WorldWideScience

Sample records for aquatic heavy metals

  1. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems

    Digital Repository Service at National Institute of Oceanography (India)

    Vardanyan, L.G.; Ingole, B.S.

    Aquatic macrophytes are unchangeable biological filters and they carry out purification of the water bodies by accumulating dissolved metals and toxins in their tissue. In view of their potential to entrap several toxic heavy metsls, 45 macrophytes...

  2. Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem.

    Science.gov (United States)

    Chaturvedi, Amiy Dutt; Pal, Dharm; Penta, Santhosh; Kumar, Awanish

    2015-10-01

    Water is the most important and vital molecule of our planet and covers 75% of earth surface. But it is getting polluted due to high industrial growth. The heavy metals produced by industrial activities are recurrently added to it and considered as dangerous pollutants. Increasing concentration of toxic heavy metals (Pb(2+), Cd(2+), Hg(2+), Ni(2+)) in water is a severe threat for human. Heavy metal contaminated water is highly carcinogenic and poisonous at even relatively low concentrations. When they discharged in water bodies, they dissolve in the water and are distributed in the food chain. Bacteria and fungi are efficient microbes that frequently transform heavy metals and remove toxicity. The application of bacteria and fungi may offer cost benefit in water treatment plants for heavy metal transformation and directly related to public health and environmental safety issues. The heavy metals transformation rate in water is also dependent on the enzymatic capability of microorganisms. By transforming toxic heavy metals microbes sustain aquatic and terrestrial life. Therefore the application of microbiological biomass for heavy metal transformation and removal from aquatic ecosystem is highly significant and striking. This paper reviews the microbial transformation of heavy metal, microbe metal interaction and different approaches for microbial heavy metal remediation from water bodies. PMID:26250544

  3. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.

    Science.gov (United States)

    Rezania, Shahabaldin; Taib, Shazwin Mat; Md Din, Mohd Fadhil; Dahalan, Farrah Aini; Kamyab, Hesam

    2016-11-15

    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively. PMID:27474848

  4. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    OpenAIRE

    Jing Li; Haixin Yu; Yaning Luan

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pont...

  5. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    Energy Technology Data Exchange (ETDEWEB)

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  6. Bioaccumulation of heavy metals in Mbaa River and the impact on aquatic ecosystem.

    Science.gov (United States)

    Ajima, M N O; Nnodi, P C; Ogo, O A; Adaka, G S; Osuigwe, D I; Njoku, D C

    2015-12-01

    The bioaccumulation and toxic effects of heavy metals have caused ecological damage to aquatic ecosystem. In this study, concentration of heavy metals including zinc, lead, cadmium, iron, and copper were determined in the sediment and water as well as in the muscle, gill, and intestine of two fish species (Pelmatochromis guentheri and Pelmatochromis pulcher) of Mbaa River in Southeastern Nigeria. Samples were collected at three different spots from the river, and the level of heavy metals specified above were determined by atomic absorption spectroscopy (AAS) after a modified wet digestion process. The results indicated that sediment had the highest concentration of the heavy metals investigated while water had the lowest concentration. Fish tissues showed appreciable bioaccumulation of these metals as evidenced by a higher concentration profile when compared with that of water. Furthermore, the concentration of these heavy metals in water and their bioconcentration factor in the fish were above the recommended limit by WHO and FEPA, indicating that Mbaa River along Inyishi may not be suitable for drinking nor the fish safe for human consumption. The study also reveals the use of fish as bioindicator of aquatic environment. PMID:26597816

  7. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2008-01-01

    This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some

  8. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes.

    Science.gov (United States)

    Mishra, Virendra Kumar; Tripathi, B D

    2008-10-01

    Under the present investigation effectiveness of three aquatic macrophytes Pistia stratiotes L. (water lettuce), Spirodela polyrrhiza W. Koch (duckweed) and Eichhornia crassipes were tested for the removal of five heavy metals (Fe, Zn, Cu, Cr and Cd). These plants were grown at three different concentrations (1.0, 2.0 and 5.0mgl(-1)) of metals in laboratory experiment. Result revealed high removal (>90%) of different metals during 15 days experiment. Highest removal was observed on 12th day of experiment, thereafter it decreased. Results revealed E. crassipes as the most efficient for the removal of selected heavy metals followed by P. stratiotes and S. polyrrhiza. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the water. Significant correlations between metal concentration in final water and macrophytes were obtained. Plants have accumulated heavy metals in its body without the production of any toxicity or reduction in growth. Selected plants shown a wide range of tolerance to all of the selected metals and therefore can be used for large scale removal of heavy metals from waste water. PMID:18296043

  9. Comparative Studies of the Phytoextraction Capacity of Five Aquatic Plants in Heavy Metal Contaminated Water

    OpenAIRE

    Erzsébet BUTA; Anamária TÖRÖK; Zongo, Bilassé; Maria CANTOR; Buta, Mihai; Majdik, Cornelia

    2014-01-01

    The uptake capacity of the aquatic plants (Salvinia natans Kunth., Eichhornia crassipes Mart., Lemna minor L., Elodea canadensis Michx., Pistia stratiotes L.) was analyzed in phytoextraction of Cu2+, Zn2+, and Cd2+. It was attend to study the plants capacity comparatively using mono and multimetallic systems. In particular, the chlorophyll, protein and carotenoids contents were studied during heavy metals uptake, in order to observe the stress effect on plants. The results obtained for the m...

  10. Aquatic snails from mining sites have evolved to detect and avoid heavy metals.

    Science.gov (United States)

    Lefcort, H; Abbott, D P; Cleary, D A; Howell, E; Keller, N C; Smith, M M

    2004-05-01

    Toxicants in polluted environments are often patchily distributed. Hence, rather than being passive absorbers of pollution, some organisms have evolved the ability to detect and avoid toxicants. We studied the avoidance behavior of Physella columbiana, an aquatic pulmonate snail, in a pond that has been polluted with heavy metals for more than 120 years. Populations of this snail are rare at reference sites and are only robust at heavy-metal-polluted sites. We hypothesized that the snails are able to persist because they have evolved the ability to minimize their exposure to metals by actively avoiding metals in their environment. Using a Y-maze flow tank, we tested the avoidance behavior of snails to heavy-metal-polluted sediments and single-metal solutions of cadmium, zinc, or lead. We also tested the avoidance behaviors of the snails' laboratory-reared offspring raised in nonpolluted conditions. In addition, we tested the avoidance behavior of a small population of snails from a reference pond. Although all the snails we tested were able to detect low concentrations of heavy metals, we found that snails from the polluted site were the most sensitive, that their offspring were somewhat less sensitive, and that snails from the reference site were the least sensitive. This suggests that the ability of polluted-site snails to avoid heavy metals is both genetic and environmental. The concentrations of metals avoided by the snails from the polluted site were below the levels found at hot spots within their natal pond. The snails may be able to persist at this site because they decrease their exposure by moving to less-polluted sections of the pond. One application of our findings is the use of aquatic snails and our Y-maze design as an inexpensive pollution detector. Environmental pollutants such as lead, zinc, and arsenic are a problem throughout the world. People in underdeveloped countries often lack sophisticated pollution detection devices. We have developed a

  11. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  12. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-12-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  13. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, V.K.; Upadhyaya, A.R.; Pandey, S.K.; Tripathi, B.D. [Banaras Hindu University, Varanasi (India)

    2008-03-15

    Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.

  14. Relationship between aquatic insects and heavy metals in an urban stream using multivariate techniques

    International Nuclear Information System (INIS)

    In the study, the relationship between some aquatic insect species (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and some heavy metals (cadmium, lead, copper, zinc, nickel, iron and manganese) and boron were assessed using data obtained from the Ankara Stream, which flows through Ankara, the capital city of Turkey and receives high organic and industrial wastes. Sampling was carried out monthly along the Ankara Stream in 1991. Environmental data were used to explain biological variation using multivariate techniques provided by the program canonical correspondence analysis ordination. The ordination method canonical correspondence analysis was applied to evaluate the relationships between environmental variables and distribution of aquatic insect larvae. Data sets were classified by two way indicator species analysis. In this study, aquatic insecta communities have been shown by canonical correspondence analysis ordination as related to total hardness, p H, cadmium, lead, copper, zinc, nickel, iron, manganese and boron. Cadmium, lead, copper and boron exceeded limits of the United States Environmental Protection Agency criteria for aquatic life. Trichopteran, Dinarthrum iranicum was an indicator of two way indicator species analysis and was placed close to the arrow representing copper. Odonate, Aeschna juncea was an indicator of two way indicator species analysis in site 10 and was placed close to the arrows representing manganese, lead, and nickel. Trichopteran, Cheumatopsyche lepida and odonate, Platycnemis pennipes were indicators of two way indicator species analysis for sites 6, 7, 11, 14, 15, 18 and were placed close to the arrows representing cadmium, boron, iron and total hardness.

  15. Applying physicochemical approaches to control phosphogypsum heavy metal releases in aquatic environment.

    Science.gov (United States)

    Ammar, Rawaa; El Samrani, Antoine G; Kazpard, Véronique; Bassil, Joseph; Lartiges, Bruno; Saad, Zeinab; Chou, Lei

    2013-12-01

    One of the most important sources of solid waste in the Mediterranean Basin ecosystem originated from the phosphate fertilizer industries, which discharge phosphogypsum (PG) directly into aquatic environments or are stacked on stockpiles. The present study investigates metal release from PG under the influence of variable pH, increasing PG mass content, and complexing organic matter ligands. Major ions from PG leachates, grain size and charge, main functional groups along with metal leachability (Pb, Cd, Cr, Cu, and Zn) were determined using ion chromatography, laser diffraction, zetameter, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy, respectively. The complete dissolution of PG recorded is at 2 g/L. Saturation and supersaturation with respect to PG may occur at concentrations of 3 and 4 g/L, respectively, revealing a clustering phenomenon leading to heavy metal encapsulation within the aggregates. Organic ligands such as citrate may trigger the cationic exchange within the PG suspension leading to ion release. As these factors are considered as specific process involving the release of contaminants from PG during storage under natural conditions, this study could set the foundations for PG remediation in aquatic environment. Organic ligands under controlled pH conditions could be utilized in treating fertilizer industrial wastes by taking into consideration the particularity of the receiving area, thus decreasing metal hazardous impact on natural media. PMID:23764982

  16. Comparative Studies of the Phytoextraction Capacity of Five Aquatic Plants in Heavy Metal Contaminated Water

    Directory of Open Access Journals (Sweden)

    Erzsébet BUTA

    2014-06-01

    Full Text Available The uptake capacity of the aquatic plants (Salvinia natans Kunth., Eichhornia crassipes Mart., Lemna minor L., Elodea canadensis Michx., Pistia stratiotes L. was analyzed in phytoextraction of Cu2+, Zn2+, and Cd2+. It was attend to study the plants capacity comparatively using mono and multimetallic systems. In particular, the chlorophyll, protein and carotenoids contents were studied during heavy metals uptake, in order to observe the stress effect on plants. The results obtained for the monometallic system showed that Salvinia natans Kunth. accumulated the highest quantity of Cu2+ (4.72 mg/g, Zn2+ (2.23 mg/g and Cd2+ (1.90 mg/g. The leaves of Lemna minor L. accumulated the highest concentration of Cu2+ (10.80 mg/g and Cd2+ (2.78 mg/g in multimetallic system. The water lettuce (Pistia stratiotes L. translocated the highest quantity of Zn2+ in its roots (4.80 mg/g. The chlorophyll and the carotenoids levels decreased under the stress of heavy metals in both systems, while protein content increased under the influence of Cu2+ and Cd2+, but decreased for Zn2+.  The studied hydrophytes proved to be useful in the uptake of heavy metals in monometallic system and much more effective in the multimetallic system and showed great potential for further applications in the industrial and commercial wastewater treatments.

  17. Thiols as biomarkers of heavy metal tolerance in the aquatic macrophytes of Middle Urals, Russia.

    Science.gov (United States)

    Borisova, Galina; Chukina, Nadezda; Maleva, Maria; Kumar, Adarsh; Prasad, M N V

    2016-10-01

    Aquatic macrophytes, viz. Sagittaria sagittifolia L., Lemna gibba L., Elodea canadensis Michx., Batrachium trichophyllum (Chaix.) Bosch., Ceratophyllum demersum L. and Potamogeton sp. (P. perfoliatus L., P. alpinus Balb., P. crispus L., P. berchtoldii Fieber, P. friesii Rupr., P. pectinatus L.) were collected from 11 sites for determining their metal accumulation and thiols content. Cu(2+), Ni(2+), Mn(2+), Zn(2+), and Fe(3+) exceeded maximum permissible concentrations in chosen sites. Significant transfer of metals from water to leaves is observed in the order of Ni(2+) < Cu(2+) < Zn(2+) < Fe(3+) < Mn(2+). The maximum variation of bioconcentration factor was noticed for manganese. The accumulation of heavy metals in leaves was correlated with non-protein and protein thiols, confirming their important role in metal tolerance. The largest contribution was provided by Cu(2+) (on the average r = 0.88, p < 0.05), which obviously can be explained as an important role of these ions in thiols synthesis. Increased synthesis of thiols in the leaves allows the usage of SH-containing compounds as biomarkers of metal tolerance. Considering accumulation of metals and tolerance, B. trichophyllum, C. demersum and L. gibba are the most suitable species for phytoremediation of highly multimetal contamination, while E. canadensis and some species of Potamageton are suitable for moderately metal-polluted sites. PMID:27167595

  18. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes

    Directory of Open Access Journals (Sweden)

    Ruchita Dixit

    2015-02-01

    Full Text Available Heavy metals are natural constituents of the environment, but indiscriminate use for human purposes has altered their geochemical cycles and biochemical balance. This results in excess release of heavy metals such as cadmium, copper, lead, nickel, zinc etc. into natural resources like the soil and aquatic environments. Prolonged exposure and higher accumulation of such heavy metals can have deleterious health effects on human life and aquatic biota. The role of microorganisms and plants in biotransformation of heavy metals into nontoxic forms is well-documented, and understanding the molecular mechanism of metal accumulation has numerous biotechnological implications for bioremediation of metal-contaminated sites. In view of this, the present review investigates the abilities of microorganisms and plants in terms of tolerance and degradation of heavy metals. Also, advances in bioremediation technologies and strategies to explore these immense and valuable biological resources for bioremediation are discussed. An assessment of the current status of technology deployment and suggestions for future bioremediation research has also been included. Finally, there is a discussion of the genetic and molecular basis of metal tolerance in microbes, with special reference to the genomics of heavy metal accumulator plants and the identification of functional genes involved in tolerance and detoxification.

  19. Nuclear microprobe study of heavy metal uptake and transport in aquatic plant species

    International Nuclear Information System (INIS)

    Complete text of publication follows. In aquatic ecosystems water contamination by trace metals is one of the main types of pollution that may stress the biotic community. Although some metals are needed as micronutrients for autotrophic organisms, they can have toxic effects at higher concentration. Aquatic plants can take up large quantities of nutrients and metals from the environment, they can live under extreme environmental conditions therefore they are being increasingly used in remediation processes to reduce contamination. Besides the usually applied bulk analytical techniques quantitative micro-PIXE investigation of the macro, micro and trace element distribution within the root can lead to a better understanding of the heavy metal up-take, transport and detoxification mechanisms of the plants and thus helps to select the proper species for the remedial activity, or possibly to increase the efficiency of the remediation. In this work we determined the elemental distributions in root cross sections and along the roots of reed (Phragmaties australis), bulrush (Typha angustifolia) and sea club-rush (Bolboschoemus maritimus) using the Debrecen nuclear microprobe. The plants originate from the dried units of the wastewater sedimentation pond system of the tannery of Kunszentmarton. 1500 m3 waste water containing lime, sodium-salts, ammonium-salts, chromium-salts, sodium, chlorine and magnesium ions, sulphur and organic material was released to the pond system every day till 1988. The chosen species are the dominant species of the area, composing 85-90% of the green plant covering. This heavily contaminated area has been regularly monitored by the colleagues of the Dept. of Applied Ecology of the Univ. of Debrecen since 1998. They focused their work the potentially toxic heavy metal chromium. In order to conserve the samples in the living state, the roots were frozen in liquid nitrogen. 16-20 μm thick cross sections were made with cryo-microtome, and all the

  20. The levels of heavy metals in water and all aquatic in Ismailia canal, (Egypt) compared with the international permissible limits and accumulative studies for these metals in biota

    International Nuclear Information System (INIS)

    The concentration of Pb, Cd, Cu, Zu, Ni, Fe and Mn were determined in water, and in different organs of fishes, bivalves, snails and plants in Ismailia canal, Egypt. Moreover, accumulation of the investigated heavy metals by aquatic biota in Ismailia canal and the concentration factor values for this accumulation were calculated to qualify the degree of pollution and compare these levels with the international permissible limits. Results showed that Pb, Cd, Cu and Zn were exceeded the permissible limits especially in the industrial area of Abu- Zaabal, Kalubia governorate. The relative order of heavy metal levels in the canal water was: Fe>Mn>Pb>Zn>Ni>Cd>Cu.Accumulation of heavy metals by the aquatic biota was determined. The accumulation of heavy metals by common snails, namely physa acuta and biomphalaria alexandrina and the bivalve oyster Caelatura (caelatura) companyoi was found mainly in the edible parts (soft parts), whereas, the accumulation by their shells, which are mainly formed of calcium carbonate was via adsorption and surface complexation, since all the accumulated heavy metals were released by adding 0.1 M HCl for few minutes . Moreover, accumulation of heavy metals by common plants namely water hyacinth plant (Eichhornia crassipes) and freshwater weeds were determined. It was found that the accumulation of heavy metals was higher in roots than in leaves. On the other hand, the accumulation of heavy metals by common fish namely, Oreochromis niloticus (Nile Tilapia) was measured in its organs : muscles, liver, gills and gonads. It was found that there is variation of distribution of heavy metals among fish organs. Since the high accumulation of heavy metals among the investigated biota, they can be used as biological indicator for pollution of heavy metals in aquatic ecosystem . The average values and standard deviation for all measurements were determined. Data obtained were compared with the permissible concentrations of the environmental protection

  1. Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Pikula, J.; Zukal, Jan; Adam, V.; Bandouchová, H.; Beklová, M.; Hájková, P.; Horáková, J.; Kizek, R.; Valentíková, L.

    2010-01-01

    Roč. 29, č. 3 (2010), s. 501-506. ISSN 0730-7268. [International Workshop on Aquatic Toxicology and Biomonitoring /1./. Vodňany, 27.08.2008-29.08.2008] Institutional research plan: CEZ:AV0Z60930519 Keywords : Microchiroptera * insect foraging * metallic elements * bioaccumulation Subject RIV: EG - Zoology Impact factor: 3.026, year: 2010

  2. Determination of antimicrobial and heavy metal resistance profiles of some bacteria isolated from aquatic amphibian and reptile species.

    Science.gov (United States)

    Hacioglu, Nurcihan; Tosunoglu, Murat

    2014-01-01

    The aim of the present study was to determine the level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from aquatic animals (Lissotriton vulgaris, Pelophylax ridibundus, Emys orbicularis, Mauremys rivulata, and Natrix natrix) in Turkey (Kavak Delta). A total of 153 bacteria have been successfully isolated from cloaca and oral samples of the aquatic amphibians and reptilians which were found, namely, Aeromonas sp. (n = 29), Plesiomonas sp. (n = 7), Vibrio sp. (n = 12), Citrobacter sp. (n = 12), Enterobacter sp. (n = 11), Escherichia sp. (n = 22), Klebsiella sp. (n = 22), Edwardsiella sp. (n = 6), Hafnia sp. (n = 1), Proteus sp. (n = 19), Providencia sp. (n = 8), and Pseudomonas sp. (n = 4). In terms of antibiotic and heavy metal susceptibility testing, each isolate was tested against 12 antibiotics and 4 metals. There was a high incidence of resistance to cefoxitin (46.40 %), ampicillin (44.44 %), erythromycin (35.29 %), and a low incidence of resistance to gentamicin (6.53 %), kanamycin (8.49 %), chloramphenicol (9.15 %), and cefotaxime (10.45 %). The multiple antibiotic resistance index of each bacterial species indicated that bacteria from raised amphibians and reptiles have been exposed to tested antibiotics, with results ranging from 0 to 0.58. Most isolates showed tolerance to different concentrations of heavy metals, and minimal inhibition concentrations ranged from100 to >3,200 μg/mL. According to these results, a significant occurrence of bacteria in the internal organs of reptiles and amphibians, with a high incidence of resistance against antibiotics and heavy metals, may risk aquatic animals and the public health. These data appoint the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environment protection programs for amphibian and reptile species. PMID:23959346

  3. Toxicity of certain heavy metals on fish in the aquatic environment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On the earth's crust there are 59 heavy metals of which 17 are considered toxic to biological communities. Here in Alaska, we have thus far considered the following...

  4. Heavy metals in sediments, soils, and aquatic plants from a secondary anabranch of the three gorges reservoir region, China.

    Science.gov (United States)

    Gao, Jun-Min; Sun, Xiu-Qian; Jiang, Wen-Chao; Wei, Yun-Mei; Guo, Jin-Song; Liu, Yuan-Yuan; Zhang, Ke

    2016-06-01

    We investigated the occurrence of cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), Znic (Zn), iron (Fe), manganese (Mn), and magnesium (Mg) in sediments, as well as in related soils and aquatic plants in the Liangtan River, a typical secondary anabranch of the Yangtze River in the Three Gorges Reservoir Region (TGRR) of China. We found that sediments accumulated more metals than soils and aquatic plants. Concentrations of the nine metals in sediments and soils followed the same sequence, while their concentrations in aquatic plants followed a different sequence. Potential adverse effects of contaminated sediments on benthic fauna were evaluated, and the results showed that the toxic effect on benthic organisms followed the sequence Zn > Ni > Cr > Cu > Cd > Pb. The potential ecological risk index analysis indicated that Cd in sediments had considerable ecological risk, whereas Cr, Cu, Zn, Ni, and Pb had low ecological risk. The potential ecological risk index (RI) of the heavy metals in sediments of the Liangtan River was 174.9, indicating moderate ecological risk. The transfer factor trend of metals for aquatic plants showed that Cd and Ni had the most and least accumulation, respectively. For Cu, Cd, Mg, Pb, and Cr, a significant positive correlation of the metal concentrations was observed between sediments and soils, but no correlations (excluding Cr) were detected between sediments and aquatic plants. Our study indicated that anthropogenic input may be the primary source of metal contamination in the Liangtan River, and that Zn and Cd pollution in the Liangtan River should be further explored. PMID:27055891

  5. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent.

    Science.gov (United States)

    Mishra, Virendra Kumar; Upadhyay, Alka Rani; Pandey, Sudhir Kumar; Tripathi, B D

    2008-06-01

    Five heavy metals Cu, Cd, Mn, Pb and Hg were found in high concentration from three sampling sites located in Asia's largest anthropogenic lake Govind Ballabh Pant GBP Sagar. Concentrations of these heavy metals were measured in Water, bottom sediment and in different parts of the aquatic macrophytes collected from the reservoir. Plants collected from the lake were Eichhornia crassipes, Azolla pinnata, Lemna minor, Spirodela polyrrhiza, Potamogeton pectinatus, Marsilea quadrifolia, Pistia stratiotes, Ipomea aquqtica, Potamogeton crispus, Hydrilla verticillata and Aponogeton natans. These plants have shown the high concentrations of Cu, Cd, Mn, Pb and Hg in their different parts due to bioaccumulation. In general plant roots exhibited higher concentrations of heavy metals than corresponding sediments. A comparison between different morphological tissues of the sampled plants revealed the metal concentration in following order roots > leaves. Analyses of bottom sediment indicated the higher concentrations of Cd, Mn, Cu and Pb. Strong positive correlations were obtained between the metals in water and in plants as well as between metal in sediment and in plants. Indicating the potential of these plants for pollution monitoring of these metals. PMID:17674134

  6. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals

    International Nuclear Information System (INIS)

    We studied heavy metal stress responses of two Fontinalis species, F. antipyretica and F. dalecarlica, collected from two habitats in Germany and Canada. The capacities of the two species for extracellular adsorption (biosorption) and intracellular uptake (bioaccumulation) of Cadmium (Cd2+) were investigated in the laboratory. Time-dependent Cd2+ adsorption by cell wall and intracellular uptake differed significantly between the two species. These differences were related to the number of Cd2+ binding sites, resulting from differences in leaflet surface and cell wall composition. Glutathione (GSH) levels in response to Cd2+ exposure were monitored over a 10-day period. GSH synthesis differed significantly between the two species. Both Fontinalis species appear to be suitable for heavy metal biomonitoring in aquatic habitats

  7. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure. PMID:24925182

  8. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites.

    Directory of Open Access Journals (Sweden)

    Marisa Tellez

    Full Text Available Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment.

  9. Heavy Metal Accumulation as Phytoremediation Potential of Aquatic Macrophyte, Monochoria vaginalis (Burm.F. K. Presl Ex Kunth

    Directory of Open Access Journals (Sweden)

    Tulika Talukdar

    2015-03-01

    Full Text Available Bioaccumulation potential of six ecotypes, collected from six different industrial zones of lower Indo-Gangetic basin of West Bengal, India,of Monochoria vaginalis, commonly known as oval-leafed pondweed has been investigated based on chromium (Cr, cadmium (Cd andCopper (Cu accumulation pattern in different plant organs. Bioaccumulation potential was assessed by bioaccumulation factors (BFs-leavesmetal concentration/soil metal concentration, bioconcentration factors (BCFs- roots metal/soil metal, transfer factors (TFs-leaves +rhizomes/roots and enrichment factors (EFs-metals in edible parts/soil metal. Accumulation pattern significantly differed among ecotypes,and accumulation in plant organs was highly metal-specific. BFs for Cr and Cd were >>1 in most of the ecotypes while high TFs (>>1 werenoticed in six ecotypes for Cr and Cu. BCFs was >>1 in all the ecotypes for Cd accumulation only. EFs values for the three metals hoveredaround 1 but it was > 1.0 for Cu in all the six ecotypes. The results suggested that Cr and Cu predominantly accumulated in leaves and rhizomeswhile Cd was predominantly sequestered in roots of M. vaginalis ecotypes. Cu, a redox active metal, showed higher capability than Cd and Crto accumulate in edible parts. In the present study, potential plant parts in M. vaginalis have been identified as bioaccumulation organs withoutany apparent symptoms of toxicity which can be used as phytoremediation of heavy metal contamination in aquatic ecosystems of lower Indo-Gangetic basin of India.

  10. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    significantly raised the amount of heavy metals and radionuclides in it. Also, these activities are continuously increasing the area of the contaminated sites. In this context, an attempt has been made to review different modes of the phytoremediation and various terrestrial and aquatic plants which are being used to remediate the heavy metals and radionuclide-contaminated soil and aquatic systems. Natural and synthetic enhancers, those hasten the process of metal adsorption/absorption by plants, are also discussed. The article includes 216 references. PMID:25277712

  11. Multi-Elemental Inductively Coupled Plasma-Optical Emission Spectroscopic Calibration Problems of the Sequential Extraction Procedure for the Fractionation of the Heavy Metal Content from Aquatic Sediments

    OpenAIRE

    Heltai György; Fekete Ilona; Halász Gábor; Kovács Katalin (1978-) (biokémikus); Horváth Márk; Takács Anita; Boros Norbert; Győri Zoltán (1948-) (vegyész)

    2015-01-01

    For the characterisation of the environmental mobility of heavy metal contamination in aquatic sediments, the EU Bureau of Reference has proposed a fractionation by sequential extraction procedure. For its validation, the CRM-701 sample is available containing Cd, Cr, Cu, Ni, Pb, and Zn. In this paper, the matrix-matched calibration problems are presented. A multi-elemental inductively coupled plasma-optical emission technique is employed for the detection of heavy metals in the extracts. It ...

  12. IMPACT OF DIFFERENT ENVIRONMENTAL PARAMETERS UPON THE SUSCEPTIBILITY TO HEAVY METALS SALTS IN ESCHERICHIA COLI AQUATIC STRAINS

    Directory of Open Access Journals (Sweden)

    Emilia Panus

    2012-06-01

    Full Text Available Purpose: to investigate the relationships among the expression of susceptibility to heavy metal salts, different incubation temperatures and chemical composition of the culture media in E. coli aquatic strains. 100 strains of E. coli isolated from Black Sea were investigated for the expression of resistance to different bivalent metals (Cu, Co, Mn, Zn, Ni compounds. The experiments were performed comparatively at different incubation temperatures (22°C, 37°C and 44°C in aerobic and anaerobic conditions, NaCl concentrations (from 0 to 10%, glucose (1.5 and 3% and pH (5.0, 7.2 and 9.6. The metals susceptibility patterns varied with the tested parameter and the bivalent metal compounds. The temperature growth induced an increase in susceptibility of the tested strains to Zn (from 85% at 22°C, 20% at 37°C and 100% at 44°C, Mn (from 50% at 22°C, 15% at 37°C and 75% at 44°C, Cu (from 10% at 22°C, 0% at 37°C and 55% at 44°C, Co (from 10% at 22°C, 0% at 37°C and 30% at 44°C, Ni (from 0% at 22°C, 0% at 37°C and 5% at 44°C. Concerning the influence of salinity, the highest 10% NaCl induced to occurrence of susceptibility to all tested metals, followed by 2, 6 and 7% NaCl with susceptibility to 4 of 5 metals. The highest susceptibility levels to Zn and Mn was expressed in inverse order to 3, 4, 6, 7, 0, 2 and 0.5 % NaCl, while to Cu at 3, 2 and 7% NaCl. The tested strains were very resistant to Ni and Co, at the majority of tested salinities. Concerning the relationship between the chemical composition of the culture medium and the susceptibility levels to metals, the higher glucose concentration of 3% and the alkaline pH induced higher rates of susceptibility Mn, Zn and Ni. In conclusion the expression of heavy metals susceptibility features of the E. coli strains is strongly influenced by the incubation temperature and salinity, demonstrating the role of these parameters in the selection of resistance genes in the aquatic strains.

  13. Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing

    International Nuclear Information System (INIS)

    Through analyses of water and sediments, we investigate tungsten and 14 other heavy metals in a stream receiving treated effluents from a semiconductor manufacturer-clustered science park in Taiwan. Treated effluents account for ∼50% of total annual river discharge and <1% of total sediment discharge. Dissolved tungsten concentrations in the effluents abnormally reach 400 μg/L, as compared to the world river average concentration of <0.1 μg/L. Particulate tungsten concentrations are up to 300 μg/g in suspended and deposited sediments, and the corresponding enrichment factors are three orders of magnitude higher than average crust composition. Surprisingly, the estimated amount of tungsten exported to the adjacent ocean is 23.5 t/yr, which can approximate the amount from the Yangtze River should it be unpolluted. This study highlights the urgency of investigating the biological effect of such contamination.

  14. Construction of a self- luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    Directory of Open Access Journals (Sweden)

    Keila eMartin-Betancor

    2015-03-01

    Full Text Available A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg and monovalent Ag. Chemical modelling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs, Maximum Permissive Concentrations (MPCs and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive to 1.54-5.35 µM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45-50-fold induction, Hg2+ (30-fold and finally Co2+ (20-fold. The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.

  15. Construction of a self-luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments.

    Science.gov (United States)

    Martín-Betancor, Keila; Rodea-Palomares, Ismael; Muñoz-Martín, M A; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-01-01

    A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA) to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg, and monovalent Ag. Chemical modeling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs), Maximum Permissive Concentrations (MPCs) and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg(2+) (the ion to which the bioreporter was most sensitive) to 1.54-5.35 μM for Cd(2+) with an order of decreasing sensitivity as follows: Hg(2+) > Cu(2+) > Ag(+) > Co(2+) ≥ Zn(2+) > Cd(2+). However, the maximum induction factor reached 75-fold in the case of Zn(2+) and 56-fold in the case of Cd(2+), implying that Zn(2+) is the preferred metal in vivo for the SmtB sensor, followed by Cd(2+), Ag(+) and Cu(2+) (around 45-50-fold induction), Hg(2+) (30-fold) and finally Co(2+) (20-fold). The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag, and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments. PMID:25806029

  16. Speciation of Aquatic Heavy Metals in Humic Substances by$^{111m}$Cd/$^{199m}$Hg-TDPAC

    CERN Multimedia

    2002-01-01

    Humic substances are ubiquitous in waters and soils and act as complexing agents for different heavy metals, e.g. Cd, Hg. Toxicity, reactivity, fixation and migration are therefore strongly influenced by the interactions between heavy metals and humic substances. Humic substances derive from postmortal materials such as rotten plants, have dark colours and usually a molecular weight between 500 and 10~000 Dalton. Complex formation studies with different heavy metal ions indicate at least two different kinds of metal sites. Usually, these studies are restricted to heavy metal concentrations 2 to 3 orders of magnitude higher than the natural heavy metal abundance (i.e. 10$^{-10}$ molar). This serious limitation can be overcome by the use of suitable radiosotope techniques capable of metal speciation at extreme sensitivity levels such as TDPAC (Time Differential Perturbed Angular Correlation of~$\\gamma$-rays). Thus, we studied the interaction of heavy metals with humic substances by monitoring the nuclear quadru...

  17. Methods for processing aquatic mosses used as monitors of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Wehr, J.D.; Empain, A.; Mouvet, C.; Say, P.J.; Whitton, B.A.

    1983-01-01

    An evaluation is reported of methods used to prepare mosses for analysis when required for monitoring metal pollution. Fontinalis antipyretica and Rhynchostegium riparioides taken from the River Hoegne, Belgium, were used for the study. The stages in preparation studied critically were the storage of the moss after it had been collected from the river, washing, choice of which particular fraction to use and the conditions for final drying prior to digestion. For any one particular treatment, the concentrations of metals analysed (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb) were usually lower in Fontinalis than Rhynchostegium. Metal concentrations found as a result of the various treatments differed markedly for some metals, including Zn, Cd and Pb. However not one sequence of methods is ideal for all purposes. Criteria that need to be considered when selecting methods include the time and facilities available and whether the moss is to be used for monitoring long-term or short-term pollution.

  18. Dynamics of toxic heavy metals in different compartments of a highly urbanized closed aquatic system.

    Science.gov (United States)

    Gupta, Bina; Kumar, Rahul; Rani, Manviri; Agarwal, Tripti

    2012-03-01

    This paper deals with the dynamics of chromium, nickel, copper and lead among the different components namely water, surface sediments, submerged and free floating macrophytes and fish of the twin manmade lakes, Upper and Lower lakes, of Bhopal (M.P., India). Some basic parameters of water and sediment have also been studied. The basin of the lake system is densely populated and the water is used for various purposes including drinking. Ni and Pb along with nitrate in both lakes are significantly higher than the drinking water quality criteria of USEPA. The concentration of the metals in the sediments is noticeably higher than that present in the adjoining rock, particularly Ni and Pb. There is a significant uptake of metals by the macrophytes (Eichhornia crassipes and Hydrilla verticillata) and fish (Labeo rohita and Oreochromis niloticus) mainly in summer. The fish of Lower lake (O. niloticus) is unfit for human consumption. The data have been statistically treated. Principle component analysis and cluster analysis were performed to define the origin of metals and to assess the relationship among the sites. Overall the Lower lake is more polluted than the Upper lake. In aggregate, the lake system is under an environmental stress due to certain practices. PMID:22290427

  19. Assessment of heavy metals in clarins buthopogon (fish) parts and nymphaea lotus (aquatic plant) in river niger, delta state of nigeria

    International Nuclear Information System (INIS)

    River Niger, the largest river in Nigeria flows southwards across Asaba and Onitsha to the Delta areas. The clarins buthopogon (fish) and Nymphaea lotus (aquatic plant) from the River Niger at Asaba were sampled for analysis using Atomic Absorption Spectrometer (AAS). The concentration of the heavy metals from the three parts of the fish (head, muscle and tail) had the following ranges: Cr, 8.90-9.70, Cu, 2.90-3.90, Fe, 6.00-113.20; Mg, 138.00-3398; Ni, 5.48-14.68, Pb, 0.20-1.60; Hg, 0.38-2.00 and Cd, 1.41-1.78 mg kg/sup -1/ on dry weight basis. These values were higher than those obtained in Kaduna River and Mediterranean coaster waters. The concentrations in Nymphaea Lotus (aquatic plant) were extremely high (Cr, 20.30; Cu, 10.70; Fe, 569.20; Mg, 6798.00; Ni, 72.08; Pb, 6.00; Hg, 51.30 and Cd, 31.10 mg kg/sup -1/ dry weight) and were also higher than those of fish part. The bioaccumulation of heavy metals in fish parts and aquatic plant indicated pollution, as per WHO and FEPA standards for aquatic life. (author)

  20. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China.

    Science.gov (United States)

    Xu, Daoquan; Wang, Yinghui; Zhang, Ruijie; Guo, Jing; Zhang, Wei; Yu, Kefu

    2016-05-01

    The distribution and speciation of several heavy metals, i.e., As, Cd, Cr, Cu, Hg, Pb, and Zn, in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China, were studied comparatively. The mean contents of Cd, Cu, Hg, Pb, and Zn were 1.72, 38.07, 0.18, 51.54, and 142.16 mg/kg, respectively, which were about 1.5-6 times higher than their corresponding regional sediment background values. Metal speciation obtained by the optimized BCR protocol highlighted the bioavailable threats of Cd, Cu, and Zn, which were highly associated with the exchangeable fraction (the labile phase). Hierarchical cluster analysis indicated that in sediments, As and Cr were mainly derived from natural and industrial sources, whereas fertilizer application might lead to the elevated level of Cd. Besides, Cu, Hg, Pb, and Zn were related to traffic activities. The effects-based sediment quality guidelines (SQGs) showed that Hg, Pb, and Zn could pose occasional adverse effects on sediment-dwelling organisms. However, based on the potential ecological risk assessment (PER) and risk assessment code (RAC), Cd was the most outstanding pollutant and posed the highest ecological hazard and bioavailable risk among the selected metals. Moreover, the metal partitioning between water and sediments was quantified through the calculation of the pseudo-partitioning coefficient (K P), and result implied that the sediments in this karst aquatic environment cannot be used as stable repositories for the metal pollutants. PMID:26832870

  1. Effects of chronic γ-irradiation on the aquatic microbial microcosm: equi-dosimetric comparison with effects of heavy metals

    International Nuclear Information System (INIS)

    Effects of chronic γ-irradiation were investigated in the aquatic microcosm consisting of flagellate algae Euglena gracilis as producers, ciliate protozoa Tetrahymena thermophila as consumers and bacteria Escherichia coli as decomposers. At 1.1 Gy day−1, no effects were observed. At 5.1 Gy day−1, cell densities of E. coli showed a tendency to be lower than those of controls. At 9.7 and 24.7 Gy day−1, population decrease was observed in E. coli. E. gracilis and T. thermophila died out after temporal population decrease and subsequent population increase in T. thermophila. It is likely that this temporal population increase was an indirect effect due to interspecies interactions. Effect dose rates of γ-rays were compared with effect concentrations of some metals using the radiochemoecological conceptual model and the effect index for microcosm. Comparison of these community-level effects data with environmental exposure data suggests that ionising radiation, gadolinium and dysprosium have low risks to affect aquatic microbial communities while manganese, nickel and copper have considerable risks. Effects of chronic irradiation were smaller than those of acute irradiation, and an acute to chronic ratio was calculated to be 28 by dividing an acute dose by chronic daily dose rate at which the effect index was 10%. This ratio would be useful for community-level extrapolation from acute to chronic radiation effects. - Highlights: ► Effects of chronic γ-irradiation were investigated in the microbial microcosm. ► A possible indirect effect due to interspecies interactions was detected. ► Effect dose rates of γ-rays were compared with effect concentrations of some metals. ► It is likely that radiation have low risks to affect aquatic microbial communities. ► Effects of chronic γ-irradiation were smaller than those of acute one.

  2. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India.

    Science.gov (United States)

    Mishra, Swayamprabha; Mohanty, Monalisa; Pradhan, Chinmay; Patra, Hemanta Kumar; Das, Ritarani; Sahoo, Santilata

    2013-05-01

    The present investigation aims to assess the phytoremediation potential of six aquatic macrophytes, viz. Eichhornia crassipes, Hydrilla verticillata, Jussiaea repens, Lemna minor, Pistia stratiotes and Trapa natans grown in paper mill effluent of JK Paper mill of Rayagada, Orissa, for remediation of heavy metals. The experiment was designed in pot culture experiments. Assessment of physico-chemical parameters of paper mill effluent showed significant decrease in pH, conductivity, total dissolved solids, total suspended solids, chlorine, sulphur, biological and chemical oxygen demand after growth of macrophytes for 20 days. Phytoremediation ability of these aquatic macrophytic species for copper (Cu) and mercury (Hg) was indicated by assessing the decrease in the levels of heavy metals from effluent water. Maximum reduction (66.5 %) in Hg content of untreated paper mill effluent was observed using L. minor followed by T. natans (64.8 %). L. minor showed highest reduction (71.4 %) of Cu content from effluent water followed by E. crassipes (63.6 %). Phytoextraction potential of L. minor was remarkable for Hg and Cu, and bioaccumulation was evident from bioconcentration factor values, i.e. 0.59 and 0.70, respectively. The present phytoremediation approach was considered more effective than conventional chemical treatment method for removing toxic contaminants from paper mill effluent. PMID:22993029

  3. Research on Interrelationship between some Species of Freshwater Fish and Helmintic Larvae within Aquatic Ecosystems Polluted with Heavy Metals

    OpenAIRE

    Laura Daniela Urdeş; Cristiana Diaconescu; Geanina Vlase; Daniela Ianiţchi; Ştefan Diaconescu; Marius Hangan

    2010-01-01

    The objective of this study was to investigate the ability of some larvae of cestodes and nematodes which live infreshwater fish (intermediate hosts), to exhibit an uptake of heavy metals.According to some scientifical papers treating this subject, only adult worms were able to absorb successfully heavymetals within their hosts. Furthermore, it is believed that only the adults would act as biofilters and consequently astrustworthy indicators of environmental pollution.This study, carried out ...

  4. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico.

    Science.gov (United States)

    Mendoza-Carranza, Manuel; Sepúlveda-Lozada, Alejandra; Dias-Ferreira, Celia; Geissen, Violette

    2016-03-01

    Despite the increasing impact of heavy metal pollution in southern Mexico due to urban growth and agricultural and petroleum activities, few studies have focused on the behavior and relationships of these pollutants in the biotic and abiotic components of aquatic environments. Here, we studied the bioaccumulation of heavy metals (Cd, Cr, Ni, Pb, V, Zn) in suspended load, sediment, primary producers, mollusks, crustaceans, and fish, in a deltaic lagoon habitat in the Tabasco coast, with the aim to assess the potential ecological risk in that important wetland. Zn showed the highest concentrations, e.g., in suspended load (mean of 159.58 mg kg(-1)) and aquatic consumers (15.43-171.71 mg kg(-1)), particularly Brachyura larvae and ichthyoplankton (112.22-171.71 mg kg(-1)), followed by omnivore Callinectes sp. crabs (113.81-128.07 mg kg(-1)). The highest bioconcentration factors (BCF) of Zn were observed for planktivore and omnivore crustaceans (3.06-3.08). Zn showed a pattern of distribution in the food web through two pathways: the pelagic (where the higher concentrations were found), and the benthic (marsh plants, sediment, mollusk, fish). The other heavy metals had lower occurrences in the food web. Nevertheless, high concentrations of Ni and Cr were found in phytoplankton and sediment (37.62-119.97 mg kg(-1)), and V in epiphytes (68.64 mg kg(-1)). Ni, Cr, and Cd concentrations in sediments surpassed international and national threshold values, and Cd entailed a "considerable" potential risk. These heavy metals are most likely transferred into the food web up to fishes through the benthic pathway. Most of the collected fishes are residents in this type of habitat and have commercial importance. Our results show that the total potential ecological risk in the area can be considered as "moderate". Nevertheless, heavy metal values were similar or surpassed the values from other highly industrialized tropical coastal regions. PMID:26708770

  5. Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2009-11-01

    Concentrations of heavy metals (Cu, Cr, Fe, Pb, Zn, Hg, Ni, and Cd) and macronutrients (Mn) were measured in industrial effluents, water, bottom sediments, and wetland plants from a reservoir, Govind Ballabh (G.B.) Pant Sagar, in Singrauli Industrial region, India. The discharge point of a thermal power plant, a coal mine, and chlor-alkali effluent into the G.B. Pant Sagar were selected as sampling sites with one reference site in order to compare the findings. The concentrations of heavy metals in filtered water, sieved sediment samples (0.4-63 microm), and wetland plants were determined with particle-induced X-ray emission. The collected plants were Aponogeton natans, L. Engl. & Krause, Cyperus rotundus, L., Hydrilla verticillata, (L.f.) Royle, Ipomoea aquatica, Forssk., Marsilea quadrifolia, L., Potamogeton pectinatus, L., Eichhornia crassipes, (Mart.) Solms Monogr., Lemna minor, L., Spirodela polyrhiza (L.) Schleid. Linnaea, Azolla pinnata, R.Br., Vallisneria spiralis, L., and Polygonum amphibium, L. In general, metal concentration showed a significant positive correlation between industrial effluent, lake water, and lake sediment (p < 0.01). Likewise, significant positive correlation was recorded with metals concentration in plants and lake ambient, which further indicated the potential of aforesaid set of wetland macrophytes for pollution monitoring. PMID:18998227

  6. Water mutagenic potential assessment on a semiarid aquatic ecosystem under influence of heavy metals and natural radioactivity using micronuclei test.

    Science.gov (United States)

    Chaves, Luiz Cláudio Cardozo; Navoni, Julio Alejandro; de Morais Ferreira, Douglisnilson; Batistuzzo de Medeiros, Silvia; Ferreira da Costa, Thomas; Petta, Reinaldo Antônio; Souza do Amaral, Viviane

    2016-04-01

    The contamination of water bodies by heavy metals and ionizing radiation is a critical environmental issue, which can affect water quality and, thus, human health. This study aimed to evaluate the water quality of the Boqueirão de Parelhas Dam in the Brazilian semiarid region. A 1-year study (2013-2014) was performed through the assessment of physicochemical parameters, heavy metal content, and radioactivity along with the mutagenicity potential of water using micronuclei test in Orechromis niloticus (in vivo) and the cytokinesis-block micronucleus (CBMN) assay in human lymphocytes (in vitro). A deterioration of water organoleptics characteristics by the presence of high levels of sulfate and total solids was observed. High concentrations of aluminum, nickel, silver, and lead along with the alpha particle content were higher than the limits suggested by the World Health Organization and Brazilian legislation for drinking water. An increase in the frequency of micronuclei and nuclear abnormalities was observed in both experimental models. The results obtained confirmed the mutagenic potential present in water samples. This study highlights that geogenic agents affect water quality becoming a human health concern to be taken into account due to the relevance that this water reservoir has in the region. PMID:26732704

  7. FRAGMENTATION OF POLYTENE CHROMOSOMES OF CHIRONOMUS STRIATIPENNIS (KIEFFER AS A MARK OF HEAVY METAL TOXICITY IN AQUATIC HABITATS

    Directory of Open Access Journals (Sweden)

    A. MAZUMDAR

    2013-01-01

    Full Text Available The adults of Chironomids are though terrestrial, but in immature stages they pass their days in water. In aquaticbodies the flies at their larval stages live about 18-20 days and any incompatible situation in the habitats affectsgrowth and development of the larvae. A study on the polytene chromosomes of the salivary gland cells of thelarvae of C. striatipennis indicated that high level of toxicity due to heavy metals in the habitats led to fragmentationof their polytene chromosomes. Culturing of the larvae of this species in the laboratory with 30 mg/Kg of Cd withsoil in the culture bed exhibited fragmentation of their polytene chromosomes in certain cases. In this toxicityimpact the fourth polytene chromosome appeared to be more affected. Hence, a variation of response of differentchromosomes of the fly to toxicity may be suggested.

  8. A comparison of freshwater mussels and passive samplers as indicators of heavy metal pollution in aquatic systems

    DEFF Research Database (Denmark)

    Søberg, Laila C.; Vollertsen, Jes; Nielsen, Asbjørn Haaning;

    2013-01-01

    under controlled conditions in order to determine whether either system was capable of functioning as a reliable source of data on aquatic pollution. The laboratory results indicated that mussels are useful in this context. However, passive samplers will require further development to be useful since...

  9. Bioaccumulation of heavy metals in water, sediments, aquatic plant and histopathological effects on the golden apple snail in Beung Boraphet reservoir, Thailand.

    Science.gov (United States)

    Dummee, Vipawee; Kruatrachue, Maleeya; Trinachartvanit, Wachareeporn; Tanhan, Phanwimol; Pokethitiyook, Prayad; Damrongphol, Praneet

    2012-12-01

    Changes in the seasonal concentrations of heavy metals (Cu, Mn, Fe, Zn, Pb and Cd) were determined in water, sediments, snails (Pomacea canaliculata) and aquatic plants (Ipomoea aquatica) in three selected tributaries of the Beung Boraphet reservoir, Nakhon Sawan Province, central Thailand. Only Fe, Cu, Mn and Zn were detected by FAAS in all samples collected. The water quality of Beung Boraphet was medium clean with Fe, Mn, Cu and Zn concentrations well below internationally accepted limits. According to the criteria proposed for sediments by the EPA Region V, Zn and Mn concentrations were within the non-polluted range while Fe and Cu (wet season) concentrations fell into the class of severely polluted sediment. Both P. canaliculata and I. aquatica bioconcentrated more Mn in their tissues than were found in sediments, especially in the wet season. The results of Pearson correlation study and BCF values also indicated similar findings. Only Mn showed the importance of sediment-to-snail concentration and high BCF values in both snails and plants. P. canaliculata exposed to contaminated sediment for two months, showed higher accumulation of metals (Fe, Mn, Cu and Zn) in the digestive tracts and digestive glands than in the foot muscles. Histopathological changes included alterations in the epithelial lining of the digestive tracts, digestive glands and the gills. Loss of cilia and increase in mucous cells were observed in the digestive tracts and gills, while the digestive glands exhibited an increase of dark granules and basophilic cells, and dilation of digestive cells. The results indicated that both P. canaliculata and I. aquatica could be used as biomonitors of sedimentary metal contamination for the Beung Boraphet reservoir. PMID:23079739

  10. Background concentrations of heavy metals in aquatic bryophytes used for biomonitoring in basaltic areas (a case study from central France)

    Energy Technology Data Exchange (ETDEWEB)

    Samecka-Cymerman, A. [Wroclaw Univ. (Poland). Dept. of Ecology and Nature Protection; Kempers, A.J. [Nijmegen Univ. (Netherlands). Dept. of Aquatic Ecology and Biogeology

    1999-12-01

    Studies were made of the aquatic bryophytes Fontinalis antipyretica Hedw., Plathypnidium rusciforme (Neck.)Fleisch and Chiloscyphus sp. (Hoffm.)Dum. from streams embedded in basaltic rocks (Le Puy, central France). Water from these streams possessed elevated levels of Cu, Zn, Sr, V, Ba, Ni and Co, reflecting the geochemistry of the basalts, a basic type of igneous rocks containing elevated levels of these elements. The concentration of elements in bryophytes is correlated to the chemical composition of water of their sampling sites. Contents of trace elements in plants were higher than background values. The elevated levels of these elements possibly caused disturbances in the ionic equilibrium within the bryophytes. The molar ratio between contents of Ca and Mg in water (from 0.44 to 1) was different from that typical for natural water. (orig.)

  11. ACCUMULATION OF HEAVY METALS IN BIOTA OF VYRLYTSA LAKE

    OpenAIRE

    Bilyk, Tetiana; Tsurkan, Katerina; Koren, Lyudmila

    2011-01-01

    Abstract. The main task was to investigate the pollution by heavy metals of biota of Vyrlytsa Lake. Thecontents of movable forms of heavy metals in aquatic plants, fish and snails was determined by atomicabsorbtion method and were made the conclusions about general state of the water object.Keywords: heavy metals, accumulation, biota, pollution, atomic absorption spectroscopy.

  12. Heavy Metal Accumulation as Phytoremediation Potential of Aquatic Macrophyte, Monochoria vaginalis (Burm.F.) K. Presl Ex Kunth

    OpenAIRE

    Tulika Talukdar; Dibyendu Talukdar

    2015-01-01

    Bioaccumulation potential of six ecotypes, collected from six different industrial zones of lower Indo-Gangetic basin of West Bengal, India,of Monochoria vaginalis, commonly known as oval-leafed pondweed has been investigated based on chromium (Cr), cadmium (Cd) andCopper (Cu) accumulation pattern in different plant organs. Bioaccumulation potential was assessed by bioaccumulation factors (BFs-leavesmetal concentration/soil metal concentration), bioconcentration factors (BCFs- roots metal/soi...

  13. Radiation induced copolymerization of binary monomers system(styrene/acrylic acid) and its application in removal of some heavy metals and dyes from aquatic solutions

    International Nuclear Information System (INIS)

    Radiation-induced coploymerization of binary monomer system styrene/acrylic acid (Sty/AAc) using direct radiation technique has been investigated. The appropriate reaction conditions such as solvent, commonomer concentration, commonomer composition and irradiation dose at which the coplymerization process was carried out successfully were selected. The effect of different parameters on the conversion percent of the commonmer into coplomer was studied by gravimetric method. It was found that, using methanol/distilled water as a cosolvent with composition 80/20 wt% enhanced the copolymerization process. The conversion (%) of the commonomer was increased with increasing radiation dose. Some properties of the coplymer such as wate uptake, thermal stability, surface topography were investigated. The improvement in such properties of the prepared coplymers was observed which makes possible uses in some practical applications such as in the removal of some heavy metals and dyes from wastewater. the prepared copolymer has good chemical and thermal stability where as the styrene content lead to increase the swelling behaviour. It was found that the maximum metal uptake by the coplymer is ordered in the sequence of Bp2+>Cu2+>Ni2+. The possibility of the removal of three classes of dyes from aqueous solutions; namely wegocet yellow 4GL (direct yellow 44), congo red (diect red 28). Remacryl blue 3G (basic blue3) and xylene blue *acid blue 7 was studied. It could be concluded that the Sty/AAc copolymer with composition 20/80 wt % can be used as a contrilled water retainer for carrying of some substance in aquatic fields involving environmental treatments. Also, it could be concluded that the most important parameter affecting the swelling behaviour and characteristic of the prepared copolymer are the type of conversion due to chemical treatment, the pH of the medium and coonstituents of the prepared copolymer

  14. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  15. Simultaneous determination of silver and other heavy metals in aquatic environment receiving wastewater from industrial area, applying an enrichment method

    Directory of Open Access Journals (Sweden)

    Naeemullah

    2016-01-01

    Full Text Available In the present study, silver (Ag, cadmium (Cd, nickel (Ni, cobalt (Co and lead (Pb were simultaneously determined in water samples of fresh water canal receiving untreated effluents from an industrial area, of Sindh Pakistan. The analytes in the water sample were determined by CPE using ammonium pyrrolidinedithiocarbamate (APDC as a complexing agent and then entrapped in non-ionic surfactant, octylphenoxypolyethoxyethanol (Triton X-114. The surfactant rich phase was diluted with acidic ethanol prior to analysis by flame atomic absorption spectrometry. The variables affecting the complexation and extraction steps such as pH of sample solution, concentration of oxine and Triton X-114, equilibration temperature and time period for shaking were investigated in detail. The validation of the procedure was carried out by analysis of a certified reference sample of water (CRM1634e. Reliability of the proposed method was also checked by the standard addition method in a real sample at three concentration levels of all metals. Under the optimum conditions, the preconcentration of 10 mL sample solutions, allowed preconcentration factor of 20-fold. The lower limit of detection obtained for Ag, Cd, Ni, Co and Pb was 0.42, 0.48, 0.92, 0.62, and 1.42 μg L−1, respectively. The proposed procedure was successfully applied to waste and fresh water samples for simultaneous determination of different metals. The concentration of Ag, Cd, Ni, Co and Pb has shown a decreased trend from 46.5–6.96, 23.0–8.92, 30.2–12.8, 14.2–4.45 and 15.3–5.32 μg L−1, respectively from initial entrance of waste water along the downstream of canal.

  16. Changes of Heavy Metals in Pollutant Release and Transfer Registers (PRTRs) in Korea

    OpenAIRE

    Yong-Su Kwon; Mi-Jung Bae; Young-Seuk Park

    2014-01-01

    Industrial effluent containing heavy metals discharged into streams may pose high toxicity risks to aquatic organisms and to human health. Therefore, it is important to understand how to change the amount of effluent with heavy metals discharged from industries into open aquatic ecosystems both for effective management of heavy metals and to foster sustainable ecosystems. This study was conducted to characterize the release of heavy metals from industries based on the Pollutant Release and Tr...

  17. The Analysis and Evaluation of Heavy Metal Pollution of the Main Aquatic Products in Xinyang%信阳市主要水产品重金属污染现状分析及评价

    Institute of Scientific and Technical Information of China (English)

    吴坤杰

    2016-01-01

    测定了信阳市主要水产品Pb、Hg、Cd、As和Cr的含量,并根据单因子污染指数评价法对信阳市主要水产品的品质进行质量安全评价。结果表明,8种信阳市主要水产品的所有样品中均检出Pb和Cr,但均未检出Cd和Hg。在鲤鱼、鲫鱼、克氏原螯虾、鳙鱼和白鲢中检出As,检出率分别为60%、40%、40%、60%和40%。单因子污染指数评价法表明,8种信阳市主要水产品均受到不同程度的Pb污染,鲫鱼、白鲢和鳙鱼受到了轻度的As污染。%This paper has measured the concentration of heavy metal( Hg、Cd、Pb、As、Cr) in the main aquatic products in Xinyang and used the single factor pollution index to assess the quality and safety of the main aquatic products in Xinyang. The results showed that all samples of the main aquatic products in Xinyang were detected by Pb and Cr, but no Cd and Hg. As was detected in Cyprinus carpio, Carassius auratus, Procambarus clarkia, Aristechthys nobilis and Hypophtyalmichthys molitrix, the detection rate respectively was 60%、40%、40%、60% and 40%. The Assessment by the single factor pollution index showed that all the main aquatic products in Xinyang were moderatly or badly polluted by Pb. Carassius auratus, Hypophtyalmichthys molitrix and Aristechthys nobilis were mildly polluted by As.

  18. Concentration and partitioning of heavy metals in the Scheldt estuary

    OpenAIRE

    Van Alsenoy, V.

    1993-01-01

    The continuous growth of technology has lead to an (uncontrolled) introduction of contaminants into the biosphere. The efforts of removing man-made pollutants from the natural environment have been unable to cope with the increasing amounts of waste materials and growing population. This work studies one group of substances which have a particular lasting effect on the natural balance in aquatic systems; the heavy metals. Trace metals are present in all the abiotic reservoirs of the aquatic s...

  19. Natural and active chemical remediation of toxic metals, organics, and radionuclides in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, G.; Pintauro, P.; O`Connor, S. [and others

    1996-05-02

    This project focuses on the chemical aspects of remediation, with the underlying theme that chemical remediation does occur naturally. Included are studies on the fate of heavy metal and organic contaminants discharged into aquatic environments; accurate assay metal contaminants partitioned into soils, water and tissue; development of novel polymeric membranes and microporous solids for the entrapment of heavy metals; and the development of hybrid chemo-enzymatic oxidative schemes for aromatics decontamination. 49 refs.

  20. Natural and active chemical remediation of toxic metals and radionuclides in the aquatic environment

    International Nuclear Information System (INIS)

    The focus of this research is the non-biological, chemical remediation of toxic heavy metals and radionuclides in aquatic environments. This Tulane/Xavier group includes researchers from Chemistry, Chemical Engineering, and Geology. Active methods using novel zeolites and ion exchange membranes are currently being evaluated for use in removing heavy metals from natural waters. In addition, field and laboratory studies of metal ion exchange reactions and competitive, heavy metal adsorption on clay substrates are underway to determine sediment metal sequestering capacity. A summary of progress to date and future work is presented

  1. Metals in Mediterranean aquatic species

    International Nuclear Information System (INIS)

    Highlights: • Study on metals in Mediterranean fish and fishery products. • Data collected for several contaminants in wild and farmed species of commercial interest. • Samples compliance with EU regulatory limits. • Identification of Mediterranean Sea areas showing background concentrations. • An interpretation of the chemical pollution issue of Marine Framework Strategy Directive. - Abstract: Metals such as arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), vanadium (V), have been determined in species of Mediterranean marine organisms collected from areas supposed to be at background contamination levels. The Inductively Coupled Plasma Mass Spectrometry (ICP-MS) approach was adopted for the determination of all the metals. Arsenic, Cd and Pb determined in the 42 samples, do not exceed the pertinent maximum level except a sample of hake. In wild fish, the concentration range for Cr, Ni, V and Cu was, respectively: 0.07–0.09, 87.6–124, 0.022–0.075 and 0.79–1.74 μg/g fresh weight (fw). The farmed fish samples show concentration levels below the wild fish ones, except for Cr which range at the same levels. Cadmium and Pb show a high sample number under the quantification limit. The elements do not bio-magnify among the species considered and appear to show low variations in relation to organisms’ position in the food chain and at sampling sites

  2. Heavy metal sorption by microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Sandau, E. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Sandau, P. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany); Pulz, O. [IGV - Inst. fuer Getreideverarbeitung GmbH, Bergholz-Rehbruecke (Germany)

    1996-12-31

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  3. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  4. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  5. Heavy metals in linseed

    Energy Technology Data Exchange (ETDEWEB)

    Klein, H.; Weigert, P.

    1987-11-01

    Linseed offered on the German market was examined for the heavy metals Pb, Cd, Hg, Cr, Cu, Mn, Ni, Zn, as well as As and Se. 490 samples were taken and examined by 31 laboratories of the official food control on the initiative of ALS (Working Group of Experts in Food Chemistry of the Laender and the Federal Health Office). Brown as well as yellow linseed, a new variety, was included in the investigations. The overall results of the investigations show that cadmium contents represent a certain problem from a health point of view. Brown linseed contains an average of 0.380 mg/kg and yellow linseed 0.231 mg/kg cadmium. Considering a weekly linseed intake of 140 g, the potential intake of cadmium corresponds to 10.1% of the WHO value fixed for the time being as tolerable weekly intake for an adult male and 12.2% for an adult female person. The guide value has been fixed at 0.3 mg/kg. Thus, the Cd intakes as related to the WHO value may be reduced by 50% and more.

  6. Heavy Metal Pumps in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  7. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  8. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna;

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn....

  9. Assessment of mechanisms of metal-induced reproductive toxicity in aquatic species as a biomarker of exposure

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.; George, W.; Preslan, J. [and others

    1996-05-02

    This project discusses the following studies: identification and quantitation of heavy metals and petroleum products present in Bayou Trepagnier relative to control sites; assessment of the uptake and bioaccumulation of metals and organic contaminants of interest in aquatic species; establishment and use of polarographic methods for use in metal speciation studies to identify specific chemical forms present in sediments, waters and organism; and evaluation of contaminants on reproductive function of aquatic species as potential biomarkers of exposure. 14 refs.

  10. EFFECTS OF HEAVY METALS IN SEDIMENTS OF THE MACROINVERTEBRATE COMMUNITY IN THE SHORT CREEK/EMPIRE LAKE AQUATIC SYSTEM, CHEROKEE COUNTY, KANSAS: A RECOMMENDATION FOR SITE-SPECIFIC CRITERIA.

    Science.gov (United States)

    The study uses statistical analysis techniques to determine the effects of four heavy metals (cadmium, lead, manganese, and zinc) on the macroinvertebrate community using the data collected in the fall 1987.

  11. COMPARISON AMONG ORGANIC MATTER, NUTRIENTS AND HEAVY METALS CONCENTRATIONS IN SEDIMENTS OF TWO LOTIC AQUATIC SYSTEMS, RIBEIRA DO IGUAPE WATERSHED, SP, BRAZIL

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Calijuri

    2008-08-01

    Full Text Available Developed in Ribeira do Iguape Watershed, one of the poorest regions in São Paulo state, Southeast Brazil, this research aimed to characterize the sediment of Jacupiranguinha and Pariquera-Açu Rivers. Eight sampling stations were demarcated on each river, covering strategic places. In all samples, organic matter content, total phosphorus and nitrogen, cadmium, lead, copper, manganese and mercury concentrations were determined. The results showed that the sediment of both rivers could be considered mineral, since the organic matter contents were all lower than 10%. There was evident increment on total phosphorus and nitrogen concentrations after the discharge of a fertilizers’ factory effluent, in Jacupiranguinha River, and after the effluent of a stabilization pound in Pariquera-Açu River. The highest copper, manganese and mercury concentrations were detected in Jacupiranguinha River sediment: 22.0 mg kg-1, 551.0 mg kg-1 e 0.15 mg kg-1 (Sampling Station 6, which corresponds to the discharge of the industrial effluent. The highest lead concentration was found in Pariquera-Açu River, 26.0 mg kg-1, in Sampling Station 8. Igeo (Geoaccumulation Index calculus revealed that the sediments of both rivers were not polluted by the metals that were quantified.

  12. Heavy metal depositions in Germany

    International Nuclear Information System (INIS)

    Methods and importance of the measurement of dust precipitation and its metallic components are discussed. Test programs and results of heavy metal measurements in precipitations in Germany are summarized. The focus is on measurements of lead and cadmium. There is a clearly decreasing trend also seen in long-term test programs. The limiting values set in the Clean Air Act were hardly ever exceeded in recent years. (orig.)

  13. Pollution Problem in River Kabul: Accumulation Estimates of Heavy Metals in Native Fish Species

    OpenAIRE

    Habib Ahmad; Ali Muhammad Yousafzai; Muhammad Siraj; Rashid Ahmad; Israr Ahmad; Muhammad Shahid Nadeem; Waqar Ahmad; Nazia Akbar; Khushi Muhammad

    2015-01-01

    The contamination of aquatic systems with heavy metals is affecting the fish population and hence results in a decline of productivity rate. River Kabul is a transcountry river originating at Paghman province in Afghanistan and inters in Khyber Pakhtunkhwa province of Pakistan and it is the major source of irrigation and more than 54 fish species have been reported in the river. Present study aimed at the estimation of heavy metals load in the fish living in River Kabul. Heavy metals includin...

  14. SPECIATION OF HEAVY METALS AT WATER-SEDIMENT INTERFACE

    Directory of Open Access Journals (Sweden)

    Chiara Ferronato

    2013-09-01

    Full Text Available The objective of the study was to understand the equilibrium relationship between the heavy metals concentrations in superficial water and pore water. At  water-sediment interface, the equilibrium rapidly changed and it is influenced by chemico-physical parameters of aquatic ecosystems. The hydraulic safety of Bologna plain (North Italy depends on network of artificial canals and they are related with natural rivers of Reno basin (Reno river and its tributaries. The natural and artificial water courses flowed in agricultural, urban and industrial land. The heavy metals concentration in water and sediment discriminated the human pressure on the land and their spatial distribution in sediment could predict the hazard of pollution in aquatic ecosystems. We compared the heavy metals concentrations in pore water and superficial water determined in natural rivers and artificial canals, and more pollution in artificial canals than natural rivers was found. Furthermore, the coefficient of partition (log Kd between water and sediments was calculated to evaluate the bioavailability of heavy metals adsorbed on the sediments. The heavy metals extracted in deionised water at equilibrium after 16 h showed higher concentrations than those determined directly on water samples.

  15. Heavy metal pollution at mine sites: Rehabilitation of Rum Jungle

    International Nuclear Information System (INIS)

    Adverse effects from release of heavy metals into the aquatic environment are briefly described. The importance of bacterial leaching in pyritic waste heaps is noted, together with current research at a mine site in Australia. The operational history and waste management practices at the former uranium mine site at Rum Jungle leading to a sustained annual input of heavy metals into the Finniss River are discussed. The objectives and measures adopted for physical rehabilitation of the Rum Jungle site, completed in June 1986 at a cost of about $A16 million (1982 $), are outlined. (author). 23 refs, 3 figs, 7 tabs

  16. Heavy metal pollution of industrial cities

    OpenAIRE

    Бувалец, Дарья Юрьевна; Капустин, Алексей Евгеньевич

    2016-01-01

    Heavy metal pollution of cities is an urgent environmental problem. As an example we took Mariupol, on the territory of this city there are two large metallurgical plants. We have studied the heavy metal pollution of urban soils, river water and sediment, which are under the influence of the steel industry. Studies have established the degree and nature of pollution of the Mariupol by various heavy metals. Also, study revealed excess of some heavy metals in the river waters and sediments. We ...

  17. Assessment on Heavy Metal Pollution and its Change in the Sediment of the Aquatic Culture Zone on Coastal Mudflat along the North Branch of Yangtze River Estuary%长江入海口北支沿海滩涂养殖区底泥重金属污染特征及趋势评价

    Institute of Scientific and Technical Information of China (English)

    吴建兰

    2012-01-01

    The pollution level of heavy metals in the sediment of the mudflat was investigated in aquatic culture zone along the north branch of Yangtze River estuary. The resuhs showed that the heavy metal contents met the standard I of Ocean Sediment Quality Standard and the pollution belonged to the level in safe Class I, of which the potential ecological harm reached a level of light pollution. The ecological risk of heavy metals was ranked as Cd 〉 Hg 〉 Cu 〉 Cr 〉 Pb 〉 As. During 2005- 2011 the heavy metal pollution was under a safe level of Class I.%对长江入海口北支沿海滩涂养殖区底泥重金属污染的总体水平进行调查,结果表明,滩涂养殖区底泥重金属含量满足海洋沉积物质量一类标准要求,污染程度属于安全Ⅰ级水平,重金属潜在生态危害属轻微级别,6种重金属潜在生态危害由大到小排序依次为Cd﹥Hg﹥Cu﹥Cr﹥Pb﹥As,2005年~2011年,底泥重金属污染程度均处于安全的Ⅰ级水平。

  18. Micromycetes sensitiveness to heavy metals

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2011-07-01

    Full Text Available The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen G. A. de Vries and Fusarium solani (C. Mart. Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC in the growth medium. At the same time Trixoderma longibrachiatiim Rifai, Alternaria alternatа (Fr. Keissl and Penicillium sp. 4 demonstrated moderate growth under maximal concentration (50 MPC. It is determined that minimal content of the heavy metals in the initial stage of influence (up to 48 h promotes growth of only Fusarium oxysporum E. F. Sm. et Swingle, while retards growth of the other species.

  19. Leachability of heavy metals from solidified sludge

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuYuan; WANG Bao; DONG XingLing; FENG Lei; FAN ZhiMing

    2009-01-01

    Solidified sludge undergoes progressive depletion of the alkalinity materials under natural weathering condition and releases out of heavy metals. The leaching of heavy metals from solidified sewage sludge was studied by acid neutralization capacity (ANC) test and flow-through leaching test. The results of ANC test showed that heavy metals release at high concentration when the pH of extract lowers than 6. The disintegration of solidified sludge and the transformation of heavy metals are the main reasons for the resolubilisation of contaminants. Flow-through leaching test indicated that leaching of heavy metals from solidified sludge occurs in a slow way. A mathematical model has been developed to predict the stabilization time of heavy metals in solidified sludge. The research results showed that decreasing hydraulic conductivity is more important than cement addition for controlling the release of heavy metals from solidified sludge.

  20. New approach for the removal of metal ions from water: adsorption onto aquatic plants and microwave reaction for the fabrication of nanometals.

    Science.gov (United States)

    Chefetz, B; Sominski, L; Pinchas, M; Ginsburg, T; Elmachliy, S; Tel-Or, E; Gedanken, A

    2005-08-18

    We adsorb heavy metal ions such as Ag(+), Pb(2+), and Ru(3+) onto an aquatic plant and convert the adsorbed ions to the corresponding nanometallic particles by the polyol reaction carried out in a microwave oven. PMID:16852922

  1. SPECIATION OF HEAVY METALS AT WATER-SEDIMENT INTERFACE

    OpenAIRE

    Chiara Ferronato; Livia Vittori Antisari; Monica Marianna Modesto; Gilmo Vianello

    2013-01-01

    The objective of the study was to understand the equilibrium relationship between the heavy metals concentrations in superficial water and pore water. At  water-sediment interface, the equilibrium rapidly changed and it is influenced by chemico-physical parameters of aquatic ecosystems. The hydraulic safety of Bologna plain (North Italy) depends on network of artificial canals and they are related with natural rivers of Reno basin (Reno river and its tributaries). The natural and artificial w...

  2. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  3. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient

    International Nuclear Information System (INIS)

    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH. - The kinetics of uptake and discharge of heavy metals, in different cellular locations, were studied in transplanted aquatic mosses

  4. Biomonitoring heavy metal contaminations by moss visible parameters.

    Science.gov (United States)

    Chen, Yang-Er; Cui, Jun-Mei; Yang, Jin-Chuan; Zhang, Zhong-Wei; Yuan, Ming; Song, Chun; Yang, Hui; Liu, Han-Mei; Wang, Chang-Quan; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2015-10-15

    Traditional sampling for heavy metal monitoring is a time-consuming and inconvenient method, which also does not indicate contaminants non-invasively and instantaneously. Moss is sensitive to heavy metals and is therefore considered a pollution indicator. However, it is unknown what kind physiological parameters can indicate metal contaminations quickly and non-invasively. Here, we systematically examined the effects of six heavy metals on physiological parameters and photosynthetic activities of two moss species grown in aquatic media or moist soil surface. We suggest that a phenotype with anthocyanin accumulation pattern and chlorosis pattern and two chlorophyll fluorescence parameters with their images can roughly reflect metal species groups, concentrations and differences between the two moss species. In other words, metal contaminations could be roughly estimated visually using the naked eye. Enzymatic and non-enzymatic anti-oxidative abilities and photosynthetic protein contents of Eurhynchium eustegium were higher than those of Taxiphyllum taxirameum, indicating their differential metal tolerance. Neither anti-oxidative abilities nor photosynthetic proteins were found to be ideal indicators. This study provides new ideas to monitor heavy metals rapidly and non-invasively in water or on wetland and moist soil surface. PMID:25919648

  5. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  6. Transplanted aquatic mosses for monitoring trace metal mobilization in acidified streams of the Vosges Mountains, France

    Energy Technology Data Exchange (ETDEWEB)

    Mersch, J.; Guerold, F.; Rousselle, P.; Pihan, J.C. (Univ. of Metz (France))

    1993-08-01

    As a result of acid depositions, trace metals are mobilized from the soils to the aquatic environment. Especially in poorly mineralized waters, elevated metal concentrations may rapidly have adverse effects on aquatic organisms. In particular, it has been shown that aluminium, a key element in the acidification process, is a toxic cofactor for fish and other biota. An accurate assessment of this specific form of water pollution may not be possible when only based on analyses of single water samples. On the one hand, water metal concentrations are often close to the detection limit of usual analytical techniques, and on the other hand, levels in acidified streams undergo strong temporal variations caused by acid pulses following meteorological events such as heavy rainfall and snowmelt. Compared to water analyses, indirect monitoring methods provide undeniable advantages for assessing water contamination. Aquatic bryophytes, in particular, have been regarded as interesting indicator organisms for trace metal pollution. However, their use has mainly been restricted to the lower course of streams for evaluating the impact of industrial discharges. The purpose of this study was to test the suitability of transplanted aquatic mosses for monitoring aluminium and four other trace metals (copper, iron, lead and zinc) in the particular context of acidifed streams draining a forested headwater catchment. 15 refs., 2 figs., 2 tabs.

  7. Phytoremediation of heavy metals (Cd, Pb and V) in gas refinery wastewater using common reed (Phragmitis australis)

    OpenAIRE

    Amir Hossein Hamidian; Majid Atashgahi; Nematollah Khorasani

    2014-01-01

    Industrial wastewaters are of the major sources of heavy metal pollution in the environment. In the Middle East, gas and oil industry is the major source of heavy metal pollution and releases significant amounts of metals into the terrestrial and aquatic environment. In this research the capability of the common reed (Phragmitis australis) in absorbing heavy metals Cd, Pb and V from the wastewater of a gas refinery plant in Iran was investigated. The plant samples were collected from the vici...

  8. Heavy Metal Bioaccumulation and Toxicity with Special Reference to Microalgae

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The bioaccumulation and toxicity of heavy metals were reviewed with special reference to microalgae, the key component of the food web in aquatic ecosystems. Heavy metals enter algal cells either by means of active transport or by endocytosis through chelating proteins and affect various physiological and biochemical processes of the algae. The toxicity primarily results from their binding to the sulphydryl groups in proteins or disrupting protein structure or displacing essential elements. Metals can break the oxidative balance of the algae, inducing antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX). The amount of oxidized proteins and lipids in the algal cells thus indicates the severity of the stress. Algal tolerance to heavy metal is highly dependent upon the defense response against the probable oxidative damages. Production of binding factors and proteins, exclusion of metals from cells by ion-selective transporters and excretion or compartmentalization have been suggested with regard to reducing heavy metal toxicity. However, a comprehensive description on the mechanisms underlining metal toxicity of microalgae and gaining tolerance is yet to be elaborated.

  9. Heavy Metal Risk Management: Case Analysis

    OpenAIRE

    Kim, Ji Ae; Lee, Seung Ha; Choi, Seung Hyun; Jung, Ki Kyung; Park, Mi Sun; Jeong, Ji Yoon; Hwang, Myung Sil; Yoon, Hae Jung; Choi, Dal Woong

    2012-01-01

    To prepare measures for practical policy utilization and the control of heavy metals, hazard control related institutions by country, present states of control by country, and present states of control by heavy metals were examined. Hazard control cases by heavy metals in various countries were compared and analyzed. In certain countries (e.g., the U.S., the U.K., and Japan), hazardous substances found in foods (e.g., arsenic, lead, cadmium, and mercury) are controlled. In addition, the Joint...

  10. Toxic Metals in Aquatic Ecosystems: A Microbiological Perspective

    OpenAIRE

    Ryan, David P; Ford, Timothy

    1995-01-01

    Microbe-metal interactions in aquatic environments and their exact role in transport and transformations of toxic metals are poorly understood. This paper will briefly review our understanding of these interactions. Ongoing research in Lake Chapala, Mexico, the major water source for the City of Guadalajara, provides an opportunity to study the microbiological aspects of metal-cycling in the water column. Constant resuspension of sediments provides a microbiologically rich aggregate-based sys...

  11. Toxic metals in aquatic ecosystems: a microbiological perspective.

    Science.gov (United States)

    Ford, T; Ryan, D

    1995-02-01

    Microbe-metal interactions in aquatic environments and their exact role in transport and transformations of toxic metals are poorly understood. This paper will briefly review our understanding of these interactions. Ongoing research in Lake Chapala, Mexico, the major water source for the City of Guadalajara, provides an opportunity to study the microbiological aspects of metal-cycling in the water column. Constant resuspension of sediments provides a microbiologically rich aggregate-based system. Data indicate that toxic metals are concentrated on aggregate material and bioaccumulate in the food chain. A provisional model is presented for involvement of microbial aggregates in metal-cycling in Lake Chapala. PMID:7621793

  12. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  13. Biosorption of Heavy Metals by Biomass

    OpenAIRE

    AKÇİN, Göksel

    2001-01-01

    Wetland plants are successfully used in the biosorption of heavy metals in natural and constructed wetlands. In this study, the removal of heavy metals by water hyacinth [ Eichhornia crassipes (Mart.)Solms)] were investigated. The plants were grown under control in the Turkish climate. The biosorption was dependent on factors such as metal concentration, constant temperature, pH and relative moisture. The plants were exposed to different metal concentrations of Chromium(III), Chromi...

  14. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    OpenAIRE

    Justyna Koc-Jurczyk

    2014-01-01

    Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater). Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported ab...

  15. Heavy metal speciation and toxicity characteristics of tannery sludge

    Science.gov (United States)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  16. Research advances in heavy metal biosorption

    International Nuclear Information System (INIS)

    Biosorption of heavy metal has wide applications. The mechanisms of heavy metal biosorption, including complexation, ion exchange, microprecipitation and oxidation reduction, are presented. Thermodynamics and dynamics of biosorption are also discussed. Key factors of influencing biosorption, such as pH values, coexistence ions and temperature are explained. The research directions are explored. (authors)

  17. Heavy Metal, Religiosity, and Suicide Acceptability.

    Science.gov (United States)

    Stack, Steven

    1998-01-01

    Reports on data taken from the General Social Survey that found a link between "heavy metal" rock fanship and suicide acceptability. Finds that relationship becomes nonsignificant once level of religiosity is controlled. Heavy metal fans are low in religiosity, which contributes to greater suicide acceptability. (Author/JDM)

  18. Heavy metals in packaging : a literature survey

    NARCIS (Netherlands)

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for consu

  19. Bioremediation of heavy metal toxicity from factory effluents by transconjugants bacteria.

    Science.gov (United States)

    El-Zahrani, Hind A; El-Saied, A I

    2011-12-01

    The presence of heavy metals in aquatic environments is known to cause severe damage to aquatic life, beside the fact that these metals kill microorganisms during biological treatment of wastewater with a consequent delay of the process of water purification. Most of the heavy metal salts are soluble in water and form aqueous solutions and consequently cannot be separated by ordinary physical means of separation. Five bacterial strains were used in this study. Bacterial strains were marking using 10 antibiotics and 7 heavy metals to be use as a selectable markes in conjugation process. Mating were performed using five bacterial strains. These strains were genetically marking in relation to their tolerance to the different antibiotics and heavy metals. All matings between bacterial strains were successes. The biosorption capacities for all heavy metals determined were higher for some metals than others. The transconjugants strain Tr5 resulted from mating between the parental bacterial strains (B-6bs X B-21) was more efficient in molybdenum uptake than all bacterial strains when supplementednutrient media wi th wastewater. Bacterial strains (B-21) appeared a good uptake of heavy metal ions (copper, cadmium, iron, cadmium and Lead) than other bacterial strains. This work highlights the potential of bacterial strains B-21 in uptake of heavy metals. The transconjugant strain Tr3 resulted from mating between parental bacterial strains (B-1584 X B-287) was more efficient in chromium uptake than all bacterial strains. PMID:22435157

  20. Effect of pH and time on the accumulation of heavy metals in Gram-negative bacteria

    OpenAIRE

    Yamina Benmalek

    2014-01-01

    The release of heavy metals into our environment is very important and causes an environmental pollution problem. Contamination of the aquatic environment by toxic heavy metals is a serious pollution problem because they can reach water-courses either naturally through a variety of geochemical processes or by direct discharge of municipal, agricultural and industrial wastewater. The bioremediation of heavy metals using microorganisms has received a great deal of attention in recent years beca...

  1. Effect of heavy metals on soil fungi

    Science.gov (United States)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  2. DISTRIBUTION OF HEAVY METALS AMONG THE COMPONENTS OF FRESHWATER ECOSYSTEMS (REVIEW

    Directory of Open Access Journals (Sweden)

    N. Kolesnyk

    2014-09-01

    Full Text Available Purpose. To review scientific sources on the distribution of heavy metals among the components of freshwater ecosystems. Findings. The review of the works of many scientists showed that heavy metals are widespread in the biotic and abiotic components of freshwater ecosystems. The article highlights the distribution of heavy metals in water, bottom sediments, natural food base, fish organs and tissues. It has been shown that as a result of global pollution of the ecosystem, the majority of Ukrainian rivers belong to polluted and very polluted. Of special interest are the studies of the distribution of heavy metals in phytoplankton, zooplankton, and zoobenthos because these components occupy a certain position in fish food chain. The presence of heavy metals in the natural food base showed that, on one hand, it could accumulate heavy metals in large amounts in such a way cleaning the water; and on the other hand, the heavy metals could migrate in the food web and contaminate fish. Ones of objects, which should be given attention when assessing toxicologic pollution, are aquatic plants, in particular phytoplankton. Studies showed that the accumulation of heavy metals in plants occurred first of all by their adsorption on the cellular wall. It explains the maximum adsorption of heavy metals by plants immediately after introduction of heavy metals into their culture. Fish as a rule occupy in the food web of water bodies one of the last places. They actively move in the aquatic environment and accumulating heavy metals at the same time they provide the most integrated and precise estimate of environmental pollution. By analyzing the distribution of heavy metals in fish organs and tissues, depending on their ability to accumulate them, it can be noted that the accumulation is the most intensive in such organs as gills, liver, and kidneys. Usually, their lowest content is observed in muscles that is important for human life because they are the main

  3. The possibility for application of zeolite in the treatment of water contaminated with heavy metals

    OpenAIRE

    Golomeova, Mirjana; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto; Krstev, Aleksandar; Zendelska, Afrodita

    2013-01-01

    Heavy metals are one of the most serious threats to the aquatic environment. Mine drainage, which present complex of elements may cause various harmful effects on wildlife, but unfortunately are treat rare. There are many technologies for treating water contaminated with heavy metals, mainly divided into two broad categories: passive and active treatment. Passive treatments are cheaper and do not require special equipment or chemicals, while the active treatment are more complex and higher...

  4. Macrophytes in Phytoremediation of Heavy Metal Contaminated Water and Sediments in Pariyej Community Reserve, Gujarat, India

    OpenAIRE

    Kumar, J. I. Nirmal; Hiren SONI; Rita N. Kumar; Bhatt, Ira

    2008-01-01

    A phytoremediation study was carried out at Pariyej reservoir, an internationally important wetland listed in Asian Directory of Wetlands, designated as a "Wetland of International Importance" and a proposed community reserve of Gujarat State, India, to ascertain the degree of heavy metal contamination. The study focused on assessment of heavy metal accumulation in certain aquatic macrophytes used as biomonitors, in comparison with water and sediments (abiotic monitors) for phytorem...

  5. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    OpenAIRE

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  6. Poisoning of domestic animals with heavy metals

    OpenAIRE

    Velev Romel; Krleska-Veleva Nataša; Ćupić Vitomir

    2009-01-01

    The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc) are essential in very low concentrations for the survival of all forms of life. These are described as essential tra...

  7. Heavy metal deposition mapping: concentrations and deposition of heavy metals in rural areas of the UK

    OpenAIRE

    Malcolm, Heath; Fowler, David; Crossley, Alan; Kentisbeer, John; Hallsworth, Steve; Lawlor, Alan; Rowland, Phil; Guyatt, Hayley; Beith, Sarah; Thacker, Sarah; Halford, Alan; ROGERS Stuart; Cape, J. Neil; Leeson, Sarah; Harmens, Harry

    2012-01-01

    CEH has been monitoring the concentrations of a range of heavy metals in rural locations across the UK since 2004. This report presents the annual average concentrations and deposition of heavy metals in air and rainfall samples collected from rural locations during 2011 and it reviews the temporal and spatial trends in heavy metal concentrations and deposition between 2004 and 2011. The monitoring network was established to measure the background concentration of a range of heavy meta...

  8. Heavy Metals Accumulation of Dominant Aquatic Plants in the Wetland of Le'an River and Poyang Lake%乐安河-鄱阳湖湿地优势水生植物对重金属污染物的富集作用

    Institute of Scientific and Technical Information of China (English)

    周雪玲; 熊建秋; 简敏菲; 陈朴青; 徐鹏飞; 李玲玉

    2013-01-01

    With the field sampling methods and laboratory experiments analysis,the concentration of Cu,Cd,Pb were measured in 18 species of dominant aquatic plants and the habitat soils or sediments in Le'an River and Poyang Lake,the enrichment and accumulation of the dominant aquatic plants were also evaluated by using the methods of Bio-concentration Factors(BCF) and Metal Pollution Index(MPI).The results indicated that most aquatic plants in the sampling sits grew well without any toxic symptoms.In some test soils or sediments,the concentration of Cu and Cd exceeded the third standard value of Soil Environment Quality.All 18 species of aquatic plants showed hyperaccumulation ability to one or two kinds of the heavy metal pollutants included Cu,Pb and Cd because the value of BCF were larger than one.Some plants also showed the common enrichment characteristics,e.g.Vallisneria natans,Celosia argentea and Ceratophyllum demersum had strong accumulation on both heavy metals of Pb and Cd,and Polygonum sieboldii had strong accumulation on both heavy metals of Cu and Cd.The results of correlation analysis showed that there was a significant correlation between the concentration of Cu,Cd,Pb in 18 species of dominant aquatic plants and those of their habitat soils.The results of the value of Metal Pollution Index indicated that the MPI value of Polygonum lapathifolium was 2 102.25,which was the highest and reflected the heavy metal pollution on the habitats.The value of MPI can also be reflected the heavy metals compound pollution on the habitats comprehensively.18 species of aquatic plants had the greater development potential and application prospect in the phytoremediation of the wetland water and soil contaminated by heavy metals such as Cu,Pb and Zn.%通过野外调查和室内分析,采用生物富集因子和重金属污染指数等方法研究乐安河-鄱阳湖段水土或底泥环境中Cu、Pb、Cd等重金属的含量及不同生境中自然生长的18种水生植

  9. Biotransportation of Heavy Metals in Eichhornia Crassipes (MART. Solms. Using X-Ray Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiren B. Soni

    2015-04-01

    Full Text Available Biomonitoring study of heavy metals was done at pilgrimage freshwater ecosystems of Central Gujarat, India, to ascertain the degree of 17 metals. The study focused on the assessment of available metals in Eichhornia crassipes (Mart. Solms., collected from sacred palustrine habitat (Dakor Sacred Wetland – DSW of Gujarat, to be used as a biomonitor (active species, in comparison with sediment (abiotic monitor for metal pollution. The results were obtained by analyzing elemental composition of rhizome, tuber, stem and leaves of native aquatic freshwater macrophyte (Eichhornia crassipes along with bottom sediments for 17 heavy metals (Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Y, Zr, Nb, Ba, Pb, Sm, Ir using Wavelength Dispersive X-Ray Fluorescence (WD-XRF (Omania Software. The highest concentrations were observed in rhizome (12 in assay species of aquatic macrophyte, followed by tuber and stem (10 each, and least content was observed in leaf (8. Toxic heavy metals (Ti, Mn, Fe, Zn, Br, Sr, Zr, Pb were detected, prone to cardiac, respiratory, musculo-skeletal and hepatic interferences in indigenous human clusters in and around studied wetland. Eichhornia crassipes was proved to be the best phytoaccumaltor species for heavy metals, exhibited by highest translocation factor for Zn, Sr, Zr, and Pb, and bioaccumulation factor for Mn, Rb, Sr and Fe metals. Present research indicates that E. crassipes (Mart. Solms. is better remediator species for mobility of Pb, Zr and Sr metals. Thus, Eichhornia crassipes can be used for an effective abatement of contaminated aquatic sites.

  10. Stabilization of heavy metals in sludge ceramsite.

    Science.gov (United States)

    Xu, G R; Zou, J L; Li, G B

    2010-05-01

    This paper attempts to investigate the stabilization behaviours of heavy metals in ceramsite made from wastewater treatment sludge (WWTS) and drinking-water treatment sludge (DWTS). Leaching tests were conducted to find out the effects of sintering temperature, (Fe(2)O(3) + CaO + MgO)/(SiO(2) + Al(2)O(3)) (defined as F/SA ratios), pH, and oxidative condition. Results show that sintering exhibits good binding capacity for Cd, Cr, Cu, and Pb in ceramsite and leaching contents of heavy metals will not change above 1000 degrees C. The main crystalline phases in ceramsite sintered at 1000 degrees C are kyanite, quartz, Na-Ca feldspars, sillimanite, and enstatite. The main compounds of heavy metals are crocoite, chrome oxide, cadmium silicate, and copper oxide. Leaching contents of Cd, Cu, and Pb increase as the F/SA ratios increase. Heavy metals in ceramsite with variation of F/SA ratios are also in same steady forms, which prove that stronger chemical bonds are formed between these heavy metals and the components. Leaching contents of heavy metals decrease as pH increases and increase as H(2)O(2) concentration increases. The results indicate that when subjected to rigorous leaching conditions, the crystalline structures still exhibit good chemical binding capacity for heavy metals. In conclusion, it is environmentally safe to use ceramsite in civil and construction fields. PMID:20219229

  11. Spatial Distribution and Corresponding Factors of Heavy Metals Concentrations in the Dongjiang River Basin, Southeast China

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2012-04-01

    Full Text Available The Dongjiang River Basin (Southeast China is the world’s most populous and highly economic development region over the last few decades. The present study is the first systematic analysis of heavy metals of the aquatic environment in this area. Eighty seven samples were taken from the tributaries of the river network to investigate the characteristics of heavy metal pollutants within the catchment, which suggests a generally good water quality in terms of heavy metals, i.e., the mean metal concentrations of the tributaries are generally well below those recommended for drinking purposes and lower than metal concentrations in other regions and in world average background concentrations. Different multivariate statistical techniques are combined to analyze the spatial pattern and the origin of, and the land-use effects on heavy metal pollutants. Principal Component Analysis (PCA and Redundant Analysis (RDA are applied to group the different heavy metals according to their variability at different sites. Relatively high levels of Hg originated from various sources and cannot be quickly scavenged in the Dongjiang River system. An improved understanding of the sources and their binding behaviors of heavy metals have implied the trend of elevated toxic potential from certain metal groups in this aquatic ecosystem, which suggests the analysis of contaminates should probably be combined with biological evaluations of toxicity at specific sites in future work.

  12. Pistia stratiotes and Limnocharis Flava as Phytoremediation Heavy Metals Lead and Cadmium in the Arbes Ambon

    OpenAIRE

    Muhammad Rijal; Moh. Amin; Fatchur Rohman; Endang Suarsini; Nur Alim Natsir; Subhan Subhan

    2016-01-01

    The results showed that the river water contains heavy metals Arbes lead and cadmium. In addition to the found heavy metals, Arbes in river also found a few aquatic plants that are suspected to have the ability to accumulate heavy metals. After a laboratory test, it turns out both of these plants are used as potential agents of phytoremediation in accumulate lead and cadmium. Pistia stratiotes is able to accumulate lead as much as 16,683 ppm (75,832%), cadmium as 11,585 ppm (77,233%) for 4 we...

  13. Determination of heavy metals in sludge

    International Nuclear Information System (INIS)

    The determination of heavy metals in sludge has been investigated. The sludge was separated from waste water sewage by precipitation. The heavy metals analysis has been done using neutron activation (NAA) and x-ray fluorescence. The existence of some metals (Cu, Fe, Ca, K, and Ti) is very important for plants. Otherwise, Pb and Cr had polluted the environment. The results are compared with sheep dung, rubbish and cow dung that are used as natural fertilizer. It is found that the sludge has a low concentration of heavy metals than other. Tow standard samples derived from IAEA have been analyzed with our samples. It is found that our sludge contains some concentration of heavy metals less than the standard. It is found that the increase of Cu and Zn concentration due to uses of pesticides. (author)

  14. Ecological risk assessment and sources of heavy metals in sediment from Daling River basin.

    Science.gov (United States)

    Zhao, Lei; Mi, Dong; Chen, Yifu; Wang, Luo; Sun, Yeqing

    2015-04-01

    To investigate the distribution, source, and ecological risk of heavy metals in Daling River basin, 28 surface sediments collected in this region were analyzed by experimental and theoretical methods. Seven heavy metals, including Pb, Cr, Hg, Cu, As, Cd, and Zn, were detected in all samples. Monte Carlo simulation was used to assess the ecological risks of these heavy metals. It was found that the pollution of Cd was the most serious; the ecological risks in Daling River and Bohai Bay were significantly higher than those in estuary, Bohai Sea, and wetland, but overall, the ecological risks of these heavy metals were low to aquatic organisms in Daling River basin at present. Correlation analysis, principal component analysis, and cluster analysis showed that these heavy metals might originate from the same pollution sources located near Daling River and Bohai Bay. PMID:25378031

  15. Simultaneous heavy metal removal mechanism by dead macrophytes.

    Science.gov (United States)

    Miretzky, Patricia; Saralegui, Andrea; Fernández Cirelli, Alicia

    2006-01-01

    The use of dead, dried aquatic plants, for water removal of metals derived from industrial activities as a simple biosorbent material has been increasing in the last years. The mechanism of simultaneous metal removal (Cd2+, Ni2+, Cu2+, Zn2+ and Pb2+) by 3 macrophytes biomass (Spirodela intermedia, Lemna minor and Pistia stratiotes) was investigated. L. minor biomass presented the highest mean removal percentage and P. stratiotes the lowest for all metals tested. Pb2+ and Cd2+ were more efficiently removed by the three of them. The simultaneous metal sorption data were analysed according to Langmuir and Freundlich isotherms. Data fitted the Langmuir model only for Ni and Cd, but Freundlich isotherm for all metals tested, as it was expected. The K(F) values showed that Pb was the metal more efficiently removed from water solution. The adsorption process for the three species studied followed first order kinetics. The mechanism involved in biosorption resulted ion exchange between monovalent metals as counter ions present in the macrophytes biomass and heavy metal ions and protons taken up from water. No significant differences were observed in the metal exchange amounts while using multi-metal or individual metal solutions. PMID:15990152

  16. Controls on metal exposure to aquatic organisms in urban streams.

    Science.gov (United States)

    Turpin-Nagel, Katelyn; Vadas, Timothy M

    2016-08-10

    Streams in urban ecosystems receive metal inputs primarily from stormwater runoff and wastewater effluent. The relative contribution of these metal sources to stream impairment is difficult to discern based on simple water characteristics and biological surveys. Stream impairment in these systems is often indicated by reduced abundance and diversity of aquatic insects, which tend to be more sensitive to chronic metal exposures. Metal species and controls on metal species in both the waterborne and dietborne exposure pathways to aquatic organisms are reviewed here. In addition, ecological changes that can control dietborne species are discussed. A main focus is on how organic matter from different anthropogenic sources may control both aqueous metal speciation as well as interaction with various inorganic or microbiological surfaces in streams. Most of the reviewed research focuses on Cu, Zn or Pb as those are the primary metals of concern in developed systems and Cu and Pb have unique and strong interactions with organic matter. Recommendations for further research are described in the context of exposure species, dynamics of exposure, stoichiometry, or advanced analytical tools, and regulatory implications are discussed. PMID:27170052

  17. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  18. Combined Heavy Metal Pollution in Red Soil

    Institute of Scientific and Technical Information of China (English)

    CHENHUAIMAN; ZHENGCHNURONG

    1996-01-01

    The effects of combined heavy metal pollution of red soil on the growth of wetland rice and the transfer of Pb,Cd,Cu and Zn from soil into plants were sudied by greenhouse pot experiment,The results showed that the plantyields were markedly affected by heavy metals,with the exception of Pb,in soils under the experimental conditions,without taking into consideration all the interactions among the elements.The concentrations of the elemets in plants were mainly affected by the specific element added to the soil.The effect of interactions among the heavy metals was very significant either on plant yields or on the concentration of the elements in plants.The risk assessment of a combined pollution by heavy metals in the soil is discussed preliminarily in terms of the relative pollution equivalent.

  19. DECONTAMINATION OF HEAVY METALS WITH BACTERIA

    Science.gov (United States)

    OBJECTIVES: To discover, improve, understand the mechanisms and use naturally occurring bacteria to decontiminate in situ heavy metals from the soils, sediments and waters to protect human health and the environment. ABSTRACT: Our laboratory (Vesper et al. ...

  20. Heavy metals and living systems: An overview

    Directory of Open Access Journals (Sweden)

    Reena Singh

    2011-01-01

    Full Text Available Heavy metals are natural constituents of the earth′s crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. This results in accumulation of metals in plant parts having secondary metabolites, which is responsible for a particular pharmacological activity. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Molecular understanding of plant metal accumulation has numerous biotechnological implications also, the long term effects of which might not be yet known.

  1. Heavy metals in packaging : a literature survey

    OpenAIRE

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for consumer products.
    A literature survey was commissioned by the Dutch national Inspectorate for the Environment. Objective was to gather information about actions and checks in other countries o...

  2. Heavy metal screening in compounds feeds

    OpenAIRE

    Tomas Toth

    2015-01-01

    Heavy metals are generally classified as basic groups of pollutants that are now a days found in different environmental compartments. This is quite a large group of contaminants, which have different characteristics, effects on the environment and sources of origin. For environment pose the greatest risks, especially heavy metals produced by anthropogenic activities that adversely affect the health and vitality of organisms and natural environmental conditions. Livestock nutrition is among t...

  3. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  4. Effects of selected heavy metals (Pb, Cu, Ni, and Cd) in the aquatic medium on the restoration potential and accumulation in the stem cuttings of the terrestrial plant, Talinum triangulare Linn.

    Science.gov (United States)

    Rajkumar, K; Sivakumar, S; Senthilkumar, P; Prabha, D; Subbhuraam, C V; Song, Y C

    2009-10-01

    The heavy metal (Cu, Pb, Ni, and Cd) accumulation capacity of the stem cuttings of the terrestrial, ornamental plant, Talinum triangulare was assessed in hydroponic medium. The stem cuttings of T. triangulare, grew well in distilled water regenerating roots and aerial parts. On exposure to various concentrations of Cu, Pb, Ni, and Cd, a concentration dependent decrease was observed in the number of leaves produced and roots regenerated and an increase in the number of days required for the initiation of roots. The number of leaves produced showed an increasing trend in almost all treatment concentrations of Cu, Pb, Ni, and Cd with an increase in the duration of experiment, whereas, with an increase in the treatment concentration of metals a significant (P triangulare was observed which was not persistent and disappeared after a few days. Decaying of stem was observed when exposed to Ni and Cd but not to Cu and Pb. Although, copper accumulation by T. triangulare at treatment concentration of 15 and 20 mg l(-1) exceeded 1,000 mg kg(-1) dry matter, necessary pot culture experiment is required before "T. triangulare" can be definitely classified as a Cu hyperaccumulator. PMID:19590954

  5. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    International Nuclear Information System (INIS)

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and CODMn in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community

  6. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Zhao, Changpo [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Luo, Yupeng [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Liu, Chunsheng, E-mail: liuchunshengidid@126.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Kyzas, George Z. [Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Luo, Yin [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); An, Shuqing [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhu, Hailiang, E-mail: zhuhl@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD{sub Mn} in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  7. Heavy metals in equine biological components

    Directory of Open Access Journals (Sweden)

    Maria Verônica de Souza

    2014-02-01

    Full Text Available The objective of this research was to determine the concentration of heavy metals in the blood (Pb, Ni and Cd, serum (Cu and Zn and hair (Pb, Ni, Cd, Cu and Zn of horses raised in non-industrial and industrial areas (with steel mill, and to verify the possibility to use these data as indicators of environmental pollution. The samples were collected during summer and winter, aiming to verify animal contamination related to environment and season of the year. Copper and Zn contents determined in the serum and Cd and Ni contents obtained in the blood indicated no contamination effects of industries. For some animals, contents of Pb in the blood were higher than those considered acceptable for the species, but without relationship with industrialization and without clinical signs of Pb intoxication. The heavy metals evaluated on the hair of horses in this study were not increased with the presence of industries, but Cu and Cd contents were influenced by the season. The contents of some heavy metals in biological components analyzed were influenced by season sampling; however, serum, blood and hair may not be suitable to indicate differences in environmental contamination between the two contrasting areas. Most part of the heavy metal contents was lower or close to the reference values for horses. Serum, blood and hair components from horses may not be effective as indicators of environmental pollution with heavy metals. Industrialization and seasons have no effects on most part of heavy metals contents from those components.

  8. Spatial and temporal variability of heavy metals in streams of the Flint Creek and Flint River Watersheds from non-point sources

    OpenAIRE

    Abdi, I.; Tsegaye, T.; M. Silitonga; W Tadesse

    2009-01-01

    Throughout the United States, non-point pollution is responsible for large quantities of heavy metals entering bodies of water. Pollution as a result of heavy metals can impact drinking water supplies, recreation, fisheries, and aquatic species. Presence of heavy metals such as lead (Pb), cadmium (Cd), and chromium (Cr), in surface water may pose great risks to human health as well as to aquatic animals. In order to understand water quality changes due to heavy metal elements and pH as a resu...

  9. Delivery of suspended sediment and associated phosphorus and heavy metals to small rural Danish streams

    DEFF Research Database (Denmark)

    Laubel, A. R.

    The aim of this study is to examine delivery pathways for suspended sediment, and particulate phosphorus (P) and heavy metals from open rural areas to small Danish streams. A further aim is to quantify the contribution from different path-ways and source areas. Such studies are useful as a basis...... for considering measures to reduce diffuse pollution of the aquatic environment....

  10. Plant transporters involved in heavy metal homeostasis

    Directory of Open Access Journals (Sweden)

    Dorina Podar

    2010-12-01

    Full Text Available Transition metal ions (predominately manganese, iron, cobalt, nickel, copper and zinc havean array of catalytic and regulatory roles in the growth and development of all living organisms.However, an excess of these metal ions can also be toxic to any life form and therefore every cell andwhole organism needs to maintain the concentration of these essential nutrient metals within a narrowrange: a process known as metal homeostasis. Heavy metal ions are taken up into cells by selectivetransporters and as they cannot be degraded, the “desired” levels of metal ions are achieved by anumber of strategies that involve: chelation, sequestration and export out of the cell. Cation DiffusionFacilitators (CDF is a large family of transporters involved in maintaining the cytosolic metalconcentration. They transport different heavy metal divalent ions, but exhibit main affinity for zinc, ironand manganese. Metal Tolerance Proteins (MTPs are a subfamily of the Cation Diffusion Facilitator (CDFfamily found in plants. There has been much interest in these heavy metal transporters in order toprovide an insight into plant metal homeostasis, which has significant implications in human health andphytoremediation. Although data regarding the CDFs/MTPs mechanism is gathering there is still littleinformation with respect to metal selectivity determinants.

  11. ACTINOMYCETES: TOLERANCE AGAINST HEAVY METALS AND ANTIBIOTICS

    Directory of Open Access Journals (Sweden)

    Smriti Singh, Shruti Pandey and Hotam Singh Chaudhary*

    2014-09-01

    Full Text Available Heavy metals can be both, essential as well as toxic for living beings. Micronutrients such as, Co, Fe, Mn have important role to play in living systems whereas, Pb Cd etc. pose harmful effects even at low concentrations. When these heavy metals get accumulated within the tissues of the organisms at various levels of the ecological chain, they cause decrease in the biomass and biological diversity by affecting the growth, morphology and activity of the organisms. Accumulation of heavy metals in soil also causes soil contamination, which can be overcome with the help of bioremediation. A large group of soil bacteria belonging to the Actinomycetes species are exposed to heavy metals in a variety of ways; although, they show resistance to heavy metals. The species of actinomycetes possess resistance for antibiotic synthesis as well. This makes the actinomycetes suitable agents for bioremediation. In this experiment, a total of 20 isolates from Shivpuri region of Madhya Pradesh were tested for the metal tolerance against selected heavy metals. After this, the most tolerant strains were tested to check their antibiotic susceptibility. Metal tolerance was tested by agar well diffusion method and tube dilution method. Out of the 20 isolates, Ash1, Ash 2, Ash 4,Ash 6, Ash 7, Ash 8, Ash 9, Ash 10, Ash 11, Ash 12, Ash 13, Ash 15 were resistant at 10 mM conc. of CuSo4, but their growth was inhibited at higher concentrations of metal salts. Isolates Ash 10, Ash 11, Ash 12, Ash 13, Ash 19, Ash 20 were found to be resistant at 10mM conc. of ZnSO4, but they were also inhibited at higher concentrations. For different concentrations of Pb(CH3COO2 most of the isolates showed same level of tolerance.

  12. Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.

    NARCIS (Netherlands)

    Veeken, A.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal so

  13. Toxic heavy metals: materials cycle optimization.

    OpenAIRE

    Ayres, R U

    1992-01-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are in...

  14. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  15. Modified silicates applied in adsorption of heavy metal

    International Nuclear Information System (INIS)

    The levels of heavy metals in the environment has increased considerably in recent decades due to various human activities, which cause serious pollution problems, both in aquatic systems and in soil. The clay minerals present himself as amenable to the adsorption of metal ions and, sometimes, taking the advantage of being abundant and inexpensive. Vermiculite has intrinsic characteristics which favor its use as adsorbent. In this work, we investigate the adsorption of lead (II) from aqueous solutions by vermiculite fractions in commercial, fine to medium in molar concentration between 1-4 mmol (s). The samples provided by the Uniao Brasileira de Mineracao/Paraiba/Brazil were modified thermal and organically. The results of X-ray diffraction associated with the results of X-ray fluorescence showed that the average fraction vermiculite exfoliated organically modified responded most significantly to the adsorption process when compared to vermiculite fine fraction under the same conditions. (author)

  16. Community Heavy Metal Exposure, San Francisco, California

    Science.gov (United States)

    Chavez, A.; Devine, M.; Ho, T.; Zapata, I.; Bissell, M.; Neiss, J.

    2008-12-01

    Heavy metals are natural elements that generally occur in minute concentrations in the earth's crust. While some of these elements, in small quantities, are vital to life, most are harmful in larger doses. Various industrial and agricultural processes can result in dangerously high concentrations of heavy metals in our environment. Consequently, humans can be exposed to unsafe levels of these elements via the air we breathe, the water and food we consume, and the many products we use. During a two week study we collected numerous samples of sediments, water, food, and household items from around the San Francisco Bay Area that represent industrial, agricultural, and urban/residential settings. We analyzed these samples for Mercury (Hg), Lead (Pb), and Arsenic (As). Our goal was to examine the extent of our exposure to heavy metals in our daily lives. We discovered that many of the common foods and materials in our lives have become contaminated with unhealthy concentrations of these metals. Of our food samples, many exceeded the EPA's Maximum Contaminant Levels (MCL) set for each metal. Meats (fish, chicken, and beef) had higher amounts of each metal than did non-meat items. Heavy metals were also prevalent in varying concentrations in the environment. While many of our samples exceeded the EPA's Sediment Screening Level (SSL) for As, only two other samples surpassed the SSL set for Pb, and zero of our samples exceeded the SSL for Hg. Because of the serious health effects that can result from over-exposure to heavy metals, the information obtained in this study should be used to influence our future dietary and recreational habits.

  17. Metal contents in tench otoliths: relationships to the aquatic environment.

    Science.gov (United States)

    Adami, G; Miletić, M; Siviero, P; Barbieri, P; Reisenhofer, E

    2001-01-01

    A monitoring of the quality of waters was attempted determining metal accumulation in target organs as otoliths of freshwater fish. Tenchs of age ranging between 2 and 10 years were sampled in three different canals receiving wastewater from industrial, agricultural and urban activities. Metal contents were determined in both lapilli and asterisci otoliths, using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Analytical data are reported for minor metals and for some trace metals. Al, Fe and Zn have contents depending on the environment where the fish has lived, while Na, K, Ca and Sr contents are insensitive to the different aquatic habitat. Considering the two types of otolith separately, lapilli display a different affinity for trace metals (Al, Fe and Zn), while in asterisci this affinity is matched only for zinc. The high affinity of zinc for both types of otoliths suggests using this metal for discriminating the fresh waters by checking its accumulation in otoliths, as well as correlating this accumulation with age of the fish: a negative power curve equation is proposed. Since highest concentrations are found in individuals of 2-3 yr., it is advisable to use this fish for such environmental studies. PMID:11554178

  18. Heavy metal speciation in the composting process.

    Science.gov (United States)

    Greenway, Gillian M; Song, Qi Jun

    2002-04-01

    Composting is one of the more efficient and environment friendly methods of solid waste disposal and has many advantages when compared with landfill disposal on which the UK and Ireland are currently heavily dependent. Composting is a very complicated process involving intensive microbial activity and the detailed mechanisms of the process have yet to be fully understood. Metal speciation information can provide an insight into the metal-microbial interaction and would help in the evaluation of the quality of compost. This would facilitate the exploitation of composts in remediation of heavy metal contaminated land. In this work a systematic approach to metal speciation in compost has been taken by applying the three-step method for operationally defined metal speciation of soils and sediments, developed by the European Commission's Standards, Measurement and Testing Programme to monitor the change in metal speciation with time (up to 106 days) for four different waste composting processes. The results have shown that in general metals become less available for the first extraction step as the composting process proceeds. This implies that composting tends to redistribute the metals from more labile forms to more fixed forms which may explain why the application of composts could be useful for with heavy metal contaminated land. There are exceptions to this trend and in some cases, certain metals appear to behave differently depending on the source of the compost. PMID:11993774

  19. Novel modified pectin for heavy metal adsorption

    Institute of Scientific and Technical Information of China (English)

    Feng Ting Li; Hong Yang; Yan Zhao; Ran Xu

    2007-01-01

    Modified pectin cross-linked with adipic acid, was synthesized and used for heavy metal removal from wastewater. SEM and FrIR were used to investigate its structure and morphology. The modified pectin had a rough, porous phase covered with carboxy groups, resulting a high adsorption capacity. And at the room temperature, the saturated loading capacity for Pb2+, Cu2+ and Zn2+ reached 1.82 mmol/g, 1.794 mmol/g and 0.964 mmol/g, respectively. The results proved its potential application to remove of the heavy metal.

  20. A review on progress of heavy metal removal using adsorbents of microbial and plant origin.

    Science.gov (United States)

    Srivastava, Shalini; Agrawal, S B; Mondal, M K

    2015-10-01

    Heavy metals released into the water bodies and on land surfaces by industries are highly toxic and carcinogenic in nature. These heavy metals create serious threats to all the flora and fauna due to their bioaccumulatory and biomagnifying nature at various levels of food chain. Existing conventional technologies for heavy metal removal are witnessing a downfall due to high operational cost and generation of huge quantity of chemical sludge. Adsorption by various adsorbents appears to be a potential alternative of conventional technologies. Its low cost, high efficiency, and possibility of adsorbent regeneration for reuse and recovery of metal ions for various purposes have allured the scientists to work on this technique. The present review compiles the exhaustive information available on the utilization of bacteria, algae, fungi, endophytes, aquatic plants, and agrowastes as source of adsorbent in adsorption process for removal of heavy metals from aquatic medium. During the last few years, a lot of work has been conducted on development of adsorbents after modification with various chemical and physical techniques. Adsorption of heavy metal ions is a complex process affected by operating conditions. As evident from the literature, Langmuir and Freundlich are the most widely used isotherm models, while pseudo first and second order are popularly studied kinetic models. Further, more researches are required in continuous column system and its practical application in wastewater treatment. PMID:26315592

  1. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  2. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  3. The Analysis of Heavy Metal Concentration per Distance and Depth around the Vicinity of Open Landfill

    Directory of Open Access Journals (Sweden)

    S.A. Sharifah Mastura

    2013-05-01

    Full Text Available Heavy metal is a source of environmental pollutant affecting the aquatic and terrestrial ecosystems. The sources of heavy metal pollution are the industries, domestic sewage and landfills. Landfill operation is a sourceof heavy metal pollution which not only affected the biospehere, hydrospehere and athmosphere, but also the litospheresystems around it. This study aims to analyse the heavy metals concentration around the landifill vicinity for indication of heavy metal pollution. This study analysedthe soil content of the heavy metal based on the distance and depth around the vicinity of the landfill. Field sampling of the soil and laboratory analysis were used. The field study involved 20 stations and 60 samples according to the wind directions: North, East, South and West.The analysis was conducted through the use of Inductively Coupled Plasma Mass Spectroscopy (ICP-MS. Seven types of heavy metals were identified as indicators for pollution namely Mg, Ca, Mn, Fe, Cu, Zn and Pb. The results indicated that the concentration of Fe was the most dominant per specific distances and depths and exceeded the DOE minimum standard (301 mg/L in North, East and West directions. While Cu was the second most dominant, with concentraion exceeding minimum DOE standard (19.8 mg/L per specific distance and depth, mainly in the West direction.

  4. A Review of Heavy Metals Immunoassay Detection

    OpenAIRE

    Bing Lv; Qiong Jiang; Cheng Zhu

    2015-01-01

    Contamination of heavy metals in soil has been a significant problem, which resulted in food pollution and diseases through bioaccumulation. Traditional methods utilized to determined content of metal ions are time-cost, expensive and laboratorial. Since the introduction of antibody against In-EDTA, immunoassay has been developing for several decades. It filled in the blank of determination in situ with lower price and a short period. In this study, we mainly presented the research process of...

  5. Heavy metal mining using microbes.

    Science.gov (United States)

    Rawlings, Douglas E

    2002-01-01

    The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed. PMID:12142493

  6. Physical and chemical characteristics and contamination by heavy metals in the Negro River

    International Nuclear Information System (INIS)

    Between March and June 1996, some physicochemical variables and seven heavy metals were monitored in the water column of three sample sites in the Negro River. The behavior of the physicochemical variables in the study area (from Charco Manso to La Porquera) showed a river down reduction of dissolved oxygen concentration, but without reaching critical levels for the aquatic life. Hardness, total solids, conductivity and alkalinity increased river down, but concentration of the variables remained at low levels. Even there was a gradual deterioration of environmental conditions from Charco Manso to La Porquera. From the point of view of these physicochemical variables, the water quality in the study sites is still acceptable. Concentration of almost all heavy metals in the unfiltered and filtered water, surpassed maximum permissible levels for aquatic life and the normal levels in a river environments. In some samples, the soluble fraction represented a high average of the total in the water column. This behavior differs from literature reports, which showed a dominance of the united forms to the suspended materials and indicates a good heavy metal bio-disposed in the Rio Negro. Although the physicochemical variables shows acceptable environment conditions in the study sites, the high concentration of some heavy metals represents a very significant detrimental factor of water quality and constitutes a great risk for aquatic life

  7. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil;

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  8. Superoxide dismutases of heavy metal resistant streptomycetes.

    Science.gov (United States)

    Schmidt, Astrid; Schmidt, André; Haferburg, Götz; Kothe, Erika

    2007-02-01

    Heavy metal tolerant and resistant strains of streptomycetes isolated from a former uranium mining site were screened for their superoxide dismutase expression. From the strains tolerating high concentrations of different heavy metals, one was selected for its tolerance of concentrations of heavy metals (Ni, Cu, Cd, Cr, Mn, Zn, Fe). This strain, Streptomyces acidiscabies E13, was chosen for the purpose of superoxide dismutase analysis. Gel electrophoresis and activity staining revealed only one each of a nickel (NiSOD) and an iron (FeZnSOD) containing superoxide dismutase as shown by differential enzymatic repression studies. The gene for nickel containing superoxide dismutase, sodN, was cloned and sequenced from this strain. The genomic sequence shows 92.7% nucleotide identity and 96.1% amino acid identity to sodN of S. coelicolor. Expression can be activated by nickel as well as other heavy metals and active enzyme is produced in media lacking nickel but containing copper, iron or zinc. Thus, the selected strain is well suited for further characterization of the enzyme encoded by sodN. PMID:17304620

  9. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil; Villumsen, Arne

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  10. Atmospheric heavy metal deposition in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. (ed.)

    1994-03-01

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored by the moss technique. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicat the location of important heavy metal pollution sources. Samples of mainly the moss species Pleurozium schreberi, Hylocomium splendens and Hypnum cupresiforme were collected during the summertime 1990. The total concentrations of arsenic, cadmium, chromium, copper, iron, lead, nickel, vanadium and zinc were determined and the results presented in the form of coloured contour maps of Europe. In the Nordic countries and adjacent areas the regional deposition pattern of all the metals shows a decreasing gradient from relatively high values in the southern parts of Scandinavia to low values towards the North. A significant decreas. in the concentrations of most elements was found in this area during the last 10-20 years. Important local enhancements of the concentrations in moss were found superimposed on the regional background pattern, especially at the great smelting combinates in Nikel, Zapolyarnyj and Monchegorsk in Russia in the western part of the Kola Peninsula. Higher levels of metals are found at Mazeikiai (oil refinery) in Lithuania, close to Liepaja (steel mill) and Riga in Latvia and in the industrial north-eastern area of Estonia and adjacent area of Russia. Higher levels of metals were found in the metropolitan area of St. Petersburg. In Central Europe, Poland, and the Czech Republic have numerous sources of air pollution, as well as area in Germany. The Netherlands is particularly affected by pollution from Belgium and western Germany. The Environmental Monitoring and Data Group in the Nordic Countries would like the next survey of heavy metals, including mercury, in moss to take place in 1995. (EG) (45 refs.)

  11. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness. Keywords: Drum set, Exercise physiology, VO2, Music

  12. Phytoremediation Potential of Aquatic Macrophyte, Azolla

    OpenAIRE

    Sood, Anjuli; Uniyal, Perm L.; Prasanna, Radha; Ahluwalia, Amrik S.

    2011-01-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The us...

  13. Polymers contamination by heavy metal compounds

    Directory of Open Access Journals (Sweden)

    Jovanić Saša

    2002-01-01

    Full Text Available The contamination of important synthetic (surface unmodified polymers by various heavy metal compounds (such as copper, manganese and lead in aqueous medium was investigated in this study. The influence of the pH of the aqueous medium, temperature and metal type on contamination was investigated during a 10 day period. It was found that increasing pH contributed to higher polymer contamination (at higher pH 100 times for copper and up to 400 times for lead, as well as contact with easily penetrable substances. Increasing temperature decreased contamination by the metal compound for PELD and PET which was not the case for PEHD and PR.

  14. A Review of Heavy Metals Immunoassay Detection

    Directory of Open Access Journals (Sweden)

    Bing Lv

    2015-06-01

    Full Text Available Contamination of heavy metals in soil has been a significant problem, which resulted in food pollution and diseases through bioaccumulation. Traditional methods utilized to determined content of metal ions are time-cost, expensive and laboratorial. Since the introduction of antibody against In-EDTA, immunoassay has been developing for several decades. It filled in the blank of determination in situ with lower price and a short period. In this study, we mainly presented the research process of monoclonal antibody special binding to metal-ligand and the immunoassay utilized in detection of food and environment.

  15. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2 g/kg for......Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system is...

  16. Minor heavy metal: A review on occupational and environmental intoxication

    OpenAIRE

    Wiwanitkit Viroj

    2008-01-01

    Heavy metal is widely used in industries and presents as a problematic environmental pollution. Some heavy metals, especially lead and mercury, are well described for their occupational and environmental intoxication whereas the other minor heavy metals are less concerned. In this article, the author will present the details of occupational and environmental minor heavy metal intoxication. This review focuses mainly on aluminum, tin, copper, manganese, chromium, cadmium and nickel.

  17. Bioavailability and Bioaccumulation of Metal-Based Engineered Nanomaterials in Aquatic Environments

    DEFF Research Database (Denmark)

    Luoma, Samuel; Khan, Farhan R.; Croteau, Marie-Noelle

    2014-01-01

    Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs...

  18. Heavy Metal Concentrations in Maltese Potable Water

    Directory of Open Access Journals (Sweden)

    Roberta Bugeja

    2015-05-01

    Full Text Available This study evaluates the levels of aluminum (Al, cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, lead (Pb, nickel (Ni and zinc (Zn in tap water samples of forty localities from around the Maltese Islands together with their corresponding service supply reservoirs. The heavy metal concentrations obtained indicated that concentrations of the elements were generally below the maximum allowed concentration established by the Maltese legislation. In terms of the Maltese and EU water quality regulations, 17.5% of the localities sampled yielded water that failed the acceptance criteria for a single metal in drinking water. Higher concentrations of some metals were observed in samples obtained at the end of the distribution network, when compared to the concentrations at the source. The observed changes in metal concentrations between the localities’ samples and the corresponding supply reservoirs were significant. The higher metal concentrations obtained in the samples from the localities can be attributed to leaching in the distribution network.

  19. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.

    Science.gov (United States)

    Dhir, B; Srivastava, S

    2013-06-01

    Metal tolerance capacity of Salvinia natans, a metal hyperaccumulator, was evaluated. Plants were exposed to 10, 30 and 50 mg L⁻¹ of Zn, Cd, Co, Cr, Fe, Cu, Pb, and Ni. Plant biomass, photosynthetic efficiency, quantum yield, photochemical quenching, electron transport rate and elemental (%C, H and N) constitution remained unaffected in Salvinia exposed to 30 mg L⁻¹ of heavy metals, except for Cu and Zn exposed plants, where significant reductions were noted in some of the measured parameters. However, a significant decline was noted in most of the measured parameters in plants exposed to 50 mg L⁻¹ of metal concentration. Results suggest that Salvinia has fairly high levels of tolerance to all the metals tested, but the level of tolerance varied from metal to metal. PMID:23553503

  20. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  1. Effect of Heavy Metal Pollution on Cucumber POD Isoenzyme

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Experiment was carried out to study heavy metal pollution effect on cucumber POD isozyme in our experiment.The results showed that:the activities of POD in cucumber seeds increased in low concentration treatment,and decreased in high concentration treatment after being treated with heavy metal.The critical band patterns of POD isoenzyme was changed by heavy metal pollution.

  2. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation

    OpenAIRE

    Juliano José Corbi; Claudio Gilberto Froehlich; Susana Trivinho Strixino; Ademir dos Santos

    2010-01-01

    Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated b...

  3. Remoção de metais pesados tóxicos cádmio, chumbo e cromo em biofertilizante suíno utilizando macrófita aquática (Eichornia crassipes como bioindicador = Removal of toxic heavy metals cadmium, lead and chromium from swine biofertilizer, using an aquatic macrophyte (Eichornia crassipes as a bioindicator

    Directory of Open Access Journals (Sweden)

    Affonso Celso Gonçalves Júnior

    2008-01-01

    Full Text Available Este trabalho objetivou avaliar a eficiência da macrófita aquática (Eichornia crassipes como bioindicador e alternativa na remoção dos metais pesados tóxicos Cd, Pb e Cr em biofertilizante de origem suína. Foi utilizado o esquema fatorial 2x4, sendo os fatoresrepresentados pelas partes da planta (aérea e raiz, e pelos quatro tratamentos. Na instalação do experimento coletou-se uma alíquota da solução de cada tratamento para determinar as concentrações iniciais dos metais e, após 30 dias de cultivo, as plantas foram retiradas,coletando-se novamente uma alíquota da solução de cada tratamento. As plantas foram separadas em parte aérea e raiz, secas e trituradas. A macrófita apresentou-se eficiente na remoção dos metais pesados, observou-se que o sistema radicular da macrófita apresentoumaiores concentrações de Cd, Pb e Cr. Com este trabalho, conclui-se que a macrófita aquática (Eichornia crassipes pode ser uma alternativa para o tratamento de biofertilizante e dejetos provenientes da suinocultura.The objective of this work was to evaluate the efficiency of an aquatic macrophyte (Eichornia crassipes as a bioindicator and as an alternative sorbent for the removal of toxic heavy metals Cd, Pb and Cr from swine biofertilizer. A 2x4 factorial design was used, with the factors represented by plant parts (leaves and roots and the fourtreatments. The metal concentrations were determined at the beginning of the experiment and after 30 days. The macrophyte showed good efficiency in the removal of toxic heavy metals from swine biofertilizer. It was observed that its radicular system presented larger amounts of Cd, Pb and Cr than did the leaves. Our results show that Eichornia crassipes could be an alternative treatment for biofertilizer and waste from swine culture.

  4. Deriving Aquatic Water Quality Criteria for Heavy Metals in Taihu Lake by Probabilistic Species Sensitivity Distribution%应用概率物种敏感度分布法研究太湖重金属水生生物水质基准

    Institute of Scientific and Technical Information of China (English)

    赵芊渊; 侯俊; 王超; 王沛芳; 苗令占; 吕博文; 顾起豪

    2015-01-01

    目前广泛使用的水质基准推导方法—物种敏感度分布法存在曲线拟合模型不确定、曲线拟合效果不佳、种内差异欠考虑、基准值不准确等诸多问题,概率物种敏感度分布法可有效解决上述问题。应用概率物种敏感度分布法构建了太湖水体中5种重金属Ag、Pb、Cd、Hg和Zn的概率物种敏感度分布曲线,在此基础上得到了保护水生生物的急性水质基准分别为1.079μg•L-1、637.973μg•L-1、19.465μg•L-1、8.729μg•L-1和105.506μg•L-1,慢性水质基准分别为0.108μg•L-1、63.797μg•L-1、1.947μg•L-1、2.340μg•L-1和52.753μg•L-1;不同类群间生物对重金属的敏感度存在差异,不同重金属对同一类群生物的毒性也存在差异;通过与国内外已有的重金属水质基准值比较,发现水质基准具有明显的区域性,目前基于国外水质基准或我国整体水域特点来制定的太湖水质标准,往往造成对太湖水生生物欠保护或过保护的状况。%The widely used method of species sensitivity distribution has a number of disadvantages, such as the uncertainty of statistical models, the undesirable effectiveness of fitted curve, the deficient consideration for in-traspecies variation and the inaccuracy of water quality criteria. The method of probabilistic species sensitivity dis-tribution (PSSD) can solve these problems effectively. Probabilistic species sensitivity distribution curves and water quality criteria for 5 heavy metals (Ag, Pb, Cd, Hg and Zn) in Taihu Lake were achieved by the method of PSSD. The derived acute criteria for 5 heavy metals were 1.079 μg•L-1, 637.973 μg•L-1, 19.465 μg•L-1, 8.729 μg•L-1 and 105.506μg•L-1, respectively. The corresponding chronic criteria were 0.108μg•L-1, 63.797μg•L-1, 1.947μg•L-1, 2.340μg•L-1 and 52.753μg•L-1, respectively. In this study, sensitivities of different taxa to heavy metals and toxicities of different heavy

  5. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie;

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses. The...... stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...... without a short distance between the membranes. The acidification of the suspended soil was fastest and following the mobilization of heavy metals. This may indicate that water splitting at the anion exchange membrane is used more efficiently in the stirred setup....

  6. Phytoremediation of Heavy Metals in Aqueous Solutions

    OpenAIRE

    Felix Aibuedefe AISIEN; Oluwole FALEYE; Eki Tina AISIEN

    2010-01-01

    One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd), lead (Pb) and zinc (Zn). Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especia...

  7. Polymers contamination by heavy metal compounds

    OpenAIRE

    Jovanić Saša; Stoiljković Dragoslav M.; Popović Ivanka G.

    2002-01-01

    The contamination of important synthetic (surface unmodified) polymers by various heavy metal compounds (such as copper, manganese and lead) in aqueous medium was investigated in this study. The influence of the pH of the aqueous medium, temperature and metal type on contamination was investigated during a 10 day period. It was found that increasing pH contributed to higher polymer contamination (at higher pH 100 times for copper and up to 400 times for lead), as well as contact with easily p...

  8. Heavy metal burden of the Pinnau river

    International Nuclear Information System (INIS)

    The water phase and sediment of the Pinnau river were investigated for their heavy-metal pollution. Tests for the elements chromium, mercury, nickel, arsenic, lead, copper, cadmium, zinc and iron were carried through with sediment samples in 1984 and 1989 and with water samples in 1987 and 1989. Whereas no significant changes in the levels of these metals were found in the water phase during the two-year period of invetigation, slightly reduced levels of zinc, cadmium and mercury were established in the sediment in 1989 as compared to 1984. (orig.)

  9. Phytoremediation of heavy metal from contaminated soil

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Kališová, Ivana; Vaněk, Tomáš

    Praha : ÚOCHB AV ČR, 2003 - (Vaněk, T.; Schwitzguébel, J.), s. 65 ISBN 80-86241-19-X R&D Projects: GA MŠk OC 837.10; GA AV ČR IBS4055014; GA AV ČR IAA6055902 Institutional research plan: CEZ:AV0Z4055905 Keywords : heavy metals * phytoremediation * corn Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides

  10. Evaluation of heavy metal complex phytotoxicity

    OpenAIRE

    Vita Vasilyevna Datsenko; Nataliya Lvovna Khimenko

    2016-01-01

    The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc i...

  11. Heavy metals occurrence in Italian food supplements

    OpenAIRE

    Brizio P.; Benedetto A.; Squadrone S.; Tarasco R.; Gavinelli S.; Pellegrino M.; Abete M. C.

    2013-01-01

    In recent years a significant increase in food supplements consumption has been observed, maybe in the belief that they couldn’t be dangerous for consumers health, even if they don’t achieved medical effects. However, environmental pollution can cause heavy metals contamination that could exceed maximum levels established by European legislation. Aim of this work was to evaluate arsenic, cadmium, chromium, lead and mercury content in 12 food supplements seized in a Piedmont shop by the Italia...

  12. Geogenic heavy metal concentrations in German soils

    International Nuclear Information System (INIS)

    In the area of the German Federal Republic, 6,300 soil samples of 526 soil profiles were examined for the concentrations of lead, copper, zinc, cadmium, nickel, cobalt, mercury, antimony, arsenic and lithium. The soil profiles were selected so that the prevailing loose and solid rock floors of the German Federal Republic were represented. The analysis data of these samples formed the basis for the calculation of average geogenic heavy metal concentrations in the soils of the German Federal Republic. (orig.)

  13. Determination of heavy metals in fish scales

    OpenAIRE

    Hana Nováková; Markéta Holá; Jozef Kaiser; Jiří Kalvoda; Viktor Kanický*

    2010-01-01

    The outcomes from measurements of amount of selected elements in the fish scales of common carp are presented. Concentrations in the scales were identified and differences between storage of heavy metals in exposed and covered part of scale were studied. The spatial distribution of elements on the fish scale´s surface layer was measured by Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry (LA–ICP–MS). The average amount of elements in the dissolved scal...

  14. Removal of heavy metals using waste eggshell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The removal capacity of toxic heavy metals by the reused eggshell was studied. As a pretreatment process for the preparation of reused material from waste eggshell, calcination was performed in the furnace at 800℃ for 2 h after crushing the dried waste eggshell. Calcination behavior, qualitative and quantitative elemental information, mineral type and surface characteristics before and after calcination of eggshell were examined by thermal gravimetric analysis (TGA), X-ray fluorescence (XRF), X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. After calcination, the major inorganic composition was identified as Ca (lime, 99.63%) and K, P and Sr were identified as minor components. When calcined eggshell was applied in the treatment of synthetic wastewater containing heavy metals, a complete removal of Cd as well as above 99% removal of Cr was observed after 10 min. Although the natural eggshell had some removal capacity of Cd and Cr, a complete removal was not accomplished even after 60 min due to quite slower removal rate. However, in contrast to Cd and Cr, an efficient removal of Pb was observed with the natural eggshell rather than the calcined eggshell. From the application of the calcined eggshell in the treatment of real electroplating wastewater, the calcined eggshell showed a promising removal capacity of heavy metal ions as well as had a good neutralization capacity in the treatment of strong acidic wastewater.

  15. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  16. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  17. The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles

    OpenAIRE

    Garrett Wheaton; James Counts; Arpan Mukherjee; Jessica Kruh; Robert Kelly

    2015-01-01

    Extreme thermoacidophiles (Topt > 65 °C, pHopt < 3.5) inhabit unique environments fraught with challenges, including extremely high temperatures, low pH, as well as high levels of soluble metal species. In fact, certain members of this group thrive by metabolizing heavy metals, creating a dynamic equilibrium between biooxidation to meet bioenergetic needs and mechanisms for tolerating and resisting the toxic effects of solubilized metals. Extremely thermoacidophilic archaea dominate bio...

  18. Modified silicates applied in adsorption of heavy metal; Silicatos modificados aplicados na adsorcao de metal pesado

    Energy Technology Data Exchange (ETDEWEB)

    Farias, M.C.M. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais; Raposo, C.M.O., E-mail: raposo@dmg.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), Campina Grande, PB (Brazil). Unidade Academica de Mineracao e Geologia

    2010-07-01

    The levels of heavy metals in the environment has increased considerably in recent decades due to various human activities, which cause serious pollution problems, both in aquatic systems and in soil. The clay minerals present himself as amenable to the adsorption of metal ions and, sometimes, taking the advantage of being abundant and inexpensive. Vermiculite has intrinsic characteristics which favor its use as adsorbent. In this work, we investigate the adsorption of lead (II) from aqueous solutions by vermiculite fractions in commercial, fine to medium in molar concentration between 1-4 mmol (s). The samples provided by the Uniao Brasileira de Mineracao/Paraiba/Brazil were modified thermal and organically. The results of X-ray diffraction associated with the results of X-ray fluorescence showed that the average fraction vermiculite exfoliated organically modified responded most significantly to the adsorption process when compared to vermiculite fine fraction under the same conditions. (author)

  19. Elucidating differences in metal absorption efficiencies between terrestrial soft-bodied and aquatic species

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Veltman, Karin; Hauschild, Michael Zwicky;

    2014-01-01

    It is unknown whether metal absorption efficiencies in terrestrial soft-bodied species can be predicted with the same metal properties as for aquatic species. Here, we developed models for metal absorption efficiency from the dissolved phase for terrestrial worms and several aquatic species, based...... species, with the covalent index being the best predictor. It is hypothesized that metal absorption by soft-bodied species in soil systems is influenced by the rate of metal supply to the membrane, while in aquatic systems accumulation is solely determined by metal affinity to membrane bound transport...... proteins. Our results imply that developing predictive terrestrial bioaccumulation and toxicity models for metals must consider metal interactions with soil solids. This may include desorption of a cation bound to soil solids through ion exchange, or metal release from soil surfaces involving breaking of...

  20. Mussel shell evaluation as bioindicator for heavy metals

    International Nuclear Information System (INIS)

    Full text: Recently, in Brazil, it has been appearing a new and unusual 'plague' in leisure and commercial fishing, caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as 'Naiades'. Such situation involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation, such bivalve mollusks belonging to the Ordem Unionoida and the Familia Mycetopodidae. The present work objectified to analyze the shells of such mollusks to verify the possibility of such mollusks as bioindicators of heavy metals in fresh water. The mollusks shells were collected in a commercial fishing at Londrina-PR, and analyzed qualitatively to determine the chemical composition and possible correlation with existent heavy metals in the aquatic environment. Studies of the literature have been showing that those mollusks are susceptible the existent chemical alterations in the aquatic environment due to anthropogenic action. Three different shells were analyzed, with the measures done on the external and internal side, using a portable Energy Dispersive X-Ray Fluorescence system (PXRF-LFNA-02). The measures were realized in the applied nuclear physics laboratory of State University of Londrina, and the PXRF-LFNA-02 is composed by a X-Ray tube (with Ag target and filter) with potency of 4W, and a detector Si-PIN model XR-100CR of Ampetc Inc. with resolution of 221eV for the line of 5.9 keV of the 55Fe (with a 25μm Be window thickness and Ag collimator), Current 10 mA and High Voltage 28 kV. In the internal part of shells were identified the elements Ca, P, Fe, Mn and Sr and in the external part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio among the external and internal sides of the analyzed shells is around of 1, and it was expected because Ca is the main composed of mollusks shells. The ratio of P, Fe, Mn, and Sr for Ca stayed constant in all analyzed shells, being close to 0.015, however

  1. Mussel shell evaluation as bioindicator for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Andrello, Avacir Casanova; Lopes, Fabio; Galvao, Tiago D. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada

    2009-07-01

    Full text: Recently, in Brazil, it has been appearing a new and unusual 'plague' in leisure and commercial fishing, caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as 'Naiades'. Such situation involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation, such bivalve mollusks belonging to the Ordem Unionoida and the Familia Mycetopodidae. The present work objectified to analyze the shells of such mollusks to verify the possibility of such mollusks as bioindicators of heavy metals in fresh water. The mollusks shells were collected in a commercial fishing at Londrina-PR, and analyzed qualitatively to determine the chemical composition and possible correlation with existent heavy metals in the aquatic environment. Studies of the literature have been showing that those mollusks are susceptible the existent chemical alterations in the aquatic environment due to anthropogenic action. Three different shells were analyzed, with the measures done on the external and internal side, using a portable Energy Dispersive X-Ray Fluorescence system (PXRF-LFNA-02). The measures were realized in the applied nuclear physics laboratory of State University of Londrina, and the PXRF-LFNA-02 is composed by a X-Ray tube (with Ag target and filter) with potency of 4W, and a detector Si-PIN model XR-100CR of Ampetc Inc. with resolution of 221eV for the line of 5.9 keV of the {sup 55}Fe (with a 25{mu}m Be window thickness and Ag collimator), Current 10 mA and High Voltage 28 kV. In the internal part of shells were identified the elements Ca, P, Fe, Mn and Sr and in the external part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio among the external and internal sides of the analyzed shells is around of 1, and it was expected because Ca is the main composed of mollusks shells. The ratio of P, Fe, Mn, and Sr for Ca stayed constant in all analyzed shells

  2. Pistia stratiotes and Limnocharis Flava as Phytoremediation Heavy Metals Lead and Cadmium in the Arbes Ambon

    Directory of Open Access Journals (Sweden)

    Muhammad Rijal

    2016-05-01

    Full Text Available The results showed that the river water contains heavy metals Arbes lead and cadmium. In addition to the found heavy metals, Arbes in river also found a few aquatic plants that are suspected to have the ability to accumulate heavy metals. After a laboratory test, it turns out both of these plants are used as potential agents of phytoremediation in accumulate lead and cadmium. Pistia stratiotes is able to accumulate lead as much as 16,683 ppm (75,832%, cadmium as 11,585 ppm (77,233% for 4 weeks and Limnocharis flava accumulate lead as much as 13,799 ppm (62,723%, cadmium as 12,858 ppm (85,720% for 4 weeks. Pistia stratiotes and Limnocharis flava is very potential as agents of phytoremediation because it can accumulate lead and cadmium in large and a short time.

  3. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  4. Heavy metals in an impacted wetland system: A typical case from southwestern China

    International Nuclear Information System (INIS)

    Historical zinc smelting in Hezhang, southwestern China, has resulted in significant heavy metal contamination of the surrounding ecosystems. The Caohai wetland system, which is an important national nature reserve close to the Hezhang zinc smelting area, was investigated in the present study. Results showed that sediments from the Caohai wetland system have been seriously contaminated by Cd, Pb and Zn with the highest concentrations in the surface sediments being up to 71, 160 and 1200 μg g-1, respectively. The heavy metals in the sediments were strongly associated with the organic/sulphide and residual fractions. A more oxidized condition induced by aquatic plants tended to cause the Cd, Pb and Zn bound to the Fe-Mn oxide fraction to become more dominant. Pb isotopic compositions in the sediments indicated that the inventories of Pb in the Caohai wetland sediments were mainly derived from the historical zinc smelting in the Hezhang area, although other anthropogenic sources, such as the gasoline Pb, also made a substantial contribution to the Pb in the sediments. Heavy metal contamination in aquatic plants was also studied and the results indicated that heavy metals accumulated by plants may pose a potential threat to the higher trophic-level organisms, including humans

  5. Magnetotactic bacteria. Promising biosorbents for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong [Sichuan Agricultural Univ., Chengdu (China). Provincial Key Lab. of Agricultural Environmental Engineering

    2012-09-15

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. (orig.)

  6. Magnetotactic bacteria: promising biosorbents for heavy metals.

    Science.gov (United States)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong

    2012-09-01

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. PMID:22763846

  7. Decontamination of aquatic vegetable leaves by removing trace toxic metals during pickling process with acetic acid solution.

    Science.gov (United States)

    Wu, Wenbiao; Yang, Yixing

    2011-01-01

    The heavy-metal content of aquatic plants is mainly dependent upon their ecological system. This study indicated that although the toxic heavy-metal contents could be above the recommended maximum levels depending upon their concentrations in growing water, they can be decontaminated by pickling with 5% acetic acid solution. Almost all Cd, Hg, Ba, or Sb and 99.5% Pb, 96.7% Ag, or 97.1% Al were removed from Water Spinach leaves by soaking in acetic acid solution. For Water-Shield leaves, almost all Cd, Hg, Pb, Ba, or Sb and 95.0% Ag or 96.1% Al were removed. For Watercress leaves, almost all Cd, Hg, Ba, or Sb and 99.0% Pb or 99.7% Ag were removed. For Water Hyacinth leaves, almost all Cd, Ba, or Sb and 99.0% Hg, 98.5% Pb, 95.0% Ag, or 98.7% Al were removed. PMID:21888602

  8. Development of a fluorescence heavy metal sensor

    International Nuclear Information System (INIS)

    This work as part of the European project S.O.F.I.E. (spectroscopy using optical fibres In the marine environment; MAS3-CT97-0157) describes the development of a fluorescence based heavy metal sensor. The target analytes Cadmium, Copper, Mercury and Lead were detected in seawater, either separately or as the total selection of the metals above. Two different approaches of heavy metal detection have been investigated, one by immobilising a dye into a sol-gel matrix, the second one using the ion-pair technique in PVC. The suitability of different dyes to form a metal dye complex in solution has been investigated and these have been immobilized into a sol-gel matrix. Although a signal of an immobilized metal-dye complex into sol-gel could be seen, it was impossible to achieve a recognition of analytes diffusing through the membrane, while significant leaching of the dye was observed. An extensive study on varying the sol-gel process was undertaken. The covalent binding of 5-amino-8-hydroxy quinoline to a sol-gel precursor showed sensitivity to a high concentration of cadmium. Due to the basic catalysed sol-gel used, the polymerization was too fast in order to achieve reproducible sol-gel films, which resulted in varying sensitivities. The second approach made use of the ion-pair technique. A metal ion selective ionophore, a pH indicator and a lipophilic anionic site were immobilized in plasticised poly(vinyl chloride)(PVC) matrix. The molar ratio of these compounds was found to be critical in terms of sensitivity and has been optimised in this work. To avoid leaching of any membrane component and thus to achieve a long lifetime of the sensor, highly hydrophobic, large compounds were used for the ion recognition layer. Employing this ion-pair technique resulted in a lead-sensor sensitive to the ppm concentration range with a response time of 45 minutes (while the reversible reaction took 15 hours). Finally, the achieved optode was tested together with those of the

  9. Detoxification of Heavy Metal Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Floarea Damian

    2007-01-01

    Full Text Available The concentration of the heavy metals in the soils from the strong affected zones because of the mining and metallurgical industry, Baia Mare and Zlatna (Romania, is significant due to the high values of the contents and association of the four metals Pb, Cu, Zn, Cd. The efficacy of the natural zeolites in heavy metals immobilization from the studied soils was evaluated in experiments in which the plant growth was observed. Heavy metals contaminated soils have been treated with a mixture of organic substance and zeolites (organo – zeolitic material. Zeolitic tuffs were roll-crushed and ground in small grains with dimensions between 0.05 and 2.0 mm. Clinoptilolite is the predominant zeolite and appears as compact masses of tabular and prismatic micron – sized crystals that are evident in SEM images. In the mixture, the polluted soil represents 83% and the organo – zeolitic material represents 17%. The soils used in the experiment are excessive contaminated with Pb (40375-1054ppm in association with Zn (1175-490ppm, Cd (24.2-13.2ppm and Cu (409.5-37.6ppm in Baia Mare zone and with Cu (7000-360ppm in association with Zn (3100-1900ppm, Cd (80-40ppm and Pb (2000-50ppm in Zlatna zone. The original soil and the treated soil have been planted with Lolium perenne. The growth of the plants has demonstrated that the soil treated with organo–zeolitic material allows the growth of vegetation much faster than the original soil. These results show that growth of the plants was possible because the organo–zeolitic material mixed with the soil provides the substances necessary for the plants to develop (ammonium, humus, potassium, calcium. At the same time, heavy metals that inhibit the plant development are blocked through the cationic exchange mechanism that makes them enter the zeolites structure and they no longer directly have access to the plant roots.

  10. Removal of heavy metals from biowaste: modelling of heavy metal behaviour and development of removal technologies.

    OpenAIRE

    Veeken, A.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of municipal solid waste. Biowaste is referred to as an organic waste stream but surprisingly it was found that a large part of biowaste is composed of inorganic material, i.e. sand, silt and clay minerals. The i...

  11. The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles

    Directory of Open Access Journals (Sweden)

    Garrett Wheaton

    2015-07-01

    Full Text Available Extreme thermoacidophiles (Topt > 65 °C, pHopt < 3.5 inhabit unique environments fraught with challenges, including extremely high temperatures, low pH, as well as high levels of soluble metal species. In fact, certain members of this group thrive by metabolizing heavy metals, creating a dynamic equilibrium between biooxidation to meet bioenergetic needs and mechanisms for tolerating and resisting the toxic effects of solubilized metals. Extremely thermoacidophilic archaea dominate bioleaching operations at elevated temperatures and have been considered for processing certain mineral types (e.g., chalcopyrite, some of which are recalcitrant to their mesophilic counterparts. A key issue to consider, in addition to temperature and pH, is the extent to which solid phase heavy metals are solubilized and the concomitant impact of these mobilized metals on the microorganism’s growth physiology. Here, extreme thermoacidophiles are examined from the perspectives of biodiversity, heavy metal biooxidation, metal resistance mechanisms, microbe-solid interactions, and application of these archaea in biomining operations.

  12. Heavy-metal compounds in the environment of the Zagorsk pumped-storage station region

    International Nuclear Information System (INIS)

    The Zagorsk pumped-storage station (ZPSS) is being constructed in a rather developed area. Pollution of the environment by compounds of metals is, in particular, a consequence. The tasks of this investigation included: the establishment of the main sources of pollution of terrestrial and aquatic ecosystems by metal compounds in the region of construction of the ZPSS; determination of the level of content of these substances in various components of the landscape; and evaluation of the effect of regulating the Kun'ya River on processes of migration and accumulation of heavy metals in aquatic ecosystems. In conformity with these tasks, a comprehensive geochemical study was performed in 1990-1991 of the drainage basin of the Kun'ya River, the results of which are presented here. Samples were collected of soil, forest litter, snow, bottom sediments, and surface waters. The investigation showed that the main sources of pollution of the aquatic environment in the ZPSS construction region by heavy-metal compounds were surface runoff from developed territories and insufficiently treated industrial wastewaters. 5 refs., 2 figs., 4 tabs

  13. Heavy Metal Contents of Lake Sapanca

    OpenAIRE

    YALÇIN, Nevin; SEVİNÇ, Vahdettin

    2001-01-01

    The heavy metal pollution of Lake Sapanca located in the Marmara region (Turkey), was investigated over time. The lake is the drinking water source of the city of Adapazarı and its environs. The D-80 (TEM) motorway passes about 5 km along the lake's zero point in the Sapanca district. The motorway's wastewater drainages have been connected to the lake without having been subjected to any wastewater treatment. The motorway was opened to service in October 1990. Analyses w...

  14. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  15. Geneticaly modified flax for heavy metal phytoremediation

    Czech Academy of Sciences Publication Activity Database

    Najmanová, J.; Kotrba, P.; Macek, Tomáš; Macková, Martina

    Praha : VŠCHT, 2007 - (Macková, M.; Macek, T.; Demnerová, K.; Pazlar, V.; Nováková, M.), s. 167-168 ISBN 978-80-7080-026-3. [Symposium on Biosorption and Bioremediation /4./. Praha (CZ), 26.08.2007-30.08.2007] R&D Projects: GA MŠk 1M06030 Grant ostatní: GA MŠk(CZ) OC 117 Institutional research plan: CEZ:AV0Z40550506 Keywords : phytoremediation * heavy metal s * glutathione * flax * transformation Subject RIV: EI - Biotechnology ; Bionics

  16. Determination of heavy metals in fish scales

    Directory of Open Access Journals (Sweden)

    Hana Nováková

    2010-12-01

    Full Text Available The outcomes from measurements of amount of selected elements in the fish scales of common carp are presented. Concentrations in the scales were identified and differences between storage of heavy metals in exposed and covered part of scale were studied. The spatial distribution of elements on the fish scale´s surface layer was measured by Laser Ablation–Inductively Coupled Plasma–Mass Spectrometry (LA–ICP–MS. The average amount of elements in the dissolved scales was quantified by ICP–MS. The fine structure of fish scales was visualized by phase–contrast Synchrotron radiation (SR microradiography.

  17. Heavy metal utilization by locally available plants

    OpenAIRE

    Pallewad, Sushma; Mali, R P

    2015-01-01

    The present paper deals with removal of heavy metal namely Copper from polluted water using plant species oscimum and mint. The experiment was divided into 2 groups. Group one as control and group II treated as experimental which received 4ppm of Copper sulphate. In the experimental plants were exposed to 4ppm Cu  for 24 and 48 hrs. And the amount of Cu depleted from water was analyzed. From the experiment it is evident that the Cu from water was utilized by the plants was more during 48 hrs ...

  18. Distribuição de metais pesados em sedimentos do sistema estuarino da Ilha de Vitória-ES Distribution and abundance of heavy metals in sediments from Vitória Island estuarine system

    OpenAIRE

    Honério Coutinho de Jesus; Elza de Abreu Costa; Antônio Sérgio Ferreira Mendonça; Eliana Zandonade

    2004-01-01

    Heavy-metal concentration in sediment is an important parameter for identifying pollution sources and assessing pollution levels in aquatic ecosystems. In this context, the present study aimed at determining concentrations of heavy metals in sediments from the Vitória estuarine system, Brazil. Twenty nine stations were surveyed to assess the spatial distribution of heavy metals. The metals for silt-clay fractions (

  19. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs

  20. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  1. Heavy metals occurrence in Italian food supplements

    Directory of Open Access Journals (Sweden)

    Brizio P.

    2013-04-01

    Full Text Available In recent years a significant increase in food supplements consumption has been observed, maybe in the belief that they couldn’t be dangerous for consumers health, even if they don’t achieved medical effects. However, environmental pollution can cause heavy metals contamination that could exceed maximum levels established by European legislation. Aim of this work was to evaluate arsenic, cadmium, chromium, lead and mercury content in 12 food supplements seized in a Piedmont shop by the Italian authority against food adulteration. All metals were analysed after mineralization and dilution steps by ICP-MS, with the exception of mercury, detected by the direct analyser TDA-AAS. Only one sample exceed the European maximum limits for lead (3,00 mg/kg but warning levels of chromium (over 3,00 mg/Kg has been detected in three of them.

  2. Heavy metal adsorption by sulphide mineral surfaces

    Science.gov (United States)

    Jean, Gilles E.; Bancroft, G. Michael

    1986-07-01

    The adsorption of aqueous Hg 2+, Pb 2+, Zn 2+ and Cd 2+ complexes on a variety of sulphide minerals has been studied as a function of the solution pH and also as a function of the nature of the ligands in solution. Sulphide minerals are excellent scavengers for these heavy metals. The adsorption is strongly pH dependent, i.e. there is a critical pH at which the adsorption increases dramatically. The pH dependence is related to the hydrolysis of the metal ions. Indirect evidence suggests that the hydrolyzed species are adsorbed directly on the sulphide groups, probably as a monolayer. The results also suggest the presence of MCI n2- n species physisorbed on the adsorbed monolayer. A positive identification of the adsorbed species was not possible using ESCA/XPS.

  3. A Better Method for Evaluating Heavy Metal Water Pollution

    OpenAIRE

    Hering, Janet

    2002-01-01

    High concentrations of heavy metals, and even trace amounts of some, can be harmful to both plants and animals. The toxicity of heavy metal contamination, however, is highly dependent on the chemical form of the metal in question. Metals that are bound in particles or to organic (carbon-containing) compounds are less toxic than dissolved free ions, less toxic meaning that the metals are less readily available for uptake by marine organisms.

  4. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  5. Removal of heavy metal ions from aqueous solutions using clinoptilolite

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Krstev, Aleksandar

    2015-01-01

    Heavy metals are a common pollutant found in various industrial effluents. They are often encountered in mining operations and acid mine drainage. The heavy metals are highly toxic and are non-biodegradable, therefore they must be removed from the polluted streams in order to meet increasingly stringent environmental quality standards. Removal of heavy metals can be accomplished by a variety of techniques. Conventional methods typically involve the use of processes such as coag...

  6. HEAVY METALS CONTENT IN SHEEP PRODUCTS FROM MIDLE SPIŠ

    OpenAIRE

    Slávik Marek; Tóth Tomáš; Kopernická Miriama; Árvay Július; Harangozo Ľuboš

    2015-01-01

    In this work, we evaluated the risk of contamination of animal products by heavy metals. Samples of animal raw materials were obtained in 2013 in the municipalities of Porac and Matejovce nad Hornádom. Samples of muscle and internal organs were collected from domestic sheep (Ovis aries) reared in the village of Rudnianska burdened area where mercury along with other heavy metals contamination is above the limit value of agricultural soil. Measuring the concentration of heavy metals in the sam...

  7. Impact of heavy metals on the female reproductive system

    OpenAIRE

    Piotr Rzymski; Katarzyna Tomczyk; Pawel Rzymski; Barbara Poniedziałek; Tomasz Opala; Maciej Wilczak

    2015-01-01

    Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female repr...

  8. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heavy metal screening in compounds feeds

    Directory of Open Access Journals (Sweden)

    Tomas Toth

    2015-05-01

    Full Text Available Heavy metals are generally classified as basic groups of pollutants that are now a days found in different environmental compartments. This is quite a large group of contaminants, which have different characteristics, effects on the environment and sources of origin. For environment pose the greatest risks, especially heavy metals produced by anthropogenic activities that adversely affect the health and vitality of organisms and natural environmental conditions. Livestock nutrition is among the main factors which affect not only the deficiency of livestock production and quality of food of animal origin, but they are also a factor affecting the safety and wholesomeness and the animal health. Compound feeds is characterized as a mixture of two or more feed grain. Containing organic, inorganic nutrients and specifically active compound feed meet the nutritional requirements of a given kind and age category of animals. They are used mainly in the diet of pigs, poultry, but also the nutrition of cattle, sheep, horses and other animal categories. The basic ingredients are cereals in proportion of 60-70 %. The aim of this thesis was to analyze the content of hazardous elements (copper, zinc, iron, manganese, cobalt, nickel, chromium, lead, cadmium, mercury in 15 samples of compound feeds and then evaluating their content in comparison with maximum limits laid down by Regulation of the Government of the Slovak Republic and Regulation Commission (EC.

  10. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    OpenAIRE

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; P Luangthuwapranit

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as li...

  11. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    OpenAIRE

    Marek Slávik,Tomáš Tóth; Július Árvay; Miriama Kopernická; Luboš Harangozo; Radovan Stanovič; Pavol Trebichalský; Petra Kavalcová

    2014-01-01

    In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86...

  12. Research on Distribution Pattern of Heavy Metals in Yanzhou Coalfield

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guang-zhu; YANG Feng-jie; CHENG Jian-guang; Wang Cui-zhen

    2005-01-01

    Heavy metal pollution brings extensive concerns since 1940s. In order to assess the heavy metal pollution on the farmland of Yanzhou coalfield, 216 soil samples and 54 combined samples were collected. Lead, cadmium, chromium, copper, zinc, and nickel contained in both topsoil and deep soil were analyzed using atomic absorbent spectrometry analyzer (AAS). Fuzzy clustering method was used in data processing. And fuzzy synthetic assessment was applied to assess the soil contamination by heavy metals. The result shows that Yanzhou coalfield has been polluted by the heavy metals to some extent.

  13. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish

    DEFF Research Database (Denmark)

    Baatrup, E

    1991-01-01

    1. Today, fish in the environment are inevitably exposed to chemical pollution. Although most hazardous substances are present at concentrations far below the lethal level, they may still cause serious damage to the life processes of these animals. 2. Fish depend on an intact nervous system...... metals are well known pollutants in the aquatic environment. Their interaction with relevant chemical stimuli may interfere with the communication between fish and environment. 5. The affinity for a number of ligands and macromolecules makes heavy metals most potent neurotoxins. 6. The present Mini...

  14. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  15. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  16. HEAVY METALS IN MIDDLE NITRA RIVERSIDE

    Directory of Open Access Journals (Sweden)

    Silvia Čéryová

    2012-02-01

    Full Text Available Present state of environment is widely affected by various impacts of man which significantly eliminate negative affecting of its influence on the environment. In the past this fact was not so implemented and thus there was uncontrolled escape of contaminants of organic, but also inorganic origin into various components of environment. The most sensitive component is water ecosystem and its close plates (base sediments, banks sediments and biosphere near the flows. River Nitra ranks among the most affected water ecosystems in SR that was in 1965 the recipient of sludge, that was by accident in Zemianske Kostoľany uncontrolled spilled into the river with aftermath of long-term contamination of all sub-components in ecosystem, mainly by heavy metals (Hg, As, Pb, etc.. Soil contamination by Cd and Hg was analytically confirmed. The contents of these risk elements in soil extract of aqua regia 1.85 - 3.7 fold (Cd and 4.57- 36.3 fold (Hg exceeded the limit values (0.4 mg.kg-1 and 0.15 mg.kg-1 respectively given by the legislative. Other metals exceeding limit values were lead (1.064 - 1.072 fold, zinc (1.096 - 1.192 fold and chromium (1.172 – 1.644 fold. From assessed soil content of heavy metals only bioavailable forms of Pb determined in soil extract by NH4NO3 2.0 - 3.3 fold exceeded the limit value 0.1 mg.kg-1.

  17. Considerations on the significance of a holistic approach of the issue of heavy metal and radioactive pollution

    International Nuclear Information System (INIS)

    The paper takes into consideration the aspects of heavy metal and radioactive pollution. Models of ecological system structure such as structural homomorphic models and mathematical models are discussed. The results of measurements of metal migration (Pb, Mn, Cu, Fe, Zn) in aquatic ecosystems are presented. The radionuclide distribution in sediments, soil and water as well as the impact on human population by external irradiation is considered

  18. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  19. Keywords in heavy metal lyrics : A Data-Driven Corpus Study into the Lyrics of Five Heavy Metal Subgenres

    OpenAIRE

    Taina, Jesse

    2014-01-01

    Heavy metal -musiikkia on akateemisessa maailmassa tutkittu vain vÀhÀn. Tutkimuksen kohteena on yleensÀ ollut heavy metal genrenÀ tai kulttuurisena ilmiönÀ. Ne harvat tutkimukset, jotka ovat keskittyneet heavy metal -kappaleiden sanoituksiin, ovat useimmiten ottaneet lÀhtökohdakseen kvalitatiivisen metodin. TÀmÀ tutkimus hyödyntÀÀ kvantitatiivisia menetelmiÀ. Tutkimuksen lÀhtökohtana on tutkia heavy metal -kappaleiden sanoituksia tilastollisesti korpuslingvistisiÀ metode...

  20. Survey of Heavy Metals (Cd, Pb, Hg, Zn and Cu Contamination in Sediment of Three Sites Anzali Wetland

    Directory of Open Access Journals (Sweden)

    M khosravi

    2011-06-01

    Full Text Available Background and Objectives:Anzali Wetland is one of the most important aquatic ecosystems of Iran which is located in south-west of the Caspian sea. This Wetland provides a suitable and non-market price habitat for valuable fish and aquatic animals which have an important role in the life cycle of this ecosystem. This study reports the results of some heavy metals contamination monitoring in superficial water of the Anzali Wetland, Iran.Materials and Methods: The samples were collected from three sites (east, center and west of Anzali Wetland, in each site three stations existed and each sample replicated three times.Results: The results showed high heavy metal levels in eastern site of wetland, where there were high levels of contamination. The mean of heavy metals concentration in sediment from Anzali Wetland were in order as Cd 157.023, Pb 3.646 and Hg 300.692 ng /g dried weight, Zn 186.953 and Cu 44.452 mg /g dried weight in eastern site. The concentration levels of heavy metals in three sites were in order as follows: Zn > Cu > Hg > Cd > Pb. Conclusion: Concentrations of heavy metals in eastern zone reflected metal loadings from anthropogenic sources located at and in the vicinity of the sampling sites.

  1. Heavy liquid metal technologies development in Kalla

    International Nuclear Information System (INIS)

    The thermo-physical properties of Heavy Liquid Metals (Pb and Pb-Bi Eutectic) such as the low melting and high boiling temperatures, the chemical inertness in direct contact with typical reactor coolants, makes HLMs to relevant candidates as core coolant of critical and sub-critical nuclear systems. In addition the high neutron yield obtained by proton irradiation renders this material attractive for the development of neutron spallation sources. The practical use of HLM as core coolant and spallation material needs to be validated by experimental and computational activities. In this frame the KALLA (Karlsruhe Lead Laboratory) program, which consists of several stagnant and loop experiments, has been defined. Currently KALLA represents one of the most relevant infrastructures, which is in operation in Europe. The capabilities of KALLA make it possible to evaluate thermal-hydraulics parameters in complex geometries, to develop techniques for local and global quantities measurement, to assess the materials compatibility in different conditions and to evaluate basic chemical-physical data as for instance the wetting capability of the liquid metal. The aim of this article is to discuss the most significant development conducted at KALLA to support the activities of Accelerator Driven Transmutation Systems and to overview the experiences gained with the operation of liquid metal facilities. The loop experiments are now operated continuously since several years and a broad experience has been gained for the individual components typically appearing in reactors like pump systems (both electromagnetic and mechanical), oxygen monitoring and control systems, etc. (authors)

  2. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  3. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  4. Content and the forms of heavy metals in bottom sediments in the zone of industrial pollution sources ,

    Directory of Open Access Journals (Sweden)

    Voytyuk Y.Y.

    2014-12-01

    Full Text Available Regularities in the distribution of heavy metals in sediments in the zone of influence of the steel industry in Mariupol are installed. The study results of the forms of occurrence of Zn, Pb, Cu, Cr, Ni are represented. Ecological and geochemical assessment of sediment contamination by heavy metals is performed. The main sources of pollution of bottom sediments are air borne emissions from industrial plants, hydrogenous pollution in industrial sewage entering the water, sewage sludge, ash dumps, slag, ore, sludge, oil spills and salt solutions. Pollution hydrogenous sediments may be significant, contaminated sediments are a source of long-term contamination of water, even after cessation of discharges into rivers untreated wastewater. The environmental condition of bottom sediments in gross content of heavy metals is little information because they do not reflect the transformation and further migration to adjacent environment. The study forms of giving objective information for ecological and geochemical evaluation. The study forms of heavy metals in the sediments carried by successive extracts. Concentrations of heavy metals in the extracts determined by atomic absorption spectrometer analysis CAS-115. It was established that a number of elements typical of exceeding their content in bottom sediments of the background values, due likely to their technogenic origin. Man-made pollution of bottom sediments. Mariupol has disrupted the natural form of the ratio of heavy metals. In the studied sediments form ion exchange increased content of heavy metals, which contributes to their migration in the aquatic environment.

  5. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  6. Heavy metal retention of different roadside soils

    Science.gov (United States)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-05-01

    Emissions from major highways contain different kinds of contaminants such as heavy metals, polycyclic aromatic hydrocarbons and road salts which can occur in both particulate and dissolved form. Pollutants are transferred to the environment via aerial transport or the infiltration of road runoff and spray water. A significant rate of the road runoff infiltrates into the Embankment which is usually built during road construction and located next to the road edge. Especially in the long term development there is an increasing problem of soil contamination and groundwater pollution. According to valid German law, newly constructed hard shoulders have to provide a specific bear-ing capacity to enable trafficability in emergency cases. Therefore the applicable materials consist of accurately defined gravel-soil mixtures, which can fulfil this requirement. To determine and com-pare the total and dissolved concentrations of Pb, Cd, Zn, Cu, Ni, Cr in the road runoff and seep-age water of newly constructed embankments, we installed 6 Lysimeter along the edge of the German highway A115. Three lysimeter were filled with different materials which are recently used for embankment construction in Germany. Three further lysimeter where installed and filled with plain gravel, to observe the distribution, quantity and quality of road runoff. Fist results showed that heavy metal concentrations determined in the road runoff were compara-ble to literature values. The solute concentrations in the seepage water of the different embank-ment materials do not show considerable differences and exceed the trigger values of the German Federal Soil Protection & Contamination Ordinance (BBodSchV) only sporadically. Total concentra-tions of the seepage water are significantly higher than solute concentrations and clearly differ be-tween stable and non stable variant. In order to estimate the risk of groundwater pollution further monitoring of seepage water quality is necessary.

  7. Heavy Metal Biosorption Sites Studies of Laminaria japonica

    Institute of Scientific and Technical Information of China (English)

    QIAN Aihong; WANG Xian; DENG Yongzhi; CHEN Lidan

    2005-01-01

    The role played by the functional groups of Laminaria japonica treated by methanol and formaldehyde in biosorption of the heavy metals was investigated.Infrared spectroscopy analysis and biosorption experiments show that both carboxyl and amino groups join in the sorption; chemical treatment decreased the biosorption efficiency of the heavy metals.

  8. Heavy metals detection using nanostructured screen printed electrodes

    Directory of Open Access Journals (Sweden)

    Jan Prasek*

    2010-12-01

    Full Text Available This work deals with the problematic of heavy metals dissolved inaqueous solution detection using standard electrochemical methods. The problematic of low signal response of miniaturizedelectrochemical electrodes for electrochemical analysis is mentioned here. Finally some solutions for electrodes miniaturization and examples of fabricated electrodes and their heavy metals detection capabilities on a real sample are shown and discussed here.

  9. Adsorption of heavy metals ions from liquid media by palygorskite

    OpenAIRE

    Melnyk, L; Bessarab, O.; Matko, S.; Malyovanyy, ?.

    2015-01-01

    The process of heavy metals adsorption by natural mineral palygorskite from wastewater and food (apple juice) has been investigated. The purification processes of copper, cadmium, lead, mercury and zinc have been studied. The rational technological parameters of these processes have been determined. The mechanism for heavy metals adsorbtion from juice by palygorskite has been defined. ?????????? ?????? ????????? ?????? ??????? ????????? ????????? ?????????????? ?? ??????? ??? ?? ???????? ????...

  10. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  11. Removal of Heavy Metals in Effluent by Adsorption and Coagulation

    Institute of Scientific and Technical Information of China (English)

    Feng Ting LI; Xia LI; Bing Ru ZHANG; Qing Hua OUYANG

    2004-01-01

    The silicate colloids with an average diameter 100 nm, were prepared by the hydrolysis of tetraethoxysilane (TES), NH4OH (30%) and then modified by (3-mercaptopropyl) trimethoxysilane ( APS). The colloids can adsorb heavy metals such as Pb and Cr in effluent and after adsorption the colloids can be separated by coagulation of aluminum sulfate. The removal of heavy metals is up to 99%.

  12. HEAVY METAL POLLUTION OF INDIAN RIVER AND ITS BIOMAGNIFICATIONS IN THE MOLLUSCS

    Directory of Open Access Journals (Sweden)

    Sanindhar Shreedhar Gaikwad

    2014-03-01

    Full Text Available River water is the reliable source of freshwater, which forms the basis of life for variety of creatures. Good water quality of river satisfies the basic need of these organisms. Now day’s due to the continuous water contamination, deterioration of water quality is becomes the serious concern in front of mankind. However, amongst these aquatic contaminants, heavy metals are of major concern. So, present investigation was carried out in order to assess the exact level of heavy metal contaminants and its impact over the aquatic creatures. Panchganga river MS, India was selected for the present study, because of its continuously polluting status. Freshwater mollusc species were selected to assess the biomagnifications due to its easy availability and bio-monitoring properties. Annual investigation concludes the alarming level of heavy metals contamination in the river and its severe deposition or biomagnification in the molluscan body. Contamination affects the total health of the river and hence, there is requirement of advanced scientific skill with practical approach to keep check on them.

  13. Effect of pH and time on the accumulation of heavy metals in Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Yamina Benmalek

    2014-07-01

    Full Text Available The release of heavy metals into our environment is very important and causes an environmental pollution problem. Contamination of the aquatic environment by toxic heavy metals is a serious pollution problem because they can reach water-courses either naturally through a variety of geochemical processes or by direct discharge of municipal, agricultural and industrial wastewater. The bioremediation of heavy metals using microorganisms has received a great deal of attention in recent years because their potential application in industry. Microorganisms uptake metal either actively (bioaccumulation and passively (biosorption. Some bacteria have developed chromosomally or extra-chromosomally controlled detoxification mechanisms to overcome the detrimental effects of heavy metals. In the present work, we have studied resistance to heavy metals and the capacity of a Gram-negative bacteria to accumulate lead and zinc. Results obtained indicated that the bacterial strain exhibited high Minimal Inhibitory Concentration (MIC values for metal ions tested ranging from 75 mg/l to 500 mg/l and it was able to accumulate more than 90% of lead and zinc during the active growth cycle. Effect of pH and time on heavy metal removal was also studied properly.

  14. Indicators of Lake Temsah Potential by some heavy metals Heavy Metals in Sediment

    International Nuclear Information System (INIS)

    The Environmental impact of industrial, agricultural and domestic waster on heavy metals sediment content in lake Temsah has been investigated. Seven sites were chosen, differ in nature of activity and quantity of wastes, namely from south to north-west; Arab contractors shipyard workshop(A), The junction between the western logon and the lake(B), El-Temsah workshop (C), El-Temsah shipyard (private workshop) (D), El-Karakat workshop for SCA (E), El-Forsan drain out fall to the lake (F) and SCA Press outlet (G). Eight of heavy metal concentrations of concern (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) were estimated in sediment samples collected from different chosen sites during the seasons; summer , autumn 1995 and winter , spring 1996. Results of this study reveal that pollution is directly related to the type of the activity in each site. Sediment samples results showed that the most suffering sites were found to be in the order of B> D> C> G> F, and the least polluted ones were E> A. And the highest polluted season was summer, whereas the least one was winter. It is obvious that the general mean values of Cu, Ni and Cd are exceeding the allowed concentrations documented for diverse trace components in coastal sediments. Strict regulations that must be followed in order to minimize this pollution specially, by heavy metals from marine workshop

  15. Phytoremediation potential of aquatic macrophyte, Azolla.

    Science.gov (United States)

    Sood, Anjuli; Uniyal, Perm L; Prasanna, Radha; Ahluwalia, Amrik S

    2012-03-01

    Aquatic macrophytes play an important role in the structural and functional aspects of aquatic ecosystems by altering water movement regimes, providing shelter to fish and aquatic invertebrates, serving as a food source, and altering water quality by regulating oxygen balance, nutrient cycles, and accumulating heavy metals. The ability to hyperaccumulate heavy metals makes them interesting research candidates, especially for the treatment of industrial effluents and sewage waste water. The use of aquatic macrophytes, such as Azolla with hyper accumulating ability is known to be an environmentally friendly option to restore polluted aquatic resources. The present review highlights the phytoaccumulation potential of macrophytes with emphasis on utilization of Azolla as a promising candidate for phytoremediation. The impact of uptake of heavy metals on morphology and metabolic processes of Azolla has also been discussed for a better understanding and utilization of this symbiotic association in the field of phytoremediation. PMID:22396093

  16. Benthic foraminiferal response to heavy metal pollution in Izmir Bay (eastern Aegean Sea)

    International Nuclear Information System (INIS)

    Benthic foraminifera are interestingly used as environmental bio-indicators, especially in polluted environments where their sensitivity to pollutants may be expressed by a modification of the assemblages. Sixteen sediment samples were collected in November 2002 from surficial sediments of Izmir Bay for the study of foraminiferal assemblages. Izmir Bay is located in Western Turkey and surrounded by a densely populated community. Foraminifera (class Foraminifera, phylum Granuloreticulata) are among the more abundant protozoa in marine and brackish water habitats. They are unicellular protista that construct shells of one and many chambers. Studies of pollution effects on benthic foraminifera were initiated by Resig (1960) and Watkins (1961). The studies have often focused on areas exposed to direct pollution sources such as industrial, agricultural wastes. Some studies also take into account thermal and various kinds of chemical pollution and heavy metal pollution. In our research, we identified 28 foraminifera species. A total of 16 sediment samples used for this study come from selected stations at Izmir Bay. Heavy metals and chemicals are unlikely to favor any particular species of benthic foraminifera. In practice, however, it is often difficult to separate effects caused by heavy metals from those caused by organic material because most polluted areas are subjected to some kind of organic enrichments. Of the major environmental components (water, sediment, flora and fauna), sediments have been thoroughly analyzed to study the occurrence and distribution of metals. They present the clearest indication of metal input and accumulation in aquatic environments. Izmir Bay has been contaminated by numerous heavy metals, but geochemical analyses have shown that metals are significant pollutants in the inner part of the bay. Correlation analysis shows that there is a significant correlation between foraminifera species and heavy metals. Amphycoryna scalaris has

  17. Heavy Metal Accumulation is Associated with Molecular and Pathological Perturbations in Liver of Variola louti from the Jeddah Coast of Red Sea

    OpenAIRE

    Saleh A. Mohamed; Elshal, Mohamed F; Kumosani, Taha A; Mal, Ahmad O.; Ahmed, Youssri M; Yaaser Q. Almulaiky; Asseri, Amer H.; Zamzami, Mazin A.

    2016-01-01

    Large amounts of waste water are discharged daily from the Jeddah Metropolitan Area into the Red Sea. Sewage draining into the Red Sea causes widespread chemical pollution that is toxic to aquatic ecosystems. The objective of this study was to investigate the extent of pollution and assess the presence of heavy metals in fish tissue and study their association with biological and biochemical alterations. The average concentrations of heavy metals found in hepatic tissues of Variola louti fish...

  18. Bismuth film electrodes for heavy metals determination

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan; Vojs, Marian; Mika, Fedor

    2007-05-01

    Bismuth film electrodes (BiFEs) have a potential to replace toxic mercury used most frequently for determination of heavy metals (Cd, Pb, Zn) by anodic stripping voltammetry. We prepared a graphite disc electrode (0.5 mm in diameter) from a pencil-lead rod and developed a nitrogen doped diamond-like carbon (NDLC) microelectrode array consisting of 50 625 microdiscs with 3 μm in diameter and interelectrode distances of 20 μm on a highly conductive silicon substrate as a support for BiFEs. The disc graphite BiFE was used for simultaneous determination of Pb(II), Cd(II) and Zn(II) by square wave voltammetry (SWV) in an aqueous solution. We found the optimum bismuth-to-metal concentration ratio in the solution to be 20. The dependence of the stripping responses on the concentration of target metals was linear in the range from 1×10 -8 to 1.2×10 -7 mol/L. Detection limits 2.4×10 -9 mol/L for Pb(II), 2.9×10 -9 mol/L for Cd(II) and 1.2×10 -8 mol/L for Zn(II) were estimated. A bismuth-plated NDLC microelectrode array was used for Pb(II) determination by differential pulse voltammetry (DPV) in an aqueous solution. We found that the stripping current for bismuth-plated NDLC array was linear in the concentration range of Pb(II) from 2×10 -8 to 1.2×10 -7 mol/L. The detection limit 2.2×10 -8 mol/L was estimated from a calibration plot.

  19. Phytoremediation of heavy metals in a tropical impoundment of industrial region.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2010-06-01

    Aquatic pollution poses a serious challenge to the scientific community worldwide, since lakes or reservoirs find multifarious use and most often their water is used for drinking, bathing, irrigation, and aquaculture. Nine metals and several physicochemical parameters, from four sampling sites in a tropical lake receiving the discharges from a thermal power plant, a coal mine, and a chlor-alkali industry, were studied from 2004 to 2005. Pertaining to metal pollution, the site most polluted with heavy metals was Belwadah, i.e., waters and sediments had the highest concentration of all the metals examined. The reference site was characterized by the presence of low concentrations of metals in waters and sediments. Following the water quality monitoring, 2-month field phytoremediation experiments were conducted using large enclosures at the discharge point of different polluted sites of the lake. During field phytoremediation experiments using aquatic macrophytes, marked percentage reduction in metals concentrations were recorded. The percentage decrease for different metals was in the range of 25% to 67.90% at Belwadah (with Eichhornia crassipes and Lemna minor), 25% to 77.14% at Dongia nala (with E. crassipes, L. minor and Azolla pinnata), and 25% to 71.42% at Ash pond site of G.B. Pant Sagar (with L. minor and A. pinnata). Preliminary studies of polluted sites are useful for improved microcosm design and for the systematic extrapolation of information from experimental ecosystems to natural ecosystems. PMID:19430918

  20. Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Zhou, Haichao; Tam, Nora F Y; Tian, Yu; Tan, Yang; Zhou, Song; Li, Qing; Chen, Yongheng; Leung, Jonathan Y S

    2016-03-15

    Urban rivers are often utilized by the local residents as water source, but they can be polluted by heavy metals due to industrialization. Here, the concentrations, toxicity, speciation and vertical profiles of heavy metals in sediment were examined to evaluate their impact, dispersal and temporal variation in Dongbao River. Results showed that the sediment in the industrialized areas was seriously contaminated with Cr, Cu and Ni which posed acute toxicity. Heavy metals, except Cr and Pb, were mainly associated with non-residual fractions, indicating their high mobility and bioavailability. The non-industrialized areas were also seriously contaminated, suggesting the dispersal of heavy metals along the river. The surface sediment could be more contaminated than the deep sediment, indicating the recent pollution events. Overall, when the point sources are not properly regulated, intense industrialization can cause both serious contamination and dispersal of heavy metals, which have far-reaching consequences in public health and environment. PMID:26856647

  1. Heavy Metal Contamination of Popular Nail Polishes in Iran

    OpenAIRE

    Golnaz Karimi; Parisa Ziarati

    2015-01-01

    Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of d...

  2. Immunotoxicity of heavy metals in relation to Great Lakes.

    OpenAIRE

    Bernier, J.; P. Brousseau; Krzystyniak, K; Tryphonas, H; Fournier, M

    1995-01-01

    Heavy metals including mercury, lead, and cadmium are present throughout the ecosystem and are detectable in small amounts in the Great Lakes water and fish. The main route of exposure of humans to these metals is via the ingestion of contaminated food, especially fish. Extensive experimental investigations indicated that heavy metals alter a number of parameters of the host's immune system and lead to increased susceptibility to infections, autoimmune diseases, and allergic manifestations. T...

  3. Heavy metals quantification on alkaline batteries incineration emissions

    OpenAIRE

    Xará, Susana; Almeida, Manuel Fonseca; Costa, Carlos; Silva, Margarida

    2000-01-01

    Heavy metals emissions associated with municipal solid waste (MSW) incineration is a point of discussion and care due to the known harmful effects of these metals on humans and environment. Batteries are appointed as one of the main contributors for those emissions, particularly for mercury, cadmium, zinc and lead. In this paper, results for heavy metals emissions from alkaline batteries obtained in a laboratorial incinerator are presented. The incineration process took place in a tubular ove...

  4. Adaptation of plants to an environment polluted with heavy metals

    OpenAIRE

    Antosiewicz, Danuta M.

    2014-01-01

    This paper presents the problem of tolerance of plants to heavy metals. Induction, development and stability of tolerance are described. Multiple and co-tolerance are presented in the context of specificity of acquired tolerance to heavy metals. Phenomena involved in the uptake and distribution of metals in plant tissues along with the mechanisms of exclusion and accumulation are discussed. The problem of tolerance development in plants is presented also in the light of the nutritional condit...

  5. Smouldering peat fires in polluted landscapes and their impact on heavy metal mobilisation

    Science.gov (United States)

    Clay, Gareth; Rothwell, James; Shuttleworth, Emma

    2016-04-01

    Whilst wildfires are commonly viewed as a threat confined to Southern Europe, Australia, and North America, recognition of wildfire hazard in the UK has been growing in recent years. UK wildfires often occur on heathland vegetation underlain by peat. These areas can contain industrially-derived legacy pollutants, such as mercury, lead, and arsenic. Ignition of the peat can lead to long-term smouldering fires that are difficult to extinguish, leading to large-scale damage. While work on assessing post-fire damage of peatlands has focussed on carbon and nutrient dynamics, there has been little attention on the release of heavy metals following wildfires. This paper presents initial data from a preliminary study to assess heavy metal release from smouldering peat fires. A homogenised sample of peat from the Peak District National Park, UK was ignited, monitored using thermocouples and an IR camera, and left to smoulder until self-extinguished (~9 hours). Total mass loss was 61%. Samples of pre- and post-burn peat were analysed for their heavy metal concentrations using XRF, ICP-MS, and CVAFS. Sample analysis is ongoing, but initial data shows that there is a substantial (3x) relative enrichment in heavy metal concentrations in post-fire ash. This has important implications for subsequent mobilisation in the aquatic and terrestrial environments, as well as consequences for human health risk through atmospheric redistribution.

  6. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China.

    Science.gov (United States)

    Niu, Yong; Niu, Yuan; Pang, Yong; Yu, Hui

    2015-11-01

    Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu. PMID:26370278

  7. Impact of heavy metals on macro-invertebrate fauna of the thaddo stream

    International Nuclear Information System (INIS)

    Impact of some heavy metals like zinc, lead, copper, chromium and cadmium were studied at four spots on the macro-invertebrate fauna of the Thaddo stream, a tributary of Malir River. This was in correlation with an earlier study on the physico-chemical aspects of water which showed a severe pollution in this stream. Present data for the qualitative and quantitative analyses of macro-invertebrates and the ranges of heavy metals (Zn 0.5-3.5, Pb 0.90-1.42, Cu 0.35-0.93, Cr 0.0-0.08 and Cd 0.003-0.01 ppm) in the water samples also indicate high level of pollution in the stream. Macro-invertebrate fauna comprises only of aquatic insects which include larvae of Chironomus spp., adults of the Notonectus sp., and nymphs of Gomphus sp. (dragon fly) belonging to the order Diptera , Hemiptera and Odonata, respectively. Quantitatively Notonectus sp. predominated and followed by Chironomus larvae. The maximum concentrations of all heavy metals were recorded at spot 3. A general trend of increase was observed from up stream to down stream regions particularly in the level of zinc. However, a reverse trend was observed in the abundance of macro-invertebrates with a great reduction at spot 4. The statistical analysis of the data generally indicates a negative correlation between the values of the studied heavy metals and the abundance of macro-invertebrates throughout this study. (author)

  8. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  9. Plants Role in Reducing Heavy Metals from Polluted Soil Leachate

    Directory of Open Access Journals (Sweden)

    Amouei A.* PhD,

    2015-09-01

    Full Text Available Aims In the past few decades, more attention has been paid to clean up soils polluted with heavy metals by plants. A serious problem in this way is the amount of heavy metals uptake by plants. This study was conducted to evaluate the effectiveness of 3 local plants of Mazandaran province, Iran, in reducing and controlling the soil’s heavy metals. Instrument & Methods The removal amount of three heavy metals (lead, zinc and cadmium by native plants (maize, velvetleaf and wild amaranth was investigated in alkaline (pH=8 and acidic (pH=5 soils and also using three substances such as EDTA, ammonium citrate and phosphate. The concentrations of these metals in leachate were measured by using atomic absorption spectrometry method. Findings Lead, cadmium and zinc levels in leachate in treatments with plants were less than unplanted ones. The concentrations of these metals in the produced leachate of treatments with acidic soils were higher than those with alkaline soils. In the treatments of soil polluted with additives, treatments containing ammonium phosphate and EDTA had the lowest and highest concentrations of heavy metals, respectively. Concentrations of these metals in treatments without plants were higher than those with plants. Conclusion Increasing of soil pH is effective on stabilization of heavy metals in soil. Ammonium phosphate plays an important role in stabilizing and EDTA and ammonium citrate increase the mobility of lead, zinc and cadmium in soil and groundwater.

  10. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.

    Science.gov (United States)

    Kumari, Alka; Lal, Brij; Rai, Upendra Nath

    2016-01-01

    The present investigation was carried out to screen native plants growing in fly ash (FA) contaminated areas near National Thermal Power Corporation (NTPC), Kahalgaon, Bihar, India with a view to using them for the eco-restoration of the area. A total number of 30 plant species (5 aquatic and 25 terrestrial including 6 ferns) were collected and their diversity status and dominance were also studied. After screening of dominant species at highly polluted site, 8 terrestrial and 5 aquatic plants were analyzed for heavy metals (Fe, Zn, Cu, Ni, Si, Al, Pb, Cr, and Cd). Differential accumulations of various heavy metals by different species of plants were observed. Typha latifolia was found to be most efficient metal accumulator of Fe (927), Cu (58), Zn (87), Ni (57), Al (67), Cd (95), and Pb (69), and Azolla pinnata as Cr (93) hyper-accumulator among aquatic species in µg g(-1). In terrestrial species the maximum levels of Fe (998), Zn (81), Ni (93), Al (121), and Si (156) were found in Croton bonplandium. However, there was high spatial variability in total metal accumulation in different species indicated by coefficient of variation (CV%). These results suggest that various aquatic, some dominant terrestrial plants including fern species may be used in a synergistic way to remediate and restore the FA contaminated wastelands. PMID:26442874

  11. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  12. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    International Nuclear Information System (INIS)

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (Kav, Pav, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals — the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: ► Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Small concentrations of heavy metals positively influenced the abundance of oribatid mites. ► Four different responses of oribatid species to heavy metal pollution were recognised. ► Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. ► Five studied oribatid species were deconcentrators of cadmium.

  13. Toxicity of heavy metals and metal-containing nanoparticles on plants.

    Science.gov (United States)

    Mustafa, Ghazala; Komatsu, Setsuko

    2016-08-01

    Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics - a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26940747

  14. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    Science.gov (United States)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  15. HEAVY METAL LOADS IN THE SOIL OF DEBRECEN

    Directory of Open Access Journals (Sweden)

    SÁNDOR SZEGEDI

    2007-12-01

    Full Text Available Results of examinations on the amount, and spatial distribution of heavy metal compounds in the soil of Debrecen, their geographic, pedologic and ecologic aspects are presented in this study. The effects of the differences in traffic conditions, build-up/land use and the density of vegetation on the heavy metal content of the soils have been examined in city of Debrecen and its closer environment.Cadmium-, cobalt-, nickel-, lead-, and copper-contents of the soil samples taken from 88 sites of the sample area have been studied after acidic extraction, using atomic absorption spectrometer with the flame technique. Close-to-background concentrations of heavy metals in unpolluted soils of the forested area of the Nagyerd were determined. Spatial differences in the heavy metal content of the soils for the whole area of Debrecen have been studied. Influence of soil properties (humus, Calcium- Carbonate content, pH and grain-size distribution on the binding and mobility of heavy metals in the soil has been examined. Vertical distribution and mobility of heavy metal compounds in acid sandy soils was determined. Heavy metal content of soil in the most sensitive areas, playgrounds, recreational areas, urban gardens and grazing fields along busy roads has been surveyed.

  16. Fractionation of Heavy Metals in Sediments from Dianchi Lake, China

    Institute of Scientific and Technical Information of China (English)

    LI Ren-Ying; YANG Hao; ZHOU Zhi-Gao; L(U) Jun-Jie; SHAO Xiao-Hua; JIN Feng

    2007-01-01

    Fractionation of heavy metals in sediments can help in understanding potential hazards of heavy metals.The present study analyzed total concentrations and fractions of selected heavy metals(Cd,Cr,Cu,Pb,and Zn)in surfaca sediments from Dianchi Lake,Yunnan Province,China,as well as factors that may affect distributions of the various heavy metal fractions.Total concentrations of the heavy metals decreased in the order Zn>Cu>Pb>Cr>Cd.These heavy metals,except Cr,were much higher than their background levels,indicating that Dianchi Lake was polluted by Cd,Zn,Pb,and Cu.Cadmium occurred mainly as the non-residual fraction(sum of the HOAc-soluble,reducible,and oxidizable fractions)(97.6%),and Zn(55.7%)was also predominantly found in the non-residual fraction.In contrast,most of the Cr(88.5%),Pb(81.8%),and Cu(59.2%)occurred in the residual fraction.Correlation analysis showed that total heavy metal concentrations,organic matter and reducible Fe were the main factors affecting the distributions of the various heavy metal fractions.In the Waihai section of Dianchi Lake (comprising 97%of the lake area),the concentrations of Cd,Zn,Pb,and Cu in the non-residual fraction were significantly lower(P≤0.01 or 0.05)than those of the Caohai section (3% of the lake area).This indicated that potential heavy metal hazards in the Caohai section were greater than the Waihai section.

  17. SURFACE WATER POLLUTION WITH HEAVY METALS IN THE LOWER CATCHMENT OF JIU RIVER BASIN, ACCORDING TO THE WATER FRAMEWORK DIRECTIVE (2000/60/EC)

    OpenAIRE

    ADINA SANDA ŞERBAN

    2011-01-01

    Surface water pollution with heavy metals in the lower catchment of Jiu river basin, according to the Water Framework Directive (2000/60/EC). The Water Framework Directive establishes a single transparent, effective and coherent water policy by defining a strategy to combat pollution by requiring specific action programs.Chemical pollution of surface water presents a threat to the aquatic environment with acute and chronic toxicity to aquatic organisms, accumulation in the ecosystem and losse...

  18. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. PMID:27451175

  19. Selective accumulation of heavy metals by microorganisms

    International Nuclear Information System (INIS)

    An investigation of the removal and recovery of uranium from aqueous systems using microbial biomass has been described previously (Nakajima et al. 1982). To establish which microorganisms accumulate the most uranium, we extended our investigation of uranium uptake to 83 species of microorganisms, 32 bacteria, 15 yeasts, 16 fungi and 20 actinomycetes. Of these 83 species of microorganisms tested, extremely high uranium-absorbing ability was found in Pseudomonas stutzeri, Neurospora sitophila, Streptomyces albus and Streptomyces viridochromogenes. The selective accumulation of heavy metal ions by various microorganisms has also been examined. Uranyl, mercury and lead ions were readily accumulated by almost all the species of microorganisms tested. Actinomycetes and fungi differ from many bacteria and most yeasts in their selective accumulation of uranium and mercury. In addition to this fundamental research, uranium recovery was investigated in immobilized Streptomyces albus, a microorganism with high uranium-uptake ability. These immobilized cells adsorbed uranium readily and selectively. The immobilized cells recovered uranium almost quantitatively and almost all uranium absorbed was desorbed with 0.1 M Na2CO3. The dry weight of the free cells decreased by 50% during 5 adsorption-desorption cycles. However, the dry weight of the immobilized cells decreased by only 2% during 5 cycles. These results showed that microbial cells are more stable after immobilization and can be used repeatedly for the process of uranium adsorption-desorption. (orig.)

  20. Adsorption behavior of heavy metals on biomaterials.

    Science.gov (United States)

    Minamisawa, Mayumi; Minamisawa, Hiroaki; Yoshida, Shoichiro; Takai, Nobuharu

    2004-09-01

    We have investigated adsorption of Cd(II) and Pb(II) at pH 2-6.7 onto the biomaterials chitosan, coffee, green tea, tea, yuzu, aloe, and Japanese coarse tea, and onto the inorganic adsorbents, activated carbon and zeolite. High adsorptive capabilities were observed for all of the biomaterials at pH 4 and 6.7. In the adsorption of Cd(II), blend coffee, tea, green tea, and coarse tea have comparable loading capacities to activated carbon and zeolite. Although activated carbon, zeolite, and chitosan are utilized in a variety of fields such as wastewater treatment, chemical and metallurgical engineering, and analytical chemistry, these adsorbents are costly. On the other hand, processing of the test biomaterials was inexpensive, and all the biomaterials except for chitosan were able to adsorb large amounts of Pb(II) and Cd(II) ions after a convenient pretreatment of washing with water followed by drying. The high adsorption capability of the biomaterials prepared from plant materials is promising in the development of a novel, low-cost adsorbent. From these results, it is concluded that heavy metal removal using biomaterials would be an effective method for the economic treatment of wastewater. The proposed adsorption method was applied to the determination of amounts of Cd(II) and Pb(II) in water samples. PMID:15373400

  1. Heavy Metals in the raw Milk in Mitrovica

    OpenAIRE

    BAHTIR HYSENI; ALUSH MUSAJ

    2014-01-01

    Safe and quality of food are of primary importance for food industry. The aim of this study was to measure the heavy metals concentration in the raw milk in Mitrovica, a region with a rapid industrial development. Trepca complex, for example is one of the key sources of heavy metal contamination of the region. The purpose of this paper, initially, was to understand the role of food contaminants that until recently were considered as antidote for heavy metals. Samples were prepared in the oven...

  2. Efficiency of compost in the removal of heavy metals from the industrial wastewater

    Science.gov (United States)

    Kocasoy, Günay; Güvener, Zeynep

    2009-03-01

    Authorities have been applying very strict regulations for the treatment of industrial wastewater recently because of the threatening level of the environmental pollution faced. Industrial wastewater containing heavy metals is a threat to the public health because of the accumulation of the heavy metals in the aquatic life which is transferred to human bodies through the food chain. Therefore, recently, researchers have been oriented toward the practical use of adsorbents for the treatment of wastewater polluted by heavy metals. The aim of this research was to determine the retention capacity of compost for copper, zinc, nickel and chromium. For this purpose, experiments in batch-mixing reactors with initial metal concentrations ranging from 100 to 1,000 mg/l were carried. It was also observed that compost could repeatedly be used in metal sorption processes. The experiments conducted indicated that compost has high retention capacities for copper, zinc and nickel, but not for chromium. Thus, compost has been approved as a potential sorbent for copper, zinc and nickel and may find place in industrial applications. Thus, solid waste which is another source of significant environmental pollution will be reduced by being converted into a beneficial product compost.

  3. pfmdr2 confers heavy metal resistance to Plasmodium falciparum.

    Science.gov (United States)

    Rosenberg, Elli; Litus, Ilena; Schwarzfuchs, Nurit; Sinay, Rosa; Schlesinger, Pnina; Golenser, Jacob; Baumeister, Stefan; Lingelbach, Klaus; Pollack, Yaakov

    2006-09-15

    Heavy metals are required by all organisms for normal function, but high levels of heavy metals are toxic. Therefore, homeostasis of these metals is crucial. In the human malaria-causing agent Plasmodium falciparum, the mechanisms of heavy metal transport have yet to be characterized. We have developed a P. falciparum line resistant to heavy metals from a wild-type line sensitive to heavy metals. A molecular and biochemical analysis of the involvement of the P. falciparum multidrug resistance 2 (pfmdr2) gene, an ABC-type transporter, in heavy metal homeostasis was studied. Using a novel uptake assay applied on these two strains, it was demonstrated that, when exposed to heavy metals, the sensitive line accumulates metal, whereas no accumulation was observed in the resistant line. The accumulation occurs within the parasite itself and not in the cytoplasm of the red blood cell. This difference in the accumulation pattern is not a result of amplification of the pfmdr2 gene or of a change in the expression pattern of the gene in the two lines. Sequencing of the gene from both lines revealed a major difference; a stop codon is found in the sensitive line upstream of the normal termination, resulting in a truncated protein that lacks 188 amino acids that contain a portion of the essential cytoplasmatic transporter domain, thereby rendering it inactive. In contrast, the resistant line harbors a full-length, active protein. These findings strongly suggest that the PFMDR2 protein acts as an efflux pump of heavy metals. PMID:16849328

  4. Monitoring of some heavy metal in egypt using different spectroscopic technique ICP-AES and AAS-GF

    International Nuclear Information System (INIS)

    Heavy metals include both toxic and/or non toxic elements egyptian aquatic environment were monitored using inductivly coupled plasma-atomic emission spectroscopy; ICP-AES and graphite furnace-atomic absorption spectroscopy; GF-AAS. Water and aquatic weeds (waterhyathins) are of different categories specified for such monitoring form the canals. The locations of sampling sites the river nile in egypt. These sites were chosen based on the industrial activity comparing to the cleansite and the other cultivated one. Bioavailability and related effects were defined so as to specify actually the higher concentration more contaminated areas

  5. [Bioaccumulation and Biomagnification of Heavy Metals in Three Gorges Reservoir and Effect of Biological Factors].

    Science.gov (United States)

    Wei, Li-li; Zhou, Qiong; Xie, Cong-xin; Wang, Jun; Li, Jun

    2016-01-15

    Three Gorges Reservoir (TGR) reached the maximum water level (175 m) of impoundment in Oct. 2010. In order to reveal the potential influence of the greatest water-level impoundment on the heavy metal pollution in the typical waters of TGR, the content level of trace metals ( Hg, Cd and Pb) in biota and potential biomagnification along the aquatic food chain were investigated in the main stem of TGR from July 2011 to August 2012, as well as the relationship between the trace metal concentrations of aquatic consumers (fish and aquatic invertebrate) and biological factors. Our study showed that no individual data of the three trace metals in biota exceeded the edible safety criteria of aquatic products in China and FAO. In contrast with those before the impoundment of TGR, Hg showed a little higher, while Cd and Pb exhibited a little lower level after the impoundment. Trace metals in TGR exhibited relatively lower concentrations compared with those in reservoirs in other countries. Significant correlations were found between the Cd concentration and body size (body length and body weight) of Cyprinus carpio, as well as the Hg concentration and body size (body length and body weight) of Erythroculter ilishaeformis. As for feeding habits, there was statistically significant difference between trace metal concentrations in herbivorous, planktonic, omnivorous and carnivorous fish. However, no significant difference was found between the metal concentrations in fish with different habitats (pelagic, mesopelagic and benthic). Even so, the overall trend was that fish living in benthic layer had higher heavy metal concentrations than those in pelagic and mesopelagic zones. The regression slopes of log-Hg concentration versus delta(15)N, served as an indicator of trophic magnification factor (TMF). Significant correlations (P < 0.05) were observed for Hg in the food web of TGR. TMF of Hg in TGR indicated lower level (0.046-0.066) in contrast with those in the reservoirs of

  6. Toxicological Response of the Green Alga Chlorella vulgaris, to Some Heavy Metals

    Directory of Open Access Journals (Sweden)

    E. Afkar

    2010-01-01

    Full Text Available Problems statement: The disturbance of aquatic ecosystems provoked by heavy metals pollution from industrial and domestic sources, has as consequence the loss of biological diversity, as well as increased bioaccumulation and magnification of toxicants in the food chain. The aim of this study was to evaluate the effect of some heavy metals on some physiological activities of Chlorella vulgaris beyerinck with special references to metal bioaccumulation. Approach: Chlorella vulgaris Beyerinck was isolated from Al-Asfar Lake, Al-Hassa, Saudi Arabia. A standard initial inoculum of the isolated algae was inoculated to culture flasks. The culture flasks were supplied with various concentrations of Cobalt, Copper and Zinc ranging from 10-6-10-9 M. At the end of the incubation period cultures were filtered and washed several times by distilled water for measurements the various experimental parameters. Results: The data show that the lower doses of the three tested metals had stimulatory effect in biomass yield of Chlorella vulgaris, whereas the higher doses were inhibitory depending on the type of the metal. The inhibitory effect of copper to the growth parameters of Chlorella vulgaris was more pronounced than other two tested metals. The total protein content, total carbohydrate and the total free amino acids of the tested green alga Chlorella vulgaris gradually decreased in a manner dependent on the metal concentration in the medium. On the other hand, bioaccumulation of cobalt, copper and zinc by Chlorella vulgaris cells were parallel to increasing the concentrations in the culture medium. Conclusion: The inhibitory and stimulatory effects of either of the used heavy metals depend on concentration. Different organisms, however, have different sensitivities to the same metal and the same organisms may be more or less damaged by different metals. The uptake of an element from the surrounding medium is seldom exactly proportional to the amount present

  7. Contamination and Risk Assessment of Heavy Metals in Lake Bed Sediment of a Large Lake Scenic Area in China

    Science.gov (United States)

    Wan, Li; Xu, Liang; Fu, Yongsheng

    2016-01-01

    The exposure of heavy metals to lake bed sediment of scenic areas may pose risks on aquatic ecosystems and human health, however very few studies on risk assessment have been reported for scenic areas. Accordingly, this study determined concentration levels, and assessed contamination characteristics and risks, of heavy metals in lake bed sediment of National Scenic Areas Songhuahu (NSAS) in China. The concentrations of Zn, Cr, Pb, Ni, and Cu were determined in 29 bed sediment samples. Results showed that the mean values of Zn, Cr, Pb, Ni, and Cu were 92.69, 90.73, 38.29, 46.77, and 49.44 mg/kg, respectively. Pearson correlation coefficients indicated that organic matter was a major factor influencing distribution of heavy metals. The results for enrichment factors indicated that contamination rates and anthropogenic inputs of single heavy metals decreased in the order Cu > Ni > Pb > Cr > Zn; results of Nemerow integrated pollution index suggested that 72.41% of sampling sites were exposed to low to moderately integrated pollution, and 27.59% of sampling sites were exposed to strongly integrated pollution. According to results for potential ecological risk index, ecological risks of single and all the heavy metals in bed sediment from all the sampling sites were low. Human risks were assessed with hazardous quotients, and the results suggested that exposure of heavy metals to bed sediment posed no or little risk to human health, and the pathway of ingestion significantly contributed to human health risks. PMID:27455296

  8. Characteristics of wet and dry weather heavy metal discharges in the Yeongsan Watershed, Korea

    International Nuclear Information System (INIS)

    A comprehensive water quality monitoring program was conducted in the Yeongsan (YS) River, Korea from 2005 to present to investigate wet and dry weather pollutant discharge in an attempt to establish point and non-point pollution management strategies. As part of this monitoring program, 11 heavy metal species were measured during dry and wet weather conditions in the YS River, where Gwangju City (GJ), a subcatchment of the YS River, was further monitored to clarify the responsibility of different metal species discharged into the mainstream. Monthly grab water samples showed that greater amounts of metals along the YS River were discharged during the wet summer months due largely to storm runoff. In addition, further monitoring results revealed that GJ, a highly urbanized area, was a significant contributor of the heavy metals being discharged into the YS River during both wet and dry weather. The most abundant metal species discharged from GJ were manganese, aluminum and iron with different contributions of wet and dry weather flows to the total discharge load. Wet weather flow was a significant contributor to the annual dissolved metal loads, accounting for 44-93% of the annual load depending on the metal species, with the exception of chromium and cadmium (9% and 27%, respectively). Mostly, metal loads during wet weather were shown to be proportional to the rainfall depth and antecedent dry period. A substantial fraction of metals were also associated with solids, suggesting that sedimentation might be an appropriate management practice for reducing the metal load generated in GJ. Overall, although dissolved metal concentrations in YS River were at an acceptable level for aquatic community protection, continual metal discharge throughout the year was considered to be a potential problem in the long-term due to gradual water quality degradation as well as continuous metal accumulation in the system.

  9. Spatial and temporal variability of heavy metals in streams of the Flint Creek and Flint River Watersheds from non-point sources

    Directory of Open Access Journals (Sweden)

    W. Tadesse

    2009-02-01

    Full Text Available Throughout the United States, non-point pollution is responsible for large quantities of heavy metals entering bodies of water. Pollution as a result of heavy metals can impact drinking water supplies, recreation, fisheries, and aquatic species. Presence of heavy metals such as lead (Pb, cadmium (Cd, and chromium (Cr, in surface water may pose great risks to human health as well as to aquatic animals. In order to understand water quality changes due to heavy metal elements and pH as a result of spatial and temporal variability and land use/land cover changes, there is a need to monitor water bodies on a constant basis. The purpose of this investigation was to assess the impacts of spatial and temporal variability on heavy metals and pH as a result of land use/land cover changes and provide a baseline for future water quality study from non-point sources in two watersheds. Spatial and temporal variability factors were not significant for all the heavy metal elements. Significant water quality changes occurred between 2003 and 2004 for the two of the five heavy metals (Pb, and Ni and pH. However, this was not true for the other of heavy metals investigated (Cd, Cr, and Zn. There was no influence of watershed observed for any of the heavy metals and pH in this study. To accurately quantify environmental impacts of heavy metals as well as pH, land use changes, and natural processes leading to spatial and temporal variability of water quality variables, continuous monitoring of surface water is necessary to improve the water quality of these watersheds.

  10. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.

    Science.gov (United States)

    Huang, Qingyun; Yu, Zhen; Pang, Ya; Wang, Yueqiang; Cai, Zhihong

    2015-04-01

    In this study, bioleaching was coupled with electrokinetics (BE) to remove heavy metals (Cu, Zn, Cr and Pb) from contaminated soil. For comparison, bioleaching (BL), electrokinetics (EK), and the chemical extraction method were also applied alone to remove the metals. The results showed that the BE method removed more heavy metals from the contaminated soil than the BL method or the EK method alone. The BE method was able to achieve metal solubilization rates of more than 70 % for Cu, Zn and Cr and of more than 40 % for Pb. Within the range of low current densities (bioleaching coupled with electrokinetics can effectively remediate heavy metal-contaminated soils and that preliminary tests should be conducted before field operation to detect the lowest current density for the greatest metal removal. PMID:25680933

  11. Heavy metals and epigenetic alterations in brain tumors.

    Science.gov (United States)

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-12-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  12. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  13. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2010-03-01

    Metals and several physicochemical parameters, from four sampling sites in a tropical lake receiving the discharges from a thermal power plant, a coal mine and a chlor-alkali industry, were studied from 2004-2005. Pertaining to metal pollution, the site most polluted with heavy metals was Belwadah, i.e., waters and sediments had the highest concentration of all the metals examined. The reference site was characterized by the presence of low concentrations of metals in waters and in sediments. Further, several wetland plants were harvested from different sites, and simultaneously, these were assessed for their metal concentration efficiency. Following the water quality monitoring and metal concentration efficiency, two-month field phytoremediation experiments were conducted using large enclosures at the discharge point of different polluted sites of the lake. Eichhornia crassipes, Lemna minor, and Azolla pinnata were frontier metal accumulators hence selected for previously mentioned field phytoremediation experiments. During field phytoremediation experiments using aquatic macrophytes, marked percentage reduction in metals concentrations were recorded. The percentage decrease for different metals was in the range of 25-67.90% at Belwadah (with Eichhornia crassipes and Lemna minor), 25-77.14% at Dongia nala (with Eichhornia crassipes, Lemna minor, and Azolla pinnata) and 25-71.42% at Ash pond site of G.B. Pant Sagar (with Lemna minor and Azolla pinnata). Preliminary studies of polluted sites are therefore useful for improved microcosm design and for the systematic extrapolation of information from experimental ecosystems to natural ecosystems. PMID:20734618

  14. RESPONSE MICROORGANISMS TO SOIL CONTAMINATION WITH HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Grazyna Kaczynska

    2014-09-01

    Full Text Available The main aim of our work was to evaluate the effect that the soil contamination with zinc, copper and cadmium has on the number of (CFUAzotobacter, organotrophic bacteria and Streptomyces. The results of the experiment revealed their role in the CFU modification and the impact on the level of soil contamination with heavy metals. Organotrophic bacteria have a similar tolerance to the heavy metals as Streptomyces, since the lowest resistance characterizes the Azotobacter. The toxicity of the examined heavy metals can be ranked as follows (from the most sensitive to the least: Azotobacter>organotrophic bacteria>Streptomyces. It can be concluded that the succession of the microorganuisms is determined by the soil fertility, which stimulates both the characteristics and biochemical transformations, that occur in it through the mechanisms involved in reducing the negative impact of the heavy metals on the number of microorganisms.

  15. Polysiloxane based CHEMFETs for the detection of heavy metal ions

    NARCIS (Netherlands)

    Lugtenberg, Ronny J.W.; Antonisse, Martijn M.G.; Egberink, Richard J.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1996-01-01

    The development of polysiloxane based chemically modified field effect transistors (CHEMFETs) for heavy metal ions is described. Different polar siloxane copolymers have been synthesized via an anionic copolymerization of hexamethylcyclotrisiloxane, [3-(methacryloxy)propyl]pentamethylcyclotrisiloxan

  16. DETERMINATION OF HEAVY METALS AND PESTICIDES IN GINSENG PRODUCTS

    Science.gov (United States)

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a progra...

  17. Toxicity of heavy metals to thermophilic anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Westermann, P.

    1983-01-01

    The effects of heavy metals on the thermophilic digestion of sewage sludge was studied in three semicontinuous digesters step-fed with cadmium, copper and nickel, respectively. The daily gas production, gas composition, the quantitative accumulation of volatile fatty acids, and the distribution of the heavy metals were measured. The fermentations were carried out at 58 degrees C with a retention time of 10 days and an addition of 1.7 g volatile solids/l of reactor volume per day. Nickel was found to be 2-3 times more water soluble than cadmium and copper when the digesters were fed raw sludge containing heavy metals. The three digesters all showed tendencies to acclimate to the heavy metals up to a certain level. 200 mg nickel/l was completely inhibitory while the same response was observed for cadmium and copper at 300 mg/l. (Refs. 20).

  18. Heavy metals removal from dredged sediments using electro kinetics

    Directory of Open Access Journals (Sweden)

    Ammami M. T.

    2013-04-01

    Full Text Available This study focuses on the use of a remediation process to remove particle-bound recalcitrant pollutants (heavy metals from dredged harbor sediments which must be previously treated before reuse in civil engineering. Electrokinetic (EK remediation is generally accepted as one of the most suitable technologies for extracting cationic heavy metals from fine grained sediments. Many batch tests were performed to better understand the capacity of various additives to improve sediment decontamination (when applying a constant voltage gradient of 1 V.cm-1, and the combination of enhancing agents (acids + surfactants were assessed to obtain an efficient removal of heavy metals. We succeeded in proving that mixing citric acid and a nonionic surfactant (Tween 20, additives which are environmentally friendly, was a good association to enhance heavy metals (Cd, Cr, Cu, Pb and Zn removal.

  19. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

    International Nuclear Information System (INIS)

    Background: Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives: Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods: We measured lead, mercury and cadmium concentrations in the blood of 132 patients (n = 42 males and n = 90 females) and 101 controls (n = 34 males and n = 67 females). Results: Our results show that heavy metal load is of no concern in most cases of EHS but might play a role in exceptional cases. Conclusions: The data do not support the general advice to heavy metal detoxification in EHS.

  20. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ahmadi, David, E-mail: david.ahmadi@web.de [Department of Psychiatry, University of Mainz (Germany); Engel, Alice; Weidemann, Joerg [Department of Psychiatry, University of Mainz (Germany); Budnik, Lygia Therese; Baur, Xaver [Institute for Occupational Medicine and Maritime Medicine (ZfAM), University of Hamburg (Germany); Frick, Ulrich [Department of Psychiatry, University of Regensburg (Germany); Department of Healthcare Management, Carinthia University of Applied Sciences (Austria); Hauser, Simone [Department of Psychiatry, University of Regensburg (Germany); Dahmen, Norbert [Department of Psychiatry, University of Mainz (Germany)

    2010-01-15

    Background: Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives: Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods: We measured lead, mercury and cadmium concentrations in the blood of 132 patients (n = 42 males and n = 90 females) and 101 controls (n = 34 males and n = 67 females). Results: Our results show that heavy metal load is of no concern in most cases of EHS but might play a role in exceptional cases. Conclusions: The data do not support the general advice to heavy metal detoxification in EHS.

  1. Heavy metal pollution disturbs immune response in wild ant populations

    Energy Technology Data Exchange (ETDEWEB)

    Sorvari, Jouni [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland)]. E-mail: jouni.sorvari@utu.fi; Rantala, Liisa M. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FIN-40351 Jyvaeskylae (Finland); Rantala, Markus J. [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland); Department of Biology, University of California, Riverside, CA 92521 USA (United States); Hakkarainen, Harri [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland); Eeva, Tapio [Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku (Finland)

    2007-01-15

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants.

  2. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  3. Biomonitoring of heavy metals: Definitions, possibilities and limitations

    International Nuclear Information System (INIS)

    Increasing attention given to heavy metals as components of the pollutant load in ecosystems makes it necessary to find reliable biological indicators. Fundamental investigations into the effect of heavy metals on organisms are therefore required. Different organisms (mosses, snails, etc.) were chosen as indicator organisms to optimize the indication of heavy metal loads at the physiological and biochemical level. All current programmes are designed to observe and measure pollutant inputs on a short or long-term basis. However, the changes in the environment of a phenological, physiological, sociological, genetic and physiological/biochemical nature have been investigated by biologists since the beginning of biological scientific research. So far excellent scientific results have been produced by qualification of the heavy metal status in ecosystems. Until now, the quantification of the results with regard to pollutant inputs in ecosystems (mass balances) and their action in these ecosystems have been investigated inadequately. (author)

  4. Detection of heavy metal by paper-based microfluidics.

    Science.gov (United States)

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. PMID:27131999

  5. Exploratory Evaluation of Retranslocation and Bioconcentration of Heavy Metals in Three Species of Mangrove at Las Cucharillas Marsh, Puerto Rico

    OpenAIRE

    Carla Lorraine Mejías; Juan Carlos Musa; Juan Otero

    2013-01-01

    Heavy metal contamination in the coastal area of Cataño, Puerto Rico accountable to anthropogenic sources is of great concern due to the risk posed over the surrounding communities and adjacent ecosystems. Estuarine ecosystems are widely recognized for the presence of mangroves. This type of flora is recognized for their many beneficial properties for example, the ability to purge aquatic ecosystems where they stand. Exploratory analyses on the phytoaccumulative capacity of three mangrove sp...

  6. Variation in dry grassland communities along a heavy metals gradient.

    Science.gov (United States)

    Woch, Marcin W; Kapusta, Paweł; Stefanowicz, Anna M

    2016-01-01

    The aim of this study was to investigate the variation in plant communities growing on metal-enriched sites created by historical Zn–Pb mining. The study sites were 65 small heaps of waste rock covered by grassland vegetation and scattered mostly over agricultural land of southern Poland. The sites were described in terms of plant coverage, species richness and composition, and the composition of plant traits. They were classified using phytosociological methods and detrended correspondence analysis. Identified plant communities were compared for vegetation parameters and habitat properties (soil characteristics, distance from the forest) by analysis of variance. The variation in plant community parameters was explained by multiple regression, in which the predictors were properties of the habitat selected on the basis of factor analysis. Grasslands that developed at low and high concentrations of heavy metals in soil were similar to some extent: they were composed on average of 17–20 species (per 4 m(2)), and their total coverage exceeded 90%. The species composition changed substantially with increasing contamination with heavy metals; metal-sensitive species withdrew, while the metal-tolerant became more abundant. Other important predictors of community structure were: proximity to the forest (responsible for the encroachment of competitive forest species and ruderals), and the thickness of the surface soil (shallow soil favored the formation of the heavy metal grassland). The heavy metal grassland was closely related to the dry calcareous grasslands. The former was an earlier succession stage of the latter at low contamination with heavy metals. PMID:26493699

  7. Study of heavy metals in urban runoff

    International Nuclear Information System (INIS)

    A cross-sectional survey was conducted through Tehran city and a field study was conducted to prepare main and accessory drainage channels map. Three main drainage channels were identified for this research and some sampling stations were chosen. Three stations selected in south of Tehran. The reason for selecting these stations is that all urban surface run off completely pass through these points and samples taken from these points are representative of all kinds of pollutants that transit from city surface. Another three stations were selected in center and further three stations were selected at north of Tehran. Surface runoff flow in three main channels, from north of south of Tehran, converge at south of Rey city and finally end up to Ghom Salt lake. The stations were chosen at three trajectories Sorkhe Hesar, Emad Avard, Kan. At each month two samples were from nine different stations. After collection of samples with respect to standard methods, they were dissolved in nitric acid and then analyzed by atomic absorption device. The results show that the concentrations of pollutants increased from north to south. For instance, Zinc had most concentration with monthly average of 0.98 mg/l and Nickel had the lowest amount with 0.02 mg/l in southern stations. Average concentration of Zn, Pb, Cd, Cu and Ni were: 0.638, 0.97, 0.04 and 0.035 mg/l respectively. Total average concentrations of heavy metals at three main channels were of 0.177, 0.176 and 0.145 mg/l. Emad Avard was the most polluted channel

  8. RESPONSE MICROORGANISMS TO SOIL CONTAMINATION WITH HEAVY METALS

    OpenAIRE

    Grazyna Kaczynska; Aneta Lipinska; Jadwiga Wyszkowska; Jan Kucharski

    2014-01-01

    The main aim of our work was to evaluate the effect that the soil contamination with zinc, copper and cadmium has on the number of (CFU)Azotobacter, organotrophic bacteria and Streptomyces. The results of the experiment revealed their role in the CFU modification and the impact on the level of soil contamination with heavy metals. Organotrophic bacteria have a similar tolerance to the heavy metals as Streptomyces, since the lowest resistance characterizes the Azotobacter. The toxicity of the ...

  9. Mosses accumulate heavy metals from the substrata of coal ash

    OpenAIRE

    Vukojević Vanja; Sabovljević Marko; Jovanović S.

    2005-01-01

    Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators) can be used for phytoremediation (removal of contaminants from soils) or phytomining (growing a crop of plants to harvest the metals). Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia). The content of various heavy meta...

  10. Semen quality and heavy metal and pesticides toxicity

    OpenAIRE

    Lidia Mínguez-Alarcón; Jaime Mendiola Olivares; Alberto Manuel Torres-Cantero

    2014-01-01

    Male reproductive function has deteriorated significantly in the past 50 years and this change could be related to an exposure to occupational and environmental pollutants and toxicants. The purpose of this paper is to summarize the negative impact of human exposure to heavy metals and pesticides on the male reproductive function. Most pesticides and heavy metals are considered reproductive toxicants and may adversely harm the male reproductive system due to their disrupting effect on the hyp...

  11. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    OpenAIRE

    Najiah, M.; L.W. Tee

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) an...

  12. Heavy Metals Contamination of Table Salt Consumed in Iran

    OpenAIRE

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt cons...

  13. HEAVY METALS CONTAMINATION IN HERBAL PLANTS FROM SOME GHANAIAN MARKETS

    OpenAIRE

    Crentsil Kofi Bempah; Juliana Boateng; Jacob Asomaning; Stephen Boahen Asabere

    2012-01-01

    A study was conducted to investigate the magnitude of heavy metals (arsenic [As], copper [Cu], cadmium [Cd] and mercury [Hg]) contamination that may be present in some Ghanaian medicinal herbs/plants available in local markets and also to compare the levels with recommended levels by the International Organization. A total of 267 samples of herbal plants representing 18 different plants collected from several markets in Ghana were tested for heavy metals contamination. Atomic Absorption Spect...

  14. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    OpenAIRE

    Huixuan Li; Yingru Li; Ming-Kuo Lee; Zhongwei Liu; Changhong Miao

    2015-01-01

    China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1) spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2) spatial statistical...

  15. Assessment of heavy metal contents of green leafy vegetables

    OpenAIRE

    Gupta, Sapana; Jena, V.; Jena, S.; Davić, Neda; Matić, Natalija; Radojević, D.; Solanki, J. S.

    2013-01-01

    Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amara...

  16. Heavy metals removal from dredged sediments using electro kinetics

    OpenAIRE

    Ammami M. T.; Benamar A.; Koltalo F.; Wang H. Q.; LeDerf F.

    2013-01-01

    This study focuses on the use of a remediation process to remove particle-bound recalcitrant pollutants (heavy metals) from dredged harbor sediments which must be previously treated before reuse in civil engineering. Electrokinetic (EK) remediation is generally accepted as one of the most suitable technologies for extracting cationic heavy metals from fine grained sediments. Many batch tests were performed to better understand the capacity of various additives to improve sediment decontaminat...

  17. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; S. C. Obiora

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  18. Effect of heavy metals on germination of seeds

    OpenAIRE

    Sethy, Sunil Kumar; Ghosh, Shyamasree

    2013-01-01

    With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and m...

  19. An optical dosimeter for monitoring heavy metal ions in water

    Science.gov (United States)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  20. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  1. Phytoremediation of heavy metal polluted soil and water in Vietnam

    OpenAIRE

    Bui, Thi Kim Anh; Dang, Dinh Kim; Nguyen, Trung Kien; Nguyen, Ngoc Minh,; Nguyen, Quang Trung; Nguyen, Hong Chuyen

    2015-01-01

    Phytoremediation has been intensively studied during the past decade due to its cost-effectiveness and environmental harmonies. Most of the studies on treatment of heavy metal pollution in soil and water by plant species have been done in developed countries but are limited in Vietnam. In this study, we presented some research results of phytoremediation of polluted soils and water with heavy metals that were done by Institute of Environmental Technology for several last years. For treatment ...

  2. Earliest evidence of pollution by heavy metals in archaeological sites

    OpenAIRE

    Guadalupe Monge; Jimenez-Espejo, Francisco J.; Antonio García-Alix; Francisca Martínez-Ruiz; Nadine Mattielli; Clive Finlayson; Naohiko Ohkouchi; Miguel Cortés Sánchez; Jose María Bermúdez de Castro; Ruth Blasco; Jordi Rosell; José Carrión; Joaquín Rodríguez-Vidal; Geraldine Finlayson

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution ...

  3. Heavy Metal Pollution in the Boatin Reserve (Bulgaria)

    OpenAIRE

    ANGELOV, Georgi Borisov

    2008-01-01

    Background concentrations of the heavy metals Mn, Ni, Cd, Co, Zn, Cu, and Pb in the soils and plant monitors of the Boatin Reserve were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Surface soil layers of the Boatin Reserve were polluted with Cu, as its concentration exceeded both the national legal standards and the content of Cu in non-polluted areas. Analysis of heavy metals accumulation in all studied plant monitors indicated that the content of Cu, Pb, ...

  4. Study on the heavy metals having effect on the water biocenoses in the backwaters at Alpar and Lakitelek

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, E.

    1984-01-01

    Heavy metals which have an effect on the water biocenosis were determined monthly during 1982 in the Tisza backwaters at Alpar and Lakitelek, Hungary. Copper, cadmium, zinc, chromium, and mercury contents of the water were determined. Organic matter, ammonium, nitrate, pH, sodium and potassium content were determined jointly with the studies of the heavy metals. On the basis of water quality indexes, the water quality of Lakitelek backwater is more stable than that of the Alpar backwater. Correlations were observed between the zinc and copper content and aquatic life. The two backwaters have significant mercury content, which is due to agricultural runoff. It is striking that cadmium does not occur in significant concentrations in the backwaters. Samples originating from the bottom sediments should be included in the studies on heavy metals, to obtain complete information on equilibrium and transport process taking place in the backwaters. 13 references, 12 figures.

  5. PHYTOEXTRACTION OF HEAVY METALS FROM MINE SOILS USING HYPERACCUMULATOR PLANTS

    OpenAIRE

    Pérez Esteban, Javier; Escolástico, Consuelo; Ruiz Fernández, Juan; Masaguer Rodríguez, Alberto; Moliner Aramendia, Ana María

    2012-01-01

    Phytoextraction is an environmental-friendly and cost-effective technology that uses metal hyperaccumulator plants to remove heavy metals from soils. The metals are absorbed by the roots, transported and accumulated in the aerial parts of the plants, which can be harvested and eliminated. The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addi...

  6. Selective adsorption of heavy and light metals by natural zeolites

    OpenAIRE

    Fosso-Kankeu, Elvis; Reitz, Magdali; Waanders, Frans

    2014-01-01

    Recent studies have shown that zeolite can be applied through an ion-exchange process to remove metals from solutions. In this paper the potential of two zeolites to perform as sorbents for treatment of multi-metal system is investigated. Parameters such as initial metal concentration, contact time, zeolite type and affinity for heavy versus light metals are taken into consideration. All the samples were prepared and characterized by XRD, XRF and FTIR. Evaluating suitable model for the det...

  7. Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna.

    Science.gov (United States)

    Kim, Injeong; Lee, Byung-Tae; Kim, Hyun-A; Kim, Kyoung-Woong; Kim, Sang Don; Hwang, Yu-Sik

    2016-01-01

    Citrate-coated AgNPs (c-AgNPs) have negatively charged surfaces and their surface interactions with heavy metals can affect metal toxicity in aquatic environments. This study used Daphnia magna to compare the acute toxicities and bioaccumulation of As(V), Cd, and Cu when they interact with c-AgNPs. The 24-h acute toxicities of As(V) and Cu were not affected by the addition of c-AgNPs, while bioaccumulation significantly decreased in the presence of c-AgNPs. In contrast, both the 24-h acute toxicity and bioaccumulation of Cd increased in the presence of c-AgNPs. These toxicity and bioaccumulation trends can be attributed to the interactions between the AgNP surface and the heavy metals. As(V) and c-AgNPs compete by negative charge, decreasing As(V) toxicity. Copper adheres readily to c-AgNP citrate, decreasing Cu bioavailability, and thus reducing Cu toxicity and bioaccumulation. Citrate complexes with divalent cations such as Ca and Mg reduce the competition between divalent cations and Cd on biotic ligand, increasing toxicity and bioaccumulation of Cd. This study shows that surface properties determine the effect of c-AgNPs on heavy metal toxicities and bioaccumulations; hence, further studies on the effect of nanoparticle by it surface properties are warranted. PMID:26188498

  8. Comparison of eleven heavy metals in moringa oleifera lam. products

    Directory of Open Access Journals (Sweden)

    C Limmatvapirat

    2015-01-01

    Full Text Available Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health.

  9. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  10. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    Science.gov (United States)

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health. PMID:26664066

  11. Human health risk assessment of heavy metals in urban stormwater.

    Science.gov (United States)

    Ma, Yukun; Egodawatta, Prasanna; McGree, James; Liu, An; Goonetilleke, Ashantha

    2016-07-01

    Toxic chemical pollutants such as heavy metals (HMs) are commonly present in urban stormwater. These pollutants can pose a significant risk to human health and hence a significant barrier for urban stormwater reuse. The primary aim of this study was to develop an approach for quantitatively assessing the risk to human health due to the presence of HMs in stormwater. This approach will lead to informed decision making in relation to risk management of urban stormwater reuse, enabling efficient implementation of appropriate treatment strategies. In this study, risks to human health from heavy metals were assessed as hazard index (HI) and quantified as a function of traffic and land use related parameters. Traffic and land use are the primary factors influencing heavy metal loads in the urban environment. The risks posed by heavy metals associated with total solids and fine solids (human health. These findings suggest that stormwater guidelines should consider the combined risk from multiple heavy metals rather than the threshold concentration of an individual species. Furthermore, it was found that risk to human health from heavy metals in stormwater is significantly influenced by traffic volume and the risk associated with stormwater from industrial areas is generally higher than that from commercial and residential areas. PMID:27046140

  12. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  13. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied in......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases are...... lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected that the...

  14. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied in...... lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected that the......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases are...

  15. Effect of ultrasonic treatment on heavy metal decontamination in milk.

    Science.gov (United States)

    Porova, Nataliya; Botvinnikova, Valentina; Krasulya, Olga; Cherepanov, Pavel; Potoroko, Irina

    2014-11-01

    Ultrasound has been found useful in increasing the efficiency and consumer safety in food processing. Removal of heavy metal (lead, mercury, and arsenic) contamination in milk is extremely important in regions of poor ecological environment - urban areas with heavy motor traffic or well established metallurgical/cement industry. In this communication, we report on the preliminary studies on the application of low frequency (20kHz) ultrasound for heavy metal decontamination of milk without affecting its physical, chemical, and microbiological properties. PMID:24746508

  16. Distribution of metals in aquatic edible plants: Trapa natans (Roxb.) Makino and Ipomoea aquatica Forsk.

    Science.gov (United States)

    Rai, U N; Sinha, S

    2001-09-01

    Most of the water bodies being used for the cultivation of edible aquatic plants (Trapa natans and Ipomoea aquatica) in Lucknow district, U.P., India, were found to be contaminated with a variety of toxic metals (Fe, Cu, Cr, Mn and Pb). The concentration of metals Cr, Pb and Fe in water was much higher than recommended permissible limits of WHO (1995). The edible parts of these plants bioconcentrated metals from their surrounding water significantly. Therefore, the present study was planned to assess the metal concentration in edible part of plants which was collected from various water bodies used for cultivation of these crops. Despite varying levels of metals found in various fruit parts of T. natans, the metal accumulation in kernel was alarming. However, metal content decreased significantly in various parts after boiling the fruit. Similarly, I. aquatica also accumulated significantly higher amounts of these metals in leaves, however the metal accumulating potential varied considerably depending upon level of metal contamination in the water body in which they were growing. The importance of these findings in the exploitation of these aquatic crops to meet the demand of food and health perspectives for human beings is highlighted. PMID:11554485

  17. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y2wsup(a)/y2wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  18. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen. PMID:27127923

  19. Investigation of Media Effects on Removal of Heavy Metals in Bioretention Cells

    Science.gov (United States)

    Gülbaz, Sezar; Melek Kazezyilmaz-Alhan, Cevza; Copty, Nadim K.

    2015-04-01

    Heavy metals are the most toxic elements at high concentrations, although some of them such as Cu and Zn are essential to plants, humans, and animals within a limited value. However, some heavy metals, such as Pb, have adverse effects even at low concentrations. Therefore, it is known that the toxic metals such as Zn, Cu and Pb in storm water runoff are serious threat for aquatic organisms. It is very important to control and reduce heavy metal concentration in urban storm water runoff. There are several methods to remove the aforementioned toxic metals such as electrolyte extraction, chemical precipitation, ion-exchange, reverse osmosis, membrane filtration, adsorption, cementation, and electrochemical treatment technologies. However, these methods are highly expensive and hard to implement for treatment of big volumes of water such as storm water. For this purpose, Low Impact Development (LID) Best Management Practices (BMPs) have become popular to collect, infiltrate, and treat toxic metals in storm water runoff in recent years. LID-BMP is a land planning method which is used to manage storm water runoff and improve water quality by reducing contaminant in storm water runoff. Bioretention is an example of LID-BMP application of which usage has recently been started in storm water treatment. Researchers have been investigating the advantages of bioretention systems and this study contributes to these research efforts by seeking for the media effects of bioretention on heavy metal removal. For this purpose, batch sorption experiments were performed to determine the distribution coefficients and retardation factor of copper (Cu), lead (Pb), and zinc (Zn) for bioretention media such as mulch, turf, local or vegetative soil, sand and gravel. Furthermore, sorption reaction kinetics of Cu, Pb and Zn are tested in order to assess the sorption equilibrium time of these metals for 5 bioretention media. The results of sorption test show that turf has higher sorption

  20. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems. PMID:26832725

  1. An eco-sustainable green approach for heavy metals management: two case studies of developing industrial region.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2012-01-01

    Multifaceted issues or paradigm of sustainable development should be appropriately addressed in the discipline of environmental management. Pollution of the biosphere with toxic metals has accelerated dramatically since the beginning of the Industrial Revolution. In present review, comparative assessment of traditional chemical technologies and phytoremediation has been reviewed particularly in the context of cost-effectiveness. The potential of phytoremediation and green chemicals in heavy metals management has been described critically. Further, the review explores our work on phytoremediation as green technology during the last 6 years and hand in hand addresses the various ecological issues, benefits and constraints pertaining to heavy metal pollution of aquatic ecosystems and its phytoremediation as first case study. Second case study demonstrates the possible health implications associated with use of metal contaminated wastewater for irrigation in peri-urban areas of developing world. Our researches revealed wetland plants/macrophytes as ideal bio-system for heavy metals removal in terms of both ecology and economy, when compared with chemical treatments. However, there are several constraints or limitations in the use of aquatic plants for phytoremediation in microcosm as well as mesocosm conditions. On the basis of our past researches, an eco-sustainable model has been proposed in order to resolve the certain constraints imposed in two case studies. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation is still in embryonic stage and needs more attention in gene manipulation area. Moreover, harvesting and recycling tools needs more extensive research. A multidisciplinary research effort that integrates the work of natural sciences, environmental engineers and policy makers is essential for greater success of green technologies as a potent tool of heavy metals management. PMID:21465134

  2. Magnetic filtration of heavy metals containing waters

    International Nuclear Information System (INIS)

    The high-intensity magnetic separation is applied above all in the beneficiation of fine-grained weakly magnetic ores, but also in the treatment of industrial, especially metallurgical and mining waters as well as of wastewaters from nuclear power stations. Similarly, it can be used in the field of geothermal energy supply and gases filtration. The magnetic separation or filtration respectively, directly enables the treatment of waters contaminated by solid ferromagnetic and paramagnetic particles. The magnetic filtration can remove heavy metals ions and even the oil substances by means of magnetic sorbents or special additives. The filtration of solid magnetic particles can be carried out in matrix-less and matrix separators. On the basis of mathematical description of particles dynamics and hydrodynamic conditions of suspension flow which resulted in the determination of geometrical parameters of separating zone the design of matrix-less magnetic separator was carried out. A strong, high-intensity magnetic field was created by means of a superconductive magnetic circuit. It was found out that for the achievement of optimal technological parameters during the magnetic separation of solid particles with grain size under 40 mm, the maximal solids concentration is to be 200 g/L. The design of matrix parameters and selection of inductive filling resides in theoretical considerations as well as in experimental works. Under laboratory condition the influence of following parameters on magnetic filtration process have been observed: the diameter of inductive ferromagnetic balls, the thickness of filtration layer, the intensity of magnetic field, the flow velocity of suspension, the density of suspension, the grain size of solids and the temperature of suspension. It was found that a spatial arrangement of inductive bodies in filtration layer influences not only the velocity of suspension flow but also a room size for catching of magnetic particles. The acting of magnetic

  3. Heavy metal bioaccumulation in the soft tissues of the green mussels, Perna viridis (L.) Bivalve: Mytilacea

    International Nuclear Information System (INIS)

    Untreated agro-industrial and domestic waste continuously being damped along the shores of its surrounding provinces and cities pollute the Manila Bay coastal waters. Presumably, its oyster and mussel culture farms are contaminated with toxic heavy metals. Yet, this alarming signs remain barely investigated. Pollution enhanced, the bioavailability and toxicity of heavy metals threaten the flora and fauna of the aquatic ecosystem. Trace concentrations of toxic elements in the marine food chain can trigger deleterious biochemical, physiological and ecological impact. Known to be bio-accumulated by aquatic organisms, the mean concentrations of Hg, Cd, Pb, Cu, and Zn in the edible tissues of Perna viridis were determined. Water and sediments sampled from the mussel culture farms were also analyzed. Results revealed that despite the apparent pollution, except for Cu and Zn, which registered slightly higher values, Hg, Cd and Pb concentrations were much lower than the maximum permissible limits. Even water and sediments samples tested showed that mean concentrations of these elements were still below sublethal limits. (auth.). 79 refs.; 8 figs.; 13 tabs.; 16 plates

  4. Heavy metals concentration in water and sediments of the Prut River lower sector

    Directory of Open Access Journals (Sweden)

    Matache M. L.

    2013-04-01

    Full Text Available A 120 km sector of the Prut River, Eastern Romania, was surveyed for the concentration of four heavy metals (Cd, Cu, Pb and Zn in water and sediments samples. The analysed sector is located on the border between Romania and Moldova and it is part of the Lower Prut Floodplain Natural Park. The most important steel-producing factory in Romania is located in the park vicinity. Four campaigns have been performed for water collection during different river regimes (both flooding and drought. The water quality is an essential condition for the wetland ecosystems within the park area and the aquatic biota they support, as trace elements bioaccumulation along the food webs might appear (David et al., 2012. Sediments can provide useful information regarding mid- and long-term pollution of the aquatic bodies, being capable of sequestering and releasing important amounts of heavy metals depending on the river regime and extreme situations (van Gestel, 2008; Verhoeven, 2009. For the sediments samples, there is an ascendant trend from upstream to the junction with the Danube River, as the distance to the main urban pole approaches, consequence of a strong human insertion. Romanian standards were used for comparison (MEWM, 2006.

  5. Phytoremediation of heavy metal polluted sites

    International Nuclear Information System (INIS)

    The nature of soil, the contaminant's chemical and physical characteristics and environmental factors such as climate and hydrology interact to determine the accumulation, mobility, toxicity, and overall significance of the contaminant in any specific instance. Although many metals are essential, all metals are toxic at higher concentrations, because they cause oxidative stress by formation of free radicals. Another reason why metals may be toxic is that they can replace essential metals in enzymes disrupting their function. Thus, metals render the land unsuitable for plant growth and destroy the biodiversity. Metal contaminated soil can be remediated by chemical, physical and biological techniques

  6. Risk assessment of Butrinti lagoon: spatial and temporal distribution of heavy metals in different pools

    Directory of Open Access Journals (Sweden)

    Teuta Topi

    2013-02-01

    Full Text Available Heavy metals enter in lagoons from pedo-geological background as well as from man-made sources through several pathways. Heavy metals released into the water are eventually accumulated in the sediments and in the lagoon’s aquatic organisms, especially in mussels, which act as recorders of heavy metals pollution event. This study aims to contribute in (i quantifying the origin and degree of heavy metals pollution in the sediments, water lagoon and mussels, (ii exploring the concentrations of heavy metals in mussels widely cultivated in this Lagoon. The water samples were taken at the surface and bottom of the lake between May 2010 and January 2011. The results showed that the concentrations of Cd (2.9 mg kg-1 were higher in soils formed over lime in the north of the Lagoon. Hg was nearly 234.89 µg kg-1, which is also considered of medium values for these types of soil. The maximum values of Cr content were 237.38 mg kg-1, or much higher than the average of soils over lime in Albania. The highest concentrations in sediment samples (mg kg-1 for Pb (346, Cd (4.14, Cr (171.9 and Hg (36.4 were found in the eastern and southern area of the Lagoon where there have been intensive agricultural activities. The results showed that the concentration (µg L-1 of Pb (10.78 at the lake bottom in May was higher than at the surface of water but it was generally low when compared to the WHO standard. On the other hand Cr was high with mean values of 56.6 µg L-1 at the bottom of the lake water in August. The data also indicated that mussels’samples which was collected in May in the southern area of the Lagoon showed higher levels (mg kg-1 of Pb (0.49 and Hg (0.14. However, the highest concentrations of Cd (0.36, Cr (0.50 were recorded in August. There is a correlation between the heavy metals and their sources. We hold that some precautions should be taken against the heavy metal pollution around Butrinti Lake considering the ecological, agricultural and

  7. A Study on Bioaccumulation of Heavy Metals in two Anuran Tadpoles:Clinotarsus Alticola and Leptobrachium Smithi From Rosekandy Tea Estate, Cachar, Assam

    Directory of Open Access Journals (Sweden)

    Pammi Singh1,

    2016-04-01

    Full Text Available Considering the significance of heavy metal pollution in aquatic system bioaccumulation of heavy metals in two species of tadpoles namely Clinotarsus alticola and Leptobrachium smithicollected from tea gardens of Barak valley, Assam was studied. Aquatic life is affected by heavy metal pollutants present in water as well as in sediment. The result of the study revealed that the concentration of iron, chromium, cadmium and lead in water samples was higher than the permissible limit of 0.3, 0.05, 0.003, 0.01 mg/L respectively but that of copper and zinc concentration was within the maximum permissible limit of 2 mg/L and 3 mg/L (WHO, 2005. The accumulation pattern of different heavy metals in different organs viz., intestine, liver and tail was studied.Overall the metal burden in different organs of Clinotarsus alticola and Leptobrachium smithi was in the order of liver>tail>intestine. Liver had highest accumulation of metals while intestine accumulated the least.Iron (Fe was highly and zinc (Zn was the least accumulated metal in both the tadpoles. The accumulation of heavy metals might be due to tea plantation influx water, domestic and associated anthropogenic activities.

  8. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  9. Ecological risk assessment of heavy metals in surface seawater and sediment near the outlet of a zinc factory in Huludao City, Liaoning Province, China

    Science.gov (United States)

    Feng, Yongliang; Chen, Yanzhen; Wang, Jing; Gong, Yufeng; Liu, Xigang; Mu, Gang; Tian, Hua

    2016-03-01

    At present, the methods widely applied to assess ecological risk of heavy metals are essentially single-point estimates in which exposure and toxicity data cannot be fully used and probabilities of adverse biological eff ects cannot be achieved. In this study, based on investigation of concentrations of six heavy metals (As, Hg, Pb, Cd, Cu, and Zn) in the surface seawater and sediment near the outlet of a zinc factory, located in Huludao City, Liaoning Province, China, a tiered approach consisting of several probabilistic options was used to refine ecological risk assessment for the individuals. A mixture of various heavy metals was detected in the surface seawater, and potential ecological risk index (PERI) was adopted to assess the potential ecological risk of heavy metals in the surface sediment. The results from all levels of aquatic ecological risk assessment in the tiered framework, ranging from comparison of single eff ects and exposure values to the use of distribution-based Hazard Quotient obtained through Monte Carlo simulation, are consistent with each other. Briefly, aquatic Zn and Cu posed a clear ecological risk, while Cd, Pb, Hg, and As in the water column posed potential risk. As expected, combined ecological risk of heavy metal mixture in the surface seawater was proved significantly higher than the risk caused by any individual heavy metal, calculated using the concept of total equivalent concentration. According to PERI, the severity of pollution by the six heavy metals in the surface sediment decreased in the following sequence: Cd>Hg>As>Pb>Cu>Zn, and the total heavy metals in the sediment posed a very high risk to the marine environment. This study provides a useful mathematical framework for ecological risk assessment of heavy metals.

  10. Stream ecosystems in mountain grassland (West Carpathians). 4. Heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Reczynska-Dutka, M.

    1982-01-01

    The level of heavy metals was determined in the water of the Biala Woda and Kamionka streams against the background of the natural conditions in their basins and the pastoral management of this territory. The level of heavy metals approximated that characteristic for natural waters. However, intensified use of the basins for sheep grazing and mineral fertilization was manifested by an increased zinc content in the water. The variation in the concentrations of some metals may also be connected with pollution introduced by means of atmospheric precipitation. 16 references, 2 tables.

  11. New Regeneration process of heavy metals loaded chelating resin

    OpenAIRE

    Menoud, P.; Cavin, L.; Renken, A.

    2000-01-01

    An alternative to the classical acid-base regeneration of chelating resins loaded with heavy metals is investigated. The new process consists in recovering the heavy metals with recyclable soluble complexing agents. The semiclosed reactor includes a fixed bed and a stirred tank. A three-parameter model, which implies a double equilibrium in series, is introduced. When less than 10 % of the metal is still fixed on the resin at the end of the desorption, a simplified form of the model with two ...

  12. Ecotoxicology of heavy metals: Liquid-phase extraction by nanosorbents

    Science.gov (United States)

    Burakov, A.; Romantsova, I.; Babkin, A.; Neskoromnaya, E.; Kucherova, A.; Kashevich, Z.

    2015-11-01

    The paper considers the problem of extreme toxicity heavy metal compounds dissolved in wastewater and liquid emissions of industrial enterprises to living organisms and environment as a whole. The possibility of increasing extraction efficiency of heavy metal ions by sorption materials was demonstrated. The porous space of the latter was modified by carbon nanotubes (CNTs) during process of the chemical vapour deposition (CVD) of carbon on metal oxide catalysts. The increasing of the sorption capacity (10-30%) and the sorption rate of nanomodified activated carbons in comparison with standard materials in the example of absorption of Co2+ and Ni2+ ions from aqueous solutions was proven.

  13. Mobility of heavy metals in soils amended with sewage sludge

    OpenAIRE

    Morera Luzán, María Teresa; Echeverría Morrás, Jesús; Garrido Segovia, Julián José

    2001-01-01

    Sewage sludges added to arable land can improve soil fertility and physical properties. However, the concentrations of heavy metals commonly found in sludges limits their application to soil. The purpose of this paper is to evaluate the mobility of heavy metals (Cd, Cu, Ni, Pb and Zn) in four soils amended with different rates (0, 80, 60 and 320 t ha-1) of anaerobically stabilized urban sewage sludge. Total metal content in the sewage sludge was Zn much greater than Cu > Pb > Ni much grea...

  14. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  15. THE STUDY OF HEAVY METALS CONTENT IN THE CATCHMENT AREA OF THE BIEBRZA RIVER AND THREE TRIBUTARIES

    Directory of Open Access Journals (Sweden)

    Zuzanna Kazimierowicz

    2014-11-01

    Full Text Available Sediment samples were taken in 11 measuring points of the Biebrza River and determined the contents of six metals (Cu, Cr, Co, Ni, Cd and Zn. Arithmetic mean, median and standard deviation were calculated. The sources of heavy metals in bottom sediments are: pollutants of fieldsand meadows (admixtures of plant protection products and fertilizers, discharges of domestic sewage and municipal from local wastewater treatment plants, wastewater di-scharges from rural buildings and pollutions of anthropogenic origin. Research of pollution of bottom sediments with heavy metals are needed tool for monitoring the aquatic environ-ment. Continuous monitoring metal content of the sediments will counteract the effects of the threat of biological life in the water reservoir, which may occur in the case of notorious exceeded permissible content of harmful substances.

  16. Characterization of heavy metal contamination in the habitat of red-crowned crane (Grus japonensis) in Zhalong Wetland, northeastern China.

    Science.gov (United States)

    Luo, Jinming; Ye, Yajie; Gao, Zhongyan; Wang, Yongjie; Wang, Wenfeng

    2014-09-01

    Heavy metal enrichment in the prey of red-crowned cranes in Zhalong Wetland, northeastern China was researched. Lead and Cd were the most abundant elements in the sediments; their concentrations ranged from 9.85 to 127 ppm and from 1.23 to 10.6 ppm, respectively. Six aquatic animal taxa contained detectable levels of heavy metals, in the decreasing order of Cyprinidae > Cobitidae > Dytiscidae > Odontobutidae > Viviparidae > Aeshnidae. Metal concentrations in these taxa followed the order: Zn > Cu > Cr > Pb > Hg > Cd. Metals in tissues of the red-crowned crane varied in the following order: Zn > Cr > Cu > Pb > Cd > Hg in feathers, and Zn > Cu > Hg > Cr > Pb > Cd in eggshells. Cadmium concentrations in the feathers of the red-crowned crane exceeded a level considered to be potentially toxic in birds (i.e., 0.22 ppm), ranging from 1.42 to 3.06 ppm. PMID:25015187

  17. Influence of Agriculture on Water Quality: Significance of Heavy Metals Monitoring

    OpenAIRE

    Nusreta Đonlagić; Amra Odobašić; Amra Bratovčić

    2007-01-01

    Agricultural activities directly influence the quality of water systems. Investigations showed that application of various agro-technical measures results with the pollution of water streams with heavy metals and other polluters. Increased concentrations of heavy metals result with intake of heavy metals and their transfer to food chains, and for that reason it is necessary to monitor the content of heavy metals regularly. Broad investigations of bio-geochemical cycling of heavy metals in the...

  18. Zoning and contamination rate of magnesium and heavy metals of iron, zinc and copper in the north and northwest aquifer of Khoy (Zourabad) based on GIS and determining the contaminated source

    OpenAIRE

    Fariborz Khodadadi; Abdolnaser Fazlnia; Hossein Pirkharrati

    2015-01-01

    Introduction Heavy metals are the most toxic pollutants in aquatic ecosystems. This contamination can result from the release of heavy metal elements during alteration and weathering of ultramafic and mafic rocks (ophiolite zones). Among the important metals and pollutants in the ophiolite; chromium, cobalt, nickel, iron, magnesium, manganese, zinc and copper could be noted. Basically, a mass of serpentine consists of serpentine, amphibole, talc, chlorite, magnetite, and the remainder of o...

  19. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    International Nuclear Information System (INIS)

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type

  20. Molecular Indicators of Soil Humification and Interaction with Heavy Metals

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Teresa W.-M.; Higashi, Richard M.; Cassel, Teresa; Green, Peter; Lane, Andrew N.

    2003-03-26

    For stabilization of heavy metals at contaminated sites, interaction of soil organic matter (SOM) with heavy metal ions is critically important for long-term sustainability, a factor that is poorly understood at the molecular level. Using 13C- and 15N-labeled soil humates (HS), we investigated the turnover of five organic amendments (celluose, wheat straw, pine shavings, chitin and bone meal) in relation to heavy metal ion leaching in soil column experiments. The labeled molecular substructures in HS were examined by multinuclear 2-D NMR and pyrolysis GC-MS while the element profile in the leachates was analyzed by ICP-MS. Preliminary analysis revealed that peptidic and polysaccharidic structures were highly enriched, which suggests their microbial origin. Cd(II) leaching was significantly attenuated with humification of lignocellulosic materials. Correlation of 13C and 15N turnovers of HS substructures to metal leaching is underway.

  1. Predatory insects as bioindicators of heavy metal pollution

    International Nuclear Information System (INIS)

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective. - Waterstriders, dragon fly larvae, antlion larvae, and ants can be used as heavy metal indicators

  2. Predatory insects as bioindicators of heavy metal pollution

    Energy Technology Data Exchange (ETDEWEB)

    Nummelin, Matti [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland)]. E-mail: matti.nummelin@helsinki.fi; Lodenius, Martin [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland); Tulisalo, Esa [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland); Hirvonen, Heikki [Department of Biological and Environmental Sciences, P.O. Box 65, University of Helsinki, FIN-00014 (Finland); Alanko, Timo [Statistics Finland, FIN-00022 (Finland)

    2007-01-15

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective. - Waterstriders, dragon fly larvae, antlion larvae, and ants can be used as heavy metal indicators.

  3. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  4. Characterisation and distribution of heavy metals at Masaya volcano, Nicaragua

    Science.gov (United States)

    Hinrichs, M.; Rymer, H.; Gillman, M.; Blake, S.

    2011-12-01

    Activity at Masaya volcano, Nicaragua, is characterised by periodic cycles of intense gas emission that last years to decades. The volcano entered its current phase of degassing in 1993, which resulted in a low-level persistent gas plume. As a result of this continuous emission, the substantial deposition of heavy metals onto the surrounding soils (andosols) is thought to be occurring (Delfosse et al., 2003). The deposition of these heavy metal plume components, and their incorporation into soil, is of key interest because once discharged to the environment they accumulate throughout the food chain and may pose a serious ecological threat (Alloway, 1995). Although many studies have focused on the impacts of volcanic gases on the environment, few have addressed the fate of the metals released by persistent gas plumes. This study therefore investigates the patterns of heavy metal transport, deposition and distribution at Masaya in order to provide additional information on the processes that govern the behaviour of volcanic heavy metals. A number of agricultural and non-agricultural soils at two horizons (A: 0-10 cm and B: 20-30 cm) were collected and their trace metal content analysed. Twenty sites were sampled from the active vent to ~5 km downwind, as well as two control sites upwind of the volcano. Preliminary data suggest that a rapid deposition of metals occurs close to the source, with metal concentrations in the soil generally decreasing with distance away from the active vent. Cr and As clearly follow this trend, with maximum concentrations of 20.71 and 7.61 mg/kg respectively occurring closest to the vent. Concentration peaks for Mn, Co, Ni, Cu, and Zn (959.30, 21.57, 13.44, 152.85, and 72.73 mg/kg respectively) occur slightly further away from the vent, implying that these metals are transported further. The concentration of Cr, Co, Al, Ni and Mn was found to increase from soil horizon A to B, whereas the abundance of Zn decreases with depth. Heavy metal

  5. Physico chemical characteristics and heavy metal contents of water from Butrinti lagoon, Albania

    Directory of Open Access Journals (Sweden)

    Teuta Topi

    2013-05-01

    Full Text Available A study was conducted between May 2010 and January 20011 in the Butrinti Lagoon, an important ecological and economical area in the south of Albania. The study aimed to determine (i the water quality in the lagoon of Butrint using physico-chemical parameters and level of heavy metals, (2 its status to support living life in the aquatic ecosystem. Data on temperature, pH, salinity, dissolved oxygen, EC were obtained in - situ using multiparameter portable instrument. Surface and bottom water of the lagoon were analyzed for heavy metals: Pb, Cr, Cu, Cd, Hg. The results showed that water temperature varies depending on the seasons. The highest temperatures were in August from 26 to 27.3 0C depending on the sampling station. pH in the water of the lagoon is basic, its values ranged from 8.12 to 8.49, and were optimal for the production of mussels. The values of salinity in the lagoon of Butrint are smaller than those of the Ionian sea influenced by rivers Bistrica, Pavlo and groundwater resources. Lower values of DO in the depth of the lagoon were recorded in August at stations SS2 (1.4 mg L-1 and SS5 (1.9 mg L-1, and therefore a damage was noticed in the growth of mussels in the lagoon. The heavy metals Cr, Pb, in some stations are found in higher levels than the values allowed by the EU and pose a potential health risk to humans and the aquatic life of the lagoon’s ecosystem.

  6. Investigation of heavy metal stress on chemoheterotrophic microorganisms

    OpenAIRE

    Monballiu, Annick; Chiang, Yi Wai; Cardon, Nele; Cornelly, Christel; Meesschaert, Boudewijn

    2013-01-01

    Bioleaching uses microorganisms to extract valuable metals from minerals. It has risen as a sustainable alternative to conventional metal recovery processes for low grade ores and industrial waste materials such as incineration ashes as it could be more economical and environmentally friendly [1-2]. However, inherently to these materials is the presence of the hazardous heavy metals that can become toxic to the bioleaching microorganisms when released from its solid form, and potentially can ...

  7. Bioaccumulation of heavy metals by fimbrial designer adhesins

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, Kristian; Klemm, Per

    1999-01-01

    . By serial selection and enrichment procedures specific sequences were identified which conferred the ability on recombinant cells to adhere to various metal oxides (PbO2, CoO, MnO2, Cr2O3 ) The properties inherent in these sequences permitted the distinct recognition of metals to varying degrees...... for the bioaccumulation of heavy metals from the environment. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved....

  8. The Chemophytostabilisation Process of Heavy Metal Polluted Soil

    OpenAIRE

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against p...

  9. Source of atmospheric heavy metals in winter in Foshan, China.

    Science.gov (United States)

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most

  10. Fish otoliths as archives of metal concentrations in the aquatic environment

    International Nuclear Information System (INIS)

    Full text: Little is known of the relationship between the concentrations of metals in the laminations of the fish otolith and that in the environment. It is imperative that a concentration response relationship be demonstrated if otoliths are to be used as archives of metal concentrations in the aquatic environment. The aim of this preliminary study was to determine if there was an increase in concentration of Mn in the laminations of the fish otolith when fish were exposed to an elevated level of this metal. SIMS was used to measure Mn in the otolith. The findings will be discussed

  11. Current state of knowledge of the concentration of mercury and other heavy metals in fresh water fish in Colombia

    International Nuclear Information System (INIS)

    One of the most important environmental problems in the country refers to the indiscriminate use of chemical precursors in illicit activities, the use of heavy metals as mercury in mining activities, the spill of served waters and another type of compound related with the industrial activities of raw and the inadequate agricultural practices. This has led to chemical contamination especially by heavy metals, considered one of the most dangerous for the aquatic ecosystems and the present species in them. Fish have the capacity to store these compounds in their organism in a concentration higher than that in the surrounding environment (water), therefore, their concentration are important indicators of the contamination level, but also this implies that their consumption can become a serious health problem for the populations that feeds from them. The concentration of heavy metals in fish of fresh water is better known in the basin of the Magdalena river, especially in the region of the Mojana and in the marshes of the south of the department of Bolivar where the levels of contamination by mercury and other metals has been studied due to the development of multiple industrial activities, including gold mining and petrochemical industries. However, little is known in the country about the problem generated by the disposal heavy metals in rivers and lakes and their impact on the fish resource, deterioration of ecosystems and human health. Based in the current norms bio-assays have been used to check the effects of the aquatic contamination on fresh waters fish and the evaluation of at least three parameters (heavy metals, temperature, effluents) in eight species of fresh waters fish: carassius auratus, oreochromis spp., piractus brachypomus, prochilodus magdalenae, astyanax fasciatus, colossoma bidens, gambusia affinis and grundulus bogotensis

  12. New trends in removing heavy metals from wastewater.

    Science.gov (United States)

    Zhao, Meihua; Xu, Ying; Zhang, Chaosheng; Rong, Hongwei; Zeng, Guangming

    2016-08-01

    With the development of researches, the treatments of wastewater have reached a certain level. Whereas, heavy metals in wastewater cause special concern in recent times due to their recalcitrance and persistence in the environment. Therefore, it is important to get rid of the heavy metals in wastewater. The previous studies have provided many alternative processes in removing heavy metals from wastewater. This paper reviews the recent developments and various methods for the removal of heavy metals from wastewater. It also evaluates the advantages and limitations in application of these techniques. A particular focus is given to innovative removal processes including adsorption on abiological adsorbents, biosorption, and photocatalysis. Because these processes have leaded the new trends and attracted more and more researches in removing heavy metals from wastewater due to their high efficency, pluripotency and availability in a copious amount. In general, the applicability, characteristic of wastewater, cost-effectiveness, and plant simplicity are the key factors in selecting the most suitable method for the contaminated wastewater. PMID:27318819

  13. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    Science.gov (United States)

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime. PMID:25898680

  14. EVALUATION OF HEAVY METAL IN COASTAL WATER AT KELANTAN

    Directory of Open Access Journals (Sweden)

    Rizki Wannahari

    2013-01-01

    Full Text Available Five sites were selected representing the studied sites of the coastal water in Kelantan, Malaysia during 1996 until May 2012. These selected sites are the popular beaches in Kelantan which are Sri Tujuh Beach (STB located in Tumpat region, Cahaya Bulan Beach (PCB and Sabak Beach (SB in Kota Bharu region, Irama Beach (PI in Bachok region and Bisikan Bayu Beach (PBB in Pasir Putih region. In other to identify the quality of coastal water in this five popular coasts along Kelantan, study of heavy metals contamination in coastal water has been done. Evaluation of heavy metal contamination in Kelantan coastal water has doing by combine the data from Department of Environment (DOE Malaysia and the data was got from this research. There are four types of heavy metal concentration has evaluated in this research; Cadmium (Cd, Cupper (Cu, Lead (Pb and Chromium (Cr. From this evaluation, we can see the fluctuation of concentration the four type heavy metal (Cd, Cu, Pb, Cr from 1996 until May 2012. Most of the year, the concentration of heavy metal is between the range of Malaysia marine quality standard except for Lead. Lead was proven to be the highest concentration pollutant in the five beaches in certain time and also exceed the Malaysia marine standard.

  15. HEAVY METALS CONTENT IN SHEEP PRODUCTS FROM MIDLE SPIŠ

    Directory of Open Access Journals (Sweden)

    Slávik Marek

    2015-02-01

    Full Text Available In this work, we evaluated the risk of contamination of animal products by heavy metals. Samples of animal raw materials were obtained in 2013 in the municipalities of Porac and Matejovce nad Hornádom. Samples of muscle and internal organs were collected from domestic sheep (Ovis aries reared in the village of Rudnianska burdened area where mercury along with other heavy metals contamination is above the limit value of agricultural soil. Measuring the concentration of heavy metals in the samples was performed in accordance with the general requirements set out in the tenth chapter of the Food Code of the Slovak Republic. Mercury content in biological materials were assessed by total mercury as on the AMA 254 in fresh samples. The other heavy metal content, was determined after wet mineralization (HNO3: H2O - 1: 1 using the device AAS Varian 240 FS. The contamination of the environment showed increased accumulation of heavy metals in the - studiet sheep tissues intended for consumption. Such as Hg content in the kidneys of domestic sheep exceed the limit value by 1.3 times, whereas, in the case of cadmium 3 times exceeding the limit value in meat was recordered. Exceed limit was recorded in the case of lead and copper in the liver.

  16. Elimination of radionuclides and heavy metals from soils

    International Nuclear Information System (INIS)

    Sorption and desorption of radionuclides and heavy metals, their vertical migration and gradual extraction from soils were studied. Tessier sequential extraction method was used for determination the physicochemical forms of radionuclides and heavy metals absorbed by root system of plants and leached into ground water. Fixed forms of heavy metals and radionuclides are prevailing in soils. As to artificial (90Sr, 137Cs) isotope ratio of fixed forms bound with soil components, it is higher for 137Cs (black earth - 95%, sandy soil - 62%) as compared to 90Sr. Mobilization procedures for elimination of unfavourable influence of these pollutants in soils were used. The bacteria Pseudomonas sp. and Micrococcus l. are applied for this purpose. At the same time the growing of technical plants (Linum usitatissimum L. and Brassica napus L. var.) was studied as a method for mobilizing the heavy metals and radionuclides from soils. Retardation influence of bacteria on 85Sr was noticed after as much as 3 months. The sum of water-soluble and exchangeable fractions reached 60%. Values of Cs distribution proved that microorganisms or plants used had no appreciable influence on Cs-mobility. After 3 months the relative ratio of accessible fraction increased with about 5%. As to heavy metals, both bacteria and plant growing influenced their retardation. In the case of Cd, one month operation of microorganisms resulted in important increase of easily available Cd-ratio (about 25%) in soils. (author)

  17. Heavy metal immobilization in mineral phases

    International Nuclear Information System (INIS)

    A successful waste form for toxic or radioactive metals must not only have the ability to chemically incorporate the elements but it must also be extremely stable in the geological environment. Thus, ceramic wasteforms are sought which mimic those minerals that have sequestered the hazardous metals for billions of years. One method for producing ceramics, metal organic deposition (MOD) is outstanding in its simplicity, versatility, and inexpensiveness. The major contribution that the MOD process can make to ceramic waste forms is the ability to mix the toxic metals at a molecular level with the elements which form the ceramic matrix. With proper choice of organic ligands, the inclusion of significant amounts of alkali metals in the ceramic and, hence, their detrimental effect on durability may be avoided. In the first stage of our research we identified thermally-unstable ligands which could fulfill the role of complexing toxic metal species and allowing their precipitation or extraction into nonaqueous solvents

  18. Assessment of metal sorption mechanisms by aquatic macrophytes using PIXE analysis.

    Science.gov (United States)

    Módenes, A N; Espinoza-Quiñones, F R; Santos, G H F; Borba, C E; Rizzutto, M A

    2013-10-15

    In this work, a study of the metal sorption mechanism by dead biomass has been performed. All batch metal biosorption experiments were performed using the aquatic macrophyte Egeria densa as biosorbent. Divalent cadmium and zinc solutions were used to assess the sorption mechanisms involved. Using a suitable equilibrium time of 2h and a mixture of 300 mg biosorbent and 50 mL metal solution at pH 5, monocomponent sorption experiments were performed. In order to determine the residual amounts of metals in the aqueous solutions and the concentrations of removed metals in the dry biomass, Particle Induced X-ray Emission (PIXE) measurements in thin and thick target samples were carried out. Based on the strong experimental evidence from the mass balance among the major elements participating in the sorption processes, an ion exchange process was identified as the mechanism responsible for metal removal by the dry biomass. PMID:23921177

  19. Heavy metal bioavailability and bioaccessibility in soil

    OpenAIRE

    Dean, John

    2009-01-01

    This chapter considers the use of a variety of approaches to assess either the bioavailability or the bioaccessibility of metals in soil. The bioavailability of metals from soils is considered with respect to a series of single-extraction methods, including the use of ethylenediaminetetraacetic acid (EDTA), acetic acid, diethylenetriaminepentaacetic acid (DTPA), ammonium nitrate, calcium chloride and sodium nitrate. Then, a procedure for the recovery of metals using a three-stage sequential e...

  20. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes

    Science.gov (United States)

    Morales, Maria E.; Derbes, Rebecca S.; Ade, Catherine M.; Ortego, Jonathan C.; Stark, Jeremy; Deininger, Prescott L.; Roy-Engel, Astrid M.

    2016-01-01

    Heavy metals such as cadmium, arsenic and nickel are classified as carcinogens. Although the precise mechanism of carcinogenesis is undefined, heavy metal exposure can contribute to genetic damage by inducing double strand breaks (DSBs) as well as inhibiting critical proteins from different DNA repair pathways. Here we take advantage of two previously published culture assay systems developed to address mechanistic aspects of DNA repair to evaluate the effects of heavy metal exposures on competing DNA repair outcomes. Our results demonstrate that exposure to heavy metals significantly alters how cells repair double strand breaks. The effects observed are both specific to the particular metal and dose dependent. Low doses of NiCl2 favored resolution of DSBs through homologous recombination (HR) and single strand annealing (SSA), which were inhibited by higher NiCl2 doses. In contrast, cells exposed to arsenic trioxide preferentially repaired using the “error prone” non-homologous end joining (alt-NHEJ) while inhibiting repair by HR. In addition, we determined that low doses of nickel and cadmium contributed to an increase in mutagenic recombination-mediated by Alu elements, the most numerous family of repetitive elements in humans. Sequence verification confirmed that the majority of the genetic deletions were the result of Alu-mediated non-allelic recombination events that predominantly arose from repair by SSA. All heavy metals showed a shift in the outcomes of alt-NHEJ repair with a significant increase of non-templated sequence insertions at the DSB repair site. Our data suggest that exposure to heavy metals will alter the choice of DNA repair pathway changing the genetic outcome of DSBs repair. PMID:26966913

  1. Temporal variations of heavy metals in coral Porites lutea from Guangdong Province, China: Influences from industrial pollution, climate and economic factors

    Science.gov (United States)

    Peng, Z.; Liu, J.; Zhou, C.; Nie, B.; Chen, T.

    2006-01-01

    The eight heavy metals Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb have been determined in samples of coral Porites lutea collected from Dafangji Island waters (21°21′N, 111°11′E), Dianbai County, Guangdong Province, China, by the ICP-MS method. The samples represent the growth of coral in the period of 1982–2001. The results showed that the waters were polluted by the heavy metals Cu, Ni, Zn, and Pb in certain years, but not by other metals. The contamination may have come from industrial sources, including electroplating, metallurgy, mining, and aquatic industries in the coastal areas.

  2. Heavy Metal Concentrations in Soils Downwind from Masaya Volcano (Nicaragua)

    Science.gov (United States)

    Delfosse, T.; Delmelle, P.; Iserentant, A.; Delvaux, B.

    2003-12-01

    Quiescently degassing volcanoes can significantly contribute to the global emission of heavy metals. In turn, substantial deposition of metals onto soils may result, possibly increasing the risk of phytotoxicity. In contrast to anthropogenic sources, the environmental impacts of airborne volcanic heavy metals and their accumulation in soils are poorly studied. Along with the degassing of S, Cl and F, Masaya volcano, Nicaragua, is also a strong source of heavy metals. Recent estimates indicate emission rates of e.g., 62 t As yr-1, 133 t Zn yr-1 and 306 t Cu yr-1 (Moune, 2002). Here, we report on the effects of heavy metal depositions on the total contents of As, Cr, Ni, Cu, Bi, Zn, Se, and Co in two groups of soils located 5 km and 15 km downwind from the volcano. These soils correspond to young Vitric Andosols and more weathered Eutric Andosols, respectively. As and Se were measured by Inductively Coupled Plasma-Atomic Emission Spectrometry after soil digestion in a trace metal unit, and Cr, Ni, Cu, Co, Bi and Zn were determined after alkaline fusion in Li-metaborate/Li-tetraborate. Results suggest that prolonged metal inputs in the vicinity of Masaya volcano have significantly increased the As, Se and Zn contents of the soils. For these elements, concentrations are about 3-5 times those measured in the parent rock materials. However, maximum concentrations in soils (i.e., 5.4 mg As kg-1, 183 mg Zn kg-1 and 0.9 mg Se kg-1) never exceed critical concentration levels as defined for cultivated soils in the UK (10, 300 and 3 mg kg-1 for As, Zn and Se, respectively). We did not detect significant enrichments in Cr, Ni, Cu, Bi, and Co. The relatively low accumulation of metals in the Masaya Andosols contrasts with the high retention of volcanic F and S inputs (Delmelle et al., 2003). Since Andosols typically show a high affinity for heavy metals, which can be bound to organic matter as well as to oxides, oxyhydroxide and allophane minerals present in these soils, rapid

  3. Beneficial effect of sesame oil on heavy metal toxicity.

    Science.gov (United States)

    Chandrasekaran, Victor Raj Mohan; Hsu, Dur-Zong; Liu, Ming-Yie

    2014-02-01

    Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment. PMID:23744838

  4. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    1998-01-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the a

  5. Analyzing trophic transfer of heavy metals for food webs in the newly-formed wetlands of the Yellow River Delta, China

    International Nuclear Information System (INIS)

    Nine heavy metals sampled from water, sediments, and aquatic organisms in the newly-formed wetlands of the Yellow River Delta (YRD) of China were analyzed to evaluate their concentrations and trophic transfer in food webs. The stable carbon (δ13C) and nitrogen (δ15N) isotopes were used to investigate trophic interactions. Results show that most of heavy metals detected in water and sediments are lower than that in Yangtze River Delta and Pearl River Delta. The longest food web is approximately 4 with the highest trophic level of birds. The difference of heavy metal concentrations between endangered Saunders's Gull and other three kinds of protected birds is not obvious. Cd, Zn, and Hg were identified to have an increase with the trophic level (TL), while As, Cr, Cu, Mn, Ni and Pb show an opposite trend, however, the biomagnification of the selected nine heavy metals in the food webs is not significant. - Highlights: → Heavy metal content in newly-formed wetlands is lower than that in similar regions. → There is a trophic level-dependent accumulation of heavy metals in food webs. → The longest food web is approximately 4 with the highest trophic level of birds. → Cd, Zn, and Hg were identified to increase with the trophic level. → The difference of metal content between Saunders's Gull and other birds isn't obvious. - The newly-formed wetlands show slight heavy metal contamination and weak biomagnification through the food webs in the Yellow River Delta.

  6. Biosorption of Heavy Metal Ions from Aqueous Solutions Using a Biomaterial

    Directory of Open Access Journals (Sweden)

    Innocent OBOH

    2009-07-01

    Full Text Available An increase in population initiating rapid industrialization was found to consequently increase the effluents and domestic wastewater into the aquatic ecosystem. Heavy metals are major toxicants found in industrial wastewaters; they may adversely affect the biological treatment of wastewater. Conventional methods for the removal of heavy metals from waste waters are often cost prohibitive hence, there is a need for cheap methods for effluent treatment. The residual metallic ion concentrations were determined using an Atomic Absorption Spectrophotometer (AAS. The results obtained after contacting for 120 minutes showed that Neem leaves achieved the percent removal of 76.8, 67.5, 58.4 and 41.45 for Cu2+, Ni2+, Zn2+ and Pb2+ ions respectively. The percent removal of Ni2+ ions was 68.75 with an effective dose of 1.0 g of Neem leaves (bioadsorbent. The ability of Neem leaves to absorb metal ions as shown from the results can be used for the development of an efficient, clean and cheap technology for effluent treatment.

  7. Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex.

    Science.gov (United States)

    Méndez-Fernández, Leire; De Jonge, Maarten; Bervoets, Lieven

    2014-12-01

    Metal bioaccumulation and toxicity in the aquatic oligochaete Tubifex tubifex exposed to three metal-contaminated field-sediments was studied in order to assess whether sediment-geochemistry (AVS, TOC) plays a major role in influencing these parameters, and to assess if the biodynamic concept can be used to explain observed effects in T. tubifex tissue residues and/or toxicity. An active autotomy promotion was observed in three studied sediments at different time points and reproduction impairment could be inferred in T. tubifex exposed to two of the tested sites after 28 days. The present study showed that sediment metal concentration and tissue residues followed significant regression models for four essential metals (Cu, Co, Ni and Zn) and one non-essential metal (Pb). Organic content normalization for As also showed a significant relationship with As tissue residue. Porewater was also revealed to be an important source of metal uptake for essential metals (e.g. Cu, Ni and Zn) and for As, but AVS content was not relevant for metal uptake in T. tubifex in studied sediments. Under the biodynamic concept, it was shown that influx rate from food (IF, sediment ingestion) in T. tubifex, in a range of sediment geochemistry, was able to predict metal bioaccumulation, especially of the essential metals Cu, Ni and Zn, and for the non-essential metal Pb. Additionally, IF appeared to be a better predictor for metal bioaccumulation in T. tubifex compared to sediment geochemistry normalization. PMID:25456225

  8. BIOACCUMULATION OF HEAVY METALS BY BACILLUS MEGATERIUM FROM PHOSPHOGYPSUM WASTE

    Directory of Open Access Journals (Sweden)

    IOANA ADRIANA STEFANESCU

    2015-05-01

    Full Text Available The aim of present study was to characterize the bioaccumulation capacity of heavy metals by Bacillus megaterium from phosphogypsum waste. The Bacillus megaterium strain (BM30 was isolated from soil near the phosphogypsum (PG dump. For the bioaccumulation quantification produced by BM30 strain were used three experimental treatments respectively with 2, 6 and 10 gL-1 PG. Cellular biomass samples were collected punctually at ages corresponding to the three stages of the development cycle of the microorganism: exponential phase, stationary phase and decline phase and the heavy metals concentrations were measured by atomic absorption spectroscopy. The bioaccumulation yields in cell biomass, relative to the total amount of analyte introduced in the reaction medium were between 20 - 80 %, the lowest value was recorded by Cu and highest by Mn. The study results indicated that the isolated strain near the dump PG, BM30, bioaccumulate heavy metals monitored in cell biomass in the order Cu > Fe > Zn = Mn.

  9. Effect of Heavy Metals in Plants of the Genus Brassica

    Directory of Open Access Journals (Sweden)

    Miguel P. Mourato

    2015-08-01

    Full Text Available Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra.

  10. Heavy metals and organic micropollutants in Norwegian sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nedland, Kjell Terje; Storhaug, Ragnar

    2003-07-01

    The heavy metal concentration in sewage sludge is one of the most important factors affecting sewage sludge use. During the last 20 years there has been a constant decline in the heavy metals concentration. Occasional point discharges and diffuse sources are now the main sources for heavy metals in sludge. In 1996-97 and in 2001-02 similar surveys of organic micropollutans in Norwegian sewage sludge have been performed. Monthly composite samples from 7 WWTPs have been analysed for PCDD/PCDF, PCB (7), PAH (16), NPE, DBP, DEHP and LAS. The two studies have used the same methods in the same months and at the same treatment plants. The results show a decline of between 23 and 92 % of different organic micropollutants in Norwegian sludge from 1996-97 to 2001-02. (author)

  11. Deena Weinstein, Heavy Metal: The Music and Its Culture

    OpenAIRE

    Grassy, Elsa

    2009-01-01

    Au moment où la sociologue Deena Weinstein publie Heavy Metal : The Music and Its Culture, en 1991, le heavy metal fait l’objet de controverses très médiatisées aux États-Unis. Le procès de Judas Priest pour incitation au suicide vient de faire les gros titres, et tous les conservateurs du pays passent leurs journées à écouter des disques à l’envers, à la recherche de paroles sataniques. Le livre de Weinstein s’inspire de ce climat sulfureux qui entoure le heavy metal depuis ses débuts mais a...

  12. Computer Modeling of Leaching of Heavy Metal from Cementitious Waste

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2013-07-01

    Full Text Available Thermodynamic equilibrium model was used to simulate the results of leaching heavy metal from cementitious wastes. Modeling results of the leached major element concentrations for samples agreed well with the leaching test using the set of pure minerals and solid solutions present in the database. The model revealed Pb and Cd were predominantly incorporated within the calcium silicate hydrate matrix while a greater portion of Cd exist as discrete particles in the cement pores. Precipitation was found to be the dominant mechanism controlling heavy metal solubility with carbonate and silicate species governing the solubility of Pb and carbonate, silicate and hydroxide species governing the solubility of Cd. In the presence of acetic acid, at low pH values Pb and Cd acetate complexes were predominant whereas, at high pH values, hydroxide species dominated. In the presence of municipal landfill leachate, Pb and Cd organic complexes dominated the heavy metal species in solution.

  13. Accumulation of heavy metals in a tropical soil type Oxisol

    International Nuclear Information System (INIS)

    In this investigation sewage sludges from Quibu plant, located in City of the Havana, with the objective of evaluating the capacity of accumulation of heavy metals in a tropical soil type Oxisol when in the wheat plants are cultivated (Triticum aestivum L.) , as well as the potential damages in this plants. Rates of 0, 60, 180 and 300 sludges tons/ soil hectare was applied and the plants were growth in recipient of 5 L of capacity. The levels of heavy metals were evaluated before the and after the crop. The extraction one carries out with the mixture HCl:HNO3 and they were determined by spectroscopy inductively coupled to plasma. Presence of Zn, Cu and Pb were detected in sludges and a tendency decrease is observed to heavy metals retention is observed in soil with the increase of the disposition rate together to a differential behavior of the different chemical species

  14. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the Ln and Lv horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.)

  15. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  16. Characterization of the potential impact of metal contaminated sediments on aquatic plants and insects at the Savannah River Site

    International Nuclear Information System (INIS)

    Tim's Branch is an ephemeral second order tributary of Upper Three Runs Creek at the Savannah River Site (SRS). At present, Tim's Branch is the receiving stream for eight NPDES outfalls. Historic contamination of Tim's Branch through untreated discharges has resulted in significant levels of natural uranium, nickel, aluminum, mercury, copper, lead, chromium, and zinc in the stream sediments and flood plain. Indigenous plant and chironomid species in the area were identified. Sediment, benthic invertebrate and aquatic plant samples were harvested from several sites to determine metal concentrations. Physical and chemical parameters of sediment including acid volatile sulfides, pH, oxidation/reduction potential, organic carbon and particle size distribution were assessed to determine their influence on metal bioavailability. Laboratory tests indicated that significant levels of heavy metals are translocated from sediment to Hydrilla verticillata with a concurrent elevation of plant peroxidase activity. Laboratory sediment toxicity bioassays were also performed with laboratory-reared Chironomus tentans. In situ sediment toxicity bioassays were performed with indigenous chironomids and plants to validate laboratory results

  17. IMPACT OF BIOSLUDGE APPLICATION ON HEAVY METALS CONTENT IN SUNFLOWER

    Directory of Open Access Journals (Sweden)

    Marek Slávik

    2012-02-01

    Full Text Available The application of decomposed substrate after continual biogas production is one of the possible ways how to use alternative energy sources with following monitoring of its complex influence on the hygienic state of soil with the emphasis on heavy metal input. The substances from bilge and drain sediments from water panels, also biosludge gained by continual co-fermentation of animal excrements belong to these compounds. The biosludge application is connected with possible risk of cadmium and lead, also other risky elements input into the soil. The analyses of applicated sludge prove that the determined heavy metals contents are compared with limitary value. These facts - hygienic state of soil, pH influence this limitary value and biosludge is suitable for soil application. The total heavy metals content in soil is related to the increased cadmium, nickel, chromium and cobalt contents. The analyses of heavy metals contents in sunflower seeds show that the grown yield does not comply with the legislative norms from the stand point of heavy metals content due to high zinc and nickel contents. Copper, cadmium, lead, chromium contents fulfil limitary values, for cobalt content the value is not mentioned in Codex Alimentarius. The nickel value in the control variant seeds is 2.2 times higher than the highest acceptable amount, then in variant where the sludge was applicated the nickel content was increased by 1.6 times. In the case of zinc there was increasing content in individual variants 4.7, or 4.8 times. The direct connection with the higher accumulation of zinc and nickel in soil by the influence of biosludge application is not definitely surveyed, the increased heavy metals contents in sunflower were primarily caused by their increased contents in soils.

  18. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  19. Heavy metal pollution in coastal areas of South China: A review

    International Nuclear Information System (INIS)

    Highlights: • Heavy metal contamination in coastal areas of South China has been reviewed. • Heavy metal levels were closely related to economic development in past decades. • Heavy metal levels from Hong Kong continually decreased from the early 1990s. • Higher concentrations of heavy metals were found in mollusk. • Levels of heavy metals in part of seafood exceeded the safety limit. -- Abstract: Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit

  20. Difference Between Index of Geoaccumulation and Sequential Extraction Procedure on Evaluating Heavy Metal Pollution in Aquatic Sediments%水体沉积物重金属污染地累积指数法和分级提取评价技术的差异

    Institute of Scientific and Technical Information of China (English)

    于常武; 王琳; 高超

    2015-01-01

    运用地累积指数法和分级提取评价技术,对辽西钼矿区下游女儿河沉积物中的Cu、Zn和Mo的污染程度进行了评价。结果表明,两者的评价结果存在差异性,地累积指数法在一定程度上过高估计了沉积物中重金属污染的风险,分级提取评价技术科学性更强,建议推广应用。%Heavy Metal Pollution of Cu, Zn and Mo were evaluated in the Never River sediments impacted with Mo mining activities in western Liaoning,with Index of Geoaccumulation and Sequential Extraction Procedure. This study indicates that the Index of Geoaccumulation overestimated the degree of heavy metal pollution risk relative to the Sequential Extraction Procedure to some extent. The sequential extraction procedure should be generalized in China because of its scientificity.

  1. Science Letters: Simultaneous removal of nitrate and heavy metals by iron metal

    Institute of Scientific and Technical Information of China (English)

    HAO Zhi-wei; XU Xin-hua; JIN Jian; HE Ping; LIU Yong; WANG Da-hui

    2005-01-01

    Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently.Different mechanisms of these contaminants removal by iron metal were also discussed.

  2. Bioaccumulation of selected heavy metals by the water fern, Azolla filiculoides Lam. in a wetland ecosystem affected by sewage, mine and industrial pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wet, L.P.D. de; Schoonbee, H.J.; Pretorius, J.; Bezuidenhout, L.M. (Rand Afrikaans University, Johannesburg (South Africa). Depts. of Zoology and Botany, Research Unit for Aquatic and Terrestrial Ecosystems)

    1990-10-01

    The bio-accumulation of the heavy metals, Fe, Cu, Ni, Pb, Zn, Mn and Cr by the water fern, Azolla filiculoides Lam. in a wetland ecosystem polluted by effluents from sewage works, mines and industries was investigated. Results showed that the different metals can be accumulated by the water fern at concentration levels not necessarily related to their actual concentrations in the aquatic environment, as measured in this case, in the bottom sediments. 45 refs., 1 fig., 3 tabs.

  3. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild;

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound...

  4. Equations of state of heavy metals: ab initio approaches

    International Nuclear Information System (INIS)

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  5. Heavy metals in the Ljubljanica catchment area (Slovenia)

    OpenAIRE

    Branka Trček

    2006-01-01

    In main springs and swallowholes of the Ljubljanica River Basin the monitoring of heavy metals was established at the beginning of 2005 with the intention to study the solute transport in the water body and to analyse the risk of contamination with heavy metals. The results of the first monitoring phase are presented–elements that indicate the load of environment due to industry, traffic,agriculture and urbanisation:Al,As,Cd,Cl,Cr,Cu,Mn in Pb. The results point out that the vulnerability of k...

  6. Electrodialytic Remediation of Heavy Metal Polluted Soil. An Innovative Technique

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik; Karlsmose, Bodil;

    1997-01-01

    Electrodialytic remediationof heavy metal polluted soil is a newly developed method which combines the electrokinetic movement of ions in soil with the principle of electrodialysis. The method has prowen to work in laboratorscale and at presnet two types of pilot plants are build.......Electrodialytic remediationof heavy metal polluted soil is a newly developed method which combines the electrokinetic movement of ions in soil with the principle of electrodialysis. The method has prowen to work in laboratorscale and at presnet two types of pilot plants are build....

  7. Removal of heavy metals from aqueous solutions using opalized tuff

    OpenAIRE

    Golomeova, Mirjana; Zendelska, Afrodita; Golomeov, Blagoj; Krstev, Boris; Jakupi, Shaban

    2015-01-01

    This paper presents the results of the examination of the possibility of applying opalized tuff as a natural raw material for disposal of heavy metals (copper, zinc, manganese and lead) from aqueous solutions. Of actual experiments obtained results show that working conditions attaching to the removal of Cu and Pb ions is more than 91% of zinc ions is above 81%, while manganese ions are removed about 77% .On this can be concluded that the removal of examined heavy metals using opalized tuff i...

  8. HEAVY METAL LOADS IN THE SOIL OF DEBRECEN

    OpenAIRE

    SÁNDOR SZEGEDI

    2007-01-01

    Results of examinations on the amount, and spatial distribution of heavy metal compounds in the soil of Debrecen, their geographic, pedologic and ecologic aspects are presented in this study. The effects of the differences in traffic conditions, build-up/land use and the density of vegetation on the heavy metal content of the soils have been examined in city of Debrecen and its closer environment.Cadmium-, cobalt-, nickel-, lead-, and copper-contents of the soil samples taken from 88 sites of...

  9. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    Science.gov (United States)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In

  10. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. PMID:27239687

  11. Accumulation of heavy metals using Sorghum sp

    OpenAIRE

    Soudek, P. (Petr); Petrová, Š. (Šárka); Vaňková, R. (Radomíra); Song, J.; Vaněk, T. (Tomáš)

    2014-01-01

    The essential requirement for the effective phytoremediation is selection of a plant species which should be metal tolerant, with high biomass production and known agronomic techniques. The above mentioned criteria are met by crop plant sorghum (Sorghum bicolor). The response of hydroponically grown S. bicolor plants to cadmium and zinc stress was followed. The impact of metal application on physiological parameters, including changes in chlorophylls contents and antioxidative enzymes activit...

  12. Bioavailability of heavy metals in drilling muds

    OpenAIRE

    Schaanning, M.; Ruus, A.; Bakke, T.; Hylland, Ketil; Olsgard, Frode

    2002-01-01

    Experimental work on uptake of metals from sediments spiked with barite, ilmenite and hematite were performed using the ragworm Nereis diversicolor and the netted dog whelk Hinia (Nassarius) reticulata as test organisms. The present report also provides a brief review of recent litterature on biological effects of metals in drill cuttings, including relevant results from the UKOOA Drill Cuttings Initiative - an international research programme completed in December 2001. The review suggest lo...

  13. Heavy metal biosorption by bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Vecchio, A.; Finoli, C.; Di Simine, D.; Andreoni, V. [Department of Food Science and Microbiology, State University, Milan (Italy)

    1998-06-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated q{sub max}. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. (orig.) (orig.) With 5 figs., 4 tabs., 23 refs.

  14. DETERMINATION OF HEAVY METALS IN IRANIAN AND IMPORTED BLACK TEA

    Directory of Open Access Journals (Sweden)

    F. Ansari

    2007-09-01

    Full Text Available Tea is the most popular beverage in the world and contains several essential nutrients, which are beneficial for human health. The contamination of tea leaves by heavy metals may pose a serious threat to human, because they are not biodegradable and remain in environment and pass to food chain. In this study, the concentration of heavy metals of Cd, Pb, Ni, and Al and macro-elements of Fe, Zn, Cu, and Mn were determined by atomic absorption spectrometry on 30 samples of black tea cultivated in Iran and compared with the results for 30 samples of imported black tea in 2006. The results of analysis showed that the mean level of Al was 699.2±172.7mg/kg for Iranian and 388.3±98.3mg/kg for imported black tea. However, the values for Cd, Pb, and Ni were non-detectable. The most abundant nutritive metal was manganese with 155.2-214.2mg/kg and 96.7-332.9mg/kg in Iranian and imported black tea, respectively. The average contents of detectable heavy metals were significantly (p<0.05 higher in Iranian black tea. According to the results of this study, it is justifiable to set maximum residue level for heavy metals in tea, such as Al which appears to be very high in concentration.

  15. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    Science.gov (United States)

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected. PMID:22840499

  16. Accumulation of Heavy Metals in Vegetables from Agricultural Soils

    Directory of Open Access Journals (Sweden)

    ELJAN KASA

    2015-06-01

    Full Text Available This study analyzed the heavy metals in vegetables cultivated in private gardens in Bregu i Matit, an important agricultural area in the NW Albania.The plant and soil samples taken from irrigated and non-irrigated fields in this area were analyzed for the concentrations of Cd, Cu, Zn, Pb and Ni using atomic absorption spectroscopy (AAS, after extraction by HNO3 and H2O2.The transfer factors (TF were used to evaluate the risk of metal transfer from soil to plant and the FAO/WHO safe limits to assess the potential hazards of heavy metals to human health. The ranges of heavy metal concentrations ± standard deviation in vegetable samples were (mg kg- 1: Cu 2.98-12.90 (±3.08, Ni 4.82-35.79 (±7.68, Zn Zn > Cu > Ni > Pb. The TF values indicate that only Cd was accumulated in plants.The contents of Cd in three vegetable samples, Pb in four samples, and Cu in one sample were above the safe limits set by the FAO/WHO for heavy metals in foods and vegetables indicating that consumption of vegetables grown in the studied soils could be dangerous to human health.

  17. Degradative Plasmid and Heavy Metal Resistance Plasmid Naturally Coexist in Phenol and Cyanide Assimilating Bacteria

    OpenAIRE

    Bahig E.  Deeb; Abdullah D. Altalhi

    2009-01-01

    Problem statement: Heavy metals are known to be powerful inhibitors of xenobiotics biodegradation activities. Alleviation the inhibitory effect of these metals on the phenol biodegradation activities in presence of heavy metals resistant plasmid was investigated. Approach: Combination of genetic systems of degradation of xenobiotic compound and heavy metal resistance was one of the approaches to the creation of polyfunctional strains for bioremediation of s...

  18. Flow measurement techniques in heavy liquid metals

    International Nuclear Information System (INIS)

    This paper summarizes several flow measurement systems qualified in the operation of different lead-bismuth loops in the KArslruhe Liquid Metal LAboratory (KALLA) during the last 5 years. There are several experimental techniques which were well proven in air and water and thus could be transferred similarly to liquid metals: these techniques are split into measuring local quantities as temperature, pressure e.g. by means of pressure taps or velocities using Pitot and Prandtl tubes or the Ultrasound Doppler velocimetry (UDV) for local flow velocities, as well as an integral quantity like the flow rate. Since the knowledge of the flow rate acts in terms of the operational safety of nuclear liquid metal systems as one of the most crucial parameters, this aspect is discussed widely herein. Unfortunately, as liquid metals are opaque, an optical access is not possible. Instead, one can take advantage of the high electric conductivity of liquid metals to measure integral and local quantities, like electromagnetic flow meters and miniaturised permanent magnetic probes for local velocity measurements. In this context especially the electromagnetic frequency flow meter (EMFM) is discussed as a prospective and reliable option to measure the flow rate without demanding extensive precognitions with respect to the fluid-wall interface behaviour. This article describes some of the techniques used in KALLA for different liquid metals, explains the measurement principle and shows some of the typical results obtained using these techniques. Also the measurement accuracy as well as the temporal and spatial resolution of each device is discussed and typical error sources to be expected are illuminated. Moreover, some hints for a correct placement of the individual sensor in the liquid metal environment are given.

  19. Heavy metal contamination and its indexing approach for river water

    International Nuclear Information System (INIS)

    The objective of the study is to reveal the seasonal variations in the river water quality with respect to heavy metals contamination. To get the extend of trace metals contamination, water samples were collected from twelve different locations along the course of the river and its tributaries on summer and the winter seasons. The concentrations of trace metals such as cadmium, chromium, copper, cobalt, iron, manganese, nickel, lead, mercury and zinc were determined using atomic absorption spectrophotometer. Most of the samples were found within limit of Indian drinking water standard (IS: 10500). The data generated were used to calculate the heavy metal pollution index of river water. The mean values of HPI were 36.19 in summer and 32.37 for winter seasons and these values are well below the critical index limit of 100 because of the sufficient flow in river system. Mercury and chromium could not be traced in any of the samples in the study area.

  20. Bioaccumulation of heavy metals by green algae.

    Science.gov (United States)

    Doshi, Hiren; Seth, Chetan; Ray, Arabinda; Kothari, I L

    2008-03-01

    The biosorption of metal ions (Cr(+3), Cr(2)O(7)(-2), Cu(+2), and Ni(+2)) on two algal blooms (designated HD-103 and HD-104) collected locally was investigated as a function of the initial metal ion concentration. The main constituent of HD-103 is Cladophora sp., while Spirulina sp. is present significantly in the bloom HD-104. Algal biomass HD-103 exhibited the highest Cu(+2) uptake capacity (819 mg/g). This bloom adsorbed Ni(+2) (504 mg/g), Cr(+3) (347 mg/g), and Cr(2)O(7)(-2), (168 mg/g). Maximum of Ni(+2) (1108 mg/g) is taken by HD-104. This species takes up 306, 202, and 576 mg/g Cr(+3), Cr(2)O(7)(-2), and Cu(+2), respectively. Equilibrium data fit very well to both the Langmuir and the Freundlich isotherm models. The sorption process followed the Freundlich model better. Pseudo-first-order kinetic model could describe the kinetic data. Infrared (IR) spectroscopic data were employed to identify the site(s) of bonding. It was found that phosphate and peptide moieties participate in the metal uptake by bloom HD-103. In the case of bloom HD-104, carboxylate and phosphate are responsible for the metal uptake. The role of protein in metal uptake by HD-103 was investigated using polyacrylamide gel electrophoresis. PMID:18167026

  1. Experimental techniques for heavy liquid metals

    International Nuclear Information System (INIS)

    This paper summarizes the most interesting measurement systems which were tested in the Pb-Bi loops of the KALLA laboratory in Karlsruhe with the last 5 years. There are several experimental techniques which were well proven in air and water and thus could be transferred similarly to liquid metals: These techniques are split into measuring local quantities as temperature, pressure e.g. by means of pressure taps or velocities using Pitot and Prandtl tubes or the Ultra-Sound- Velocimetry (UDV) for local flow velocities, as well as global states like flow rate utilizing nozzles, orifices or turbines. Unfortunately, as liquid metals are opaque, an optical access is not given. Instead, one can take advantage of the high electric conductivity of liquid metals to measure integral and local quantities, like electromagnetic flow meters and miniaturized permanent magnetic probes for local velocity measurements. This article describes some of the techniques used in the KALLA for different liquid metals, explains the measurement principle and shows some of the results obtained using these techniques. Additionally a few words are spent with respect to the measurement errors to be expected and some hints for a correct placement of the individual sensor in the liquid metal environment. (authors)

  2. Heavy Metal Concentrations in Water, Sediments and Common Carp (Cyprinus carpio Fish Species from Lake Naivasha, Kenya

    Directory of Open Access Journals (Sweden)

    G.M. Ogendi

    2014-08-01

    Full Text Available Heavy metals are potentially toxic to organisms causing lethal and sub lethal effects. Above threshold levels, these metals have been shown to adversely affect both aquatic and terrestrial organisms. Human health may also be impacted negatively through consumption of metal-contaminated foods and water. Lake Naivasha, Kenya, like many freshwater bodies in developing countries is a source of fish and water for human consumption in Naivasha town and its environs. Ironically, the lake receives untreated floricultural, agricultural and industrial effluents from its catchment area. In the recent past, there have been unconfirmed reports that fish from this lake are contaminated with heavy metals mainly Cu, Hg, Cd and Pb to levels that are harmful to humans. It is against this background that this study was conducted to determine the sources of the aforementioned heavy metals in the lake, their concentrations in water and sediments and in common carp (Cyprinus carpio that constitutes a major portion of the Lake Naivasha fishery. Water, sediment and fish samples were collected from purposefully selected sites in six sampling occasions during both the dry and wet seasons. Analyses for heavy metals in fish, sediment and water samples were done using an Atomic Absorption Spectrophotometer (AAS. The study findings indicate that the heavy metal concentrations in the water and sediments collected from impacted sites were significantly higher (p<0.05 compared to those from unexpected sites. In spite of this, the metal concentrations in water were significantly lower than those recommended by the WHO and USEPA as drinking water guideline values. Metal concentrations in C. carpio were also significantly lower (p<0.05 than the World Health Organization (WHO recommended levels for fish intended for human consumption. Based on these findings, it is safe to conclude that drinking water and fish collected from Lake Naivasha do not pose immediate health risks to human

  3. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.; Buyers, W.J.L.; Bucher, E.; Garrett, J.D.; Clausen, K.N.; Menovsky, A.A.

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order, the...... nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...

  4. Possibilities of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    There are serious economic reasons for using metal uranium in heavy water reactors, because of its high density, i.e. high conversion factor, and low cost of fuel elements production. Most important disadvantages are swelling at high burnup and corrosion risk. Some design concepts and application of improved uranium obtained by alloying are promising for achievement of satisfactory stability of metal uranium under reactor operation conditions

  5. Routine soil testing to monitor heavy metals and boron

    OpenAIRE

    Abreu Cleide Aparecida de; van Raij Bernardo; Abreu Mônica Ferreira de; González Antonio Paz

    2005-01-01

    Microelements are an important issue in agriculture, due to their need as micronutrients for plants and also to the possibility of the build-up of toxic levels for plants and animals. Five micronutrients (B, Cu, Fe, Mn, and Zn) are routinely determined in soil analysis for advisory purposes. Other four elements (Cd, Cr, Pb, and Ni) are considered environmentally important heavy metals in farmland soils. Thus high contents of these metals in cropland might go eventually unnoticed. In this pape...

  6. Heavy metal dispersion and soil pollution alongside two french highways

    OpenAIRE

    LEGRET, M; Pagotto, C.

    2002-01-01

    Road traffic and maintenance induce a chronic heavy metal pollution of runoff water an roadside soil. Part of the pollutants could be dispersed in the atmosphere or deposited onto soils due to wind dispersion. The atmospheric deposition and the quality of roadside soil have been investigated alongside two major rural highways. Metal deposition decrease rapidly and seem to reach the background level at a distance less than 25 m. Zinc deposition are the most important, followed by Pb and Cu dep...

  7. The Predisposition of Iraqi Rice Husk to Remove Heavy Metals from Aqueous Solutions and Capitalized from Waste Residue

    Directory of Open Access Journals (Sweden)

    Mohammed Nsaif

    2013-12-01

    Full Text Available This study is deal with study the potential of Iraqi Rice Husk (IRH on the removal of three heavy metals pollutant which were (Mg, Mn and Mo ions from industrial wastewater using different design parameters by adsorption process. Results show that the removal efficiency were (93.95, 97.18 and 95.26 % for heavy metal (Mg, Mn and Mo respectively from aquatic solution decreased with increasing of initial concentration and flow rate while the removal efficiency increased with increasing absorbance material bed height, pH and feeding temperature. Statistical model is achieved to find an expression relates the overall operating parameters with the removal efficiency for each metal ions used in this investigation in a general equation (each one alone. The samples of (IRH remaining after using it in the removal of (Mg, Mn and Mo heavy metal ions above from Simulated Synthetic Aqueous Solutions (SSAS to investigate the capitalized of it in different methods. Different benefits possess which are: remove the three toxic heavy metals ions contaminated the water, get rid of agricultural waste (IRH, in the same time, produce light and more benefit hydrocarbons from n-heptane isomerization using a type Y-zeolite catalyst synthesis from remaining (IRH and prepare a cheap and active rodenticide.

  8. Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm.

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping; Dzyuba, Borys; Randak, Tomas

    2010-12-01

    The effects of heavy metals (Cd, Cr and Cd+Cr) on the motility parameters and oxidative stress of sterlet (Acipenser ruthenus) sperm were investigated in vitro. Sturgeon sperm were exposed for 2h to heavy metals at environmental related concentrations (0.1mgL(-1) Cr, 0.001mgL(-1) Cd, 0.1mgL(-1) Cr+0.001mgL(-1) Cd) and higher concentrations (5.0mgL(-1) Cr, 0.05mgL(-1) Cd, 5.0mgL(-1) Cr+0.05mgL(-1) Cd). Results revealed that environmental concentrations of heavy metals had no significant influence on motility parameters and antioxidant responses indices in sturgeon sperm, except for LPO level and SOD activity. But higher concentrations of these metals induced oxidative tress in sturgeon sperm in vitro, associated with sperm motility parameters inhibition. Our results suggest that using of sperm in vitro assays may provide a novel and efficiently means for evaluating the effects of residual heavy metals in aquatic environment on sturgeon. PMID:20836996

  9. Water Quality Assessment Using Physico-Chemical Parameters and Heavy Metals of Gobind Sagar Lake, Himachal Pradesh (India

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2015-12-01

    Full Text Available Today the environment has become harmful for the health of living organisms due to excessive pollution and contamination of natural resources. The present investigation has been carried out with the objective to assess the water quality of the Gobind Sagar Lake, Bilaspur, Himachal Pradesh (India using physico-chemical parameters with heavy metals of the lake. For this study, three sampling sites were identified and samples from different sites were collected in summer season and important parameters [Water Temperature , pH, Total Hardness, Dissolved Carbon Dioxide (CO2, Dissolved Oxygen (DO, Chemical Oxygen Demand (COD, Biological Oxygen Demand (BOD, Chloride, Total Alkalinity, Total Dissolved Solid (TDS] with heavy metals [ Lead (P, Copper (Co, Iron (Fe, Cadmium (Cd, Nickel (Ni and Manganese (Mn, Chromium (Cr were analyzed. The results revealed that the different conditions of Gobind Sagar Lake in different sampling stations showed fluctuations in some physico-chemical parameters and also in heavy metals. These result depicted that water of lake was polluted in the form of nutrient enrichment which is due to agricultural activities and its runoff in and around catchment area of the lake. There are other many ways that things can end up in the lake as the free style way of disposal of industrial and domestic effluents etc. Results of studies on heavy metals in pollution are well documented revealing the toxic effects of these metals on aquatic organisms.

  10. Chelate-Assisted Heavy Metal Movement Through the Root Zone

    Science.gov (United States)

    Kirkham, M.; Madrid, F.; Liphadzi, M. S.

    2001-12-01

    Chelating agents are added to soil as a means to mobilize heavy metals for plant uptake during phytoremediation. Yet almost no studies follow the displacement of heavy metals through the vadose zone following solubilization with chelating agents. The objective of this work was to determine the movement of heavy metals through the soil profile and their absorption by barley (Hordeum vulgare L.) in a soil amended with biosolids and in the presence of a chelating agent (EDTA). Twelve columns 75 cm in height and 17 in diameter were packed with a Haynie very fine sandy loam (coarse-silty, mixed, calcareous, mesic Mollic Udifluvents) and watered with liquid biosolids applied at the surface at a rate of 120 kg N/ha. Three weeks after plants germinated, soil was irrigated with a solution of the disodium salt of EDTA added at a rate of 0.5 g/kg soil. Four treatments were imposed: columns with no plants and no EDTA; columns with no plants plus EDTA; columns with plants and no EDTA; and columns with plants and EDTA. Columns were watered intensively for 35 days until two pore volumes of water had been added, and the leachates were collected daily. With or without plants, columns with EDTA had lower total concentrations of Cu, Zn, Cd, Ni, and Pb in the surface 20 cm than columns without EDTA. Concentrations of the heavy metals in this layer were not afffected by the presence of roots. Iron in leachate was followed as an indicator metal for movement to groundwater. No iron appeared in the leachate without EDTA, either in the columns with plants or without plants. The peak concentration of iron in the leachate occurred three days earlier in the columns without plants and EDTA compared to the columns with plants and EDTA. The results indicated the importance of vegetation on retarding heavy metal leaching to groundwater during chelate-facilitated phytoremediation.

  11. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  12. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  13. EFFECTS OF THE HEAVY METAL, ZINC, ON THE FRESHWATER FISH TILAPIA NILOTICA L.

    Directory of Open Access Journals (Sweden)

    VIRGINIA S. CARING

    1992-01-01

    Full Text Available Gills, gonads, and blood of Tilapia nilotica exposed to different concentrations of zinc sulfate (ZnSO4. 7H2O exhibited histological effects. Gills of posthatch larvae exposed chronically for 21 days to 2 ppm zinc sulfate and fingerlings to 10 ppm sublethal zinc concentrations exhibited hyperplasia that resulted in fusion of adjacent secondary gill lamellae. The same effects were observed in 4-hour short-term exposure to 30 ppm lethal dose. Posthatch larvae subjected to 2 and 5 ppm sublethal levels of zinc for 30 days retained undifferentiated gonads with differentiation with oogonial proliferation. Ovaries of control fish demonstrated healthy oocyte growth and other normal histological features after 57 days. In contrast, ovaries in treated groups exhibited excessive amounts of connective tissue, hyperemia and markedly reduced oocyte number. Oocytes had wavy irregular surface outlines. Deviation from normal was observed to be dose dependent. In juvenile tilapia, spermatogenesis was observed in control testes. Testes of zinc-exposed fish, on the other hand, remained immature. Hyperemia was markedly pronounced in both testes and ovary after 90 days exposure to zinc. Blood of Tilapia nilotica fingerlings exposed to sublethal concentrations of 2, 5, and 10 ppm zinc for 30, 60, and 90 days exhibited anisocytosis and poikilocytosis. There was an increase in hematocrit values in zinc-reared fish which, however, reverted to control/near control levels at day 90. Hemoglobin values were inversely proportional to the level of zinc in the rearing water. The marked reduction in hemoglobin values in fish reared at the higher zinc concentrations of 5 and 10 ppm suggests the development of some degree of anemia which is also supported by the observations of anisocytosis and poikilocytosis. INTRODUCTION Heavy metal contamination of aquatic environments has become a current serious problem because of increased industrialization. In the Philippines, data gathered

  14. Mechanisms of heavy metal removal using microorganisms as biosorbent.

    Science.gov (United States)

    Javanbakht, Vahid; Alavi, Seyed Amir; Zilouei, Hamid

    2014-01-01

    Release and distribution of heavy metals through industrial wastewaters has adverse affects on the environment via contamination of surface- and ground-water resources. Biosorption of heavy metals from aqueous solutions has been proved to be very promising, offering significant advantages such as low cost, availability, profitability, ease of operation, and high efficiency, especially when dealing with low concentrations. Residual biomasses of industrial microorganisms including bacteria, algae, fungi, and yeast have been found to be capable of efficiently accumulating heavy metals as biosorbent. This paper presents and investigates major mechanisms of biosorption and most of the functional groups involved. The biosorption process includes the following mechanisms: transport across cell membrane, complexation, ion exchange, precipitation, and physical adsorption. In order to understand how metals bind to the biomass, it is essential to identify the functional groups responsible for metal binding. Most of these groups have been characterized on the cell walls. The biosorbent contains a variety of functional sites including carboxyl, imidazole, sulfydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties that are responsible for metal adsorption. These could be helpful to improve biosorbents through modification of surface reactive sites via surface grafting and/or exchange of functional groups. PMID:24804650

  15. Physico-Chemical Characteristics and Heavy Metal Contents of Water from Karavasta lagoon, Albania

    Directory of Open Access Journals (Sweden)

    ROMINA KOTO

    2014-09-01

    Full Text Available A study was conducted on physico-chemical parameters and heavy metal contents of water from the Karavasta Lagoon(40º56’ N and 19º29’ E. Karavasta Lagoon is one of the largest lagoons in the Mediterranean Seaand one of the most important economic and ecological areas in the southern part of Albania. The overall complex is composed of four lagoons, sand dunes, and a river mouth has a surface of 10000 ha. It is situated in the central part of western region, between Shkumbini River in the north and Semani River in the south, 40 km west of the city of Lushnja, by the Adriatic coast. The study aimed to determine (i the water quality in the lagoon of Karavasta using physico-chemical parameters and the level of heavy metals, (2 its status to support living life in the aquatic ecosystem. Data on temperature, pH, salinity, dissolved oxygen were obtained in-situ using Hanna multi-parameters instruments. Surface water of the lagoon was analyzed for heavy metals: Pb, Cr, Cu, Cd, As.The results showed that water temperature varies depending on the seasons. The highest temperatures were in July from 26 to 28.6 ºC depending on the sampling station.The results showed that water temperature varies depending on the seasons. Highest values of pH in the water of the lagoon are verified in December from 10.72 to11.98. The values of salinity in the lagoon of Karavasta are higher in Dajlani station SS1 ranging 42.31% in July to 40.83 %in December, depending from the connection with Adriatic Sea. Also it varies considerably from one area to another, and between seasons, depending on the degree of isolationThe heavy metals Cr, Pb, Cu in some stations are found to be close or higher than the values allowed by the EU and pose a potential health risk to humans and the aquatic life of the lagoon’s ecosystem.

  16. PHYTOEXTRACTION OF HEAVY METALS BY SORGHUM BICOLOR

    Czech Academy of Sciences Publication Activity Database

    Petrová, Šárka; Jusková, K.; Soudek, Petr; Vaněk, Tomáš

    2014 - (Kalogerakis, N.; Fava, F.) [European Bioremediation Conference /5./. Chania (GR), 04.07.2011-07.07.2011] R&D Projects: GA MŠk 2B08058 Institutional support: RVO:61389030 Keywords : metal accumulation * roots * quenching capacity Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides

  17. IMPACT OF HEAVY METALS ON ANTIOXIDANT ACTIVITY IN DIFFERENT TISSUE OF MILK FISH Chanos chanos.

    Directory of Open Access Journals (Sweden)

    Sivakumar Rajeshkumar,

    2013-02-01

    Full Text Available The impact of heavy metal accumulation on antioxidant activity in Chanos chanos, (Milk fish was studied in two different locations polluted sites (Kaattuppalli Island and less polluted sites (Kovalam estuary. Accumulation of heavy metals in the gills, liver and muscles were observed Zn >Fe >Cu >Pb >Mn >Cd >Ni. The results reveal that highest concentration of metals in muscle, gills and liver were observed in Kaattuppalli Island when compared to Kovalam estuary. The antioxidant activity showed significant increased in lipid peroxidase (LPO, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-tranferese (GST and reduced glutathione (GSH in different tissues of Chanos chanos collected Kaattuppalli Island. Among the studied enzymes, total glutathione peroxidase, catalase and glutathione Stransferase appeared to be the most responsive biomarkers of oxidative stress biomarkers and membrane disruption as the sensitive parameters of environmental pollutant contamination and their importance in biomonitoring of aquatic ecosystems. This is also the first such attempt reported at the tissue level from South India stressing the importance of biomarkers in biomonitoring programmes using fish muscle, gills and liver as the model system.

  18. Elimination of heavy metals from leachates by membrane electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R. [Technische Universitaet Dresden, Institut fuer Siedlungs- und Industriewasserwirtschaft, Mommsenstrasse 13, 01062 Dresden (Germany); Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany); Rahner, D. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Eektrochemie, Mommsenstrasse 13, D-01062 Dresden (Germany); Morgenstern, P. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Analytik, Permoserstrasse 15, D-04318 Leipzig (Germany); Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, D-01062 Dresden (Germany)

    2004-10-01

    The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5-20 mA/cm{sup 2} using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density-potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition-dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high-grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high-grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10-40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co-precipitated by adsorption onto the insoluble MnO{sub 2}. High-grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material.The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a

  19. Effects of heavy metal pollution on soil microbial biomass

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper reviews the effects of heavy metals on microbial biomass in metal-polluted soils. Laboratory and field investigations where metals were applied ass inorganic or organic salts demonstrated a significant decline in the size of s oil microbial biomass. In most of the cases, negative effects were evident at metal concentrations below the European Community's (EC) current permissible metal levels in the soil. Application of metal-enriched sludges and composts caused significant inhibition of microbial biomass at surprisingly modest concentrations of metals in the soil that were indeed smaller than those likely to decrease the growth of sensitive crop species. On the whole, relative toxicity of metals decreased in the order of Cd>Cu>Zn>Pb, but a few exceptions to this trend also existed. A significant decline in the biomass carbon to organic carbon ratio(Cmin/Corg) in metal-polluted soils indicated that this parameter can serve as a good indicator of the toxicity of metals on soil microflora. The knowledge regarding the response of soil biota to metal interactions and the factors affecting metal toxicity to soil microorganisms is still very limited and warrants further study.

  20. Organic matter and heavy metals in Prague streams and ponds

    Czech Academy of Sciences Publication Activity Database

    Benešová, L.; Komínková, D.; Pivokonský, Martin; Tonika, J.

    Aachen : RWTH Aachen university, 2003, s. 101/1 - 101/8. [Ecohazard 2003. Aachen (CZ), 14.09.2003-17.09.2003] Institutional research plan: CEZ:AV0Z2060917 Keywords : organic matter, heavy metals, loss on ignition Subject RIV: DA - Hydrology ; Limnology

  1. Screening Capsicum chinense fruits for heavy metals bioaccumulation

    Science.gov (United States)

    Elevated concentrations of heavy metals in edible plants could expose consumers to excessive levels of potentially hazardous chemicals. Sixty-three accessions (genotypes) of Capsicum chinense Jacq, collected from 8 countries of origin, were grown in a silty-loam soil under field conditions. At matur...

  2. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  3. Predicting the phytoextraction duration to remediate heavy metal contaminated soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Römkens, P.F.A.M.; Song, J.; Temminghoff, E.J.M.; Japenga, J.

    2007-01-01

    The applicability of phytoextraction to remediate soils contaminated with heavy metals (HMs) depends on, amongst others, the duration before remediation is completed. The impact of changes in the HM content in soil occurring during remediation on plant uptake has to be considered in order to obtain

  4. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul

    2002-01-01

    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  5. Bats as bioindicators of heavy metal pollution: history and prospect

    Czech Academy of Sciences Publication Activity Database

    Zukal, Jan; Pikula, J.; Bandouchová, H.

    2015-01-01

    Roč. 80, č. 3 (2015), s. 220-227. ISSN 1616-5047 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:68081766 Keywords : Bioaccumulation * Chiroptera * Heavy metals * Metalloids * Review Subject RIV: EG - Zoology Impact factor: 1.478, year: 2014

  6. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  7. Willow Trees from Heavy Metals Phytoextraction as Energy Crops

    Czech Academy of Sciences Publication Activity Database

    Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Habart, J.; Svoboda, Karel; Punčochář, Miroslav

    2012-01-01

    Roč. 37, - (2012), s. 106-113. ISSN 0961-9534 R&D Projects: GA ČR(CZ) GA104/07/0977; GA MŠk 2B08048 Institutional research plan: CEZ:AV0Z40720504 Keywords : phytoextraction * heavy metal * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.975, year: 2012

  8. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    Directory of Open Access Journals (Sweden)

    M. Najiah

    2011-10-01

    Full Text Available Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+. Results revealed that bacteria were resistant against lincomycin (92%, oleandomycin (72.7% and furazolidone (71.4% while being susceptible to chloramphenicol and florfenicol at 97.4%. The multiple antibiotic resistance (MAR index for C. freundii, E. coli and M. morganii was high with the value up to 0.71. Bacterial strains were found to exhibit 100 % resistance to chromium and mercury. High correlation of resistance against both antibiotics and heavy metals was found (71.4 to 100% between bullfrog bacteria isolates, except bacteria that were resistant to kanamycin showed only 25% resistance against Cu2+. Based on the results in this study, bacterial pathogens of bullfrog culture in Johore, Malaysia, were highly resistant to both antibiotics and heavy metals.

  9. Plant response on heavy metal contamination - summary of results

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Makhmudova, M.; Barazani, O.; Vaněk, Tomáš; Golan-Goldhirsh, A.

    Parma: Universita degli studi di Parma, 2004, s. 41. [COST Action 859. Phytotechnologies to Promote Sustainable Land Use Management and Improve Food Safety . Parma (IT), 04.11.2004-06.11.2004] Institutional research plan: CEZ:AV0Z4055905 Keywords : heavy metal * contamination Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides

  10. Plant uptake of heavy metal and radionuclides - summary of results

    Czech Academy of Sciences Publication Activity Database

    Soudek, Petr; Vaněk, Tomáš

    Warsaw: IBB PAS, 2004, s. 50. [COST 859. Phytotechnologies to promote sustainable land use managment and improve food safety . Working Group Meeting Plant uptake/exclusion and translocation of nutriens and contaminants. Warsaw (PL), 18.10.2004-19.10.2004] Institutional research plan: CEZ:AV0Z4055905 Keywords : uptake * heavy metal Subject RIV: DL - Nuclear Waste, Radioactive Pollution ; Quality

  11. Heavy metal pollution of man and environment - A historical perspective

    International Nuclear Information System (INIS)

    'Normal' levels of heavy metals are disturbingly close to toxic levels. This may be a man-made or natural phenomenon. The man-made exposure to heavy metals started thousands of years ago. In some European populations in the past the lead level was orders of magnitude higher than now, where it is comparable with the prehistoric level. The former high contamination of human populations was due to intake of metals from immediate sources (utensils, drugs, etc) not to their dispersion in the environment. A dramatic decrease of lead level in man occurred recently, when the majority of the immediate sources disappeared, but when at the local (but not at the global) scale the environmental level of metals increased. The current flow of metals into the global atmosphere, similar to the pre-industrial flow, is still dominated by natural processes, such as biological methylization of metals. This leads to an enrichment of the airborne particles in metals up to several orders of magnitude above the crustal abundances. It is not the magnitude of emissions of metals into the global atmosphere that marks a new role of man in the biosphere, but the mass of anthropogenic mobilization of raw materials now reaching the geological dimensions. (author)

  12. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    International Nuclear Information System (INIS)

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985

  13. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    Science.gov (United States)

    Md Yunus, Sabarina; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad

    2015-04-01

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia's major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985

  14. Assessment of heavy metals in seawater and fish tissues at Pulau Indah, Selangor, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Md Yunus, Sabarina, E-mail: sabarina2020@salam.uitm.edu.m; Hamzah, Zaini; Wood, Ab. Khalik; Ahmad [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-29

    This study focuses on the levels of heavy metals in seawater and selected fish tissue at Pulau Indah, Selangor, Malaysia. Pulau Indah primarily contains Westport (Malaysia’s major port), and a host of full scales factories. Therefore, it is important to monitor the levels of pollution in this water body and the aquatic organisms in the long term effects, due to the human activities in this area. Water samples in this study were taken from 8 locations along the coastal area. The water samples were collected using water sampler and sampling locations were determined using a Global Positioning system (GPS). Similarly, in situ water quality parameters including temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using portable multi probes meter. Then, the samples were acidified until pH 2 and filtered. Fish samples were purchased from local fisherman along the Pulau Indah coastal area and samples were digested using concentrated nitric acid in wet digestion method. The levels of selected heavy metals in four species of fish and seawater from Pulau Indah coastal area were determined using Inductive Coupled Plasma Mass Spectrometer (ICPMS) after dilution to the samples. In general, the quality of water at Pulau Indah is lower than Malaysia Marine Water Quality Standard except for few locations were higher than the maximum permissible levels. The concentration of heavy metals which are lead (Pb), copper (Cu), zinc (Zn) and uranium (U) in water samples are in the range of 0.36-5.43 µg/L, 75.20-621.58 µg/L, 11.92-30.52 µg/L, and 4.00-4.65 µg/L respectively. While the results of the four selected fish showed the following order of abundance Zn> U> Cu> Pb. Transfer factor (TF) of heavy metals in fish tissue of selected fish species from the water was discussed. However, the observed metal concentration in the sample tissue did not exceed the allowable limit of Malaysian Food Act (1983) and Regulation (1985

  15. Assessment of metal sorption mechanisms by aquatic macrophytes using PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Módenes, A.N., E-mail: anmodenes@yahoo.com.br [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Espinoza-Quiñones, F.R.; Santos, G.H.F.; Borba, C.E. [Department of Chemical Engineering-Postgraduate Program, West Parana State University, Campus of Toledo, rua da Faculdade 645, Jd. La Salle, 85903-000 Toledo, PR (Brazil); Rizzutto, M.A. [Physics Institute, University of São Paulo, Rua do Matão s/n, Travessa R 187, 05508-900 São Paulo, SP (Brazil)

    2013-10-15

    Highlights: • Divalent metal ion removals by Egeria densa biosorbent. • Multielements concentrations in biosorbent samples by PIXE analysis. • Elements mass balance in liquid and solid phase before and after metal removals. • Assessment of the mechanisms involved in Cd{sup 2+} and Zn{sup 2+} removal by biosorbent. • Confirmation of the signature of ion exchange process in metal removal. -- Abstract: In this work, a study of the metal sorption mechanism by dead biomass has been performed. All batch metal biosorption experiments were performed using the aquatic macrophyte Egeria densa as biosorbent. Divalent cadmium and zinc solutions were used to assess the sorption mechanisms involved. Using a suitable equilibrium time of 2 h and a mixture of 300 mg biosorbent and 50 mL metal solution at pH 5, monocomponent sorption experiments were performed. In order to determine the residual amounts of metals in the aqueous solutions and the concentrations of removed metals in the dry biomass, Particle Induced X-ray Emission (PIXE) measurements in thin and thick target samples were carried out. Based on the strong experimental evidence from the mass balance among the major elements participating in the sorption processes, an ion exchange process was identified as the mechanism responsible for metal removal by the dry biomass.

  16. PROCESS FOR SEPARATION OF HEAVY METALS

    Science.gov (United States)

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  17. Electroremediation of heavy metals in sewage sludge

    Directory of Open Access Journals (Sweden)

    C. Elicker

    2014-06-01

    Full Text Available This paper presents the application of electrokinetic remediation in the treatment of sludge in a sewage treatment station. The study consisted of, in a first step, the characterization of physicochemical parameters of sludge and, in a second step, the implementation of the electrokinetic remediation technique. The concentrations of Cu, Cr, Pb and Zn in sludge samples, before and after the experiment, were determined by atomic absorption spectroscopy. After 40 hours of experiment, considering an electrolyte flow-rate of 1.34 L.h-1 at a voltage of 20 V, the removal rate of all the metals accompanied was over 50%; the highest removal efficiency was for Pb, with 72.49%. The results show the feasibility of using the electrochemical technique of electrokinetic remediation for metal removal from a sludge sewage treatment station.

  18. Identification and Quantification of Heavy Metals Concentrations in Pistacia

    Directory of Open Access Journals (Sweden)

    Gholamhossein DAVARYNEJAD

    2013-12-01

    Full Text Available The levels of heavy metals are very important in pistachio nuts, because the edible nuts have an important and increasing role in human nutrition. Pistachio is one of the native nuts of Iran which contains high genetic resources, but there is insufficient information regarding nutritional properties and other elements like heavy metals. The objective of the present study was to investigate and compare heavy metals contents in the kernels of various pistachio samples including; ‘Daneshmandi’, ‘Sephid’, ‘Garmeh’, ‘Momtaz’, ‘Ahmad Aghaei’, ‘Badami Zarand’, Pistacia atlantica Desf. (‘Baneh’, Pistacia vera ‘Sarakhs’ and chance seedling as ‘Non-grafted 1’, ‘Non-grafted 2’ and ‘Non-grafted 3’. Inductively coupled plasma emission spectrophotometer (ICP was used for the determination of aluminium, chromium, nickel, copper, strontium, arsenic, cadmium and cobalt concentrations in pistachio kernels. This study showed that there were significant differences among the samples in all measured heavy metals except the arsenic, cadmium and cobalt. The content of aluminium varied from 3.22 to 9.59 (mg kg-1 of dry matter and chromium concentration from 0.60 to 1.86 (mg kg-1 of dry matter. The nickel content of examined pistachio samples was found between 0.43 and 3.63 (mg kg-1 of dry matter and copper ranged from 3.20 to 12.33 (mg kg-1 of dry matter. The strontium content was observed between 4.96 and 24.93 (mg kg-1 of dry matter. The contents of arsenic, cadmium and cobalt not reported, because their amounts were lower than the detection limit of the applied measuring method (ICP. These data demonstrated that the concentrations of heavy metals in pistachios varied by cultivar.

  19. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.

    Science.gov (United States)

    Tereshchenko, Natalya N; Akimova, Elena E; Pisarchuk, Anna D; Yunusova, Tatyana V; Minaeva, Oksana M

    2015-05-01

    We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals. PMID:25501861

  20. BIOREMEDIATION OF HEAVY METALS USING BIOSURFACTANT PRODUCING MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Vijayanand.S

    2015-05-01

    Full Text Available The present study was carried out to evaluate degradation of heavy metals in effluent waste water samples using microorganisms. The physical and chemical properties of the effluent samples were analyzed using standard methods. The soil sample collected from the heavy metal contaminated sites was subjected to serial dilution and streak-plating methods and six different strains were isolated from the samples. The activity of the isolates for hemolysis was studied on the Blood-Agar plates. The isolated strains were studied for its biochemical and morphological characteristics. The dark-blue colonies were observed by CTAB method, which confirmed the anionic bio surfactant produced by the isolate. The isolates were subjected to other screening tests like emulsification activity and oil displacement technique. These strains were used in the degradation of heavy metals present in the effluent waste water samples. The organism KDM 4 showed better degradation with 93.18% ability in reducing zinc when incubated for 72 hours and 86.36% when incubated for 24 hours in sample 3. The lead reduction was found to be 84.13% by the organism KDM3 when incubated at 37°C for 72 hours incubation. The chromium was reduced by the organism KDM 6 with 87.9% ability when incubated for 72 hours. The organisms had capacity to reduce the heavy metals depending on the factors like time and concentration of inoculum. As the time of incubation increases, more reduction was observed. The least amount of degradation was found in the organism KDM5 with only 27.08%. The percentage of reduction of heavy metals varies from one sample to another sample.

  1. Heavy metals determination in the Medellin River

    International Nuclear Information System (INIS)

    During the last years the Medellin River has been a constant preoccupation for the inhabitants of the Aburra Valley. When the city began to grow took the river as its shaft and all the tailing produced by the domestic action, commercial and industrial were begun to pour of continuous way to its waters, what has caused the degradation that today is observed. Various industries established to what is long of the Medellin River, as are the metal mechanics, those of tanneries, of photographs, paintings and nutritional products, between other. These industries unload its effluents, without no type of treatment, to the river and to its affluent, became these water bodies in receiving of the industrial and domestic liquids effluents of the city. In the present study was sought to determine the presence of some metals in the water bulk and in the sediments of the Medellin River, such as the cadmium, chrome, copper and zinc. The content of these metals plays a role very important in the pollution of the water bodies, upon causing great impact by its toxicity and bio - accumulation. The investigation was accomplished in the section located between the municipalities of Caldas and Copacabana, in four sampling stations during a period of four months, from August until November of 1996

  2. Heavy Metal Contamination of Popular Nail Polishes in Iran

    Directory of Open Access Journals (Sweden)

    Golnaz Karimi

    2015-06-01

    Full Text Available Background: Toxic and hazardous heavy metals like arsenic, lead, mercury, zinc, chromium and iron are found in a variety of personal care products, e.g. lipstick, whitening toothpaste, eyeliner and nail color. The nails absorb the pigments of nail polishes and vaporized or soluble metals can easily pass it. The goal of this survey was to assess whether the different colors of nail polishes comply with maximum concentrations of heavy metals in the EPA’s guidelines. Methods: 150 samples of different popular brands of nail polishes in 13 colors (yellow, beige, silver, pink, white, violet, brown, golden, green, black, colorless, red and blue were randomly purchased from beauty shops in Tehran City, Iran, in 2014. Microwave digestion EPA method 3051 was used by a microwave oven to determine the amount of 5 heavy metals; Nickel, Chromium, Lead, Arsenic and Cadmium. One-way ANOVA, Two-way ANOVA, hierarchical cluster, and principal component analyses were applied by Statistica 7.0 software. Results: The concentrations of chrome, lead, nickel and arsenic showed significant differences between the colors (p<0.05. In all studied samples, the level of cadmium was beyond the safe maximum permissible limit (MPS, but no significance difference in the cadmium content was identified. Conclusion: Due to the high concentrations of toxic metals in many brands of nail polishes, meticulous quality control is recommended for these beauty products.

  3. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals. PMID:25603034

  4. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor.

    Science.gov (United States)

    Cadevall, Miquel; Ros, Josep; Merkoçi, Arben

    2015-08-01

    Between their many applications bismuth nanoparticles (BiNPs) are showing interest as pre-concentrators in heavy metals detection while being applied as working electrode modifiers used in electrochemical stripping analysis. From the different reported methods to synthesize BiNPs we are focused on the typical polyol method, largely used in these types of metallic and semi-metallic nanoparticles. This study presents the strategy for an easy control of the shape and size of BiNPs including nanocubes, nanosferes and triangular nanostructures. To improve the BiNP size and shape, different reducing agents (ethylene glycol or sodium hypophosphite) and stabilizers (polyvinyl pyrrolidone, PVP, in different amounts) have been studied. The efficiency of BiNPs for heavy metals analysis in terms of detection sensitivity while being used as modifiers of screen-printed carbon electrodes including the applicability of the developed device in real sea water samples is shown. A parallel study between the obtained nanoparticles and their performance in heavy metal sensing has been described in this communication. PMID:25994368

  5. A REVIEW OF HEAVY METAL ADSORPTION BY MARINE ALGAE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Accumulation of heavy metals by algae had been studied extensively for biomonitoring or bioremediation purposes. Having the advantages of low cost raw material, big adsorbing capacity, no secondary pollution, etc., algae may be used to treat industrial water containing heavy metals. The adsorption processes were carried out in two steps: rapid physical adsorption first, and then slow chemical adsorption. pH is the major factor influencing the adsorption. The Freundlich equation fitted very well the adsorption isotherms. The uptake decreased with increasing ionic strength. The principal mechanism of metallic cation sequestration involves the formation of complexes between a metal ion and functional groups on the surface or inside the porous structure of the biological material. The carboxyl groups of alginate play a major role in the complexation. Different species of algae and the algae of the same species may have different adsorption capacity. Their selection affinity for heavy metals was the major criterion for the screening of a biologic adsorbent to be used in water treatment. The surface complex formation model (SCFM) can solve the equilibrium and kinetic problems in the biosorption.

  6. A sensitive rapid on-site immunoassay for heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R.; Blake, D.; Flowers, G.

    1996-05-02

    This project concerns the development of immunoassays for heavy metals that will permit the rapid on-site analysis of specific heavy metals, including lead and chromium in water and soil samples. 2 refs.

  7. Tree rings as monitors of heavy metal air pollution histories

    International Nuclear Information System (INIS)

    The potential of five species of trees as historical monitors of heavy metal air pollution has been investigated. The study was carried out at a site 2 km from an industrial complex including several metal refineries. Using neutron activation, heavy metal concentrations were measured in the xylem as a function of the year of wood formation. The manganese concentrations were by far the highest. In maple trees the high natural level of this essential trace element masked any increases due to pollution. In ash and cedar increased Mn concentrations were found, relative to control trees, but there is evidence for radial translocation. In hemlock the time variations of the average Mn concentrations followed the production rates of the refineries but large variations among individual trees were observed. Hemlock was estimated to accumulate up to 0.3% of the atmospheric Mn input. (author) 13 refs.; 3 figs

  8. Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics

    International Nuclear Information System (INIS)

    This paper describes the adsorption of heavy metal ions from aqueous solutions by oak (Quercus coccifera) sawdust modified by means of HCl treatment. Our study tested the removal of three heavy metals: Cu, Ni, and Cr. The optimum shaking speed, adsorbent mass, contact time, and pH were determined, and adsorption isotherms were obtained using concentrations of the metal ions ranging from 0.1 to 100 mg L-1. The adsorption process follows pseudo-second-order reaction kinetics, as well as Langmuir and D-R adsorption isotherms. The paper discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. The maximum removal efficiencies were 93% for Cu(II) at pH 4, 82% for Ni(II) at pH 8, and 84% for Cr(VI) at pH 3

  9. Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone.

    Science.gov (United States)

    Wang, Hu; Li, Ya-jie; Wei, Jun-feng; Xu, Ji-run; Wang, Yun-hua; Zheng, Guo-xia

    2014-05-01

    A 3D paper-based microfluidic device has been developed for colorimetric determination of selected heavy metals in water samples by stacking layers of wax patterned paper and double-sided adhesive tape. It has the capability of wicking fluids and distributing microliter volumes of samples from single inlet into affrays of detection zones without external pumps, thus a range of metal assays can be simply and inexpensively performed. We demonstrate a prototype of four sample inlets for up to four heavy metal assays each, with detection limits as follows: Cu (II) = 0.29 ppm, Ni(II) = 0.33 ppm, Cd (II) = 0.19 ppm, and Cr (VI) = 0.35 ppm, which provided quantitative data that were in agreement with values gained from atomic absorption. It has the ability to identify these four metals in mixtures and is immune to interferences from either nontoxic metal ions such as Na(I) and K(I) or components found in reservoir or beach water. With the incorporation of a portable detector, a camera mobile phone, this 3D paper-based microfluidic device should be useful as a simple, rapid, and on-site screening approach of heavy metals in aquatic environments. PMID:24618990

  10. Phytoremediation potential of Lemna minor L. for heavy metals.

    Science.gov (United States)

    Bokhari, Syeda Huma; Ahmad, Iftikhar; Mahmood-Ul-Hassan, Muhammad; Mohammad, Ashiq

    2016-01-01

    Phytoremediation potential of L. minor for cadmium (Cd), copper (Cu), lead (Pb), and nickel (Ni) from two different types of effluent in raw form was evaluated in a glass house experiment using hydroponic studies for a period of 31 days. Heavy metals concentration in water and plant sample was analyzed at 3, 10, 17, 24, and 31 day. Removal efficiency, metal uptake and bio-concentration factor were also calculated. Effluents were initially analyzed for physical, chemical and microbiological parameters and results indicated that municipal effluent (ME) was highly contaminated in terms of nutrient and organic load than sewage mixed industrial effluent (SMIE). Results confirmed the accumulation of heavy metals within plant and subsequent decrease in the effluents. Removal efficiency was greater than 80% for all metals and maximum removal was observed for nickel (99%) from SMIE. Accumulation and uptake of lead in dry biomass was significantly higher than other metals. Bio-concentration factors were less than 1000 and maximum BCFs were found for copper (558) and lead (523.1) indicated that plant is a moderate accumulator of both metals. Overall, L. minor showed better performance from SMIE and was more effective in extracting lead than other metals. PMID:26114480

  11. Heavy metals in Ratnapura alluvial gem sediments, Sri Lanka

    Science.gov (United States)

    Vithanage, M. S.; Hettiarachchi, J. K.; Rajapaksha, A. U.; Wijesekara, H.; Hewawasam, T.

    2011-12-01

    The valuable gems in Sri Lanka are found from the sedimentary gem deposits in Ratnapura District, which are found as alluvial deposits some are about >50 m deep. Gem bearing gravel layer is taken out from the mine, washed by panning to recover the gem minerals in the heavy mineral fraction, is a common practice in the gem mining area. Gem bearing sediment layer is associated with different heavy minerals in which different trace metals as Co, Cr, Cu, Al, Zr, Pb and As also can be present. During panning, the sediment is washed away and the heavy metals attached to the sediments are released into the environment. Hence we studied the lability and bioavailability of arsenic and other heavy metals from the gem sediments. Sediment samples were collected from 15 small scale gem mines (3 soil layers- top, gem mineral layer and layer below gem bearing gravel layer), air dried and sieved to obtain 150 mg/kg), Cu (>150 mg/kg), Pb (>400 mg/kg), Zn (>600 mg/kg) and Co ions (>100 mg/kg). Arsenite in the gem sediments were low and recorded as Co>Zn>Mn>Ni>Cu>Pb. Sediments from few gem pits showed considerably high concentrations of metals analyzed. In some places Fe, Ni, Cu, Zn reported high in bioavailable fractions 70, 25, 20, 10 mg/kg respectively. Mobilization of these metals may increase due to changes in the pH and the presence of other ions in the environment. High concentrations of toxic metals in exchangeable and bioavailable fractions indicate the risk on plant and animals as well as the open water bodies and groundwater sources.

  12. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    characterized regarding its physical-chemical properties: pH, solubility, chemical composition, and leaching, amongst others. Results indicate a high alkalinity and the presence of large amounts of calcium, chlorides, sulfates, carbonates, sodium and potassium. Metal concentrations in fly ash are: 6,2 g/kg for...... zinc, 2,4 g/kg for lead, 1,7 g/kg for iron, and 7,9 g/kg for magnesium. Copper, manganese, chromium and cadmium are also present with 546, 338, 104 and 91 mg/kg of fly ash, respectively. These results are extremely important in subsequent studies on the treatment of fly ash....

  13. Assessment of heavy metals contents in soil from an industrial plant of southern part of Romania

    OpenAIRE

    Diana Florescu; Andreea Iordache; Iuliana Piciorea; Ionete, Roxana E.

    2011-01-01

    An investigation of soils is performed in order to establish the impact of heavy metal pollutionnear an industrial power plant. The use of synthetic products (e.g. pesticides, paints, batteries, industrialwaste and land application of industrial or domestic sludge) can result in heavy metal contamination ofsoils. Heavy metals also occur naturally, but rarely at toxic levels. Soil samples from different depth weredrawn. Heavy metals such as Pb, Zn, Cu and Mn were analysed to establish the leve...

  14. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    OpenAIRE

    Hang Zhou; Wen-Tao Yang; Xin Zhou; Li Liu; Jiao-Feng Gu; Wen-Lei Wang; Jia-Ling Zou; Tao Tian; Pei-Qin Peng; Bo-Han Liao

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the...

  15. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    OpenAIRE

    Lucas Anjos Souza; Fernando Angelo Piotto; Roberta Corrêa Nogueirol; Ricardo Antunes Azevedo

    2013-01-01

    Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group a...

  16. Review: Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops

    Institute of Scientific and Technical Information of China (English)

    ISLAM Ejaz ul; YANG Xiao-e; HE Zhen-li; MAHMOOD Qaisar

    2007-01-01

    Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants,particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary

  17. Mechanism Analysis and Propagation Model of Heavy Metals Contamination in Urban Topsoil

    OpenAIRE

    Zhao-wei Wang; Yuan-biao Zhang; Zi-yue Chen; Ke-jia Li; Jia-lin Hu; Yu-jie Liu

    2013-01-01

    In order to further research on the polluting condition and spreading features of heavy metals in urban surface soil, this study makes statistical analysis on indexes of 8 heavy metal concentrations. Then Are GIS geo-statistical analyst was used for Kriging interpolation of each kind of heavy metal concentration before figuring out the spatial distribution. Firstly, heavy metal contamination was analyzed by single-element pollution evaluation and multi-element pollution evaluation, before rat...

  18. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    OpenAIRE

    Pingguo Yang; Miao Yang; Renzhao Mao; Hongbo Shao

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and C...

  19. Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line.

    Science.gov (United States)

    Morcillo, Patricia; Esteban, María Á; Cuesta, Alberto

    2016-02-01

    The use of cell lines to test the toxicity of aquatic pollutants is a valuable alternative to fish bioassays. In this study, fibroblast SAF-1 cells from the marine gilthead seabream (Sparus aurata L.) were exposed for 24 h to the heavy metals Cd, Hg, MeHg (Methylmercury), As or Pb and the resulting cytotoxicity was assessed. Neutral red (NR), MTT-tetrazolio (MTT), crystal violet (CV) and lactate dehydrogenase (LDH) viability tests showed that SAF-1 cells exposed to the above heavy metals produced a dose-dependent reduction in the number of viable cells. Methylmercury showed the highest toxicity (EC50 = 0.01 mM) followed by As, Cd, Hg and Pb. NR was the most sensitive method followed by MTT, CV and LDH. SAF-1 cells incubated with each of the heavy metals also exhibited an increase in the production of reactive oxygen species and apoptosis cell death. Moreover, the corresponding gene expression profiles pointed to the induction of the metallothionein protective system, cellular and oxidative stress and apoptosis after heavy metal exposure for 24 h. This report describes and compares tools for evaluating the potential effects of marine contamination using the SAF-1 cell line. PMID:26363324

  20. Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt

    Science.gov (United States)

    Kasem Mahmoud, Esawy; Ghoneim, Adel Mohamed

    2016-04-01

    The discharge of untreated waste water in Zefta drain and drain no. 5 is becoming a problem for many farmers in the El-Mahla El-Kobra area, Egypt. The discharged water contains high levels of contaminants considered hazardous to the ecosystem. Some plants, soil, water, and sediment samples were collected from the El-Mahla El-Kobra area to evaluate the contamination by heavy metals. The results showed that the heavy metals, pH, sodium adsorption ratio (SAR), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in the water of Zefta drain and drain no. 5 exceeded permissible limits for irrigation. In rice and maize shoots grown in soils irrigated by contaminated water from Zefta drain and drain no. 5, the bioaccumulation factors for Cd, Pb, Zn, Cu, and Mn were higher than 1.0. The heavy metals content of irrigated soils from Zefta drain and drain no. 5 exceeded the upper limit of background heavy metals. In this study, the mean contaminant factor values of the drain no. 5 sediments revealed that Zn, Mn, Cu, Cd, Pb, and Ni > 6, indicating very high contamination. The bioaccumulation coefficient values of Cynodon dactylon, Phragmites australis, and Typha domingensis aquatic plants growing in Zefta drain are high. These species can be considered as hyperaccumulators for the decontamination of contaminated water.

  1. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.;

    1994-01-01

    for sludge intended for use in agriculture, and the quality criteria for the aquatic environment. Proposals for general guidelines have been calculated using a simple mass balance model combined with water quality criteria and the Danish limit values for use of sludge in agriculture.......Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... degradability, defined by the OECD-test, bio-sorption and bio-accumulation, defined by the octanol/water distribution coefficient and toxic effects on water organisms. Several potential effects of seven heavy metals have been evaluated, and the most critical effects were found to be the quality criteria...

  2. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    Science.gov (United States)

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants. PMID:26989941

  3. Concentration and speciation of heavy metals during water hyacinth composting.

    Science.gov (United States)

    Singh, Jiwan; Kalamdhad, Ajay S

    2012-11-01

    The Tessier sequential extraction method was employed to investigate the changes in heavy metals speciation (Zn, Cu, Mn, Fe, Pb, Ni, Cd and Cr) during water hyacinth (Eichhornia crassipes) composting. Results showed that, the contents of total metals concentration were increased during the composting process. The largest proportion of metals was found in the residual fraction which was in more stable form and is consequently considered unavailable for plant uptake. Reducible and oxidizable fractions of Ni, Pb and Cd were not found in all trials during water hyacinth composting. The concentrations of Cu and Cd were very low comparative to the other metals, but the percentage of exchangeable and carbonate fractions were similar as other metals. From this study it can be concluded that the appropriate proportion of cattle manure addition (Trial 4) significantly reduced the mobile and easily available fractions (exchangeable and carbonate fractions) during the composting process. PMID:22989643

  4. Characterization of heavy metal particles embedded in tire dust.

    Science.gov (United States)

    Adachi, Kouji; Tainosho, Yoshiaki

    2004-10-01

    Tire dust is a significant pollutant, especially as a source of zinc in the urban environment. This study characterizes the morphology and chemical composition of heavy metal particles embedded in tire dust and traffic-related materials (brake dust, yellow paint, and tire tread) as measured by a field emission scanning electron microscope equipped with an energy dispersive X-ray spectrometer (FESEM/EDX). In 60 samples of tire dust, we detected 2288 heavy metal particles, which we classified into four groups using cluster analysis according to the following typical elements: cluster 1: Fe, cluster 2: Cr/Pb, cluster 3: multiple elements (Ti, Cr, Fe, Cu, Zn, Sr, Y, Zr, Sn, Sb, Ba, La, Ce, Pb), cluster 4: ZnO. According to their morphologies and chemical compositions, the possible sources of each cluster were as follows: (1) brake dust (particles rich in Fe and with trace Cu, Sb, and Ba), (2) yellow paint (CrPbO(4) particles), (3) brake dust (particulate Ti, Fe, Cu, Sb, Zr, and Ba) and heavy minerals (Y, Zr, La, and Ce), (4) tire tread (zinc oxide). When the chemical composition of tire dust was compared to that of tire tread, the tire dust was found to have greater concentrations of heavy metal elements as well as mineral or asphalt pavement material characterized by Al, Si, and Ca. We conclude that tire dust consists not only of the debris from tire wear but also of assimilated heavy metal particles emitted from road traffic materials such as brake lining and road paint. PMID:15337346

  5. Heavy metals in garden soils along roads in Szeged, Hungary

    Science.gov (United States)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil

  6. Evaluation of Some Physiochemical Parameters and Heavy Metal Contamination in Hara Biosphere Reserve, Iran, Using a New Pollution Index Approach

    Directory of Open Access Journals (Sweden)

    Iman Zarei

    2016-07-01

    Full Text Available Background: The pollution of the aquatic environment with heavy metals has become a worldwide problem during recent years, due to their potential toxic effects and ability to bio-accumulate in aquatic ecosystems. Heavy metals are sensitive indicators for monitoring changes in the aquatic environment. Methods: In this study, total concentrations of Cr, Pb, Cu, Zn, and Fe were measured in water and sediments from nine sites, based on ecological conditions and human activities and the effects of sediment pH and sediment organic matter on bioavailability of selected metals were determined. Modified degree of contamination (mCd was computed in order to determine anthropogenically derived sediment contamination. Results: Mean concentration of metals in water found to be in the following order: Pb > Fe > Zn > Cu > Cr, while in sediment samples it was Fe > Cr > Zn > Pb > Cu. The average content of examined metals in water was higher than the chronic values in marine surface water guideline values. Mean content of Cr, Pb and Fe in sediments were higher than average of the less contaminated sample but Cu and Zn were lower than this guideline value. In the study area, mCd values were less than 1.5 with values ranging from 0.71 to 1.02. Conclusion: The results of this study indicated with a decrease in organic matter and pH in sediments, the concentration of copper and iron increased. Base on modified contamination degree, the sediments of Hara Biosphere Reserve are considered to be in the zero to very low contamination status.

  7. SULFIDE PRECIPITATION OF NICKEL AND OTHER HEAVY METALS FROM SINGLE- AND MULTI-METAL SYSTEMS

    Science.gov (United States)

    Precipitation behavior of heavy metals (Ni, Co, Cd, Cu, and Zn) was studied extensively in single- and multi-metal systems. Kinetic studies showed that NiS oxidation (as a function of pH, oxygen, and reaction time) caused the dissolution of NiS. CoS precipitation would require hi...

  8. Heavy metal contents of the karasu creek sediments, Nigde, Turkey.

    Science.gov (United States)

    Yalcin, M Gurhan; Narin, Ibrahim; Soylak, Mustafa

    2007-05-01

    Heavy metal contamination in sediments of the Karasu spring was investigated in the presented study. In this respect, sediment samples were collected from contaminant sites along the spring starting from the spring water manifestation site, base of the Akkaya dam to the dam exit site. Heavy metal concentrations were determined by X-ray Fluorescence Spectrometer. Cobalt, copper, arsenic, tin, nickel, zinc, cadmium, lead, aluminum, iron, titan, chromium and manganese contents of the Karasu creek sediments are found as 18.30-69.00, 12.40-595.0 5.50-345.3, 5.80-15.1, 10.9-64.1, 28.90-103,300, 4.1-356.2, 7.70-37,840, 13,460-109,400, 11,740-62,900, 22.18-59.04, 41.70-369 and 12.09-3,480 mg/kg, respectively. Results indicate the presence of a contamination in the Karasu creek. All the metal concentrations were found to be exceeding their acceptable limit values. Eutrophication is developed in the Karasu creek and the Akkaya dam. It is thought that heavy metal accumulation in the creek is originated from discharge from mine quarries, industrial and domestic wastes. Protection zones should be defined and all necessary measures must be taken along the Karasu creek. PMID:17057990

  9. Acute toxicity of heavy metals towards freshwater ciliated protists

    International Nuclear Information System (INIS)

    The acute toxicity of five heavy metals to four species of freshwater ciliates (Colpidium colpoda, Dexiotricha granulosa, Euplotes aediculatus, and Halteria grandinella) was examined in laboratory tests. After exposing the ciliates to soluble compound of cadmium, copper, chromium, lead, and nickel at several selected concentrations, the mortality rate was registered and the LC5 values (with 95% confidence intervals) were calculated. Large differences appeared in sensitivities of the four species to the metals. H. grandinella showed the highest sensitivity for cadmium (0.07 mg l-1, LC5) and lead (0.12 mg l-1, LC5), whilst E. aediculatus showed the highest sensitivity for nickel (0.03 mg l-1, LC5). The comparison with data obtained with other species indicate that Halteria grandinella and Euplotes aediculatus are excellent and convenient bioindicator for evaluating the toxicity of waters and wastewaters polluted by heavy metals. The short time (24 h) and simplicity of the test procedure enable this test to be used in laboratory studies. - Ciliated protozoa are suitable bioindicators of heavy metal pollution in freshwater environments

  10. Heavy Metal Pollution Evolution in Sediments from Urdaibai Bay (Spain)

    International Nuclear Information System (INIS)

    Full Text: The Urdaibai bay is a biosphere reservoir located in the north of Spain. The mayor components of bay sediments come from marls and clays eroded which are deposited together with metallic pollutants present in water, air and rain. For this reason it is possible to study the temporal evolution of the bay pollution by measuring the heavy metal concentrations in the sediments and considering the correspondence with its age. To this aim, sediments cores were taken in two different points of the Urdaibai bay. The cores were cut into 1 cm thick horizontal sections. Sediment dating was performed using a low background gamma spectrometry with GeHP to determine Cs-137, Ra-226 and Pb-210 activities and applying the CIC and CRS models. The heavy metal concentrations in sediments were determined by ICP-MS. The obtained results in one of the studied positions show an increment of the Pb, Zn, Ni, Cu and Cr concentrations in the first 10 cm of the sediment core. This fact can be related to an increase of the bay pollution in the last 100 years. In the second studied core the heavy metal concentrations are constant in depth or lower in the superficial layers. This could be due to an increment the deposition rate of eroded material

  11. Effects of irradiation of sewage sludge on heavy metal bioavailability

    International Nuclear Information System (INIS)

    Sewage sludges are a valuable resource to agriculture, but their use is limited by the hazards of pathogens, toxic chemicals and heavy metals. Irradiation can control the pathogens and deactivate some of the toxic chemicals. The relative cost of industrial-scale irradiation using accelerators has decreased progressively. This, coupled with the increasing necessity to recycle wastes, has led to renewed interest in irradiation of sludges. In response to this renewed interest, this report examines what is known about the effects of irradiation on the bioavailability of heavy metals. Very few studies have addressed this topic, although workers in the U.S. have claimed decreased solubility of metals in irradiated sludges. We have also briefly reviewed the general literature on sludge to gain indirect evidence on the likely effects. The scant data, often based on less than ideal experimental methodologies, show no major consistent effects of irradiation on the availability of heavy metals from sludge. The data are not sufficient to rule out such effects entirely, but the effects appear to be fairly subtle and not likely to persist beyond one growth season. 85 refs

  12. Perspectives of plant-associated microbes in heavy metal phytoremediation.

    Science.gov (United States)

    Rajkumar, M; Sandhya, S; Prasad, M N V; Freitas, H

    2012-01-01

    "Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation. PMID:22580219

  13. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    Science.gov (United States)

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    The pH of lake water is often inversely correlated with concentrations of trace metals in the water column. Concentrations of Al, Cd, Ca, Cu, Fe, Hg, Pb, Mg, Mn, Ni, P, and Zn were compared in water, plants, and aquatic insects from three acidified (pH 5.0) and three nonacidified (pH 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicate that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threaten egg production and development of young.

  14. Fate and effects of heavy metals in salt marsh sediments

    International Nuclear Information System (INIS)

    The fate and effects of selected heavy metals were examined in sediment from a restored salt marsh. Sediment cores densely covered with Spartina patens were collected and kept either un-amended or artificially amended with nickel (Ni) under standardized greenhouse conditions. Ni-amendment had no significant effect on the fate of other metals in sediments, however, it increased root uptake of the metals. Metal translocation into the shoots was small for all metals. Higher Ni concentrations in plants from amended cores were accompanied by seasonal reductions in plant biomass, photosynthetic capacity and transfer efficiency of open photosystem II reaction centers; these effects, however, were no longer significant at the end of the growing season. Root colonization by arbuscular mycorrhizal fungi (AMF) resembled that of natural salt marshes with up to 20% root length colonized. Although Ni-amendment increased AMF colonization, especially during vegetative growth, in general AMF were largely unaffected. - Spartina patens accumulates heavy metals in roots without significant translocation into shoots, and with only small seasonal effects on plant growth performance and mycorrhizal colonization

  15. Wetland plants as indicators of heavy metal contamination

    International Nuclear Information System (INIS)

    Highlights: • We investigated the metal accumulating ability in three plant species. • (Cd, Cu, Pb, and Zn) were found in higher concentrations in the roots. • Results indicate that these species are suitable as indicators of heavy metal pollution in estuaries. - Abstract: In this study metal accumulating abilities of three emergent macrophytes (Phragmites australis, Typha capensis and Spartina maritima) were investigated in the urbanised Swartkops Estuary. Plants and sediment samples were collected at seven sites along the banks of the main channel and in adjacent canals. Sediments and plant organs were analysed, by means of atomic absorption spectrometry, for four elements (Cd, Cu, Pb, and Zn). Metal concentrations in the sediments of adjacent canals were found to be substantially higher than those at sites along the banks of the estuary. These differences were reflected in the plant organs for Pb and Zn, but not for Cu and Cd. All three species exhibited significantly higher concentrations of metals in their roots. These species are therefore suitable for use as indicators of the presence and level of heavy metal contaminants in estuaries

  16. Fate and effects of heavy metals in salt marsh sediments

    Energy Technology Data Exchange (ETDEWEB)

    Suntornvongsagul, Kallaya [Department of Chemical Engineering, New Jersey Institute of Technology (NJIT), University Heights, Newark, NJ 07102 (United States); Environmental Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Burke, David J. [Department of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ 07102 (United States); The Holden Arboretum, 9500 Sperry Road, Kirtland, OH 44094 (United States); Hamerlynck, Erik P. [Department of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ 07102 (United States); Hahn, Dittmar [Department of Chemical Engineering, New Jersey Institute of Technology (NJIT), University Heights, Newark, NJ 07102 (United States) and Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 (United States)]. E-mail: dh49@txstate.edu

    2007-09-15

    The fate and effects of selected heavy metals were examined in sediment from a restored salt marsh. Sediment cores densely covered with Spartina patens were collected and kept either un-amended or artificially amended with nickel (Ni) under standardized greenhouse conditions. Ni-amendment had no significant effect on the fate of other metals in sediments, however, it increased root uptake of the metals. Metal translocation into the shoots was small for all metals. Higher Ni concentrations in plants from amended cores were accompanied by seasonal reductions in plant biomass, photosynthetic capacity and transfer efficiency of open photosystem II reaction centers; these effects, however, were no longer significant at the end of the growing season. Root colonization by arbuscular mycorrhizal fungi (AMF) resembled that of natural salt marshes with up to 20% root length colonized. Although Ni-amendment increased AMF colonization, especially during vegetative growth, in general AMF were largely unaffected. - Spartina patens accumulates heavy metals in roots without significant translocation into shoots, and with only small seasonal effects on plant growth performance and mycorrhizal colonization.

  17. Behaviour of heavy metals in the partial oxidation of heavy fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, P.; Baitalow, F.; Seifert, P.; Meyer, B. [TU Bergakademie Freiberg, Department of Energy Process Engineering and Chemical Engineering, Reiche Zeche, Fuchsmuehlenweg 9, 09596 Freiberg (Germany); Schlichting, H. [Lurgi GmbH, Frankfurt (Germany)

    2010-02-15

    The behaviour of heavy metals in the partial oxidation of heavy fuel oils under a pressure of up to 100 bar (10 MPa) has been investigated. The tests were carried out in a 5 MW HP POX (High Pressure Partial Oxidation) test plant, that is operated by the IEC (Department of Energy Process Engineering and Chemical Engineering, TU Bergakademie Freiberg) in cooperation with Lurgi GmbH. In several test campaigns preheated oil with a viscosity of up to 300 cSt (= 300 mm{sup 2}/s) at the burner inlet has been gasified. The heavy metals nickel Ni, iron Fe and vanadium V occur in heavy residual oils in considerable concentration and may seriously impact the gasification itself and the synthesis gas conditioning and usage. While iron is largely recovered in the gasification residue, the recovery rates of nickel and vanadium depend on the process conditions. Volatile nickel compounds were detected in the raw synthesis gas. It was found that an incomplete carbon conversion enables the capture of nickel Ni and vanadium V in the solid residue phase and can thus mitigate the problem of volatile metal compounds in the raw synthesis gas. (author)

  18. Heavy Metals Analysis and Sediment Quality Values in Urban Lakes

    Directory of Open Access Journals (Sweden)

    Aboud S. Jumbe

    2009-01-01

    Full Text Available Problem statement: The objective of this research was to evaluate the degree of heavy metal contamination in lakes and the extent to which the sediment quality of the lakes of Bangalore city has deteriorated. Approach: In this study, heavy metals such as Cd, Co, Cu, Cr, Mn, Pb, Ni and Zn in lake bed sediments were analyzed using comparative sediment quality guidelines from various derived criteria. The selection of sampling points was based upon inflow and outflow regions of the lakes; geographical proximity of industrial units in relation to their effluent discharges; proximity of residential sites located on the banks of the wetland systems; drainage patterns and accessibility towards the lakes. Digestion and analysis of the samples were done by microwave-assisted digestion and atomic absorption spectrophotometry respectively. Results: The extent of sediment quality deterioration was more pronounced in Cu (203.50 ppm and Ni (97.64 ppm followed by Pb (206.0 ppm and Cd (8.38 ppm. Cr (96.70 ppm failed a single sediment quality guideline while Zn (220.0 ppm, Mn (176.0 ppm and Co (47.7 ppm remained within the safety levels of sediment quality guidelines prescribed for the study. The Sediment Geo-accumulation Index showed that Co, Cu and Pb showed moderate levels of pollution while the Pollution Load Index (PLI between heavy metals in the lakes produced the following outputs: Ni > Pb > Cd > Cu > Cr > Co > Zn > Mn. Conclusion: This study proves that the level of sustained metal contamination of the fragile urban wetlands has not receded even after the recent urban wetlands rejuvenation works were completed. This prolonged presence in excessive levels of the studied heavy metals in the bed sediments casts doubt on the choice and effectiveness of the any mitigation measures in the long run.

  19. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    OpenAIRE

    Hyung-Seok Kim; Ji-Whan Ahn; Gi-Chun Han; Mihee Lim; Kwang-Suk You

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching c...

  20. Prolong Restoration of the Water Quality of River Ganga Effect of Heavy Metals and Radioactive Elements.

    Science.gov (United States)

    Tare, Vinod; Basu, Subhankar

    2014-04-01

    The genesis of the present research was the belief since ages and the observations made through some studies that the water of river Ganga has unique characteristics, which allows storage of water quality even on prolong storage. Very few systematic studies have been conducted to support the contention that the Ganga water indeed has some special composition that could be attributed to its unique storage capacity. It was postulated that prolong restoration of water quality depends on the ability to arrest microbial activity that is generally responsible for deterioration in water quality on prolong storage. Hence, attempt has been made to identify the parameters that are likely to influence the prolong storage of river water. Along with Ganga river water, other three major rivers, viz. Yamuna, Godavari and Narmada, were selected for comparison. Emphasis was made on estimation of heavy metals, radioactive elements, dissolved carbon and other physicochemical parameters such as temperature, pH, alkalinity, hardness and dissolved organic carbon. Based on the available information regarding the impact of heavy metals, radioactive elements vis-à-vis the chemical composition of water on microorganisms in the aquatic environment, an overall impact score for the waters of the four Indian rivers selected in the study has been assigned. PMID:26563059

  1. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Directory of Open Access Journals (Sweden)

    Hyung-Seok Kim

    2009-11-01

    Full Text Available Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP and Korean Standard Leaching Test (KSLT, leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L: 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L: 5.0 for TCLP and 1.5 for KSLT].

  2. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  3. Heavy liquid metals: Research programs at PSI

    International Nuclear Information System (INIS)

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics

  4. Heavy liquid metals: Research programs at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y.

    1996-06-01

    The author describes work at PSI on thermohydraulics, thermal shock, and material tests for mechnical properties. In the presentation, the focus is on two main programs. (1) SINQ LBE target: The phase II study program for SINQ is planned. A new LBE loop is being constructed. The study has the following three objectives: (a) Pump study - design work on an electromagnetic pump to be integrated into the target. (b) Heat pipe performance test - the use of heat pipes as an additional component of the target cooling system is being considered, and it may be a way to futher decouple the liquid metal and water coolant loops. (c) Mixed convection experiment - in order to find an optimal configuration of the additional flow guide for window cooling, mixed convection around the window is to be studied. The experiment will be started using water and then with LBE. (2) ESS Mercury target: For ESS target study, the following experimental studies are planned, some of which are exampled by trial experiments. (a) Flow around the window: Flow mapping around the hemi-cylindrical window will be made for optimising the flow channels and structures, (b) Geometry optimisation for minimizing a recirculation zone behind the edge of the flow separator, (c) Flow induced vibration and buckling problem for a optimised structure of the flow separator and (d) Gas-liquid two-phase flow will be studied by starting to establish the new experimental method of measuring various kinds of two-phase flow characteristics.

  5. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-15

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  6. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    International Nuclear Information System (INIS)

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  7. Biochar Mechanisms of Heavy Metal Sorption and Potential Utility

    Science.gov (United States)

    Ippolito, J.

    2015-12-01

    Mining-affected lands are a global issue; in the USA alone there are an estimated 500,000 abandoned mines encompassing hundreds of thousands of hectares. Many of these sites generate acidic mine drainage that causes release of heavy metals, and subsequently degradation in environmental quality. Because of its potential liming characteristics, biochar may play a pivotal role as a soil amendment in future mine land reclamation. However, to date, most studies have focused on the use of biochar to sorb metals from solution. Previous studies suggest that metals are complexed by biochar surface function groups (leading to ion exchange, complexation), coordination with Pi electrons (C=C) of carbon, and precipitation of inorganic mineral phases. Several recent studies have focused on the use of biochar for amending mine land soils, showing that biochar can indeed reduce heavy metal lability, yet the mechanism(s) behind labile metal reduction have yet to be established. In a proof-of-concept study, we added lodgepole pine, tamarisk, and switchgrass biochar (0, 5, 10, 15% by weight; 500 oC) to four different western US mine land soils affected by various heavy metals (Cd, Cu, Mn, Pb, Zn). Extraction with 0.01M CaCl2 showed that increasing biochar application rate significantly decreased 'bioaccessible' metals in almost all instances. A concomitant increase in solution pH was observed, suggesting that metals may be rendered bio-inaccessible through precipitation as carbonate or (hydr)oxide phases, or sorbed onto mineral surfaces. However, this was only supposition and required further research. Thus, following the 0.01M CaCl2 extraction, biochar-soil mixtures were air-dried and metals were further extracted using the four-step BCR sequential removal procedure. Results from selective extraction suggest that, as compared to the controls, most metals in the biochar-amended mine land soils were associated with exchange sites, carbonate, and oxide phases. Biochar may play a

  8. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae.

    Science.gov (United States)

    Mapolelo, M; Torto, N

    2004-09-01

    Sorption properties of baker's yeast cells, characterised as Saccharomyces cerevisiae were evaluated for trace enrichment of metal ions: Cd(2+), Cr(3+), Cr(6+), Cu(2+), Pb(2+) and Zn(2+) from aqueous environments. Metal concentration was determined by flame atomic absorption spectrometry (FAAS). Parameters affecting metal uptake such as solution pH, incubation time, amount of yeast biomass and effect of glucose concentration (energy source) were optimised. Further studies were carried out to evaluate the effects on metal uptake after treating yeast with glucose as well as with an organic solvent. The results showed that trace enrichment of the metals under study with yeast, depends upon the amount of yeast biomass, pH and incubation time. Treatment of yeast cells with 10-20mM glucose concentration enhanced metal uptake with exception to Cr(6+), whose metal enrichment capacity decreased at glucose concentration of 60mM. Of the investigated organic solvents THF and DMSO showed the highest and lowest capacity, respectively, to enhance metal uptake by yeast cells. Trace enrichment of metal ions from stream water, dam water, treated wastewater from a sewage plant and wastewater from an electroplating plant achieved enrichment factors (EF) varying from 1 to 98, without pre-treatment of the sample. pH adjustment further enhanced the EF for all samples. The results from these studies demonstrate that yeast is a viable trace metal enrichment media that can be used freely suspended in solution to achieve very high EF in aquatic environments. PMID:18969566

  9. Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources.

    Science.gov (United States)

    Joshi, P K; Swarup, Anand; Maheshwari, Sonu; Kumar, Raman; Singh, Namita

    2011-10-01

    Wastewater particularly from electroplating, paint, leather, metal and tanning industries contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and biosorption at low cost and in eco-friendly way. An attempt was, therefore, made to isolate fungi from sites contaminated with heavy metals for higher tolerance and removal of heavy metals from wastewater. Seventy-six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspegillus awamori, Aspergillus flavus, Trichoderma viride) also were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi. With respect to Pb, Cd, Cr and Ni, maximum uptake of 59.67, 16.25, 0.55, and 0.55 mg/g was observed by fungi Pb3 (Aspergillus terreus), Trichoderma viride, Cr8 (Trichoderma longibrachiatum), and isolate Ni27 (A. niger) respectively. This indicated the potential of these fungi as biosorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals. PMID:23024411

  10. Heavy Metals Behavior During Thermal Plasma Vitrification Of Incineration Residues

    International Nuclear Information System (INIS)

    Incineration of wastes, widely and increasingly used nowadays, produces residues, mainly bottom ash and filter fly ash. Fly ash is especially problematic because of its high content in heavy metals easily drawn out. Thermal processes, based mainly on electrical arc processes, are used to melt the residues at high temperature and convert them into a relatively inert glass. Consequently, to improve the process and get a glass satisfying regulation, control of heavy metals (lead, zinc, cadmium and chromium...) volatility during plasma fly ash melting and vitrification is needed and basic data concerning vaporization of these metals are required. According to the volatility of these compounds observed during vitrification of fly ash, a predictive model has been used to simulate the elimination of Pb, Zn and S from the melt as a function of time and temperature for a system including chlorides, oxides and sulfates. The objective of this work was the experimental study of heavy metals volatility using optical emission spectroscopy. A twin torch plasma system, mounted above a cold crucible with Ar (or Ar + O2) as plasma gas, has been used. The crucible was filled with synthetic glass in which known amounts of metallic salts were added to obtain the same chemical composition as used in the model. From spectral lines intensities of Ar, the plasma temperature profiles along the observation direction has been first established, before using ratios of spectral lines of Ar and metallic (Pb, Zn) or Cl vapors to reach the evolution of the elements concentrations above the melt. Off-gases have been analyzed by mass spectrometry. The influence of the atmosphere (Ar or Ar + O2) above the crucible has been studied and differences in elements behaviors have been pointed out. The results of the spectroscopic measurements have been compared to the ones issued of modeling, in order to validate our model of vaporization

  11. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...... combustion, waste incineration, residual oil combustion and in 2009 also combustion of biomass. The emission from waste incineration plants has decreased profoundly also in recent years due to installation and improved performance of flue gas cleaning devices. The emission from power plants have also...... stationary combustion plants and the corresponding improved emission inventories for the following HMs: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn). The report presents data for the year 2009 and time series for 1990-2009. The...

  12. Determination of some heavy metals levels in common carp fingerlings

    Directory of Open Access Journals (Sweden)

    N.M. Abdulrahman

    2013-06-01

    Full Text Available This study was carried out at fish laboratory of Animal Production Department, Faculty of Agricultural Sciences, University of Sulaimaniya using commercial dry yeast in three concentration (0%, 3%, and 5% for 12 weeks to study their effects on concentration of some heavy metals (namely Cr, Cd, Co, Pb, Cu, Fe, Zn, and Mg of common carp fingerlings (Cyprinus carpio. The experiment was included three treatments each in three replicates (plastic tanks in which 10 fingerlings common carp of the same size and average weight (3.5 gram were stocked in each aquarium. The actual experimental feeding trials lasted three months. Results indicated that the concentrations of heavy metals differ among the treatments.

  13. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  14. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2012-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the...... electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even...... consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by...

  15. Environmental pollution with heavy metals in the Republic of Macedonia

    International Nuclear Information System (INIS)

    An overview to the results from the application of various spectrometric (atomic absorption spectrometry, AAS; inductively coupled plasma-atomic mission spectrometry, ICP-AES; and inductively coupled plasma-mass spectrometry, ICP-MS) and radioanalytical (neutron activation analysis, NAA) techniques in environmental pollution studies in the Republic of Macedonia are presented. The results from the surveys of the pollution with heavy metals of soil, air and food are reported. The pollution with heavy metals in the particular regions was additionally investigated using moss, lichens, attic dust, soil, water and sediment samples. The results from the study of the pollution in the cities of Veles (lead and zinc smelter plant), Kavadartsi (ferronickel smelter plant), Radovish (copper mine and flotation), Probishtip, Makedonska Kamenitsa and Kriva Palanka (lead and zinc mines and flotation plants) and Bitola and Kichevo (thermoelectric power plants) are presented. (Author)

  16. Wetland plants as indicators of heavy metal contamination.

    Science.gov (United States)

    Phillips, D P; Human, L R D; Adams, J B

    2015-03-15

    In this study metal accumulating abilities of three emergent macrophytes (Phragmites australis, Typha capensis and Spartina maritima) were investigated in the urbanised Swartkops Estuary. Plants and sediment samples were collected at seven sites along the banks of the main channel and in adjacent canals. Sediments and plant organs were analysed, by means of atomic absorption spectrometry, for four elements (Cd, Cu, Pb, and Zn). Metal concentrations in the sediments of adjacent canals were found to be substantially higher than those at sites along the banks of the estuary. These differences were reflected in the plant organs for Pb and Zn, but not for Cu and Cd. All three species exhibited significantly higher concentrations of metals in their roots. These species are therefore suitable for use as indicators of the presence and level of heavy metal contaminants in estuaries. PMID:25599629

  17. Pollution of forest wood species by heavy metals; 1 : 1 000 000

    International Nuclear Information System (INIS)

    On this map pollution of forest wood species by heavy metals on the territory of the Slovak Republic is shown. The Kz heavy metal loading coefficient expresses exceeding of limit values of heavy metals in assimilation organs of forest wood species. Increased level of Kz is linked to industrial areas (such as central Spis), wood growths in the vicinity of the Polish and Czech frontiers, where the second black triangle in Europe was established while there are not any significant sources of heavy metal emissions. There were available 2,341 points with chemical analysis on heavy metals. (authors)

  18. Studies of leaching, recovery and recycling of heavy metals

    OpenAIRE

    Askari, Hallo Mustafa

    2008-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 04/02/2008. The leachability of cadmium, cobalt, copper, lead, nickel and zinc metals and their oxides, sulfides and carbonates by water, 0.5 mol dm-3 CH3COOH, 0.1 mol dm -3 HCl/NaCI (1: 1 mixture) and 2 mol dm -3 HNO3 is reported. The concentrations of the leached heavy metals are compared with the trigger levels set by World Health Organisation (WHO). Three leaching solutions (nitric, sulfu...

  19. Removal and recovery of heavy metals of residual water industrial

    International Nuclear Information System (INIS)

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  20. Enrichment Characteristics of Heavy Metal Cadmium in Woody

    OpenAIRE

    J.-X. Yang; X.-L. Li; Y.-B. Hu; L.-M. Gao; D.-X. Yao

    2015-01-01

    In recent years, extensive research has been done on phytoremediation technology, but the study on repair mechanisms and the migration path of heavy metal contaminants in woody plants is particularly rare. The object of this study was Pan Yi mine reclamation area in Huainan as an example of cadmium (Cd) content within different parts of woody plants tissue. Based on the research findings about the migration path, the paper uses statistical methods to carry out the analysis by multiple models....