 17%, respectively. More detailed analyses of the effects of irradiation on the carbonyl functionality in Nordic humic acid and Laurentian soil fulvic acid through reaction with hydroxylamine in conjunction with 15N nuclear magnetic resonance analysis confirmed preferential photodegradation of the quinone/hydroquinone functionality over ketone groups and the loss of ester groups in Laurentian fulvic acid.

  3. Lability of heavy metal species in aquatic humic substances characterized by ion exchange with cellulose phosphate.

    Science.gov (United States)

    Rocha, J C; Toscano, I A; Burba, P

    1997-01-01

    Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning ( Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.

  4. QUALITY OF GROUNDWATER AND AQUATIC HUMIC SUBSTANCES FROM MAIN RESERVOIRE OF GROUND WATER No. 333

    Directory of Open Access Journals (Sweden)

    Izabella Pisarek

    2015-11-01

    Full Text Available The conducted research included the estimation of the quality of groundwater from the Main Reservoir of Ground Water No. 333 area in Opole District, Poland. The groundwater in the analyzed region shows high diversity in quality. The main threat for the quality of water in this region is the human household activity. The main pollutants of groundwater are: dissolved phosphorus, nitrate and ammonium. The quality and quantity of dissolved humic substances in groundwater were also investigated. The results showed that the contents of water-extractable organic carbon varied. Presently, the analyzed groundwater is characterized by large differences in dissolved forms of organic carbon. During migration of the soil solution through the soil profile to groundwater, dissolved humic substances undergo qualitative and quantitative changes. Correlation analysis between the quantity of carbon in soil and aquatic humic substances, especially fulvic acids, indicates the possibility of their translocation in soil profiles and their transformation and migration to groundwater. This conclusion can be confirmed by FT-IR-analysis.

  5. Hydrophilic interaction liquid chromatography method for measuring the composition of aquatic humic substances

    KAUST Repository

    Wang, Renqi

    2015-01-01

    A hydrophilic interaction liquid chromatography (HILIC) method was developed to measure the composition of humic substances from river, reservoir, and treated wastewater based on their physicochemical properties. The current method fractionates the humic substances into four well-defined groups based on parallel analyses with a neutral and a cationic HILIC column, using mobile phases of varied compositions and pH. The results indicate that: (i) the proportion of carboxylic acids in the humic substances from terrestrial origins is less than half of that from treated wastewater (Jeddah, KSA), (ii) a higher content of basic compounds was observed in the humic substances from treated wastewater and Ribou Reservoir (Cholet, France) than in the sample from Loire River (France), (iii) a higher percentage of hydrophobic macromolecules were found in the humic substances from Loire River than in the other samples, and (iv) humic substances of treated wastewater contained less ionic neutral compounds (i.e., pKa 5-9) than the waters from terrestrial origins. The physicochemical property disparity amongst the compounds in each humic substances sample was also evaluated. The humic substances from the lightly humic Loire river displayed the highest disparity, whereas the highly humic Suwannee river (Georgia, USA) showed the most homogeneous humic substances.

  6. A method for quantitative analysis of aquatic humic substances in clear water based on carbon concentration.

    Science.gov (United States)

    Tsuda, Kumiko; Takata, Akihiro; Shirai, Hidekado; Kozaki, Katsutoshi; Fujitake, Nobuhide

    2012-01-01

    Aquatic humic substances (AHSs) are major constituents of dissolved organic matter (DOM) in freshwater, where they perform a number of important ecological and geochemical functions, yet no method exists for quantifying all AHSs. We have developed a method for the quantitative analysis of AHSs based on their carbon concentration. Our approach includes: (1) the development of techniques for clear-water samples with low AHS concentrations, which normally complicate quantification; (2) avoiding carbon contamination in the laboratory; and (3) optimizing the AHS adsorption conditions.

  7. Evaluation of salinity effect on quantitative analysis of aquatic humic substances using nonionic DAX-8 resin.

    Science.gov (United States)

    Kida, Morimaru; Ohtsuka, Toshiyuki; Kato, Taku; Suzuki, Takeshi; Fujitake, Nobuhide

    2016-03-01

    A nonionic macroporous resin, Amberlite(®) XAD-8, or its substitute, Supelite™ DAX-8, is used when isolating or quantifying aquatic humic substances (AHS). However, the effect of salinity on the adsorption behavior of AHS onto the resin is yet to be confirmed, rendering the possibility of salinity-induced changes in the values of quantified amounts or characteristics of AHS obtained from a salty system. To verify the results of quantification and isolation of AHS using the resin in different salinity systems, the effect of salinity on such quantitative analyses of AHS has been examined. It has been concluded that the salinity effect is in general trivial and will not hinder comparison of results regardless of sample solution salinity.

  8. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration.

    Science.gov (United States)

    Aster, B; Burba, P; Broekaert, J A

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the "DFG-Versuchsfeld Bocholt", VM 5 from "Venner Moor", Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of 10 kD) has been found.

  9. Characterization of the interactions between endocrine disruptors and aquatic humic substances from tropical rivers

    Energy Technology Data Exchange (ETDEWEB)

    Botero, Wander G. [Universidade Federal de Alagoas (UFAL), Arapiraca, AL (Brazil); Oliveira, Luciana C. de [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Cunha, Bruno B.; Oliveira, Lilian K. de; Goveia, Danielle; Fraceto, Leonardo F.; Rosa, Andre Henrique, E-mail: ahrosa@sorocaba.unesp.b [UNESP, Sorocaba, SP (Brazil). Dept. de Engenharia do Meio Ambiente; Rocha, Julio Cesar [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Analitica

    2011-07-01

    Interactions between two endocrine disruptors (ED) and aquatic humic substances (AHS) from tropical rivers were studied using an ultrafiltration system equipped with a 1 kDa cut-off cellulose membrane to separate free ED from the fraction bound in the AHS. Quantification of 17{alpha}-ethynylestradiol and bisphenol A was performed using gas chromatography-mass spectrometry (GC-MS). The times required for establishment of equilibrium between the AHS and the ED were ca. 30 min, and complexation capacities for 17{alpha}-ethynylestradiol and bisphenol A were 18.53 and 2.07 mg g{sup -1} TOC, respectively. The greater interaction of AHS with 17{alpha}-ethynylestradiol, compared to bisphenol A, was due to the presence of hydrogen in the structure of 17{alpha}-ethynylestradiol, which could interact with ionized oxygenated groups of the AHS. The results indicate that AHS can strongly influence the transport and reactivity of endocrine disruptors in aquatic systems. (author)

  10. Structural characterization of aquatic humic substance extracted from Itapanhau and Ribeira de Iguape rivers; Caracterizacao estrutural das substancias humicas aquaticas extraidas dos Rios Itapanhau e Ribeira de Iguape

    Energy Technology Data Exchange (ETDEWEB)

    Goveia, Danielle; Rocha, Julio Cesar [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Oliveira, Luciana Camargo de [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Morais, Leandro Cardoso de; Campos, Valquiria de; Fraceto, Leonardo Fernandes; Rosa, Andre Henrique [UNESP, Sorocaba, SP (Brazil). Dept. de Engenharia Ambiental

    2011-07-01

    The knowledge of the structure characteristic of the Organic Matter is important for the understanding of the natural process. In this context aquatic humic substances (principal fraction) were isolated from water sample collected from the two distinct rivers, using procedure recommended for International Humic Substances Society and characterized by elemental analysis, electron paramagnetic resonance and nuclear magnetic resonance (1{sup 3C} NMR). The results were interpreted using principal component analysis (PCA) and the statistical analyses showed different in the structural characteristics of the aquatic humic substances studied. (author)

  11. Analytical fractionation of aquatic humic substances and their metal species by means of multistage ultrafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Aster, B. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Burba, P. [Institute for Spectrochemistry and Applied Spectroscopy, Postfach 10 1352, D-44139 Dortmund (Germany); Broekaert, J.A.C. [University of Dortmund, D-44227 Dortmund (Germany)

    1996-03-01

    The molecular-size fractionation of aquatic humic substances (HS) and their metal species by means of a novel sequential-stage ultrafiltration (UF) device equipped with five appropriate ultramembranes (1, 5, 10, 50 and 100 kD) is described. First of all, the concentration dynamics of macromolecules, particulary HS, during five-stage UF and its subsequent washing step has been modelled. Based on these results, the fractionation of aquatic HS (from ground and bog water) by means of multistage UF has been optimized for an analytical scale (10 ml sample, 1 mg/ml HS, 10 ml washing solution, pH 6.0). The molecular size-distribution of selected aquatic HS (BOC 1/2 from the ``DFG-Versuchsfeld Bocholt``, VM 5 from ``Venner Moor``, Germany) studied by five-stage UF exhibited strong systematic influences of the procedure used for their isolation. The molecular-size distribution of HS obtained by on-line UF and gel permeation chromatography (GPC) showed a satisfactory agreement in the range 1-50 kD. Moreover, when interrupting multistage UF for > 48 h a slow transformation in the HS samples has been found as gradually additional HS fractions of < 1 kD have been formed. Besides unloaded HS molecules, the molecular-size distribution of freshly formed metal species of HS (1.0 mg metal/g HS of Al(III), Cd(II), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), Zn(II), each) has been characterized by multistage UF as a function of pH-value, degree of loading and complexation time. Metal determinations as carried out by flame AAS, showed that considerable metal fractions in HS especially are present in molecules > 50 kD, which seemed to be rather acid-inert. With complexation times of < 2 days a transient shift of the molecular size distribution of both HS and their metal species (e.g., Al(III), Fe(III)) to higher values (> 10 kD) has been found. (orig.). With 9 figs., 2 tabs.

  12. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.

    Science.gov (United States)

    Kim, Hyun-Chul; Yu, Myong-Jin

    2007-05-01

    An advanced water treatment demonstration plant consisted of ozone/granular activated carbon processes was operated to study feasibility of the processes. Natural organic matter (NOM) from raw and process waters at the demonstration plant was isolated into humic and non-humic fractions by physicochemical fractionation method to investigate characteristics of humic fraction (i.e., humic substances, HS) as a predominant haloform reactant. Ozone did not significantly oxidize the carboxylic fraction (from 39.1 to 35.9%), while GAC removed some of the carboxylic fraction (from 35.9 to 29.1%). Formation potential of trihalomethanes (THMs) as compared to haloacetic acids formation potential (HAAFP) was highly influenced by HS. Higher yields of THMs resulted from chlorination of HS with a higher phenolic content and phenolic fraction in the HS gradually decreased from 60.5% to 15.8% through the water treatment. The structural and functional changes of HS were identified by elemental, Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H NMR) analyses, and these results were mutually consistent. The functional distribution data obtained by using A-21 resin could be used to support the interpretation of data obtained from the spectroscopic analyses. Decreases in ratio of UV absorbance at 253 nm and 203 nm (A(253)/A(203)) and DBPFPs/DOC showed consistent trends, therefore, A(253)/A(203) ratio may be a good indicator for the disinfection by-product formation potentials (DBPFPs).

  13. Influence of seasonality on the interaction of mercury with aquatic humic substances extracted from the Middle Negro River Basin (Amazon)

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciana C. de, E-mail: lcamargo@ufscar.br [Federal University of Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Botero, Wander G. [Federal University of Alagoas (UFAL), Arapiraca, AL (Brazil); Santos, Felipe A. [Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP (Brazil); Sargentini Junior, Ezio [National Amazon Research Institute (INPA), Manaus, AM (Brazil); Rocha, Julio C.; Santos, Ademir dos [Institute of Chemistry of Araraquara, Sao Paulo State University (UNESP), Araraquara, SP (Brazil)

    2012-09-15

    High mercury concentrations in different environmental matrices in the Amazon have been attributed to mining activities. However, high concentrations of mercury are also present in the soil and water in places like in the middle of the Negro River Basin, which is far away from any anthropogenic emission sources. The Amazon region is characterized by two different regional seasons, with well-defined flood and low water periods. The objective of this work was to investigate the seasonal influences of the interaction between mercury and aquatic humic substances (AHS), which are the main agents of the natural organic complexation capacity. The results of the multivariate statistical analysis of the data showed that the humic substances had different structural characteristics, depending on each season. The ability of humic substances to form complexes with Hg(II) is not directly related to their carbon content, but to the nature and availability of the functional groups present in its structure. The functional groups are carboxylic and aromatic directly related to the higher complexation capacity of AHS by mercury ions. (author)

  14. N-15 NMR spectra of naturally abundant nitrogen in soil and aquatic natural organic matter samples of the International Humic Substances Society

    Science.gov (United States)

    Thorn, K.A.; Cox, L.G.

    2009-01-01

    The naturally abundant nitrogen in soil and aquatic NOM samples from the International Humic Substances Society has been characterized by solid state CP/MAS 15N NMR. Soil samples include humic and fulvic acids from the Elliot soil, Minnesota Waskish peat and Florida Pahokee peat, as well as the Summit Hill soil humic acid and the Leonardite humic acid. Aquatic samples include Suwannee River humic, fulvic and reverse osmosis isolates, Nordic humic and fulvic acids and Pony Lake fulvic acid. Additionally, Nordic and Suwannee River XAD-4 acids and Suwannee River hydrophobic neutral fractions were analyzed. Similar to literature reports, amide/aminoquinone nitrogens comprised the major peaks in the solid state spectra of the soil humic and fulvic acids, along with heterocyclic and amino sugar/terminal amino acid nitrogens. Spectra of aquatic samples, including the XAD-4 acids, contain resolved heterocyclic nitrogen peaks in addition to the amide nitrogens. The spectrum of the nitrogen enriched, microbially derived Pony Lake, Antarctica fulvic acid, appeared to contain resonances in the region of pyrazine, imine and/or pyridine nitrogens, which have not been observed previously in soil or aquatic humic substances by 15N NMR. Liquid state 15N NMR experiments were also recorded on the Elliot soil humic acid and Pony Lake fulvic acid, both to examine the feasibility of the techniques, and to determine whether improvements in resolution over the solid state could be realized. For both samples, polarization transfer (DEPT) and indirect detection (1H-15N gHSQC) spectra revealed greater resolution among nitrogens directly bonded to protons. The amide/aminoquinone nitrogens could also be observed by direct detection experiments.

  15. Influence of the apparent molecular size of aquatic humic substances on colour removal by coagulation and filtration.

    Science.gov (United States)

    Rigobello, Eliane Sloboda; Dantas, Angela Di Bernardo; Di Bernardo, Luiz; Vieira, Eny Maria

    2011-12-01

    This study aims to verify the influence of the apparent molecular size of aquatic humic substances (AHSs) on the effectiveness of coagulation with aluminium sulphate and ferric chloride. Coagulation-filtration tests using the jar test and bench-scale sand filters were carried out with water samples having a true colour of approximately 100 Hazen units and prepared with AHSs of different molecular sizes. Stability diagrams are presented showing regions of > or = 90% and > or = 95% apparent colour removal delineated for each water sample using plots of total metal ion concentration (Al3+ and Fe3+) versus coagulation pH. To achieve the same degree of colour removal, the water samples with smaller apparent molecular sizes and a higher percentage of fulvic acids required higher dosages of both aluminium sulphate and ferric chloride.

  16. Characterization of typical aquatic humic substances in areas of sugarcane cultivation in Brazil using tetramethylammonium hydroxide thermochemolysis.

    Science.gov (United States)

    Tadini, A M; Constantino, I C; Nuzzo, A; Spaccini, R; Piccolo, A; Moreira, A B; Bisinoti, M C

    2015-06-15

    Aquatic humic substances (AHSs) differ from one environment to another depending on land use and occupation. In addition, the effects of planting sugarcane on AHSs are not well known. Thus, the aim of this study was to characterize AHSs extracted from a river in a typical region of sugarcane cultivation during dry and rainy seasons. The main characteristics of the AHSs were obtained using Fourier transformation infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and off-line pyrolysis coupled with gas chromatography and mass spectrometry (off-line tetramethylammonium hydroxide (TMAH)-GC-MS-thermochemolysis). The FTIR and NMR results were used to infer that no distinctions occurred between the sampling periods. The samples were composed of aromatic groups that were potentially associated with the presence of residual vegetable materials (lignin). The results of the off-line TMAH-GC-MS-thermochemolysis indicated that the structures of the AHSs had uniform compositions that were rich in fatty acid methyl esters (FAMEs), polysaccharide derivatives, aliphatic biopolymers derived from plants, long hydrocarbon chains, branched alkyl groups and methylene carbons. Thus, the results showed that the AHSs obtained from the sugarcane cultivation area during the crop period mainly consisted of resistant aliphatic hydrocarbons, which are derivatives of lignin and FAMEs in compounds rich in humic acid. Therefore, we concluded that sugarcane cultivation produces changes in AHSs because greater amounts of lignin derivatives were observed during the dry season, corresponding to sugarcane cultivation.

  17. Speciation of Aquatic Heavy Metals in Humic Substances by$^{111m}$Cd/$^{199m}$Hg-TDPAC

    CERN Multimedia

    2002-01-01

    Humic substances are ubiquitous in waters and soils and act as complexing agents for different heavy metals, e.g. Cd, Hg. Toxicity, reactivity, fixation and migration are therefore strongly influenced by the interactions between heavy metals and humic substances. Humic substances derive from postmortal materials such as rotten plants, have dark colours and usually a molecular weight between 500 and 10~000 Dalton. Complex formation studies with different heavy metal ions indicate at least two different kinds of metal sites. Usually, these studies are restricted to heavy metal concentrations 2 to 3 orders of magnitude higher than the natural heavy metal abundance (i.e. 10$^{-10}$ molar). This serious limitation can be overcome by the use of suitable radiosotope techniques capable of metal speciation at extreme sensitivity levels such as TDPAC (Time Differential Perturbed Angular Correlation of~$\\gamma$-rays). Thus, we studied the interaction of heavy metals with humic substances by monitoring the nuclear quadru...

  18. Characterization of typical aquatic humic substances in areas of sugarcane cultivation in Brazil using tetramethylammonium hydroxide thermochemolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tadini, A.M.; Constantino, I.C. [Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R. Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP (Brazil); Nuzzo, A.; Spaccini, R.; Piccolo, A. [Dipartimento Scienze del Suolo, della Pianta, e dell' Ambiente, Università di Napoli Federico II, Via Università 100, 80055 Portici (Italy); Moreira, A.B. [Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R. Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP (Brazil); and others

    2015-06-15

    Aquatic humic substances (AHSs) differ from one environment to another depending on land use and occupation. In addition, the effects of planting sugarcane on AHSs are not well known. Thus, the aim of this study was to characterize AHSs extracted from a river in a typical region of sugarcane cultivation during dry and rainy seasons. The main characteristics of the AHSs were obtained using Fourier transformation infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and off-line pyrolysis coupled with gas chromatography and mass spectrometry (off-line tetramethylammonium hydroxide (TMAH)-GC–MS-thermochemolysis). The FTIR and NMR results were used to infer that no distinctions occurred between the sampling periods. The samples were composed of aromatic groups that were potentially associated with the presence of residual vegetable materials (lignin). The results of the off-line TMAH-GC–MS-thermochemolysis indicated that the structures of the AHSs had uniform compositions that were rich in fatty acid methyl esters (FAMEs), polysaccharide derivatives, aliphatic biopolymers derived from plants, long hydrocarbon chains, branched alkyl groups and methylene carbons. Thus, the results showed that the AHSs obtained from the sugarcane cultivation area during the crop period mainly consisted of resistant aliphatic hydrocarbons, which are derivatives of lignin and FAMEs in compounds rich in humic acid. Therefore, we concluded that sugarcane cultivation produces changes in AHSs because greater amounts of lignin derivatives were observed during the dry season, corresponding to sugarcane cultivation. - Highlights: • AHSs differ from one environment to another depending on land use and occupation. • AHSs extracted from a river in a typical region of sugarcane cultivation. • AHSs from the sugarcane area are influenced by the soil use and occupation. • AHSs contain lignin derivatives, fatty acid methyl esters and others. • Lignin was observed with

  19. Isolation of haloorganic groundwater humic substances

    DEFF Research Database (Denmark)

    Krog, M.; Grøn, C.

    1995-01-01

    Humic substances were isolated from groundwater according to a revised method designed to avoid organohalogen artefacts. The prepared humic substances exhibited lower halogen contents than humic substances isolated according to the conventionally used method. Excessive oxidation or hydrolysis was...

  20. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration.

    Science.gov (United States)

    Nifant'eva, T I; Shkinev, V M; Spivakov, B Y; Burba, P

    1999-02-01

    The assessment of conditional stability constants of aquatic humic substance (HS) metal complexes is overviewed with special emphasis on the application of ultrafiltration methods. Fundamentals and limitations of stability functions in the case of macromolecular and polydisperse metal-HS species in aquatic environments are critically discussed. The review summarizes the advantages and application of ultrafiltration for metal-HS complexation studies, discusses the comparibility and reliability of stability constants. The potential of ultrafiltration procedures for characterizing the lability of metal-HS species is also stressed.

  1. Nitrogen Forms in Humic Substances

    Institute of Scientific and Technical Information of China (English)

    ZHUOSU-NENG; WENQI-XIAO

    1992-01-01

    In this paper,the nitrogen forms in newly-formed humic substances,including humic acid (HA),fulvic acid (FA) and humic acid in humin (HAI),were studied by using the 15N CP-MAS NMR technique in combination with chemical approaches.Results show that the majority of nitrogen in HA,FA and HAI was in the amide form with some presented as aliphatic and/ or aromatic amines and some as pyrrole type nitrogen,although the contents of nonhydrolyzable nitrogen in them differed greatly from each other (15-55%).

  2. Investigations on the conditional kinetic and thermodynamic stability of aquatic humic substance-metal complexes by means of EDTA exchange, ultrafiltration and atomic spectrometry.

    Science.gov (United States)

    Van den Bergh, J; Jakubowski, B; Burba, P

    2001-09-13

    The conditional metal availability and the kinetic stability of humic substance-metal species in humic-rich waters (e.g. bog water) was characterized by means of EDTA exchange. For this purpose a combined procedure consisting of time-controlled ligand exchange by EDTA, species differentiation by a fast single-stage tangential-flow ultrafiltration (TF-UF) technique (cut-off 1 kDa) and sensitive atomic spectrometry methods (e.g. AAS, ICP-OES, TXRF) was developed. The kinetics and the yield of the EDTA exchange served as operational parameters for assessing the kinetic stability and EDTA availability of HS-metal species, respectively. Considerable fractions of natural HS-metal species studied were shown to be EDTA-inert (e.g. 31% of the total Fe, 44% of the total Al) even after long reaction times (48 h), in contrast to artificial ones formed in solutions of isolated HS. Moreover, the conditional thermodynamic stability of HS-metal complexes formed by successive loading of an aquatic reference HS (HO14) with a number of heavy metal ions (e.g. Cr(III), Cu(II), Fe(III), Mn(II), Zn(II)) was also evaluated discriminating the free metal concentrations by means of TF-UF. In addition, from the loading isotherms obtained conditional complexation capacities could be derived for the studied HS exhibiting the order Fe(III)>Cu(II)>Cr(III)>Co(II)>Mn(II).

  3. The influence of aquatic humic substances characteristics on the coagulation efficiency using ferric chloride; Influencia das caracteristicas das substancias humicas aquaticas na eficiencia da coagulacao com o cloreto ferrico

    Energy Technology Data Exchange (ETDEWEB)

    Sloboda, Eliane; Vieira, Eny Maria [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica], e-mail: elisloboda@hotmail.com; Dantas, Angela Di Bernardo; Bernardo, Luiz Di [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Hidraulica e Saneamento

    2009-07-01

    The aim of this study was to verify the influence of the apparent molecular size of aquatic humic substances on the effectiveness of coagulation with ferric chloride. Coagulation-filtration tests using jar test and bench-scale sand filters were carried out on samples of water with true color of approximately 100 Hazen units, prepared with aquatic humic substances of different molecular sizes (F{sub 1}: < 0.45 {mu}m, F{sub 2}: 100 kDa - 0.45 {mu}m, F{sub 3}: 30 - 100 kDa and F{sub 4}{sup '} : < 30 kDa). For the water samples with lower apparent molecular size fractions, greater dosages of coagulant was needed to remove the color around 5.0 Hanzen units, mainly because these water samples contain higher concentrations of fulvic acids, which exhibited a larger number of negatively-charged groups. (author)

  4. Proton and metal ion binding to humic substances.

    NARCIS (Netherlands)

    Wit, de J.C.M.

    1992-01-01

    Humic substances are polydisperse mixtures of organic molecules which at least to some extent determine the mobility and bioavailability of heavy metals in soils, sediments and aquatic systems. In order to make a sound risk assessment of the fate of trace metals a good conception and preferably a so

  5. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    Science.gov (United States)

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  6. Molecular aggregation of humic substances

    Science.gov (United States)

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  7. Study of humic substances by fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Sona Konecna

    2010-12-01

    Full Text Available The purpose of this study is to determine main fluorophores of soil humic substances using 2D and 3D synchronous fluorescencespectroscopy (SFS. The measured synchronous spectra werecompared with standards IHSS. Differences between humic andfulvic acids as well as our and IHSS samples are discussed.

  8. Removal of humic substances by biosorption

    Institute of Scientific and Technical Information of China (English)

    VUKOVI(C) Marija; DOMANOVAC Tomislav; BRI(S)KI Felicita

    2008-01-01

    Fungal pellets of Aspergillus niger 405, Aspergillus ustus 326, and Stachybotrys sp. 1103 were used for the removal of humic substances from aqueous solutions. Batchwise biosorption, carried out at pH 6 and 25℃, was monitored spectrophotometrically and the process described with Freundlich's model. Calculated sorption coefficients K/and n showed that A. niger exhibited the highest efficiency. A good match between the model and experimental data and a high correlation coefficient (R2) pointed out to judicious choice of the mechanism for removal of humic substances from the reaction medium. The sorption rate constants (k) for A. ustus and Stachybotrys sp. were almost equal, however higher than that for A. niger. Comparison of test results with the simulated ones demonstrated the applicability of the designed kinetic model for removal of humic substances from natural water by biosorption with fungal pellets. Different morphological structure of the examined fungal pellets showed that faster sorption does not imply the most efficient removal of humic substances. Desorption of humic substances from fungal pellets was complete, rapid, and yielded uniform results.

  9. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.; Buffle, J.

    2012-01-01

    The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as "fulvic-like substance", FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published e

  10. On the nature of humic substances

    Science.gov (United States)

    Fedotov, G. N.; Shoba, S. A.

    2015-12-01

    It is argued that the isolation of low-molecular-weight compounds from humic substances does not prove their supramolecular nature, because small molecules can be sorbed on macromolecules by interacting with them due to noncovalent bonds. The relative mobility of molecular segments in humic substances has been proposed to be used as a criterion for the discrimination between the humic substances of supraand macromolecular nature. The macromolecules are characterized by mobility of their segments, whereas supramolecular systems have stiff structure. This difference between macroand supramolecules results in different behaviors of the matrices (gels) formed from them in the processes of segregation. In the macromolecules, the formations of a new phase appearing at the segregation (microphase separation) are of nano size, at least in one dimension. They are incapable of moving within the matrix and form a well-known, limited set of systems. In the supramolecular matrices, the new-phase formations should have higher mobility and ability to move within the matrix with the formation of particles and zones of not only nano, but also micro sizes, as well as a significantly larger set of systems, including fractal configurations. The experimental electron microscopic study of the humic matrices of soil gels shows that the new-phase formations in the matrix of humic substances have not only nano, but also micro sizes and are capable of moving within the matrix, which confirms the supramolecular nature of humic substances. The proposed method has allowed generalizing the supraand macromolecular approaches, because macromolecules can enter into the composition of supramolecular systems. It is no less important that the behavior of HSs can be perceived as the behavior of stiff impenetrable particles that may compose the structures of different types and sizes.

  11. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  12. Origin and structures of groundwater humic substances from three Danish aquifers

    DEFF Research Database (Denmark)

    Grøn, C.; Wassenaar, L.; Krog, M.

    1996-01-01

    Structural, chemical, and isotopic parameters were used to identify the origins of groundwater humic substances from three Danish aquifers. A variety of analytical techniques (visible light absorption, molecular weight distribution, C-13-NMR spectroscopy, elemental composition with major elements...... and halogens, hydrolyzable amino acids and carbohydrates, carbon isotopes) applied to aquatic humic and fulvic acids led to consistent structural interpretations for each of the three aquifers studied. For humic substances in two-aquifers, the analyses suggested source rocks in agreement with geological...... and hydrogeochemical information. In a third aquifer, source rock identification was inconclusive, and multiple fossil and recent organic carbon sources are suggested....

  13. Effects of humic substances on the bioconcentration of polycyclic aromatic hydrocarbons: Correlations with spectroscopic and chemical properties of humic substances

    Science.gov (United States)

    Haitzer, M.; Abbt-Braun, G.; Traunspurger, W.; Steinberg, C.E.W.

    1999-01-01

    The presence of dissolved humic substances (HS, fulvic and humic acids) generally reduces the uptake of hydrophobic organic compounds into aquatic organisms. The extent of this effect depends both on the concentration and on the origin of the HS. The aim of this study was to investigate the role of qualitative differences between HS from different origins. The effects of seven different HS on the bioconcentration of pyrene and benzo[a]pyrene (BaP) in the nematode Caenorhabditis elegans were related to the spectroscopic and chemical properties of the HS. The effect of each humic material on the bioconcentration of pyrene or BaP was quantified as a 'biologically determined' partition coefficient K(DOC). We observed significant linear relationships between K(DOC) and the atomic H/C ratio, the specific absorptivity at 254 nm, the content of aromatic carbons (as determined by 13C nuclear magnetic resonance spectroscopy, the copper-complexing capacity, the content of phenolic OH groups, and the molecular weight of the HS. There was no discernible relationship of K(DOC) with the atomic (N + O)/C ratio, an indicator of the polarity of HS. Taken together, our results show that the variability in the effects of HS from different origins could be related to variations in bulk properties of the HS. Parameters describing the aromaticity of the humic materials seemed to be most useful for estimating effects of HS on the bioconcentration of pyrene and BaP.

  14. Mutagenic compounds from chlorination of humic substances

    Science.gov (United States)

    Holmbom, Bjarne

    Chlorination of natural humic substances, as well as of lignin, produces a myriad of non-chlorinated and chlorinated compounds. The identification of an important class of strongly mutagenic compounds is reviewed. The most important Ames mutagen in chlorinated drinking waters of various origin is the compound 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone ("MX"). This compound occurs at neutral pH in the acyclic form, i.e. in the form of Z-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid. Its E-isomer (E-MX) is present in chlorinated drinking waters at a similar concentration, but is less mutagenic in Ames test. Both oxidised and reduced forms of MX and E-MX are also present in chlorinated waters. The present knowledge of the chemistry and toxicology of these mutagens is examined. The formation and possible elimination of the chlorination mutagens is discussed. The need of understanding the mechanisms of formation of these mutagens from humic substances during drinking water chlorination is emphasized.

  15. An XPS Study of Nitrogen Structures in Soil Humic Substances

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    X-ray photoelectron spectroscopy (XPS) was applied to examine the N structures of soil humic substances and some of their analogues. It was found that for soil humic substances XPS method gave similar results as those obtained by 15N CPMAS NMR (cross-polarization magic-angle spinning nuclear magnetic resonance) method. 70%~86% of total N in soil humic substances was in the form of amide, and 6%~13% was presented as amines, with the remaining part as heterocyclic N. There was no difference in the distribution of the forms of N between the humic substances from soils formed over hundreds or thousands of years and the newly formed ones. For fulvic acid from weathered coal and benzoquinone-(NH4)2SO4 polymer the XPS results deviated significantly from the 15N CPMAS NMR data.

  16. Sources of sedimentary humic substances: vascular plant debris

    Science.gov (United States)

    Ertel, John R.; Hedges, John I.

    1985-10-01

    A modern Washington continental shelf sediment was fractionated densimetrically using either an organic solvent, CBrCl 3, or aqueous ZnCl 2. The resulting low density materials (extraction of fresh and naturally degraded vascular plant materials reveals that significant levels of humic and fulvic acids are obtained using classical extraction techniques. Approximately 1-2% of the carbon from fresh woods and 10-25% from leaves and bark were isolated as humic acids and 2-4 times those levels as fulvic acids. A highly degraded hardwood yielded up to 44% of its carbon as humic and fulvic acids. The humic acids from fresh plants are generally enriched in lignin components relative to carbohydrates and recognizable biochemicals account for up to 50% of the total carbon. Humic and fulvic acids extracted directly from sedimentary plant debris could be responsible for a major fraction of the biochemical component of humic substances.

  17. Enhancement of Phosphorus Solubility by Humic Substances in Ferrosols

    Institute of Scientific and Technical Information of China (English)

    HUA Quan-Xian; LI Jian-Yun; ZHOU Jian-Min; WANG Huo-Yan; DU Chang-Wen; CHEN Xiao-Qin

    2008-01-01

    An investigation was conducted to study the effect of humic substance (HS) on the phosphorus (P) solubility in acidic soil. The soil (2.5 g), HS (0, 0.5, and 2.5 g), and P as monocalcium phosphate (0.31 and 1.25 g P kg-1 soil) were mixed with 50 mL distilled water and two different sequences of adding HS and P were used. The results indicated that the P concentration in water and 0.01 mol L-1 CaCl2 solution increased with increasing amounts of humic substance. The concentrations of Fe and Al were also increased. However, Olsen P decreased with increasing amount of humic substance.Water-soluble P concentrations from P rates at 0.31 and 1.25 g P kg-1 soil in the treatment with 0.5 g (2.5 g) humic substance addition were 360% and 70% (500% and 90%) higher, respectively, than those in the treatment with no humic substance addition. P extracted by 0.01 mol L-1 CaCl2 in the treatments with 0.5 and 2.5 g humic substance addition was increased by 400% and 540%, respectively, compared with that in the treatment without humic substance at the rate of 0.31 g P kg-1 soil, while the corresponding P concentrations were increased by 80% and 90% at the rate of 1.25 g P kg-1 soil. The order of mixing humic substance and phosphate did not significantly affect desorbed P and labile P extracted with CaCl2.

  18. Effects of diaphragm discharge in water solutions containing humic substances

    Science.gov (United States)

    Halamova, Ivana; Stara, Zdenka; Krcma, Frantisek

    2010-01-01

    Preliminary results of research focused on the applications of DC diaphragm discharge in water solutions containing humic substances are presented in this paper. Diaphragm discharge investigated by this work was created in the reactor using constant DC high voltage up to 2 kV that gave the total input power from 100 to 200 W. Presented work investigated decomposition of humic substances by the electric discharge in the dependence of discharge conditions (electrode polarity) as well as solution properties (electrolyte kind, pH). Especially substantial effect of pH on humic acid decomposition has been observed when acidic conditions stimulated the degradation process. Absorption spectroscopy in UV-VIS region together with fluorescence spectroscopy has been used for the detection of changes in humic solutions. Index of humification was calculated from obtained fluorescence spectra and a significant decrease of aromatic components in the humic mixture was determined during the discharge treatment.

  19. IMMOBILISATION OF HUMIC SUBSTANCES USING PLASMA MODIFICATION

    Directory of Open Access Journals (Sweden)

    Pavlína Hájková

    2015-04-01

    Full Text Available This paper presents a study of the immobilization of humic substances (HSs on a polypropylene (PP nonwoven fabric. In order to attach the HSs, the PP nonwoven fabric was modified in a volume of nonthermal atmospheric pressure dielectric barrier discharge (DBD under defined conditions. An unmodified PP nonwoven fabric was used as a reference sample. The modified and unmodified samples were both dipped in an aqueous solution of potassium humate, and then the samples were washed in water and the amount of HSs attached to the PP fabric was monitored. An aqueous solution of cadmium salts was filtered through the treated fabric, the content of Cd2+ in the solution was monitored using ICP-OES analysis, and the Cd2+ sorbed on the fabric was proved by SEM/EDS analysis. The efficiency of the PP plasma modification was proved by XPS analysis, and the presence and the distribution of the HSs along the fibers was proved by SEM analysis.

  20. Estudo da labilidade de Cu(II, Cd(II, Mn(II e Ni(II em substâncias húmicas aquáticas utilizando-se membranas celulósicas organomodificadas Lability study of Cu(II, Cd(II, Mn(II and Ni(II complexed by aquatic humic substances using organomodified cellulose membranes

    Directory of Open Access Journals (Sweden)

    André Henrique Rosa

    2007-02-01

    Full Text Available In this work commercial filters papers were organomodified with tetraethylorthosilicate (TEOS and 3-aminopropyltriethoxysilane (3-APTS, aiming at the development of a new analytical procedure for in-situ speciation of labile and inert metal species in aquatic systems. Parameters that exert influence on the metal lability such as pH, chelating time, concentration and characteristics of the organic matter were studied in the laboratory using tests for metal recuperation. The results showed slower kinetics for Cu ion than for Ni, Mn and Cd in the absence of aquatic humic substances (AHS. The relative lability observed for complexed metals in aquatic humic substances using organomodified filter papers was Cu>>Cd>Ni>Mn. The pH values, structural characteristics and concentration of AHS exert strong influence on the lability of the metals. The results obtained showed that the utilization of organomodified filter papers can be an interesting and promising alternative for in situ characterization of metal lability in aquatic systems.

  1. The density of humic acids and humic like substances (HULIS from fresh and aged wood burning and pollution aerosol particles

    Directory of Open Access Journals (Sweden)

    E. Dinar

    2006-01-01

    Full Text Available Atmospheric aerosols play significant roles in climatic related phenomena. Size, density and shape of particles affect their fluid-dynamic parameters which in turn dictate their transport and lifecycle. Moreover, density and shape are also related to particles' optical properties, influencing their regional and global radiative effects. In the present study we have measured and compared the effective densities of humic like substances (HULIS extracted from smoke and pollution aerosol particles to those of molecular weight-fractionated aquatic and terrestrial Humic Substances (HS. The effective density was measured by comparing the electro mobility and vacuum aerodynamic diameter of aerosol particles composed of these compounds. Characterization of chemical parameters such as molecular weight, aromaticity and elemental composition allow us to test how they affect the effective density of these important environmental macromolecules. It is suggested that atmospheric aging processes increase the effective density of HULIS due to oxidation, while packing due to the aromatic moieties plays important role in determining the density of the aquatic HS substances.

  2. Humic substances as a mediator for microbially catalyzed metal reduction

    Science.gov (United States)

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  3. Mechanisms of humic substances degradation by fungi

    Science.gov (United States)

    Chen, Y.; Hadar, Y.; Grinhut, T.

    2012-04-01

    Humic substances (HS) are formed by secondary synthesis reactions (humification) during the decay process and transformation of biomolecules originating from plants and other dead organisms. In nature, HS are extremely resistant to biological degradation. Thus, these substances are major components in the C cycle and in the biosphere and therefore, the understanding of the process leading to their formation and transformation and degradation is vital. Fungi active in the decomposition process of HS include mainly ascomycetes and basidiomycetes that are common in the upper layer of forest and grassland soils. Many basidiomycetes belong to the white-rot fungi (WRF) and litter-decomposing fungi (LDF). These fungi are considered to be the most efficient lignin degraders due to their nonspecific oxidizing enzymes: manganese peroxidase (MnP), lignin peroxidase (LiP) and laccase. Although bacteria dominate compost and participate in the turnover of HS, their ability to degrade stable macromolecules such as lignin and HS is limited. The overall objectives of this research were to corroborate biodegradation processes of HS by WRF. The specific objectives were: (i) To isolate, identify and characterize HS degrading WRF from biosolids (BS) compost; (ii) To study the biodegradation process of three types of HS, which differ in their structure, by WRF isolated from BS compost; and (iii) To investigate the mechanisms of HA degradation by WRF using two main approaches: (a) Study the physical and chemical analyses of the organic compounds obtained from direct fungal degradation of HA as well as elucidation of the relevant enzymatic reactions; and (b) Study the enzymatic and biochemical mechanisms involved during HA degradation. In order to study the capability of fungi to degrade HS, seventy fungal strains were isolated from biosolids (BS) compost. Two of the most active fungal species were identified based on rDNA sequences and designated Trametes sp. M23 and Phanerochaetesp., Y6

  4. Humic substances interfere with detection of pathogenic prion protein

    Science.gov (United States)

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  5. Properties of atmospheric humic-like substances – water system

    Directory of Open Access Journals (Sweden)

    G. Láng

    2008-02-01

    Full Text Available Urban-type PM2.5-fraction aerosol samples were collected and samples of pure atmospheric humic-like substances (HULIS were isolated from them. Atmospheric concentrations of organic carbon (OC, water soluble organic carbon (WSOC and HULIS were determined, and UV/Vis spectroscopic properties, solubility and conductivity of HULIS in aqueous samples were investigated. Mean atmospheric concentrations of OC and WSOC were 8.5 and 4.6 μg m−3, respectively. Hydrophilic WSOC accounted for 39% of WSOC, carbon in HULIS made up 47% of WSOC, and 14% of WSOC was retained on the separation column by irreversible adsorption. Average molecular mass and aromatic carbon abundance of HULIS were both estimated from molar absorptivity to be 556 Da and 12%, respectively. Both results are substantially smaller than for standard reference fulvic acids, which imply different mechanisms for the formation processes of atmospheric HULIS and aquatic or terrestrial humic matter. HULIS were found to be water soluble as ionic unimers with a saturation concentration of 2–3 g l−1. Their solubility increased again with total HULIS concentration being above approximately 4 g l−1, which was most likely explained by the formation of HULIS aggregates. Solubility increased linearly from approximately 5 up to 20 g l−1 of dissolved HULIS concentration. The ionic dissolution was confirmed by electrochemical conductivity in the investigated concentration interval. Limiting molar conductivity was extrapolated and this was utilized to determine the apparent dissociation degree of HULIS for different concentrations. The dissociation degree was further applied to derive the concentration dependence of the van't Hoff factor of HULIS. The van't Hoff factor decreased monotonically with HULIS concentration; the decrease was substantial for dilute solutions and the relationship became weak for rather concentrated solutions.

  6. Properties of atmospheric humic-like substances ─ water system

    Directory of Open Access Journals (Sweden)

    G. G. Láng

    2008-04-01

    Full Text Available Urban-type PM2.5-fraction aerosol samples were collected and samples of pure atmospheric humic-like substances (HULIS were isolated from them. Atmospheric concentrations of organic carbon (OC, water soluble organic carbon (WSOC and HULIS were determined, and UV/Vis spectroscopic properties, solubility and conductivity of HULIS in aqueous samples were investigated. Atmospheric concentrations of OC and WSOC were 8.5 and 4.6 μg m−3, respectively. Hydrophilic WSOC accounted for 39% of WSOC, carbon in HULIS made up 47% of WSOC, and 14% of WSOC was retained on the separation column by irreversible adsorption. Overall average molecular mass and aromatic carbon abundance of HULIS were estimated from molar absorptivity to be 556 Da and 12%, respectively. Both results are substantially smaller than for standard reference fulvic acids, which imply different mechanisms for the formation processes of atmospheric HULIS and aquatic or terrestrial humic matter. HULIS were found to be water soluble as ionic unimers with a saturation concentration of 2–3 g l−1. Their solubility increased again with total HULIS concentration being above approximately 4 g l−1, which was most likely explained by the formation of HULIS aggregates. Solubility increased linearly from approximately 5 up to 20 g l−1 of dissolved HULIS concentration. The ionic dissolution was confirmed by electrochemical conductivity in the investigated concentration interval. Limiting molar conductivity was extrapolated and this was utilized to determine the apparent dissociation degree of HULIS for different concentrations. The dissociation degree was further applied to derive the concentration dependence of the van't Hoff factor of HULIS. The van't Hoff factor decreased monotonically with HULIS concentration; the decrease was substantial for dilute solutions and the relationship became weak for rather concentrated solutions.

  7. Partitioning of water soluble organic carbon in three sediment size fractions: Effect of the humic substances

    Institute of Scientific and Technical Information of China (English)

    SUN Liying; SUN Weiling; NI Jinren

    2009-01-01

    Water soluble organic carbon (WSOC) in sediments plays an important role in transference and transformation of aquatic pollutants. This article investigated the inherent mechanisms of how sediemnt grain size affect the partitioning coeffcient (k) of WSOC. Influences of NaOH extracted humic substances were particularly focused on. Sediments were sampled from two cross-sections of the middle Yellow River and sieved into three size fractions (< 63 μm, 63-100 μm, and 100--300 μm). The total concentration of WSOC in sediments (CWSOC) and k were estimated using multiple water-sediment ratio experiments. Results show that CWSOC ranges from 0.012 to 0.022 mg/g, while k ranges from 0.8 to 3.9 L/kg. Correlations between the spectrum characteristics of NaOH extracted humic substances and k were analyzed. Strong positive correlations are determined between k and the aromaticity indicators of NaOH extracted humic substances in different sediment size fractions. Comparing with finer fractions (< 63 μm), k is higher in larger size fractions (63--100 and 100--300 μm) related to higher aromaticity degree of NaOH extracted humic substances mostly. While negative relationship between k and the area ratio of fourier transform infrared spectroscopy (FT-IR) at 3400 and 1430 cm-1 implied that the lowest k was related to the highest concentration of the acidic humic groups in particles < 63 μm. WSOC in finer fractions (< 63 μm) is likely to enter into pore water, which may further accelerate the transportation of aquatic contaminants from sediment to water.

  8. Ozonation of humic substances in a membrane contactor : mass transfer, product characterization and biodegradability

    NARCIS (Netherlands)

    Jansen, Ronald Herman Sebastiaan

    2005-01-01

    The goal of the research was to investigate the degradation of concentrated humic substances by an ozonation/biofiltation system in a side-stream process. The humic substances were concentrated by ion-exchange adsorption and the research was mainly focused on the ozonation of humic substances. To br

  9. Isotherm, kinetic and thermodynamics study of humic acid removal process from aquatic environment by chitosan nano particle

    Directory of Open Access Journals (Sweden)

    Maryam Ghafoori

    2016-09-01

    Full Text Available Background and Aim: Humic substances include natural organic polyelectrolyte materials that formed most of the dissolved organic carbon in aquatic environments. Reaction between humic substances and chlorine leading to formation of disinfection byproducts (DBPs those are toxic, carcinogenic and mutagenic. The aim of this study was investigation of isotherms, kinetics and thermodynamics of humic acid removal process by nano chitosan from aquatic environment. Materials and Methods: This practical research was an experimental study that performed in a batch system. The effect of various parameters such as pH, humic acid concentration, contact time, adsorbent dosage, isotherms, thermodynamics and Kinetics of humic acid adsorption process were investigated. Humic acid concentration measured using spectrophotometer at wave length of 254 nm. Results: The results of this research showed that maximum adsorption capacity of nanochitosan that fall out in concentration of 50 mg/l and contact time of 90 minutes was 52.34 mg/g. Also, the maximum adsorption was observed in pH = 4 and adsorbent dosage 0.02 g. Laboratory data show that adsorption of humic acid by nanochitosan follow the Langmuir isotherm model. According to result of thermodynamic study, entropy changes (ΔS was equal to 2.24 J/mol°k, enthalpy changes (ΔH was equal to 870 kJ/mol and Gibbs free energy (ΔG was negative that represent the adsorption process is spontaneous and endothermic. The kinetics of adsorption has a good compliant with pseudo second order model. Conclusion: Regarding to results of this study, nano chitosan can be suggested as a good adsorbent for the removal of humic acids from aqueous solutions.

  10. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2011-01-01

    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  11. Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Conte, P.; Piccolo, A. [Univ. di Napoli Federico II, Portici (Italy). Dipt. di Scienze Chimico-Agrarie

    1999-05-15

    The characteristics and quantity of humic substances greatly affects the environmental fate of organic pollutants in soils and natural waters. The authors studied the conformational changes of humic and fulvic acids of different chemical nature by high-pressure size-exclusion chromatography (HPSEC) after dissolution in mobile phases differing in composition but constant in ionic strength. Modification of a neutral mobile phase by addition of methanol, hydrochloric acid, and acetic acid produced, in the order, a progressive decrease in molecular size. Size diminishing was shown by increasingly larger elution volumes at a refractive index detector and by concomitant reductions of peaks absorbance at a UV-vis detector. The decrease of molecular absorptivity (the phenomenon of hypochromism) proved that size reduction of dissolved humic substances was due more to disruption of an only apparent high-molecular-size arrangement into several smaller molecular associations than to coiling down of a macromolecular structure. The most significant conformational changes occurred in acidic mobile phases where hydrogen bondings formation was induced, suggesting that the large and easily disruptable humic conformation was held together predominantly by weak hydrophobic forces.

  12. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    Science.gov (United States)

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  13. Effect of Sediment Humic Substances on Sorption of Selected Endocrine Disruptors

    Energy Technology Data Exchange (ETDEWEB)

    Sun, W. L., E-mail: sunweiling@iee.pku.edu.cn; Ni, J. R.; Liu, T. T. [The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University (China)

    2006-12-15

    Characterizing sorption processes is essential to understand the environmental distribution and toxicity potential of endocrine disruptors in terrestrial and aquatic systems. The sorption behaviors of three endocrine disruptors (bisphenol A (BPA), 17{beta}-estradiol (E2), and 17{alpha}-ethynylestradiol (EE2)) on sediments were investigated using batch techniques. Samples were taken from some representative reaches in several major Chinese rivers. More attention has been paid to the effect of sediment organic components on the sorption of BPA, E2, and EE2. The results show that the sediment organic carbon-normalized partition coefficients (K{sub oc}(sed)) for three endocrine disruptors are in the order of EE2 > E2 > BPA, which corresponds to the octanol-water partitioning coefficients (logK{sub ow}) of the compounds. Moreover, the K{sub oc} values for humic substances (K{sub oc}(hs)) are comparable with the K{sub oc}(sed) values and highly dependent on the physico-chemical properties of humic substances in sediments. The UV absorptivity at 272 nm (A{sub 272}), which suggests the abundance of aromatic rings in humic substance structure, correlates well with the K{sub oc}(hs) values. In addition, the infrared spectra of the humic substances extracted from sediments show four strong bands centered at 3,400 cm{sup -1}, 1,625 cm{sup -1}, 1,390 cm{sup -1}, and 1,025 cm{sup -1}. The K{sub oc}(hs) values have a positive linear relation with the peak area ratio for peak at 1,025 cm{sup -1} and a negative linear relation with the peak area ratio between peaks at 1,625 cm{sup -1} and 1,025 cm{sup -1}. Hence, the hydrogen bonds play a critical role to the sorption of selected endocrine disruptors.

  14. Formation of Humic Substances in Weathered MSWI Bottom Ash

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2013-01-01

    Full Text Available The study aimed at evaluating the humic substances (HSs content from municipal solid waste incinerator (MSWI bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37∘C and 50∘C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37∘C and at 18th week under 50∘C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50∘C incubated condition compared with that incubated under 37∘C. Also, the elemental compositions of HSs extracted from bottom ash are reported.

  15. AhR-mediated and antiestrogenic activity of humic substances.

    Science.gov (United States)

    Janosek, J; Bittner, M; Hilscherová, K; Bláha, L; Giesy, J P; Holoubek, I

    2007-04-01

    Humic substances (HS) were for decades regarded as inert in the ecosystems with respect to their possible toxicity. However, HS have been recently shown to elicit various adverse effects generally attributed to xenobiotics. In our study, we used MVLN and H4IIE-luc cell lines stably transfected with luciferase gene under control of estrogen receptor (ER) and Ah receptor (AhR; receptor connected with so-called dioxin-like toxicity) for assessment of anti/estrogenic and AhR-mediated effects of 12 commercially available humic substances. Out of those, five humic acids were shown to induce AhR-mediated activity with relative potencies related to TCDD 2.6 x 10(-8)-7.4 x 10(-8). Organic extracts of HS solutions also elicited high activities what means that lipophilic molecules are responsible for a great part of effect. However, relatively high activity remaining in extracted solution suggests also presence of polar AhR-agonists. Contribution of persistent organic compounds to the observed effects was ruled out by H(2)SO(4) treatment. Eight out of twelve HS elicited significant antiestrogenic effects with IC(50) ranging from 40 to 164 mg l(-1). The possible explanations of the antiestrogenic effect include sorption of 17-beta-estradiol (E2) on HS, changes in membrane permeability for E2 or another specific mechanism.

  16. Spectral and temporal luminescent properties of Eu(III) in humic substance solutions from different origins

    Energy Technology Data Exchange (ETDEWEB)

    Claret, F.; Reiller, P.E. [CEA, CE Saclay, DEN DANS DPC SECR, Lab Speciat Radionucleides et Mol, F-91191 Gif Sur Yvette, (France); Brevet, J. [Univ Evry Val Essonne, CNRS, UMR 8587, Lab Anal et Environm Biol et Environm, F-91025 Evry, (France)

    2009-07-01

    Although a high heterogeneity of composition is awaited for humic substances, their complexation properties do not seem to greatly depend on their origins. The information on the difference in the structure of these complexes is scarce. To participate in the filling of this lack, a study of the spectral and temporal evolution of the Eu(III) luminescence implied in humic substance (HS) complexes is presented. Seven different extracts, namely Suwannee River fulvic acid (SRFA) and humic acid (SRHA), and Leonardite HA (LHA) from the International Humic Substances Society (USA), humic acid from Gorleben (GohyHA) and from the Kleiner Kranichsee bog (KFA, KHA) from Germany, and purified commercial Aldrich HA (PAHA), were made to contact with Eu(III). Eu(III)-HS time-resolved luminescence properties were compared with aqueous Eu{sup 3+} at pH 5. Using an excitation wavelength of 394 nm, the typical bi-exponential luminescence decay for Eu(III)-HS complexes is common to all the samples. The components {tau}{sub 1}, and {tau}{sub 2} are in the same order of magnitude for all the samples, i.e., 40 {<=} {tau}{sub 1} ({mu}s) {<=} 60, and 145 {<=} {tau}{sub 2} ({mu}s) {<=} 190, but significantly different. It is shown that different spectra are obtained from the different groups of samples. Terrestrial extract on the one hand, i.e. LHA/GohyHA, plus PAHA, and purely aquatic extracts on the other hand, i.e., SRFA/SRHA/KFA/KHA, induce inner coherent luminescent properties of Eu(III) within each group. The {sup 5}D{sub 0} -> {sup 7}F{sub 2} transition exhibits the most striking differences. A slight blue shift is observed compared to aqueous Eu{sup 3+} ({lambda}(max) = 615.4 nm), and the humic samples share almost the same {lambda}(max) approximate to 614.5 nm. The main differences between the samples reside in a shoulder around {lambda} {approx} 612.5 nm, modelled by a mixed Gaussian-Lorentzian band around {lambda} {approx} 612 nm. SRFA shows the most intense shoulder with an

  17. Short communication: Biochemically active humic substances in contrasting agricultural managements

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, E.; Nogales, R.; Doni, S.; Masciandaro, G.; Moreno, B.

    2016-11-01

    Because their crucial role in several soil biochemical cycles and their fast response to changes in soil management, extracellular enzymes activities are widely used as sensitive indicators of ecological change and soil quality. The aim of this work was to determine the effects of soil management on the stable pool of soil carbon cycling enzymes as indicators of essential functions. For this, extracellular β-glucosidase enzymes bounded by humic acids (C higher than 104 Da) were used to compare four long-term contrasting agricultural managements in a rainfed olive orchard representative of semi-arid Mediterranean habitats. The study was conducted for 30 years by designing a random-block of four treatments (nude vs. covered soils) and four replicates. Maintaining cover crops through fall, winter and early spring provoked a more stable and active pool of extracellular β-glucosidase in soils only if spontaneous vegetation was managed with mechanical methods. When herbicides were used during 30 years, the pattern of the molecular composition and activity of humus β-glucosidase complexes were similar in covered and nude soils, although higher activity was retrieved in the former. Tillage management increased carbon mineralization and the level of humic substances and the activity of β-glucosidase humic-bound were quite lower than in the rest of treatments. Given the ecological role of extracellular soil carbon cycling enzymes, the characterization of humus β-glucosidase complexes could be an adequate indicator of sustainability of agricultural management systems. (Author)

  18. Short communication: Biochemically active humic substances in contrasting agricultural managements

    Directory of Open Access Journals (Sweden)

    Emilio Benitez

    2016-08-01

    Full Text Available Because their crucial role in several soil biochemical cycles and their fast response to changes in soil management, extracellular enzymes activities are widely used as sensitive indicators of ecological change and soil quality. The aim of this work was to determine the effects of soil management on the stable pool of soil carbon cycling enzymes as indicators of essential functions. For this, extracellular β-glucosidase enzymes bounded by humic acids (C higher than 104 Da were used to compare four long-term contrasting agricultural managements in a rainfed olive orchard representative of semi-arid Mediterranean habitats. The study was conducted for 30 years by designing a random-block of four treatments (nude vs. covered soils and four replicates. Maintaining cover crops through fall, winter and early spring provoked a more stable and active pool of extracellular β-glucosidase in soils only if spontaneous vegetation was managed with mechanical methods. When herbicides were used during 30 years, the pattern of the molecular composition and activity of humus β-glucosidase complexes were similar in covered and nude soils, although higher activity was retrieved in the former. Tillage management increased carbon mineralization and the level of humic substances and the activity of β-glucosidase humic-bound were quite lower than in the rest of treatments. Given the ecological role of extracellular soil carbon cycling enzymes, the characterization of humus β-glucosidase complexes could be an adequate indicator of sustainability of agricultural management systems.

  19. Capillary electrophoretic separation of humic substances using hydroxyethyl cellulose as a buffer additive and its application to characterization of humic substances in a river water sample.

    Science.gov (United States)

    Takahashi, Toru; Kawana, Jun; Hoshino, Hitoshi

    2009-01-01

    We have developed a concise tool for the investigation of the transition of humic substances in environmental water. The separation of water-soluble humic substances was achieved rapidly and effectively by capillary electrophoresis using a polyacrylamide-coated capillary and a phosphate electrophoretic buffer solution (pH 7.0) containing hydroxyethyl cellulose. The separation mechanism was assessed using the ultrafiltration technique. The effect of the complexation of humic substances with metal ions was studied by using the proposed method. When Fe(III) ions or EDTA was added to the sample solution of fulvic acid, a distinct change in the electropherogram pattern based on the conformational change of fulvic acid was observed. The successful application of the proposed method to the characterization of humic substances in a river water sample was also demonstrated.

  20. Radiolytic degradation of atrazine aqueous solution containing humic substances.

    Science.gov (United States)

    Basfar, A A; Mohamed, K A; Al-Abduly, A J; Al-Shahrani, A A

    2009-03-01

    Degradation of atrazine herbicide in humic substances (HS) aqueous solutions and distilled water solutions was investigated on a laboratory scale upon gamma-irradiation from a (60)Co source. In addition, the effect of ionizing radiation on the atrazine residues removal efficiency was investigated in relation to degradation of by-products. gamma-Irradiation experiments were carried out for three targeted concentrations (i.e. 0.464, 2.318 and 4.636 microM) with doses over the range 0.1-60 kGy. The initial concentration of herbicide, scavengers and irradiation doses play a significant role in the degradation efficiency as shown by decay constants of atrazine residues. gamma-Radiolysis showed that atrazine exhibited high degradation percentages at low absorbed doses in HS aqueous solutions compared to distilled water solutions. Absorbed doses from 0.6 to 21 kGy and from 6 to 72 kGy at a dose rate of 14.52 kGyh(-1) achieved 90% degradation for atrazine with initial concentrations over the range 0.464-4.636 microM in humic and distilled water solutions, respectively. The radiolytic degradation by-products and their mass balances were qualitatively determined with good confidence using gas chromatography/quadruple mass spectrometry (GC/MS) with electron impact ionization (EI(+)) mode.

  1. Electrocoagulation treatment of peat bog drainage water containing humic substances.

    Science.gov (United States)

    Kuokkanen, V; Kuokkanen, T; Rämö, J; Lassi, U

    2015-08-01

    Electrocoagulation (EC) treatment of 100 mg/L synthetic wastewater (SWW) containing humic acids was optimized (achieving 90% CODMn and 80% DOC removal efficiencies), after which real peat bog drainage waters (PBDWs) from three northern Finnish peat bogs were also treated. High pollutant removal efficiencies were achieved: Ptot, TS, and color could be removed completely, while Ntot, CODMn, and DOC/TOC removal efficiencies were in the range of 33-41%, 75-90%, and 62-75%, respectively. Al and Fe performed similarly as the anode material. Large scale experiments (1 m(3)) using cold (T = 10-11 °C) PBDWs were also conducted successfully, with optimal treatment times of 60-120 min (applying current densities of 60-75 A/m(2)). Residual values of Al and Fe (complete removal) were lower than their initial values in the EC-treated PBDWs. Electricity consumption and operational costs in optimum conditions were found to be low and similar for all the waters studied: 0.94 kWh/m(3) and 0.15 €/m(3) for SWW and 0.35-0.70 kWh/m(3) and 0.06-0.12 €/m(3) for the PBDWs (large-scale). Thus, e.g. solar cells could be considered as a power source for this EC application. In conclusion, EC treatment of PBDW containing humic substances was shown to be feasible.

  2. Production of humic substances through coal-solubilizing bacteria

    Directory of Open Access Journals (Sweden)

    Nelson Valero

    2014-09-01

    Full Text Available In this paper, the production of humic substances (HS through the bacterial solubilization of low rank coal (LRC was evaluated. The evaluation was carried out by 19 bacterial strains isolated in microenvironments with high contents of coal wastes. The biotransformed LRC and the HS produced were quantified in vitro in a liquid growth medium. The humic acids (HA obtained from the most active bacterial strain were characterized via elemental composition (C, H, N, O, IR analyses, and the E4/E6 ratio; they were then compared with the HA extracted chemically using NaOH. There was LRC biotransformation ranged from 25 to 37%, and HS production ranged from 127 to 3100 mg.L-1. More activity was detected in the isolated strains of Bacillus mycoides, Microbacterium sp, Acinetobacter sp, and Enterobacter aerogenes. The HA produced by B. mycoides had an IR spectrum and an E4/E6 ratio similar to those of the HA extracted with NAOH, but their elemental composition and their degree of aromatic condensation was different. Results suggest that these bacteria can be used to exploit the LRC resulting from coal mining activities and thus produce HS in order to improve the content of humified organic matter in soils.

  3. Soil humic substances hinder the propagation of prions

    Science.gov (United States)

    Leita, Liviana; Giachin, Gabriele; Margon, Alja; Narkiewicz, Joanna; Legname, Giuseppe

    2013-04-01

    capacity of clay minerals; however the contribution of soil organic components in adsorption has so far been neglected, as they represent a minor soil fraction on a weight basis. Among organic molecules, humic substances (HSs) are natural polyanions that result among the most reactive compounds in the soil and possess the largest specific surface area. Humic substances make up a large portion of the dark matter in humus and consist of heterogeneous mixtures of transformed biomolecules exhibiting a supramolecular structure. HSs are classified as humic acids (HAs), which are soluble only in alkaline solutions, and fulvic acids (FAs), which are soluble in both alkaline and acid solutions. The amphiphilic characteristics confer to HAs and FAs great versatility to interact with xenobiotics and reasonably also with prion proteins and/or prions too, leading to the formation of adducts with peculiar chemical and biophysical characteristics, thus affecting the transport, fixation and toxicity of prion. Results from our chemical, biophysical and biochemical investigation will be presented and results on anti-prion activity exerted by HAs and FAs will be provided, thus suggesting that amendment of contaminated soil with humic substances could be a strategy to contrast prion diffusion.

  4. Flourescence Humic Substances in Arsenic Contaminated Groundwater of Bangladesh

    Directory of Open Access Journals (Sweden)

    SHAFI M. TAREQ

    2012-06-01

    Full Text Available In the past, only arsenic (As concentrations in groundwater of Bangladesh were considered as having direct effects on the epidemical degrees of different types of diseases including arsenicosis, but the results of the present investigation indicated that fluorescence humic substance (HS is also an important component of dissolved organic matter in groundwater of Bangladesh. Therefore, it is suspected that both fluorescent HS and As in groundwater may have effects on the biological toxicity. The evidence of presence of high fluorescent HS and As in groundwater of Faridpur supports the above synergistic effect. The spatial distribution of fluorescence HS and As in groundwater of Faridpur indicated that the variations may be related to local hydrogeological conditions.

  5. REDUCTION OF HUMIC SUBSTANCES IN WATER BY APPLICATION OF ULTRASOUND WAVES AND ULTRAVIOLET IRRADIATION

    Directory of Open Access Journals (Sweden)

    A. H. Mahvi ، A. Maleki ، R. Rezaee ، M. Safari

    2009-10-01

    Full Text Available Humic substances mainly humic acids constitute the major fraction of natural organic matter in water supplies. They play an important role in the formation of harmful disinfection by products. Degradation of humic acids by means of ultraviolet radiation and ultrasonic irradiation processes was investigated in a laboratory-scale batch photoreactor equipped with an 300 W immersed-type medium-pressure mercury vapour lamp and sonoreactor with low frequency (42 kHz plate type transducer at 170 W of acoustic power with emphasis on the effect of various parameters on degradation efficiency. Experiments were performed at humic acids initial concentrations varying between 2.5-10 mg/L. Oxidation of humic substances has been followed over time by measuring total organic carbon and UV absorbance in 254 nm and 436 nm. Initial results indicated a strong capacity of photolysis for degradation of humic substances. The results also showed that ultrasonic alone cannot be an efficient method for degradation of humic substances in comparison with UV process. The maximum degradation efficiency of humic substances after 90 min of irradiation, however, was only 5.7% and reached a maximum value of 9.5% after 300 min of irradiation. It was found that total organic carbon can be removed effectively by photolysis. It was also found that lower concentrations of humic substances favor the humic substances degradation. Also, the experimental results indicated that the kinetics of ultrasono-oxidation and photo-oxidation processes fit well by pseudo-first order kinetics.

  6. AFM study on the adsorption and aggregation behavior of dissolved humic substances on mica

    Institute of Scientific and Technical Information of China (English)

    GE; Xiaopeng

    2006-01-01

    [1]Hayes M H B,Clapp C E.Humic substances:Considerations of compositions,aspects of structure,and environmental influences.Soil Science,2001,166(11):723-737[2]MacCarthy P.The principles of humic substances.Soil Science,2001,166(11):738-751[3]Swift R S.Macromolecular properties of soil humic substances:Fact,fiction,and opinion.Soil Science,1999,164(11):790-802[4]Wershaw R L.Molecular aggregation of humic substances.Soil Science,1999,164(11):803-813[5]Tombacz E.Colloidal properties of humic acids and spontaneous changes of their colloidal state under variable solution conditions.Soil Science,1999,164(11):814-824[6]Tipping E,Higgins D C.The effect of adsorbed humic substances on the colloid stability of haematite particles.Colloid Surf,1982,5(2):85-92[7]Wilkinson K J,Nègre J C,Buffle J.Coagulation of colloidal material in surface waters:The role of natural organic matter.J Contam Hydrol,1997,26(1-4):229-243[8]Garbarini D R,Lion L W.Influence of the nature of soil organics on the sorption of toluene and trichloroethylene.Environ Sci Technol,1986,20(12):1263-1269[9]Gauthler T D,Seitz W R,Grant C L.Effects of structural and compositional variations of dissolved humic materials on pyrene KOC values.Environ Sci Technol,1987,21(3):243-248[10]Chiou C T,Malcolm R L,Brinton T I,et al.Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids.Environ Sci Technol,1986,20(5):502-508[11]Chiou C T,Kile D E,Brinton T I,et al.A comparison of water solubility enhancements of organic solutes by aquatic humic materials and commercial humic acids.Environ Sci Technol,1987,21(12):1231-1234[12]Rutherford D W,Chiou C T,Kile D E.Influence of soil organic matter composition on partition of organic compounds.Environ Sci Technol,1992,26(2):336-340[13]Grathwohl P.Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons:Implications on KOC correlations.Environ Sci Technol

  7. Effects of mineral surfaces on pyrene partitioning to well-characterized humic substances.

    Science.gov (United States)

    Hur, Jin; Schlautman, Mark A

    2004-01-01

    Mineral surfaces can alter the ability of humic substances (HS) to bind hydrophobic organic contaminants. In this study, complete adsorption (i.e., to avoid HS adsorptive fractionation effects) of a small subset of well-characterized terrestrial and aquatic HS on kaolinite and hematite significantly changed their subsequent organic carbon-normalized partition coefficients K(ads)(oc) for pyrene relative to their original respective dissolved organic carbon-normalized partition coefficients K(dis)(oc). Parallel experiments with ultrafiltration (UF) fractions obtained from purified Aldrich humic acid (PAHA) (Aldrich Chemical, Milwaukee, WI) gave similar results. The heterogeneity among the PAHA UF fractions was examined via their mineral surface adsorption characteristics and their subsequent ability to bind pyrene. As expected, variations in maximum adsorption densities (q(max)), Langmuir adsorption constants (K(q)), and pyrene K(ads)(oc) values were observed among the PAHA UF fractions. However, general trends of q(max), K(q), and pyrene log K(ads)(oc) values for the PAHA UF fractions versus the logarithm of their weight-average molecular weights (MW(w)) did not typically match the corresponding trends obtained with the four aquatic and terrestrial HS. In general, an ideal mixture competitive adsorption model gave reasonable predictions for PAHA sorption to kaolinite and hematite based on their corresponding UF isotherm parameters. Ideal mixture predictions of pyrene partitioning to adsorbed PAHA from the corresponding UF fraction results were better for kaolinite versus hematite, indicating that the underlying mineral surface can alter the effects of HS heterogeneity on hydrophobic organic contaminant sorption.

  8. Effect of humic substances on the precipitation of calcium phosphate

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Hermann H. HAHN; Erhard HOFFMANN; Peter G. WEIDLER

    2006-01-01

    For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0,the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤ 3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.

  9. Separation methods in the chemistry of humic substances.

    Science.gov (United States)

    Janos, Pavel

    2003-01-01

    Separation methods are widely used to isolate humic substances (HSs), to fractionate them before further investigation, and to obtain information about their structure and properties. Among the chromatographic methods, techniques based on a size-exclusion effect appear to be most useful, as they allow us to relate elution data to the molecular mass distribution of HSs. The limitations of this approach are discussed in this review. Gas chromatography with mass spectrometric detection is typically used to identify the products of pyrolysis or thermochemolysis of HSs; this technique is considered most important in the structural investigation of HSs. Electrophoretic methods (especially capillary zone electrophoresis) provide detailed characterization of HSs, but it is very difficult to relate the electrophoretic data to any specific subfraction, structure or properties of HSs. The electrophoretic patterns are often called "fingerprints" and can potentially be used for the identification and classification of HSs. This is limited, however, by the great diversity of the procedures employed and by the low degree of harmonization--no data on reproducibility and between-laboratory comparability are available. The same holds true, to a certain degree, for most methods utilized for the characterization of HSs. Separation methods play an important role in the examination of the interactions of HSs with heavy metals and other chemical pollutants. They allow us to determine binding constants and other data necessary to predict the mobility of chemical pollutants in the environment.

  10. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    Science.gov (United States)

    Deonarine, A.; Lau, B.L.T.; Aiken, G.R.; Ryan, J.N.; Hsu-Kim, H.

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment. ?? 2011 American Chemical Society.

  11. Effects of humic substance on precipitation and aggregation of zinc sulfide nanoparticles

    Science.gov (United States)

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn-S-NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn-S-NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  12. Humic substances-mediated microbial reductive dehalogenation of triclosan

    Science.gov (United States)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  13. Ultrafiltration technique in conjunction with competing ligand exchange method for Ni–humics speciation in aquatic environment

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Boissel, M.; Reuillon, A.; Babu, P.V.R.; Parthiban, G.

    The combination of ultrafiltration technique with competing ligand exchange method provides a better understanding of interactions between Ni and different molecular weight fractions of humic acid (HA) at varying pH in aquatic environment...

  14. Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment.

    Science.gov (United States)

    Esham; Ye; Moran

    2000-12-01

    Bacterial isolates were obtained from enrichment cultures containing humic substances extracted from estuarine water using an XAD-8 resin. Eighteen isolates were chosen for phylogenetic and physiological characterization based on numerical importance in serial dilutions of the enrichment culture and unique colony morphology. Partial sequences of the 16S rRNA genes indicated that six of the isolates were associated with the alpha subclass of Proteobacteria, three with the gamma-Proteobacteria, and nine with the Gram-positive bacteria. Ten isolates degraded at least one (and up to six) selected aromatic single-ring compounds. Six isolates showed ability to degrade [(14)C]humic substances derived from the dominant salt marsh grass in the estuary from which they were isolated (Spartina alterniflora), mineralizing 0.4-1.1% of the humic substances over 4 weeks. A mixture of all 18 isolates did not degrade humic substances significantly faster than any of the individual strains, however, and no isolate degraded humic substances to the same extent as the natural marine bacterial community (3.0%). Similar studies with a radiolabeled synthetic lignin ([beta-(14)C]dehydropolymerisate) showed measurable levels of degradation by all 18 bacteria (3.0-8.8% in 4 weeks), but mineralization levels were again lower than that observed for the natural marine bacterial community (28.2%). Metabolic capabilities of the 18 isolates were highly variable and generally did not map to phylogenetic affiliation.

  15. Humic-Like Substances from Different Compost Extracts Could Significantly Promote Cucumber Growth

    Institute of Scientific and Technical Information of China (English)

    XU Da-Bing; WANG Qiu-Jun; WU Yun-Cheng; YU Guang-Hui; SHEN Qi-Rong; HUANG Qi-Wei

    2012-01-01

    The effects of direct extracts of compost (DEC),aerated fermentation extracts of compost (AFEC) and non-aerated fermentation extracts of compost (NAFEC) on cucumber growth and the action mechanisms were evaluated based on the structure and activity analysis of humic-like substances.AFEC increased cucumber growth most significantly,followed by DEC and NAFEC,which was insignificant compared to the control treatment.Humic-like substances from compost extracts played an important role in promoting cucumber growth.Application of humic-like substances stimulated auxin-like activity and increased chlorophyll content and nitrogen accumulation in plants.The positive auxin-like activity of humic-like substances could be attributed to the relative distribution of special carbon groups,such as those with a large amount of peptidic and carbohydratic groups or with a low content of phenolic groups.In conclusion,the best growth promotion by application of AFEC was mainly attributed to the humic-like substances in the AFEC.

  16. Humic substances in drinking water and the epidemiology of thyroid disease.

    Science.gov (United States)

    Laurberg, Peter; Andersen, Stig; Pedersen, Inge Bülow; Ovesen, Lars; Knudsen, Nils

    2003-01-01

    Thyroid diseases are common in all populations but the type and frequency depends on environmental factors. In Denmark geographical differences in iodine intake are caused by different iodine contents of drinking water, which varies from 139 microg iodine per litre. Comparative epidemiologic studies have demonstrated considerable differences in type and occurrence of thyroid disease with more goitre and hyperthyroidism in Aalborg with water iodine content around 5 microg/L, and more hypothyroidism in Copenhagen with water iodine around 20 microg/L. In Denmark, iodine in ground water is bound in humic substances, which have probably leached from marine sediments in the aquifers. Interestingly, humic substances in water from other parts of the world have goitrogenic properties, especially humic substances from coal and shale. Humic substances are heterogeneous mixtures of naturally occurring molecules, produced by decomposition of plant and animal tissues. The effect of humic substances in drinking water on the epidemiology of thyroid disease probably depends on the source of aquifer sediments.

  17. Chirality and origin of atmospheric humic-like substances

    Directory of Open Access Journals (Sweden)

    I. Salma

    2009-09-01

    Full Text Available Aerosol water extracts and atmospheric humic-like substances (HULIS obtained from PM2.5-fraction aerosol samples collected in a rural/continental background environment and in an urban environment in spring and summer, and at a tropical site that was heavily impacted by biomass burning were studied. Mean organic matter-to-organic carbon mass conversion factor and standard deviation of 2.04±0.06 were derived for HULIS from biomass burning. Mean atmospheric concentrations of HULIS for the rural and urban environments, and for the biomass burning during daylight periods and nights were 1.65, 2.2, 43, and 60 μg m, respectively. This indicates that intense emission sources and/or formation mechanisms of HULIS operate in biomass burning. Mean contributions of C in HULIS (HULIS-C to water-soluble organic carbon (WSOC were 35, 48, 63, and 76%, respectively, for the sample set listed. The data suggest that HULIS-C is the major component of the WSOC in tropical biomass burning, and that HULIS most likely do not share common origin in the three environments studied. Differentiation among the possible formation processes was attempted by investigating the optical activity of HULIS through their (electronic and vibrational circular dichroism properties. The urban HULIS did not show optical activity, which is in line with the concept of their major airborne formation from anthropogenic aromatics. The rural HULIS revealed weak optical activity, which may be associated with one of their important formation pathways by photo-oxidation and oligomerisation, i.e., with the formation from chiral biogenic precursors with one of the enantiomers slightly enriched. The biomass burning HULIS exhibited strong effect in the vibrational circular dichroism as a clear distinction from the other two types. This was related to the contribution of the thermal degradation products of lignins and cellulose. The biomass burning HULIS resemble Suwannee

  18. 15N NMR Spectroscopic Study on Nitrogen Formsin1mmHumic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil, alateritic red soil and a weathered coal and the effect of acidhydrolysis on N structures of soil humic substances were studied byusing {15N cross-polarization magic angle spinning nuclearmagnetic resonance (CPMAS NMR) spectroscopy. Of the detectable15N-signal intensity in the spectra of soil humic substances71%79% may be attributed to amide groups, 10%18%to aromatic/aliphatic amines and 6%11% to indole- andpyrrole-like N. Whereas in the spectrum of the fulvic acid fromweathered coal 46%, at least, of the total 15N-signalintensity might be assigned to pyrrole-like N, 14% toaromatic/aliphatic amines, and the remaining intensities could not beassigned with certainty. Data on nonhydrolyzable residue ofprotein-sugar mixture and a 15N-labelled soil fulvic acidconfirm the formation of nonhydrolyzable heterocyclic N during acidhydrolysis.

  19. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades

    Science.gov (United States)

    Hoch, A.R.; Reddy, M.M.; Aiken, G.R.

    2000-01-01

    The crystallization of calcium carbonate minerals plays an integral role in the water chemistry of terrestrial ecosystems. Humic substances, which are ubiquitous in natural waters, have been shown to reduce or inhibit calcite crystal growth in experiments. The purpose of this study is to quantify and understand the kinetic effects of hydrophobic organic acids isolated from the Florida Everglades and a fulvic acid from Lake Fryxell, Antarctica, on the crystal growth of calcite (CaCO3). Highly reproducible calcite growth experiments were performed in a sealed reactor at constant pH, temperature, supersaturation (?? = 4.5), P(CO2) (10-3.5atm), and ionic strength (0.1 M) with various concentrations of organic acids. Higher plant-derived aquatic hydrophobic acids from the Everglades were more effective growth inhibitors than microbially derived fulvic acid from Lake Fryxell. Organic acid aromaticity correlated strongly with growth inhibition. Molecular weight and heteroatom content correlated well with growth inhibition, whereas carboxyl content and aliphatic nature did not. Copyright (C) 1999 Elsevier Science Ltd.

  20. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    Science.gov (United States)

    Ye, R.; Keller, J. K.; Jin, Q.; Bohannan, B. J. M.; Bridgham, S. D.

    2014-01-01

    Methane (CH4) production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs) are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS) to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2), and hydrogen (H2), as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  1. Mechanisms for the suppression of methane production in peatland soils by a humic substance analog

    Directory of Open Access Journals (Sweden)

    R. Ye

    2014-01-01

    Full Text Available Methane (CH4 production is often impeded in many northern peatland soils, although inorganic terminal electron acceptors (TEAs are usually present in low concentrations in these soils. Recent studies suggest that humic substances in wetland soils can be utilized as organic TEAs for anaerobic respiration and may directly inhibit CH4 production. Here we utilize the humic analog anthraquinone-2, 6-disulfonate (AQDS to explore the importance of humic substances, and their effects on the temperature sensitivity of anaerobic decomposition, in two peatland soils. In a bog peat, AQDS was not instantly utilized as a TEA, but greatly inhibited the fermentative production of acetate, carbon dioxide (CO2, and hydrogen (H2, as well as CH4 production. When added together with glucose, AQDS was partially reduced after a lag period of 5 to 10 days. In contrast, no inhibitory effect of AQDS on fermentation was found in a fen peat and AQDS was readily reduced as an organic TEA. The addition of glucose and AQDS to both bog and fen peats caused complicated temporal dynamics in the temperature sensitivity of CH4 production, reflecting temporal changes in the temperature responses of other carbon processes with effects on methanogenesis. Our results show that the humic analog AQDS can act both as an inhibitory agent and a TEA in peatland soils. The high concentrations of humic substances in northern peatlands may greatly influence the effect of climate change on soil carbon cycling in these ecosystems.

  2. Characterization and differentiation of chemical heterogeneity in humic substances by continuous intrinsic proton affinity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.X.; Dong, W.M.; Huang, M.E.; Tao, Z.Y.

    2002-07-01

    The chemical heterogeneity of proton binding on humic substances was studied via continuous intrinsic proton affinity distributions calculated using the condensation approximation from the master curves for two soil fulvic acids (FAs), one soil humic acid (HA) and one fulvic acid obtained from weathered coal. The master curves, i.e. plots of theta(T.H) (the overall protonation degree) versus Hs (the proton concentration in the diffuse double layer), were obtained from potentiometric titration curves at three ionic strengths. The value of Hs was calculated using an electrical double-layer model in which the humic substances were considered as rigid impermeable spheres. For all four samples, the proton affinity distributions were characterized by a few peaks with peak positions in the range 4-5.5. The similarities and differences between the samples studied were discussed.

  3. Influence of humic substances on plant-microbes interactions in the rhizosphere

    Science.gov (United States)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  4. Development of an automated system for isolation and purification of humic substances

    NARCIS (Netherlands)

    Zomeren, van A.; Weij-Zuiver, van der E.; Comans, R.N.J.

    2008-01-01

    Characterization of humic substances (HS) in environmental samples generally involves labor-intensive and time-consuming isolation and purification procedures. In this paper, the development of an automated system for HS isolation and purification is described. The novelty of the developed system li

  5. Proton binding properties of humic substances originating from natural and contaminated materials

    NARCIS (Netherlands)

    Zomeren, van A.; Costa, A.; Pinheiro, J.P.; Comans, R.N.J.

    2009-01-01

    Humic substances (HS) are ubiquitous organic constituents in soil and water and can strongly adsorb metal contaminants in natural and waste environments. Therefore, understanding and modeling contaminant-HS interactions is a key issue in environmental risk assessment. Current binding models for HS,

  6. The effects of humic substances on the activity of metalaxyl+mancozeb, fungicide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Li, S.; Li, B.; Zhang, Q. [Chinese Academy of Sciences, Taiyuan (China). State Key Lab of Coal Conversion

    1999-07-01

    The effects of three dissolved humic substances on the activity of the fungicide metalaxy+mancozeb against the phytophthora were studied. The zone of inhibition technique was used. A synergistic effect was observed and the mechanism of the interaction is discussed. 16 refs., 2 figs., 1 tab.

  7. Electrochemical removal and recovery of humic-like substances from wastewater

    NARCIS (Netherlands)

    Kliaugaitė, Daina; Yasadi, Kamuran; Euverink, Gert-Jan; Bijmans, Martijn F.M.; Racys, Viktoras

    2013-01-01

    The secondary effluent from paper and food industry wastewater still contains a high chemical oxygen demand and color intensity caused by the presence of difficult degradable organic compounds. These compounds are mostly humic-like substances. This study focused on two promising electrochemical meth

  8. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Science.gov (United States)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  9. Redox stability of neptunium(V) and neptunium(IV) in the presence of humic substances of varying functionality

    Energy Technology Data Exchange (ETDEWEB)

    Schmeide, K.; Bernhard, G. [Forschungszentrum Dresden-Rossendorf, Inst. of Radiochemistry, Dresden (Germany)

    2009-07-01

    The reducing properties of humic substances (humic acid (HA) and fulvic acid (FA)) of varying functionality towards Np(V) have been studied under anaerobic conditions between pH 3.5 and pH 9.0 in batch experiments. For Np redox speciation in solution solvent extraction, NIR absorption spectroscopy and ultrafiltration were applied. The reduction rate varied with type of humic substances, solution pH. HA to Np concentration ratio, and equilibration time. In comparison to natural humic substances, synthetic HA with designed redox properties lead to a stronger reduction of Np(V) to Np(IV). The reducing capacities of humic substances towards Np(V) could be correlated to their phenolic/acidic OH group content, which includes both hydroquinone-like moieties and non-quinoid phenols. By applying a synthetic HA with blocked phenolic/acidic OH groups, the dominance of phenolic/acidic OH groups as the redox-active moieties of humic substances was verified. The Np(IV) formed in the course of the experiments is predominantly humic colloid-bound. Np(IV) oxo/hydroxide colloids, that might be formed in addition, are stabilized by adsorbed humic substances. The remaining Np(V) occurs as NpO{sub 2}{sup +} ion or Np(V) humate depending on pH. The ability of synthetic HA to effectively maintain Np in the tetravalent state during humate complexation experiments could be shown. (orig.)

  10. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties

    KAUST Repository

    Aubry, Cyril

    2013-06-01

    Atomic force microscopy (AFM) was used to study interaction forces between four Natural Organic Matter (NOM) samples of different physicochemical characteristics and origins and mica surface at a wide range of ionic strength. All NOM samples were strongly adsorbed on positively charged iron oxide-coated silica colloidal probe. Cross-sectioning by focused ion beam milling technique and elemental mapping by energy-filtered transmission electron microscopy indicated coating completeness of the NOM-coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although the latter became more influential with increasing ionic strength. Retracting force profiles showed a NOM adhesion behavior on mica consistent with its physicochemical characteristics. Humic-like substances, referred as the least hydrophilic NOM fraction, i.e., so called hydrophobic NOM, poorly adsorbed on hydrophilic mica due to their high content of ionized carboxyl groups and aromatic/hydrophobic character. However, adhesion force increased with increasing ionic strength, suggesting double layer compression. Conversely, polysaccharide-like substances showed high adhesion to mica. Hydrogen-bonding between hydroxyl groups on polysaccharide-like substances and highly electronegative elements on mica was suggested as the main adsorption mechanism, where the adhesion force decreased with increasing ionic strength. Results from this investigation indicated that all NOM samples retained their characteristics after the coating procedure. The experimental approach followed in this study can potentially be extended to investigate interactions between NOM and clean or fouled membranes as a function of NOM physicochemical characteristics and solution chemistry. © 2013 Elsevier Ltd.

  11. Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions.

    Science.gov (United States)

    Morales, Jorge; Manso, José A; Cid, Antonio; Mejuto, Juan C

    2012-11-01

    The influence of humic aggregates in water solution upon the chemical stability of carbofuran (CF) and the carbofuran-derivatives, 3-hydroxy-carbofuran (HCF) and 3-keto-carbofuran (KCF), has been investigated in basic media. An inhibition upon the basic hydrolysis of 3-hydroxy-carbofuran and 3-keto-carbofuran (≈ 1.7 and ≈ 1.5-fold, respectively) was observed and it was rationalized in terms of the micellar pseudophase model. Nevertheless, non-significant effect upon the carbofuran stability was found in the presence of humic substances. These behaviors have been compared with the corresponding ones in other synthetic colloidal aggregates.

  12. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  13. Distinguishing black carbon from biogenic humic substances in soil clay fractions

    Science.gov (United States)

    Laird, D.A.; Chappell, M.A.; Martens, D.A.; Wershaw, R. L.; Thompson, M.

    2008-01-01

    Most models of soil humic substances include a substantial component of aromatic C either as the backbone of humic heteropolymers or as a significant component of supramolecular aggregates of degraded biopolymers. We physically separated coarse (0.2-2.0????m e.s.d.), medium (0.02-0.2????m e.s.d.), and fine (> 0.02????m e.s.d.) clay subfractions from three Midwestern soils and characterized the organic material associated with these subfractions using 13C-CPMAS-NMR, DTG, SEM-EDX, incubations, and radiocarbon age. Most of the C in the coarse clay subfraction was present as discrete particles (0.2-5????m as seen in SEM images) of black carbon (BC) and consisted of approximately 60% aromatic C, with the remainder being a mixture of aliphatic, anomeric and carboxylic C. We hypothesize that BC particles were originally charcoal formed during prairie fires. As the BC particles aged in soil their surfaces were oxidized to form carboxylic groups and anomeric and aliphatic C accumulated in the BC particles either by adsorption of dissolved biogenic compounds from the soil solution or by direct deposition of biogenic materials from microbes living within the BC particles. The biogenic soil organic matter was physically separated with the medium and fine clay subfractions and was dominated by aliphatic, anomeric, and carboxylic C. The results indicate that the biogenic humic materials in our soils have little aromatic C, which is inconsistent with the traditional heteropolymer model of humic substances.

  14. Replenishment of the Reference Suwannee River Natural Organic Matter (NOM): Final Report on a Proposal to International Humic Substances Society

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Report on International Humic Substances Society findings of natural organic matter content along the Suwannee River sill in Southeastern Georgia.

  15. The influence of humic substance on Cd accumulation of phytostabilizer Athyrium wardii (Hook.) grown in Cd-contaminated soils.

    Science.gov (United States)

    Zhan, Juan; Li, Tingxuan; Yu, Haiying; Zhang, Xizhou; Zhao, Li

    2016-09-01

    The application of organic amendments into heavy metal contaminated soil is considered as an environmentally friendly technique to promote the potential of phytoremediation. A pot experiment was carried out to evaluate the effect of humic substances on growth, cadmium (Cd) accumulation and phytostabilization potential of the mining ecotype (ME) and the corresponding non-mining ecotype (NME) of Athyrium wardii (Hook.) grown in Cd-contaminated soils. The addition of the humic substances demonstrated great promotion for the growth and Cd uptake of ME. Both plant biomass and Cd concentration significantly increased with the increasing application of the humic substances up to 100 g kg(-1), beyond which no significant change of underground part biomass and Cd concentrations in underground part of A. wardii was observed. The maximum Cd concentration in underground part of ME was 180 mg kg(-1) when 150 g kg(-1) humic substances were applied. The ME showed greater Cd accumulation capability in underground part (0.47-0.68 mg plant(-1)) than that of NME (0.27-0.45 mg plant(-1)). Increasing bioaccumulation coefficient (BCF) values of A. wardii was observed with increasing application of the humic substances. The BCF values of ME were higher than those of NME. However, the use of the humic substances exhibited little impact on translocation factors (TFs) of ME, and the TF values of ME were less than NME. Furthermore, the application of the humic substances improved the remediation factors (RFs) of A. wardii. The RF values in underground part of ME ranging from 0.73 to 0.91 % were apparently higher than those of NME. These results indicated that the humic substances can be a potential candidate for enhancing the phytostabilization of A. wardii grown in Cd-contaminated soils.

  16. Role of humic substances in the formation of nanosized particles of iron corrosion products

    Science.gov (United States)

    Pankratov, D. A.; Anuchina, M. M.

    2017-02-01

    The corrosion of metallic iron in aqueous solutions of humic substances (HS) with limited access to air is studied. The HS are found to exhibit multiple functions. Acid-base, redox, and surfactant properties, along with the ability to form complexes with iron in solution, are displayed in the corrosion process. Partial reduction of the HS during the corrosion reaction and their adsorption onto the main corrosion product (Fe3O4 nanoparticles) are observed.

  17. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique

    OpenAIRE

    MARTÍNEZ GIL, PABLO; Laguarda Miró, Nicolás; Soto Camino, Juan; Masot Peris, Rafael

    2013-01-01

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in count...

  18. Effect of Dissolved Humic Substances on the Photochemical Degradation Rate of 1-Aminopyrene and Atrazine

    Directory of Open Access Journals (Sweden)

    Hongtao Yuzuri

    2002-10-01

    Full Text Available Abstract: Humic substances (HS are ubiquitous in the environment, and can act as photosensitizers in the redox reactions of some photochemical processes. The influence of HS in these reactions varies with the HS type and concentration. The total organic carbon content (TOC of some commercial HS (such as soil and river humic acid, and fulvic acid was studied. 1-Aminopyrene (1-AP and 1-hydoxypyrene (1-HP are carcinogenic and slightly water-soluble polycyclic aromatic hydrocarbons (PAH. The impact of PAH on natural environment is related to their photolysis rates and photoproducts; therefore, it is of interest to study the photolysis of these compounds. Our previous study showed that the photolysis rate of 1-HP was inhibited by HS. In this study, photolysis of 1-AP was conducted with pure water, natural river water, and pure water containing commercial HS. It was found that the photolysis rate of 1-AP can be inhibited or enhanced by HS, depending on the type and concentration. The first order photolysis rate constant of 1-AP (10 μM in phosphate buffer (pH 7.0, 1 mM containing a humic acid (20-80 ppm was enhanced by up to 5 folds. With a fulvic acid (20-80 ppm, it was enhanced by about 2 folds. With a soil humic acid, it was enhanced by about 2 folds at the concentration of 20 ppm and was inhibited by up to 4 folds at the concentration of 80 ppm. Atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine is a widely used herbicide. It is toxic, often bioaccumulative and persistent. In this study, the effect of HS on the photochemical fate of atrazine was also studied. The results showed that photolysis of atrazine can be enhanced by humic acid, depending on the type and concentration of humic acid. The fulvic acid has no effect on its photolysis within 10 days.

  19. 15N NMR Spectroscopic Study on Nitrogen Forms in Humic Substances of Soils

    Institute of Scientific and Technical Information of China (English)

    WENQIXAIO; ZHUOSUNENG; 等

    2001-01-01

    Nitrogen forms of humic substances from a subalpine meadow soil,a lateritic red soil and a weathered cola and the effect of acid hydrolysis on N structures of soil humic substances were studied by using 15N cross-polarization magic angle spinning nuclear magnetic resonance(CPMAS NMR) spectroscopy,Of the detectable 15N-signal intensity in the spectra of soil humic substances 71%-79% may be attributed to amide groups ,10%-18% to aromatic/aliphatic amines and 6%-11% to indole-and pyrrole-like N.Whereas in the spectrum of the fulvic acid from weathered coal 46%,at least,of the total 15N-signal intensity might be assigned to pyrrole-like N,14% to aromatic/aliphatic amines,and the reamining intensities could not be assigned with certainty,Data on nonhydrolyzable reside of protein-sugar mixture and a 15N-labelled soil fulvic acid confirm the formation of nonhydrolyzable heterocyclic N during acid hydrolysis.

  20. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    Science.gov (United States)

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  1. The effects of polymer characteristics on nano particle separation in humic substances removal by cationic polymer coagulation.

    Science.gov (United States)

    Kvinnesland, T; Odegaard, H

    2004-01-01

    Removal of humic substances by coagulation involves nano- and microparticle transport processes. The objective of this paper has been to describe the effects of polymer characteristics on the initial coagulation of nano-sized humic substances and on the aggregates' ability to form larger flocs. The study offers a direct comparison of four different low molecular weight polycations, with charge densities ranging from 4.0 to 7.0 meq/g, as well as of a low and medium molecular weight cationic polyacrylamide with practically equal charge densities. The extent of coagulation of humic substances, determined as the percentage removal of humic substances after filtration through 0.1 microm, could, regardless of the polymer type, be explained by the amount of cationic charge equivalents added per mg TOC of humic substances. The optimal polymer dosage with respect to the extent of flocculation, determined as the percentage removal after filtration through 11 microm could not be explained by this, but the maximum extent of flocculation obtained with each polymer type increased with increasing polyelectrolyte charge density. However, the weak polycation chitosan showed a significantly higher maximum extent of flocculation than would be predicted from its charge density. Polyelectrolyte molecular weight did not show any significant effect on the coagulation of humic substances, nor did it increase the extent of floc separability at 11 microm.

  2. Root growth of tomato seedlings intensified by humic substances from peat bogs

    Directory of Open Access Journals (Sweden)

    Alexandre Christofaro Silva

    2011-10-01

    Full Text Available Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS, humic (HA and fulvic acids (FA isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.

  3. In Situ Formation of Humic-like Substances In Model Cloud Water

    Science.gov (United States)

    Gelencsér, A.; Hoffer, A.; Kiss, G.; Tombácz, E.; Blazsó, M.; Bencze, L.

    It is now widely established that humic-like substances (HULIS) are ubiquitous con- stituents in continental fine aerosol. Several studies have confirmed that HULIS are abundant organic species in the aqueous extract of rural, urban and biomass burn- ing aerosol. We have recently suggested that such compounds may be secondary (ternary?) aerosol constituents which are formed in the condensed phase from a vast array of low volatility organic precursors of primary or secondary origin. However, no experimental evidence has ever confirmed that such polymerisation reactions can indeed take place within the limited residence time of the accumulation mode aerosol. Normally, humification processes are generally assumed to take years and require spe- cial microbial environment which is barely available aloft. We studied polymerisation reactions of aromatic hydroxy-acids in the laboratory in solutions modelling the condi- tions prevalent in cloud water. In the solutions OH radicals were generated in Fenton- type reactions. The course of the reaction was monitored by UV-VIS spectrophotom- etry and liquid chromatography. The reaction products were characterised by fluo- rescence spectrometry, liquid chromatography-mass spectrometry and pyrolysis- gas chromatography-mass spectrometry. By monitoring the absorbance of the simulated cloud solution we demonstrated that chemical reactions took place in the solution pro- ducing measurable concentrations of chromophoric substances within the order of a few hours. The recorded UV-VIS spectra of the reaction products were very similar to those which had been observed in aqueous extracts of rural fine aerosol as well as in aqueous solutions of terrestrial humic and fulvic acids. Electrospray-mass spectra of the reaction products revealed that they consisted of an array of molecular species with a continuous molecular weight distribution peaking at a few hundred Dalton. Such spectra were also found to be typical of terrestrial humic and

  4. Investigating Nitrate-Dependent Humic Substance Oxidation and In-Service K-12 Teachers' Understanding of Microbiology

    Science.gov (United States)

    Jones, Nastassia N.

    2011-01-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments…

  5. Comparison of humic substances isolated from peatbog water by sorption on DEAE-cellulose and amberlite XAD-2

    Science.gov (United States)

    Hejzlar, J.; Szpakowska, B.; Wershaw, R. L.

    1994-01-01

    Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered using 0.1 M NaOH, whereas 98% of the AHS adsorbed onto XAD was released by consecutive elution with 1 M NH4OH (91%) and methanol (7%). Four main fractions of different composition were obtained from each of the alkali-desorbed AHS samples by Sephadex-gel chromatography. General agreement was found in relative amounts, spectroscopic characteristics and composition of corresponding fractions of both isolates except nitrogen content, which was significantly higher in AHS isolated with XAD, apparently due to the reaction of AHS with NH4OH used for the desorption from the resin.Aquatic humic substances (AHS) were isolated from peatbog water by adsorption (1) on diethylaminoethyl cellulose (DEAE-C) and (2) on Amberlite XAD-2 (XAD) to compare yields of the methods and the composition of the isolated AHS. To provide a detailed comparison, the isolates were fractionated using size-exclusion and hydrophobic-interaction chromatography on Sephadex G-50. The fractions were characterized by ultraviolet-visible, infrared and 13C-nuclear magnetic spectroscopies and analyzed for elemental, functional-group, carbohydrate and amino acid compositions. More AHS adsorbed onto DEAE-C than onto XAD-2 (94 and 74%, respectively). However, only 76% of the AHS adsorbed onto DEAE-C was recovered

  6. Some theoretical and practical aspects in the separation of humic substances by combined liquid chromatography methods.

    Science.gov (United States)

    Hutta, Milan; Góra, Róbert; Halko, Radoslav; Chalányová, Mária

    2011-12-01

    Permanent need to understand nature, structure and properties of humic substances influences also separation methods that are in a wide scope used for fractionation, characterization and analysis of humic substances (HS). At the first glance techniques based on size-exclusion phenomena are the most useful and utilized for relating elution data to the molecular mass distribution of HS, however, with some limitations and exceptions, respectively, in the structural investigation of HS. The second most abundant separation mechanism is reversed-phase based on weak hydrophobic interactions beneficially combined with the step gradients inducing distinct features in rather featureless analytical signal of HS. Relatively great effort is invested to the developments of immobilized-metal affinity chromatography mimicking chelate-forming properties of HS as ligands in the environment. Surprisingly, relatively less attention is given to the ion-ion interactions based ion-exchange chromatography of HS. Chromatographic separation methods play also an important role in the examination of interactions of HS with pesticides. They allow us to determine binding constants and the other data necessary to predict the mobility of chemical pollutants in the environment. HS is frequently adversely acting in analytical procedures as interfering substance, so more detailed information is desired on manifestation of its numerous properties in analytical procedures. The article topic is covered by the review emphasizing advances in the field done in the period of last 10 years from 2000 till 2010.

  7. Fouling of a microfiltration membrane by humic-like substances: a mathematical approach to modelling permeate flux and membrane retention.

    Science.gov (United States)

    Poorasgari, Eskandar; Farsi, Ali; Christensen, Morten Lykkegaard

    2016-01-01

    Membrane retention of the humic-like substances present in a soluble microbial products (SMP) suspension was studied by using a dead-end filtration system. The SMP suspension was extracted from the sludge of an enhanced biological phosphorus removal-membrane bioreactor. Our results showed that both adsorption and steric retention of the humic-like substances governed their transport through the membrane during the filtration. The adsorption, which followed pseudo-first order kinetics, did not cause substantial decline of permeate flux. The steric retention, on the other hand, formed a gel layer, which in turn led to a major decrease in the flux. The reduction of permeate flux was well predicted by cake filtration theory. Based on the adsorption and the steric retention, a new model was developed for predicting the overall membrane retention of the humic-like substances. The general trend of the modelled overall retention was in partial agreement with the experimental results.

  8. Humic substances and its distribution in coffee crop under cover crops and weed control methods

    Directory of Open Access Journals (Sweden)

    Bruno Henrique Martins

    2016-08-01

    Full Text Available ABSTRACT Humic substances (HS comprise the passive element in soil organic matter (SOM, and represent one of the soil carbon pools which may be altered by different cover crops and weed control methods. This study aimed to assess HS distribution and characteristics in an experimental coffee crop area subjected to cover crops and cultural, mechanical, and chemical weed control. The study was carried out at Londrina, in the state of Paraná, southern Brazil (23°21’30” S; 51°10’17” W. In 2008, seven weed control/cover crops were established in a randomized block design between two coffee rows as the main-plot factor per plot and soil sampling depths (0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm as a split-plot. HS were extracted through alkaline and acid solutions and analyzed by chromic acid wet oxidation and UV-Vis spectroscopy. Chemical attributes presented variations in the topsoil between the field conditions analyzed. Cover crop cutting and coffee tree pruning residues left on the soil surface may have interfered in nutrient cycling and the humification process. Data showed that humic substances comprised about 50 % of SOM. Although different cover crops and weed control methods did not alter humic and fulvic acid carbon content, a possible incidence of condensed aromatic structures at depth increments in fulvic acids was observed, leading to an average decrease of 53 % in the E4/E6 ratio. Humin carbon content increased 25 % in the topsoil, particularly under crop weed-control methods, probably due to high incorporation of recalcitrant structures from coffee tree pruning residues and cover crops.

  9. Soft X-Ray Spectromicroscopy Investigation of the Interaction of Aquatic Humic Acid and Clay Colloids.

    Science.gov (United States)

    Rothe; Denecke; Dardenne

    2000-11-01

    Soft X-ray spectromicroscopy investigations of the interaction of aquatic humic acid (HA) and montmorillonite colloids have been performed in situ at the NSLS X1-A STXM endstation. Images have been recorded of montmorillonite particles, HA aggregates, and mixed suspensions of both montmorillonite + HA and montmorillonite + carboxyl polystyrene microspheres, as reference organic colloids. Special emphasis has been placed on the sample preparation technique in order to keep the colloid particles hydrated during all measurements. C 1s near edge absorption fine structure extracted from STXM image stacks reveals electronic transitions corresponding to functional -COOH and -C(6)H(5) groups present in HA and polystyrene. XANES peak intensities reflect the relative amounts of these two carbon functional groups in the organic particles. For example, the greater amount of carboxyl groups in HA compared to the latex reference particles affects a larger 1s-->pi* transition intensity. A specific form of montmorillonite-HA particle agglomeration at near-neutral pH has been observed. Under these conditions, we found no separate clustering of HA. Instead, STXM images show the HA to coat the clay mineral surface, leading to nearly a fractal manner of aggregation. Copyright 2000 Academic Press.

  10. Vienna Soil-Organic-Matter Modeler--Generating condensed-phase models of humic substances.

    Science.gov (United States)

    Sündermann, Axel; Solc, Roland; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H; Oostenbrink, Chris

    2015-11-01

    Humic substances are ubiquitous in the environment and have manifold functions. While their composition is well known, information on the chemical structure and three-dimensional conformation is scarce. Here we describe the Vienna Soil-Organic-Matter Modeler, which is an online tool to generate condensed phase computer models of humic substances (http://somm.boku.ac.at). Many different models can be created that reflect the diversity in composition and conformations of the constituting molecules. To exemplify the modeler, 18 different models are generated based on two experimentally determined compositions, to explicitly study the effect of varying e.g. the amount of water molecules in the models or the pH. Molecular dynamics simulations were performed on the models, which were subsequently analyzed in terms of structure, interactions and dynamics, linking macroscopic observables to the microscopic composition of the systems. We are convinced that this new tool opens the way for a wide range of in silico studies on soil organic matter.

  11. Influence of humic substances on electrochemical degradation of trichloroethylene in limestone aquifers

    Science.gov (United States)

    Rajic, Ljiljana; Fallahpour, Noushin; Nazari, Roya; Alshawabkeh, Akram N.

    2015-01-01

    In this study we investigate the influence of humic substances (HS) on electrochemical transformation of trichloroethylene (TCE) in groundwater from limestone aquifers. A laboratory flow-through column with an electrochemical reactor that consists of a palladized iron foam cathode followed by a MMO anode was used to induce TCE electro-reduction in groundwater. Up to 82.9% TCE removal was achieved in the absence of HS. Presence of 1, 2, 5, and 10 mgTOC L−1 reduced TCE removal to 70.9%, 61.4%, 51.8% and 19.5%, respectively. The inverse correlation between HS content and TCE removal was linear. Total organic carbon (TOC), dissolved organic carbon (DOC) and absorption properties (A=254 nm, 365 nm and 436 nm) normalized to DOC, were monitored during treatment to understand the behavior and impacts of HS under electrochemical processes. Changes in all parameters occurred mainly after contact with the cathode, which implies that the HS are reacting either directly with electrons from the cathode or with H2 formed at the cathode surface. Since hydrodechlorination is the primary TCE reduction mechanism in this setup, reactions of the HS with the cathode limit transformation of TCE. The presence of limestone gravel reduced the impact of HS on TCE removal. The study concludes that presence of humic substances adversely affects TCE removal from contaminated groundwater by electrochemical reduction using palladized cathodes. PMID:26549889

  12. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    Science.gov (United States)

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  13. Liquid organomineral fertilizer containing humic substances on soybean grown under water stress

    Directory of Open Access Journals (Sweden)

    Marcelo R. V. Prado

    2016-05-01

    Full Text Available ABSTRACT This study evaluated the effect of an organomineral fertilizer enriched with humic substances on soybean grown under water stress. The experiment was performed in a greenhouse using a Red Latosol (Oxisol with adequate fertility as substrate, in which soybean plants were cultivated with and without water stress. The experimental design was randomized blocks, in a 2 x 5 factorial scheme (two moisture levels and five fertilizer doses: 0, 1, 2, 4 and 8 mL dm-3, totaling 10 treatments, with four replicates. The organomineral fertilizer was applied in the soil 21 days after plant emergence and the water regimes were established one week thereafter. The fertilizer was not able to attenuate the effects of water stress, reducing soybean grain yield by more than 50% compared with plants cultivated under no stress. Fertilizer doses caused positive response on soybean nutrition and grain yield and, under water stress condition, the most efficient dose was 5.4 mL dm-3. There were lower leaf concentrations of nitrogen, phosphorus and potassium and higher concentrations of sulfur in plants under stress. Humic substances favor the absorption of micronutrients.

  14. Comparison of analytical methods for Humic Like Substances (HULIS measurements in atmospheric particles

    Directory of Open Access Journals (Sweden)

    C. Baduel

    2009-08-01

    Full Text Available Humic-Like Substances (HULIS are a major contributor to the organic carbon in atmospheric aerosol. It would be necessary to standardize an analytical method that could be easily and routinely used for HULIS measurements. We present one of the first comparisons of two of the main methods in use to extract HULIS, using I a weak anion exchanger (DEAE and II the combination of two separation steps, one according to polarity (on C18 and the second according to acidity (with a strong anion exchanger SAX. The quantification is performed with a TOC analyzer, complemented by an investigation of the chemical structure of the extracted fractions by UV-Visible spectroscopy. The analytical performances of each method are determined and compared for humic substances standards. These methods are further applied to determine the water extractable HULIS (HULISWS and the 0.1 M NaOH alkaline extractable HULIS (HULIS T in atmospheric aerosol collected in an Alpine Valley during winter time. This comparison, although on a limited batch of samples shows that the simpler DEAE isolation procedure leads to higher recoveries and better reproducibility than the C18-SAX procedure, and might therefore be preferable.

  15. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  16. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  17. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    Science.gov (United States)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  18. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    I. R. Zamora

    2013-09-01

    Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different

  19. Discrete fragment model for apparent formation constants of actinide ions with humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Takayuki; Yoshida, Hatsumi; Aoyama, Shunsuke; Kobayashi, Taishi; Takagi, Ikuji [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Moriyama, Hirotake [Kyoto Univ., Osaka (Japan). Research Reactor Inst.

    2015-09-01

    A semi-empirical thermodynamic model was applied to estimate the apparent formation constants of actinide ions, i.e., Th(IV), Pu(IV) and Np(V), with humic substances (HSs), including humic and fulvic acids, over a wide range of solution conditions, i.e., pH, ionic strength, and HS and metal concentrations. The hypothetical HSs consist of humic and fulvic acids with nine types of simple organic ligands, which include aromatic and aliphatic carboxyl groups and phenol groups, as binding sites. The abundance of each binding site in the hypothetical HSs was determined via a fitting analysis using an acid-dissociation dataset for several HSs. To determine the apparent formation constant of a given metal ion with HSs, 54 specific binding sites were considered, including nine monodentate sites (1:1 metal/ligand complexes) and 45 bidentate sites (1:2 metal/ligand complexes). The formation constant of each monodentate binding was determined from the experimental data, while those of the bidentate bindings were determined by considering two monodentate bindings and the chelating effect, for which one of the adjustable parameters was introduced in the model. Introduction of the other parameter, which is related to the fraction of monodentate to bidentate sites (i.e., the heterogeneity), afforded the parameter values with good correlation with the apparent formation constant data. The present model with adjusted parameter values well reproduced the experimental apparent complex formation constants for actinide ion interaction with HSs in a wide range of solution conditions except for those obtained at trace concentrations.

  20. Decreasing toxic and mutagenic activity of soils through the application of humic substances

    Science.gov (United States)

    Gorova Alla, I.; Pavlichenko Artem, 2.; Klimkina Iryna, 3.

    2009-04-01

    Based on an example of conditions on mining industry land adjacent to the Dnepr River in the Dnepropetrovsk Region (Ukraine), the ecological quality of the soils was evaluated by cytogenetic methods and, in parallel, the efficiency of using humates obtained from brown coal of the Alexandria deposit was also researched. During an ecological monitoring programme from 1997 to 2007, the genetic characteristics of soils at 12 locations in Dnepropetrovsk, and at 33 locations in four other industrial mining areas in the region, was studied. A theoretical basis for the use of humic substances for blocking the migration paths of ecological toxic-matter within a soil-to-plant system was reasoned, namely that introducing natrium humate into the soil would promote a normalization of the cell division processes and a reduction in the chromosome aberration rate in the root meristem of the biological indicators. Laboratory tests involved growing seeds of an indicator plant (Pisum sativum L.) in the different soils, to some of which humic substances had been added. The data showed evidence that the soils of the region display a rather patchy picture in terms of toxic and mutagen features. This was obvious from the variety of levels on the mitotic index, as well as from the increase of 5 to 24 times the frequency of aberrant chromosomes. Introducing 0.01per cent of a Christecol water solution into a substratum for growing the indicator plant apparently reduced (Pmutagenic rates of the soils during the test was reduced by 1.5 to 4 times and, at the same time, a reduction of the soil toxic rates was also observed. The reduction in chromosome aberration levels in the cells of the tested materials for the soils in the different city districts, varied from 2.9 to 12.4 times. Importantly, a reliable reduction in the genetic damage under the influence of humic substances was observed in all test variants. The tests showed that there is good potential for achieving significant improvements

  1. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    Science.gov (United States)

    Cronan, Christopher S.; Aiken, George R.

    1985-08-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 μeq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon.

  2. Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Marang, L.; Reiller, P.E. [CEA Saclay, Nucl Energy Div, DPC/SECR, Lab Speciat Radionucleides et Mol, F-91191 Gif Sur Yvette, (France); Marang, L.; Benedetti, M. F. [Univ Paris Diderot, Lab Geochim Eaux, IPGP, CNRS, UMR 7154, F-75251 Paris 05, (France); Marang, L. [EDF, Dept LNHE, Groupe Eval Risques Environm et Sanitaires, F-78401 (France); Eidner, S.; Kumke, M. [Univ Potsdam, Inst Chem, D-14476 Potsdam, (Germany)

    2008-07-01

    In an area that contains high concentrations of natural organic matter, it is expected that it plays an important role on the behavior of rare earth elements (REE), like europium, and of trivalent actinides. Competitive interactions with H{sup +}, inorganic species, major cations, e.g. Ca(II) or Mg(II), could influence these metals transport and bioavailability. Competitive experiments between cations, which can bind differently to humic substances and Eu{sup 3+}, will bring an improved understanding of the competitive mechanisms. The aim of this study is to acquire data for Eu(III)/Cu(II) and Eu(III)/Ca(II) competitive binding to a sedimentary originated humic acid (Gorleben, Germany). The NICA-Donnan parameters for Ca{sup 2+}, Cu{sup 2+}, and Eu{sup 3+} obtained from competitive binding experiments using Ca{sup 2+} or Cu{sup 2+} ion selective electrodes were used to model time-resolved laser fluorescence spectroscopy (TRLFS) measurements. Eu{sup 3+} and Cu{sup 2+} are in direct competition for the same type of sites, whereas Ca{sup 2+} has an indirect influence through electrostatic binding. (authors)

  3. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma

    2008-10-01

    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid in diluted solutions. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group or equivalently, one dissociable sulphate ester per molecule ranges from 250 to 310 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable hydrogen (i.e. of carboxyl groups and sulphate esters jointly in HULIS molecules was refined to be between 1.1 and 1.4 in acidic solutions.

  4. Comparative sorption and desorption behaviors of PFHxS and PFOS on sequentially extracted humic substances

    Institute of Scientific and Technical Information of China (English)

    Lixia Zhao; Yifeng Zhang; Shuhong Fang; Lingyan Zhu; Zhengtao Liu

    2014-01-01

    The sorption and desorption behaviors of two perfluoroalkane sulfonates (PFSAs),including perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) on two humic acids (HAs) and humin (HM),which were extracted from a peat soil,were investigated.The sorption kinetics and isotherms showed that the sorption of PFOS on the humic substances (HSs) was much higher than PFHxS.For the same PFSA compound,the sorption on HSs followed the order of HM > HA2 > HA1.These suggest that hydrophobic interaction plays a key role in the sorption of PFSAs on HSs.The sorption capacities of PFSAs on HSs were significantly related to their aliphaticity,but negatively correlated to aromatic carbons,indicating the importance of aliphatic groups in the sorption of PFSAs.Compared to PFOS,PFHxS displayed distinct desorption hysteresis,probably due to irreversible pore deformation after sorption of PFHxS.The sorption of the two PFSAs on HSs decreased with an increase in pH in the solution.This is ascribed to the electrostatic interaction and hydrogen bonding at lower pH.Hydrophobic interaction might also be stronger at lower pH due to the aggregation of HSs.

  5. Relationships between humic substance-bound mercury contents and soil properties in subtropical zone

    Institute of Scientific and Technical Information of China (English)

    YU Gui-fen; WU Hong-tao; JIANG Xin; HE Wen-xiang; QING Chang-le

    2006-01-01

    The bioavailability of humic substance-bound mercury (HS-Hg) has been established, while the distribution of HS-Hg in soils in relation to soil properties remains obscure. Path analysis and principal component analysis were employed in present study to investigate how soil factors influence the contents of HS-Hg in soils. Results showed that HS-Hg ranged from 0.0192 to 0.2051 mg/kg in soils. The two fractions existed in soils as humic acid-bound mercury (HA-Hg) > fulvic acid-bound mercury (FA-Hg) and the ratio of HA-Hg/FA-Hg was 1.61 on the average. Soil organic carbon (OC) and HS favorably determined soil HS-Hg and the two fractions.The mercury source forming HS-Hg derived from soil total mercury and HS-Hg. FA-Hg and HA-Hg served as mercury source for each other. In acidic soils, FA-Hg and HA-Hg consistently rose with the increase of OC, and generally HA-Hg increased more dramatically.Soils with lower pH and lighter texture contained more HS-Hg, particularly fraction of FA-Hg. Among all influencing factors, organic material source showed the strongest effect, followed by other soil properties and soil mercury source.

  6. How many carboxyl groups does an average molecule of humic-like substances contain?

    Directory of Open Access Journals (Sweden)

    I. Salma

    2008-05-01

    Full Text Available The carboxyl groups of atmospheric humic-like substances (HULIS are of special interest because they influence the solubility in water, affect the water activity and surface tension of droplets in the air, and allow formation of chelates with biologically active elements. Experimentally determined abundances of the carboxyl group within HULIS by functional group analysis are consistent with our knowledge on the average molecular mass of HULIS if the number of dissociable carboxyl groups is assumed to be rather small. The best agreement between the average molecular mass derived from the existing abundance data and the average molecular mass published earlier occurs for assuming approximately one dissociable carboxyl group only. This implies that HULIS can not be regarded as polycarboxilic acid. The average molecular mass of HULIS derived from our electrochemical measurements with the assumption of one dissociable carboxyl group per molecule ranges from 248 to 305 Da. It was concluded that HULIS are a moderately strong/weak acid with a dissociation constant of about pK=3.4, which fits well into the interval represented by fulvic and humic acids. The mean number of dissociable carboxyl groups in HULIS molecules was refined to be between 1.1 and 1.4.

  7. PREDICTING CHEMICAL REACTIVITY OF HUMIC SUBSTANCES FOR MINERALS AND XENOBIOTICS: USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY AND VIRTUAL REALITY

    Science.gov (United States)

    In this chapter we review the literature on scanning probe microscopy (SPM), virtual reality (VR), and computational chemistry and our earlier work dealing with modeling lignin, lignin-carbohydrate complexes (LCC), humic substances (HSs) and non-bonded organo-mineral interactions...

  8. Comparable investigation of the molecular size distribution and the amount of humic substances isolated from ONKALO, Olkiluoto, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.; Maekelae, J.; Manninen, P. [Ramboll Finland Oy, Espoo (Finland)

    2012-06-15

    The humic substances (HS) at groundwater from ONKALO, Olkiluoto were studied in order to determine the apparent molecular size distribution and the amount of humic substances. Humic substances were isolated from the water sample using DAX-8 resin and eluted with 0.1 M NaOH. The molecular size distribution was defined using high performance size exclusion chromatography (HPSEC) and ultraviolet (UV) and refractive index (RI) detector. In the SEC calibration (polystyrene sulfonate) sodium salts (PSS) were employed. Different eluents (NaNO{sub 3}, Na-acetate and asetonitrile) with phosphate buffer and distinct ionic strengths were studied in order to optimize the determination method. The amount of humic substances was determined using total organic carbon (TOC) measurements. The results were compared with the previous ones in order to find out the variation of different methods (HPSEC) and to follow up the HS quantity (TOC). The method developed during the study is considered to be suitable for the HS molecular size distribution follow up, although the method development is suggested to be continued. (orig.)

  9. Speciation and interactions of plutonium with humic substances and kaolinite in aquifer systems

    Energy Technology Data Exchange (ETDEWEB)

    Banik, N.L. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)], E-mail: banik@uni-mainz.de; Buda, R.A. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Buerger, S. [Oak Ridge National Laboratory, Chemical and Isotope Mass Spectrometry Group, Transuranium Research Institute, Oak Ridge TN 37831 (United States); Kratz, J.V. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)], E-mail: JVKratz@uni-mainz.de; Trautmann, N. [Institut fuer Kernchemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)

    2007-10-11

    The speciation of plutonium (Pu) in contact with humic substances (HS) and kaolinite has been performed in aquifer systems. Mainly the redox behavior, complexation, and sorption of plutonium are discussed here. The redox behavior of Pu(VI) in contact with HS was studied and it was found that Pu(VI) is reduced to Pu(III) and Pu(IV) within a couple of weeks. The complexation constants (log {beta}{sub LC}) of Pu(III) and Pu(IV) with HS have been determined by means of the ultrafiltration method. Furthermore, the sorption of Pu(III) and Pu(IV) onto kaolinite has been investigated as a function of pH by batch experiments under aerobic and anaerobic conditions.

  10. The possible use of soluble humic substances for remediation of heavy metal polluted soils

    DEFF Research Database (Denmark)

    Borggaard, Ole K.; Jensen, Julie Katrine; Holm, Peter Engelund

    2008-01-01

    Polluted soil is a common and serious environmental problem. While reliable methods exist for cleaning soil contaminated by organic compounds through degradation, remediation of heavy metal polluted soils awaits an appropriate solution. This is because heavy metals are nondegradable and generally....... Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmental friendly substitute for EDTA. A strongly polluted urban soil and a moderately polluted agricultural soil were extracted at neutral pH in batch mode by three HS...... extraction. Heavy metal extraction with dissolved HS is compared with EDTA at the same concentration and sequential extraction has been performed to identify extracted pools. The results indicate a clear potential of using HS solutions for remediation of heavy metal polluted soils, which is fortunate...

  11. Structure and dynamics of humic substances and model poly-electrolytes in solution; Structure et dynamique de substances humiques et polyelectrolytes modeles en solution

    Energy Technology Data Exchange (ETDEWEB)

    Roger, G.

    2010-09-15

    In the frame of a study about the feasibility of an underground storage of radioactive wastes, we focused on the role of degraded natural organic matter in the eventual transport of radionuclides in the environment. We are more interested by the determination of electro kinetic properties of these humic substances rather than the description of speciation reaction already widely discussed in the literature. We chose to determine the size and the charge of these humic substances thanks to an original method: high precision conductometry. This technique, associated to a suited transport theory, allows to describe the mobility of charged species in solution when taking into account the pairs interactions. We have participated in the development of this transport theory and we use it in order to determine the size and the charge of humic substances and a reference polyelectrolyte in different conditions of pH and ionic strength. All these experimental results obtained by conductometry were correlated with other experimental and theoretical methods: Atomic Force Microscopy, dynamic light scattering, laser zeta-metry and Monte-Carlo simulations. The obtained results confirm the generally admitted idea that humic substances are nano-metric entities having complexing properties towards cations and that can aggregate to form supra molecular structures. The effect of the ions present in the environment (sodium, calcium, magnesium) has been investigated. Finally the complexation of europium (which is considered as a good analogue of americium 241) has also been analysed by square wave voltammetry. (author)

  12. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan.

    Science.gov (United States)

    Liu, Chia-Chuan; Maity, Jyoti Prakash; Jean, Jiin-Shuh; Sracek, Ondra; Kar, Sandeep; Li, Zhaohui; Bundschuh, Jochen; Chen, Chien-Yen; Lu, Hsueh-Yu

    2011-01-01

    Fluid and mud samples collected from Hsiaokunshui (HKS), Wushanting (WST), Yenshuikeng (YSK), Kunshuiping (KSP), Liyushan (LYS), and Sinyangnyuhu (SYNH) mud volcanoes of southwestern Taiwan were characterized for major ions, humic substances (HS) and trace elements concentrations. The relationship between the release of arsenic (As) and activities of sulfate-reducing bacteria has been assessed to understand relevant geochemical processes in the mud volcanoes. Arsenic (0.02-0.06 mg/L) and humic substances (4.13 × 10(-4) to 1.64 × 10(-3) mM) in the fluids of mud volcanoes showed a positive correlation (r = 0.99, p volcano. Arsenic and iron in mud sediments formed two separate groups i) high As, but low Fe in HKS, WST, and SYNH; and ii) low As, but high Fe in the YSK, KSP, and LYS mud volcanoes. The Eh(S.H.E.) values of the mud volcano liquids were characterized by mild to strongly reducing conditions. The HKS, SYNH, and WST mud volcanoes (near the Chishan Fault) belongs to strong reducing environment (-33 to -116 mV), whereas the LYS, YSK, and KSP mud volcanoes located near the coastal plain are under mild reducing environment (-11 to 172 mV). At low Eh values mud volcanoes, saturation index (SI) values of poorly crystalline phases such as amorphous ferric hydroxide indicate understaturation, whereas saturation is reached in relatively high Eh(S.H.E.) values mud volcanoes. Arsenic contents in sediments are low, presumably due to its release to fluids (As/Fe ratio in YSK, KSP, and LYS sediment: 4.86 × 10(-4)-6.20 × 10(-4)). At low Eh(S.H.E.) values (mild to strong reducing environment), arsenic may co-precipitate with sulfides as a consequence of sulfate reduction (As/Fe ratios in WST, HKS, and SYNH sediments: 0.42-0.69).

  13. Evaluation of the transformation of organic matter to humic substances in compost by coupling sec-page.

    Science.gov (United States)

    Trubetskaya, O E; Trubetskoj, O A; Ciavatta, C

    2001-03-01

    Humic acids (HAs) from soil and compost at the beginning (S0) and at the end of the stabilization process after 130 days (S130) have been fractionated by coupling size exclusion chromatography (SEC) and polyacrylamide gel electrophoresis (PAGE). Preparative quantities of HA fractions (HAFs) with different molecular sizes (MSs) and exactly defined electrophoretic mobility (EMs) have been obtained from all samples and the HAFs weight content has been studied. A high degree of similarity in HAFs weight content between soil HA and a stabilized compost HAs130 has been observed. Such data seem to be reliable for monitoring the evolution of the compost organic matter to humic substances for their agricultural uses.

  14. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical...... side missing structural elements in the models can be suggested. A number of proposed structures for humic and fulvic acids are discussed based on the above analysis....... shifts of all substructures from the proposed models. A full reconstruction makes sure that all carbons are accounted for and enables on the negative side to discuss structural elements identified from recorded spectra of humic substances that cannot be observed in the simulated spectrum. On the positive...

  15. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.

    Science.gov (United States)

    Kulikowska, Dorota; Gusiatin, Zygmunt Mariusz; Bułkowska, Katarzyna; Kierklo, Katarzyna

    2015-10-01

    Although commercially available biosurfactants are environmentally friendly and effectively remove heavy metals from soil, they are costly. Therefore, this study investigated whether inexpensive humic substances (HS) from sewage sludge compost could effectively remove copper (Cu) and cadmium (Cd) from highly contaminated sandy clay loam (S1) and clay (S2). The optimum HS concentration and pH were determined, as well process kinetics. Under optimum conditions, a single washing removed 80.7% of Cu and 69.1% of Cd from S1, and 53.2% and 36.5%, respectively, from S2. Triple washing increased removal from S1 to almost 100% for both metals, and to 83.2% of Cu and 88.9% of Cd from S2. Triple washing lowered the potential ecological risk (Er(i)) of the soils, especially the risk from Cd. HS substances show potential for treating soils highly contaminated with heavy metals, and HS from other sources should be tested with these and other contaminants.

  16. Studies of the ternary systems humic substances - kaolinite - Pu(III) and Pu(IV)

    Energy Technology Data Exchange (ETDEWEB)

    Buda, R.A.; Kratz, J.V.; Trautmann, N. [Inst. fuer Kernchemie, Johannes-Gutenberg-Univ., Mainz (Germany); Banik, N.L. [Inst. fuer Kernchemie, Johannes-Gutenberg-Univ., Mainz (Germany); Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe (Germany)

    2008-07-01

    The behaviour of plutonium with respect to its migration in the aquifer has been studied under conditions close to nature. Most relevant under these conditions are Pu(III) and Pu(IV) in contact with humic substances (HS) and minerals. As a model for the host rock, kaolinite (KGa-1b) was chosen. The complexation of Pu(III) and Pu(IV) with Aldrich humic acid (AHA) in aqueous solution at ionic strength 0.1 M was investigated by the ultrafiltration method. The sorption of Pu(III) and Am(III) onto kaolinite (K) as a function of pH and metal-ion concentration was studied under aerobic and anaerobic conditions. The pH edge was found at pH {proportional_to} 5.5 independent of the metal-ion concentration and working atmosphere. The influence of HS on the sorption of Pu(III) and Pu(IV) onto kaolinite was investigated in the ternary systems Pu(III)-K-HS and Pu(IV)-K-HS and for comparison, in the system Th(IV)-K-HS. The dependence on pH, contact time, concentration of HS (for Pu(IV)-K-HS) was studied as well as the sequence in which the components were added. Generally, it was found that HS tend to enhance the sorption onto kaolinite below pH 6 and to decrease sorption at higher pH depending in detail on the sequence in which the components were added. An identification of the species sorbed on the surface of the kaolinite by X-ray absorption spectroscopy, as well as chemically, was attempted and preliminary results are discussed. (orig.)

  17. Effect of atmospheric humic-like substances on the enhanced dissolution of volatile organic compounds into dew water

    Science.gov (United States)

    Okochi, H.; Sato, E.; Matsubayashi, Y.; Igawa, M.

    2008-03-01

    Simultaneous sampling of chlorinated hydrocarbons (CHs) and monocyclic aromatic hydrocarbons (MAHs), potentially harmful to humans and/or responsible for the formation of ozone and secondary particles, in dew water and in the ambient air was carried out from August 2004 to July 2005 in Hino City, situated in the western part of Greater Tokyo, Japan. CHs were less contained in dew water than MAHs. Toluene (volume-weighted mean concentration, VWM: 4.77 nM) and m, p-Xylenes (VWM: 5.07 nM) except dichloromethane, which was abnormally high (VWM: 1.14 μM), were abundant among eleven VOCs determined in dew water. Chloroform, carbon tetrachloride, 1,2-dichloroethane, and benzene were not detected in dew water during the study period. Dew water contained higher amounts of VOCs than would have been expected from the ambient gas-phase concentrations and the temperature-corrected Henry's law constants. Following the determination method of humic substances in river water proposed by Hiraide et al. [Hiraide, M., Shima, T., Kawaguchi, H., 1994. Separation and determination of dissolved and particulate humic substances in river water. Mikrochim. Acta 113, 269-276], the VWM of soluble humic and fulvic acid fractions in dew water was found to be 1.00 mg/L and 0.87 mg/L ( n = 20), respectively, while the VWM of particulate humic and fulvic acid fractions was found to be 0.61 mg/L and 0.42 mg/L ( n = 20), respectively. Surface tension decreased with an increase in dissolved fulvic acid fraction in dew water, indicating that humic-like substances with relatively lower molecular weight, which is soluble in acid solution, could be an effective surface-active species within dew water. The enrichment factors, which were defined as the ratio of the observed VOCs concentration to the estimated, were over 10 2 for MAHs except for benzene and increased as the increment of total humic-like substances (HULIS) concentration (the sum of humic and fulvic acid fractions in both dissolved and

  18. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: calbers@ruc.d [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark); Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Banta, Gary T. [Dept. of Environmental, Social and Spatial Change, Roskilde University, DK-4000 Roskilde (Denmark); Hansen, Poul Erik [Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Jacobsen, Ole S. [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark)

    2009-10-15

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, approx40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only approx10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  19. Cd2+ and Zn2+ sorption on apatite in the presence of EDTA and humic substance

    Directory of Open Access Journals (Sweden)

    Viipsi K.

    2013-04-01

    Full Text Available The sorption of Cd2+ and Zn2+ on hydroxyapatite [HAP- Ca10(PO46(OH2] and fluorapatite [FAP- Ca10( PO46(F2] with different specific surface area and stoichiometry was investigated in batch experiments in the pH range 4 to 11 (25 ◦C; 0.1 M KNO3. The impact of different conditions was concerned: solution pH, the presence of complexing ligands (EDTA and humic substance and competing metal ions, as well as reaction kinetic and equilibrium conditions. To evaluate the reversibility of Cd2+ sorption onto HAP, desorption characteristics in water, Ca, EDTA, and HUM-solutions were determined. Additionally to solution analysis the surface composition of solid phases was analysed by X-Ray Photoelectron Spectroscopy XPS. The information from the chemical analyses was used to design an equilibration model that takes into account dissolution, surface potential, solution and surface complexation, as well as possible phase transformations. It was revealed that apatites effectively sorb Cd2+ and Zn2+ by ion exchange reactions on surface by formation of new surface phases. Using XPS the formation of a Me-enriched HAP surface was found, which was interpreted as the formation of a solid solution with the general formula: Ca8.4-xMex(HPO41.6(PO44.4(OH0.4. In a binary solution (Cd+Zn the competition of metals reduced individual sorbed amount compared with the single component solutions but the total adsorption maximum was approximately constant. The presence of EDTA reduces the metal sorption on apatite due to [CdEDTA]2- and [ZnEDTA]2- complexes and increases apatite solubility due to [CaEDTA]2- complex formation. The dissolved humic substance was bound on apatite in suspensions but the amount of Cd2+ bound was not changed. The results showed that the solution pH and the presence of complexing ligands have a significant effect on heavy metal sorption on apatite and must be considered if apatites are used as remediation agent. The proposed model can be used to predict

  20. Competitive Complexation of Copper and Zinc by Sequentially Extracted Humic Substances from Manure Compost

    Institute of Scientific and Technical Information of China (English)

    LIU Shuai; WANG Xu-dong; LU Li-lan; DIAO Shi-rong; ZHANG Jun-feng

    2008-01-01

    Chicken manure with similar content of copper and zinc was chosen to conduct a composting experiment to investigate the changes of organic carbon and humus substance complexed copper (HS-Cu) and zinc (HS-Zn), which were extracted by water (H2O), sodium hydroxide (NaOH), and sodium pyrophate-NaOH mixture (Na4P2O7-NaOH), sequentially. Distributions of copper and zinc in fulvic acids (FA) and humic acids (HA) in the three extracts were studied. During manure composting, the concentrations of copper and zinc increased from about 500 mg kg-' in the raw material to 1100 mg kg-1 in the final products. HS-Cu in H2O, NaOH, and Na4P2O7-NaOH extracts occupied 6.7, 26.7, and 19% averagely of total copper and HS-Zn represented 2.7, 13.7, and 17% averagely of total zinc in compost, respectively. In water extracts, both HA and FA mainly complexed with Cu and the mole ratio of Cu to Zn was 2.8 in HA fractions and was 2.6 in FA fractions, respectively. HA mainly complexed with copper, so that the ratios of HA-Cu to HA-Zn averaged 3.4 in NaOH extracts. FA had a similar potential to complex with copper and zinc, so that the ratio of FA-Cu to FA-Zn was close to 1. In Na4P2O7-NaOH extracts, HA or FA had a similar potential to complex with copper and zinc. The ratio of HS-Cu to HS-Zn was close to 1. With manure composting, Na4P2O7-NaOH extractable HS-Zn increased to a level as high as HS-Cu. This indicated that more and more stable complexes of HS-Zn were formed in the late decomposition period. The competition between copper and zinc to be complexed with humic substance became weaker and weaker with the decomposition process.

  1. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    Science.gov (United States)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  2. Investigating nitrate-dependent humic substance oxidation and in-service K-12 teachers' understanding of microbiology

    Science.gov (United States)

    Jones, Nastassia N.

    2011-12-01

    Humic substances (HS) are the humified portions of totally decomposed soil organic matter that are ubiquitous in nature. Although these substances have been studied for more than 200 years, neither their metabolic capabilities nor a specific chemical structure has yet to be determined. HS have been studied as a carbon source in many environments where they are degraded; however, previous studies have shown that some microorganisms are capable of utilizing humic substances as electron acceptors and electron donors in anaerobic respiration. Even though there have been humic-reducing and humic-oxidizing microorganisms isolated and studied in recent years, the mechanism of humics metabolism and its interaction in the natural environment are not well understood. However, it is known that the continuous change in the redox state of HS is important to the cycling of iron, stability of nitrogen and carbon, and the mobility and bioavailability of inorganic and organic environmental pollutants. In this study, microbial communities were examined to evaluate the community dynamics of nitrate-dependent HS-oxidizing populations and to provide a snapshot of the phylogenetic diversity of these microorganisms. Column studies were performed using nitrate as the sole electron acceptor and the following as the electron donors in different columns: reduced humic acids, oxidized humic acids, and acetate as the control. Liquid buffered media was added to a separate column to serve as an additional control. Polymerase chain reactions of the 16S rRNA genes using DNA from the column studies were performed and analyzed by constructing 16S rDNA clone libraries and by performing denaturing gradient gel electrophoresis (DGGE). Clones from the library have been sequenced and analyzed to paint a phylogenetic picture of the microbial community under the various conditions. Results indicate that the majority of the clones were assigned to four well-characterized divisions, the Acidobacteria, the

  3. Photocatalytic degradation of humic substances in aqueous solution using Cu-doped ZnO nanoparticles under natural sunlight irradiation.

    Science.gov (United States)

    Maleki, Afshin; Safari, Mahdi; Shahmoradi, Behzad; Zandsalimi, Yahya; Daraei, Hiua; Gharibi, Fardin

    2015-11-01

    In this study, Cu-doped ZnO nanoparticles were investigated as an efficient synthesized catalyst for photodegradation of humic substances in aqueous solution under natural sunlight irradiation. Cu-doped ZnO nanocatalyst was prepared through mild hydrothermal method and was characterized using FT-IR, powder XRD and SEM techniques. The effect of operating parameters such as doping ratio, initial pH, catalyst dosage, initial concentrations of humic substances and sunlight illuminance were studied on humic substances degradation efficiency. The results of characterization analyses of samples confirmed the proper synthesis of Cu-doped ZnO nanocatalyst. The experimental results indicated the highest degradation efficiency of HS (99.2%) observed using 1.5% Cu-doped ZnO nanoparticles at reaction time of 120 min. Photocatalytic degradation efficiency of HS in a neutral and acidic pH was much higher than that at alkaline pH. Photocatalytic degradation of HS was enhanced with increasing the catalyst dosage and sunlight illuminance, while increasing the initial HS concentration led to decrease in the degradation efficiency of HS. Conclusively, Cu-doped ZnO nanoparticles can be used as a promising and efficient catalyst for degradation of HS under natural sunlight irradiation.

  4. Supplementation with humic substances affects the innate immunity in layer hens in posfasting phase

    Directory of Open Access Journals (Sweden)

    Rosa Sanmiguel P.

    2015-12-01

    Full Text Available Objective. Asses the effect of supplementation with Humic substances (HS over some innate immunity parameters (serum bactericidal activity, phagocytosis, bacterial agglutination, respiratory burst and lisozyme activity in phase after fasting of layer hens. Materials and methods. 120 posfasting phase Hy Line Brown layer hens were taken which were distributed into four groups: The first and the second were supplemented with 0.1 and 0.2% of HS, respectively. The third group was supplemented with 0.25 mg/kg on levamisole hydrochloride and fourth group have no supplementation; during sixty days period. Blood samples were collected on 8th, 30th and 60th of experiment day. Results. The phagocytic index and respiratory burst increased significantly at day 30th in HS supplemented groups. Alike, serum bactericidal activity and lisozyme activity improved on 8 th day, nevertheless, changes were no evident latter. The bacterial agglutination was high in supplemented groups evaluated at everyone times. Conclusions. Results showed that HS behave as immunostimulant in the early phase after fasting layer hens.

  5. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    Science.gov (United States)

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-01

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly.

  6. The role of humic substances in the formation of marble patinas under soil burial conditions

    Science.gov (United States)

    Polikreti, K.; Christofides, C.

    2009-05-01

    The present work aim to study the effect of burial on the photoluminescnece (PL) spectra of white, crystalline marble surfaces and the physicochemical processes that take place at the marble—soil interface. The PL was studied by an argon ion laser beam, focused through a microscope objective onto the sample, offering a spatial resolution of 3 μm. Long-buried (time scale of 1,000 years) surfaces show a red (at 610 nm) emission due to Mn2+, which is also shown on fresh marble spectra and an additional broadband blue-green (380-530 nm) one. Electron paramagnetic resonance (EPR) spectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) indicate that the latter emission originates from humate complexes. The complexes are most probably Ca-humates, the humic substances found in the soil and the divalent calcium cations released by the dissolution of marble calcite. Finally, the examination of recently (time scale of 50 years) buried surfaces shows that the blue-green emission and consequently the presence of humates in marble patinas are not affected by the soil organic matter content. Soil acidity however, is a critical factor, with a total absence of the blue-green emission at pH values lower than 6.

  7. An improved electroelution method for separation of DNA from humic substances in marine sediment DNA extracts.

    Science.gov (United States)

    Kallmeyer, Jens; Smith, David C

    2009-07-01

    We present a method for the rapid and simple extraction of DNA from marine sediments using electroelution. It effectively separates DNA from compounds, including humic substances, that interfere with subsequent DNA quantification and amplification. After extraction of the DNA from the sediment into an aqueous solution, the crude sample is encased in 2% agarose gel and exposed to an electrical current, which draws the DNA out of the gel into a centrifugal filter vial. After electroelution, the sample is centrifuged to remove contaminants method is quantitative and does not discriminate on the basis of size, as determined using DNA standards and DNA extracts from environmental samples. Amplification of DNA is considerably improved due to removal of PCR inhibitors. For Archaea, only these purified extracts yielded PCR products. This method allows for the use of relatively large volumes of sediment and is particularly useful for sediments containing low biomass such as deeply buried marine sediments. It works with both organic-rich and -poor sediment, as well as with sediment where calcium carbonate is abundant and sediment where it is limited; consequently, adjustment of protocols is unnecessary for samples with very different organic and mineral contents.

  8. Effects of pH value and coagulant dosage on contact filtration of humic substances

    Institute of Scientific and Technical Information of China (English)

    蒋绍阶; 刘宗源; 梁建军

    2009-01-01

    Humic substances (especially fulvic acid (FA)) are the major components of natural organic matter (NOM) that widely exist in drinking water source. Due to their potential effects on public health,the removal of FA was one of the main concerns during the water treatment. Therefore,the contact filtration of FA by using aluminum sulfate as coagulant on the basis of jar tests was carried out. The effects of pH and coagulant dosage on the FA removal and the development of head loss were investigated. The results show that the range of pH value during the FA contact filtration can be effectively influenced by the dosage of aluminum sulfate,and the high aluminum sulfate dosage is an important factor that can result in early filter breakthrough. The FA filtration by deep-bed filtration or by membrane filtration is sometimes disparate under the same coagulation conditions. The choice of aluminum sulfate dosage by the method of membrane filtration,i.e. the "true color measurement",may result in inappropriate filter run,whereas it can be determined with simple jar tests by observing the formation of micro flocs. Considering the effects of pH on aluminum sulfate dosage and FA removal,the optimal pH range of 5.5?6.0 is suggested.

  9. Carbon-specific analysis of humic-like substances in atmospheric aerosol and precipitation samples.

    Science.gov (United States)

    Limbeck, Andreas; Handler, Markus; Neuberger, Bernhard; Klatzer, Barbara; Puxbaum, Hans

    2005-11-15

    A new approach for the carbon-specific determination of humic-like substances (HULIS) in atmospheric aerosols is presented. The method is based on a two-step isolation procedure of HULIS and the determination of HULIS carbon with a dissolved organic carbon analyzer. In the first step, a C18 solid-phase extraction is performed to separate HULIS from inorganic and hydrophilic organic sample constituents in aqueous sample solutions. The second isolation step is conducted on a strong anion exchanger to separate HULIS from remaining carbonaceous compounds. This ion chromatographic separation step including the subsequent on-line detection of HULIS carbon was performed fully automated to avoid the risk of sample contamination and to enhance the reproducibility of the method. With a 5-mL sample volume, a limit of detection of 1.0 mg C/L was obtained; this corresponds to an absolute amount of 5 microg of HULIS carbon. The reproducibility of the method given as the relative standard deviation was 4.3% (n = 10). The method was applied for the determination of water-soluble HULIS in airborne particulate matter. PM10 concentrations at an urban site in Vienna, Austria, ranged from around 0.1 to 1.8 microg of C/m(3) (n = 49); the fraction of water-soluble HULIS in OC was 12.1 +/- 7.2% (n = 49).

  10. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    I. R. Zamora

    2013-01-01

    Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic Aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA-inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the aw range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on

  11. Modelo fractal de substâncias húmicas Fractal model of humic substances

    Directory of Open Access Journals (Sweden)

    Alessandro Costa da Silva

    2001-10-01

    Full Text Available A teoria fractal, por meio da determinação da dimensão fractal (D, tem sido considerada como uma alternativa para explicar a conforma��ão de agregados moleculares. Sua utilização no estudo de substâncias húmicas (SH reside na tentativa de descrever (representar a estrutura ramificada ou a superfície rugosa e distorcida destas substâncias. A presença de um modelo fractal por sistemas naturais implica que este pode ser decomposto em partes, em que cada uma, subseqüentemente, é cópia do todo. Do ponto de vista experimental, a dimensão fractal de sistemas húmicos pode ser determinada a partir de técnicas como turbidimetria, raios x, espalhamento de neutrons, dentre outras. Este trabalho pretende facilitar o entendimento sobre a aplicação de fractais ao estudo conformacional de SH, introduzindo conceitos e informações sobre o fundamento dos modelos fractais, bem como sobre o uso da técnica turbidimétrica na determinação do valor D.Fractal theoria application by determination of fractal dimension has been considered an alternative tool to explain the conformation of molecular aggregates. Its utilization in the study of humic substances (HS aims the attempt to describe the limbed structure or the rugous and distorced surface of these substances. The presence of fractal models indicates that the system may be decomposed in parts, each part being a copy of the whole. In the experimental point of view the fractals models of natural systems may be measured through techniques as turbidimetry, x- ray and neutrons scattering. This paper seeks to facilitate the understanding on the application of the fractals in the conformational study of HS, supply information about fractal models foundation and use of the turbidimetry in the determination of fractal dimension.

  12. Chemical and isotopic evidence for the in situ origin of marine humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, A.; (Weizmann Inst., Rehovot, Israel); Kaplan, I.R.

    1972-07-01

    Humic and fulvic acids were extracted from marine and nonmarine Recent sediments and from soils. These acids are shown to be major components of the organic matter from marine and nonmarine sediments--some marine sediments may contain 70% of their organic carbon in the humic and fulvic acid fraction. Marine and terrestrial humic acids have similar carbon and hydrogen content, but the former generally contain more sulfur and nitrogen. delta/sup 34/S values of marine humic acid indicate that the sulfur is introduced into the organic matter as hydrogen sulfide produced by sulfate reduction. Marine humates have a rather constant delta/sup 13/C value of -20 to -22%, whereas the delta/sup 13/C of soil humic acid is related to its plant source material and usually ranges around -25 to -26%. The evidence shows that marine humic acids can be formed in situ from degradation products of plankton and are not necessarily transported from the continent. The suggested pathway of marine humic acid formation and transformation in the sediment is (1) degraded cellular material..-->..(2) water-soluble complex containing amino acids and carbohydrates..-->..(3) fulvic acids..-->..(4) humic acids..-->..(5) kerogen.

  13. Influence of mineral colloids and humic substances on uranium(VI) transport in water-saturated geologic porous media.

    Science.gov (United States)

    Wang, Qing; Cheng, Tao; Wu, Yang

    2014-12-01

    Mineral colloids and humic substances often co-exist in subsurface environment and substantially influence uranium (U) transport. However, the combined effects of mineral colloids and humic substances on U transport are not clear. This study is aimed at quantifying U transport and elucidating geochemical processes that control U transport when both mineral colloids and humic acid (HA) are present. U-spiked solutions/suspensions were injected into water-saturated sand columns, and U and colloid concentrations in column effluent were monitored. We found that HA promoted U transport via (i) formation of aqueous U-HA complexes, and (ii) competition against aqueous U for surface sites on transport media. Illite colloids had no influence on U transport at pH5 in the absence of HA due to low mobility of the colloids. At pH9, U desorbed from mobile illite and the presence of illite decreased U transport. At pH5, high U transport occurred when both illite colloids and HA were present, which was attributed to enhanced U adsorption to illite colloids via formation of ternary illite-HA-U surface complexes, and enhanced illite transport due to HA attachment to illite and transport media. This study demonstrates that the combined effects of mineral colloids and HA on contaminant transport is different from simple addition of the individual effect.

  14. Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.

    Science.gov (United States)

    Yang, Z.; Jiang, J.

    2015-12-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.

  15. Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study.

    Science.gov (United States)

    Ballesteros, S García; Costante, M; Vicente, R; Mora, M; Amat, A M; Arques, A; Carlos, L; Einschlag, F S García

    2017-01-18

    In this work, analysis of excitation-emission-matrices (EEM) has been employed to gain further insight into the characterization of humic like substances (HLS) obtained from urban wastes (soluble bio-organic substances, SBOs). In particular, complexation of these substances with iron and changes along a photo-Fenton process have been studied. Recorded EEMs were decomposed by using parallel factor analysis (PARAFAC). Three fluorescent components were identified by PARAFAC modeling of the entire set of SBO solutions studied. The EEM peak locations (λex/λem) of these components were 310-330 nm/400-420 nm (C1), 340-360 nm/450-500 nm (C2), and 285 nm/335-380 nm (C3). Slight variations of the maximum position of each component with the solution pH were observed. The interaction of SBO with Fe(iii) was characterized by determining the stability constants of the components with Fe(iii) at different pH values, which were in the order of magnitude of the ones reported for humic substances and reached their highest values at pH = 5. Photochemical experiments employing SBO and Fe(iii), with and without H2O2, showed pH-dependent trends for the evolution of the modeled components, which exhibited a strong correlation with the efficiency reported for the photo-Fenton processes in the presence of SBO at different pH values.

  16. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism

    Directory of Open Access Journals (Sweden)

    Serenella Nardi

    2016-02-01

    Full Text Available ABSTRACT In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS, complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a “nutrient acquisition response” that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.

  17. The impact of interactions between algal organic matter and humic substances on coagulation.

    Science.gov (United States)

    Pivokonsky, Martin; Naceradska, Jana; Brabenec, Tomas; Novotna, Katerina; Baresova, Magdalena; Janda, Vaclav

    2015-11-01

    This study focuses on the effects of molecular interactions between two natural organic matter (NOM) fractions, peptides/proteins derived from cyanobacterium Microcystis aeruginosa (MA proteins) and peat humic substances (HS), on their removal by coagulation. Coagulation behaviour was studied by the jar tests with MA protein/HS mixtures and with single compounds (MA proteins or HS). Aluminium sulphate was used as a coagulant. Besides MA proteins, bovine serum albumin (BSA) was used as a model protein. For the MA protein/HS mixture, the removal rates were higher (80% versus 65%) and the dose of coagulant substantially lower (2.8 versus 5.5 mg L(-1) Al) than for coagulation of single HS, indicating the positive effect of protein-HS interactions on the coagulation process. The optimum coagulation pH was 5.2-6.7 for MA proteins and 5.5-6 for HS by alum. The optimum pH for the removal of MA protein/HS mixture ranged between pH 5.5-6.2, where the charge neutralization of negatively charged acidic functional groups of organic molecules by positively charged coagulant hydroxopolymers lead to coagulation. MA proteins interacted with HS, probably through hydrophobic, dipole-dipole and electrostatic interactions, even in the absence the coagulant. These interactions are likely to occur within a wide pH range, but they result in coagulation only at low pH values (pH coagulation process and a rise in coagulant demand.

  18. Compost and humic substance effects on soil parameters of Vitis vinifera L cv Thompson seedless

    Directory of Open Access Journals (Sweden)

    Paola Fincheira-Robles

    2016-01-01

    Full Text Available The use of organic amendments is common under the concept of integrated nutrient management (INM in Vi tis vinifera (Table grape to improve plant and soil quality. The objective of this study was to evaluate compost (C and humic substances (HS mixed with mineral fertilizer (MF in an INM program of V. vinifera cv Thompson seedless. The chemical, biochemi cal and microbiological parameters were evaluated in soil on 1 - year - old V. vinifera plants growing on Alfisol soil. Five treatments and control were evaluated: (T 1 C+MF, (T 2 HS+MF, (T 3 C, (T 4 HS, (T 5 MF and (T 6 absolute control. The results indicate d that the application of C and HS, increased β glucosidase and dehydrogenase activities, reaching values of 90.2 μg p - nitrophenol g - 1 h - 1 and 9.1 μg de TFP g - 1 24h - 1 , respectively . In addition, pH was similar in all treatments while electrical conductivity increased with application of mineral and orga nic amendments, reaching 0.41dS m - 1 in T 2 (HS+MF . Furthermore, yeast concentration increased with organic amendments or mineral. Correlation analysis indicated significant and positive relationships between PO 4 - P concentration with MF (0.579 and C (0.431 and nitrogen with MF (0.868. These results support that INM, which combines mineral fertilization and organic amendments, improve positive changes in chemical soil properties and C cycling measured in terms of enzymatic activity in V. vinifera .

  19. Optical properties of humic-like substances (HULIS in biomass-burning aerosols

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2006-01-01

    Full Text Available We present here the optical properties of humic-like substances (HULIS isolated from the fine fraction of biomass-burning aerosol collected in the Amazon basin during the LBA-SMOCC (Large scale Biosphere atmosphere experiment in Amazonia – SMOke aerosols, Clouds, rainfall and Climate experiment in September 2002. From the isolated HULIS, aerosol particles were generated and their scattering and absorption coefficients measured. The size distribution and mass of the particles were also recorded. The value of the index of refraction was derived from "closure" calculations based on particle size, scattering and absorption measurements. On average, the complex index of refraction at 532 nm of HULIS collected during day and nighttime was 1.65–0.0019i and 1.69–0.0016i, respectively. In addition, the imaginary part of the complex index of refraction was calculated using the measured absorption coefficient of the bulk HULIS. The mass absorption coefficient of the HULIS at 532 nm was found to be quite low (0.031 and 0.029 m2 g−1 for the day and night samples, respectively. However, due to the high absorption Ångström exponent (6–7 of HULIS, the specific absorption increases substantially towards shorter wavelengths (~2–3 m2 g−1 at 300 nm, causing a relatively high (up to 50% contribution to the light absorption of our Amazonian aerosol at 300 nm. For the relative contribution of HULIS to light absorption in the entire solar spectrum, lower values (6.4–8.6% are obtained, but those are still not negligible.

  20. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    Science.gov (United States)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  1. Influence of low molecular weight fractions of humic substances on reducing capacities and distribution of redox functional groups

    Science.gov (United States)

    Yang, Zhen; Jiang, Jie

    2016-04-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.

  2. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    Science.gov (United States)

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  3. Complexation humic substances of soils with metal ions as the main way migration of matals from soil to water

    Science.gov (United States)

    Dinu, Marina

    2013-04-01

    Organic matter (OM) of natural waters can bind with the ions metals (IM) entering the system, thus reducing their toxic properties. OM in water consists predominantly (up to 80%) of humic acids (HA), represented by highmolecular, dyed, polyfunctional compounds. The natural-climatic zones feature various ratios of fulvic (FA) and humic acids. An important specific feature of metals as contamination elements is the fact that when they occur in the environment, their potential toxicity and bioavailability depend significantly on their speciation. In recent years, lakes have been continuously enriched in hazardous elements such as Pb, Cd, Al, and Cr on a global (regional) basis. The most important organic ligands are humic matter (HM) washed out from soils in water and metals occur in natural waters as free ions, simple complexes with inorganic and organic ligands, and mineral and organic particles of molecules and ions sorbed on the surface. The occurrence of soluble metal forms in natural waters depends on the presence of organic and inorganic anions. However, direct determinations are rather difficult. The goal was the calculation and analysis of the forms of metals in the system catchment basin, based on the chemical composition of the water body and the structural features of soil humic substances (HS).We used the following analytical techniques - leaching of humic substances from soil and sample preparation (Orlov DS, 1985), the functional characteristics of humic substances - spectral analysis methods, the definition of conditional stability constants of complexes - electrochemical methods of analysis. Our results show thet HAs of selected soil types are different in functions, and these differences effect substantially the complexing process. When analyzing the results obtained in the course of spectrometric investigation of HMs in selected soil types, we determined the following main HA characteristics: (1) predominance of oxygen bearing groups in HM of the

  4. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  5. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations

    Science.gov (United States)

    Piepenbrock, Annette; Dippon, Urs; Porsch, Katharina; Appel, Erwin; Kappler, Andreas

    2011-11-01

    Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to

  6. Conductometric measurement of the changes in humic substances caused by ozone oxidation.

    Science.gov (United States)

    Martín-Domínguez, Alejandra; Lara-Sánchez, Abigail; Hansen-Hansen, Anne M; Alarcón-Herrera, M Teresa

    2016-06-01

    Humic substances (HS), a broad category of organic compounds and a major constituent of soil, are responsible for serious problems during water purification processes. In particular, HS react with chlorine during disinfection processes to produce a variety of organochlorine compounds such as trihalomethanes (THMs), which are potentially carcinogenic to humans. The use of ozone as a disinfection method represents a potential solution to this problem; however, HS that are not completely oxidized may form by-products more reactive than the original molecules. The structural changes of HS during oxidation with ozone were evaluated through a replicated 2(2) design, where concentrations of 5 and 30 mg/L of two commercial HS (Aldrich and Fluka) were ozonized over different time intervals (0, 10, and 20 min). The ozone-treated HS were titrated with acid and base solutions, and the shifts of the slopes were then analyzed and finally related to the ionic alterations of the HS. The Aldrich HS (AHS) showed only protonated functional groups; the Fluka HS (FHS) showed only ionized groups; and in both cases, the amount of functional groups increased with increasing ozonation. For AHS and FHA, respectively, the maximum ozone exposure time (20 min) and the highest concentration of HS (30 mg/L) produced the greatest reductions in total organic carbon (TOC) (39 and 34 %), UV254 (50 and 60.8 %), and color (16.4 and 19.6 %). As for aromaticity, AHS showed removals of 39.6 % (from a starting concentration of 5 mg/L) and 17.2 % (from a starting concentration of 30 mg/L). FHS showed the opposite effect, with removals of 33.3 % (starting at 5 mg/L) and 40.1 % (starting at 30 mg/L). In this study, the structural changes of HS submitted to ozonation were inferred in a relatively quick and easy way by using a conductometric titration, thus demonstrating the applicability of the technique.

  7. Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles

    Science.gov (United States)

    Nie, Wei; Hong, Juan; Häme, Silja A. K.; Ding, Aijun; Li, Yugen; Yan, Chao; Hao, Liqing; Mikkilä, Jyri; Zheng, Longfei; Xie, Yuning; Zhu, Caijun; Xu, Zheng; Chi, Xuguang; Huang, Xin; Zhou, Yang; Lin, Peng; Virtanen, Annele; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Yu, Jianzhen; Kerminen, Veli-Matti; Petäjä, Tuukka

    2017-03-01

    The volatility of organic aerosols remains poorly understood due to the complexity of speciation and multiphase processes. In this study, we extracted humic-like substances (HULIS) from four atmospheric aerosol samples collected at the SORPES station in Nanjing, eastern China, and investigated the volatility behavior of particles at different sizes using a Volatility Tandem Differential Mobility Analyzer (VTDMA). In spite of the large differences in particle mass concentrations, the extracted HULIS from the four samples all revealed very high-oxidation states (O : C > 0.95), indicating secondary formation as the major source of HULIS in Yangtze River Delta (YRD). An overall low volatility was identified for the extracted HULIS, with the volume fraction remaining (VFR) higher than 55 % for all the regenerated HULIS particles at the temperature of 280 °C. A kinetic mass transfer model was applied to the thermodenuder (TD) data to interpret the observed evaporation pattern of HULIS, and to derive the mass fractions of semi-volatile (SVOC), low-volatility (LVOC) and extremely low-volatility components (ELVOC). The results showed that LVOC and ELVOC dominated (more than 80 %) the total volume of HULIS. Atomizing processes led to a size-dependent evaporation of regenerated HULIS particles, and resulted in more ELVOC in smaller particles. In order to understand the role of interaction between inorganic salts and atmospheric organic mixtures in the volatility of an organic aerosol, the evaporation of mixed samples of ammonium sulfate (AS) and HULIS was measured. The results showed a significant but nonlinear influence of ammonium sulfate on the volatility of HULIS. The estimated fraction of ELVOC in the organic part of the largest particles (145 nm) increased from 26 %, in pure HULIS samples, to 93 % in 1 : 3 (mass ratio of HULIS : AS) mixed samples, to 45 % in 2 : 2 mixed samples, and to 70 % in 3 : 1 mixed samples, suggesting that the interaction with ammonium sulfate

  8. Carbon Sequestration in Soil Humic Substances Under Long-Term Fertilization in a Wheat-Maize System from North China

    Institute of Scientific and Technical Information of China (English)

    SONG Xiang-yun; LIU Shu-tang; LIU Qing-hua; ZHANG Wen-ju; HU Chun-guang

    2014-01-01

    The changes in humic substances (HS) is fundamental in detecting soil carbon sequestration mechanisms in natural and cultivated environments. Based on a long-term trial, the amounts of water dissolved substances (WSS), humic acid (HA), fulvic acid (FA) and humin (HU) were determined to explore the impact of long-term fertilization on HS. Increases in the amounts of WSS, HA, FA and HU were signiifcant different among the treatments with manure. A signiifcant correlation was found between the increased soil organic carbon (SOC) and HS (R2=0.98, P<0.01). The change in the E4/E6 ratio was signiifcantly correlated with the increased SOC (R2=0.88, P<0.01), HA (R2=0.91, P<0.01), FA (R2=0.91, P<0.01) and HU (R2=0.88, P<0.01). The cluster was mainly divided into two parts as manure fertilization and inorganic fertilization, based on the increases in HA, FA and HU. These results suggest that long term fertilization with manure favours carbon sequestration in HS and is mainly stabilized as HU, while the HA becomes more aliphatic. We conclude that increases in SOC can be linked to changes in the molecular characteristics of HS fractions under long term fertilization.

  9. Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water

    Directory of Open Access Journals (Sweden)

    Waldemar Grzybowski

    2000-12-01

    Full Text Available The complexation of cadmium and lead with humic substances was studied using differential pulse anodic stripping voltammetry and a standard addition technique. The titration was done for humic substances of different molecular weight that had been isolated from seawater and subsequently redissolved in organic-free seawater. The different molecular weight fractions were obtained by ultrafiltration using 1000 D (Dalton, 5000 D and 10 000 D pore size filters. Comparison of the calculated stability constants suggests that the strengths of lead complexes in the analysed fractions are similar and that cadmium is complexed by the fraction smaller than 1000 D.

  10. Reduction of mercury(II) by tropical river humic substances (Rio Negro)-Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur).

    Science.gov (United States)

    Rocha, Julio Cesar; Sargentini, Ezio; Zara, Luiz Fabricio; Rosa, André Henrique; Dos Santos, Ademir; Burba, Peter

    2003-12-04

    The influence of structural features of tropical river humic substances (HS) on their capability to reduce mercury(II) in aqueous solutions was studied. The HS investigated were conventionally isolated from Rio Negro water-Amazonas State/Brazil by means of the collector XAD 8. In addition, the isolated HS were on-line fractionated by tangential-flow multistage ultrafiltration (nominal molecular-weight cut-offs: 100, 50, 30, 10, 5 kDa) and characterized by potentiometry and UV/VIS spectroscopy. The reduction of Hg(II) ions to elemental Hg by size-fractions of Rio Negro HS was assessed by cold-vapor AAS (CVAAS). UV/VIS spectrometry revealed that the fractions of high molecular-size (F(1)>100 kDa and F(2): 50-100 kDa) have a higher aromaticity compared to the fractions of small molecular-size (F(5): 5-10 kDa, F(6): F(2)>F(1)>F(3)>F(4)>F(6)). Accordingly, Hg(II) ions were preferably reduced by HS molecules having a relatively high ratio of phenolic/carboxylic groups and a small concentration of sulfur. From these results a complex 'competition' between reduction and complexation of mercury(II) by aquatic HS occurring in tropical rivers such as the Rio Negro can be suggested.

  11. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review

    Directory of Open Access Journals (Sweden)

    E. R. Graber

    2006-01-01

    Full Text Available A class of organic molecules extracted from atmospheric aerosol particles and isolated from fog and cloud water has been termed HUmic-LIke Substances (HULIS due to a certain resemblance to terrestrial and aquatic humic and fulvic acids. In light of the interest that this class of atmospheric compounds currently attracts, we comprehensively review HULIS properties, as well as laboratory and field investigations concerning their formation and characterization in atmospheric samples. While sharing some important features such as polyacidic nature, accumulating evidence suggests that atmospheric HULIS differ substantially from terrestrial and aquatic humic substances. Major differences between HULIS and humic substances, including smaller average molecular weight, lower aromatic moiety content, greater surface activity, better droplet activation ability, as well as others, are highlighted. Several alternatives are proposed that may explain such differences: (1 the possibility that mono- and di-carboxylic acids and mineral acids abundant in the atmosphere prevent the formation of large humic 'supramolecular associations'; (2 that large humic macromolecules are destroyed in the atmosphere by UV radiation, O3, and OH- radicals; (3 that 'HULIS' actually consists of a complex, unresolved mixture of relatively small molecules rather than macromolecular entities; and (4 that HULIS formed via abiotic and short-lived oxidative reaction pathways differ substantially from humic substances formed over long time periods via biologically-mediated reactions. It should also be recalled that the vast majority of studies of HULIS relate to the water soluble fraction, which would include only the fulvic acid fraction of humic substances, and exclude the humic acid (base-soluble and humin (insoluble fractions of humic substances. A significant effort towards adopting standard extraction and characterization methods is required to develop a better and meaningful

  12. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-12-01

    Full Text Available Catalytic ozonation is a new and promising process used to remove the contaminants from drinking water and wastewater. This study aimed to evaluate the catalytic potential of nano-magnesium oxide (nano-MgO for the removal of humic acids (HA from water. Mg (NO32 solution was used to prepare MgO powder by the calcination method. In a semi-batch reactor, the catalytic ozonation was carried out. The effects of the various operating parameters, including pH, reaction time, T-butyl alcohol (TBA and phosphate on HA degradation were evaluated. Experimental results indicated that degradation of HA was increased as the pH solution and reaction time were increased. Maximum HA degradation was obtained at pH = 10 and the reaction time of 10 minutes in the catalytic process. The calculated catalytic potential of nano-MgO on ozonation of HA was 60%. Moreover, catalytic ozonation process was not affected by TBA and the main reaction on HA degradation HA have effect take place on MgO surface. According to the results of this study, the developed MgO catalyst is the active and proficient catalyst in HA degradation using the catalytic ozonation process.

  13. The effects of humic substances and mycorrhiza fungus on Fe and Zn uptake and some soybean growth characteristics under greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Z. Ebrahimi

    2016-06-01

    Full Text Available Iron (Fe and zinc (Zn deficiency has been known as a key factor in limiting crop production in calcareous soils of arid and semi-arid regions. Since the components of organic matter can change Fe and Zn availability, this study was conducted to investigate the effects of humic treatments including humic acid (HA, fulvic acid (FA, vermicompost (Verm, HA+FA and HA+FA+Verm and mycorhiza inoculation on some growth characteristics of soybean and Fe and Zn uptake under greenhouse conditions. Results showed that significant differences among humic substances and mycorrhiza were recorded for soybean growth and Fe and Zn uptake. The response of soybean plants to humic substances was different. The largest increases in plant height, shoot fresh weight, shoot dry weight, root fresh weight and root dry weight were found in humic acid amended soil, being 0.9 fold, 2.37 fold, 6.11 fold, 3.54 fold and 5.5 fold, respectively, as compared to the control. Mycorrhiza also improved soybean growth characteristics. Humic treatments (with an exception for humic acid and vermicompost increased Fe and Zn content of soybean aerial parts. The highest Fe content (657.3 mg/kg and Zn content (87.4 mg/kg was measured in plants treated with fulvic acid. Mycorrhizal inoculation resulted in 10% increase in Fe and 64% in Zn content of soybean as compared to control plants. The results of this research revealed that application of humic acid and mycorrhiza can improve soybean growth by increasing the uptake of Fe and Zn.

  14. Fixation and transport of uranium by humic substances (1962); Fixation et transport de l'uranium par les substances humiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-03-15

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [French] L'etude du role des matieres organiques dans les minerais contenant de l'uranium sous une forme disseminee, sans mineralisation, est abordee en envisageant les reactions de l'uranium et de l'humus. Des 'acides humiques' sont extraits de la tourbe par l'ammoniaque. Par leur capacite d'echange cationique, ils forment des humates avec les cations metalliques; les humates de metaux monovalents, normalement solubles dans l'eau, peuvent etre rendus insolubles apres traitement des acides humiques par le methanal. Les humates de metaux plurivalents sont insolubles dans l'eau, en particulier ceux de U (IV) et d'uranyle U (VI

  15. Colloidal α-Al2O3 Europium(III) and humic substances interactions: a macroscopic and spectroscopic study.

    Science.gov (United States)

    Janot, Noémie; Benedetti, Marc F; Reiller, Pascal E

    2011-04-15

    Eu(III) sorption onto α-Al(2)O(3) in the presence of purified Aldrich humic acid (PAHA) is studied by batch experiments and time-resolved laser-induced luminescence spectroscopy of Eu(III). Experiments are conducted at varying pH, at 0.1 mol/L NaClO(4), 10(-6) mol/L Eu(III), 1 g/L α-Al(2)O(3) and 28 mg/L PAHA, which assured a complete Eu(III)-PAHA complexation. Adsorption of Eu(III) presents the expected pH-edge at 7, which is modified by addition of PAHA. Presence of Eu(III) slightly increases PAHA sorption throughout the pH range. The evolutions of luminescence spectra and decay times of the binary systems, that is, Eu(III)/α-Al(2)O(3) and Eu(III)/PAHA, indicate a progressive surface- and humic-complexation with increasing pH. The typical biexponential luminescence decay in Eu(III)/PAHA system is also recorded; the fastest deactivation depending barely on pH. In ternary Eu(III)/PAHA/α-Al(2)O(3) system, the existence of a luminescence biexponential decay for all pH means that Eu(III) is always in the direct neighborhood of the humic substance. Below pH 7, the spectra of the ternary system (Eu(III)/PAHA/α-Al(2)O(3)) are not different from the ones of Eu(III)/PAHA system, implying the same complex symmetry. Nevertheless, the increase of luminescence decay time points to a change in PAHA conformation onto the surface.

  16. The nematode Caenorhabditis elegans, stress and aging: Identifying the complex interplay of genetic pathways following the treatment with humic substances

    Directory of Open Access Journals (Sweden)

    Ralph eMenzel

    2012-04-01

    Full Text Available Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 d and old adult (11 d nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, TGF- signaling and Insulin-like signaling, lysosomal activities seem to contribute most to HF’s and modified HF’s lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans.

  17. Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode.

    Science.gov (United States)

    Shen, Junjie; Gagliardi, Simona; McCoustra, Martin R S; Arrighi, Valeria

    2016-09-01

    The control of drinking water quality is critical in preventing fluorosis. In this study humic substances (HS) are considered as representative of natural organic matter (NOM) in water. We show that when HS aggregate the response of fluoride ion selective electrodes (ISE) may be perturbed. Dynamic light scattering (DLS) results of both synthetic solutions and natural water sample suggest that low pH and high ionic strength induce HS aggregation. In the presence of HS aggregates, fluoride concentration measured by ISE has a reduction up to 19%. A new "open cage" concept has been developed to explain this reversible phenomenon. The interference of HS aggregation on fluoride measurement can be effectively removed by centrifugation pretreatment.

  18. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    Science.gov (United States)

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2016-10-25

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  19. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    Science.gov (United States)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  20. Selective preservation and origin of petroleum-forming aquatic kerogen

    Science.gov (United States)

    Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1983-01-01

    Studies of a marine algal sapropel from Mangrove Lake, Bermuda, by 13C NMR and stable carbon isotopic methods show that precursors of aquatic kerogen (insoluble, macromolecular, paraffinic humic substances) are primary components of algae and possibly associated bacteria and that these substances survive microbial decomposition and are selectively preserved during early diagenesis. ?? 1983 Nature Publishing Group.

  1. Interactions of mercury with different molecular weight fractions of humic substances in aquatic systems.

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Yao, K; Chennuri, K; Vudamala, K; Babu, P.V.R.

    ,MA) with a nominal cut off of 300 kDa, 100 kDa, 50 kDa, 30 kDa, 10 kDa, 5 kDa and 1 kDa were used. To determine the possible retention of Hg by chemical reaction with membranes, blank filter tests were performed. The schematic diagram of the set up... Hg loading. The association of Hg are presented as the total concentrations of Hg (in nM). The data presented as mean values ± standard deviations [Hg]T >300kDa 300- 100kDa 100-50kDa 50- 30kDa 30-10kDa 10- 5kDa 5...

  2. Heavy metal sequestration by humic substances during phyto-treatment of sewage sludges

    Energy Technology Data Exchange (ETDEWEB)

    Peruzzi, E.; Doni, S.; Macci, C.; Ceccanti, B.; Masciandaro, G.

    2009-07-01

    The presence of heavy metals in sludges stabilized in a reed bed system, may affect their use for agricultural purposes; however, the environmental impact of sludges depends on the availability and phyto toxicity of their heavy metal. The aim of this paper was to determine the effectiveness of a reed bed (Phragmites Australia) sludge treatment system in two urban wastewater treatment plants in Italy after two-year period of operation: by estimating the process of sludge stabilization, following conventional and non conventional parameters related with the evolution of organic matter quality (Water soluble Carbon, Dehydrogenase activity, Fulvic Acids, Humic Acids, Pyrolytic indices or organic matter Mineralization and Humification); by following the heavy metal speciation bioavailability in sludges. (Author)

  3. Effects of Water Regime and Reaction of Soil on Properties of Newly—Formed Humic Substances

    Institute of Scientific and Technical Information of China (English)

    CHENGLI-LI; WENQI-XIAO; 等

    1992-01-01

    The effects of soil water regime and soil reaction on nitrogen distribution and fractional composition of newly-formed humus (decayed products) and the structural characteristics of the newly-formed humic acids(HAs) were studied in an incubation experiment,with the following results obtained: 1.The humus newly formed under submerged conditions was higher in the relative content of α-amino acid-N and the humic acid/fulvic acid (HA/FA) ratio than that under upland conditions.The HAs extracted from the former were also higher in C/O ratio,aromaticity and the contents of methoxyl groups and lignin-like components,but lower in the content of carboxyl groups than the HAs from the latter. 2.Under upland conditions,the C/ organic N ratio and the relative content of mobile HA of newly-formed humus were lower,but the HA/FA ratio was higher in the CaCO2-amended treatment than in non-amended treatment.The presence of CaCO3 also resulted in a decrease of C/N ratio of HA and a slight increase of its carboxyl group content.On the other hand,there was no significant change in the composition and properties of the newly-formed humus with the addition of CaCO3 under submerged conditions. 3.Compared with soil HAs,the newly-formed HAs contained more carbohydrates,polypeptides and lignin-like components,and were in lower degrees of oxidation and humification.

  4. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2013-01-01

    Full Text Available Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA, crude fulvic acids (CFA, crude humin (CH, soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants’ diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.

  5. Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva.

    Science.gov (United States)

    Hobbie, Sven N; Li, Xiangzhen; Basen, Mirko; Stingl, Ulrich; Brune, Andreas

    2012-06-01

    Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.

  6. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    Science.gov (United States)

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation.

  7. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    Science.gov (United States)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  8. Interactions between radionuclides and organic colloids. Structure and reactivity of humic compounds; Interactions entre radionucleides et colloides organiques. Structure et reactivite des substances humiques

    Energy Technology Data Exchange (ETDEWEB)

    Plancque, G

    2001-09-01

    Humic compounds are the main organic colloids present in natural waters. These compounds can significantly modify the speciation of metals and control their properties, like migration, toxicity or bio-availability. It is thus important to study their speciation in conditions representative to those encountered in the natural environment. The aim of this work is to analyze the reactivity of these humic compounds. Two spectroscopic techniques have been used: the time-resolution laser spectro-fluorimetry, limited to the study of fluorescent elements, and the electro-spray source mass spectroscopy which requires the development of specific protocols for all elements of the periodic classification system. Europium, a fluorescent element analogue to trivalent actinides, has been chosen as test-metal for the intercomparison of both spectroscopic techniques. The first technique has permitted to determine the inorganic and organic speciation (spectra and lifetime of europium hydroxides and carbonates, and constants of interaction with humic acids, respectively). The limitations of this technique in the study of inorganic speciation has been evidenced. Humic compounds have a badly defined structure. The use of high-resolution mass spectroscopy has permitted to propose in a direct and experimental way, a molecular structure of aquatic fulvic acids in agreement with their known physico-chemical properties. (J.S.)

  9. Humic substances and the biogeochemical arsenic cycle in groundwater of the Blackfoot Disease endemic area, southwestern Taiwan

    Science.gov (United States)

    Kulp, T. R.; Jean, J.

    2009-12-01

    (V) reduction in these sediments was not stimulated by amendment with lactate, or when hydrogen was supplied as a possible electron donor. However, As(V)-reduction was stimulated by the addition of the reduced humics analogue AHQDS, demonstrating that reduced humic substances in the aquifer can serve as electron donors for biological As(V) reduction. These findings suggest that the population of As(V) reducing bacteria in the aquifer are well suited to use endogenous organic compounds as heterotrophic electron donors and that this process is not electron-donor limited at in-situ conditions. The potential for reduced humic compounds to serve as electron donors for microbiological As(V) reduction may have considerable environmental significance with respect to the mobilization of adsorbed As from sediments in aquifers that are rich in dissolved organic matter. Further work should focus on identifying the precise nature of arsenic-organic matter interaction in the aquifer and the predominant As species that is associated with these compounds.

  10. Colloidal diatomite, radionickel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation.

    Science.gov (United States)

    Sheng, Guodong; Shen, Runpu; Dong, Huaping; Li, Yimin

    2013-06-01

    This work determined the influence of humic acid (HA) and fulvic acid (FA) on the interaction mechanism and microstructure of Ni(II) onto diatomite by using batch experiments, X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) methods. Macroscopic and spectroscopic experiments have been combined to see the evolution of the interaction mechanism and microstructure of Ni(II) in the presence of HA/FA as compared with that in the absence of HA/FA. The results indicated that the interaction of Ni(II) with diatomite presents the expected solution pH edge at 7.0, which is modified by addition of HA/FA. In the presence of HA/FA, the interaction of Ni(II) with diatomite increased below solution pH 7.0, while Ni(II) interaction decreased above solution pH 7.0. XPS analysis suggested that the enrichment of Ni(II) onto diatomite may be due to the formation of (≡SO)2Ni. EXAFS results showed that binary surface complexes and ternary surface complexes of Ni(II) can be simultaneously formed in the presence of HA/FA, whereas only binary surface complexes of Ni(II) are formed in the absence of HA/FA, which contribute to the enhanced Ni(II) uptake at low pH values. The results observed in this work are important for the evaluation of Ni(II) and related radionuclide physicochemical behavior in the natural soil and water environment.

  11. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    Science.gov (United States)

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment.

  12. Size-exclusion chromatography of large molecules from coal liquids, petroleum residues, soots, biomass tars and humic substances.

    Science.gov (United States)

    Herod, Alan A; Zhuo, Yuqun; Kandiyoti, Rafael

    2003-06-30

    Size-exclusion chromatography (SEC) using 1-methyl-2-pyrrolidinone (NMP) as eluent has been calibrated using various standard polymers and model compounds and applied to the analysis of extracts of coal, petroleum and kerogens, to petroleum vacuum residues, soots, biomass tars and humic substances. Three separate columns of different molecular mass (MM) ranges were used, with detection by UV absorption; an evaporative light scattering detector was used for samples with no UV absorption. Fractionation was useful to separate signal from the less abundant high-mass material, which was normally masked by the strong signal from the more abundant low-mass material in the absence of fractionation. Fractionation methods used to isolate high-mass materials before SEC analysis included planar chromatography, column chromatography and solvent solubility. The apparently large molecules were concentrated into the fractions not soluble in common solvents and were relatively immobile in planar chromatography. All samples and fractions contained some material excluded from the column porosity. Evidence from other techniques suggests that the excluded material is of different structures from that of the resolved material rather than consisting of aggregates of small molecules. We speculate that the excluded material may elute early because the structures of this material are three-dimensional rather than planar or near planar.

  13. Colloid facilitated transport of humic substances in soil: laboratory experiment and modeling calculation.

    Science.gov (United States)

    Dinu, Marina; Moiseenko, Tatyana

    2016-04-01

    An understanding of ability to predict the fate and transport of colloids in soil systems are of great importance in many environmental and industrial applications. Especially, in the case study sizes and zeta potentials of lignin and humus components (as a parameter reflecting the mobility and tread of organic substances). The objects of investigation were water extracts of gleepodzolic soil of European territory of Russia and Western Siberia, as well as humus substances extracted from this soil. In this study, evaluation of size, molecular weight distribution and zeta potential were used to predict the mobility of the organic component fractions of the soil. Fractionation was performed using multistage filtration plant (100 Da) and measuring physic-chemical parameters measured with the Malvern Zetasizer Nano ZSP. Significant differences in the distribution of organic matter on the molecular weight, charge (sign) of the zeta potential and the size of the sample of European Russia in comparison with samples of Western Siberia have been found. Also, laboratory studies have demonstrated of any differences in physicochemical parameters as infrared spectra, ultraviolet spectra, complexing ability of samples of the same soil type but different areas of Russia. The results can be used in the prediction of the migration ability of fractions humus substances and their stability at change physic-chemical conditions (the coefficient of mobility of the organic components by calculated in MathCad). This work was supported by the grant № 14-17-00460 RSF from 07.11.2014

  14. Physico-chemical characterization of secondary organic aerosol derived from catechol and guaiacol as a model substance for atmospheric humic-like substances

    Directory of Open Access Journals (Sweden)

    J. Ofner

    2010-07-01

    Full Text Available Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS. Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.

  15. Effect of metal ions on the molecular weight distribution of humic substances derived from municipal compost: ultrafiltration and size exclusion chromatography with spectrophotometric and inductively coupled plasma-MS detection.

    Science.gov (United States)

    Wrobel, Kazimierz; Sadi, Baki B M; Wrobel, Katarzyna; Castillo, Juan R; Caruso, Joseph A

    2003-02-15

    The effect of metal ions (Co, Cu, Ni, Pb, Zn) on the molecular weight distribution of humic substances (HSs) obtained from compost is studied. We believe this is the first of this type of study applied in this way to humic substances. Size exclusion chromatography is coupled with two on-line detection systems (spectrophotometric and ICPMS) to study the binding of metal ions by humic substances leached from compost. ICPMS provided highly specific, sensitive, and multielement analytical information that enabled obtaining direct experimental evidence for the participation of metal ions in molecular size distributions of humic compounds. The compost extract or its high molecular weight fraction (>5,000) was put in contact with EDTA or citrate ions, thereby competing with HSs for binding metals. The experiments were carried out by varying the pH maintained by Tris-HCl or CAPS buffer (pH 8.0 and 10.3) and keeping the ionic strength constant. The elution profile of humic substances using UV/ visible detection was compared with those from ICPMS detection of Co, Cu, Ni, Pb, and Zn in the same chromatographic runs. The results obtained suggested that both bridging between small molecules and complexation/ chelation by individual molecules are involved in metal ion binding to humic substances. The use of ICPMS to study the role of metal ions in aggregation/disassociation of humic substances proposed in this work is promising. Coupling element-specific detection with SEC or other separation systems allows better understanding of the mobility and bioaccessibility of elemental species in the environment and further elucidation of the dissolved humic structure.

  16. Upgrading the removal of humic substances and mutagen precursors in water treatment

    Science.gov (United States)

    Järvinen, Ari V. O.; Pelkonen, Markku T.; Vartiainen, Terttu

    This study aimed at investigating different methods of upgrading conventional water treatment plants for improved removal of organic substances. Ozonation, activated carbon filtration and slow sand filtration were tested. Pilot scale experiments were performed at Bodom waterworks in Espoo, Finland. The TOC-value of the influent was 3.2 mg/l (6.7 mg/l CODMn). The average removal of TOC during activated carbon filtration was 29% (41% removal of CODMn). Preozonation caused no significant change in treatment efficiency. Mutagenicity (test strain TA100), after chlorination, was lower in ozonated and filtered water than in non-ozonated. The level of mutagenicity achieved was close to that of chlorinated groundwater.

  17. Microbial degradation of xenobiotic, aromatic pollutants in humic water.

    OpenAIRE

    Larsson, P.; Okla, L; Tranvik, L.

    1988-01-01

    The microbial degradation of a number of 14C-labeled, recalcitrant, aromatic pollutants, including trichloroguaiacol and di-, tri-, and pentachlorophenol, was investigated in aquatic model systems in the laboratory. Natural, mixed cultures of microorganisms in the water from a brown-water lake with a high content of humic compounds mineralized all of the tested substances to a higher degree than did microorganisms in the water from a clear-water lake. Dichlorophenol was the most rapidly degra...

  18. Performance, meat quality, meat mineral contents and caecal microbial population responses to humic substances administered in drinking water in broilers.

    Science.gov (United States)

    Ozturk, E; Coskun, I; Ocak, N; Erener, G; Dervisoglu, M; Turhan, S

    2014-01-01

    This study was conducted to examine the effect of different levels of humic substances (HS) administered in drinking water on caecal microflora and mineral composition and colour characteristics of breast and thigh meats and the growth performance, carcass and gastrointestinal tract (GIT) traits of broiler chicks. A total of 480 3-d-old broiler chickens were randomly allocated to 4 treatments with 4 cages per treatment and 30 bird (15 males and 15 females) chicks per cage. All birds were fed on commercial basal diet. The control birds (HS0) received drinking water with no additions, whereas birds in the other treatment groups received a drinking water with 7.5 (HS7.5), 15.0 (HS15.0) and 22.5 (HS22.5) g/kg HS. Mush feed were provided on an ad libitum basis. Body weight and feed intake of broilers were determined at d 0, 21, and 42, and feed conversion ratio was calculated. On d 42, 4 broilers (2 males and 2 females) from each cage were slaughtered and the breast and thigh meats were collected for mineral composition and quality measurements. Performance, carcass and GIT traits and caecal microbial population of broiler chicks at d 42 were not affected by the dietary treatments. The lightness (L*) of breast and thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water. Although the redness (a*) of breast meat increased, yellowness of thigh meat decreased in broilers supplemented with 15 and 22.5 g/kg HS in drinking water (P water can be applied for broiler chicks to maintain growth performance and improve meat quality without changing caecal microflora.

  19. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review.

    Science.gov (United States)

    Ahrens, Lutz; Bundschuh, Mirco

    2014-09-01

    Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are distributed ubiquitously in the aquatic environment, which raises concern for the flora and fauna in hydrosystems. The present critical review focuses on the fate and adverse effects of PFASs in the aquatic environment. The PFASs are continuously emitted into the environment from point and nonpoint sources such as sewage treatment plants and atmospheric deposition, respectively. Although concentrations of single substances may be too low to cause adverse effects, their mixtures can be of significant environmental concern. The production of C8 -based PFASs (i.e., perfluorooctane sulfonate [PFOS] and perfluorooctanoate [PFOA]) is largely phased out; however, the emissions of other PFASs, in particular short-chain PFASs and PFAS precursors, are increasing. The PFAS precursors can finally degrade to persistent degradation products, which are, in particular, perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs). In the environment, PFSAs and PFCAs are subject to partitioning processes, whereby short-chain PFSAs and PFCAs are mainly distributed in the water phase, whereas long-chain PFSAs and PFCAs tend to bind to particles and have a substantial bioaccumulation potential. However, there are fundamental knowledge gaps about the interactive toxicity of PFAS precursors and their persistent degradation products but also interactions with other natural and anthropogenic stressors. Moreover, because of the continuous emission of PFASs, further information about their ecotoxicological potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks for PFASs to affect ecosystem structure and function in the aquatic environment.

  20. Chemical and spectroscopic characterization of dissolved humic substances in a mangrove-fringed estuary in the eastern coast of Hainan Island, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yaoling; DU Jinzhou; PENG Bo; ZHANG Fenfen; ZHAO Xin; ZHANG Jing

    2013-01-01

    Mangrove-derived dissolved organic matter (DOM) has an important effect on estuarine and coastal area on a large scale.In order to improve the understanding of origin,composition,and fate of DOM in mangrove-fringed estuarine and coastal areas,dissolved humic substances (DHS) were isolated from one mangrove pore-water sample and one near-shore seawater sample downstream the mangrove pore-water site in the eastern coast of Hainan Island,South China.Fulvic acids,humic acids and XAD-4 fractions were obtained from the two water samples by using a two-column array of XAD-8 and XAD-4 resins.Chemical and spectroscopic methods were used to analyze the features of these DHS.Compared to the mangrovepore-water DHS,the near-shore seawater DHS were found rich in 13C with lower C/N ratios and more aliphatic compounds and carbohydrates,but less aromatic structures and carboxyl groups.As for the three fractions of the two DHS,XAD-4 fractions contain more aliphatics,carbohydrates,carboxyl groups,and enrich in 13C with respect to both fulvic and humic acids.Photo-oxidation transformation and contribution from marine-derived DOM were considered as the main reasons resulted in the difference in compositional features for these DHS in this study.

  1. Influence of the apparent molecular size of humic substances on the efficiency of coagulation using Fenton's reagent

    Directory of Open Access Journals (Sweden)

    MARCELO DE JULIO

    2013-06-01

    Full Text Available This work used Fenton's reagent as a coagulating agent in the treatment of water samples with high true colour caused by humic substances (HS extracted from peat. In addition, the effects of the apparent molecular size of HS on coagulation, flocculation and flotation were studied. To that end, four distinct water samples having the same true colour were prepared using HS with different molecular sizes, which were obtained by ultrafiltration fractioning. Through optimisation of coagulant dosage and coagulation pH, as well as posterior construction of coagulation diagrams for each water sample, it was verified that the sample prepared with the smallest apparent molecular size of HS was the most difficult to treat, requiring higher coagulant (Fenton's reagent dosages than samples prepared with larger HS molecular sizes. Furthermore, filtration experiments after dissolved air flotation (DAF were carried out in an attempt to simulate conventional treatment. The most representative results in filtered water were: apparent colour ≤ 3 HU; turbidity Este trabalho empregou o reagente de Fenton como agente coagulante no tratamento de águas contendo cor elevada causada pela introdução de substâncias húmicas extraídas de turfa. Além disto, foi estudado o efeito do tamanho molecular aparente das substâncias húmicas na eficiência da coagulação, floculação e flotação de águas; para isto foram preparadas quatro águas distintas apresentado a mesma cor verdadeira, mas com substâncias húmicas de diferentes tamanhos moleculares, obtidas por fracionamento por ultrafiltração. Por meio da otimização da dosagem de coagulante e respectivo pH de coagulação e posterior construção dos diagramas de coagulação para cada água de estudo, verificou-se que a água preparada com as substâncias húmicas de menor tamanho molecular aparente apresentou maior grau de dificuldade para tratamento, requerendo dosagens de coagulante (reagente de Fenton bem

  2. On the Formation Characteristics of Humic Substances in Livestock Manure Compos t%畜粪堆肥过程中腐殖质形成特征研究进展

    Institute of Scientific and Technical Information of China (English)

    姚武; 顾燕青; 巫阳; 顾优丽; 龚梦丹; 朱维琴

    2014-01-01

    腐熟化程度和堆肥品质是堆肥成功与否的重要标志和指标,而堆肥中有机质的主要成分---腐殖物质的形成和变化则能很好地反映堆肥的腐熟度和堆肥品质,是众多研究者探讨的热点。本文陈述了腐殖物质的形成和组成成分,论述了堆肥过程中腐殖物质的变化和特征,介绍了评价腐殖物质的腐殖参数和分析方法,并对未来的研究方向进行了展望。%The maturity and quality of compost are the significant indicators to determine the success of compost .The formation and changes of humic substances ,which are the major components of the organic matters in compost ,can reflect the maturity and quality of compost ,and they are the hot spots for researchers .This paper mainly reviews the formation and composition of humic substances ,discusses the changes and characteristics of humic substances in compost ,introduces the humic parameters and analytical methods of humic substances ,and proposes the prospect of the future researches .

  3. Humic substances in performance assessment of nuclear waste disposal: Actinide and iodine migration in the far-field. Third technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, G.

    2005-04-01

    The present report describes progress within the third and final year of the EC-project 'Humic Substances in Performance Assessment of Nuclear Waste Disposal: Actinide and Iodine Migration in the Far-Field'. The work conducted within the present project builds on a number of previous activities/project supported by the Commission. It finds its continuation within different EC FP 6 instruments and also provides for additional continued cooperation through network structures resulting from the broad cooperation within the project. Without being a formal requirement of the Commission or co-funding bodies, this report documents results in great technical detail and makes the results available to a broad scientific community. The report contains an executive summary written by the coordinator. More detailed results are given as individual contributions in the form of 12 annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. The overall objectives were to generate knowledge about the impact of humic substances on the migration of actinides and iodine in the far-field of a nuclear waste repository. In the beginning, focus was rather on the potential enhancement due to humic colloid mediated radionuclide transport. Thereby, sources, inventory, stability and mobility of dissolved humic substances in their colloidal form formed a key topic. Other key topics were the interaction with actinides and iodine, transport studies under near-natural conditions in the laboratory, rationalization of knowledge in models and application to three migration cases for visualization of the overall outcome. Changes relative to the original objectives were given by moving emphasis of natural chemical analogue studies from the question of kinetic exchange constants for different inventories in natural and laboratory systems to the study of anthropogenic actinide contaminants in the

  4. Selected pioneering works on humus in soils and sediments during the 20th century: A retrospective look from the International Humic Substances Society view

    Science.gov (United States)

    Feller, Christian; Brossard, Michel; Chen, Yona; Landa, Edward R.; Trichet, Jean

    Organic matter in general, and humic substances (HS) in particular, are involved in many processes in soils, sediments, rocks and natural waters. These include rock weathering, plant nutrition, pH buffering, trace metal mobility and toxicity, bioavailability, degradation and transport of hydrophobic organic chemicals, formation of disinfection by-products during water treatment, heterotrophic production in blackwater ecosystems and, more generally, the global carbon cycle. Before the 1970s, natural organic matter of different ecosystem pools ( i.e., soils, sediments, and natural waters) was often studied in isolation, although many similarities exist between them. This is particularly so for HS. In this historical context, a need appeared at the international level for bringing together environmental chemists, soil scientists, hydrologists, and geologists who were interested in HS to provide a forum for the exchange of ideas, to standardize analytical procedures and agree on definitions of HS. The International Humic Substances Society (IHSS) was founded in Denver, Colorado (USA) in 1981 with several objectives among them “to bring together scientists in the coal, soil, and water sciences with interests in humic substances” (home page of the IHSS web site: http://ihss.gatech.edu/ihss2/index.html). This paper presents selected pioneering works on humus in soils and sediments during the 20th century with a special focus on the links between the studies of soil HS and the formation, during early diagenesis, of the precursors of kerogens. Temporal coverage includes key contributions preceding the founding of the IHSS, and a brief history of the organization is presented.

  5. Effect of UV irradiation on the aggregation of TiO2 in an aquatic environment: Influence of humic acid and pH.

    Science.gov (United States)

    Wang, Peifang; Qi, Ning; Ao, Yanhui; Hou, Jun; Wang, Chao; Qian, Jin

    2016-05-01

    The behavior of photoactive TiO2 nanoparticles in an aquatic environment under UV irradiation was investigated. When there was no UV light irradiation, the attachment of humic acid (HA) onto the TiO2 nanoparticles improved their stability due to an increase in the electrostatic and steric repulsions between the particles. However, our study demonstrated that UV light clearly influenced the aggregation of TiO2 nanoparticles. Half an hour of UV irradiation caused the particles to aggregate from 331.0 nm to 1505.0 nm at a pH of 3.0. Similarly, the particles aggregated from 533.2 nm to 1037.0 nm at a pH of 6.5 and from 319.0 nm to 930.0 nm at a pH of 9.0. The aggregation continued with increased irradiation time, except for the condition at pH 3.0, which demonstrated disaggregation. Furthermore, we determined that the photocatalytic degradation of the HA dominated the behavior of TiO2 in our study. From the results of HA removal and 3DEEM fluorescence spectra data for the solution, a change in the HA was in accordance with the size change of the TiO2. The results illustrated that the UV irradiation affected the behavior of light-active nanomaterial (such as TiO2) in an aquatic system, thus influencing their bioavailability and reactivity.

  6. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments

    Science.gov (United States)

    Park, Seung Shik; Yu, Jaemyeong

    2016-07-01

    PM2.5 samples from biomass burning (BB) emissions of three types - rice straw (RS), pine needles (PN), and sesame stems (SS) - were collected through laboratory-controlled combustion experiments and analyzed for the mass, organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water soluble inorganic species (Na+, NH4+, K+, Ca2+, Mg2+, Cl-, NO3-, SO42-, and oxalate). The combustion experiments were carried out at smoldering conditions. Water-soluble HULIS in BB samples was isolated using a one-step solid phase extraction method, followed by quantification with a total organic carbon analyzer. This study aims to explore chemical and light absorption characteristics of HULIS from BB emissions. The contributions of HULIS (=1.94 × HULIS-C) to PM2.5 emissions were observed to be 29.5 ± 2.0, 15.3 ± 3.1, and 25.8 ± 4.0%, respectively, for RS, PN, and SS smoke samples. Contributions of HULIS-C to OC and WSOC for the RS, PN, and SS burning emissions were 0.26 ± 0.03 and 0.63 ± 0.05, 0.15 ± 0.04 and 0.36 ± 0.08, and 0.29 ± 0.08 and 0.51 ± 0.08, respectively. Light absorption by the water extracts from BB aerosols exhibited strong wavelength dependence, which is characteristic of brown carbon spectra with a sharply increasing absorption as wavelength decreases. The average absorption Ångström exponents (AAE) of the water extracts (WSOC) fitted between wavelengths of 300-400 nm were 8.3 (7.4-9.0), 7.4 (6.2-8.5), and 8.0 (7.1-9.3) for the RS, PN, and SS burning samples, which are comparable to the AAE values of BB samples reported in previous publications (e.g., field and laboratory chamber studies). The average mass absorption efficiencies of WSOC measured at 365 nm (MAE365) were 1.37 ± 0.23, 0.86 ± 0.09, and 1.38 ± 0.21 m2/gṡC for RS, PN, and SS burning aerosols, respectively. Correlations of total WSOC, hydrophilic WSOC (= total WSOC-HULIS-C), and HULIS-C concentrations in solution with the light

  7. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    Science.gov (United States)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  8. Comparison of Marine and River Water Humic Substances in Patagonian%巴塔哥尼亚(阿根延)海洋与河水中腐植酸组成比较

    Institute of Scientific and Technical Information of China (English)

    Maria del Carmen Scapini; Victor Hugo Conzonno; Vilma Teresa Balzaretti; Alicia, Fernandez Cirelli; 马莉娜; 李捷

    2011-01-01

    比较了Enga西。海湾海水(大西洋)和丘布特河水(阿根廷的巴塔哥尼亚)中腐殖质的结构。这些腐殖质被分离、纯化后,通过元素分析法,核磁共振法(C13和1H谱),红外光谱法,紫外吸收法和荧光法等对其结构特性进行了分析鉴定,并以氮含量、氧含量、H/C比、C/N比、红外波段中氮和羧基官能团含量、核磁共振吸收谱线中官能团的斜率系数、250和365nm处的吸收比率(E2/E3)、激发一发射模型和荧光量子产率等指标对二者的相似性进行比较。Engano海湾和丘布特河水中的腐殖质主要由黄腐酸组成。尽管它们具有一定的相似性,都含有较高的直链脂肪碳含量(低芳香烃碳含量),但其差异性也十分显著,二者所含蛋白质和羧酸不同。Enganno海湾腐殖质主要来自于水生的植物或动物;丘布特河腐殖质也同样来自于水生动植物,但是也有证据表明它可能来自土壤黄腐酸。%Structural aspects of humic substances in marine waters of Engano Bay (Atlantic Ocean) and water from the Chubut River (Patagonia, Argentina) were compared. The humic substances were isolated, purified, and analyzed us-ing a multiple-method approach for structural characterization elemental analysis, nuclear magnetic resonance (13C and H NMR), infrared spectroscopy (FTIR), UV-visible absorption and fluorescence. Similarities between the marine and freshwater components were evaluated on the basis of N and O contents, H/C and C/N atomic ratios, infrared bands from nitrogen-containing and carboxylic groups, percentage of functional groups obtained from NMR spectra, spectral slope coefficient of absorption spectra, absorbance ratios at 250 and 365 nm (EJE3), aromaticity, excitation-emission matrices and fluorescence quantum yield. Both the Engano Bay and Chubut River waters have humic substances that are mainly composed of fulvic acids

  9. Substâncias húmicas como suporte à classificação de solos brasileiros Humic substances in support of the Brazilian soil classification

    Directory of Open Access Journals (Sweden)

    Ademir Fontana

    2008-10-01

    tipos de horizontes diagnósticos ricos em C orgânico.The humic substances that compose the soil organic matter participate actively in the pedogenetic soil processes, particularly in the Histic (Histic, Mollic (Chernozemic, Umbric (Humic and Spodic (Spodic diagnostic horizons. This study aimed to determine organic C amounts in the soil humic substances and evaluate their applicability for diagnostic horizons recognition. Fifty-six diagnostic soil horizons from different Brazilian regions were used, 52 from surface horizons or epipedons (H histic, A mollic, A proeminent, A humic and A moderate and four subsurface (B spodic. Soil chemical and physical properties and the organic C amounts in the fulvic acid fraction (C-FAF, humic acid fraction (C-HAF and humin (C-HUM were determined by well-established methods. The C-HAF/C-FAF ratio and C-AE/C-HUM ratio (C-AE = C-FAF + C-HAF and the percentage of each fraction in the total organic C (TOC were calculated and all data were submitted to multivariate analysis. In the organic horizon, the amounts of H histic were highest and C-HUM and C-HAF amounts similar. C-HUM was predominant in the major mineral horizons, followed by C-HAF in the A mollic and A humic horizons, and by C-FAF in the A proeminent and A moderate horizons. A greater proportion of either C-FAF or C-HAF were observed in B spodic horizons. Based on canonical analysis, we identified the variables that could be used to separate diagnostic horizon types. The horizons with low influence of organic matter were distinguished from those with greater influence by cluster analysis. With the discriminatory analysis, satisfactory results were obtained for the classification of diagnostic horizons based on humic substance variables, compared to the standard classification. Multivariate analysis indicates that the distribution of C in the humic substances can be used to separate C-rich diagnostic horizon types of tropical soils in Brazil.

  10. Humic substances in performance assessment of nuclear waste disposal: Actinide and iodine migration in the far-field. Second technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Buckau, G. (ed.)

    2004-07-01

    The present report describes progress within the second year of the EC-project ''Humic Substances in Performance Assessment of Nuclear Waste Disposal: Actinide and Iodine Migration in the Far-Field''. Without being a formal requirement of the commission or co-funding bodies, this report documents results in great technical detail. It is an open report and thus makes the detailed results available to a broad scientific community. The report contains an executive summary written by the coordinator. More detailed results are given as individual contributions in the form of 23 annexes. Not all results are discussed or referred to in the executive summary report and thus readers with a deeper interest also need to consult the annexes. (orig.)

  11. Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora.

    Science.gov (United States)

    Zhou, Yunqiao; Wang, Tieyu; Jiang, Zhaoze; Kong, Xiaoxiao; Li, Qifeng; Sun, Yajun; Wang, Pei; Liu, Zhaoyang

    2017-01-01

    In the present study, the concentrations and proportions of perfluoroalkyl substances (PFASs) in water and sediments (in different seasons) from the Qing River were investigated. The highest concentration of PFASs in water (207.59 ng L(-1)) was found in summer. The composition of PFASs in water changed with time, perfluorobutane sulfonate (PFBS) was the predominant compound in spring and summer, while long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), started to increase in autumn and winter. The PFASs concentration in sediments ranged from 0.96 to 4.05 ng g(-1) dw. The proportion of long-chain PFASs was higher than that of short-chain PFASs in sediments, the dominant component in sediments was PFOA with a contribution of 24.6-75.4% to total PFASs in sediments, followed by PFOS. The concentrations of PFASs in roots of emergent plants were relatively higher than those in submerged plants. However, the translocation effect of PFASs was not remarkable. Bioaccumulation factors (BAFs) of the aquatic plants indicated the absorption of PFASs were effective. BAFs in submerged plants basically increased with increasing chain length accordingly. In general, aquatic plants had the absorption preference for long-chain PFASs, especially PFOS, which was the predominant compounds in both submerged and emergent plants. Based on the results above, hornworts were selected to be cultivated indoor in the nutrient solution spiked gradient concentrations of PFOS to assess the general ecological risk. The results revealed that hornworts were resistant to PFOS and might be used as remediation flora to eliminate PFOS contamination.

  12. Characteristics of humic and fulvic acids in Arabian Sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from some of the shelf, slope and offshore sediments of the Arabian Sea were studied. The molecular weight, functional groups, elemental composition and infrared spectra were examined. Humic substances, dominated...

  13. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    Science.gov (United States)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  14. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach.

    Science.gov (United States)

    Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves

    2015-03-01

    Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.

  15. Off-line TMAH-GC/MS and NMR characterization of humic substances extracted from river sediments of northwestern São Paulo under different soil uses

    Energy Technology Data Exchange (ETDEWEB)

    Tadini, Amanda Maria, E-mail: amandatadini@hotmail.com [Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R. Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP (Brazil); Pantano, Glaucia; Toffoli, Ana Lúcia de [Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista “Júlio de Mesquita Filho”, R. Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP (Brazil); Fontaine, Barbara; Spaccini, Riccardo; Piccolo, Alessandro [Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare (NMR) per L' ambiente, l' Agro-Alimentare ed i Nuovi Materiali, CERMANU, Università di Napoli Federico II, Via Università 100, 80055 Portici (Italy); and others

    2015-02-15

    Humic substances (HS) vary according to the physical and chemical factors present in the environment. Thus, the characterization of HS is very important because it improves the understanding of the groups that comprise the chemical structure. Sediment HS were extracted from four locations representative of sugar cane cultivation, pasture, urban area and the impoundment of the Água Vermelha Hydroelectric Power Plant. Characterization using nuclear magnetic resonance (NMR) allowed us to infer that the HS from an area predominantly characterized by sugar cane cultivation (41.9%) and a typical rural area (35.0%) showed the highest aromaticity percentage. Using the off-line TMAH-thermochemolysis-GC-MS, we inferred that the HS of a typical rural area had a structure rich in plant waxes, plant biopolyester and a large amount of fatty acid methyl ester, which are related to the large amount of humic acid in the structure. The HS samples from the sugar cane cultivation area and the impoundment receiving all of the pollution load from the Turvo/Grande Hydrographic Basin (Bacia Hidrográfica do Turvo/Grande—BHTG) contained contributions from compounds rich in lipids and fatty acid methyl esters, highlighting the presence of the breakdown of petroleum-derived hydrocarbons in the area receiving the entire pollution load. We conclude that the HS extracted from the sediments of the Preto, Turvo and Grande rivers showed well-defined characteristics that varied depending on soil use and occupation, especially the HS extracted from sediments sampled in areas typically planted with sugar cane and rural areas, whose structures contained more aromatic groups. - Highlights: • The characterization of HS allows the understanding of the chemical structure. • HS of sediment in areas planted with sugar cane and rural areas contained more aromatic groups. • Influence of soil use and occupation on the chemical structure of the HS.

  16. Reduction of mercury (II) by humic substances-influence of pH, salinity of aquatic system

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Vudamala, K.; Coulibaly, M.; Ramteke, D.; Chennuri, K.; Lean, D.

    is depicted in Figure 1. It consisted of a Teflon reactor. Two Teflon tubes were connected from the top of the reactor. Ultrapure N2 gas was connected with one of the Teflon tubes. Reduced Hg (Hg0) produced inside the reactor was carried out by flushing... was performed to determine the influence of KMnO4 concentration on capturing Hg0 . A series of solutions, containing Hg(II) (20.0×10-9M) was taken in series of reactors. Stannous chloride (SnCl2 (0.5M) in HCl of 1.2 M) solution (as a reducing agent) was added...

  17. Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances.

    Science.gov (United States)

    Hattab, N; Soubrand, M; Guégan, R; Motelica-Heino, M; Bourrat, X; Faure, O; Bouchardon, J L

    2014-09-01

    The efficiency of aided phytostabilization using organic amendments such as ramial chipped wood (RCW) and composted sewage sludge (CSS) was studied on contaminated techno-soils, on nine experimental plots. The objective was to characterize the role of fulvic (FA) and humic acids (HA) on the mobilization of trace elements, specifically As, Cu, Mo, Pb and Zn. Results showed that the addition of CSS increased the total organic carbon and nitrogen content more than with RCW and as a result, the C/N ratio in the CSS soil was higher than in the RCW and non-amended (NE) soil, reflecting the high decomposition of soil organic matter in the CSS soil compared with the other soils. The RCW and CSS amendments increased the hydrogen index (HI) values and the oxygen index (OI) values compared with the NE soil, especially for the soil treated with CSS which contained more aliphatic than aromatic compounds. The addition of CSS to the techno-soil significantly increased the percentage of C org associated with the HA fractions compared with the RCW and NE soils. The soil amended with CSS showed the highest E 4/E 6 ratio and the lowest E 2/E 3 ratio of FA. Zn and As were more abundant in the FA fraction than in the HA fraction, whereas Pb, Cu and Mo were more associated to HA than to FA in the treated and untreated soils, which may explain the difference in their mobility and availability.

  18. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues.

    Science.gov (United States)

    Zhou, Ying; Selvam, Ammaiyappan; Wong, Jonathan W C

    2014-09-01

    Humification during co-composting of food waste, sawdust and Chinese medicinal herbal residues (CMHRs) was investigated to reveal its correlation with compost maturity. Food waste, sawdust and CMHRs were mixed at 5:5:1 and 1:1:1 (dry weight basis) while food waste:sawdust at 1:1 (dry wt. basis) served as control. Lime at 2.25% was added to all the treatments to alleviate low pH, and composted for 56 days. Humic acid/fulvic acid (HA/FA) ratio increased to 0.5, 2.0 and 3.6 in the control and treatment at 5:5:1, and 1:1:1 mixing ratio, respectively at the end of composting. The decrease in aliphatic organics in HA demonstrated the degradation of the readily available organics, while an increase in aromatic functional groups indicated the maturity of compost. Disappearance of hemicellulose and weak intensity of lignin in the CMHRs treatments indicated that the lignin provided the nucleus for HA formation; and the CMHRs accelerated the compost maturity.

  19. Interfaces in aquatic ecosystems: Implications for transport and impact of anthropogenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Knulst, J.

    1996-11-01

    Mechanisms that govern transport, accumulation and toxicity of persistent pollutants at interfaces in aquatic ecosystems were the foci of this thesis. Specific attention was paid to humic substances, their occurrence, composition, and role in exchange processes across interfaces. It was concluded that: The composition of humic substances in aquatic surface microlayers is different from that of the subsurface water and terrestrial humic matter. Levels of dissolved organic carbon (DOC) in the aquatic surface microlayer reflect the DOC levels in the subsurface water. While the levels and enrichment of DOC in the microlayer generally show small variations, the levels and enrichment of particulate organic carbon (POC) vary to a great extent. Similarities exist between aquatic surface films, artificial semi-permeable and biological membranes regarding their structure and functioning. Acidification and liming of freshwater ecosystems affect DOC:POC ratio and humic composition of the surface film, thus influencing the partitioning of pollutants across aquatic interfaces. Properties of lake catchment areas extensively govern DOC:POC ratio both in the surface film and subsurface water. Increased UV-B irradiation changes the DOC:POC ratio in the surface film and thus affect transfer of matter across the interface. Transport of lipophilic, persistent organic pollutants across semi-permeable membranes is influenced by the solutes organic composition. 106 refs, 11 figs, 1 tab

  20. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    Science.gov (United States)

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  1. The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud.

    Science.gov (United States)

    Guo, Xiaobo; Huang, Junhao; Lu, Yanyu; Shan, Guangchun; Li, Qunliang

    2016-11-01

    For the purpose of evaluating the effect of flue gas desulphurization gypsum (FGDG) additive on characteristics and evolution of humic substance (HS) during composting, HS from composts with FGDG (CPG) and without FGDG (CP) were extracted and assessed with respect to their particle size, elemental analysis, FTIR and UV-vis spectroscopy, and the molecular composition of HS was characterized via pyrolysis-GC/MS as well. The particle size of HS ranged between 300 and 600nm, representing a bimodal distribution. As composting proceeded, the C/H of HS increased, and C/N decreased. The FTIR and UV-vis spectroscopy indicated that the aromatization of HS was promoted over the composting process. Adding FGDG increased the unsaturated degree and aromatization of HS. Pyrolysis-GC/MS showed the level of alkane decreased, and the level of benzene and nitrogen compounds increased upon the addition of FGDG. The nitrogen compounds of HS in CPG was significantly higher than that in CP.

  2. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances; Analyse critique des donnees de complexation des lanthanides et actinides par la matiere organique naturelle: cas des substances humiques

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P.

    2010-07-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M{sup z+} are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is

  3. Conformational behaviour of humic substances at different depths along a profile of a Lithosol under loblolly (Pinus taeda) plantation

    Science.gov (United States)

    Conte, P.; Maia, C. M. B. F.; de Pasquale, C.; Alonzo, G.

    2009-04-01

    The conformation of natural organic matter (NOM) plays a key role in many physical and chemical processes including interactions with organic and inorganic pollutants and soil aggregates stability thus directly influencing soil quality. NOM conformation can be studied by solid state NMR spectroscopy with cross polarization and magic angle spinning (CPMAS NMR). In the present study we applied CPMAS 13C NMR spectroscopy on three humic acid fractions (HA) each extracted from a different horizon in a Lithosol profile under Pinus taeda. Results showed that the most superficial HA was also the most aliphatic in character. Amount of aromatic moieties and hydrophilic HA constituents increased along the profile. Cross polarization (TCH) and longitudinal relaxation protons times in the rotating frame (T1rho(H)) were measured and compared only for the NMR signals generated by carboxyls and alkyls. This because the signal intensity for the aromatic, C-O and C-N systems was very low, thereby preventing suitable evaluation of TCH and T1rho(H) values for such systems. The cross polarization times of carboxyls decreased, whereas those of the alkyl moieties increased with depth. Conversely, T1rho(H) values increased for both COOH and alkyl groups along the profile. Polarization transfer from protons to carbons is affected by the dipolar interactions among the nuclei. The stronger the H-C dipolar interaction, the faster is the rate of the energy exchange. All the factors affecting the dipolar interaction strength also influence the rate of magnetization transfer. Among the others, fast molecular tumbling and poor proton density around the carbons are responsible for long TCH values. Molecular tumbling and proton density also affect T1rho(H) values. Namely, the larger the molecular tumbling and the proton density, the faster is the proton longitudinal relaxation rate in the rotating frame (shorter T1rho(H) values). The decrease of TCH values of COOH groups along the profile was

  4. Change in ATP-binding cassette B1/19, glutamine synthetase and alcohol dehydrogenase gene expression during root elongation in Betula pendula Roth and Alnus glutinosa L. Gaertn in response to leachate and leonardite humic substances.

    Science.gov (United States)

    Tahiri, Abdelghani; Delporte, Fabienne; Muhovski, Yordan; Ongena, Marc; Thonart, Philippe; Druart, Philippe

    2016-01-01

    Humic substances (HS) are complex and heterogeneous compounds of humified organic matter resulting from the chemical and microbiological decomposition of organic residues. HS have a positive effect on plant growth and development by improving soil structure and fertility. They have long been recognized as plant growth-promoting substances, particularly with regard to influencing nutrient uptake, root growth and architecture. The biochemical and molecular mechanisms through which HS influence plant physiology are not well understood. This study evaluated the bioactivity of landfill leachate and leonardite HS on alder (Alnus glutinosa L. Gaertn) and birch (Betula pendula Roth) during root elongation in vitro. Changes in root development were studied in relation to auxin, carbon and nitrogen metabolisms, as well as to the stress adaptive response. The cDNA fragments of putative genes encoding two ATP-binding cassette (ABC) transporters (ABCB1 and ABCB19) belonging to the B subfamily of plant ABC auxin transporters were cloned and sequenced. Molecular data indicate that HS and their humic acid (HA) fractions induce root growth by influencing polar auxin transport (PAT), as illustrated by the modulation of the ABCB transporter transcript levels (ABCB1 and ABCB19). There were also changes in alcohol dehydrogenase (ADH) and glutamine synthetase (GS) gene transcript levels in response to HS exposure. These findings confirmed that humic matter affects plant growth and development through various metabolic pathways, including hormonal, carbon and nitrogen metabolisms and stress response or signalization.

  5. Fluorescence of aqueous solutions of commercial humic products

    Science.gov (United States)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  6. Determination of humic and fulvic acids in commercial solid and liquid humic products by alkaline extraction and gravimetric determination

    Science.gov (United States)

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method for quantification of humic (HA) and fulvic acids (FA) in raw ores and products. Here we present a thoroughly validated method, the Humic Pro...

  7. Qualidade textural de tomates cultivados em substratos orgânicos submetidos à aplicação de substâncias húmicas Textural quality of tomatoes grown in organic substrates subjected to application of humic substances

    Directory of Open Access Journals (Sweden)

    Caroline Roberta Freitas Pires

    2009-11-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de substâncias húmicas e de diferentes substratos orgânicos na qualidade textural dos frutos do tomateiro híbrido Vênus, em ambiente protegido. Utilizaram-se, quatro tipos de substratos: fibra de coco; fibra de coco e casca de café carbonizada 1/3 (v/v; fibra de coco e casca de café carbonizada 2/3 (v/v; e casca de café carbonizada. As doses de substâncias húmicas (ácido húmico, 10% + ácido fúlvico 10,2% utilizadas foram 0, 20, 40 e 80 L ha-1, aplicadas ao substrato quinzenalmente, a partir do oitavo dia após o transplantio. O delineamento utilizado foi o de blocos ao acaso, em arranjo fatorial 4x4. Avaliaram-se firmeza dos frutos, percentagem de solubilização péctica e atividade enzimática (pectinametilesterase e poligalacturonase. Observou-se variação na atividade das enzimas pectinametilesterase e poligalacturonase, em consequência das doses de substâncias húmicas adicionadas, nos diferentes substratos. O efeito das doses de substâncias húmicas sobre a firmeza, solubilidade de pectinas e atividade enzimática, em frutos de tomate, depende do substrato utilizado. Frutos obtidos de plantas cultivadas em fibra de coco apresentaram aumento de firmeza e redução da percentagem de solubilização péctica com a aplicação de doses crescentes de substâncias húmicas.The objective of this work was to evaluate the effects of humic substances and of different organic substrates on the textural quality of tomato fruit of the Vênus hybrid, in a protected environment. Four types of substrates were used: coconut fiber; coconut fiber and carbonized coffee husk 1/3 (v/v; coconut fiber and carbonized coffee husk 2/3 (v/v; and carbonized coffee husk. The humic substances (humic acid, 10% + fulvic acid, 10,2% dosages of 0, 20, 40 and 80 L ha-1 were applied onto the substrates fortnightly from the eighth day after transplanting. The experimental design was in randomized block in a 4x4

  8. Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China

    Science.gov (United States)

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2016-05-01

    Humic-Like Substances (HULIS) are important macromolecular compounds that are present in PM2.5 and play significant roles in the atmospheric environment. In this study, 48 PM2.5 samples were collected from February 2010 to January 2011 at an urban site in Guangzhou, southern China. The water soluble HULIS fractions in PM2.5 were analyzed to explore the temporal variation of abundance and optical properties and to identify their possible sources. The HULIS concentrations were in the range of 0.4 to 8.2 μg C m- 3, with a mean of 2.4 μg C m- 3. HULIS are important components in organic aerosols, accounting for 17 ± 5% of the organic carbon (OC), and 49 ± 6 and 68 ± 5% of water soluble organic carbon (WSOC) as determined with a total organic carbon (TOC) analyzer and UV absorbance at 250 nm, respectively. The special UV absorbance (SUVA) at 254 nm and 280 nm and the E250/E365 ratio of HULIS were 3.2 ± 0.5 L (m mg C)- 1, 2.2 ± 0.4 L (m mg C)- 1, and 5.9 ± 0.9, respectively. The HULIS fractions had higher concentrations, slightly higher SUVA values, and lower E250/E365 ratios from November to January, indicating the important contribution of aromatic compounds to HULIS in the dry season. The concentrations of HULIS were positively correlated with water soluble K+, secondary organic carbon (SOC), and secondary inorganic ions (NH4+, NO3-, and SO42 -). These results suggest that biomass burning and secondary photochemical formation are both sources of HULIS in our study area. In addition, the SUVA280 of HULIS was strongly correlated with K+ and SOC, suggesting that HULIS properties were also influenced by their primary source of biomass burning and secondary atmospheric formation.

  9. Identification of humic-like substances (HULIS in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    Directory of Open Access Journals (Sweden)

    M. Paglione

    2013-06-01

    Full Text Available The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species challenging simple classification schemes. Traditional off-line chemical methods identified chemical classes based on the retention behavior on chromatographic columns and absorbing beds. Such approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS. More recently, on-line aerosol mass spectrometry (AMS was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis, providing simplified schemes for oxygenated organic aerosols (OOAs classification on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS datasets suggested the occurrence of very oxidized OOAs which were postulated to correspond to the HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classification from the off-line methods. In this paper, we consider a case study representative for polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF and compare to chemical classes of water-soluble organic carbon (WSOC analysed off-line on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to H-NMR spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS sensu stricto isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups attributable to highly substituted

  10. Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques

    Science.gov (United States)

    Paglione, M.; Kiendler-Scharr, A.; Mensah, A. A.; Finessi, E.; Giulianelli, L.; Sandrini, S.; Facchini, M. C.; Fuzzi, S.; Schlag, P.; Piazzalunga, A.; Tagliavini, E.; Henzing, J. S.; Decesari, S.

    2014-01-01

    The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species, challenging simple classification schemes. Traditional offline chemical methods identify chemical classes based on the retention behaviour on chromatographic columns and absorbing beds. Such an approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, online aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for the classification of oxygenated organic aerosols (OOAs) on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS data sets suggested the occurrence of very oxidized OOAs which were postulated to correspond to HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classifications from the offline methods. In this paper, we consider a case study representative of polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare them to chemical classes of water-soluble organic carbon (WSOC) analysed offline on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to proton nuclear magnetic resonance (NMR) spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS {sensu stricto}) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups

  11. Determination of water and alkaline extractable atmospheric humic-like substances with the TU Vienna HULIS analyzer in samples from six background sites in Europe

    Science.gov (United States)

    Feczko, T.; Puxbaum, H.; Kasper-Giebl, A.; Handler, M.; Limbeck, A.; GelencséR, A.; Pio, C.; Preunkert, S.; Legrand, M.

    2007-12-01

    With a newly developed method based on the combination of two separation steps (by polarity and by acidity) with a universal detector for organic carbon, efficient isolation of humic-like substances (HULIS) from the matrix and quantitative determination of the isolated organic carbon is achieved. This new method was applied to determine the water extractable (HULISWS) and, in sequence, the 0.1 M NaOH alkaline extractable HULIS (HULISAS) fractions in aerosol from six sites situated at a transect from west to east across Europe. The sum of the two HULIS fractions is here defined as total HULIS (HULIST). The lowest 12-month average concentrations of HULIST ranged from 0.075 μgC/m3 the Azores (Portugal) to 1.7 μgC/m3 at the continental background site K-puszta (Hungary). On the continent, the HULIST concentration decreases exponentially with elevation. The relative amounts of water extractable and alkaline soluble HULIS were relatively similar at the six sites. Dramatic differences were observed for the seasonal variations of the HULIS fractions at the different sites. At the Azores, as well as at the higher mountain sites (1450 and 3100 m), a summer maximum of the HULIST concentration was observed, while at the continental low-level sites (Aveiro and K-puszta), winter maxima dominated the seasonal variation. The summer/winter ratio of the HULIST concentration varied from 7.1 at Sonnblick to 0.36 at Aveiro. The seasonal variation at the two continental lower-level sites with winter maxima might be explained by overlapping of a weaker summer source and a stronger winter source.

  12. Iodination of the humic samples from HUPA project

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P. [CEA/DEN/DPC/SECR Laboratoire de Speciation des Radionucleides et des Molecules, Gif-sur-Yvette (France); Mercier-Bion, F.; Barre, N. [CEA/CNRS Universite d Evry Val-d Essonne, Gif-sur-Yvette (France); Gimenez, N. [CEA/DEN/DPC/SECR Laboratoire de Speciation des Radionucleides et des Molecules, Gif-sur-Yvette (France)]|[CEA/CNRS Universite d Evry Val-d Essonne, Gif-sur-Yvette (France); Miserque, F. [CEA/DEN/DPC/SECR Laboratoire de Reactivite des Surfaces et Interfaces, Gif-sur-Yvette (France)

    2005-04-01

    The interaction of iodine with natural organic matter in general and with humic substances (HS) in particular, has been the subject of numerous studies. It has come to a consensus that in soils as well as in aquatic systems, the speciation of iodine is closely related to the redox potential of the medium. In oxidizing media, as in sea water or upper horizons, the major part of iodine is found in iodate form IO{sub 3}{sup -}, whereas in reducing media, iodide I{sup -} is the major specie. Nevertheless, it has been shown that in some cases, organically bound iodine can dominate the speciation either as methyl iodide or bounded to humic substances. It is now also clear that this reactivity is closely related to the occurrence of molecular iodine I{sub 2}(aq) and its disproportionation to HIO and I{sup -}. The reaction scheme can be viewed as an electrophilic substitution of an hydrogen to an iodine atom on a phenolic ring. This scheme has been validated in the case of HS on different samples including HUPA, and the covalent character of this interaction has been shown using electrospray ionization mass spectroscopy (ESI-MS), X-ray photoelectron spectroscopy. Nevertheless, in some of the latter studies, the characterization of the final reaction products did not satisfy the authors completely as total separation from I{sup -} could not be achieved. Thus, further studies were led using HUPA samples: natural humic and fulvic extract from Gorleben and synthetic samples obtained form FZ Rossendorf. Dialysis procedures were envisaged to improve the incomplete separation between the colloidal humic matter and the iodide ions either unreacted or produced by the reaction. (orig.)

  13. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers

    Directory of Open Access Journals (Sweden)

    B. Y. Kuang

    2014-09-01

    Full Text Available HUmic-LIke Substances (HULIS, the hydrophobic part of water soluble organic carbon (WSOC, account for a significant fraction of PM2.5 mass. Their source studies are so far largely qualitative. In this study, HULIS and WSOC were determined in 100 PM2.5 samples collected in 2009 at an urban site (Guangzhou and a suburban site (Nansha in the Pearl River Delta in South China. The annual average concentration of HULIS was 4.83 and 4.71 μg m−3, constituting 8.5 and 10.2% of the PM2.5 mass, while HULIS-C (the carbon component of HULIS contributed 48 and 57% of WSOC at the two sites, respectively. HULIS was found to correlate with biomass burning (BB tracers (i.e., levoglucosan and K and secondary species (e.g., sulfate and ammonium, suggesting its association with BB emissions and secondary formation processes. Sources of HULIS were investigated using positive matrix factorization analysis of PM2.5 chemical composition data, including major components and source markers. In addition to secondary formation process and BB emissions, residual oil combustion related to shipping was identified for the first time as a significant source of HULIS. Secondary formation process contributed the most, accounting for 49–82% of ambient HULIS at the two sites in different seasons. BB emissions contributed a seasonal average of 8–28%, with more contributions observed in the winter months (November–February due to crop residue burning during harvest season. Residual oil combustion was revealed to be an important source at the suburban site in summer (44% of HULIS-C due to its proximity to one of the ports and the shipping lane in the region. Vehicle emissions were found to contribute little to HULIS but had contributions to the hydrophilic WSOC fraction. The contrast in contributions from different combustion sources to HULIS and hydrophilic WSOC suggests that primary sources of HULIS are linked to inefficient combustion. This source analysis suggests further

  14. Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China

    Directory of Open Access Journals (Sweden)

    P. Lin

    2010-07-01

    Full Text Available HUmic-LIke Substances (HULIS are an abundant unresolved mixture of organic compounds present in atmospheric samples. Biomass burning (BB has been recognized as an important primary source of HULIS, but measurements of HULIS in various fresh BB particles are lacking. In this work, HULIS in emissions of rice straw burning was measured in a number of field and chamber experiments. The average HULIS/OC ratio was 0.34±0.05 in μg/μgC, showing small variance among emissions under different burning conditions. The influence of BB on ambient HULIS levels was investigated by examining the spatial and temporal variation of HULIS and other aerosol constituents and interspecies relations in ambient PM2.5. The PM2.5 samples were collected at an urban and a suburban location in the Pearl River Delta (PRD, China over a period of one year. The HULIS concentrations in the ambient PM2.5 were significantly higher in air masses originating from regions influenced by BB. Significant correlations between HULIS and water-soluble K+ concentrations at both sites further support that BB was an important source of HULIS. Ambient concentrations of HULIS also correlated well with those of sulfate, oxalate, and oxidant (the sum of O3 and NO2. The HULIS/OC ratios in BB-influenced ambient aerosols (~0.6 were much higher than those in the fresh BB emissions (0.34, implying that secondary formation was also an important source of HULIS in the atmosphere. The annual average HULIS concentrations were 4.9 μg m−3 at the urban site and 7.1 μg m−3 at the suburban site while the annual average concentrations of elemental carbon were 3.3 μg m−3 and 2.4 μg m−3, respectively. The urban-suburban spatial gradient of HULIS was opposite to that of elemental carbon, negating vehicular exhaust as a significant primary emission source of HULIS.

  15. LC-MS analysis in the aquatic environment and in water treatment technology - a critical review. Part II: Applications for emerging contaminants and related pollutants, microorganisms and humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zwiener, Christian; Frimmel, Fritz H. [Engler-Bunte-Institut, Water Chemistry, Universitaet Karlsruhe (TH), Engler-Bunte-Ring 1, 76131, Karlsruhe (Germany)

    2004-02-01

    Environmental contaminants of recent concern are pharmaceuticals, estrogens and other endocrine disrupting chemicals (EDC) such as degradation products of surfactants, algal and cyanobacterial toxins, disinfection by-products (DBPs) and metalloids. In addition, pesticides (especially their transformation products), microorganisms, and humic substances (HS), in their function as vehicles for contaminants and as precursors for by-products in water treatment, traditionally play an important role. The present status of the application of LC-MS techniques for these water constituents are discussed and examples of application are given. Solid-phase extraction with various non-selective materials in combination with liquid chromatography (LC) on reversed-phase columns have been the most widely used methods for sample preconcentration and separation for different compound classes like pesticides, pharmaceuticals or estrogens. Electrospray ionization (ESI) and atmospheric pressure ionization (APCI) are the most frequently used ionization techniques for polar and ionic compounds, as well as for less polar non-ionic ones. The facilities of LC-MS have been successfully demonstrated for different compound classes. Polar compounds from pharmaceuticals used as betablockers, iodinated X-ray contrast media, or estrogens have been determined without derivatization down to ultratrace concentrations. LC-MS can be viewed as a prerequisite for the determination of algal and cyanobacterial toxins and the homologues and oligomers of alkylphenol ethoxylates and their metabolites. Tandem mass spectrometric techniques and the use of diagnostic ions reveal their usefulness for compound-class specific screening and unknown identification, and are also valid for the analysis of pesticides and especially for their transformation products. Structural information has been gained by the application of LC-MS methods to organometallic species. New insights into the structural variety of humic

  16. Enzymatically mediated incorporation of 2-chlorophenol 4-chlorophenol into humic acids

    DEFF Research Database (Denmark)

    Lassen, P.; Randall, A.; Jørgensen, O.;

    1994-01-01

    A possible route to chlorinated humic substances in the environment, is an indirect chlorination of humic material by enzymatically mediated incorporation of low molecular weight organo-chlorine compounds into the humic skeleton. The enzymatically mediated incorporation of 2-chlorophenol and 4-ch......-chlorophenol into humic acids by Horseradish Peroxidase is reported. The incorporation is accompanied by a significant polymerization of the chlorophenols. The stability of the chlorinated humic acids as well as the environmental implication are discussed....

  17. Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa.

    Directory of Open Access Journals (Sweden)

    Qiuchan Yang

    Full Text Available Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v, respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms.

  18. Remediation of highly contaminated soils from an industrial site by employing a combined treatment with exogeneous humic substances and oxidative biomimetic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Filomena, E-mail: fsannino@unina.it [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Spaccini, Riccardo [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Università 100, 80055 Portici (Italy); Savy, Davide [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Piccolo, Alessandro [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Università 100, 80055 Portici (Italy)

    2013-10-15

    Highlights: • Remediation of two polluted soils from a highly contaminated industrial site in Italy. • Restoration of soil quality by introducing additional carbon into polluted soil with humic matter amendments. • Detoxification of contaminants by covalent binding to humic molecules. • Prevention of environmental transport of pollutants. -- Abstract: Remediation of two polluted soils from a northern Italian industrial site heavily contaminated with organic contaminants was attempted here by subjecting soils first to addition with an exogenous humic acid (HA), and, then, to an oxidation reaction catalyzed by a water-soluble iron-porphyrin (FeP). An expected decrease of detectable organic pollutants (>50%) was already observed when soils were treated only with the H{sub 2}O{sub 2} oxidant. This reduction was substantially enhanced when oxidation was catalyzed by iron-porphyrin (FeP + H{sub 2}O{sub 2}) and the largest effect was observed for the most highly polluted soil. Even more significant was the decrease in detectable pollutants (70–90%) when soils were first amended with HA and then subjected to the FeP + H{sub 2}O{sub 2} treatment. This reduction in extractable pollutants after the combined HA + FeP + H{sub 2}O{sub 2} treatment was due to formation of covalent C-C and C-O-C bonds between soil contaminants and amended humic molecules. Moreover, the concomitant detection of condensation products in soil extracts following FeP addition confirmed the occurrence of free-radical coupling reactions catalyzed by FeP. These findings indicate that a combined technique based on the action of both humic matter and a metal-porhyrin catalyst, may become useful to quantitatively reduce the toxicity of heavily contaminated soils and prevent the environmental transport of pollutants.

  19. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models

    Science.gov (United States)

    2016-07-01

    1991. Abiotic reduction of mercury by humic substances in aquatic system - an important process for mercury cycle. Water , Air, Soil Pollution 56...acidification on the methylmercury cycle of remote seepage lakes. Water , Air, and Soil Pollution 56:477–491. Boudreau, B. P. 1998. Mean mixed depth of...Mabey, B. R. Holt, and C. Gould. 1979. Water related environmental fate of 129 priority pollutants . Volume 1: Introduction and technical background

  20. Potential accumulation of estrogenic substances in biofilms and aquatic plants collected in sewage treatment plant (STP) and receiving water

    Energy Technology Data Exchange (ETDEWEB)

    Schultis, T.; Kuch, B.; Kern, A.; Metzger, J.W. [Inst. for Sanitary Engineering, Water Quality and Solid Waste Management ISWA, Stuttgart Univ. (Germany)

    2004-09-15

    During the past years the estrogenic potency of natural (e.g. estrone and 17{beta}-estradiol E2) and synthetic hormones (e.g. ethinylestradiol EE2) and xenoestrogens (e.g. pesticides, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dioxins (PCDDs) and furans (PCDFs), alkylphenolic compounds or bisphenol A (BPA)) has attracted increasing scientific attention. Especially the occurrence and behaviour of these substances in waste water of sewage treatment plants (STPs) were often investigated. Andersen et al. found steroid estrogen concentrations in the effluent of a municipal STP always below the limit of quantification of 1 ng/l. However, Aerni et al. detected E2 and EE2 concentrations up to 6 ng/l and 2 ng/l, and alkylphenols, alkylphenolmonoand diethoxylates even at {mu}g/l concentrations in the effluent of a wastewater treatment plant with a significant industrial impact3. In activated and digested sewage sludge concentrations of estrone and E2 up to 37 ng/g and 49 ng/g, of the synthetic EE2 up to 17 ng/g were observed4. In river sediments the concentrations detected were lower with up to 2 ng/g estrone and 0,9 ng/g EE24. In the meantime many studies exist about raw and treated water in STPs, but there is little knowledge about the influence of estrogenic active substances on aquatic plants so far. In this study we investigated therefore the potency of estrogenic substances to accumulate in the duckweed Lemna minor from STP in comparison to the estrogenicity of duckweed from a natural pond, biofilms in drain and microsieve of the STP by the in vitro E-Screen- and LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). In addition, we tested the estrogenic activity of moss-like aquatic plants collected at different sites of the receiving water and analyzed the concentrations of four phenolic xenoestrogens in the effluent by GC/MS.

  1. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    Science.gov (United States)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2016-10-01

    Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H

  2. Photodynamic control of human pathogenic parasites in aquatic ecosystems using chlorophyllin and pheophorbid as photodynamic substances.

    Science.gov (United States)

    Wohllebe, S; Richter, R; Richter, P; Häder, D P

    2009-02-01

    When used at low concentrations and added to the water body, water-soluble chlorophyllin (resulting from chlorophyll after removal of the phytol) and pheophorbid (produced from chlorophyllin by acidification) are able to kill mosquito larvae and other small animals within a few hours under exposure of solar radiation. Under laboratory conditions, the use of chlorophyllin/pheophorbid as photodynamic substances for pest control in water bodies promises to be not only effective and ecologically beneficial but also cheap. The LD50 (50% of mortality in the tested organisms) value in Culex sp. larvae was about 6.88 mg/l, in Chaoborus sp. larvae about 24.18 mg/l, and in Daphnia 0.55 mg/l. The LD50 values determined for pheophorbid were 8.44 mg/l in Culex, 1.05 mg/l in Chaoborus, and 0.45 mg/l in Daphnia, respectively. In some cases, chlorophyllin and pheophorbid were also found to be (less) active in darkness. The results presented in this paper show that chlorophyllin is about a factor of 100 more effective than methylene blue or hematoporphyrine, which were tested earlier for the same purpose. It is also much cheaper and, as a substance found in every green plant, it is 100% biodegradable.

  3. Evidence for interaction between the triheme cytochrome PpcA from Geobacter sulfurreducens and anthrahydroquinone-2,6-disulfonate, an analog of the redox active components of humic substances.

    Science.gov (United States)

    Dantas, Joana M; Morgado, Leonor; Catarino, Teresa; Kokhan, Oleksandr; Pokkuluri, P Raj; Salgueiro, Carlos A

    2014-06-01

    The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.

  4. Stocks of carbon, total nitrogen and humic substances in soil under different cropping systemsEstoques de carbono e nitrogênio totais nas substâncias húmicas do solo sob diferentes sistemas de manejo

    Directory of Open Access Journals (Sweden)

    Diovany Doffinger Ramos

    2013-10-01

    Full Text Available This study aimed to evaluate total carbon and nitrogen and stocks of the humic fractions of soil organic matter under different cropping systems at the experimental farm at the Federal University at Grande Dourados – UFGD. Soil samples were collected from two layers (0-10 and 10-20 cm from an oxisol with a clay texture. The systems studied were as follows: non-tillage (NTS, tillage (TS, eucalyptus and pasture. Natural vegetation from Dourados, Mato Grosso do Sul, Brazil was used for comparison. For statistical analysis of the C and N stocks, the model: Y = ? + Ai + rep (A ik + Eijk was used. The replacement of TN one for CT decreased the total organic carbon and C in the stocks of humic substances (fulvic acid, humic acid and humin in the soil just three years after adoption, especially in the 0-10 cm layer. However, soils under eucalyptus trees acquired increased carbon stock in the most active fractions, such as the fractions of fulvic and humic acids (0-20 cm layer. Regardless of the cropping system, the largest C and N stocks were measured for the humin fraction, followed by humic acid and fulvic acid. The total N and humic and fulvic acid levels under the conditions of maintenance of TN for 15 years increased when compared with CT, but not in soils under eucalyptus trees.O objetivo deste trabalho foi determinar os estoques de C e N totais nas frações húmicas da matéria orgânica, em diferentes sistemas de manejo do solo na fazenda experimental da Universidade Federal da Grande Dourados – UFGD. Para isso, foram coletadas amostras (0-10 e 10-20 cm em um Latossolo Vermelho distroférrico, textura argilosa, nos sistemas de plantio direto (SPD e convencional (SPC, e os solos cultivados com pastagem e com eucalipto, como referência foi utilizado solo coletado em área de floresta nativa, em Dourados-MS. Para análise estatística dos estoques de C e N foi utilizado o modelo estatístico: Y = ? + Ai + rep(Aik + Eijk. A substituição do

  5. Characteristics of extracellular polymeric substances of phototrophic biofilms at different aquatic habitats.

    Science.gov (United States)

    Fang, Fang; Lu, Wen-Tao; Shan, Qi; Cao, Jia-Shun

    2014-06-15

    Three different phototrophic biofilms obtained from a natural lake (Sample 1), drinking water plant (Sample 2) and wastewater treatment plant (Sample 3) were investigated. Diatoms and green algae were the dominant algae of three biofilms, and the biomass was highest in biofilm of Sample 2. The three phototrophic biofilms also had variable extracellular polymeric substances (EPS) concentrations and compositions. Total EPS concentration of 14.80 mg/g DW was highest in biofilm of Sample 2, followed by biofilms of Samples 3 and 1 (13.11 and 12.29 mg/g DW). Tightly bound EPS (TB-EPS) were the main fraction, and polysaccharides and protein were the main components of total EPS in all three biofilms. However, the compositions of loosely bound EPS (LB-EPS) and TB-EPS were different in three biofilms. Fourier-transform infrared and fluorescence spectra indicated different structure and compositions of LB-EPS and TB-EPS. These results demonstrated the characteristics of EPS produced by phototrophic biofilms varied and had compact relation to their growth environmental conditions.

  6. Study on the Interaction between Humic Substances in Soil and Carbamate Pesticides Using Fluorescence Quenching Titration Method%荧光猝灭滴定法研究土壤腐殖质与氨基甲酸酯类农药相互作用

    Institute of Scientific and Technical Information of China (English)

    施国兰; 郑博福; 白英臣; 吴丰昌; 吴代赦

    2012-01-01

    为研究氨基甲酸酯类农药在溶解有机质参与下的迁移转化过程,利用荧光猝灭滴定法研究了土壤HS(腐殖质)与氨基甲酸酯类农药的相互作用.结果表明,呋喃丹和西维因的荧光都能不同程度地被FA(富里酸)和HA(腐殖酸)猝灭,主要猝灭机理为静电结合猝灭.采用静态猝灭模型计算出氨基甲酸酯类农药与HS的K(结合常数),lg K由大到小为呋喃丹-HA(4.96)>西维因-HA(4.93)>呋喃丹-FA(4.72)>西维因-FA(4.68).HA与氨基甲酸酯类农药的lgK明显大于FA与氨基甲酸酯类农药,表明HS与氨基甲酸酯类农药间的作用力有疏水作用.进一步研究表明,氢键作用对HS与氨基甲酯类农药结合有一定的影响.%To reveal the mechanisms of transport and conversion of carbamate pesticides in the presence of dissolved organic matters, the fluorescence quenching titration method was applied to investigate the interactions between carbamate pesticides and humic substances in soil. The results showed that the intrinsic fluorescence of carbofuran and carbaryl was quenched by the fulvic and humic acids to varying degrees. Static quenching was the primary mechanism during this process. The binding constants (K) of carbamate pesticides and humic substances were estimated using the fluorescence static quenching model. The order of lg K were: those of carbofuran and humic acid (4. 96) > those of carbaryl and humic acid (4. 93) > those of carbofuran and fulvic acid (4. 72) > those of carbaryl and fulvic acid (4. 68). The values of lg K of carbamate pesticides and humic acids were clearly higher than those of carbamate pesticides and fulvic acids. This result indicated that the hydrophobic force is one of the main interactions between carbamate pesticides and humic substances, and further proved that hydrogen bonding could slightly affect the bonding of carbamate pesticides and humic substances.

  7. Properties and structure of raised bog peat humic acids

    Science.gov (United States)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  8. Investigation of the complexation and the migration of actinides and non-radioactive substances with humic acids under geogenic conditions. Complexation of humic acids with actinides in the ocidation state IV Th, U, Np

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, S.; Schmeide, K.; Brendler, V.; Krepelova, A.; Mibus, J.; Geipel, G.; Heise, K.H.; Bernhard, G.

    2004-03-01

    Objective of this project was the study of basic interaction and migration processes of actinides in the environment in presence of humic acids (HA). To obtain more basic knowledge on these interaction processes synthetic HA with specific functional properties as well as {sup 14}C-labeled HA were synthesized and applied in comparison to the natural HA Aldrich. One focus of the work was on the synthesis of HA with distinct redox functionalities. The obtained synthetic products that are characterized by significantly higher Fe(III) redox capacities than Aldrich HA were applied to study the redox properties of HA and the redox stability of U(VI) humate complexes. It was confirmed that phenolic OH groups play an important role for the redox properties of HA. However, the results indicate that there are also other processes than the single oxidation of phenolic OH groups and/or other functional groups contributing to the redox behavior of HA. A first direct-spectroscopic proof for the reduction of U(VI) by synthetic HA with distinct redox functionality was obtained. The complexation behavior of synthetic and natural HA with actinides (Th, Np, Pu) was studied. Structural parameters of Pu(III), Th(IV), Np(IV) and Np(V) humates were determined by X-ray absorption spectroscopy (XAS). The results show that carboxylate groups dominate the interaction between HA and actinide ions. These are predominant monodentately bound. The influence of phenolic OH groups on the Np(V) complexation by HA was studied with modified HA (blocked phenolic OH groups). The blocking of phenolic OH groups induces a decrease of the number of maximal available complexing sites of HA, whereas complex stability constant and Np(V) near-neighbor surrounding are not affected. The effects of HA on the sorption and migration behavior of actinides was studied in batch and column experiments. Th(IV) sorption onto quartz and Np(V) sorption onto granite and its mineral constituents are affected by the pH value

  9. Distribuição e caracterização de substâncias húmicas em vermicompostos de origem animal e vegetal Distribution and characterization of humic substances in animal and plant vermicompost

    Directory of Open Access Journals (Sweden)

    Rosa Maria Vargas Castilhos

    2008-12-01

    residues to human health and soil. The stability and maturity degrees of a given vermicompost are usually inferred from the quantity and quality of the humic substances in the resulting compost. This study aimed to evaluate the quality and maturity of vermicomposts from six different residues: cattle manure (CM, sheep manure (SM, pig manure (PM, quail manure (QM, coffee dregs (CD and mate-tee dregs (MD, by determining the content of humic substances (humic, HA, and fulvic acids (FA and their chemical composition, after 70 days of composting. The humic substances were chemically fractionated according to their solubility in basic and acidic medium. The distribution of total C in the different humic fractions was determined, and the humification indices HA percentage and HA/FA ratio were calculated. The elemental composition (CHNO and chemical composition by infrared spectroscopy (IRSP were determined in the purified HA and FA. An aromaticity index (I1(630/I2920 was calculated based on the IRSP spectra. The vermicomposts differed in humic substance content (FA+HA, which decreased in the order CD > SM ≈ MD ≈ CM > PM > QM. The maturity degree was greater in the vermicomposts of vegetal residues (coffee and mate-tee dregs. The HA showed that the proportion of O containing functional groups and the aromatic degree were lowest in these two vermicomposts.

  10. Organic Matter Fractions and Quality of the Surface Layer of a Constructed and Vegetated Soil After Coal Mining. I - Humic Substances and Chemical Characterization

    Directory of Open Access Journals (Sweden)

    Otávio dos Anjos Leal

    2015-06-01

    Full Text Available After open coal mining, soils are “constructed”, which usually contain low levels and quality of organic matter (OM. Therefore, the use of plant species for revegetation and reclamation of degraded areas is essential. This study evaluated the distribution of carbon (C in the chemical fractions as well as the chemical characteristics and humification degree of OM in a soil constructed after coal mining under cultivation of perennial grasses. The experiment was established in 2003 with the following treatments: Hemarthria altissima (T1, Paspalum notatum (T2, Cynodon dactilon (T3, Urochloa brizantha (T4, bare constructed soil (T5, and natural soil (T6. In 2009, soil samples were collected from the 0.00-0.03 m layer and the total organic carbon stock (TOC and C stock in the chemical fractions: acid extract (CHCl, fulvic acid (CFA, humic acid (CHA, and humin (CHU were determined. The humic acid (HA fraction was characterized by infrared spectroscopy and the laser-induced fluorescence index (ILIF of OM was also calculated. After six years, differences were only observed in the CHA stocks, which were highest in T1 (0.89 Mg ha-1 and T4 (1.06 Mg ha-1. The infrared spectra of HA in T1, T2 and T4 were similar to T6, with greater contribution of aliphatic organic compounds than in the other treatments. In this way, ILIF decreased in the sequence T5>T3>T4>T1>T2>T6, indicating higher OM humification in T3 and T5 and more labile OM in the other treatments. Consequently, the potential of OM quality recovery in the constructed soil was greatest in treatments T1 and T4.

  11. THE OVERLOOKED ECOSYSTEM DRIVING FORCE IN NON-EUTROPHICATED FRESHWATER SYSTEMS: DISSOLVED HUMIC SUBSTANCES-A SHORT REVIEW AND OUTLOOK%非富营养化淡水系统中被忽略的生态系统驱动因素:可溶性腐殖质-简要的回顾与展望

    Institute of Scientific and Technical Information of China (English)

    Christian E.W.Steinberg

    2006-01-01

    This review starts with the description of the quantitative significance of dissolved organic material in general and dissolved humic substances (HS) in particular in various ecosystems. Despite their high quantities, the knowledge about the role of HS is still very low and full of old, but still recycled paradigms. HS are thought to be inert or at least refractory and too large to be taken up by aquatic organisms. Instead, I present evidence that dissolved HS that mainly derives from the terrestrial environment, are taken up and directly and/or indirectly interfere with freshwater organisms and, thus, structure biocenoses.Relatively well known is in the meantime the fuelling function of allochthonous HS, which, upon irradiation, release fatty acids, which serve as substrates for microbial growth. This is an indirect effect of HS. Microbes, in turn, are food for mixotrophic algae and (heterotrophic) zooplankton. Thus, non-eutrophicated freshwaters are net-heterotrophic, meaning that respiration exceeds primary production. Furthermore, model calculations exemplify that only a very small portion of the terrestrial production is sufficient to cause net-heterotrophy in these freshwater bodies. But, recent papers show also that due to different stoichiometries the maximal plankton biomass production with algae or mixotrophs is higher than with bacteria.Very recently, several direct effects of HS have been elucidated. Among them are: induction of chaperons ( stress shock proteins), induction and modulation of biotransformation enzymes, modulation (mainly inhibition) of photosynthetic oxygen release of aquatic plants, production of an internal oxidative stress, modulation of the offspring numbers in the nematode Caenorhabditis elegans, feminization of fish and amphibs, interference within the thyroid system, and action as chemical attractant to C. elegans.We are still in the phase of identifying the various physiological, biochemical, and molecular-biological effects

  12. Multielement characterization of metal-humic substances complexation by size exclusion chromatography, asymmetrical flow field-flow fractionation, ultrafiltration and inductively coupled plasma-mass spectrometry detection: a comparative approach.

    Science.gov (United States)

    Bolea, E; Gorriz, M P; Bouby, M; Laborda, F; Castillo, J R; Geckeis, H

    2006-10-06

    The use of three different separation techniques, ultrafiltration (UF), high performance size exclusion chromatography (HPSEC) and asymmetrical flow field-flow fractionation (AsFlFFF), for the characterization of a compost leachate is described. The possible interaction of about 30 elements with different size fractions of humic substances (HS) has been investigated coupling these separation techniques with UV-vis absorption spectrophotometry and inductively coupled plasma-mass spectrometry (ICP-MS) as detection techniques. The organic matter is constituted by a polydisperse mixture of humic substances ranging from low molecular weights (around 1kDa) to significantly larger entities. Elements can be classified into three main groups with regard to their interaction with HS. The first group is constituted by primarily the monovalent alkaline metal ions and anionic species like B, W, Mo, As existing as oxyanions all being not significantly associated to HS. The second group consists of elements that are at least partly associated to a smaller HS size fraction (such as Ni, Cu, Cr and Co). A third group of mainly tri- and tetravalent metal ions like Al, Fe, the lanthanides, Sn and Th are rather associated to larger-sized HS fractions. The three separation techniques provide a fairly consistent size classification for most of the metal ions, even though slight disagreements were observed. The number-average molecular weight (Mn), the weight-average molecular weight (Mw) and the polydispersity (rho) parameters have been calculated both from AsFlFFF and HPSEC experiments and compared for HS and some metal-HS species. Differences in values can be partly explained by an overloading effect observed in the AsFlFFF experiments induced by electrostatic repulsion effects in the low ionic strength, high pH carrier solution. Size information obtained from ultrafiltration is not as resolved as for the other methods. Molecular weight cut-offs (MWCO) of the individual filter

  13. Aliphatic structure of humic acids; a clue to their origin

    Science.gov (United States)

    Hatcher, P.G.; Maciel, G.E.; Dennis, L.W.

    1981-01-01

    Nuclear magnetic resonance spectra (both 1H and 13C) of humic acids from diverse depositional environments indicate the presence of aromatic chemical structures, most likely derived from lignin of vascular plants, and complex, paraffinic structures, most likely derived from algal or microbial sources. The latter components account for a major fraction of humic acid structures in both terrestrial and aquatic environments, suggesting that algae or microbes play a large role in humification of organic remains from both systems. ?? 1981.

  14. Bi-exponential decay of Eu(III) complexed by Suwannee River humic substances: Spectroscopic evidence of two different excited species

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P. E.; Brevet, J. [CEA, CE Saclay, DEN, DANS, DPC, SECR, Lab Speciat Radionucleides and Mol, F-91191 Gif Sur Yvette (France); Reiller, P. E.; Brevet, J. [Univ Evry Val Essonne, Lab Anal and Environm Biol abd Environm, CNRS, UMR 8587, F-91025 Evry (France)

    2010-07-01

    The bi-exponential luminescence decay of europium (III) complexed by Suwannee River fulvic acid (SRFA) and humic acid (SRHA), is studied in time-resolved luminescence spectroscopy using two different gratings at varying delay after the laser pulse, increasing accumulation time in order to obtain comparable signals. The two hypotheses found in the literature to interpret this bi-exponential decay are (i) a back transfer from the metal to the triplet state of the organic ligand and (ii) the radiative decay of two different excited species. It is shown that evolutions of the {sup 5}D{sub 0} -> {sup 7}F{sub 0} and {sup 5}D{sub 0} -> {sup 7}F{sub 2} luminescent transitions are occurring between 10 and 300 {mu}s delay. First, the {sup 5}D{sub 0} -> {sup 7}F{sub 0} transition is decreasing relative to the {sup 5}D{sub 0} -> {sup 7}F{sub 1} showing a slightly greater symmetry of the 'slow' component, and is also slightly red shifted. Second, a slight modification of the {sup 5}D{sub 0} -> {sup 7}F{sub 2} transition is also evidencing a slightly different ligand field splitting. No significant modification of the {sup 5}D{sub 0} -> {sup 7}F{sub 1} magnetic dipole, which is less susceptible to symmetry changes, is noted in line with expectations. The {sup 5}D{sub 0} -> {sup 7}F{sub 0} transitions are adjusted with either one or two components. The use of a simple component fit seems to be well adapted for representing an average comportment of these heterogeneous compounds, and a two-component fit constrained by the bi-exponential decay parameters and accumulation times yields in the proposition of the spectra for the fast and slow components. (authors)

  15. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

    Science.gov (United States)

    Dippon, Urs; Pantke, Claudia; Porsch, Katharina; Larese-Casanova, Phil; Kappler, Andreas

    2012-06-19

    The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologies. In this study we followed mineral formation by the nitrate-reducing Fe(II)-oxidizing strain Acidovorax sp. BoFeN1 in the presence of the crystalline Fe(III) (oxyhydr)oxides goethite, magnetite and hematite added as potential nucleation sites. Mössbauer spectroscopy analysis of minerals precipitated by BoFeN1 in (57)Fe(II)-spiked microbial growth medium showed that goethite was formed in the absence of mineral additions as well as in the presence of goethite or hematite. The presence of magnetite minerals during Fe(II) oxidation induced the formation of magnetite in addition to goethite, while the addition of humic substances along with magnetite also led to goethite but no magnetite. This study showed that mineral formation not only depends on the aqueous geochemical conditions but can also be affected by the presence of mineral nucleation sites that initiate precipitation of the same underlying mineral phases.

  16. Oxidizable carbon and humic substances in rotation systems with brachiaria/livestock and pearl millet/no livestock in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    A. Loss

    2013-02-01

    Full Text Available The crop-livestock integration system significantly increases the carbon content in chemical fractions of soil organic matter (SOM. This study aimed to evaluate chemical indicators of SOM attributes for sites under brachiaria/livestock and pearl millet/no livestock in Goias, Brazil. A third area covered with natural Cerrado vegetation (Cerradão served as reference. Soil was randomly sampled at 0-5, 5-10, 10-20 and 20-40 cm. Total organic carbon stocks (TOC, oxidizable carbon fractions (OCF (F1>F2>F3>F4, carbon content in the humin (C-HUM, humic acid (C-HAF and fulvic acid (C-FAF fractions were evaluated. F1/F4, F1+F2/F3+F4, C-HAF/C-FAF and (C-HAF+C-FAF/C-HUM indices were calculated, as well as stocks chemical SOM fractions. Brachiaria/livestock produced greater TOC stocks than pearl millet/no livestock (0-5, 5-10 and 10-20 cm. In terms of OCF, brachiaria/livestock generally exhibited higher levels in F1, F2, F4 and F1/F4 than pearl millet/no livestock. C-HUM (0-10 cm and C-HAF (0-20 cm stocks were larger in brachiaria/livestock than pearl millet/no livestock. Compared to the Cerradão, brachiaria/livestock locations displayed higher values for TOC (5-10 and 10-20 cm, C-HAF and C-HAF/C-FAF (5-10 cm stocks. TOC, C-HAF stock and OCF show that land management with brachiaria/livestock was more efficient in increasing SOM than pearl millet/no livestock. Moreover, when compared with pearl millet/no livestock, brachiaria/livestock provided a more balanced distribution of very labile (F1 and recalcitrant (F4 carbon throughout soil layers, greater SOM humification. Brachiaria/livestock leads to higher values of F1 and F4 in depth when compared to pearl millet/livestock and provides a more homogeneous distribution of C-FAF and C-HAF in depth compared to Cerradão.

  17. Compound-specific isotope analysis. Application to archaelogy, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport.

    OpenAIRE

    Lichtfouse, Eric

    2000-01-01

    International audience; The isotopic composition, for example, 14C/12C, 13C/12C, 2H/1H, 15N/14N and 18O/16O, of the elements of matter is heterogeneous. It is ruled by physical, chemical and biological mechanisms. Isotopes can be employed to follow the fate of mineral and organic compounds during biogeochemical transformations. The determination of the isotopic composition of organic substances occurring at trace level in very complex mixtures such as sediments, soils and blood, has been made...

  18. Compound-specific isotope analysis. Application to archaeology, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport.

    Science.gov (United States)

    Lichtfouse, E

    2000-01-01

    The isotopic composition, for example, (14)C/(12)C, (13)C/(12)C, (2)H/(1)H, (15)N/(14)N and (18)O/(16)O, of the elements of matter is heterogeneous. It is ruled by physical, chemical and biological mechanisms. Isotopes can be employed to follow the fate of mineral and organic compounds during biogeochemical transformations. The determination of the isotopic composition of organic substances occurring at trace level in very complex mixtures such as sediments, soils and blood, has been made possible during the last 20 years due to the rapid development of molecular level isotopic techniques. After a brief glance at pioneering studies revealing isotopic breakthroughs at the molecular and intramolecular levels, this paper reviews selected applications of compound-specific isotope analysis in various scientific fields.

  19. Comparative study for separation of atmospheric humic-like substance (HULIS) by ENVI-18, HLB, XAD-8 and DEAE sorbents: elemental composition, FT-IR, 1H NMR and off-line thermochemolysis with tetramethylammonium hydroxide (TMAH).

    Science.gov (United States)

    Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

    2013-11-01

    Humic-like substances (HULIS) are significant constituents of aerosols, and the isolation and characterization of HULIS by solid-phase extraction methods are dependent on the sorbents used. In this study, we used the following five methods: ENVI-18, HLB-M, HLB-N, XAD-8 and DEAE, to isolate atmospheric HULIS at an urban site. Then we conducted a comparative investigation of the HULIS chemical characteristics by means of elemental analysis, Fourier transform infrared spectroscopy, (1)H nuclear magnetic resonance spectroscopy and off-line thermochemolysis with tetramethylammonium hydroxide. The results indicate that HULIS isolated using different methods show many similarities in chemical composition and structure. Some differences were however also observed between the five isolated HULIS: HULISHLB-M contains a relatively high content of OCH group, compared to HULISENVI-18 and HULISXAD-8; HULISXAD-8 contains a relatively high content of hydrophobic and aromatic components, compared to HULISENVI-18 and HULISHLB-M; HULISDEAE contains the highest content of aromatic functional groups, as inferred by (1)H NMR spectra, but a great amount of salts generally present in the HULISDEAE and thereby limited the choices for characterizing the materials (i.e., elemental analysis and TMAH thermochemolysis); HULISHLB-N has relatively high levels of H and N, a high N/C atomic ratio, and includes N-containing functional groups, which suggests that it has been altered by 2% ammonia introduced in the eluents. In summary, we found that ENVI-18, HLB-M, and XAD-8 are preferable methods for isolation and characterization of HULIS in atmospheric aerosols. These results also suggest that caution is required when applying DEAE and HLB-N isolating methods for characterizing atmospheric HULIS.

  20. Research progress of humic-like substances (HULIS) in atmospheric particles%大气颗粒物中类腐殖酸的研究进展∗

    Institute of Scientific and Technical Information of China (English)

    项萍; 谭吉华; 马永亮; 段菁春; 贺克斌; 杨复沫; 程远

    2015-01-01

    HULIS ( Humic⁃like substances ) are a class of macromolecular compounds which are ubiquitous in fog droplets, clouds, rainwater and aerosols. HULIS have received wide attention. They can affect the energy balance by absorbing and scattering solar radiation in the atmosphere, and also influence climate change indirectly by increasing the formation of cloud condensation nuclei. Moreover, they have significant effects on air quality and human health. This paper summarizes the research progress of atmospheric HULIS, mainly including separation, extraction, analysis;physical and chemical characteristics; concentrations and seasonal variation, as well as sources emissions. The prospect in this field is also discussed.%类腐殖酸( HULIS)是一类广泛存在于云、雾、雨水和大气气溶胶颗粒中的大分子有机物。 HULIS既可通过吸收和散射太阳辐射直接影响大气热平衡,又能参与云凝结核的形成间接影响全球气候,加之其重要的环境和健康效应,近年来引起科学界的广泛关注。本文综述了大气颗粒物中类腐殖酸的研究成果,主要包括HULIS的分离、提取和分析方法,HULIS的主要理化性质、浓度和季节变化,以及HULIS的来源和国内外研究现状,并对该领域的研究前景进行了分析和展望。

  1. Molecular characteristics of humic acids isolated from vermicomposts and their relationship to bioactivity.

    Science.gov (United States)

    Martinez-Balmori, Dariellys; Spaccini, Riccardo; Aguiar, Natália Oliveira; Novotny, Etelvino Henrique; Olivares, Fábio Lopes; Canellas, Luciano Pasqualoto

    2014-11-26

    Vermitechnology is an effective composting method, which transforms biomass into nutrient-rich organic fertilizer. Mature vermicompost is a renewable organic product containing humic substances with high biological activity. The aim of this study was to assess the chemical characteristics and the bioactivity of humic acids isolated from different vermicomposts produced with either cattle manure, sugar cane bagasse, sunflower cake from seed oil extraction, or filter cake from a sugar cane factory. More than 200 different molecules were found, and it was possible to identify chemical markers on humic acids according to the nature of the organic source. The large hydrophobic character of humic extracts and the preservation of altered lignin derivatives confer to humic acids the ability to induce lateral root emergence in maize seedlings. Humic acid-like substances extracted from plant biomass residues represent an additional valuable product of vermicomposting that can be used as a plant growth promoter.

  2. 纯培养条件下蓝细菌形成腐殖物质的可能性研究%Possibility of Axenically Cultured Cyanobacteria Forming Humic Substances

    Institute of Scientific and Technical Information of China (English)

    李艳; 窦森; 尹显宝; 田相玲

    2016-01-01

    Abstract[Objective]Cyanobacteria are the oldest photoautotrophic organisms on the earth. As they lived commonly in the ancestral protohydrosphere and entered into the geosphere with geological changes, they got profoundly involved in the formation of primitive soil humic substances(HS). Since contain large volumes of protein,polysaccharide and even some humic-like acid substances in their cells,extra-and intra-cellular metabolites,is it possible for cyanobacteria cells to form HS spontaneously? If the formation process needs catalysis of some microorganisms,what are the differences between different groups of microorganisms in role in the process? These scientific problems need to be solved.[Method] In view of the above-mentioned scientific problems,this research adopted the source control and shake-flask liquid axenic culture method to get axenically cultured samples ofAnabaena flos-aquae,a representative species of cyanobacteria,in different growth stage and products ofAnabaena flos-aquae used as the only substrate and treated with different microbes. The products were analyzed for structural characteristics,using the method of element composition and fourier transform infrared spectroscopy(FTIR),with a view to exploring possibility of cyanobacteria spontaneously forming HS or acting as substrate in HS formation and hence to make up and specifying the role of cyanobacteria in the origination and formation of soil HS.[Result]The following findings were obtained. Under the experimental conditions,Anabaena flos-aquaehad a long life cycle and remained quite constant in carbon content during their growing period. However,during the logarithmic phase,the carbon content in the thallus was relatively high,while in the extracellular metabolites it rose steadily but remained much lower than that in the thallus. None of the FTIR spectra of the cyanobacteria samples showed any peaks characteristic of the carboxyl C=O bonds at 1 720 cm-1,instead,the spectra intensified

  3. Surface Activity of Humic Acids Depending on Their Origin and Humification Degree

    Directory of Open Access Journals (Sweden)

    Klaviņš Māris

    2014-07-01

    Full Text Available Humic substances are able to reduce the surface tension of their solutions and thus can act as surface-active substances in the natural environment, which may have industrial application. The ability to influence the surface tension of humic acid solutions depends on the origin of the humic acids. The objective of this study was comparison of the ability of humic acids of different origin (soil, water, peat, lignite etc. to influence the surface tension of their solutions, and identification of the structural characteristics of peat humic acids that determine their surfactant properties. Industrially produced humic materials demonstrated no or insignificant impact on the surface tension of their solutions. However, humic acids isolated from peat had significant impact of the surface tension of their solutions, acting as weak surfactants. The surface tension of humic acid solutions decreased with increasing concentration, and depended on solution pH. Using a well-characterised bog profile, the ability to influence the surface tension of peat humic acids was shown to depend on age and humification degree. With increase of the humification degree and age, molecular complexity of humic acids and their ability to influence surface tension decreased; but nevertheless, the impact of the biological precursor (peat-forming bryophytes and plants could be identified.

  4. Teor e qualidade de substâncias húmicas de planossolo sob diferentes sistemas de cultivo Content and quality of humic substances of a Albaqualf under different management systems

    Directory of Open Access Journals (Sweden)

    Carla Machado da Rosa

    2008-09-01

    Full Text Available Este trabalho teve por objetivo avaliar e comparar os teores e as características químicas das substâncias húmicas (SHs de um Planossolo háplico submetido a diferentes sistemas de cultivos de arroz. Amostras de solo foram coletadas em um experimento de longa duração (19 anos nas profundidades de 0-0,025, 0,025-0,05, 0,05-0,20m e no topo do horizonte B. Os tratamentos avaliados foram: APC-Sistema de cultivo contínuo de arroz (preparo convencional e controle de invasoras com herbicida, APD-Sucessão de azevém x arroz sob plantio direto e SN-Solo mantido em condições naturais (pastagem nativa. As SHs e a fração não-húmica (NH foram obtidas por meio de fracionamento químico. O teor de carbono do solo e na forma de SHs e NH foram determinados, respectivamente, pelos métodos Walkley-Black e espectrofotométrico. As características químicas e moleculares das SHs foram avaliadas por espectroscopias de infravermelho e UV/Vis e por análise elementar. Em comparação ao solo natural, o sistema APD preservou os teores de carbono orgânico total e de todas as frações húmicas, enquanto que o sistema APC provocou perdas de carbono orgânico total e de todas as frações húmicas nas camadas superficiais (The objective of this study was to evaluate and compare the content and chemical characteristics of humic substances (SHs of an Albaqualf under different soil management systems. Soil samples were collected in a long-term field experiment (19 years from the 0-0.025; 0.025-0.05 and 0.05-0.20m layers and from the top of the B horizon. The following treatments were evaluated: APC-continuous rice crop system under conventional tillage and weed control with herbicides; APD-no-tillage system with rye-grass in the winter and rice in the summer, and SN-soil under natural condition with native grassland. The SHs and the non-humic fraction (NH were obtained by chemical fractioning. The content of total soil carbon and those occurring as SHs and NH

  5. Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease

    NARCIS (Netherlands)

    Li, Yan; Tan, WenFeng; Koopal, Luuk K.; Wang, MingXia; Liu, Fan; Norde, Willem

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was inve

  6. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease

    NARCIS (Netherlands)

    Li, Y.; Tan, W.; Koopal, L.K.; Wang, M.; Liu, Fan; Norde, W.

    2013-01-01

    Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was inve

  7. Dissolved organic matter enhances transport of PAHs to aquatic organisms.

    NARCIS (Netherlands)

    ter Laak, T.L.; ter Bekke, M.A.; Hermens, J.L.M.

    2009-01-01

    In this study, the uptake of pyrene and benzo[b]fluoranthene by an aquatic worm (Lumbriculus variegatus) and a poly(dimethylsiloxane) coated glass fiber was studied at different humic acid concentrations. The accumulation of pyrene was not affected by the presence of the humic matrix. However, the a

  8. Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Goveia, Danielle [UNESP - Universidade Estadual Paulista, Departamento de Engenharia Ambiental, Sorocaba, SP (Brazil); UNESP - Universidade Estadual Paulista, Instituto de Quimica de Araraquara, Araraquara, SP (Brazil); Lobo, Fabiana Aparecida; Fraceto, Leonardo Fernandes; Rosa, Andre Henrique [UNESP - Universidade Estadual Paulista, Departamento de Engenharia Ambiental, Sorocaba, SP (Brazil); Burba, Peter [ISAS - Institute for Analytical Sciences, Dortmund (Germany); Dias Filho, Newton Luiz [UNESP - Universidade Estadual Paulista, Departamento de Fisica e Quimica, Ilha Solteira, SP (Brazil)

    2010-05-15

    This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd(II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, Sao Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations >485 {mu}g L{sup -1} were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments. (orig.)

  9. Approach combining on-line metal exchange and tangential-flow ultrafiltration for in-situ characterization of metal species in humic hydrocolloids.

    Science.gov (United States)

    Goveia, Danielle; Lobo, Fabiana Aparecida; Burba, Peter; Fraceto, Leonardo Fernandes; Dias Filho, Newton Luiz; Rosa, André Henrique

    2010-05-01

    This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd(II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations >485 microg L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.

  10. Characterization of the interaction of uranyl ions with humic acids by x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Reich, T.; Denecke, M.A.; Pompe, S. [Inst. of Radiochemistry, Dresden (Germany)] [and others

    1995-11-01

    Humic substances are present throughout the environment in soil and natural water. They are organic macromolecules with a variable structural formula, molecular weight, and a wide variety of functional groups depending on their origin. In natural waters, humic substances represent the main component of the {open_quotes}dissolved organic carbon{close_quotes} (DOC). The DOC may vary considerably from 1 mg/L at sea water surfaces to 50 mg/L at the surface in dark water swamps. There is strong evidence that all actinides form complexes with humic substances in natural waters. Therefore, humic substances can play an important role in the environmental migration of radionuclides by enhancing their transport. Retardation through humic substance interaction may be also possible due to formation of precipitating agglomerates. For remediation and restoration of contaminated environmental sites and risk assessment of future nuclear waste repositories, it is important to improve the predictive capabilities for radionuclide migration through a better understanding of the interaction of radionuclides with humic substances.

  11. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    Science.gov (United States)

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  12. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    Science.gov (United States)

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  13. Pyrolysis-mass spectrometry/pattern recognition on a well-characterized suite of humic samples

    Science.gov (United States)

    MacCarthy, P.; DeLuca, S.J.; Voorhees, K.J.; Malcolm, R.L.; Thurman, E.M.

    1985-01-01

    A suite of well-characterized humic and fulvic acids of freshwater, soil and plant origin was subjected to pyrolysis-mass spectrometry and the resulting data were analyzed by pattern recognition and factor analysis. A factor analysis plot of the data shows that the humic acids and fulvic acids can be segregated into two distinct classes. Carbohydrate and phenolic components are more pronounced in the pyrolysis products of the fulvic acids, and saturated and unsaturated hydrocarbons contribute more to the humic acid pyrolysis products. A second factor analysis plot shows a separation which appears to be based primarily on whether the samples are of aquatic or soil origin. ?? 1985.

  14. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    Science.gov (United States)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  15. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  16. Interaction of Humic Acids with Organic Toxicants

    Science.gov (United States)

    Tchaikovskaya, O. N.; Yudina, N. V.; Maltseva, E. V.; Nechaev, L. V.; Svetlichnyi, V. A.

    2016-08-01

    Interaction of humic acids with polyaromatic hydrocarbons (PAH) (naphthalene and anthracene) and triazole series fungicides (cyproconazole (CC) and tebuconazole (TC)) is investigated by the method of fluorescence quenching depending on the concentration of substances in solutions and their structural features. Humic acids were modified by mechanochemical activation in a planetary mill. The complex character of intermolecular interactions between PAH and fungicides with humic acids, including donor-acceptor and hydrophobic binding, is established. Thermodynamically stable conformations of biocide molecules were estimated using ChemOffice CS Chem3D 8.0 by methods of molecular mechanics (MM2) and molecular dynamics. Biocide molecules with pH 7 are in energetically favorable position when the benzene and triazole rings are almost parallel to each other. After acidification of solutions to pH 4.5, the CC molecule retains the geometry for which donor-acceptor interactions are possible: the benzene ring in the molecule represents the electron donor, and triazole is the acceptor. In this case, the electron density in CC is redistributed easier, which is explained by a smaller number of carbon atoms between the triazole and benzene rings, unlike TC. As a result, the TC triazole ring is protonated to a greater degree, acquiring a positive charge, and enters into donoracceptor interactions with humic acid (HA) samples. The above-indicated bond types allow HA to participate actively in sorption processes and to provide their interaction with biocides and PAH and hence, to act as detoxifying agents for recultivation of the polluted environment.

  17. Potentiometric titration and equivalent weight of humic acid

    Science.gov (United States)

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  18. Humic first, A new theory on the origin of life

    Science.gov (United States)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that

  19. Impact of humic acids on EYL liposome membranes: ESR method

    Directory of Open Access Journals (Sweden)

    Pytel Barbara

    2015-07-01

    Full Text Available In this paper, the effects of model (commercial and natural (extracted from peat humic substances on the membrane of liposomes formed with egg yolk lecithin (EYL are presented. In our research, mass concentrations of fulvic and humic acids were used, which in relation to lecithin varied from 0% to 13%. To study membrane fluidity, electron spin resonance (EPR was used with two spin probes, penetrating various regions of the lipid bilayer. The effects of model and natural humic substances (humic acids – HAs and fulvic acids – FAs on the lipid membrane in different regions were researched: the lipid-water interphase, and in the middle of the lipid bilayer. It was shown that FA and HA impact the fluidity of liposome membranes in different ways. Increased mass concentrations of HAs decreased membrane fluidity in both acids: extracted from peat and the model. However, increased mass concentration of FAs extracted from peat, decreased membrane fluidity in the surface region, at the same time stiffening the central part of the bilayer. Increasing the concentration of FAs extracted from peat had the opposite effect when compared to model FA. This effect may be related to the complexation of xenobiotics present in the soil environment and their impact on biological membranes.

  20. Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed?

    Energy Technology Data Exchange (ETDEWEB)

    Lippold, H.; Gottschalch, U.; Kupsch, H. [Inst. of Interdisziplinare Isotopeforschung, Leipzig (Germany)

    2008-02-15

    Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization. In this paper, solubilization of {sup 14}C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene-humic interaction. This explanation is based on octanol-water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SIDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.

  1. Humic and fluvic acids and organic colloidal materials in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States); Clark, S.B. [Univ. of Georgia, Aiken, SC (United States)

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  2. Identification of sources of priority substances set out in Article 16 of the Water Framework Directive and estimation of their discharges into the German aquatic environment; Ermittlung der Quellen fuer die prioritaeren Stoffe nach Artikel 16 der Wasserrahmenrichtlinie und Abschaetzung ihrer Eintragsmengen in die Gewaesser in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, E.; Hillenbrand, T.; Marscheider-Weidemann, F.; Mueller, B.; Wiederhold, J.; Herrchen, M.; Klein, M.

    2002-12-01

    The Water Framework Directive (2000/60/EC) is a new instrument, that inter alia has replaced, harmonized and further developed the control and reduction of point and diffuse discharges of dangerous substances according to Council Directive 76/464/EEC. Article 16 of the Water Framework Directive set out a 'Strategy against pollution of water' which demands specific measures against pollution of water by individual pollutants or groups of pollutants presenting a significant risk to or via the aquatic environment (e.g. by drinking water consumed). For these priority substances community-wide water quality standards and emission controls have to be established. On the basis of Article 16 of Directive 2000/60/EC a list of 33 priority substances has been adopted by the decision of the European Parliament and of the Council of November 2001. This list identifies 11 priority hazardous substances, 14 substances subject to a review for identification as possible priority hazardous substance and 8 priority substances. The Commission will make a proposal for the final classification of the 'substances subject to a review' (priority hazardous or priority substances) not later than 12 months after adoption of this list. The planned measures aim at the cessation or phasing out of discharges, emissions and losses to the aquatic environment within 20 years for the priority hazardous substances and at the progressive reduction for the priority substances. In this project the available data for these 33 substances resp. groups of substances for the Federal Republic of Germany were put forward and described in a standardized pattern. This pattern includes the following items: nomenclature and properties of the substances, monitoring data, production and fields of application of these substances, existing regulations in Germany, releases to environment and possibilities to reduce discharges to the aquatic environment. The basis of the data is the year 2000 as far as

  3. Humic substances isolated from residues of sugar cane industry as root growth promoter Substâncias húmicas isoladas de resíduos da indústria da cana-de-açúcar como promotoras de crescimento radicular

    Directory of Open Access Journals (Sweden)

    Jader Galba Busato

    2010-04-01

    Full Text Available Plant growth promoting substances are widely used in modern agriculture. Several products in the market are humic substances isolated from different sources. The filter cake, a residue of sugar production, is a rich and renewable source of organic matter and these characteristics place the filter cake as a possible source of plant growth promoting substances. Humic acids (HA from filter cake were characterized, and their effects as root growth promoters were evaluated. Chemical features of the HA were evaluated through elemental composition, acidic functional groups, E4/E6 ratio and infrared spectroscopy analyzes. The biological activity of the HA was assessed using root architecture parameters and the P-type H+-ATPase activity. The lateral root development was directly related to the stimulation of plasma membrane ATPase activity. The ability of HA to promote root development indicate that HA from filter cake can be used as environmental plant growth stimulators.Substâncias promotoras do crescimento vegetal são amplamente utilizadas na agricultura moderna. Existem vários produtos no mercado, muitos dos quais são substâncias húmicas isoladas de diferentes fontes. A torta de filtro, um resíduo da produção do açúcar, é uma fonte rica e renovável de matéria orgânica e essas características a tornam uma possível fonte de substâncias promotoras do crescimento vegetal. Ácidos húmicos (AH da torta de filtro foram caracterizados, e foi avaliado seu efeito como promotor de crescimento radicular. As características químicas dos AH foram avaliadas por meio da composição elementar, grupos funcionais ácidos, relação E4/E6 e espectroscopia de infravermelho. A atividade biológica dos AH foi acessada avaliando-se a arquitetura radicular e a atividade da H+-ATPase de membrana plasmática. O desenvolvimento de raízes laterais foi diretamente relacionado ao estímulo da atividade da H+-ATPase. A habilidade dos AH em promover o

  4. Estoque de carbono e quantificação de substâncias húmicas em Latossolo submetido a aplicação contínua de lodo de esgoto Organic carbon stock and quantification of humic substances of an oxisol under continuous sewage sludge application

    Directory of Open Access Journals (Sweden)

    Bruno de Oliveira Dias

    2007-08-01

    . The following accumulated SS doses (dry base were tested: 0, 30, 60, 120, and 240 Mg ha-1 and the treatments were: control without SS addition(L0; SS application to supply one (L1, two (L2, four (L4 and eight (L8 times the N corn requirement. Carbon contents and stocks were evaluated in the soil layers 0-10, 10-20, 20-40 and 40-60 cm, and the C associated to humic substances 0-10 cm deep. As the SS applications increased, the C content and stock rose in the 0-20 cm soil layer. Most soil C (50-66 % is associated to the humin pool, followed by fulvic acid fraction-C and then humic acid fraction-C. Sewage sludge applications result in higher contents of C-humic substances in soil, though the proportion of mineralized C in soil humus remained unchanged.

  5. Efeito de substâncias húmicas na cinética de absorção de potássio, crescimento de plantas e concentração de nutrientes em Phaseolus vulgaris L. Effect of humic-like substances on potassium uptake kinetics, plant growth and nutrient concentration in Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Carla Machado da Rosa

    2009-08-01

    Full Text Available As substâncias húmicas podem influenciar direta ou indiretamente o metabolismo das plantas, alterando assim o seu crescimento. O objetivo deste trabalho foi avaliar o efeito de substâncias húmicas (SH no crescimento e na concentração de nutrientes em plantas de feijão (Phaseolus vulgaris, L. e nos parâmetros cinéticos de absorção de K. O experimento foi realizado em bancada de laboratório, com luz artificial. As plantas cresceram em vasos contendo solução nutritiva completa acrescida de cinco doses (0; 2,5; 5; 10; e 20 mg L-1 de C de SH solúveis em meio alcalino (ácido húmico + ácido fúlvico, extraídos de amostra de carvão mineral da mina de Candiota, RS, da Companhia Riograndense de Mineração, num delineamento completamente ao acaso, com três repetições. Aos 28 dias de cultivo, foram avaliados parâmetros cinéticos de absorção de K, massa da parte aérea e da raiz seca, teores de N, P, K, Ca e Mg no tecido da parte área e as características morfológicas de raízes (comprimento, área e raio. Os resultados evidenciaram que a adição de SH extraída de carvão mineral estimulou o crescimento do feijão e afetou a cinética de absorção de K. A produção de massa da parte aérea seca das plantas mostrou resposta quadrática à adição de substâncias húmicas, atingindo valor máximo na dose equivalente a 11 mg L-1 de C, enquanto a massa das raízes secas aumentou linearmente em até 41 %, com as doses testadas. As características morfológicas de raiz e o estado nutricional das plantas não foram significativamente afetados pelas SH. Os parâmetros cinéticos de absorção de K, Imáx, Cmín e Km, decresceram linearmente com o aumento das doses de SH, causando redução na taxa de absorção de K nas concentrações deste nutriente na solução superiores a 10 μmol L-1.Humic substances can influence plant metabolism direct or indirectly, thus modifying its growth. The objective of this study was to evaluate

  6. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    Science.gov (United States)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  7. Substâncias húmicas e suas relações com o grau de subsidência em Organossolos de diferentes ambientes de formação no Brasil Humic substances and their relationship to the degree of subsidence of histosols in different formation environments in Brazil

    Directory of Open Access Journals (Sweden)

    Adierson Gilvani Ebeling

    2013-06-01

    of organic compounds. The objective of this study was to quantify and assess the distribution of humic fractions in histosols in different environments and regions of Brazil, relating them to the processes of subsidence. The carbon (C content in humic substances indicated a predominance of C from the humic-acid fraction (HAF-C of 22.1g kg-1 to 153.7g kg-1 in soils from high altitude mountainous regions and upland areas. Possibly the colder climate, coupled with improved fertility, favored the formation of this fraction at the expense of the fulvic acid and humin fractions. On the other hand, the higher humic-acid content makes organosols in these environments more susceptible to the processes of subsidence, especially when under agricultural management. Whereas in flood and coastal-plain environments, there was a greater formation of C from the humin fraction (HUM-C from 79.2 to 267.2g kg-1, being the fraction of humic substances most resistant to decomposition. The sum of the humic fractions represented 89% of the total carbon, these two variables being highly correlated. The relationship between alkaline extract and humin (AE / HUM groups classes of histosols by their formation environment, and is suggested as a diagnostic attribute at the lower levels of the Brazilian System for Soil Classification (SiBCS, allowing differentiation of the histosols as to their potential for subsidence.

  8. Method and importance of obtaining humic and fulvic acids of high purity

    Science.gov (United States)

    Malcolm, R.L.

    1976-01-01

    A detailed procedure incorporating centrifugation, pressure filtration, dialysis, resin exchange, and freeze drying is given for the extraction and purification of fulvic and humic acids from soils and sediments. By use of the procedure humic acids have been prepared which have less than 0.22 percent ash. The isolation of relatively ash-free natural organic matter preparations is an essential prerequisite to the characterization of organic reactivity in natural systems. Inorganic impurities of amorphous and crystalline clay minerals and various inorganic metal ions often lead to numerous complications and errors during experimentation with organic matter because the inorganic substances associated with the organic phase cause variable reactivity of the organic substances.

  9. Effect of soil fulvic and humic acid on binding of Pb to goethite–water interface: Linear additivity and volume fractions of HS in the Stern layer

    NARCIS (Netherlands)

    Xiong, J.; Koopal, L.K.; Weng, L.; Wang, J.; Tan, W.

    2015-01-01

    The effects of soil fulvic (JGFA) and humic acid (JGHA) on Pb binding to goethite were investigated with batch experiments and modeling. The CD-MUSIC and NICA-Donnan model could describe the Pb binding to, respectively, the binary Pb–goethite and Pb–HS systems. The adsorption of humic substances (HS

  10. Photo-transformation of pedogenic humic acid and consequences for Cd(II), Cu(II) and Pb(II) speciation and bioavailability to green microalga.

    Science.gov (United States)

    Worms, Isabelle A M; Adenmatten, David; Miéville, Pascal; Traber, Jacqueline; Slaveykova, Vera I

    2015-11-01

    Humic substances (HS) play key role in toxic metal binding and protecting aquatic microorganisms from metal-induced stress. Any environmental changes that could alter HS concentration and reactivity can be expected to modify metal complexation and thus affect metal speciation and bioavailability to microalgae. The present study explores the influence of increased solar irradiance on the chemical structures and molecular weight of Elliott soil humic acid (EHA) and the associated consequences for Cd(II), Cu(II) and Pb(II) complexation and intracellular metal content in microalga. The results demonstrate that high radiance doses induce an oxidation of EHA with a formation of low molecular weight acids, an increase of -OH and -COOH group abundance, and a drop in EHA hydrodynamic size and molecular weight. The photo-induced structural changes are accompanied with a release of metal from M-EHA complexes and narrowing their size distribution, which in turn results in an increase of the intracellular Cd, Cu and Pb contents in microalga Chlamydomonas reinhardtii in agreement with the measured free metal ions concentrations.

  11. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.

    Science.gov (United States)

    Hou, Lei; Zhu, Dongqiang; Wang, Ximeng; Wang, Lilin; Zhang, Chengdong; Chen, Wei

    2013-03-01

    Carbon nanotubes (CNTs) can exist in the form of colloidal suspension in aquatic environments, particularly in the presence of natural organic matter or surfactants, and may significantly affect the fate and transport of organic contaminants. In the present study, the authors examined the adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to three colloidal CNTs, including a stable suspension of oxidized multiwalled carbon nanotubes (O-MWNT), a humic acid (HA)-modified colloidal O-MWNT, and a sodium dodecyl sulfate (SDS)-modified colloidal O-MWNT. All three colloidal O-MWNTs exhibit strong adsorption affinities to the three test compounds (with K(OC) values orders of magnitude greater than those of natural organic matter), likely resulting from strong nonhydrophobic interactions such as π-π electron donor-acceptor interactions and Lewis acid-base interactions. When thoroughly mixed, HA (at ∼310 mg HA/g CNT) and SDS (at ∼750 mg SDS/g CNT) significantly affected the aggregation properties of O-MWNT, causing individually dispersed tubes to form a loosely entangled network. The effects of HA or SDS modification on adsorption are twofold. Adsorption of HA/SDS significantly reduces surface areas of O-MWNT; however, the entangled network allows adsorbate molecules to interact simultaneously with multiple tubes. An important implication is that humic substances and surfactant-like materials not only facilitate the formation of colloidal carbon nanoparticles but also affect how these colloidal carbon nanoparticles adsorb organic contaminants.

  12. Corn initial vigor in response to humic acids from bovine manure and poultry litter

    Directory of Open Access Journals (Sweden)

    Raphael Oliveira de Melo

    2015-07-01

    Full Text Available Corn is grown throughout the country, with its yields varying according to the technology investment. Among the technologies that seek to optimize productivity, the focus is on the use of improved seeds, which is associated with the properly integrated management of production factors such as pH adjustment and soil fertilization, irrigation, pest control and competitors, and more recently, the use of plant growth regulators. Analogous to synthetic growth regulators such as auxins, humic substances in organic matter have a stimulating effect on plants. However, the bioactivity and optimum concentration of humic substances vary with the type of plant and the type of raw materials used for their isolation. This work aimed to study the growth and development of maize in response to the treatment of seeds by different concentrations of humic acids. The treatments involved the application of two sources of humic acid (bovine manure and poultry litter and five concentrations (0, 10, 20, 30, and 40 mmol L-1 of C of humic acid solutions to seeds in a bioassay carried out in a greenhouse. At the end of the experiment (45 days after germination, plants were evaluated biometrically and nutritionally. The results showed a significant increase in the growth and development of shoots and roots, and there was a significant accumulation of N and P after the application of humic acid isolated from bovine manure. These effects did not occur with the application of humic acid isolated from poultry litter. Therefore, biostimulation by humic acids isolated from bovine manure showed positive results and was complementary as compared to the effects of other inputs commonly used in the treatment of maize seeds.

  13. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    Science.gov (United States)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  14. Priority ranking of substances hazardous to the aquatic system according to their exposure and effects for 1993/94; Reihung gewaesserrelevanter, gefaehrlicher Stoffe aufgrund ihrer Exposition und Wirkung fuer 1993/94

    Energy Technology Data Exchange (ETDEWEB)

    Herrchen, M.; Mueller, M.; Storm, U.; Storm, A.

    1997-10-01

    For the identification of substances occuring in surface waters and being hazardous to the aquatic ecosystem a tiered selection scheme has been developed and applied in a previous project (Application of a selection scheme for the identification of substances hazardous to the acquatic system, No.: 102 04 109). On the first tier, substances occuring in surface waters were identified by comparison with substances in international lists (such as lists I and II of the Directive 76 464 EEC and annex 1A and 1D of the 3. International North Sea Conference). For substances which are detected in monitoring programs but are not listed in the international lists as well as for substances which are detected in monitoring programs but are not listed in the above lists, the second tier was applied. That comprised a substance ranking according to their hazard for aquatic organisms using a scoring system. For the exposure assessment monitored concentrations are used in order to avoid false positive or negative results. For the effect assessment the respective part of the IPS-system (developed within the EU for the ranking of Existing Chemicals) was used. Direct and indirect effects (bioaccumulation) are considered. On the third tier a source identification was performed identifying point and diffuse sources. Within the framework of the actual project an actualisation of the above feasibility study was performed: monitoring data were taken from 1993 and 1994; additionally, data from the North Sea as well as sediment data were considered. The software was improved in order to enable an easy calculation and assessment of the different results (e.g. use of mean or median values as input for the second tier, differentiation according to various streams; consideration of the statement `not detectable`). The software programme also enables a further implementation of actual data in the near future. (orig.) [Deutsch] Zur Identifizierung von gewaesserrelevanten, gefaehrlichen Stoffen wurde

  15. Priority ranking of substances hazardous to the aquatic system according to their exposure and effects for 1993/94; Reihung gewaesserrelevanter, gefaehrlicher Stoffe aufgrund ihrer Exposition und Wirkung fuer 1993/94

    Energy Technology Data Exchange (ETDEWEB)

    Herrchen, M.; Mueller, M.; Storm, U.; Storm, A.

    1997-10-01

    For the identification of substances occuring in surface waters and being hazardous to the aquatic ecosystem a tiered selection scheme has been developed and applied in a previous project (Application of a selection scheme for the identification of substances hazardous to the acquatic system, No.: 102 04 109). On the first tier, substances occuring in surface waters were identified by comparison with substances in international lists (such as lists I and II of the Directive 76 464 EEC and annex 1A and 1D of the 3. International North Sea Conference). For substances which are detected in monitoring programs but are not listed in the international lists as well as for substances which are detected in monitoring programs but are not listed in the above lists, the second tier was applied. That comprised a substance ranking according to their hazard for aquatic organisms using a scoring system. For the exposure assessment monitored concentrations are used in order to avoid false positive or negative results. For the effect assessment the respective part of the IPS-system (developed within the EU for the ranking of Existing Chemicals) was used. Direct and indirect effects (bioaccumulation) are considered. On the third tier a source identification was performed identifying point and diffuse sources. Within the framework of the actual project an actualisation of the above feasibility study was performed: monitoring data were taken from 1993 and 1994; additionally, data from the North Sea as well as sediment data were considered. The software was improved in order to enable an easy calculation and assessment of the different results (e.g. use of mean or median values as input for the second tier, differentiation according to various streams; consideration of the statement `not detectable`). The software programme also enables a further implementation of actual data in the near future. (orig.) [Deutsch] Zur Identifizierung von gewaesserrelevanten, gefaehrlichen Stoffen wurde

  16. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organics. Characterization and quantification of the influence of clay organics on the interaction and diffusion of uranium and americium in the clay. Joint project

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, Gert [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. of Radiochemistry; Schmeide, Katja; Joseph, Claudia; Sachs, Susanne; Steudtner, Robin; Raditzky, Bianca; Guenther, Alix

    2011-07-01

    The objective of this project was the study of basic interaction processes in the systems actinide - clay organics - aquifer and actinide - natural clay - clay organics - aquifer. Thus, complexation, redox, sorption and diffusion studies were performed. To evaluate the influence of nitrogen, phosphorus and sulfur containing functional groups of humic acid (HA) on the complexation of actinides in comparison to carboxylic groups, the Am(III) and U(VI) complexation by model ligands was studied by UV-Vis spectroscopy and TRLFS. The results show that Am(III) is mainly coordinated via carboxylic groups, however, probably stabilized by nitrogen groups. The U(VI) complexation is dominated by carboxylic groups, whereas nitrogen and sulfur containing groups play a minor role. Phosphorus containing groups may contribute to the U(VI) complexation by HA, however, due to their low concentration in HA they play only a subordinate role compared to carboxylic groups. Applying synthetic HA with varying sulfur contents (0 to 6.9 wt.%), the role of sulfur functionalities of HA for the U(VI) complexation and Np(V) reduction was studied. The results have shown that sulfur functionalities can be involved in U(VI) humate complexation and act as redox-active sites in HA for the Np(V) reduction. However, due to the low content of sulfur in natural HA, its influence is less pronounced. In the presence of carbonate, the U(VI) complexation by HA was studied in the alkaline pH range by means of cryo-TRLFS (-120 C) and ATR FT-IR spectroscopy. The formation of the ternary UO{sub 2}(CO{sub 3}){sub 2}HA(II){sup 4-} complex was detected. The complex formation constant was determined with log {beta}{sub 0.1} M = 24.57 {+-} 0.17. For aqueous U(VI) citrate and oxalate species, luminescence emission properties were determined by cryo-TRLFS and used to determine stability constants. The existing data base could be validated. The U(VI) complexation by lactate, studied in the temperature range 7 to 65 C

  17. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Katsumi, Naoya, E-mail: n-katsu@ishikawa-pu.ac.jp; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12 h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, {sup 13}C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. - Highlights: • Darkness of humic acids increased with increasing heating time and temperature. • Aromatic carbon content increased during darkening. • Carbon and nitrogen stable isotope

  18. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth.

    Science.gov (United States)

    Dobbss, Leonardo Barros; Pasqualoto Canellas, Luciano; Lopes Olivares, Fábio; Oliveira Aguiar, Natália; Peres, Lázaro Eustáquio Pereira; Azevedo, Mariana; Spaccini, Riccardo; Piccolo, Alessandro; Façanha, Arnoldo R

    2010-03-24

    Chemical reactions (hydrolysis, oxidation, reduction, methylation, alkyl compounds detachment) were applied to modify the structure of humic substances (HS) isolated from vermicompost. Structural and conformational changes of these humic derivatives were assessed by elemental analyses, size exclusion chromatography (HPSEC), solid-state nuclear magnetic resonance ((13)C CPMAS-NMR), and diffusion ordered spectroscopy (DOSY-NMR), whereas their bioactivity was evaluated by changes in root architecture and proton pump activation of tomato and maize. All humic derivatives exhibited a large bioactivity compared to original HS, both KMnO(4)-oxidized and methylated materials being the most effective. Whereas no general relationship was found between bioactivity and humic molecular sizes, the hydrophobicity index was significantly related with proton pump stimulation. It is suggested that the hydrophobic domain can preserve bioactive molecules such as auxins in the humic matter. In contact with root-exuded organic acids the hydrophobic weak forces could be disrupted, releasing bioactive compounds from humic aggregates. These findings were further supported by the fact that HS and all derivatives used in this study activated the auxin synthetic reporter DR5::GUS.

  19. The role of humic and fulvic acids in the phototransformation of phenolic compounds in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, P., E-mail: paola.calza@unito.it; Vione, D.; Minero, C.

    2014-09-15

    Humic substances (HS) are known to act as photosensitizers toward the transformation of pollutants in the surface layer of natural waters. This study focused on the role played by HS toward the transformation of xenobiotics in seawater, with the purpose of assessing the prevailing degradation routes. Phenol was chosen as model xenobiotic and its transformation was investigated under simulated sunlight in the presence of terrestrial or marine humic and fulvic acids, in pure water at pH 8, artificial seawater (ASW) or natural seawater (NSW). The following parameters were determined: (1) the phenol degradation rate; (2) the variation in HS concentration with irradiation time; (3) the production of transformation products; (4) the influence of iron species on the transformation process. Faster transformation of phenol was observed with humic acids (HA) compared to fulvic acids (SRFA), and transformation induced by both HA and SRFA was faster in ASW than that in pure water. These observations can be explained by assuming an interplay between different competing and sometimes opposite processes, including the competition between chloride, bromide and dissolved oxygen for reaction with HS triplet states. The analysis of intermediates formed in the different matrices under study showed the formation of several hydroxylated (hydroquinone, 1,4-benzoquinone, resorcinol) and condensed compounds (2,2′-bisphenol, 4,4′-bisphenol, 4-phenoxyphenol). Although 1,4-benzoquinone was the main transformation product, formation of condensed molecules was significant with both HA and SRFA. Experiments on natural seawater spiked with HS confirmed the favored formation of condensed products, suggesting a key role of humic matter in dimerization reactions occurring in saline water. - Highlights: • Phenol transformation in seawater can be photosensitized by humic substances. • Dimeric species are peculiar intermediates formed in the process. • Phenol degradation occurred faster with

  20. The use of total luminescence spectroscopy in the investigation of the effects of different rice management practices on humic substances of a planosol Uso da técnica de luminescência total na investigação dos efeitos de diferentes manejos do solo para arroz sobre as substâncias húmicas de um planossolo

    Directory of Open Access Journals (Sweden)

    Rodrigo Nogueira Olendzki

    2009-10-01

    Full Text Available In the Earth's carbon cycle, C stocks in the soil are higher than in vegetation and atmosphere. Maintaining and conserving organic C concentrations in the soil by specific management practices can improve soil fertility and productivity. The aim of this study was to evaluate the impact of agricultural management techniques and influence of water regime (flooded or drained on the structure of humic substances by excitation/emission matrix fluorescence. Six samples of a Planosol (Planossolo by the Brazilian System of Soil Classification were collected from a rice field. Humic substances (HS were extracted from flooded and drained soil under different agricultural management techniques: conventional tillage, reduced tillage and grassland. Two peaks at a long emission wavelength were observed in the EEM spectra of HA whereas those of the corresponding FA contained a unique fluorophore at an intermediate excitation/emission wavelength pair (EEWP value. The fluorescence intensity measured by total luminescence (FI TL of HA was lower than that of the corresponding FA. A comparison of all samples (i.e., the HA values compared to each other revealed only slight differences in the EEWP position, but the FI TL values were significantly different. In this soil, anoxic conditions and reduced tillage (little plowing seem to favor a higher degree of humification of the soil organic matter compared with aerated conditions and conventional tillage.No ciclo do carbono terrestre, o solo contém maiores estoques de carbono que a vegetação e a atmosfera. Manter e conservar as concentrações de carbono orgânico no solo usando práticas de manejo pode aumentar sua fertilidade e produtividade. Por meio da espectroscopia de fluorescência pelo método da matriz excitação/emissão, avaliou-se o impacto de técnicas de manejo agrícolas e a influência do regime (inundado e drenado sobre a estrutura das substâncias húmicas do referido solo. Seis amostras de um

  1. Use of soluble humic substances as solubilisers in the in situ rehabilitation of sites contaminated with PAH or longchain hydrocarbons from crude oil. Final report; Einsatz von loeslichen Huminstoffen als Loesungsvermittler bei der In-situ-Sanierung von PAK- und laengerkettigen Mineraloelkohlenwasserstoff-Schadensfaellen. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Koerdel, W.; Kloeppel, H. [Fraunhofer-Institut fuer Umweltchemie und Oekotoxikologie, Schmallenberg (Germany); Gohlke, U. [Fraunhofer-Institut fuer Angewandte Polymerforschung, Teltow (Germany); Schulz-Berendt, V.; Koopmann [Umweltschutz Nord GmbH, Ganderkesee (Germany)

    1999-12-14

    The purpose of the present project was to demonstrate in example model experiments the suitability of DOM solutions, which can easily be derived from composts, for in situ rehabilitation and to compare the success achieved with remediation results obtained using surfactants and coffeein. The model experiments were carried out according to the DECHEMA guide to ''Laboratory methods for assessing biological soil rehabilitation'' using glass columns (of 14 cm dia. and 60 cm length) containing one of two different PAH-contaminated soils (PAH I and PAH II) or a soil contaminated with crude oil hydrocarbons (CHC). Altogether a markedly enhanced leaching of pollutants (PAH and CHC) from the soils as well as an increased degradation of contaminants was observed during the experiments, and there were no negative accompanying processes such as excessive bacterial growth, occlusion of soil pores or excessive accumulation of DOM in the soil. In terms of posing a hazard to groundwater natural humic substances are certainly to be viewed as less critical than synthetic detergents. [German] Ziel des Vorhabens war es, die Eignung von DOM-Loesungen, die aus Komposten leicht gewonnen werden koennen, in der In-situ-Sanierung exemplarisch anhand von Modellversuchen aufzuzeigen und den erzielten Sanierungserfolg mit dem von Tensiden und Coffein zu vergleichen. Die Modelluntersuchungen erfolgten gemaess DECHEMA-Leitfaden 'Labormethoden zur Beurteilung der biologischen Bodensanierung' unter Verwendung von Glassaeulen (14 cm diameter, 60 cm Laenge) mit zwei PAK-belasteten Boeden (PAK I und PAK II) sowie einem mit Mineraloelkohlenwasserstoffen belasteten Boden (MKW-Boden). Insgesamt konnte mit natuerlichen DOM-Loesungen eine deutlich gesteigerte Auswaschung der Schadstoffe (PAK und MKW) aus den Boeden waehrend des Versuchs als auch ein gesteigerter Abbau der Kontaminanten erreicht werden, ohne dass negative Begleitprozesse wie zu starkes Bakterienwachstum und

  2. Aquatic plants

    DEFF Research Database (Denmark)

    Madsen, T. V.; Sand-Jensen, K.

    2006-01-01

    Aquatic fl owering plants form a relatively young plant group on an evolutionary timescale. The group has developed over the past 80 million years from terrestrial fl owering plants that re-colonised the aquatic environment after 60-100 million years on land. The exchange of species between...... terrestrial and aquatic environments continues today and is very intensive along stream banks. In this chapter we describe the physical and chemical barriers to the exchange of plants between land and water....

  3. Promoção de enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e bactérias diazotróficas endofíticas Rooting of micro seed pieces by combined use of humic substances and endophytic diazotrophic bacteria in sugar cane

    Directory of Open Access Journals (Sweden)

    Roberto Batista Marques Júnior

    2008-06-01

    éficos da inoculação de estirpes selecionadas de H. seropedicae, já para ácidos húmicos, as respostas positivas independem da termoterapia. A promoção do crescimento radicular por AH e a fixação biológica de N2 podem representar uma estratégia inovadora para produção sustentada em sistemas agrícolas.Besides the direct nutritional effect of mineralization of organic matter or by biological nitrogen fixation activity, the humic substances and endophytic diazotrophic bacteria can directly influence plant metabolism, modifying plant growth and development patterns. The purpose of this study was to evaluate the effect of the combined use of humic acid (HA and Herbaspirillum seropedicae, an endophytic nitrogen-fixing bacteria, on the root growth of seed pieces - heat-treated or not - of the sugarcane variety RB 72 454. After hot water treatment, the cane cuttings were immersed for 12 hours as follows: in water (control plant, in HA solution (20 mg L-1 of C from vermicompost, in bacterial inoculant of H. seropedicae, strain HRC54 (10(8 cells mL-1, and in a combination of bacteria and HA. Root growth was improved by 60 to 118 % in length and from 33 % to 233 % in surface area on sugarcane plant treatments compared to control, with more pronounced effect in plants under heat treatment. Likewise, the positive effect of the combinded treatment (bacteria inoculation and humic acid on shoot and root biomass was significant compared to the control with heat-treated cuts. For non-heated seed pieces, bacteria inoculation did not result in a positive plant growth effect, but only in the presence of humic acid. The combined or isolated use of both HA and bacteria did not significantly modify the bacteria population in the root tissue of heat-untreated sugarcane. For heat-treated cuts, bacteria inoculation, combined or not with HA, increased the size of diazotrophic bacteria population on roots. The results highlight the importance of thermotherapy to increase the positive

  4. Impacto da conversão floresta - pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico Impact of forest-pasture conversion on stocks and dynamics of soil carbon and humic substances in the Amazon

    Directory of Open Access Journals (Sweden)

    Edson Alves de Araújo

    2011-03-01

    of Rio Branco and comprises an area of bamboo- and palm-dominated open forest with two B. brizantha pastures of 3 and 10 years old. The second site, dominated by a dystrophic Red Yellow Latosol (Oxisol, is located in the municipality of Senador Guiomard and comprises an area of dense forest and a 20-year old B. brizantha pasture. In each site soil samples were collected in triplicate at depths of 0-5, 5-10, 10-20 and 20-40 cm. Samples were evaluated for physical and chemical characteristics, C of humic substances and light organic matter, and the isotopic composition of soil and its organic fractions to 1 m depth, determining the percentage of C derived of both grassland and forest. There were increases in stocks of soil C and δ13C soil with the time of grazing in both sites. The percentage of C derived from pasture was much higher in the surface layer of the Senador Guiomard site following 20 years of grazing, with proportions that reached 70% of the total C. δ13C values for the humic acids ranged from -12.19 to -17.57 ‰, indicating a higher proportion of C derived from pasture. The MOS structural stability inferred by the relationship of the humin with both fulvic acid and humic acid fractions (HUM / FAF + FAH tended to decrease in grassland ecosystems when compared with native forests.

  5. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    Science.gov (United States)

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  6. Replenishing Humic Acids in Agricultural Soils

    Directory of Open Access Journals (Sweden)

    Michael Susic

    2016-09-01

    Full Text Available For many decades, it was commonly believed that humic acids were formed in soils by the microbial conversion of plant lignins. However, an experiment to test whether these humic acids were formed prior to plant matter reaching the soil was never reported until the late 1980s (and then only as a side issue, even though humic acids were first isolated and reported in 1786. This was a serious omission, and led to a poor understanding of how the humic acid content of soils could be maintained or increased for optimum fertility. In this study, commercial sugar cane mulch and kelp extracts were extracted with alkali and analyzed for humic acid content. Humic acids in the extracts were positively identified by fluorescence spectrophotometry, and this demonstrated that humic acids are formed in senescent plant and algal matter before they reach the soil, where they are then strongly bound to the soil and are also resistant to microbial metabolism. Humic acids are removed from soils by wind and water erosion, and by water leaching, which means that they must be regularly replenished. This study shows that soils can be replenished or fortified with humic acids simply by recycling plant and algal matter, or by adding outside sources of decomposed plant or algal matter such as composts, mulch, peat, and lignite coals.

  7. Prospective outcome of the influence of complexation by natural organic matter on enhanced or retarded transport of radionuclides: case of humic substances retention; Bilan prospectif sur l'influence de la complexation par la matiere sur l'effet accelerant ou retard du transport des radionucleides: cas de la retention des substances humiques

    Energy Technology Data Exchange (ETDEWEB)

    Reiller, P.

    2010-07-01

    This document takes a prospective stock of the natural organic matter influence on the possible effects on radionuclide migration, as well as a brief critical analysis of the literature data. A comparison with the retention of the 'simple' organic complexing agents is done in order to fix the limit of the 'simplistic' analogies done in the literature very often. It appears that the magnitude of the effects is function of the residence time in the medium, and of the possibilities for the organic complexes to be retained on the mineral surfaces. The contact time between radionuclides and the natural organic matter is also an influent parameter, as it influences part of the reversibility of this interaction vis-a-vis surface retention. Modelling of the metal-organic-surface systems is only satisfying up to now when accounting fractions of organic matter that are less susceptible to form colloidal aggregates, i.e., fulvic acids. These non-aggregated fractions could be considered as simple ligands in a first approximation. Conversely, when it comes to aggregated colloids of organic origin, i.e., humic acids, modelling are limited by the lack of theoretical understanding of their structure and of their evolution in response to geochemical condition variations, as ionic strength (harsh meteoric events), acidity or water composition (non-saturated water table). (author)

  8. Kinetics study of aqueous sorption of phenanthrene to humic acids and sediments

    Institute of Scientific and Technical Information of China (English)

    LIU Rui-xia; TANG Hong-xiao

    2004-01-01

    The sorption behavior was determined for a model polycyclic aromatic hydrocarbon(PAH), i.e., phenanthrene(PHN), from water to three humic acids(HAs) and three sediments in different reacting time. The chemical compositions of HA samples were measured using cross polarization magic angle spinning carbon-13(CPMAS 13C) NMR along with elemental analysis. The dissolved humic substances dissociating from solid HAs and sediments were characterized by 1H NMR. The experiments indicated that the sorption modes and mechanisms of natural sorbents for PHN varied significantly between short(<7 d) and long contact time and the reaction time should be taken into consideration in studying the overall sorption process. The sorption capacity() and exponent() might be relative to the properties of dissolved humic materials in initial stage but the solid aromatic organic matter after long time reaction. According to the experiments performed in this investigation and the previous researches, a conceptive sorption model was established.

  9. Chemical immobilisation of humic acid on silica

    NARCIS (Netherlands)

    Koopal, L.K.; Yang, Y.; Minnaard, A.J.; Theunissen, P.L.M.; Riemsdijk, W.H. van

    1998-01-01

    Immobilisation of purified Aldrich humic acid (PAHA) on aminopropyl silica and glutaraldehyde-activated aminopropyl silica has been investigated. In general the humic acid is bound to the solid by both physical and chemical bonds. The physically adsorbed HA can be released to a large extent at high

  10. ORGANIC MATTER AND HUMIC FRACTIONS OF A HAPLIC ACRISOL AS AFFECTED BY COMPOSTED PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Ana Cristina Lüdtke

    2016-01-01

    Full Text Available The goal of this study was to investigate the effect of composted pig slurry (PS on the organic matter concentration and distribution of humic acid (HA, fulvic acid (FA and humin (HU fractions. The fractions were quantified following the addition of composted PS to the soil, which was produced with no acidification (T2 or with acidification with H3PO4 (T3; and in soil without compost addition (T1. The HA chemical composition was analyzed by FTIR spectroscopy. The addition of the two composts did not change the soil carbon concentration but affected the distribution of the humic fractions. For the three treatments, the carbon concentration of humic substances increased until 52 days following compost addition, with more pronounced increases with the addition of non-acidified PS compost (14.5 g kg-1 and acidified PS compost (15.1 g kg-1. This increase was reflected in both the FA and HA concentrations. The addition of compost with PS acidification resulted in the formation of larger humic micelles (HA with higher aromatic content and fewer functional groups than the non-acidified PS compost. These findings, together with a lower proportion of carbohydrate-type structures, indicated the presence of more stable humic micelles in the soil treated with acidified PS compost.

  11. Relevant role of dissolved humic matter in phosphorus bioavailability in natural and agronomical ecosystems through the formation of Humic-(Metal)-Phosphate complexes

    Science.gov (United States)

    Baigorri, Roberto; Urrutia, Óscar; Erro, Javier; Pazos-Pérez, Nicolás; María García-Mina, José

    2016-04-01

    Natural Organic Matter (NOM) and the NOM fraction present in soil solution (dissolved organic matter: DOM) are currently considered as fundamental actors in soil fertility and crop mineral nutrition. Indeed, decreases in crop yields as well as soil erosion are closely related to low values of NOM and, in fact, the use of organic amendments as both soil improvers and plant growth enhancers is very usual in countries with soils poor in NOM. This role of NOM (and DOM) seems to be associated with the presence of bio-transformed organic molecules (humic substances) with high cation chelating-complexing ability. In fact, bioavailable micronutrients with metallic character in soil solutions of alkaline and calcareous soils are forming stable complexes with DOM. This beneficial action of DOM also concerns other plant nutrients such as inorganic phosphate (Pi). Among the different mechanisms involved in the beneficial action of DOM on P bioavailability, the possible formation of poly-nuclear complexes including stable chemical bonds between negative binding sites in humic substances and Pi through metal bridges in soil solution might be relevant, especially in acidic soils. In fact, several studies have proven that these complexes can be obtained in the laboratory and are very efficient in prevent Pi soil fixation and improve Pi root uptake. However, clear experimental evidence about their presence in soil solutions of natural and agronomical soil ecosystems has not published yet. We present here experimental results supporting the real presence of stable Pi-metal-Humic (PMH) complexes in the soil solution of several acidic soils. The study is based on the physico-chemical characterization (31P-NMR, FTIR, TEM-EDAX, ICP-OES) of the DOM fraction isolated by ultrafiltration from the soil solution of several representative acidic soils. In average, more than 60 % of Pi was found in the soil solution humic fraction forming stable humic-metal (Fe, Al) complexes.

  12. Characterization of humic-like substances in Arctic aerosols

    DEFF Research Database (Denmark)

    Nguyen, Quynh T.; Kristensen, Thomas Bjerring; Hansen, Anne Maria K.;

    2014-01-01

    , WSOC, HULIS, selected HULIS functional groups (carboxylic acids, aromatic carboxylic acids, and organosulfates) and levoglucosan overlapped with the typical Arctic haze pattern with elevated concentrations during winter to early spring. The aromatic carboxylic acid portion accounted for a larger share...

  13. Migration of actinides in the system clay, humic substances, aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, C.M. (ed.)

    2008-09-15

    Steady-state and time-resolved luminescence techniques were used for the investigation of interactions between HS and metal ions. In the experiments the intrinsic fluorescence properties of HS as well as the luminescence of Ln{sup 3+} ions, which were used as natural analogs for An3+, were monitored. Data of time-resolved fluorescence anisotropy, stopped-flow analysis and high resolution ultra-low temperature luminescence excitation spectra were evaluated in the investigations in order to get specific information on effects of the metal complexation on the structure (conformation, aggregation) of HS. The quenching of the intrinsic HS fluorescence and the sensitization of Ln{sup 3+} luminescence (Ln{sup 3+} = Eu{sup 3+}, Tb{sup 3+}) were investigated and compared. With respect to the FA fractions a consistent picture was obtained, in contrast to the HA fractions investigated. On close inspections of the steady-state fluorescence spectra of HA, a hypsochromic shift upon metal addition was observed. This spectral change points already to an induced alteration of the HA structural properties due to the binding of metal ions. This fact is further supported by results from stopped-flow experiments, in which the complexation kinetics for FA and HA of different origins was measured. For the FA as well as for the HA fractions investigated a consistent picture was obtained. i) The complexation kinetics of the FA is very fast (beyond the timeresolution of the stopped-flow apparatus used) and is finished within the first millisecond after metal addition - this can be concluded from the instantaneous decrease of the intrinsic FA fluorescence. ii) for HA, in addition to the very fast process, a second, much slower kinetic was observed. This supports the idea of induced structural alterations in HA upon metal complexation. This view is further supported by time-resolved anisotropy measurements of the intrinsic HA fluorescence in the absence and presence of Eu3+ at different temperatures. It was found that the rotational correlation time are shortened after addition of Eu3+ indicating a decrease in effective size of the HS upon addition of Eu{sup 3+}. However, it is important to stress that the measured rotational correlation times are in the sub-nanosecond time regime, which means that either not the complete molecular rotation is monitored - in case of ''large'' molecules rather the rotation of a subunit - or the molecules are indeed small compared the ''historic picture of HS''. For the evaluation of the time-resolved measurements of the Tb{sup 3+} luminescence an intramolecular energy back-transfer was introduced in the data analysis. With this new approach a global analysis of the experimental data was feasible yielding for a particular sample set only one decay time. It has to be stressed that i) this decay time could be still an average value of a distribution of closely space decay times and ii) in contrast to former data analysis the assumption of discrete and completely different Tb-HS species is redundant. It is interesting to note that from such an analysis for the FA samples a very similar results for the decay time were obtained, which seems to be reasonable with in the newly established view of FA as mixture of ''small'' molecules with very similar binding sites. Again, for the HA fractions larger differences were derived in the analysis underlining the idea of HA being larger in size. In order to get information on the distribution of metal ion bound to HS without a bias due to missing knowledge of HS structure, interlanthanoide energy transfer between Eu{sup 3+} (Tb{sup 3+}) and Nd{sup 3+} was investigated and the mean distance between metal ions was calculated. Depending on the origin of HS and on the loading with metal ions distance in the range of ten ionic radii were found. In order to access further structural detail of metal-HS complexes high-resolution ultra-low temperature luminescence excitation spectra of Eu{sup 3+} complexes with model compounds and HS were recorded. From the excitation and emission spectra crystal field strength parameters and complex symmetries were derived. As expected significant difference were found between salicylic acid and other benzoic carboxylic acids, probably reflecting the formation of chelate complexes. A first comparison of the results for model ligands and of HS revealed that the major part of binding seems to be to carboxylic acid type of ligands with no significant contribution from chelates. However, this is work to be continued in the future. (orig.)

  14. Short-term Effect of Different Corn Cultivation Modes on the Compositions of Humic Substances Extracted from A Typical Dark-brown Soil in Middle Temperate Region%不同玉米栽培模式对中温带典型暗棕壤腐殖质组成的短期影响

    Institute of Scientific and Technical Information of China (English)

    王帅; 李昕洋; 于楠楠; 朱晓丽; 权振贵; 窦森

    2016-01-01

    为探讨不同玉米栽培模式对中温带典型暗棕壤腐殖质组分数量及结构的短期影响,以吉林省磐石市实施3 a的定位栽培试验为供试对象,分别研究高光效休耕轮作栽培(HPE)、地膜覆盖的高光效休耕轮作栽培(PM-HPE)、宽窄行交替休闲栽培(WNR),以及农民等垄宽常规栽培(CC)下各栽培模式的种植带和休耕带两个功能区对暗棕壤总有机碳、水溶性物质、胡富质量分数比(w(CHA)∶w(CFA))、胡敏素以及胡敏酸、富里酸溶液光学性质(E4/E6与△logK值)差异的影响,结果表明:(1)休闲栽培措施在短期内易使暗棕壤总有机碳发生矿化,但其对水溶性物质及其占总有机碳中比例的提高具有促进作用,其中PM-HPE模式对水溶性物质的保蓄效果最佳。休闲栽培下密植玉米的种植带对水溶性物质含量有所消耗,使更多水溶性物质固存在休耕带;(2)休闲栽培更有利于暗棕壤胡敏酸质量分数的消耗以及富里酸组分的累积,使其腐殖质活性增加、品质降低。适度休耕能够在一定程度上缓解胡敏酸相对比例的损失,更有利于腐殖质品质的稳定。休耕有利于腐殖质结构向简单化方向进行,而在种植带,暗棕壤富里酸分子有进一步缩合的趋势;(3)高光效栽培促进了微生物对胡敏素的矿化分解。%We studied the differences in the contents of total organic C (TOC), water soluble substance (CWSS), humin (CHu), the ratios of humic acid (HA)/fulvic acid (FA) (CHA/CFA) and E4/E6, the△logK values from the HA and FA alkaline-solutions based on the four cultivation types including the fallow rotation cultivation with a high photosynthetic efficiency (HPE), the plastic mulched fallow rotation cultivation with a high photosynthetic efficiency (PM-HPE), the alternating leisure cultivation of wide-narrow row (WNR) and the conventional cultivation (CC

  15. STXM / NEXAFS investigation of humic acid metal cation interaction

    Science.gov (United States)

    Plaschke, M.; Rothe, J.; Denecke, M. A.; Geckeis, H.

    2009-04-01

    Waste matrix dissolution following water intrusion in a future underground nuclear waste repository is regarded as a possible failure scenario leading to the dispersal of radioactive substances in the environment. Dissolved actinides, carriers of the long term radiotoxicity, may interact with groundwater constituents or sediment and host rock phases. These processes can either enhance or retard actinide mobility in the aquifer surrounding the repository. Actinide species may be highly mobile occuring as ‘eigen-colloids' or actinides adsorbed on groundwater colloids. The latter include dissolved humic acids (HA), mineral particles like iron oxides/hydroxides or clays and mineral/organic associations. The chemical characterization of these carrier colloids and a molecular scale understanding of the actinide-colloid interaction is a prerequisite to reliable prediction of actinide mobility based on model calculations. Therefore, chemical speciation information along with micro-scale morphology information is mandatory. Scanning Transmission X-ray Microscopy (STXM) is a powerful technique to reveal the chemical functionality and morphology of organic matter on a sub-µm scale. Moreover, STXM benefits from the ability to characterize organic samples in a thin film of aqueous solution. Morphological and microchemical information can be obtained at the same time within the spectral ‘water window' (i.e., between the C 1s and O 1s absorption edges at 284 eV and 537 eV, respectively). This ensures that complex hydrated structures of HA are kept in their native state. STXM investigations of HA in contact with polyvalent metal cations are carried out at the NSLS and SLS endstations. STXM micrographs at the carbon K-edge of metal cation loaded HA show optically dense zones (densification of carbon) embedded in a matrix of less dense material. Carboxyl groups are proposed to act as the primary HA cation attachment sites. NEXAFS (Near Edge Absorption Fine Structure) spectra of

  16. HUMIC ACID-LIKE MATTER ISOLATED FROM GREEN URBAN WASTES. PART I: STRUCTURE AND SURFACTANT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Enzo Montoneri

    2008-02-01

    Full Text Available A humic acid-like substance (cHAL2 isolated from urban green wastes before composting was compared to a humic acid-like substance (cHAL isolated from a mix of urban organic humid waste fraction and green residues composted for 15 days. cHAL2 was found to contain more aliphatic and O-alkyl C atoms relative to aromatic, phenol, and carboxyl C atoms, and to yield higher critical micellar concentration (cmc = 0.97 g L-1 and surface tension at the cmc (cmc = 37.8 mN/min water than cHAL (cmc = 0.40 g L-1; cmc = 36.1 mN/m. The results point out that biomass wastes may be an interesting source of biosurfactants with diversified properties that depend on the nature of waste and on its process of treatment.

  17. Potential origin and formation for molecular components of humic acids in soils

    Science.gov (United States)

    Hatcher, Patrick; DiDonato, Nicole; Waggoner, Derek

    2016-04-01

    Humification is defined as the process by which plant and microbial debris are transformed in to humic substances. Proposed pathways for the formation of humic substances, include the lignin and lignin decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway. It is generally accepted that a combination of several of these pathways with some modifications may be responsible for producing humic substances. The current study examines humic acids from numerous soil samples to demonstrate their molecular composition. In addition we provide an explanation for the formation of these molecules that introduces a new perspective of the humification process. Our work utilizes advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely characterize humic acids at the molecular level. Methods Humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a Dowex™ ion-exchange resin to remove sodium ions. Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer equipped with a 4 mm solid state MAS probe. ESI-FTICR-MS analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source. Results: Soil humic acids from numerous soils were investigated in this study. The molecular formulas calculated from ultrahigh resolution mass spectra of well humified soils fall clearly into two predominant regions consisting of condensed aromatic molecules as well as high H/C, low O/C carboxyl-containing aliphatic molecules (CCAM). In contrast, the spectral data for humic acids from a poorly humified spodosol soil show a less dramatic separation of these regions, with relatively more molecular formula plotting in the lignin-like region and relatively fewer condensed aromatic molecules. From the mass spectral observations made for the humic acids, we can readily discern a relationship based on degree of

  18. BORON CONCENTRATION IN HUMIC AND FULVIC ACID EXTRACTS OF SOIL EPIPEDON IN SAN VITALE PINEWOOD (RAVENNA, ITALY

    Directory of Open Access Journals (Sweden)

    Maddalena Pennisi

    2010-08-01

    Full Text Available Humified Soil Organic Matter (SOM plays a crucial role in the assessment of soil quality since it makes up a significant part of the total organic carbon and nitrogen in soils. High concentrations of humic and fulvic acids may be presents in soils and subordinately in sediments. These substances can potentially act as a significant reservoir of adsorbed boron as well as a source of this element to soil solution, rivers, and lakes. The aim of this study was to investigate boron in humic substances (e.g. humic and fulvic acids of soil epipedon. The San Vitale pinewood was selected as the study site and three samples - classified as Sodic Psammaquents and Typic Psammaquants - of the A1-horizon epipedon were analyzed for humic and fulvic acids and boron contents. The knowledge of the mechanisms of boron interaction with SOM is important for a better understanding of the water/rock interaction in the superficial soil environment, and to envisage the application of the blending of boron into humic acid granules in agricultural practices.

  19. Simple method of isolating humic acids from organic soils

    Science.gov (United States)

    Ahmed, O. H.; Susilawati, K.; Nik Muhamad, A. B.; Khanif, M. Y.

    2009-04-01

    Humic substances particularly humic acids (HA) play a major role in soil conditioning e.g. erosion control, soil cation exchange capacity, complexation of heavy metal ions and pesticides, carbon and nitrogen cycles, plant growth and reduction of ammonia volatilization from urea. Humified substances such as coal, composts, and peat soils have substantial amounts of HA but the isolation of these acids is expensive, laborious, and time consuming. Factors that affect the quality and yield of HA isolated from these materials include extraction, fractionation, and purification periods. This work developed a simple, rapid, and cost effective method of isolating HA from peat soils. There was a quadratic relationship between extraction period and HA yield. Optimum extraction period was estimated at 4 h instead of the usual range of 12 to 48 h. There was no relationship between fractionation period and HA yield. As such 2 h instead of the usual range of 12 to 24 h fractionation period could be considered optimum. Low ash content (5%), remarkable reduction in K, coupled with the fact that organic C, E4/E6, carboxylic COOH, phenolic OH, and total acidity values of the HA were consistent with those reported by other authors suggest that the HA dealt with were free from mineral matter. This was possible because the distilled water used to purify the HA served as Bronsted-Lowry acid during the purification process of the HA. Optimum purification period using distilled waster was 1 h instead of the usual range of 1 and 7 days (uses HF and HCl and dialysis). Humic acids could be isolated from tropical peat soils within 7 h (i.e. 4 h extraction, 2 h fractionation, and 1 h purification) instead of the existing period of 2 and 7 days. This could facilitate the idea of producing organic fertilizers such as ammonium-humate and potassium-humate from humified substances since techniques devised in this study did not alter the true nature of the HA. Besides, the technique is rapid, simple

  20. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection

    Institute of Scientific and Technical Information of China (English)

    Hosny H Kesba; Hossam S El-Beltagi

    2012-01-01

    Objective: To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. Methods: The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Results: Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO) showed significant increase in their specific activities in treated plants compared with nematode treated check. Conclusions: Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes.

  1. Artificial recharge of humic ground water.

    Science.gov (United States)

    Alborzfar, M; Villumsen, A; Grøn, C

    2001-01-01

    The purpose of this study was to investigate the efficiency of soil in removing natural organic matter from humic ground waters using artificial recharge. The study site, in western Denmark, was a 10,000 ml football field of which 2,000 m2 served as an infiltration field. The impact of the artificial recharge was studied by monitoring the water level and the quality of the underlying shallow aquifer. The humic ground water contained mainly humic adds with an organic carbon (OC) concentration of 100 to 200 mg C L(-1). A total of 5,000 mS of humic ground water were sprinkled onto the infiltration field at an average rate of 4.25 mm h(-1). This resulted in a rise in the water table of the shallow aquifer. The organic matter concentration of the water in the shallow aquifer, however, remained below 2.7 mg C L(-1). The organic matter concentration of the pore water in the unsaturated zone was measured at the end of the experiment. The organic matter concentration of the pore water decreased from 105 mg C L(-1) at 0.5 m to 20 mg C L(-1) at 2.5 m under the infiltration field indicating that the soil removed the organic matter from the humic ground water. From these results we conclude that artificial recharge is a possible method for humic ground water treatment.

  2. Influence of trivalent electrolytes on the humic colloid-borne transport of contaminant metals: competition and flocculation effects

    Science.gov (United States)

    Lippold, H.; Mansel, A.; Kupsch, H.

    2005-02-01

    With the objective to assess the relevance of competitive effects in respect of the humic colloid-borne migration of actinides in case of release, the influence of Al(III) on humate complexation of La(III) as an analogue of trivalent actinides was investigated for various humic materials by using 140La as a radioactive tracer, allowing measurements in very dilute systems to simulate realistic settings. Generally, competition by aluminium is not detectable unless the metal-loading capacity of the humic colloids is nearly exhausted. For average contents of organic carbon, a threshold value of 10 -6 M Al(III) can be specified. The metal exchange turned out to be kinetically hindered. Effects on co-adsorption of La(III) and humic acid were found to be less important. Immobilization by the concomitantly induced flocculation process outweighs the role of displacement effects. Comparative studies on complexation and flocculation of humic acid with Al(III), Ga(III), In(III), Sc(III), Y(III), and La(III) were undertaken in order to evaluate the influence of specific properties apart from ion charge and to characterize the mechanism of flocculation. In spite of considerable variations in the binding affinities among these metals, it can be inferred that the possibility of significant competitive effects in natural aquatic systems is confined to Al(III). Complex stabilities and flocculation efficiencies proved to be interrelated. Precipitation is thus attributed to homocoagulation of humic colloids induced by charge compensation, which is further supported by flocculation experiments with Al(III) depending on pH, ionic strength, and humic acid concentration.

  3. Usage of humic materials for formulation of stable microbial inoculants

    Science.gov (United States)

    Kydralieva, K. A.; Khudaibergenova, B. M.; Elchin, A. A.; Gorbunova, N. V.; Muratov, V. S.; Jorobekova, Sh. J.

    2009-04-01

    of the product. It is known that humic substances can increase of live organism resistance to stress loads, in particular to chemical stress, low and high temperature. Spray- and fluidized-bed drying and addition of humate-based drying protectants were evaluated for the development of dry formulations of biocontrol and plant growth promoting rhizobacteria. The drying protectants - humic acids and sodium humate gave the highest initial survival rates and the most stable formulations, without significant losses of viability after storage for 1 month at 30oC. As a result, the specific plant growth promoting effect is retained. Thus, humic materials have an unfulfilled potential for biotechnology industries based on such applications. Acknowledgement. This research was supported by the grant of ISTC KR-993.2.

  4. Thermodynamic Characterization of Humic Acid-surfactant Interaction: New Insights into the Characteristics and Structure of Humic Acids

    Directory of Open Access Journals (Sweden)

    Leonardus Vergütz

    2015-12-01

    Full Text Available ABSTRACT Humic acids (HA are a component of humic substances (HS, which are found in nearly all soils, sediments, and waters. They play a key role in many, if not most, chemical and physical properties in their environment. Despite the importance of HA, their high complexity makes them a poorly understood system. Therefore, understanding the physicochemical properties and interactions of HA is crucial for determining their fundamental role and obtaining structural details. Cationic surfactants are known to interact electrostatically and hydrophobically with HA. Because they are a very well-known and characterized system, they offer a good choice as molecular probes for studying HA. The objective of this study was to evaluate the interaction between cationic surfactants and HA through isothermal titration calorimetry in a thermodynamic manner, aiming to obtain information about the basic structure of HA, the nature of this interaction, and if HA from different origins show different basic structures. Contrary to what the supramolecular model asserts, HA structure is not loosely held, though it may separate depending on the conditions the HA are subjected to in their milieu. It did not show any division or conformational change when interacting with surfactants. The basic structure of the HA remains virtually the same regardless of the different sources and compositions of these HA.

  5. Interaction between uranium and humic acid (Ⅰ): Adsorption behaviors of U(Ⅵ) in soil humic acids

    Institute of Scientific and Technical Information of China (English)

    WEI Min; LIAO Jiali; LIU Ning; ZHANG Dong; KANG Houjun; YANG Yuanyou; YANG Yong; JIN Jiannan

    2007-01-01

    The adsorption behaviors of uranium on three soil humic acids (HAs), which were extracted from soils of different depths at the same site, were investigated under various experimental conditions. The adsorption results showed that U(Ⅵ) in solutions can be adsorbed by the three soil HAs, with the order of FHA (HA from 5 m depth of soil) >SHA (HA from the surface) >THA (HA from 10 m depth of soil) for adsorption efficiency in each desirable condition, and the adsorption reached equilibrium in about 240 min. Although the maximum adsorption efficiency was adsorption could be described with Langmiur isotherm or Freundlich isotherm equation. The L/S (liquid/solid, mL/g)ratio and pH were important factors influencing the adsorption in our adsorption system besides uranium concentration. The adsorption efficiency decreased with the increase of the L/S ratio and pH at the pH range of 2.0-3.0 for SHA and THA or 2.5 - 6.0 for FHA. However, no significant difference in adsorption of U(Ⅵ) was observed at the experimental temperature. All the results implied that humic substances have different characteristics in samples even collected at the same site.

  6. Properties of the humic-like material arising from the photo-transformation of L-tyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Berto, Silvia, E-mail: silvia.berto@unito.it [Università di Torino, Dipartimento Chimica, via P. Giuria, 7, 10125 Torino (Italy); De Laurentiis, Elisa; Tota, Tiziana; Chiavazza, Enrico; Daniele, Pier Giuseppe; Minella, Marco [Università di Torino, Dipartimento Chimica, via P. Giuria, 7, 10125 Torino (Italy); Isaia, Marco [Università di Torino, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Via Accademia Albertina 13, Torino 10123 (Italy); Brigante, Marcello [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, BP 80026, F-63177 Aubière (France); Vione, Davide, E-mail: davide.vione@unito.it [Università di Torino, Dipartimento Chimica, via P. Giuria, 7, 10125 Torino (Italy)

    2016-03-01

    The UVB photolysis of L-tyrosine yields species with fluorescence and absorption spectra that are very similar to those of humic substances. By potentiometric measurements, chemical modeling and the application of NMR, mass spectrometry and laser flash photolysis, it was possible to get insights into the structural and chemical properties of the compounds derived by the L-tyrosine phototransformation. The photolytic process follows aromatic-ring hydroxylation and dimerization. The latter is presumably linked with the photoinduced generation of tyrosyl (phenoxy-type) radicals, which have a marked tendency to dimerize and possibly oligomerize. Interestingly, photoinduced transformation gives compounds with protogenic and complexation capabilities similar to those of the humic substances that occur naturally in surface waters. This finding substantiates a new and potentially important abiotic (photolytic) pathway for the formation of humic compounds in surface-water environments. - Highlights: • Tyrosine photolysis proceeds through deamination, hydroxylation and dimerization. • Dimerization could be linked to the photoinduced formation of tyrosyl radicals. • New protogenic sites are formed by irradiation, compared to the parent amino acid. • The irradiated material has higher copper complexation capacity than tyrosine. • Humic-like substances derived from tyrosine could complex Cu in surface waters.

  7. Separation of Gd-humic complexes and Gd-based magnetic resonance imaging contrast agent in river water with QAE-Sephadex A-25 for the fractionation analysis.

    Science.gov (United States)

    Matsumiya, Hiroaki; Inoue, Hiroto; Hiraide, Masataka

    2014-10-01

    Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column. The Gd-humic complexes were subsequently dissociated with 1M nitric acid to desorb the humic fraction of Gd. The two-step desorption with small volumes of the eluting agents allowed the 100-fold preconcentration for the fractionation analysis of Gd at low ng L(-1) levels by inductively coupled plasma-mass spectrometry (ICP-MS). On the other hand, Gd(III) neither complexed with humic substances nor DTPA, i.e., free species, was not sorbed on the column. The free Gd in the effluent was preconcentrated 100-fold by a conventional solid-phase extraction with an iminodiacetic acid-type chelating resin and determined by ICP-MS. The proposed analytical fractionation method was applied to river water samples.

  8. TiO2 Nanoparticles Aggregation and Disaggregation in Presence of Alginates and Humic Acids: pH and Concentration Effects on Suspension Stability

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-04-01

    The behavior of manufactured TiO2 nanoparticles is studied here in a systematic way as a function of pH and in the presence of Suwannee river humic acids and alginate, at variable concentrations, which represent two major components found in aquatic systems. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement and evolution determination of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is carried out by considering three pH-dependent electrostatic scenarios (below the point of zero charge of the nanoparticles, at the point of zero charge and above it). In the first scenario, when pH is below the point of zero charge of the TiO2 nanoparticles, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee river humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation and, by increasing further Alginate and Suwannee river humic acids, results in charge inversion and thus stabilization of TiO2 nanoparticles. In the second electrostatic scenario, at the pH of the TiO2 surface charge neutralization, TiO2 nanoparticles are rapidly forming aggregates and adsorption of alginate and Suwannee river humic acid on aggregates surface leads to the partial disaggregation of aggregates. In the third electrostatic scenario, when nanoparticles, alginates and Suwannee river humic acids are negatively charged a small amount of Suwannee river humic acids is adsorbed via hydrophobic interactions. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are strongly dependent on the electrostatic, concentration ratio, and to a less extend to the amphiphilic compounds character and that environmental aquatic concentration ranges of humic acids and

  9. Copper(II and lead(II complexation by humic acid and humic-like ligands

    Directory of Open Access Journals (Sweden)

    IVANA KOSTIĆ

    2011-09-01

    Full Text Available The stability of metal–humate complexes is an important factor determining and predicting speciation, mobility and bioavailability of heavy metals in the environment. A comparative investigation of the complexation of Cu(II and Pb(II with humic acid and humic-like ligands, such as benzoic and salicylic acid, was performed. The analysis was realized at pH 4.0, a temperature of 25 °C and at an ionic strength of 0.01 mol dm-3 (NaCl using the Schubert ion-exchange method and its modified form. The stability constants were calculated from the experimental data by the Schubert method for complexes with benzoic and humic acid. A modified Schubert method was used for the determination of the stability constants of the complexes with salicylic acid. It was found that Cu(II and Pb(II form mononuclear complexes with benzoic and humic acid while with salicylic acid both metals form polynuclear complexes. The results indicate that Pb(II has a higher binding ability than Cu(II to all the investigated ligands. The Cu(II–salicylate and Pb(II–salicylate complexes showed noticeable higher stability constants compared with their complexes with humic acid, while the stabilities of the complexes with benzoic acid differed less. Salicylic and benzoic acids as humic-like ligands can be used for setting the range of stability constants of humic complexes with Cu(II and Pb(II.

  10. Humic derivatives as promising hormone-like materials

    Science.gov (United States)

    Koroleva, R. P.; Khudaibergenova, E. M.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The aim of this research is to prepare novel bio-inoculants derived from coal humic substances (HS) using bio-solubilization technique. This approach can be considered to some extent as model for supply plants with available nutrients throw the mineralisation of organic matter in soils by bacteria and fungi. Screening for the stable and active microorganisms' strains possessing ability to degrade humic substances was performed. The following subjects were examined using different isolation methods: natural microbial population from city soil, wood rot of Ulmis Pamila and biohumus of vermiculture of Eisenia foetida. Approaches for monitoring the humics-solubilizing fungi growth under liquid surface conditions in the presence of HS, proper conditions of bio-solubilization technique were elaborated. Coal humic acids (HA) from oxidized brown coal (Kyrgyz deposits) were isolated and added to a Czapek nutrient broth which was used either in full strength or without nitrogen source. The individual flasks were inoculated with natural microbial populations of corresponding cultivated soil, biohumus and wood rot samples for 12 months. Evaluation of phyto-hormonal activity of the produced HS and their derivatives in respect to higher plants with auxine and gibberellic tests was performed. To characterize structure of the biopreparations obtained, an experimental approach was undertaken that implies application of different complementary techniques for the structural analysis of biopreparations. As those were used: elemental and functional analysis, FTIR and 1H, 13C NMR spectroscopy and size-exclusion chromatography. According to the elemental composition of HS recovered from microbial cultures, a decrease in carbon and a significant increase of nitrogen in HS reisolated from the full strength broth inoculated with wood-decay microorganisms has been found. If biohumus microorganisms were used as inoculum, only minor changes were detected in the elemental composition of HS. A

  11. Thermodynamic aspects of nickel humic acid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, P.; Hall, A.; King, S.J.; Zhu, J. [Loughborough Univ. (United Kingdom); Van der Lee, J. [Ecole des Mines de Paris, Centre d`Inforamtique Geologique, Fontainebleu (France)

    1998-12-31

    NiHA stability constants ({beta} values) have been derived at different temperatures from the amounts of nickel (Ni{sup 2+}) and nickel humate (NiHA), determined to be present, in equilibrated nickel humic acid mixtures at 4 C, 20 C, 40 C, 60 C and 80 C. The constants were deduced using (i) a simple Scatchard plot, (ii) a metal-humic acid charge neutralisation model and (iii) an electrostatic/discrete site complexation model as implemented in the CHESS geochemical speciation code. The derived values depended on whether bulk solution (Scatchard and Charge Neutralisation Approaches) or humic surface metal concentrations (Electrostatic Approach) were employed in the calculations. The Scatchard and Charge Neutralisation approaches were found to be mathematically equivalent. The differently derived constants and their temperature dependencies have been used to calculate corresponding thermodynamic {Delta}H, {Delta}G and {Delta}S values. The values obtained are compared and features of thermodynamic significance discussed. (orig.)

  12. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    Science.gov (United States)

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  13. Metalion-humic acid nanoparticle interactions

    DEFF Research Database (Denmark)

    Town, Raewyn M.; van Leeuwen, Herman P.

    2016-01-01

    Purely Donnan type models for electrostatic binding by humic acid (HA) nanoparticles are shown to be physically incomplete. To describe the extent of ion binding by HA, such models need to invoke parameters that are not consistent with experimental observations. These disparate parameters include...... binding by humic acid nanoparticles. The extent of Ca2+-HA association can be adequately described solely in terms of electrostatics only, including counterion condensation in the intraparticulate double layer in addition to Donnan partitioning in the remainder of the particle body. The binding of Cd...

  14. Phosphorus in chronosequence of burnt sugar cane in Brazilian cerrado: humic acid analysis by {sup 31}P NMR; Fosforo em cronossequencia de cana-de-acucar queimada no cerrado goiano: analise de acidos humicos por RMN de {sup 31}P

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Celeste Q.; Pereira, Marcos G.; Garcia, Andreas C., E-mail: mgervasiopereira@gmail.com [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Dept. de Solos; Perin, Adriano; Gazolla, Paulo R. [Instituto Federal de Educacao, Ciencia e Tecnologia Goiano, Rio Verde, GO (Brazil); Gonzalez, Antonio P. [Universidade de Coruna, ES (Spain). Faculdad de Ciencias

    2013-10-01

    The aim of this study was to identify, with the use of {sup 31}P NMR spectroscopy, organic P species in humic acids (HA) in samples from Oxisol cultivated in chronosequence with sugar cane, pasture and Cerrado. The main forms of P-type found were orthophosphate, monoester-P (phosphate sugars) and P-diester (orthophosphate). The {sup 31}P NMR technique proved capable of identifying changes in the areas studied as a function of sugar cane burning time. In areas with 1 and 5 years of burnt cane, a decrease in recalcitrant organic P in humic acids indicated the need for use of P-humic substances for plant nutrition (author)

  15. Increase resolution of {sup 13}C NMR spectra of humic acids in solution by previous treatment with 0,03 mol L{sup -1} KCl; Aumento da resolucao de espectros de RMN {sup 13}C de acidos humicos em solucao atraves do tratamento previo com KCl 0,03 mol L{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Canellas, Luciano Pasqualoto; Guridi, Fernando; Santos, Gabriel de A. [Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Solos; Rumjanek, Victor Marcos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense, Campos, RJ (Brazil). Setor de Quimica dos Produtos Naturais

    2001-02-01

    High levels of Fe and Mn present in some soils and compost organic matter decrease the resolution of {sup 13} C NMR spectra of humic substances. Addition of K Cl up to a concentration of 0,03 mol L{sub -}{sup 1} to humic substances extracts followed by centrifugation is an efficient method of eliminating clays and minerals containing high levels of paramagnetic metals such as Fe and Mn thus increasing the resolution of {sup 13} C NMR spectra. (author)

  16. Chemical and spectroscopic characteristics of humic acids

    NARCIS (Netherlands)

    Ferreira, F.; Vidal-Torrado, P.; Otero, X.L.; Buurman, P.

    2013-01-01

    To characterise soil humic acids (HAs) extracted from Spanish marshes formed under different vegetation types (Spartina maritima (GSp), Juncus maritimus (GJc), Phragmites australis (GPh), and Scirpus maritimus (VSc)), soil depths (0-20, 20-40 and 40-60 cm), physiographic position (low and high marsh

  17. Modelling of Rare Earth Elements Complexation With Humic Acid

    Science.gov (United States)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  18. Microbial growth under humic-free conditions in a supraglacial stream system on the Cotton Glacier, Antarctica

    Science.gov (United States)

    Foreman, Christine M.; Cory, Rose M.; Morris, Cindy E.; SanClements, Michael D.; Smith, Heidi J.; Lisle, John T.; Miller, Penney L.; Chin, Yu-Ping; McKnight, Diane M.

    2013-09-01

    During the austral summers of 2004 and 2009, we sampled a supraglacial stream on the Cotton Glacier, Antarctica. The stream dissolved organic matter (DOM) was low (44-48 μM C) and lacked detectable humic fluorescence signatures. Analysis of the excitation emissions matrices (EEMs) indicated that amino-acid fluorophores dominated, consistent with DOM of microbial origin, with little humic-like fluorescence. In most aquatic ecosystems, humic DOM attenuates harmful UV radiation and its absence may represent an additional stressor influencing the microbial community. Nonetheless, the stream contained an active microbial assemblage with bacterial cell abundances from 2.94 × 104 to 4.97 × 105 cells ml-1, and bacterial production ranging from 58.8 to 293.2 ng C l-1 d-1. Chlorophyll-a concentrations ranged from 0.3 to 0.53 μg l-1 indicating that algal phototrophs were the probable source of the DOM. Microbial isolates produced a rainbow of pigment colors, suggesting adaptation to stress, and were similar to those from other cryogenic systems (Proteobacteria and Bacteroidetes lineages). Supraglacial streams provide an example of contemporary microbial processes on the glacier surface and a natural laboratory for studying microbial adaptation to the absence of humics.

  19. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  20. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles.

  1. Using humic acid for remediation of sandy soils contaminated by heavy metal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper presents the development of a new remediation technology for contaminated sandy soil using humic acid (HA). Distribution of amount of Cr (VI) in the aqueous or solid system containing humic acid and sandy soil, was studied using batch experiments, es-pecially for effects of reaction time, pH, concentrations, temperature and irradiation on the reduction of Cr (VI), and the optimum reaction conditions. The results indicated a significant increase of the adsorption of Cr (VI) because of the complexion reaction between HA and Cr (VI) that occurred under acidic condition. The reaction mechanisms of HA with chromium on sand surfaces were certified. Thus it came to a conclusion that HA could be used effectively on remediation of Cr (VI)-contaminated soil and groundwater in a wide range of pH, with or without sunlight. These results suggest that the organic-inorganic complex-such as sandy soils coated with humic substances-is important as a metal reservoir in the environment.

  2. Conductivity-Dependent Flow Field-Flow Fractionation of Fulvic and Humic Acid Aggregates

    Directory of Open Access Journals (Sweden)

    Martha J. M. Wells

    2015-09-01

    Full Text Available Fulvic (FAs and humic acids (HAs are chemically fascinating. In water, they have a strong propensity to aggregate, but this research reveals that tendency is regulated by ionic strength. In the environment, conductivity extremes occur naturally—freshwater to seawater—warranting consideration at low and high values. The flow field flow fractionation (flow FFF of FAs and HAs is observed to be concentration dependent in low ionic strength solutions whereas the corresponding flow FFF fractograms in high ionic strength solutions are concentration independent. Dynamic light scattering (DLS also reveals insight into the conductivity-dependent behavior of humic substances (HSs. Four particle size ranges for FAs and humic acid aggregates are examined: (1 <10 nm; (2 10 nm–6 µm; (3 6–100 µm; and (4 >100 µm. Representative components of the different size ranges are observed to dynamically coexist in solution. The character of the various aggregates observed—such as random-extended-coiled macromolecules, hydrogels, supramolecular, and micellar—as influenced by electrolytic conductivity, is discussed. The disaggregation/aggregation of HSs is proposed to be a dynamic equilibrium process for which the rate of aggregate formation is controlled by the electrolytic conductivity of the solution.

  3. Precipitation of humic acid with divalent ions

    DEFF Research Database (Denmark)

    Andersen, Niels Peder Raj; Mikkelsen, Lene Haugaard; Keiding, Kristian

    2001-01-01

    HA concentration. With respect to region III, it is not exclusively determined whether precipitation is caused by HA behaving as a polyelectrolyte or possessing colloidal properties. The general observation throughout is that HA appears to behave as a polyelectrolyte at low concentrations......The aim of this study is to investigate precipitation proper-ties of humic acid (HA). This is done by studying a commercial available humic acid salt (HA) from which a phase diagram is established by adding various amounts of BaCl2 to different concentrations of HA at pH 5.5. The phase diagram...... shows tree characteristic regions with markedly different precipitation courses: region I at HA concentration below 0.15g/l, region H at HA concentration between 0.15 and similar to2g/l and rgeion IV at HA concentration above 3.5g/l. Furthermore, a forth intermediate region M is observed between similar...

  4. Effects of standard humic materials on relative bioavailability of NDL-PCBs in juvenile swine.

    Directory of Open Access Journals (Sweden)

    Matthieu Delannoy

    Full Text Available Young children with their hand-to-mouth activity may be exposed to contaminated soils. However few studies assessing exposure of organic compounds sequestrated in soil were realized. The present study explores the impact of different organic matters on retention of NDL-PCBs during digestive processes using commercial humic substances in a close digestive model of children: the piglet. Six artificial soils were used. One standard soil, devoid of organic matter, and five amended versions of this standard soil with either fulvic acid, humic acid, Sphagnum peat, activated carbon or a mix of Sphagnum peat and activated carbon (95∶5 (SPAC were prepared. In order to compare the different treatments, we use spiked oil and negative control animals. Forty male piglets were randomly distributed in 7 contaminated and one control groups (n = 5 for each group. During 10 days, the piglets were fed artificial soil or a corn oil spiked with 19,200 ng of Aroclor 1254 per g of dry matter (6,000 ng.g⁻¹ of NDL-PCBs to achieve an exposure dose of 1,200 ng NDL-PCBs.Kg⁻¹ of body weight per day. NDL-PCBs in adipose tissue were analyzed by GC-MS. Fulvic acid reduced slightly the bioavailability of NDL-PCBs compared to oil. Humic acid and Sphagnum peat reduced it significantly higher whereas activated carbon reduced the most. Piglets exposed to soil containing both activated carbon and Shagnum peat exhibited a lower reduction than soil with only activated carbon. Therefore, treatment groups are ordered by decreasing value of relative bioavailability as following: oil ≥ fulvic acid>Sphagnum peat ≥ Sphagnum peat and activated carbon ≥ Humic acid>>activated carbon. This suggests competition between Sphagnum peat and activated carbon. The present study highlights that quality of organic matter does have a significant effect on bioavailability of sequestrated organic compounds.

  5. Biochemical degradation of soil humic acids and fungal melanins

    Energy Technology Data Exchange (ETDEWEB)

    Zavgorodnyaya, Y.A.; Demin, V.V.; Kurakov, A.V. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Dept. of Soil Science

    2002-07-01

    Studies were conducted to compare properties and biodegradation of fungal melanins from Aspergillus niger and Cladosporium cladosporiodes with those of humic acids from soils and brown coal. Compared to the humic acids the fungal melanins contained more functional groups, were less hydrophilic and had relatively high molecular weights. Under the conditions of incubation the melanins were found to be more readily degradable than the humic acids studied. The changes in elemental composition, optical parameters and the decrease of molecular weight, observed for both fungal melanins during degradation, made them more similar to soil humic acids.

  6. Reactivity of partially reduced arylhydroxylamine and nitrosoarene metabolites of 2,4,6-trinitrotoluene (TNT) toward biomass and humic acids.

    Science.gov (United States)

    Ahmad, Farrukh; Hughes, Joseph B

    2002-10-15

    Sequential anaerobic/aerobic treatment of 2,4,6-trinitrotoluene (TNT) generally results in the incorporation of residues into biomass and natural organic matter fractions of a system. To better understand the potential contribution of hydroxylamine and nitroso moieties in these reactions, studies were conducted using model systems taking advantage of the biocatalytic-activity of Clostridium acetobutylicum that does not produce aminated TNT derivatives. To evaluate binding to biomass only, systems containing cell-free extracts of C. acetobutylicum and molecular hydrogen as a reductant were employed. At the end of treatment, mass balance studies showed that 10% of the total 14C was associated with an insoluble protein-containing precipitate that could not be extracted with organic solvents. Model reactions were conducted between a mixture of 2,4-dihydroxylamino-6-nitrotoluene (DHA6NT) and 4-hydroxylamino-2,6-dinitrotoluene (4HADNT) and 1-thioglycerol to test the involvement of the nitroso-thiol reaction in binding to biomass. It was demonstrated that DHA6NT formed a new and relatively polar product with 1-thioglycerol only in the presence of oxygen. The oxygen requirement confirmed that the nitroso functionality was responsible for the binding reaction. The reactivity of arylhydroxylamino and nitrosoarene functionalities toward International Humic Substance Society (IHSS) peat humic acid was evaluated under anaerobic and aerobic conditions, respectively. 4HADNT showed no appreciable reactivity toward peat humic acid. Conversely, the nitrosoarene compound, nitrosobenzene, showed rapid reactivity with peat humic acid (50% removal in 48 h). When tested with two other humic acids (selected on the basis of their protein content), it became apparent that the proteinaceous fraction was responsible at least in part for the nitrosoarene's removal from solution. Furthermore, the pretreatment of the humic acids with a selective thiol derivatizing agent had a considerable effect

  7. Aquatic Therapy for Children

    Science.gov (United States)

    Kucher, Greta; Moore, Kelsey; Rodia, Rachel; Moser, Christy Szczech

    2015-01-01

    Aquatic therapy has long been highlighted in the literature as a potentially powerful therapeutic intervention. This review will highlight basic definitions of aquatic therapy, review salient research, and identify specific diagnoses that may benefit from aquatic therapy. Online resources, blogs, and books that occupational therapists may find…

  8. Acute Toxicity of Double-Walled Carbon Nanotubes to Three Aquatic Organisms

    Directory of Open Access Journals (Sweden)

    Lungile P. Lukhele

    2015-01-01

    Full Text Available This study investigated the toxicity of double walled carbon nanotubes (DWCNTs to three aquatic organisms, namely, Pseudokirchneriella subcapitata, Daphnia pulex, and Poecilia reticulata under the influence of exposure media properties specifically the ionic strength and organic matter represented by humic acid. Results indicated that ionic strength enhanced DWCNTs agglomeration whilst humic acid stabilized the CNTs and in turn inhibited the formation of aggregates. LC50s for D. pulex were higher at 2.81 and 4.45 mg/L for pristine and oxidised DWCNTs, respectively; however, P. reticulata had lower values of 113.64 mg/L and 214.0 mg/L for the same CNTs correspondingly. P. subcapitata had EC50s of 17.95 mg/L and 10.93 mg/L for the pristine and oxidised DWCNTs, respectively. In the presence of humic acid high DWCNTs acute toxicity towards D. pulex and P. reticulata was observed but ionic strength led to opposite effect irrespective of DWCNTs form. Both humic acid and ionic strength shielded the P. subcapitata from toxic effects of DWCNTs. Overall, our findings suggest that the toxicity of DWCNTs in the aquatic systems (i will be dependent on media properties and (ii is likely to proceed at different rates to organisms at different trophic levels.

  9. DEVELOPMENT OF HUMICS-BASED DETOXICANTS OF COMPLEX EFFECT

    Directory of Open Access Journals (Sweden)

    S.P Li.

    2012-06-01

    Full Text Available This research demonstrated development and properties of detoxicants of integrated effect based on humic derivatives. Set of samples of humic-based derivatives including carbonylated, hydrophobizated, oxygenated, cryodestructed and biosolubilized have been synthesized. It has been demonstrated that all the produced detoxicants possessed plant growth promoting activity and detoxifying potential in relation to heavy metals.

  10. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    Humic and fulvic acids isolated from a few sediment samples from Arabian Sea and Bay of Bengal were analysed for total hydrolysable amino acids concentration and their composition. The amono acids content of fulvic acids was higher than in the humic...

  11. Substance use

    Science.gov (United States)

    Substance abuse; Illicit drug abuse; Narcotic abuse; Hallucinogen abuse ... Arlington, VA: American Psychiatric Publishing. 2013. Weiss RD. Drugs of abuse. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  12. Removal of Humic Acid from Groundwater by Electrocoagulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With this study, we investigated an approach of applying an electrocoagulation method for the removal of humic acid from groundwater.Aluminium electrodes were selected in the experiment.Some major experimental factors, such as electrode distance, current densities and pH values were explored.Results suggest that, given a small electrode interval and/or a high current density, a lower pH value leads to an improved removal rate of humic acid.Under acid conditions with a current density 47.6 A/m2, for instance, humic acid concentrations were reduced from 20 mg/L to 0.43 mg/L which resulted in the removal of 97.8% of the humic acid.This encouraging result demonstrated that our electrocoagulation method is effective in the removal of humic acid from groundwater.

  13. Sampling Odor Substances by Mist-Cyclone System

    Science.gov (United States)

    Matsubara, Osamu; Jiang, Zhiheng; Toyama, Shigeki

    2009-05-01

    Many techniques have been developed to measure odor substances. However most of those methods are based on using aquatic solutions(1),(2). Many odor substances specifically at low density situation, are difficult to dissolve into water. To absorb odor substances and obtain highest concentration solutions are key problems for olfactory systems. By blowing odor substances contained air mixture through mist of water and then separating the liquid from two-phases fluid with a cyclone unit a high concentration solution was obtained.

  14. The impact of humic and fulvic acids on the dynamic properties of liposome membranes: the ESR method.

    Science.gov (United States)

    Man, Dariusz; Pisarek, Izabella; Braczkowski, Michał; Pytel, Barbara; Olchawa, Ryszard

    2014-06-01

    This paper presents the results of research on the influence of two fractions of humic substances (HS): fulvic acids (FA) and humic acids (HA), as a function of concentration, on the liposome membranes formed from egg yolk lecithin (EYL). The concentration of HS in relation to EYL changed from 0% to 10% by weight. The influence of HS on various areas of membranes: interphase water-lipid, in the lipid layer just below the polar part of the membrane and in the middle of the lipid bilayer, was investigated by different spin labels (TEMPO, DOXYL 5, DOXYL 16). The study showed that HA slightly decreased the fluidity of the analyzed membranes on the surface layer, while FA significantly liquidated the center of the lipid bilayer. The strong effect of both fractions of HS on the concentration of free radicals as a function of time was also described.

  15. Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting.

    Science.gov (United States)

    Xi, Beidou; Zhao, Xinyu; He, Xiaosong; Huang, Caihong; Tan, Wenbing; Gao, Rutai; Zhang, Hui; Li, Dan

    2016-11-01

    Humic-reducing microorganisms (HRMs) could utilize humic substances (HS) as terminal electron mediator to promote the biodegradation of recalcitrant pollutants. However, the dynamics of HRMs during composting has not been explored. Here, high throughput sequencing technology was applied to investigate the patterns of HRMs during three composting systems. A total of 30 main genera of HRMs were identified in three composts, with Proteobacteria being the largest phylum. HRMs were detected with increased diversity and abundance and distinct patterns during composting, which were significantly associated with dissolved organic carbon, dissolved organic nitrogen and germination index. Regulating key physical-chemical parameters is a process control of HRMs community composition, thus promoting the redox capability of the compost. The redox capability of HRMs were strengthened during composting, suggesting that HRMs of the compost may play an important role on pollutant degradation of the compost or when they are applied to the contaminated soils.

  16. The relationship between dissolved humic acids and soluble iron in estuaries

    Science.gov (United States)

    Fox, L. E.

    1984-01-01

    Dissolved humic acid and soluble iron appear to be chemically unassociated in estuaries despite their coincident removal. This conclusion is supported by differences in the aggregation kinetics of soluble iron and dissolved humic acid, the inability of extracted humic acid to stabilize laboratory preparations of ferric hydroxide, and decreasing ratios of humic acid carbon to soluble iron along the axes of some estuaries.

  17. Toxicities of selected substances to freshwater biota

    Energy Technology Data Exchange (ETDEWEB)

    Hohreiter, D.W.

    1980-05-01

    The amount of data available concerning the toxicity of various substances to freshwater biota is so large that it is difficult to use in a practical situation, such as environmental impact assessment. In this document, summary tables are presented showing acute and/or chronic toxicity of selected substances for various groups of aquatic biota. Each entry is referenced to its original source so that details concerning experimental conditions may be consulted. In addition, general information concerning factors modifying toxicity, synergisms, evidence of bioaccumulation, and water quality standards and criteria for the selected substances is given. The final table is a general toxicity table designed to provide an easily accessible and general indication of toxicity of selected substances in aquatic systems.

  18. Bioactive substances

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.

    Chemistry related to certain bioactive molecules, from Indian Ocean Region, developed into drugs or which served as models for the synthesis of more effective bioactive substances or in use in fundamental studies of physiological and biochemical...

  19. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  20. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    Science.gov (United States)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    Applicability of humic compound (HC) "Extra" (potassium humate produced from coal) was studied to remediate soils contaminated with copper in model experiments. Field experiments were carried out in 10-litter plastic containers. The upper layer was prepared as a mixture of loam (pH=5.3), sand (pH=7.4) and peat(pH=5.5). It was underlain consequently by loam and gravel. To study water migration we installed lysimeters. The experiment was conducted in 3 variants: 1) control, 2) control+Cu, 3) control+Cu+HC. Copper was applied in the form of dry powder (CuSO4*5H2O) over the upper layer of the soil column in a concentration of copper equaling to 1000 mg/kg. Total concentration of copper was determined by ICP AAS, its free ions was measured with the help of ion-selective electrode. Humic compound was sprayed on the surface in liquid form. The vessels stayed outdoors from July to October 2014 with additional watering in dry periods. Analysis of lysimetric waters obtained from this model field experiment revealed significant impact of pH. Application of the humic compound produces almost 5 times higher content of soluble organic substances than in the variant without it, and in the first portions of lysimetric waters the difference is 20-fold. Generation of extra organic content in soluble form was accompanied by the 2-6 times increase of the water soluble copper yield. However the content of the free copper ions in lysimetric waters in case of addition of the potassium humate was negligible, because almost all copper was bounded with water-soluble organic substances. The copper content in water extract from the top layer of soil in the variant with HC was about 1 mg/l, that was 2 times higher than without HC. The content of water-soluble organic carbon in HC variant was 100 mg/L, and without HC was 10 times lower (10 mg/l). The water extract from soils enriched in HC was passed through a column filled with weakly basic anion exchange resin DEAE (Cl-form), the eluate was

  1. Tissue distribution of absorbed humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Tien-Shang Huang; Fung-Jou Lu; Chang-Wu Tsai [National Taiwan University, Taipei (Taiwan). Dept. of Medicine and Biochemistry

    1995-03-01

    Distribution of humic acids (HA) in rats was studied using radioiodinated HA injected intraperitoneally. Distribution of {sup 125}I was also studied for comparison. The distribution pattern of HA differed greatly from that of {sup 125}I. Except in the thyroid and skin, {sup 125}I was excreted from the body within 24 hours, whereas a large proportion of HA remained in the liver, kidney, skin, thyroid, bone and muscle. The difference in the distribution pattern and organ/serum radioactivity ratio suggests different kinetics for {sup 125}I and {sup 125}I-HA. The distribution pattern of HA correlated very well with the increased prevalences of organ diseases in the black foot disease endemic area, as reflected in epidemiologic studies. It is hypothesised that HA-metal complexes are possible etiological factors of diseases such as goitre, hepatoma, bladder cancer, vascular disease and diabetes mellitus, and that free radicals are the common causative factor. 34 refs., 4 tabs.

  2. STUDY ON ADSORPTION OF HUMIC AND PHYIC ACIDS USING RESINS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinnan; LI Aimin; ZHOU Youdong; YANG Zhou; LI Xu

    2008-01-01

    @@ 1. INTRODUCTION Humic acid (HA) and Phytic acid (PA) are present in environment as a result of the decomposition of plant biomass, they are the major components of natural dissolved organic matter (DOM) in natural systems[1].

  3. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    Science.gov (United States)

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  4. Rapid Extraction of Human DNA Containing Humic Acid

    OpenAIRE

    Sutlović, Davorka; Definis Gojanović, Marija; Anđelinović, Šimun

    2007-01-01

    The identification process of dead bodies or human remains is nowadays conducted in numerous fields of forensic science, archeology and other judicial cases. A particular problem is the isolation and DNA typing of human remains found in mass graves, due to the degradation process, as well as post mortal DNA contamination with bacteria, fungi, humic acids, metals, etc. In this study, the influence of humic acid (HA) on the DNA extraction and typing is investigated. If present in...

  5. Application of the Antibacterial Active Substance Produced by the Marine Antagonistic Bacteria in the Storage and Processing of Aquatic Products%海洋抗菌活性物质在水产品加工储藏中的应用

    Institute of Scientific and Technical Information of China (English)

    王静; 刘玉敏; 鞠玲燕; 宋晓华; 崔凤杰

    2013-01-01

    The antibacterial active substance produced by the marine antagonistic bacteria DX-10 were purified by the method of ethanol precipitation.The acute toxicity test , the test of micronucleus of polyehromatic erythrocytphilie of mouse and mouse sperm abnormality test were performed to examine the toxicological safety properties of the antibacterial active substance.Inhibitory activities of the antibacterial active substance against Vibrio parahaemolyticus, Staphylococcus aureus and Salmonella enteritidis sprayed in the surface of cod fish fillet were tested by viable bacteria counts counts. The results showed that performed the oral LD 50 in mice was greater than 50 g/kg, and two terms of hereditary toxicity were all negative; the growth of Vibrio parahaemolyticus, Staphylococcus aureus and Salmonella enteritidis was significantly inhibited by the antibacterial active substance, and the inhibition was in a dose-dependent manner. The antibacterial active substance produced by the marine antagonistic bacteria was a kind of safe and non-toxic substance with good antimicrobial activity and could be developed as a new natural biological preservative applied in the storage and processing of aquatic products.%采用乙醇沉淀法纯化海洋源拮抗菌DX-10发酵液中的抗菌活性物质,通过急性毒理试验、小鼠骨髓嗜多染红细胞微核试验和小鼠精子畸变试验对该活性物质进行毒理学安全性评价;同时选取鳕鱼片通过表面喷洒的方式污染副溶血性弧菌、金黄色葡萄球菌和沙门氏菌,采用平板活菌计数法测定不同浓度抗菌活性物质对副溶血性弧菌、金黄色葡萄球菌、沙门氏菌的的抑菌效果。结果显示,小鼠急性经口LD50大于50 g/kg,小鼠骨髓嗜多染红细胞微核试验和小鼠精子畸形试验结果均为阴性;拮抗菌DX-10产抗菌活性物质对副溶血性弧菌、金黄色葡萄球菌、沙门氏菌的生长有抑制作用,其抑

  6. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    Science.gov (United States)

    Muller, François L L; Cuscov, Marco

    2017-02-28

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L2]/[Corg], where L2 was the second strongest copper-binding ligand, was 0.75 × 10(-4) when the reservoir residence time was 5 h but 0.34 × 10(-4) when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[Corg] = (0.80 ± 0.20) × 10(-2). Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  7. Spatial differentiated effect assessment for aquatic eutrophication in Life Cycle Assessment.

    NARCIS (Netherlands)

    Penailillo, Reinaldo

    2005-01-01

    The conventional evaluation of aquatic eutrophication in Life Cycle Assessment (LCA) expresses the contribution of nitrogen and/or phosphorus emissions to biomass production in terms of the equivalent emission of a reference substance. This assessment doe

  8. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid.

    Science.gov (United States)

    Wei, Zimin; Xi, Beidou; Zhao, Yue; Wang, Shiping; Liu, Hongliang; Jiang, Youhai

    2007-06-01

    Municipal solid waste (MSW) compost contains a significant amount of humic substances. In this study, the compost consisted of residual MSW with the metal, plastic and glass removed. In order to enhance degradation processes and the degree of composting humification, complex microorganisms (Bacillus casei, Lactobacillus buchneri and Candida rugopelliculosa) and ligno-cellulolytic (Trichoderma and White-rot fungi) microorganisms were respectively inoculated in the composting process. During the MSW composting, humic acid (HA) was extracted and purified. Elements (C, N, H, O) and spectroscopic characteristics of the HA were determined using elementary analyzer, UV, Fourier transform infrared (FTIR), and fluorescence spectroscopy. The elements analysis, UV, FTIR and fluorescence spectra all led to the same conclusion, that is inoculations with microbes led to a greater degree of aromatization of HA than in the control process (CK) with no inoculation microbes. This indicated that inoculation with microbes in composting would improve the degree humification and maturation processes, in the following order: lingo-cellulolytic>complex microorganisms>CK. And mixed inoculation of MSW with complex microorganisms and lingo-cellulolytic during composting gave a greater degree of HA aromatization than inoculation with complex microorganisms or lingo-cellulolytic alone. But comparing with the HA of soil, the HA of MSW compost revealed a lower degree of aromatization.

  9. Label Distribution in Tissues of Wheat Seedlings Cultivated with Tritium-Labeled Leonardite Humic Acid

    Science.gov (United States)

    Kulikova, Natalia A.; Abroskin, Dmitry P.; Badun, Gennady A.; Chernysheva, Maria G.; Korobkov, Viktor I.; Beer, Anton S.; Tsvetkova, Eugenia A.; Senik, Svetlana V.; Klein, Olga I.; Perminova, Irina V.

    2016-06-01

    Humic substances (HS) play important roles in the biotic-abiotic interactions of the root plant and soil contributing to plant adaptation to external environments. However, their mode of action on plants remains largely unknown. In this study the HS distribution in tissues of wheat seedlings was examined using tritium-labeled humic acid (HA) derived from leonardite (a variety of lignites) and microautoradiography (MAR). Preferential accumulation of labeled products from tritiated HA was found in the roots as compared to the shoots, and endodermis was shown to be the major control point for radial transport of label into vascular system of plant. Tritium was also found in the stele and xylem tissues indicating that labeled products from tritiated HA could be transported to shoot tissues via the transpiration stream. Treatment with HA lead to an increase in the content of polar lipids of photosynthetic membranes. The observed accumulation of labeled HA products in root endodermis and positive impact on lipid synthesis are consistent with prior reported observations on physiological effects of HS on plants such as enhanced growth and development of lateral roots and improvement/repairs of the photosynthetic status of plants under stress conditions.

  10. EFFECT OF HUMIC COMPOUNDS ON BACTERIAL GROWTH IN BIOREMEDIATION OF PAHS

    Directory of Open Access Journals (Sweden)

    R. Rezaei Kalantary, A. Badkoubi

    2006-01-01

    Full Text Available Polycyclic Aromatic Hydrocarbons (PAHs which are introduced into environment are potentially carcinogenic, mutagenic and toxic contaminants. The effect of extractable humic substances (EHS on bacterial density in bioremediation of anthracene in liquid systems was investigated. The ratio of EHS to anthracene were in two concentrations of 0.35 and 1.05 g dry EHS (with 30% organic matter per one mg anthracene. In the tests with EHS, an increase in bacterial density even by 8 fold of magnitude was seen in 12-15 days. Then a fast decrease was occurred and prolonged till the end of the test time for the tests that had EHS without anthracene. In the tests which anthracene was the only substrate increasing in bacterial population was not seen. The results showed that up to 21 days the system was free from degradation. So the first increasing in bacterial population showed that EHS might be used as a readily substrate for PAH degraders. The presence of EHS (fulvic and humic acid can stimulate bacterial community and activity that caused enhancement in anthracene bioremediation.

  11. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration

    Science.gov (United States)

    Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C.

    2002-05-01

    Different chemical and spectroscopic techniques—diffuse reflectance infrared Fourier transform (DRIFT), surface-enhanced Raman spectroscopy (SERS), and 1H, 13C nuclear magnetic resonance (NMR) have been applied to investigate a peat humic acid (HA) separated by tangential ultrafiltration into different nominal molecular weight (NMW) fractions. Each fraction analyzed showed a characteristic DRIFT and NMR pattern. High nominal molecular weight fractions were mainly characterized by long chains of methyl and methylene groups and poorly substituted aromatic rings, while in low nominal molecular weight fractions (L-NMW), phenolic and oxygen-containing groups were predominant. A comparative study on fractions before and after treatment with 0.5 M HCl was carried out. Purified fractions showed either an increase in the carboxylate and phenolic OH groups or an improvement in signal-to-noise ratio of their NMR spectra. The SERS study of NMW fractions allowed significative information on structure and conformation of these fractions. In particular, L-NMW fractions showed a great structural modification, when different alkaline extractants or treatment with HCl were used. Humic-like substances obtained by catechol and gallic acid polymerization on metal surface were investigated using SERS. The SERS spectra of these polymers were compared and discussed with those of NMW HA fractions.

  12. Gladiolus development in response to bulb treatment with different concentrations of humic acids

    Directory of Open Access Journals (Sweden)

    Marihus Altoé Baldotto

    2013-02-01

    Full Text Available Gladiolus is an ornamental species produced for cut flowers and propagated by corms. The early flowering and increase in the number of flower buds, besides the production of commercial corms are constant challenges to be addressed in the crop improvement. Commercial production of ornamentals is technologically accelerated by means of growth regulators. Among them, the auxins stand out for their key role in the adventitious rooting and cell elongation. Alternatively, the humic substances present in the organic matter also have biostimulating effect, which is very similar to the auxinic effect. Therefore, this work aimed to study the growth and development of gladiolus in response to application of different concentrations of humic acids (HA isolated from vermicompost. Corms were soaked for 24 hours in solutions containing 0, 10, 20, 30 and 40 mmol L-1 of C from HA. The corms were planted in 10-dm³ plastic bags filled with substrate and kept in a greenhouse. Growth of shoots and roots was evaluated. The results showed that the use of HA accelerates growth, and anticipates and increases flowering of Gladiolus.

  13. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    Science.gov (United States)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  14. Species analysis of organotin compounds to investigate their pathway in the aquatic environment; Speziesanalytik von zinnorganischen Verbindungen zur Aufklaerung ihrer Biopfade in der aquatischen Umwelt

    Energy Technology Data Exchange (ETDEWEB)

    Kuballa, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1997-12-31

    In this thesis the sorption, transport and accumulation behaviour of organotin compounds in the aquatic environment was investigated in order to assess and evaluate the toxic potential. In situ derivatization with sodiumthetraethylborate and extraction with hexane were employed to isolate the tin species from the matrices. Separation and quantification were performed using on-line gas chromatorgraphy coupled with atomic absorption spectrometry. The main conclusion of this work is that organotin compounds show a characteristic bioaccumulation behaviour, which is influenced by the solubility of the species in combination with lipophily and sorption on particles, humic substances and biofilms. (orig.) [Deutsch] In der vorliegenden Arbeit wurden das Sorptions-, Transport- und Akkumulationsverhalten von Organozinnverbindungen in der aquatischen Umwelt untersucht mit dem Ziel einer Abschaetzung und Bewertung des oekologischen Schaedigungspotentials. Die Isolierung der Zinnspezies aus den Matrizes gelang mit der In-Situ-Derivatisierung mit Natriumtetraethylborat und Extraktion mit Hexan. Die Trennung und Quantifizierung erfolgte mittels Gaschromatographie on-line gekoppelt mit Atomabsorptionsspektrometrie. Die wichtigste Aussage dieser Arbeit ist, dass zinnorganische Verbindungen ein charakteristisches Bioakkumulationsverhalten aufweisen, das wesentlich von der Wasserloeslichkeit der Spezies in Verbindung mit der Lipophilie und der Bindung an Partikel, Huminstoffe und Biofilme beeinflusst wird. (orig.)

  15. Criterions preparation and characterization of earthworm-composts in view of animal waste recycling: Part II. A synergistic utilization of EPR and {sup 1}H NMR spectroscopies on the characterization of humic acids from vermi composts

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Elisete [Centro Federal de Educacao Tecnologica, Pato Branco, PR (Brazil); Mangrich, Antonio S.; Machado, Vanderlei G. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: mangrich@quimica.ufpr.br; Traghetta, Dinis G.; Lobo, Maria A. [Centro Universitario Positivo, Curitiba, PR (Brazil)

    2001-12-01

    Humic acids (HA) extracted from sheep (SHHA), cow (COHA), goat (GOHA) and rabbit (RAHA) vermi composted manure were analyzed by electron paramagnetic resonance and hydrogen nuclear magnetic resonance spectroscopies. Carboxylic acids, amine, amide, ester, ether and phenol functions bonded to saturated aliphatic, unsaturated aliphatic conjugated double and single bonds, and aromatic chains constitute the backbone structure of these fresh humic substances (H S). Mn {sup 2+} outer sphere complexes (SHHA, COHA), Fe{sup 3+} axial (COHA, RAHA) or rhombic (SHAHA, COHA, GOHA, RAHA) complexes and Cu{sup 2+} as weak field (COHA, GOHA, RAHA) and strong field (SHAHA, COHA, GOHA, RAHA) complexes were characterized. (author)

  16. Shared Substance

    DEFF Research Database (Denmark)

    Gjerlufsen, Tony; Klokmose, Clemens Nylandsted; Eagan, James

    2011-01-01

    This paper presents a novel middleware for developing flexible interactive multi-surface applications. Using a scenario-based approach, we identify the requirements for this type of applications. We then introduce Substance, a data- oriented framework that decouples functionality from data, and S...

  17. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons.

    Science.gov (United States)

    Klauson, Deniss; Budarnaja, Olga; Beltran, Ignacio Castellanos; Krichevskaya, Marina; Preis, Sergei

    2014-01-01

    Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting.

  18. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  19. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  20. Respiration in Aquatic Insects.

    Science.gov (United States)

    MacFarland, John

    1985-01-01

    This article: (1) explains the respiratory patterns of several freshwater insects; (2) describes the differences and mechanisms of spiracular cutaneous, and gill respiration; and (3) discusses behavioral aspects of selected aquatic insects. (ML)

  1. Molecular ecology of aquatic microbes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  2. ZOONOSIS OF AQUATICAL ORGANISMS

    OpenAIRE

    2001-01-01

    Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and tra...

  3. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    block number) FIELD GROUP SUB-GROUP Allelopathy "Bioassay . Growth inhibition. Aquatic macrophytes. Biocontrol Lena minor 19. ABSTRACT (Continue on...Bibliography of Aquatic Plant Allelopathy ........ Al 2 ALLELOPATHIC AQUATIC PLANTS FOR AQUATIC PLANT MANAGEMENT; A FEASIBILITY STUDY Introduction Background 1...nutrients, water, and other biotic effects could have overriding effects that appear as competition or allelopathy . These biotic factors must be

  4. Chemical modeling of boron adsorption by humic materials using the constant capacitance model

    Science.gov (United States)

    The constant capacitance surface complexation model was used to describe B adsorption behavior on reference Aldrich humic acid, humic acids from various soil environments, and dissolved organic matter extracted from sewage effluents. The reactive surface functional groups on the humic materials wer...

  5. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    Science.gov (United States)

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  6. Psychotoxic Substances

    Science.gov (United States)

    1964-11-16

    began an in- tensive research for the clarification of the mechanism of the effect of psychotomimetic substances. In addition to the semi-synthetically...Dibenamine i.v. 200,000 ... 6oo,000 Ethyl ether p.o. 200,000 ... 400,000 Cocaine s.c. 80,000 ... 300,000 Mescaline p.o. 10,000 ... 20,000 Morphia s.c. 5,000...Autonomic functions Excitement, mood Pyramidal and extra- Meso-diencephalic changes: pyramidal effects: effects: Euphoria , depres- Ataxia, spastic

  7. GRAFTING OF HUMIC ACID ONTO COTTON CELLULOSE (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; ZHANG Dehe

    1988-01-01

    Cotton cellulose reacted with epichlorohydrin under the catalytic action of HClO4 and H2O to form 3-chloro-2-hydroxypropyl ether with a substitution degree of 0.61. The chlorine-containing product was treated with aliphatic diamines (ethylenediamine, propylenediamine, etc.) to produce nitrogen-containing cellulose which further reacted with humic acid to give black fiberous graft cellulose. This product contains 27-35%humic acid, 0.90 meq/g acidic groups, possesses 0.49 meq/g Cu2 +-complexing capacity and good mechanical strength, and can be used under pH12.

  8. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    Science.gov (United States)

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  9. Changes in redox properties of humic acids upon sorption to alumina

    Science.gov (United States)

    Subdiaga, Edisson; Orsetti, Silvia; Jindal, Sharmishta; Haderlein, Stefan B.

    2016-04-01

    properties upon sorption. Considering the total electron exchange capacities, significant changes were found mainly at higher amounts of sorbed PPHA and SRHA. 4. Conclusions Overall, our results suggest a change in the redox properties of sorbed HA but not for the dissolved fraction. The sorbed fraction showed a higher redox capacity than the stock samples. Given the absence of redox transfer between the HA and the redox inert aluminum oxide, such changes might be due to conformational changes in the humic substances. 5. References [1] Scott D., Mcknight, D., Blunt-Harris, E., Kolesar, S., Lovley, A. Environ. Sci. Technol. 1998, 32, 2984-2989. [2] Dunnivant, F. Schwarzenbach, R., Macalady, D. Environ. Sci. Technol. 1992, 26(11), 2133-2141. [3] Jiang, J. & Kappler, A. Environ. Sci. Technol. 2008, 42(10), 3562-3569. [4] Aeschbacher, M., Sander M., Schwarzenbach, R. Environ. Sci. Technol. 2010, 44(1), 87-93.

  10. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    Science.gov (United States)

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated.

  11. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.

    Science.gov (United States)

    Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R

    2005-11-18

    Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.

  12. Heterogeneous uptake of amines by citric acid and humic acid.

    Science.gov (United States)

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  13. Temperature Induced Aggregation and Clouding in Humic Acid Solutions

    Directory of Open Access Journals (Sweden)

    Leah Shaffer

    2015-01-01

    Full Text Available Humic acids in aqueous solution demonstrate inverse temperature-solubility relationships when solution conditions are manipulated to reduce coulombic repulsion among the humic polyanions. These effects were followed by dynamic light scattering (DLS measurements of the resulting aggregates, as well as the addition of a polarity sensitive fluorescent probe (pyrene. The humic solutions could be primed for temperature induced clouding by carefully lowering the pH to a point where hydration effects became dominant. The exact value of the cloud point (CP was a function of both pH and humate concentration. The CPs mostly lay in the range 50–90°C, but DLS showed that temperature induced aggregation proceeded from approximately 30°C onward. Similar effects could be achieved by adding multivalent cations at concentrations below those which cause spontaneous precipitation. The declouding of clouded humate solutions could be affected by lowering the temperature combined with mechanical agitation to disentangle the humic polymers.

  14. Dietary supplements for aquatic sports.

    Science.gov (United States)

    Derave, Wim; Tipton, Kevin D

    2014-08-01

    Many athletes use dietary supplements, with use more prevalent among those competing at the highest level. Supplements are often self-prescribed, and their use is likely to be based on an inadequate understanding of the issues at stake. Supplementation with essential micronutrients may be useful when a diagnosed deficiency cannot be promptly and effectively corrected with food-based dietary solutions. When used in high doses, some supplements may do more harm than good: Iron supplementation, for example, is potentially harmful. There is good evidence from laboratory studies and some evidence from field studies to support health or performance benefits from appropriate use of a few supplements. The available evidence from studies of aquatic sports is small and is often contradictory. Evidence from elite performers is almost entirely absent, but some athletes may benefit from informed use of creatine, caffeine, and buffering agents. Poor quality assurance in some parts of the dietary supplements industry raises concerns about the safety of some products. Some do not contain the active ingredients listed on the label, and some contain toxic substances, including prescription drugs, that can cause health problems. Some supplements contain compounds that will cause an athlete to fail a doping test. Supplement quality assurance programs can reduce, but not entirely eliminate, this risk.

  15. Aquatic Environment 2000

    DEFF Research Database (Denmark)

    Svendsen, L. M.; Bijl, L. van der; Boutrup, S.

    The report summarizes the results of the Danish Aquatic Monitoring and Assessment Programme 1998-2003. Danish Environmental Protection Agency 2000: NOVA-2003. Programbeskrivelse for det nationale program for overvågning af vandmiljøet 1998-2003. 397 pp. - Redegørelse fra Miljøstyrelsen nr. 1 (in...

  16. ZOONOSIS OF AQUATICAL ORGANISMS

    Directory of Open Access Journals (Sweden)

    Božidar Kurtović

    2001-12-01

    Full Text Available Aquatic organisms play a very important role in human nutrition. They also pose a real threat for human health by causing various diseases. Parasites, bacteria and viruses may either directly or indirectly be carried from aquatic organisms to humans. Disease outbreaks are influenced by many factors among which decreased immune response and feeding habits and higyene are most important. More frequent occuence of foodborne diseases has a number of reasons, including international travel and trade, microbial adaptation and changes in the food production system. Parasitic diseases occur most frequently as a result of human role in parasites life cycles. The prevalence is further increased by consuming raw fish and shellfish. The main feature of bacterial infections is facultative pathogenicity of most ethiological agents. In most cases disease occures as a result of decreased immunoreactivity. Several bacteria are, however, hightly pathogenic and capable of causing high morbidity and mortality in human. To date it has not been reported the case of human infection with viruses specific for aquatic organisms. Human infections are caused with human viruses and aquatic organisms play role only as vechicles. The greatest risk in that respect present shellfish. Fish and particularly shellfish are likely to cause food poisoning in humans. In most cases the cause are toxins of phithoplancton origins accumulating in shellfish and fish.

  17. Aquatic Equipment Information.

    Science.gov (United States)

    Sova, Ruth

    Equipment usually used in water exercise programs is designed for variety, intensity, and program necessity. This guide discusses aquatic equipment under the following headings: (1) equipment design; (2) equipment principles; (3) precautions and contraindications; (4) population contraindications; and (5) choosing equipment. Equipment is used…

  18. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    Directory of Open Access Journals (Sweden)

    Mónika Sándor

    2016-01-01

    Full Text Available A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS, using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES, added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA, through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES, trimethylethoxysilane (Me3ES, diethoxydimethylsilane (Me2DES and 1,2-bis(triethoxysilylethane (BETES onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  19. Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.

    Science.gov (United States)

    Kim, Gha-Young; Wang, Xiaofang; Ahn, Hosang; Son, Ahjeong

    2011-10-15

    NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (captured by the probe and signaling DNA.

  20. Introduced aquatic plants and algae

    Science.gov (United States)

    Non-native aquatic plants such as waterhyacinth and hydrilla severely impair the uses of aquatic resources including recreational faculties (lakes, reservoirs, rivers) as well as timely delivery of irrigation water for agriculture. Costs associated with impacts and management of all types of aquatic...

  1. Aquatic Plants and their Control.

    Science.gov (United States)

    Michigan State Dept. of Natural Resources, Lansing.

    Aquatic plants can be divided into two types: algae and macrophytes. The goal of aquatic plant management is to maintain a proper balance of plants within a lake and still retain the lake's recreational and economic importance. Aquatic plant management programs have two phases: long-term management (nutrient control), and short-term management…

  2. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    Science.gov (United States)

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated.

  3. Effects of pH on aquatic biodegradation processes

    Directory of Open Access Journals (Sweden)

    R. F. Krachler

    2009-01-01

    Full Text Available To date, little is known about the pH-stimulated mineralization of organic matter in aquatic environments. In this study, we investigated biodegradation processes in alkaline waters. Study site is a large shallow soda lake in Central Europe (Neusiedler See/Ferto. The decomposition rate of plant litter was measured as a function of pH by incubating air-saturated lake-water samples in contact with Phragmites litter (leaves from the littoral vegetation. All samples showed high decomposition rates (up to 32% mass loss within 35 days and a characteristic two-step degradation mechanism. During the degradation process, the solid plant litter was dissolved forming humic colloids. Subsequently, the humic colloids were mineralized to CO2 in the water column. The decomposition rate was linearly related to pH. Increasing pH values accelerated significantly the leaching of humic colloids as well as the final degradation process. The observed two-step mechanism controls the wetland/lake/air carbon fluxes, since large quantities of humic colloids are currently produced in the reed belt, exported through wind-driven circulations and incorporated into the open lake foodweb. At present, the lake is rapidly shrinking due to peat deposition in the littoral zone, whereas it has been resistant to silting-up processes for thousands of years. In order to investigate the cause of this abrupt change, the chemical composition of the lake-water was measured during 1995–2007. A thorough analysis of these data revealed that major lake-water discharges through the lake's artificial outlet channel led to a decline in salinity and alkalinity. According to our estimates, the lake's original salinity and alkalinity was 70–90% higher compared to the present conditions, with the consequence of substantially lower pH values in the present lake. The observed pH dependence of reed litter biodegradation rates points to a causal connection between low p

  4. Influence of Humic Acid on 1-Aminopyrene Ecotoxicity During Solar Photolysis Process

    Directory of Open Access Journals (Sweden)

    Huey-Min Hwang

    2002-11-01

    Full Text Available Abstract: 1-Aminopyrene (1-AP, a polycyclic aromatic hydrocarbons (PAH compound, is a major metabolite during biotransformation of 1-nitropyrene by microflora in natural environment and in the guts of animals and humans. Under UV-A irradiation, 1-AP has been shown to cause light-induced DNA single strand cleavage. Humic acids (HA in aquatic ecosystems can influence the bioavailability, toxicity, and fate of organic xenobiotics. Therefore, photochemical fate and effect of PAH in natural aquatic environment may differ significantly across sites. The objectives of this study are to assess the time course (TC; 18 and 90 minutes influence of HA (0, 20, and 60 ppm on microbial ecotoxicity of 1-AP (0 and 10 μM during solar photolysis process (PP. Microbial ecotoxicity of 1-AP during different time courses in the presence and absence of HA was measured with spread plate counting and microbial mineralization of 14C-D-glucose. The experimental results were analyzed as factorial arrangements of treatment in a complete randomized design using General Linear Model by SAS. LSMEANS was used to separate means or combination of means. Significant effect on glucose mineralization was found by the following treatment interactions 1-AP*TC, 1-AP*PP, TC*PP, HA*1-AP*TC, HA*1-AP*PP, and HA*1-AP*TC*PP. The treatment interaction HA*1-AP was the only one affecting spread plate counting. In the groups exposed to 1-AP (10 μM, microbial heterotrophic mineralization of 14C-D-glucose was significantly inhibited in the presence of HA in light and in darkness. Exposure to HA in light and darkness, however, did not necessarily inhibit bacterial viability at the HA concentration range assayed. Therefore, inhibition on microbial activity could have been caused by multiple factors, instead of toxicity of HA alone.

  5. Effect of cysteine and humic acids on bioavailability of Ag from Ag nanoparticles to a freshwater snail

    Science.gov (United States)

    Luoma, Samuel N.; Tasha Stoiber,; Croteau, Marie-Noele; Isabelle Romer,; Ruth Merrifeild,; Lead, Jamie

    2016-01-01

    Metal-based engineered nanoparticles (NPs) will undergo transformations that will affect their bioavailability, toxicity and ecological risk when released to the environment, including interactions with dissolved organic material. The purpose of this paper is to determine how interactions with two different types of organic material affect the bioavailability of silver nanoparticles (AgNPs). Silver uptake rates by the pond snail Lymnaea stagnalis were determined after exposure to 25 nmol l-1 of Ag as PVP AgNPs, PEG AgNPs or AgNO3, in the presence of either Suwannee River humic acid or cysteine, a high-affinity thiol-rich organic ligand. Total uptake rate of Ag from the two NPs was either increased or not strongly affected in the presence of 1 – 10 mg 1-1 humic acid. Humic substances contain relatively few strong ligands for Ag explaining their limited effects on Ag uptake rate. In contrast, Ag uptake rate was substantially reduced by cysteine. Three components of uptake from the AgNPs were quantified in the presence of cysteine using a biodynamic modeling approach: uptake of dissolved Ag released by the AgNPs, uptake of a polymer or large (>3kD) Ag-cysteine complex and uptake of the nanoparticle itself. Addition of 1:1 Ag:cysteine reduced concentrations of dissolved Ag, which contributed to, but did not fully explain the reductions in uptake. A bioavailable Ag-cysteine complex (> 3kD) appeared to be the dominant avenue of uptake from both PVP AgNPs and PEG AgNPs in the presence of cysteine. Quantifying the different avenues of uptake sets the stage for studies to assess toxicity unique to NPs.

  6. Biodegradation of RDX by Stimulating Humic Substance- and Fe(III) - Reduction

    Science.gov (United States)

    2007-06-19

    167. 57. Stevenson , F. J. 1982. Humus chemistry genesis, composition, reactions. Wiley Interscience, New York. 58. Stolz, J. F., D. R. Lovley, and...Sediments with Quinones and Humus as Terminal Electron Acceptors. Appl. Environ. Microbiol. 67:4471-4478. 10. Coates, J. D., D. J. Ellis, E. L

  7. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication

    NARCIS (Netherlands)

    Lurling, M.F.L.L.W.; Waaijenberg, G.W.A.M.; Oosterhout, J.F.X.

    2014-01-01

    The lanthanum (La) modified bentonite Phoslock® has been proposed as dephosphatisation technique aiming at removing Filterable Reactive Phosphorus (FRP) from the water and blocking the release of FRP from the sediment. In the modified clay La is expected the active ingredient. We conducted controlle

  8. Substance Identification Information from EPA's Substance Registry

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Substance Registry Services (SRS) is the authoritative resource for basic information about substances of interest to the U.S. EPA and its state and tribal...

  9. Measurement and computation of movement of bromide ions and carbofuran in ridged humic-sandy soil.

    Science.gov (United States)

    Leistra, Minze; Boesten, Jos J T I

    2010-07-01

    Water flow and pesticide transport in the soil of fields with ridges and furrows may be more complex than in the soil of more level fields. Prior to crop emergence, the tracer bromide ion and the insecticide carbofuran were sprayed on the humic-sandy soil of a potato field with ridges and furrows. Rainfall was supplemented by sprinkler irrigation. The distribution of the substances in the soil profile of the ridges and furrows was measured on three dates in the potato growing season. Separate ridge and furrow systems were simulated by using the pesticide emission assessment at regional and local scales (PEARL) model for pesticide behavior in soil-plant systems. The substances travelled deeper in the furrow soil than in the ridge soil, because of runoff from the ridges to the furrows. At 19 days after application, the peak of the bromide distribution was measured to be in the 0.1-0.2 m layer of the ridges, while it was in the 0.3-0.5 m layer of the furrows. After 65 days, the peak of the carbofuran distribution in the ridge soil was still in the 0.1 m top layer, while the pesticide was rather evenly distributed in the top 0.6 m of the furrow soil. The wide ranges in concentration measured with depth showed that preferential water flow and substance transport occurred in the sandy soil. Part of the bromide ion distribution was measured to move faster in soil than the computed wave. The runoff of water and pesticide from the ridges to the furrows, and the thinner root zone in the furrows, are expected to increase the risk of leaching to groundwater in ridged fields, in comparison with more level fields.

  10. Substance Use in Women

    Science.gov (United States)

    ... trigger women's substance use or other mental health disorders. Women who use certain substances may be more likely to have panic attacks, anxiety, or depression. Substance Use While Pregnant and Breastfeeding ...

  11. Scaling macroscopic aquatic locomotion

    Science.gov (United States)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  12. Biological Fenton's oxidation of pentachlorophenol by aquatic plants.

    Science.gov (United States)

    Reis, Andre Rodrigues dos; Kyuma, Yukako; Sakakibara, Yutaka

    2013-12-01

    This study proposes a new treatment method to decompose persistent chemicals such as pentachlorophenol (PCP) in water, utilizing hydrogen peroxide present in aquatic plants to proceed the biological Fenton reaction. PCP was not effectively removed by aquatic plants. However, by adding 2.8 mM of Fe(2+), there was a rapid removal of PCP while at the same time consumption of endogenous hydrogen peroxide occurred. It was observed the increase of chloride ions formation in water-confirming the complete degradation of PCP. These results demonstrated that PCP was oxidized through a biological Fenton reaction, and hydrogen peroxide in aquatic plants was a key endogenous substance in treatment of refractory toxic pollutants.

  13. Analysis of aquatic-phase natural organic matter by optimized LDI-MS method

    KAUST Repository

    Wang, Renqi

    2014-01-26

    The composition and physiochemical properties of aquatic-phase natural organic matter (NOM) are most important problems for both environmental studies and water industry. Laser desorption/ionization (LDI) mass spectrometry facilitated successful examinations of NOM, as humic and fulvic acids in NOM are readily ionized by the nitrogen laser. In this study, hydrophobic NOMs (HPO NOMs) from river, reservoir and waste water were characterized by this technique. The effect of analytical variables like concentration, solvent composition and laser energy was investigated. The exact masses of small molecular NOM moieties in the range of 200-1200 m/z were determined in reflectron mode. In addition, spectra of post-source-decay experiments in this range showed that some compounds from different natural NOMs had the same fragmental ions. In the large mass range of 1200-15 000 Da, macromolecules and their aggregates were found in HPO NOMs from natural waters. Highly humic HPO exhibited mass peaks larger than 8000 Da. On the other hand, the waste water and reservoir water mainly had relatively smaller molecules of about 2000 Da. The LDI-MS measurements indicated that highly humic river waters were able to form large aggregates and membrane foulants, while the HPO NOMs from waste water and reservoir water were unlikely to form large aggregates. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Fractionation of Suwannee River fulvic acid and Aldrich humic acid on {alpha}-Al{sub 2}O{sub 3}: spectroscopic evidence

    Energy Technology Data Exchange (ETDEWEB)

    Claret, F.; Reiller, P.E. [CEA Saclay, DEN/DANS/DPC/SECR, Lab Speciat Radionucleides et Mol, F-91191 Gif Sur Yvette, (France); Claret, F. [BRGM, Environm and Process Div, F-45060 Orleans, (France); Schaefer, T. [Forschungszentrum Karlsruhe, Inst Nukl Entsorgung INE, D-76021 Karlsruhe, (Germany); Brevet, J. [Univ Evry Val Essonne, Lab Analyse et Environm Biol et Environm, CNRS, UMR 8587, F-91025 Evry, (France)

    2008-07-01

    Sorptive fractionation of Suwannee River Fulvic Acid (SRFA) and Purified Aldrich Humic Acid (PAHA) on {alpha}-Al{sub 2}O{sub 3} at pH 6 was probed in the supernatant using different spectroscopic techniques. Comparison of dissolved organic carbon (DOC) analysis with UV/vis spectrophotometric measurements at 254 nm, including specific UV absorbance (SUVA) calculation, revealed a decrease in chromophoric compounds for the non-sorbed extracts after a 24 h contact time. This fractionation, only observable below a certain ratio between initial number of sites of humic substances and of {alpha}-Al{sub 2}O{sub 3}, seems to indicate a higher fractionation for PAHA. C(1s) near-edge X-ray absorption fine structure spectroscopy (NEXAFS) confirmed this trend and points to a decrease in phenolic moieties in the supernatant and to an eventual increase in phenolic moieties on the surface. Time-resolved luminescence spectroscopy (TRLS) of Eu(III) as luminescent probe showed a decrease in the ratio between the {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} and {sup 5}D{sub 0}{yields}{sup 7}F{sub 1} transitions for the fractionated organic matter (OM) that is thought to be associated with a lower energy transfer from the OM to Eu(III) due to the loss of polar aromatics. These modifications in the supernatant are a hint for the modification of sorbed humic extracts on the surface. (authors)

  15. Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Merce, Ana Lucia R.; Lopes, Priscilla P.; Mangricha, Antonio S. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: anamerce@ufpr.br; Levy, Noel M. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)

    2006-05-15

    In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO{sub 2}{sup 2+} (M). (author)

  16. Effect of nitroxin and humic acid on yield and yield components of faba bean

    Directory of Open Access Journals (Sweden)

    Kholdi Abolfazl

    2015-01-01

    Full Text Available Quality and quantity improvement of crops using organic matter and low-cost method in the field is very important. Bio-fertilizer nitroxin and humic acid can increase root and shoot biomass through improved intake of nutrition and they can lead to quality and quantity improvement of product. An experiment was carried out as a completely randomized block design with 4 treatments to study the effect of nitroxin and humic acid on faba bean (Vicia faba L. traits. Trial treatments included control, nitroxin, humic acid and nitroxin + humic acid. Analysis of variance showed that the effect of combination of nitroxin + humic acid was significant (p< 1% on some traits such as stem height and yield of faba bean. The highest yield (2,315 kg ha-1 was obtained under nitroxin + humic acid treatment.

  17. Novel humic acid-bonded magnetite nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakci, Mevlut, E-mail: mevlutbayrakci@gmail.com [Ulukisla Vocational School, Nigde University, 51100 Ulukisla, Nigde (Turkey); Gezici, Orhan [Department of Chemistry, Nigde University, 51100 Nigde (Turkey); Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra [Department of Chemistry, Selcuk University, 42031 Konya (Turkey)

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz–Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJ mol{sup −1}) and HSA bonded HA-APS-MNPs (33.42 kJ mol{sup −1}) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. - Highlights: • A new magnetite nanoparticle based humic acid was prepared for the first time. • Protein binding studies of magnetite nanoparticle based humic acid were performed. • Kinetic parameters of protein and/or humic acid bonded nanoparticles were evaluated.

  18. Acid Dissociation Constants of Functional Groups in Humic Substances:I.Affinity Spectrum Model Analysis of Potentiometric Data of Fulvic and Humic Acids Solutions from Weathered Coal and Dark Loessia

    Institute of Scientific and Technical Information of China (English)

    DUJIN-ZHOU; LUCHANG-QING; 等

    1994-01-01

    Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat the experimental data.The affinity spectrum model technique could“magnify” the heterogeneity of the proton binding equilibria.so it was useful for comparing and studying the characteristics of humic substances with similar properties.According to the affinity spectra,we also found that the direction of the titration could affect the properties of the equilibria of FA from the weathered coal,and the acidic functional groups contained in FA from the weathered coal were larger in quantity than those contained in HA and FA from the dark loessial soil.

  19. Influence of redox conditions and mechanical action on change in peat humic acid composition

    OpenAIRE

    2007-01-01

    Mechanical action on humic acids is shown to result in change of their composition accompanying decrease in aromaticity degree and increase in oxygen-containing fragments. Mechanical treatment of peat in oxidizing conditions increases the efficiency of extracting water-soluble components and humic acids to the maximum. Structural parameters and functional composition of humic acid molecules change at peat treatment in the redox conditions depending on the conditions.

  20. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

    Directory of Open Access Journals (Sweden)

    Paula A. Araújo

    2013-01-01

    Full Text Available Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium were exposed to surfactants (single and combined in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium with minimum bactericidal concentrations ranging from 3 to 35 mg·L−1. The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  1. The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds.

    Science.gov (United States)

    Araújo, Paula A; Lemos, Madalena; Mergulhão, Filipe; Melo, Luís; Simões, Manuel

    2013-01-01

    Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium) were exposed to surfactants (single and combined) in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium) with minimum bactericidal concentrations ranging from 3 to 35 mg·L(-1). The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies.

  2. Pain in aquatic animals.

    Science.gov (United States)

    Sneddon, Lynne U

    2015-04-01

    Recent developments in the study of pain in animals have demonstrated the potential for pain perception in a variety of wholly aquatic species such as molluscs, crustaceans and fish. This allows us to gain insight into how the ecological pressures and differential life history of living in a watery medium can yield novel data that inform the comparative physiology and evolution of pain. Nociception is the simple detection of potentially painful stimuli usually accompanied by a reflex withdrawal response, and nociceptors have been found in aquatic invertebrates such as the sea slug Aplysia. It would seem adaptive to have a warning system that allows animals to avoid life-threatening injury, yet debate does still continue over the capacity for non-mammalian species to experience the discomfort or suffering that is a key component of pain rather than a nociceptive reflex. Contemporary studies over the last 10 years have demonstrated that bony fish possess nociceptors that are similar to those in mammals; that they demonstrate pain-related changes in physiology and behaviour that are reduced by painkillers; that they exhibit higher brain activity when painfully stimulated; and that pain is more important than showing fear or anti-predator behaviour in bony fish. The neurophysiological basis of nociception or pain in fish is demonstrably similar to that in mammals. Pain perception in invertebrates is more controversial as they lack the vertebrate brain, yet recent research evidence confirms that there are behavioural changes in response to potentially painful events. This review will assess the field of pain perception in aquatic species, focusing on fish and selected invertebrate groups to interpret how research findings can inform our understanding of the physiology and evolution of pain. Further, if we accept these animals may be capable of experiencing the negative experience of pain, then the wider implications of human use of these animals should be considered.

  3. Inorganic nanomaterials in the aquatic environment: behavior, toxicity, and interaction with environmental elements

    Directory of Open Access Journals (Sweden)

    Krzyżewska Iwona

    2016-03-01

    Full Text Available The aim of this paper is to present characteristics, toxicity and environmental behavior of nanoparticles (NPs (silver, copper, gold, zinc oxide, titanium dioxide, iron oxide that most frequently occur in consumer products. In addition, NPs are addressed as the new aquatic environmental pollutant of the 21st century. NPs are adsorbed onto particles in the aquatic systems (clay minerals, fulvic and humic acids, or they can adsorb environmental pollutants (heavy metal ions, organic compounds. Nanosilver (nAg is released from consumer products into the aquatic environment. It can threaten aquatic organisms with high toxicity. Interestingly, copper nanoparticles (Cu-NPs demonstrate higher toxicity to bacteria and aquatic microorganisms than those of nanosilver nAg. Their small size and reactivity can cause penetration into the tissues and interfere with the metabolic systems of living organisms and bacterial biogeochemical cycles. The behavior of NPs is not fully recognized. Nevertheless, it is known that NPs can agglomerate, bind with ions (chlorides, sulphates, phosphates or organic compounds. They can also be bound or immobilized by slurry. The NPs behavior depends on process conditions, i.e. pH, ionic strength, temperature and presence of other chemical compounds. It is unknown how NPs behave in the aquatic environment. Therefore, the research on this problem should be carried out under different process conditions. As for the toxicity, it is important to understand where the differences in the research results come from. As NPs have an impact on not only aquatic organisms but also human health and life, it is necessary to recognize their toxic doses and know standards/regulations that determine the permissible concentrations of NPs in the environment.

  4. Conceptual Framework for Aquatic Interfaces

    Science.gov (United States)

    Lewandowski, J.; Krause, S.

    2015-12-01

    Aquatic interfaces are generally characterized by steep gradients of physical, chemical and biological properties due to the contrast between the two adjacent environments. Innovative measurement techniques are required to study the spatially heterogeneous and temporally variable processes. Especially the different spatial and temporal scales are a large challenge. Due to the steep biogeochemical gradients and the intensive structural and compositional heterogeneity, enhanced biogeochemical processing rates are inherent to aquatic interfaces. Nevertheless, the effective turnover depends strongly on the residence time distribution along the flow paths and in sections with particular biogeochemical milieus and reaction kinetics. Thus, identification and characterization of the highly complex flow patterns in and across aquatic interfaces are crucial to understand biogeochemical processing along exchange flow paths and to quantify transport across aquatic interfaces. Hydrodynamic and biogeochemical processes are closely coupled at aquatic interfaces. However, interface processing rates are not only enhanced compared to the adjacent compartments that they connect; also completely different reactions might occur if certain thresholds are exceeded or the biogeochemical milieu differs significantly from the adjacent environments. Single events, temporal variability and spatial heterogeneity might increase overall processing rates of aquatic interfaces and thus, should not be neglected when studying aquatic interfaces. Aquatic interfaces are key zones relevant for the ecological state of the entire ecosystem and thus, understanding interface functioning and controls is paramount for ecosystem management. The overall aim of this contribution is a general conceptual framework for aquatic interfaces that is applicable to a wide range of systems, scales and processes.

  5. Physical and chemical properties of substrates produced using macrophytes aquatics

    Directory of Open Access Journals (Sweden)

    Walda Monteiro Farias

    2013-12-01

    Full Text Available Aquatic macrophytes are widely used as bioindicators of water quality because their proliferation usually occurs in eutrophic water sources and has hit several parts of Brazil and the world, restricted the multiple uses of aquatic ecosystems. However, this group of plants is able to retain considerable amounts of nutrients, presenting high productivity and high growth rate, thus, a good source of biomass for use in the production of substrates. In order to evaluate the potential of aquatic macrophytes water hyacinth (Eichhornia crassipes Solms., water lettuce (Pistia stratiotes L. and cattail (Typha domingensis Pers. in the production of substrates was performed in this work, the physical and chemical characterization and evaluation of the degree of humification. The treatments were arranged in a 3 × 4 factorial, completely randomized design with three replications. All substrates produced with 100% macrophyte density present within the limits of 400 kg m-3, considered ideal. The composite substrates with water hyacinth and water lettuce are with the electrical conductivity of 0,79 a 2,49 dS m-1 within recommended. organic compounds produced are considered mature and have high levels of nitrogen phosphorus and potassium; The substrate produced with 70% water lettuce +30 % dung and 70% composed of cattail manure +20% +10% topsoil and 70 +30% cattail manure have C/N ratio within the considered ideal; the humification ratio and humification index, except for the four treatments (70 % water lettuce manure +30%, 5 (100% water hyacinth and 8 (70% water hyacinth manure +30% are within the considered ideal, the percentage of humic acids and polymerization rate, except for treatments 1 (100% water lettuce and 12 (100% cattail, are shown below the ideal.

  6. Methodological tests of a heterotrophy index for aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    R. M. Antonio

    Full Text Available Experiments in glucose mineralization were carried out to investigate the effects caused by natural forcing functions on both the decomposition rates and heterotrophy capacity of aquatic ecosystems. In addition, the methodology used could show connections between mineralization rates measured in both laboratory and field work with those measured in aquatic ecosystems. Water samples from Infernão lagoon (21º35'S and 47º51'W were collected, filtered, enriched with glucose, and incubated under aerobic and anaerobic conditions. The glucose concentration variation, dissolved oxygen (DO consumption, pH, electric conductivity, and total CO2 amount in the water were determined for sixteen days. In the period with intense oxygen consumption there was also an evident glucose demand and the dissolved oxygen consumption rate was approximately the same as that for glucose mineralization. The process in the aerobic chambers was 2.2 times faster than that in the anaerobic chambers. An initial acidification of the water samples, probably due to microbial carbonic acid liberation, was noted. A rise in pH values was also observed at the end of the process. The electric conductivity was low for both aerobic and anaerobic chambers, indicating a probable ion uptake by microbial organisms due to the presence of carbon sources. The glucose content variations corresponded to both CO2 formation and dissolved oxygen consumption. It was estimated that 19.4% of the initial glucose content turned into CO2 and the remaining 80.6% into humic compounds and microbial biomass. This experiment showed that glucose can be used as a substrate indicating the heterotrophy of a given aquatic ecosystem.

  7. Methodological tests of a heterotrophy index for aquatic ecosystems.

    Science.gov (United States)

    Antonio, R M; Bianchini Júnior, I

    2003-08-01

    Experiments in glucose mineralization were carried out to investigate the effects caused by natural forcing functions on both the decomposition rates and heterotrophy capacity of aquatic ecosystems. In addition, the methodology used could show connections between mineralization rates measured in both laboratory and field work with those measured in aquatic ecosystems. Water samples from Infernão lagoon (21 degrees 35'S and 47 degrees 51'W) were collected, filtered, enriched with glucose, and incubated under aerobic and anaerobic conditions. The glucose concentration variation, dissolved oxygen (DO) consumption, pH, electric conductivity, and total CO2 amount in the water were determined for sixteen days. In the period with intense oxygen consumption there was also an evident glucose demand and the dissolved oxygen consumption rate was approximately the same as that for glucose mineralization. The process in the aerobic chambers was 2.2 times faster than that in the anaerobic chambers. An initial acidification of the water samples, probably due to microbial carbonic acid liberation, was noted. A rise in pH values was also observed at the end of the process. The electric conductivity was low for both aerobic and anaerobic chambers, indicating a probable ion uptake by microbial organisms due to the presence of carbon sources. The glucose content variations corresponded to both CO2 formation and dissolved oxygen consumption. It was estimated that 19.4% of the initial glucose content turned into CO2 and the remaining 80.6% into humic compounds and microbial biomass. This experiment showed that glucose can be used as a substrate indicating the heterotrophy of a given aquatic ecosystem.

  8. Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions: phthalic, 3- and 4-nitrophthalic acids, catechol and 4-nitrocathecol, part 1

    Energy Technology Data Exchange (ETDEWEB)

    Merce, Ana Lucia R.; Greboge, Cristiane; Mendes, Giovani; Mangrich, Antonio S. [Parana Univ., Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: anamerce@ufpr.br

    2005-02-01

    Many mathematical models have been tested in the literature in the search of how humic acids (HA) from many natural sources complex to metal ions. HA are composed of natural degradation sources of C, N, P and S, bearing hydroxyl and carboxyl aromatic units in their inner structure. The presence of metal ions binded to these basic sites promotes fertility to the soil as well as can hold metal ions to be slowly released as the mineralization of the soil occurs. Nitrohumic substances are a laboratory artifact with higher N content then humic acids with an electron withdrawing group - NO{sub 2}. However they still bear the main HA constituent chemical groups such as salicylate, catecholate and phthalate derivatives, all prone to bind to metal ions depending on the chemical conditions of the environment. This work intended to study the complexing behaviour of some HA models having very different Lewis basic binding sites in the presence of molybdenum (VI) ions, in aqueous systems, with varying pH values using some analytical tools. The formation constants of phthalic acid, 3- and 4-nitrophthalic acids, catechol and 4-nitrocatechol with Mo(VI) as well as the speciation of the complex species according to varying pH values were determined. Potentiometric and cyclic voltammetric titrations were employed to calculate the formation constants and to monitor the formation and decomposition of some complexed species. The results showed that although there is complexation between phthalic derived acids and molybdenum, the speciation favours it only until pH 6.0 at the best. On the other hand, salicylic and catechol derived models showed existence of complexation until basic pH values, allowing a compromising complexation pH range when humic and nitrohumic substances are involved. (author)

  9. Arsenic in the aquatic environment - speciation and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Landner, L. [Swedish Environmental Research Group (MFG)

    1998-03-01

    The present report is a contribution to EC Commission`s undertaking to review existing EC provisions on the substances for which Sweden has been granted transitional provisions. The provisions imply that Sweden may maintain more stringent regulations on four substances until the end of 1998. The present report deals with speciation and biological effects of arsenic in three types of aquatic environments - marine water, estuarine or brackish water and freshwater. The similarity between arsenate and phosphate and the interference in phosphorylation reactions is discussed. It is clear that in Scandinavian inland waters the concentration of phosphorous is on average lower than in most inland waters in continental Europe. However, in most inland waters phosphorus is the limiting factor for phytoplankton development and eutrophication, which means that there is a clear risk for detrimental effects in the great majority of inland waters, also eutrophic waters 167 refs, 27 figs, 12 tabs. Exemption Substances Project (Directive 89/677/EEC)

  10. Effects of Humic Acid on the Germination Traits of Pumpkin Seeds under Cadmium Stress

    Directory of Open Access Journals (Sweden)

    Maasoumeh ASADI

    2013-12-01

    Full Text Available The study tackled the effect of humic acid and cadmium concentrations on the pumpkin seed germination characteristics throughout were studied. Treatments were cadmium concentrations on three levels: 0, 100 and 200 ppm and humic acid concentration of 0, 100, 200, 300 and 400 mg lit-1. Results showed that interaction of humic acid and cadmium was not significant on germination traits, but there was a significant effect on seedling growth indexes. Radicle and plumule length increased by 86 and 192% in comparison with control, of the mixture of 200 ppm cadmium and 300 mg lit-1 of humic acid. Cadmium had stimulatory effect on radicle and cotyledon dry weight and the highest values obtained with 200 ppm in mixture with 200 mg lit-1 of humic acid. Also, maximum plumule dry weight was recorded in 200 ppm cadmium and 300 mg lit-1 of humic acid. The highest of indexes were observed of 200 ppm cadmium and 400 mg lit-1 humic acid. In conclusion, the humic acid had detoxifying effect on cadmium stress in the culture and responded antagonistically against cadmium, but it seems that these concentrations of cadmium are low for the pumpkin seed and can be increased in order to reach the toxicity level.

  11. Effects of humic acid on recoverability and fractal structure of alum-kaolin flocs

    Institute of Scientific and Technical Information of China (English)

    Runsheng Zhong; Xihui Zhang; Feng Xiao; Xiaoyan Li

    2011-01-01

    Particle surface characteristics, floc recoverability and fractal structure of alum-kaolin flocs were investigated using in situ particle image velocimetry (PIV) and microbalance with or without humic acid. Experimental results indicated that the zeta potential of kaolin particle surface after adsorption of humic acid was related with humic acid concentration and its acid-base buffering capacity. Adsorption of humic acid resulted in more negative electrophoresis on the particle surface. Coagulant dosages for particles to form flocs would increase with increasing humic concentration. PIV was used to evaluate floc structural fragmentation, floc surface erosion as well as recoverability after high shear. It was found that the floc size during the steady phase of growth was small, while the regrowing capability decreased in the presence of humic acid. The recoverability was closely related with floc breakage modes including floc structural fragmentation and floc surface erosion. The fractal dimensions of alum-kaolin flocs by mass-size method based on microbalance would decrease with increasing humic concentration. This study proved that humic acid had adverse influences on the performance of coagulation process.

  12. Assessing the performance of silicon nanoparticles in adsorption of Humic acid in water

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2013-05-01

    Conclusion: Removal in both real and synthetic solutions was less due to the reaction of influencing factors. However, considering the high percentage of humic acid removal under optimal conditions and its comparison with other methods, the removal of humic acid using SiO2 can be considered as an efficient method.

  13. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate

    NARCIS (Netherlands)

    Hiemstra, T.; Mia, S.; Duhaut, P.B.; Molleman, B.

    2013-01-01

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application

  14. Simultaneous analysis of small organic acids and humic acids using high performance size exclusion chromatography

    NARCIS (Netherlands)

    Qin, X.P.; Liu, F.; Wang, G.C.; Weng, L.P.

    2012-01-01

    An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used

  15. Structural and functional comparison of mobile and recalcitrant humic fractions from agricultural soils

    Science.gov (United States)

    Mobile humic acid (MHA) and calcium humate (CaHA) are humic fractions sequentially extracted from soil samples. MHA is extracted by dilute NaOH, and CaHA is subsequently extracted by dilute NaOH from the dilute HCl-washed soil residues of the first extraction. This chapter reviews the recent advance...

  16. Beneficial effects of humic acid on micronutrient availability to wheat

    Science.gov (United States)

    Mackowiak, C. L.; Grossl, P. R.; Bugbee, B. G.

    2001-01-01

    Humic acid (HA) is a relatively stable product of organic matter decomposition and thus accumulates in environmental systems. Humic acid might benefit plant growth by chelating unavailable nutrients and buffering pH. We examined the effect of HA on growth and micronutrient uptake in wheat (Triticum aestivum L.) grown hydroponically. Four root-zone treatments were compared: (i) 25 micromoles synthetic chelate N-(4-hydroxyethyl)ethylenediaminetriacetic acid (C10H18N2O7) (HEDTA at 0.25 mM C); (ii) 25 micromoles synthetic chelate with 4-morpholineethanesulfonic acid (C6H13N4S) (MES at 5 mM C) pH buffer; (iii) HA at 1 mM C without synthetic chelate or buffer; and (iv) no synthetic chelate or buffer. Ample inorganic Fe (35 micromoles Fe3+) was supplied in all treatments. There was no statistically significant difference in total biomass or seed yield among treatments, but HA was effective at ameliorating the leaf interveinal chlorosis that occurred during early growth of the nonchelated treatment. Leaf-tissue Cu and Zn concentrations were lower in the HEDTA treatment relative to no chelate (NC), indicating HEDTA strongly complexed these nutrients, thus reducing their free ion activities and hence, bioavailability. Humic acid did not complex Zn as strongly and chemical equilibrium modeling supported these results. Titration tests indicated that HA was not an effective pH buffer at 1 mM C, and higher levels resulted in HA-Ca and HA-Mg flocculation in the nutrient solution.

  17. Binding characteristics of Cu(2+) to natural humic acid fractions sequentially extracted from the lake sediments.

    Science.gov (United States)

    He, En; Lü, Changwei; He, Jiang; Zhao, Boyi; Wang, Jinghua; Zhang, Ruiqing; Ding, Tao

    2016-11-01

    Humic acids (HAs) determine the distribution, toxicity, bioavailability, and ultimate fate of heavy metals in the environment. In this work, ten HA fractions (F1-F10) were used as adsorbent, which were sequentially extracted from natural sediments of Lake Wuliangsuhai, to investigate the binding characteristics of Cu(2+) to HA. On the basis of the characterization results, differences were found between the ten extracted HA fractions responding to their elemental compositions and acidic functional groups. The characterization results reveal that the responses of ten extracted HA fractions to their elemental compositions and acidic functional groups were different. The O/C and (O + N)/C ratio of F1-F8 approximately ranged from 0.66 to 0.53 and from 0.72 to 0.61, respectively; the measured results showed that the contents of phenolic groups and carboxyl groups decreased from 4.46 to 2.60 mmol/g and 1.60 to 0.58 mmol/g, respectively. The binding characteristics of Cu(2+) to the ten HA fractions were well modeled by the bi-Langmuir model; the binding behavior of Cu(2+) to all the ten HA fractions were strongly impacted by pH and ionic strength. The FTIR and SEM-EDX image of HA fractions (pre- and post-adsorption) revealed that carboxyl and phenolic groups were responsible for the Cu(2+) sorption on the ten sequentially extracted HA fractions process, which is the same with the analysis of the ligand binding and bi-Langmuir models Accordingly, the adsorption capacity of the former HA fractions on Cu(2+) were higher than the latter ones, which may be attributed to the difference of carboxyl and phenolic group contents between the former and latter extracted HA fractions. Additionally, the functional groups with N and S should not be neglected. This work is hopeful to understand the environmental effect of humic substances, environmental geochemical behavior, and bioavailability of heavy metals in lakes.

  18. Modeling lanthanide series binding sites on humic acid.

    Science.gov (United States)

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  19. Carbon and Nitrogen Stocks and Humic Fractions in Brazilian Organosols

    Directory of Open Access Journals (Sweden)

    Gustavo Souza Valladares

    Full Text Available ABSTRACT Despite limited geographic expression of Organosols in Brazil, their high carbon storage capacity and natural environmental vulnerability justifies further studies on C and N stocks in these soils and their relationship to the nature of organic matter. Evaluation of physical and chemical properties of organic soils and their ability to store C is important so as to develop sustainable management practices for their preservation. The objectives of the study were to measure the total organic carbon stock (OCst, total nitrogen stock (Nst, and humic fractions in Organosols from different environments and regions of Brazil, and to correlate the data with soil chemical (pH, P, K, Ca2+, Mg2+, Al3+, H+Al, CEC, V and physical properties (soil bulk density, Bd; organic matter density, OMd; total pore space, TPS; minimum residue, MinR; and proportion of mineral matter, MM, and degree of organic matter decomposition (rubbed fiber content; pyrophosphate index, PyI; and von Post index. For that purpose, 18 Organosol profiles, in a total of 49 horizons, were sampled under different land usage and plant coverage conditions. The profiles were located in the following Brazilian states - Alagoas, Bahia, Distrito Federal, Espírito Santo, Mato Grosso do Sul, Minas Gerais, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, and São Paulo. The OCst and Nst varied significantly among horizons and profiles. The Organosols exhibited, on average, 203.59 Mg ha-1 OCst and 8.30 Mg ha-1 Nst, and the highest values were found in profiles with pasture usage. The content of the humic fraction (humin, HUM; fulvic acid, FAF; and humic acid, HAF and C storage varied in the soil horizons and profiles according to the degree of decomposition and other factors of soil formation. The OCst, Nst, OMd and the C stocks in the humic fractions were positively correlated. The values of acidity were lower in the soils with higher contents of mineral material, and low p

  20. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria.

    Science.gov (United States)

    Chowdhury, Indranil; Cwiertny, David M; Walker, Sharon L

    2012-07-03

    This study investigates the contributions of natural organic matter (NOM) and bacteria to the aggregation and deposition of TiO(2) nanoparticles (TNPs) in aquatic environments. Transport experiments with TNPs were conducted in a microscopic parallel plate system and a macroscopic packed-bed column using fluorescently tagged E. coli as a model organism and Suwannee River Humic Acid as a representative NOM. Notably, TNPs were labeled with fluorescein isothiocyanate allowing particles and cells to be simultaneously visualized with a fluorescent microscope. Results from both experimental systems revealed that interactions among TNPs, NOM, and bacteria exhibited a significant dependence on solution chemistry (pH 5 and 7) and ion valence (K(+) and Ca(2+)), and that these interactions subsequently affect TNPs deposition. NOM and E. coli significantly reduced deposition of TNPs, with NOM having a greater stabilizing influence than bacteria. Ca(2+) ions played a significant role in these interactions, promoting formation of large clusters of TNPs, NOM, and bacteria. TNPs transport in the presence of both NOM and E. coli resulted in much less deposition than in the presence of NOM or E. coli alone, indicating a complex combination of interactions involved in stabilization. Generally, over the aquatic conditions considered, the extent of TNPs deposition follows: without NOM or bacteria > with bacteria only > with NOM only > combined bacteria and NOM. This trend should allow better prediction of the fate of TNPs in complex aquatic systems.

  1. Substance use and multiculturalism.

    Science.gov (United States)

    Adrian, M

    1996-01-01

    This paper reviews intercultural variability of substance use behaviors, including availability of international statistics on consumption of alcohol and other drugs, as well as the use of drugs available locally only. Within a conceptual framework of intercultural relations, it considers the history of transcultural spread of substance use behaviors and possible reactions to the introduction of new drugs within a culture or jurisdiction, including illustrations of the "law of alien poisons." Although intercultural views of substance use have generally concentrated on majority groups' views of substance use in minority groups, minority and non-Western views of substance use need to be considered in the context of increasing international and intercultural communications that increase the rate at which substance use behaviors spread. Both Western and non-Western experiences with substance use and misuse must be taken into account so that better interventions can be developed to deal with addictions and other substance-related problems.

  2. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption.

    Science.gov (United States)

    Liu, Tongzhou; Tsang, Daniel C W; Lo, Irene M C

    2008-03-15

    In zerovalent iron treatment systems, the presence of multiple solution components may impose combined effects that differ from corresponding individual effects. The copresence of humic acid and hardness (Ca2+/Mg2+) was found to influence Cr(VI) reduction by Feo and iron dissolution in a way different from their respective presence in batch kinetics experiments with synthetic groundwater at initial pH 6 and 9.5. Cr(VI) reduction rate constants (k(obs)) were slightly inhibited by humic acid adsorption on iron filings (decreases of 7-9% and 10-12% in the presence of humic acid alone and together with hardness, respectively). The total amount of dissolved Fe steadily increased to 25 mg L(-1) in the presence of humic acid alone because the formation of soluble Fe-humate complexes appeared to suppress iron precipitation. Substantial amounts of soluble and colloidal Fe-humate complexes in groundwater may arouse aesthetic and safety concerns in groundwater use. In contrast, the coexistence of humic acid and Ca2+/Mg2+ significantly promoted aggregation of humic acid and metal hydrolyzed species, as indicated by XPS and TEM analyses, which remained nondissolved (>0.45 microm) in solution. These metal-humate aggregates may impose long-term impacts on PRBs in subsurface settings.

  3. Aquatic Invertebrate Development Working Group

    Science.gov (United States)

    Meyers, D.

    1985-01-01

    Little definitive evidence exists to show that gravity plays a major role in embyrogenesis of aquatic invertebrates. Two reasons for this may be: (1) few studies have been done that emphasize the role of gravity; and (2) there simply may not be any gravity effect. The buoyant nature of the aquatic environment could have obscured any evolutionary effect of gravity. The small size of most eggs and their apparent lack of orientation suggests reduced gravitational influence. Therefore, it is recommended that the term development, as applied to aquatic invertebrates, be loosely defined to encompass behavioral and morphological parameters for which baseline data already exist.

  4. Determination of Formation Constants of Co2+,Ni2+,Cu2+and Zn2+ Complexes with Humic and Fulvic Acids by Potentionmetric Titration Method

    Institute of Scientific and Technical Information of China (English)

    DUJIN-ZHOU; LUCHANG-QING; 等

    1994-01-01

    The formation constants of Co2+,Ni2+,Cu2+ and Zn2+ complexes with humic acid(HA) and fulvic acid(FA) in red soil wrer determined by the potentiometric titration method.The constants as a function of composition of the complexation solutions were obtained by two graphical approaches respetively,The formation constants decreased with increasing concentration of metal in the solution,The results provide unambiguous evidence for the heterogeneity of the function groups of humic substances,the formation constants of FA were much smaller than those of HA,and the formation constants of Cu2+ were much greater than those of Co2+ ,Ni2+ and Zn2+,The potentiometric titration methon for determining formation constants are also discussed in the article.

  5. Annual patterns in bacterioplankton community variability in a humic lake.

    Science.gov (United States)

    Kent, A D; Jones, S E; Yannarell, A C; Graham, J M; Lauster, G H; Kratz, T K; Triplett, E W

    2004-11-01

    Bacterioplankton community composition (BCC) was monitored in a shallow humic lake in northern Wisconsin, USA, over 3 years using automated ribosomal intergenic spacer analysis (ARISA). Comparison of ARISA profiles of bacterial communities over time indicated that BCC was highly variable on a seasonal and annual scale. Nonmetric multidimensional scaling (MDS) analysis indicated little similarity in BCC from year to year. Nevertheless, annual patterns in bacterioplankton community diversity were observed. Trends in bacterioplankton community diversity were correlated to annual patterns in community succession observed for phytoplankton and zooplankton populations, consistent with the notion that food web interactions affect bacterioplankton community structure in this humic lake. Bacterioplankton communities experience a dramatic drop in richness and abundance each year in early summer, concurrent with an increase in the abundance of both mixotrophic and heterotrophic flagellates. A second drop in richness, but not abundance, is observed each year in late summer, coinciding with an intense bloom of the nonphagotrophic dinoflagellate Peridinium limbatum. A relationship between bacterial community composition, size, and abundance and the population dynamics of Daphnia was also observed. The noted synchrony between these major population and species shifts suggests that linkages across trophic levels play a role in determining the annual time course of events for the microbial and metazoan components of the plankton.

  6. Identification of Endocrine Disruptive Effects in the Aquatic Environment - a Partial Life Cycle Study in Zebrafish

    NARCIS (Netherlands)

    Wester PW; Brandhof EJ van den; Vos JH; Ven LTM van der; TOX; LER

    2003-01-01

    In this project, an assay was developed and applied to identify hormone active substances in the aquatic environment. Laboratory fish were exposed during the reproductive and development phase to a range of established endocrine active compounds; these were estrogen (17 beta-estradiol), anti-estroge

  7. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  8. Production in aquatic macrophyte communities

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    Many terrestrial plant canopies regulate spatial patterns in leaf density and leaf inclination to distribute light evenly between the photosynthetic tissue and to optimize light utilization efficiency. Sessile aquatic macrophytes, however, cannot maintain the same well-defined three......-dimensional structure because of the strong drag and shear forces of moving water. This difference in canopy structure has been suggested to account for the three- to fivefold higher gross production rates in terrestrial than aquatic communities. To evaluate the effect of community structure in aquatic habitats, we...... was markedly enhanced by a vertical orientation of thalli when absorptance and community density were both high. This result implies that aquatic macrophytes of high thallus absorptance and community density exposed to high light are limited in attaining high gross production rates because of their inability...

  9. Aquatic Remediation of Communication Disorders.

    Science.gov (United States)

    Smith, Virginia M.

    1985-01-01

    A 10-day aquatics program for learning disabled children with hand-eye coordination problems and low self-esteem is described. Activities for each session (including relaxation exercises) are listed. (CL)

  10. Substance, Reality, and Distinctness

    Directory of Open Access Journals (Sweden)

    Boris Hennig

    2008-04-01

    Full Text Available Descartes claims that God is a substance, and that mind and body are two different and separable substances. This paper provides some background that renders these claims intelligible. For Descartes, that something is real means it can exist in separation, and something is a substance if it does not depend on other substances for its existence. Further, separable objects are correlates of distinct ideas, for an idea is distinct (in an objective sense if its object may be easily and clearly separated from everything that is not its object. It follows that if our idea of God is our most distinct idea, as Descartes claims, then God must be a substance in the Cartesian sense of the term. Also, if we can have an idea of a thinking subject which does not in any sense refer to bodily things, and if bodily things are substances, then mind and body must be two different substances.

  11. Aquatic Plants Aid Sewage Filter

    Science.gov (United States)

    Wolverton, B. C.

    1985-01-01

    Method of wastewater treatment combines micro-organisms and aquatic plant roots in filter bed. Treatment occurs as liquid flows up through system. Micro-organisms, attached themselves to rocky base material of filter, act in several steps to decompose organic matter in wastewater. Vascular aquatic plants (typically, reeds, rushes, cattails, or water hyacinths) absorb nitrogen, phosphorus, other nutrients, and heavy metals from water through finely divided roots.

  12. The Role of Concentration and Solvent Character in the Molecular Organization of Humic Acids

    Directory of Open Access Journals (Sweden)

    Martina Klučáková

    2016-10-01

    Full Text Available The molecular organization of humic acids in different aqueous solutions was studied over a wide concentration range (0.01–10 g·dm−3. Solutions of humic acids were prepared in three different media: NaOH, NaCl, and NaOH neutralized by HCl after dissolution of the humic sample. Potentiometry, conductometry, densitometry, and high resolution ultrasound spectrometry were used in order to investigate conformational changes in the humic systems. The molecular organization of humic acids in the studied systems could be divided into three concentration ranges. The rearrangements were observed at concentrations of ~0.02 g·dm−3 and ~1 g·dm−3. The first “switch-over point” was connected with changes in the hydration shells of humic particles resulting in changes in their elasticity. The compressibility of water in the hydration shells is less than the compressibility of bulk water. The transfer of hydration water into bulk water increased the total compressibility of the solution, reducing the ultrasonic velocity. The aggregation of humic particles and the formation of rigid structures in systems with concentrations higher than 1 g·dm−3 was detected.

  13. Effects of humic acid on adsorption of actinide elements on rocks and others

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masakazu; Sato, Seichi; Ohashi, Hiroshi [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Sakamoto, Yoshiaki; Nagao, Seiya; Onuki, Toshihiko; Senoo, Muneaki

    1996-01-01

    Since the transfer rates of radionuclides are reduced by their adsorption to rocks and soils, it is essential to elucidate the adsorption process for safety assessment of their geological disposal. In this study, adsorption of Np(V) to goethite, one of the widely distributed minerals was investigated as functions of pH and humic acid concentration. The surface charge density of goethite was determined and the zero charge point was 6.2 for synthesized and 6.4 for natural goethite. Since the point for humic acid was 4.5, adsorption sites for humic acid were reduced as the increase of negative charge density above pH6, resulting in a decrease in its adsorption rate. Np(V) adsorption to goethite was raised by the presence of humic acid in the range of 0-10ppm because the surface charge on the rock was shifted to negative by the adsorption of humic acid, resulting in easy adsorption of NpO{sub 2}{sup +}, which is stable in the condition below pH 9.5. On the other hand, humic acid adsorption was saturated at a concentration higher than 50 ppm, but its content in the solution would increase. Thus, it was thought that Np(V)-humic acid complex becomes more stable, resulting in the decrease in Np(V) adsorption rate. (M.N.)

  14. Mitigation of Humic Acid Inhibition in Anaerobic Digestion of Cellulose by Addition of Various Salts

    Directory of Open Access Journals (Sweden)

    Samet Azman

    2015-03-01

    Full Text Available Humic compounds are inhibitory to the anaerobic hydrolysis of cellulosic biomass. In this study, the impact of salt addition to mitigate the inhibitory effects of humic compounds was investigated. The experiment was conducted using batch tests to monitor the anaerobic hydrolysis of cellulose in the presence of humic acid. Sodium, potassium, calcium, magnesium and iron salts were tested separately for their efficiency to mitigate humic acid inhibition. All experiments were done under mesophilic conditions (30 °C and at pH 7. Methane production was monitored online, using the Automatic Methane Potential Test System. Methane production, soluble chemical oxygen demand and volatile fatty acid content of the samples were measured to calculate the hydrolysis efficiencies. Addition of magnesium, calcium and iron salts clearly mitigated the inhibitory effects of humic acid and hydrolysis efficiencies reached up to 75%, 65% and 72%, respectively, which were similar to control experiments. Conversely, potassium and sodium salts addition did not mitigate the inhibition and hydrolysis efficiencies were found to be less than 40%. Mitigation of humic acid inhibition via salt addition was also validated by inductively coupled plasma atomic emission spectroscopy analyses, which showed the binding capacity of different cations to humic acid.

  15. Humic acids: Their detergent qualities and potential uses in pollution remediation

    Directory of Open Access Journals (Sweden)

    von Wandruszka Ray

    2000-04-01

    Full Text Available Humic acids are amphiphilic species whose behavior in aqueous solution suggests that they form pseudomicelles–aggregates akin to the micelles familiar from synthetic surfactant chemistry. It is thought that humic pseudomicelles can be formed by both intramolecular coiling and intermolecular association, depending on the molecular weight, structural characteristics, and polydispersity of the humic acid in question. The process does not feature a critical micelle concentration. Experimental evidence indicates that metal ions enhance the detergent character of dissolved humic acid by facilitating the coiling and folding of the polymer chains. A recently conceived alternative model suggests that humic acids consist of relatively small subunits that associate through weak molecular interactions. This view appears to run counter to certain experimental observations, but deserves careful attention. The strong association between metal ions and solid humic acid makes it possible to use an inexpensive commercial grade for the decontamination of polluted water. A continuous elution process through a column packed with humic acid allows for the removal of both heavy metals and organic xenobiotics from aqueous solution.

  16. Simple Electrochemical Determination of Surface-Active Substances in Natural Waters

    Directory of Open Access Journals (Sweden)

    Željka Cvrković-Karloci

    2011-01-01

    Full Text Available A simple electrochemical determination of surface-active substances by using time-dependent variation of the capacitive current in a.c. voltammetry at the HMDE is described. Surface-active substances were accumulated by stirring solution at the deposition potential of −0.6 V versus Ag/AgCl (sat. NaCl. The capacitive current was recorded for different deposition times in the range 0–120 s, wherefrom the linear calibration plot is constructed. The proposed method was verified for model surfactant TritonX-100 in the concentration range 0.02–0.25 mg/L and for humic acid in the concentration range 1.65–20 mg/L. The application of the method was demonstrated for freshwater samples of the Drava river, Danube river, and the wetland Kopački Rit, Croatia. The shape of the i ac -E curves as well as the obtained concentrations of surface-active substances by using humic acid as the calibration substance are quite well describing the type and the nature of organic matter in the freshwater samples.

  17. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    Science.gov (United States)

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS.

  18. Application of microwave energy to speed up the alkaline extraction of humic and fulvic acids from marine sediments.

    Science.gov (United States)

    Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2007-10-29

    The feasibility of microwave energy to speed up the alkaline extraction of humic substances (humic acid, HA, and fulvic acid, FA) from marine sediments has been checked. Extractions were performed by using 20 mL of sodium hydroxide at 0.1 M (two repeated extractions) after an ultrasound-assisted acid pre-treatment of samples to remove the carbonate fraction (ultrasound power at 17 kHz, 10 mL of 6.0 M hydrochloric acid for 15 min). After separation of HA and FA fractions by acidifying with 6 M HCl, the FA fraction (supernatant) was purified by passing the solution through a column of Amberlite XAD-8. Both HA and FA extracts were measured by UV-visible spectrophotometry. All variables affecting the extraction process (sodium hydroxide concentration and volume, ramp and hold times, temperature and number of repeated extractions) have been screened by using a Plackett-Burman design (PBD) as multivariate approach. The variables temperature and number of repeated extractions were the most significant factors (P=95%) affecting the extraction of both FA and HA from marine sediments. These two variables have led optimum values of 150 degrees C and two repeated extractions. The developed method has been found precise (R.S.D.s of 9% for HA and 12% for FA, for 11 determinations) and its results were comparable in terms of elemental (C, H and N) composition to those obtained after applying methods based on mechanical stirring and ultrasounds assisting. However, higher HA and FA concentrations than those obtained after conventional stirring and ultrasound irradiation were obtained when applying microwave energy. This means a higher efficiency of microwave energy than ultrasounds or mechanical stirring to extract HA and FA fractions from marine sediments. The method was finally applied to different surface marine sediments from the Ría de Arousa estuary.

  19. Nonreversible immobilization of water-borne plutonium onto self-assembled adlayers of silanized humic materials.

    Science.gov (United States)

    Shcherbina, Natalia S; Kalmykov, Stepan S; Karpiouk, Leonid A; Ponomarenko, Sergey A; Hatfield, Kirk; Haire, Richard; Perminova, Irina V

    2014-02-18

    The objective was to study plutonium partitioning between immobile and mobile humic materials at the water-solid interfaces. Immobilization of the humic materials on solid supports was performed in situ using self-adhesive silanized humic derivatives. The presence of the humic adlayers on solid supports was shown to significantly enhance Pu sorption and its retention under both steady state and dynamic conditions. While plutonium may exist in multiple oxidations states plus colloidal forms, the major thrust in this work was to study the behavior of most mobile--the PuO2(+) form in dilute solutions. The values of the plutonium partition coefficients (Kd) between water and humics-coated silica gels after 10 days exposure reached 1.6 × 10(4) L · kg(-1) at pH 7.5 under anaerobic conditions with a total plutonium concentration of 1.2 × 10(-8) M exceeding those for the uncoated SiO2 (6.3 × 10(2) L · kg(-1)). Column tests showed substantial sequestration of water-borne plutonium (up to 73%) on the humics-coated silica gels. Remobilization experiments conducted under batch conditions at different pH values (3.5, 4.5, 7.5) showed that no more than 3% of the sequestered Pu was remobilized from the humics-coated silica gels by treatment with dissolved humic materials at environmentally relevant pH of 7.5. Consequently, silanized humic materialas can be seen as both molecular probes and as potent candidate materials for scavenging mobile Pu from an aqueous phase.

  20. Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions

    Science.gov (United States)

    Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua

    2016-11-01

    Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu(IV), instead of the polymeric Pu(IV). Such a demonstration is supported by the very positive redox potential of aqueous Pu(IV)-EDTA complex: Eho ‧ (PuL24-/PuL25-) = 154.3 mV >>Eh (PuO2 (am) /Pu3+) = -182.7 mV calculated at 10-10 mol/L Pu3+ and pH 7.2. At the higher humic concentrations (>0.57 mg/L), the polymers were reduced to a lesser extent because the much denser humic coatings resulted in lower concentrations of the aqueous Pu(IV). Consequently, humic acids make Pu(IV) polymers pretty stable unless the artificial ligands such as EDTA are present in the groundwater.

  1. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons.

    Science.gov (United States)

    Scofield, Vinicius; Jacques, Saulo M S; Guimarães, Jean R D; Farjalla, Vinicius F

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different

  2. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge.

    Science.gov (United States)

    Wei, Dong; Li, Mengting; Wang, Xiaodong; Han, Fei; Li, Lusheng; Guo, Jie; Ai, Lijie; Fang, Lulu; Liu, Ling; Du, Bin; Wei, Qin

    2016-01-15

    The aim of this study was to evaluate the interaction between extracellular polymeric substances (EPS) and Zn (II) during the sorption process of Zn (II) onto aerobic granular sludge. Batch results showed that the adsorption rate of Zn (II) onto aerobic granular sludge was better fitted with pseudo-second order kinetics model, and the adsorption isotherm data agreed well with Freundlich equation. Extracellular polymeric substances (EPS) for Zn (II) binding during sorption process was investigated by using a combination of three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence spectra, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FTIR). Results implied that the main composes of EPS, including polysaccharide (PS) and protein (PN), decreased from 5.92±0.13 and 23.55±0.76 mg/g SS to 4.11±0.09 and 9.55±0.68 mg/g SS after the addition of different doses of Zn (II). 3D-EEM showed that the intensities of PN-like substances and humic-like substances were obviously decreased during the sorption process. According to synchronous fluorescence spectra, the quenching mechanism between PN-like substances and Zn (II) was mainly caused by a static quenching process. Additionally, 2D-COS indicated that PN-like substances were more susceptible to Zn (II) binding than humic-like substances. It was also found that the main functional groups for complexation of Zn (II) and EPS were OH groups, N-H groups and C=O stretching vibration. The findings of this study are significant to reveal the fate of heavy metal during its sorption process onto aerobic granular sludge through EPS binding, and provide useful information on the interaction between EPS and heavy metal.

  3. Investigations on humic acid removal from water using surfactant-modified zeolite as adsorbent in a fixed-bed reactor

    Science.gov (United States)

    Elsheikh, Awad F.; Ahmad, Umi Kalthom; Ramli, Zainab

    2016-12-01

    Natural organic matter (NOM) is ubiquitous in aquatic environments and has recently become an issue of worldwide concern in drinking water treatment. The major component of NOM is humic acids (HA). In this study, a natural zeolite (mordenite) was modified employing hexadecyltrimethylammonium bromide (HDTMA) to enhance greater efficient sites for sorption of HA. The natural zeolite and surfactant-modified zeolite (SMZ) were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectrometer (FT-IR), N2 Adsorption-desorption isotherms and BET-specific surface area, thermographic analysis, derivative thermographic analysis (TGA-DTA) and Field emission scanning electron microscopy (FESEM). A fixed-bed reactor was used for the removal of HA and the effects of different experimental parameters such as HDTMA loading levels, HA solution flow rate, solution pH and eluent concentration were investigated. The results indicated that the SMZ bed with HDTMA loading of 75% of external cation exchange capacity (ECEC) at a flow rate of 2 BV/h and pH of 10 showed the greatest enhanced removal efficiency of HA while ethanol solutions (25%v/v) with feed flow rate of 2 BV/h were sufficient for complete regeneration of SMZ and desorption of HA. Measurements of surface area of SMZ indicated that a monolayer formation of the surfactant at those conditions allowed the optimum removal of HA.

  4. Simple and Rapid Method of Isolating Humic Acids from Tropical Peat Soils (Saprists

    Directory of Open Access Journals (Sweden)

    Shamsuddin Rosliza

    2009-01-01

    Full Text Available Problem Statement: The isolation (extraction, fractionation and purification of humic acids (HA from soils is laborious, time consuming and expensive. The extraction, fractionation and purification periods of these substances vary from 12 h-7 days. In order to facilitate production of HA at competitive cost, this study was conducted to investigate whether a simple and rapid procedure could be developed for isolation of HA from well decomposed tropical peat soils (Saprists. Approach: A 0.1 M KOH was used to isolate HA of air dry peat soil at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h extraction periods after which samples (liquid obtained after centrifugation at 16,211 G for 15 min were fractionated (using 6 M HCl at 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 h. Samples were purified by washing them five times using distilled water instead of using HCl, HF, and an expensive process called dialysis that requires 1 to 7 days to purify HA. Each washing time was 10 min. Standard procedures were used to ascertain the purity (Ash, C, E4/E6, carboxylic, phenolic, total acidity, and K, Ca, Mg, and Na and quantity of HA yield. Statistical Analysis System (SAS was used for statistical analysis. Results: Although there was a linear relationship between extraction period and HA yield, there was no relationship between fractionation period and yield of HA. Distilled water used in this study was effective in purifying HA of the Saprists within 1 h without altering the true chemical nature of HA as it significantly reduced the mineral content of HA. Besides, C, E4/E6, carboxylic, phenolic, and total acidity of the isolated HA were typical of standard ones. Conclusion: The isolation of HA from peat soils can be reduced to 9 h (4 h extraction period, 4 h fractionation period and 1 h purification period instead of the existing range of 1 to 7 days.

  5. Sulfonylurea herbicides – methodological challenges in setting aquatic limit values

    DEFF Research Database (Denmark)

    Rosenkrantz, Rikke Tjørnhøj; Baun, Anders; Kusk, Kresten Ole

    Lemna spp. have been shown to be up to 1000 times more sensitive to some sulfonylurea herbicides (SUs) than the green alga (e.g., P. subcapitata) which is commonly used as a representative organism for aquatic primary producers in environmental risk assessments. When the compounds are evaluated...... which the plants recovered within 5 days. Difficulties in maintaining the concentration of the test substances were encountered due to a rapid hydrolysis of certain SUs in aqueous solution. These preliminary results raise the question whether the presently used standard Lemna tests are suitable...

  6. Tritium in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products.

  7. Aquatic plants for removal of mevinphos from the aquatic environment

    Science.gov (United States)

    Wolverton, B. C.

    1975-01-01

    Fragrant waterlily (Nymphaea odorata, Ait.), joint-grass (Paspalum distichum L.), and rush (Juncus repens, Michx.) were used to evaluate the effectiveness of vascular aquatic plants in removing the insecticide mevinphos (dimethyl-1-carbomethoxy-1propen-2-yl phosphate) from waters contaminated with this chemical. The emersed aquatic plants fragrant waterlily and joint-grass removed 87 and 93 ppm of mevinphos from water test systems in less than 2 weeks without apparent damage to the plants; whereas rush, a submersed plant, removed less insecticide than the water-soil controls. Water-soil control still contained toxic levels of this insecticide, as demonstrated by fish bioassay studies, after 35 days.

  8. Particulate organic carbon and particulate humic material in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sarma, V.V.S.S.; DileepKumar, M.

    Variations in particulate organic carbon (POC) and particulate humic material (PHM) were studied in winter (February-March 1995) and intermonsoon (April-May 1994) seasons in the Arabian Sea. Higher levels of POC were found in the north than...

  9. Characterization of Humic Acid in the Chemical Oxidation Technology (II) - Characteristics by Ozonation -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Jung, Y.R. [Kangwon National University, Chunchon (Korea)

    2000-04-01

    In this paper, ozonation of humic acid in water was characterized using UV{sub 254} absorbance, TOC, Ultra Filtration and {sup 13}C-NMR. Also, carbonyl compounds in ozonated water were analyzed by GC/MS using PFBOA method. Ozonation by-products of water containing humic acid were determined as formaldehyde, acetaldehyde, acetone, glyoxal and methylglyoxal. Results of UV{sub 254} absorbance and TOC with ozonation time at humic acid 20, 100 ppm represent that decrease rate of 80% within ozonation time is 20 min and TOC removal rate of 40-50% within ozonation time is 30 min. Results for {sup 13}C-NMR and Ultra Filtration, humic acid of high molecular weight by ozonation are oxidated and decomposed so that it was conversed low molecular weight such as aldehydes, carboxylic acid. (author). 7 refs., 3 tabs., 9 figs.

  10. Basic research on interactions of heavy metals with pharmaceutical substances with relevance to the environment and residual toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Gaede, W.; Kuehnert, M.

    1986-01-01

    Studies were conducted into interactions between long-time exposure of rats to subtoxic doses of lead and copper and humic acids orally applied to them in parallel. Tests were based on established activities of erythrocytic delta-aminolaevulinic acid dehydratase and on the length of hexobarbital-induced sleep. Also investigated were the effects of heavy metal on the blood level of a sulphonamide (sulphaclomide). Lead and copper interactions under the impact of pharmaceutical substances (humic acids and sulphaclomide) produced affirmative evidence to the well-known depression of activity of delta-aminolaevulinic acid dehydratase. There was also a high probability that cytochrome-P-450 had been induced by lead and copper and, perhaps, by humic acids, as well. Enteral absorption of sulphaclomide was clearly affected by protein-denaturing and permeability-reducing action of heavy metals on the gastro-intestinal mucosa. That locally delimited action of lead and copper was widely offset under the impact of humic acids, and sulphaclomide levels in the blood were renormalised. The above findings are likely to suggest that in the context of environmental toxicology long-time exposure of warm-blooded animals to heavy metals may impair the therapeutic effectiveness of pharmaceuticals (sulphaclomide in this case).

  11. The enhancement of reproduction and biodegradation activity of eukaryiotic cells by humic acids.

    Science.gov (United States)

    Siglova, M; Cejkova, A; Masak, J; Jirku, V; Snajdr, J; Valina, O

    2003-01-01

    Fourteen samples of humic acids (HA) were screened for ability to influence reproduction and biodegradation activity of eukaryotic cells in the presence of chosen toxic pollutants. Microorganisms Candida maltosa and Rhodotorula mucilaginosa (soil isolates) were used for all tests. It was observed during our experiments that some samples of